FLORIDA POWER AND LIGHT COMPANY ST. LUCIE UNITS # 1 AND # 2 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT JANUARY 1, 2006 THROUGH DECEMBER 31, 2006

ATTACHMENT D C-200, OFFSITE DOSE CALCULATION MANUAL REVISION 28

					Proce	dure No.		
		51	. LUCIE PL		C-	200		
		CI	HEMISTRY OPER	ATING	Current R	evision No.		
_			PROCEDURE			28		
nt.	FPL		SAFETY RELATE	Ъ	Effect	ive Date		
ume		•	REFERENCE U	_	04/:	30/06		
	Title:			-				
INITIAL	OFFSI1		SE CALCUL	ATION N	IANU	AL		
ION ONLY change documentation d index or document. INITIAL	(ODCM)							
IA I and trolle								
IFORN revision h a con	Responsible Departr	nent: CHEI	MISTRY					
FOR INFORMATION ONLY Before use, verify revision and change documentatic (if applicable) with a controlled index or document. DATE VERIFIED INITIAL	REVISION SUMMAI	RY:						
	Revision 28 - Incorporated PCR 06-1305 to create an additional liquid release flowpath to the plant Intake Canal from the construction dewatering that will be required for the Independent Spent Fuel Storage Installation (ISFSI) Project. Although no radiological effluent is expected, the proposed activity would impose restrictions on sampling type and frequency. The change would also clarify the Methodology section related to outfalls to the Intake Canal. (Glenn Adams, 04/27/06)							
	AND Incorporated PCR 06-1280 to correct Section 1.34.4 reference CR 00-2038 to read CR 00-2039. (Robert Eavenson, 04/20/06)							
	Revision 27 - Incorporated PCR 06-0622 for CR 2005-28538 to clarify operational and calibration requirements for the flow rate monitor and make various administrative changes to correct table, appendix and page number references. (AI Locke, 02/28/06)							
	Revision 26 - Incorporated PCR 05-0822 for CR 04-17054 to delete references to laundry area monitor, delete requirements to sample goat milk, change drinking water, change mangrove to vegetation and change DHRS to BRC. (Frank Gusmano, 07/28/05)							
	continue as long as a and two technically c	prior to relea	atements 35 and 45 suc ase, two independent sar mbers of the facility staff lineup. (Al Locke, 05/14	nples of tank's independently	contents ai	re analyzed		
		eview Date /22/82	Approved By C. M. Wethy	Approval Date 04/27/82	_ DATE	OPS		
			Plant General Manager			PROCEDURE		
		eview Date /25/06	Approved By C. Costanzo	Approval Date 04/27/06	DOCN SYS	C-200		
		20100	Plant General Manager		- сом	COMPLETED		
			N/A		ITM	28		
			Authorized Approver N/A					
			Authorized Approver (Minor Correction)					

REVISION NO).:	PROCEDURE TITLE:	PAGE:
2	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	2 of 220
PROCEDURE			
C-:	200	ST. LUCIE PLANT	
		INDEX	
	ECTION		PAGE
_			
INTRODU	JCTION		9
CONTRO	LS SECTI	ON	
			<u> </u>
DEFINIT	UNS FUR	CONTROLS SECTION	
		ALIBRATION	
		UNCTIONAL TEST	
		VALENT I-131	
		Y NOTATION	
		SE CALCULATION MANUAL	
		AL MODE - MODE	
		RGING	
1.25 RA	TED THE	RMAL POWER	13
		E EVENT	
		OWER D RELEASE	
		TED AREA	
		N EXHAUST TREATMENT SYSTEM	
9	NTING		
1.41 WA	ASTE GAS	HOLDUP SYSTEM	
3/4 CC	NTROLS	AND SURVEILLANCE REQUIREMENTS	16
3/4.0 AP	PLICABILI	ITY	16
INSTRUM	<u>IENTATIO</u>	<u>N</u>	
RADIOAC	TIVE LIQ	UID EFFLUENT MONITORING INSTRUMENTATION	17
RADIOAC	TIVE GAS	SEOUS EFFLUENT MONITORING INSTRUMENTATIO	DN 21

REVISION NO	D.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	3 of 220
PROCEDUR	∃ NO.: • 200	ST. LUCIE PLANT	
	-200	ST. LUCIE PLANT	
		INDEX (continued)	
	SECTION	(continued)	PAGE
CONTRO	DL AND SU	RVEILLANCE STATEMENTS FOR CONTROLS SECT	
<u>3/4.11</u>	RADIOAC	TIVE EFFLUENTS	
3/4.11.1		DEFFLUENTS	
		NCENTRATION	
		QUID RADWASTE TREATMENT SYSTEM	
3/4.11.2	GASE	OUS EFFLUENTS	
		SE RATE SE - NOBLE GASES	
		SE - NOBLE GASES SE - IODINE-131, IODINE-133, TRITIUM AND RADIO.	
		MATERIAL IN PARTICULATE FORM	43
	GA	SEOUS RADWASTE TREATMENT SYSTEM	44
3/4.11.3	(NOT	USED)	
3/4.11.4	ΤΟΤΑΙ	DOSE	
3/4.11.5		R CHANGES TO RADIOACTIVE LIQUID, GASEOUS A E TREATMENT SYSTEMS ADMINISTRATIVE CONTR	
3/4.11.6	-	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO ISSION ADMINISTRATIVE CONTROLS	D THE 49
3/4.12	RADIOLO	GICAL ENVIRONMENTAL MONITORING	
3/4.12.1	MONIT	ORING PROGRAM	
3/4.12.2	LAND	USE CENSUS	60
3/4.12.3	INTER	LABORATORY COMPARISON PROGRAM	
3/4.12.4		AL RADIOLOGICAL ENVIRONMENTAL OPERATING PR) ADMINISTRATIVE CONTROLS	

REVISION NO .:		PROCEDURE TITLE:	PAGE:
28 PROCEDURE NO.		OFFSITE DOSE CALCULATION MANUAL (ODCM)	4 of 220
C-200		ST. LUCIE PLANT	
	<u>CONT</u>	INDEX (continued)	PAGE
<u>3/4.11 RA</u>		CTIVE EFFLUENTS	
3.3.3.9	INSTR	RUMENTATION	65
3/4.11.1	LIQUI	D EFFLUENTS	
3/4.11.2	GASE	OUS EFFLUENTS	68
3/4.11.3	NOT L	JSED	71
3/4.11.4	ΤΟΤΑΙ	L DOSE	71
<u>3/4.12 RA</u>	DIOLO	GICAL ENVIRONMENTAL MONITORING	
3/4.12.1	MONIT	TORING PROGRAM	73
3/4.12.2	LAND	USE CENSUS	73
3/4.12.3	INTER	RLABORATORY COMPARISON PROGRAM	74
FIGURES			
FIGURE 1-1	SITE	E AREA MAP & ENVIRONMENTAL SAMPLE LOCATIO	NS 216
FIGURE 1-2	ENV	IRONMENTAL SAMPLE LOCATIONS (10 MILES)	

REVISION NO.	:	PROCEDURE TITLE:	PAGE:
28 PROCEDURE		OFFSITE DOSE CALCULATION MANUAL (ODCM)	5 of 220
C-2		ST. LUCIE PLANT	
		INDEX (continued)	
S	ECTION	(PAGE
CONTROL	S SECTI	ON	
LIST OF T	ABLES F	OR CONTROLS SECTION	
<u>TABLE</u>			
1-1	FREQU	ENCY NOTATION	15
3.3-12		ACTIVE LIQUID EFFLUENT MONITORING	17
3.3-13		ACTIVE GASEOUS EFFLUENT MONITORING	22
3.3-14	RADIOA	ACTIVE EFFLUENT MONITORING SETPOINT BASIS.	25
3.12-1	RADIOL	OGICAL ENVIRONMENTAL MONITORING PROGRAM	M53
3.12-2		TING LEVELS FOR RADIOACTIVITY CONCENTRATION	
4.3-8	-	ACTIVE LIQUID EFFLUENT MONITORING	20
4.3-9		ACTIVE GASEOUS EFFLUENT MONITORING	29
4.11-1		ACTIVE LIQUID WASTE SAMPLING AND ANALYSIS AM	32
4.11-2		ACTIVE GASEOUS WASTE SAMPLING AND ANALYS	
4.12-1	-	TION CAPABILITIES FOR ENVIRONMENTAL SAMPLE SIS LOWER LIMIT OF DETECTION (LLD)	

REVISIO	N NO.:		PROCEDURE TITLE:	PAGE:
PROCED	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	6 of 220
	C-200		ST. LUCIE PLANT	
			INDEX	
	SECTIO	<u> </u>	(continued)	PAGE
метн	ODOLOG	BY SE	ECTION	
Glossa	ary for Me	thod	ology Section	75
1.0	LIQUID	REL	EASES METHODOLOGY	78
	1.1	Rad	lioactive Liquid Effluent Model Assumptions	78
	1.2		ermining the Fraction (F) of 10 CFR Part 20 Effluent acentration Limits (ECL) for a Liquid Release Source	79
	1.3	Det	ermining Setpoints for Radioactive Liquid Effluent Mon	itors82
	1.4	Det	ermining the Dose for Radioactive Liquid Releases	86
	1.5	Proj	jecting Dose for Radioactive Liquid Effluents	
2.0	RADIO	ACTI	VE RELEASES OF GASEOUS EFFLUENTS	90
	2.1	Gas	eous Effluent Model Assumptions	90
	2.2		ermining the Total Body and Skin Dose Rates for Nobl eases and Establishing Setpoints for Effluent Monitors	
	2.3		ermining the Radioiodine and Particulate Dose Rate to an From Gaseous Releases	
		2.3.	1 Inhalation	107
		2.3.	2 Ground Plane	109
		2.3.	3 Milk	110
		2.3.	4 Tritium	112
		2.3.	5 Total Dose Rate by Release Source	114

	N NO.:	PF	ROCEDURE TITLE:	PAGE:
	28	<	DFFSITE DOSE CALCULATION MANUAL (ODCM)	7 of 220
PROCED	OURE NO.: C-200		ST. LUCIE PLANT	
METH	<u>SECTI</u> ODOLO(INDEX (continued)	PAGE
Glossa	ary for M	ethodol	ogy Section (continued)	
2.0	•		E RELEASES OF GASEOUS EFFLUENTS (continued	d)
	2.4		mining the Gamma Air Dose for Radioactive Noble Ga	
	2.5		mining the Beta Air Dose for Radioactive Noble Gas	117
	2.6		mining the Radioiodine and Particulate Dose to Any A p's Organ From Cumulative Releases	-
		2.6.1	Inhalation	121
		2.6.2	Ground Plane	122
		2.6.3	Milk	123
		2.6.4	Meat	124
		2.6.5	Vegetation	126
		2.6.6	Tritium (All pathways)	127
		2.6.7	Total Organ Dose	129
	2.7	Proje	cting Dose for Radioactive Gaseous Effluents	130
3.0	40 CFI	R 190 D	OOSE EVALUATION	130
	ANNU	AL REF	PORT FORMAT	132

REVISION NO.:		PROCEDURE TITLE:	PAGE:
		OFFSITE DOSE CALCULATION MANUAL (ODCM)	8 of 220
PROCEDURE NO.:			
C-200		ST. LUCIE PLANT	
		INDEX	
		(continued)	
SECTI	<u> </u>		PAGE
METHODOLOG	GY S	ECTION	
APPENDIXES			
APPENDIX A	EC	L, Dose Factor and Historical Meteorological Tables	146
APPENDIX B	Cu	rrent R.E.M. Sample Point Locations	211
APPENDIX C	His	scription of Meteorological Dispersion Formulas Utilized torical Data and Methodology for Determining Actual M	ET
	Dat	ta	217
APPENDIX D	Des	scription of the Interlaboratory Comparison Program	218

		•
C-200	ST. LUCIE PLANT	
PROCEDURE NO .:		9 01 220
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	9 of 220
REVISION NO .:	PROCEDURE TITLE:	PAGE:

INTRODUCTION

The ODCM consists of the Controls Section followed by the Methodology Section.

The Controls Section provides the Control Statements, Limits, ACTION Statements, Surveillance Requirements and BASES for ensuring that Radioactive Liquid and Gaseous Effluents released to UNRESTRICTED AREAS and/or the SITE BOUNDARY will be maintained within the requirements of 10 CFR Part 20, 40 CFR Part 190, 10 CFR 50.36.a and 10 CFR Part 50 Appendix-I radioactive release criteria. All Control Statements and most Administrative Control Statements in the ODCM are directly tied to and reference the Plant Technical Specification (TS) Administrative Section. The Administrative Control for Major Changes to Radioactive Liquid, Gaseous and Solid Treatment Systems is as per the guidance of NUREG-1301, April 1991, Supplement No. 1 to NRC Generic Letter 89-01. The numbering sequences of Control Statements also follow the guidance of NUREG-1301 as applicable, to minimize differences. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment, 6.3.1 and 6.3.2, provide the background for the need to maintain Quality Assurance programs for effluent releases and radiological environmental monitoring.

The Methodology Section uses the models suggested by NUREG-0133, November, 1978 and Regulatory Guide 1.109 to provide calculation methods and parameters for determining results in compliance with the Controls Section of the ODCM. Simplifying assumptions have been applied where applicable to provide a more workable document for implementing the Control requirements. Alternate calculation methods may be used from those presented as long as the overall methodology does not change or as long as most up-to-date revisions of the Regulatory Guide 1.109 dose conversion factors and environmental transfer factors are substituted for those currently included and used in this document.

RECORDS AND NOTIFICATIONS

All records of reviews performed for changes to the ODCM shall be maintained in accordance with QI-17-PSL-1. All FRG approved changes to the ODCM, with required documentation of the changes per TS 6.14, shall be submitted to the NRC in the Annual Effluent Release Report. Procedures that directly implement, administer or supplement the requirements of the ODCM Controls and Surveillances are:

- COP-01.05, Processing Aerated Liquid Waste
- COP-01.06, Processing Gaseous Wastes
- COP-05.02, Conduct of Chemistry Met Tower Data Processing
- COP-05.04, Chemistry Department Surveillances and Parameters
- COP-07.05, Process Monitor Setpoints
- The Radiological Environmental Monitoring Program is performed by the State of Florida as per FPL Juno Nuclear Plant Services Corporate Environmental Procedure Number NPSS-HP-WP-002.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	40.000
PROCEDURE NO.:		10 of 220
C-200	ST. LUCIE PLANT	
	CONTROLS AND SURVEILLANCE REQUIREMENTS	

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	11 of 220
PROCE	DURE NO.:		1101220
	C-200	ST. LUCIE PLANT	
1.0	DEFINITION	S for CONTROLS SECTION OF ODCM	

The defined terms of this section appear in capitalized type and are applicable throughout these Controls.

<u>ACTION</u>

1.1 ACTION shall be that part of a Control that prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

1.4 CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.5 CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST

1.6 A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and / or trip functions.

DOSE EQUIVALENT I-131

1.10 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microCurie/gram) which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134 and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be the thyroid dose conversion factors listed in ICRP-30, Supplement to Part 1, Pages 192-212, Tables entitled, "Committed Dose Equivalent in Target Organs or Tissues per Intake of Unit Activity (Sv/Bq)." Reference PLA #98-007, PMAI 99-06-170, PLA #97-005, PMAI 00-01-036.

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	12 of 220
PROCE	DURE NO.:		
	C-200	ST. LUCIE PLANT	
1.0	DEFINITIO	NS for CONTROLS SECTION OF ODCM (continued)	
FREC		DTATION	
1.13		UENCY NOTATION specified for the performance of Sur ints shall correspond to the intervals defined in Table 1.1.	
MEM	BER (S) OF	THE PUBLIC	
1.17	area. How	OF THE PUBLIC means an individual in a controlled or unever, an individual is not a member of the public during a ndividual receives an occupational dose.	
<u>OFFS</u>	ITE DOSE (CALCULATION MANUAL	
1.18	methodolog radioactive effluent mo Radiologica Radioactive Programs r should be it	TE DOSE CALCULATION MANUAL (ODCM) shall conta gy and parameters used in the calculation of offsite doses gaseous and liquid effluents, in the calculation of gaseou onitoring Alarm/Trip Setpoints and in the conduct of the En al Monitoring Program. The ODCM shall also contain (1) e Effluent Controls and Radiological Environmental Monit required by TS section 6.8.4 and (2) descriptions of the in ncluded in the Annual Radiological Environmental Opera dioactive Effluent Release Reports required by TS 6.9.1.7	s resulting from us and liquid nvironmental the oring formation tha ting and
OPEF	RABLE - OPI	ERABILITY	
1.19	OPERABIL all necessa water, lubri subsystem,	subsystem, train, component or device shall be OPERAB ITY when it is capable of performing its specified function iny attendant instrumentation, controls, electrical power, c cation or other auxiliary equipment that are required for t , train, component or device to perform its function(s) are ng their related support function(s).	n(s) and wher ooling or sea ne system,
OPEF		NODE - MODE	
1.20	combinatio	TIONAL MODE (i.e., MODE) shall correspond to any one n of core reactivity condition, power level and average re- e specified in Table 1.2 of the St. Lucie Plant TS.	
PURC	<u> SE - PURGIN</u>	<u>NG</u>	
1.24	from a conf other opera	PURGING shall be any controlled process of discharging finement to maintain temperature, pressure, humidity, con ating condition, in such a manner that replacement air or g e confinement.	ncentration or

REVISIO	ON NO.:		PROCEDURE TITLE:	PAGE:
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	10 - 1000
PROCE	DURE NO.:			13 of 220
	C-200		ST. LUCIE PLANT	
1.0	DEFINIT	ION	S for CONTROLS SECTION OF ODCM (continued)	
<u>RATE</u>		<u>IAL I</u>	POWER	
1.25			RMAL POWER shall be a total reactor core heat transfe nt of 2700 MWt.	er rate to the
REPC	ORTABLE	EVE	<u>NT</u>	
1.27			BLE EVENT shall be any of those conditions specified FR Part 50.	in Section
SITE	BOUNDA	RY		
1.30			DARY means that line beyond which the land or propert erwise controlled by the licensee.	y is not owned,
<u>SOUF</u>	RCE CHE	<u>ск</u>		
1.31			CHECK shall be the qualitative assessment of channel ensor is exposed to a radioactive source.	response when
THEF	RMAL POV	<u>NER</u>		
1.33	THERMA coolant.	AL P	OWER shall be the total reactor core heat transfer rate	to the reactor
UNPL		RELE	ASE	
1.34	airborne classify c	radio differ	D RELEASE is the unintended discharge of a volume o bactivity to the environment. The following guidance is ences between unplanned releases and other releases s an UNPLANNED RELEASE :	presented to
	ls an UN	PLA	NNED RELEASE if:	
		ne wr f site	rong waste gas decay tank or liquid radwaste release ta	ank is released
	ra at	dioa the o	e of process system to automatically divert a process st ctive treatment system upon radioactivity being present detection level or at a certain level of activity, and the re rge off site occurs.	t in the process
1	of	radio	losses from unexpected pipe or valve leaks where the poactive material to off site such that a 10 CFR Part 50.7 R Part 50.73 report is required.	•

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:				
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	14 of 220				
PROCE	DURE NO).:		14 01 220				
	C-200		ST. LUCIE PLANT					
1.0	DEFINITIONS for CONTROLS SECTION OF ODCM (continued)							
1.34	(conti	(continued)						
	4.	4. For Gas Decay Tank, if a Gas Decay Tank loses greater than 2 psig per 8 hours for 9 consecutive shifts, or 18 psig in 72 hours, AND the losses were determined to be to the Reactor Auxiliary Building Atmosphere, then declare the losses as an UNPLANNED RELEASE (reference CR 00-2039).						
	ls not	an UNI	PLANNED RELEASE if:					
	1.		not be shown that the release went off site, i.e., gas wer the system(s) that contained the loss.	nt to another				
	2.		Il losses through the Plant Vent due to valve and pipe le g activities to make the system safe for maintenance ac					
UNRI	ESTRIC	CTED A	REA					
1.35		UNRESTRICTED AREA means an area, access to which is neither limited nor controlled by the licensee.						
VEN	TILATIC	ON EXH	AUST TREATMENT SYSTEM					
1.39	and ir form i absor from t syster Safet	nstalled in efflue bers an the gase m is not y Featur	ON EXHAUST TREATMENT SYSTEM shall be any sy to reduce gaseous radioiodine or radioactive material in nts by passing ventilation or vent exhaust gases throug d/or HEPA filters for the purpose of removing iodines of eous exhaust stream prior to the release to the environn considered to have any effect on noble gas effluents. res Atmospheric Cleanup Systems are not considered to N EXHAUST TREATMENT SYSTEM components.	n particulate h charcoal r particulates nent. Such a Engineered				
VENT	ING							
1.40	confir opera or req	nement f iting cor	all be the controlled process of discharging air or gas fro to maintain temperature, pressure, humidity, concentrat adition, in such a manner that replacement air or gas is uring VENTING. Vent, used in system names, does no pocess.	ion or other not provided				
WAS ⁻	TE GAS	S HOLD	UP SYSTEM					
1.41	reduc offgas	e radioa ses from	AS HOLDUP SYSTEM shall be any system designed ar active gaseous effluents by collecting Reactor Coolant S a the Reactor Coolant System and providing for delay of f reducing the total radioactivity prior to release to the e	System r holdup for				

/R28

PROCEDURE TITLE:	PAGE:
OFFSITE DOSE CALCULATION MANUAL (ODCM)	15 of 220
	15 01 220
ST. LUCIE PLANT	
TABLE 1.1FREQUENCY NOTATION(Page 1 of 1)	
FREQUENCY	
At least once per 12 hours.	
At least once per 24 hours.	
At least once per 7 days.	
At least 4 per month at intervals of no greater than 9 da minimum of 48 per year.	ays and
At least once per 31 days.	
At lease once per 92 days.	
At least once per 184 days.	
At least once per 18 months.	
Prior to each reactor startup.	
Not Applicable.	
Completed prior to each release	
e Effluent Sampling e Batch Releases Only	
	OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT TABLE 1.1 FREQUENCY NOTATION (Page 1 of 1) FREQUENCY At least once per 12 hours. At least once per 24 hours. At least once per 7 days. At least once per 7 days. At least 4 per month at intervals of no greater than 9 da minimum of 48 per year. At least once per 31 days. At least once per 92 days. At least once per 184 days. At least once per 18 months. Prior to each reactor startup. Not Applicable. Completed prior to each release

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:
PROCE	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	16 of 220
	C-200	ST. LUCIE PLANT	
3/4	CONTROLS	AND SURVEILLANCE REQUIREMENTS	
<u>3/4.0</u>	APPL	CABILITY	
CON	TROLS		
3.0.1	during the co	with the Controls contained in the succeeding controls is inditions specified therein; except that upon failure to me associated ACTION requirements shall be met.	
3.0.2	associated A the Control is	ice with a Control shall exist when the requirements of to CTION requirements are not met within the specified tine restored prior to expiration of the specified time interva N requirements is not required.	ne intervals. If
SUR\	/EILLANCE R	EQUIREMENTS	
4.0.1		Requirements shall be met during the conditions specifing the conditions specific ntrols unless otherwise stated in an individual Surveillar .	
4.0.2	Each Surveill interval with:	ance Requirement shall be performed within the specifi	ed time
	a. A max interva	imum allowable extension not to exceed 25% of the sur al.	veillance
1			

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:		17 of 220
C-200	ST. LUCIE PLANT	
0 200		
INSTRUMENTAT	<u>ON</u>	
RADIOACTIVE LI	QUID EFFLUENT MONITORING INSTRUMENTATION	
CONTROLS		
monitori OPERA Control shall be	dance with St. Lucie Plant TS 6.8.4.f.1), the radioactive lid ng instrumentation channels shown in Table 3.3-12 shall BLE with their Alarm/Trip Setpoints set to ensure that the 3.11.1.1 are not exceeded. The Alarm/Trip Setpoints of the determined and adjusted in accordance with the methodo ters in the OFFSITE DOSE CALCULATION MANUAL (OI	be limits of hese channels blogy and
APPLICABILITY:	At all times.	
ACTION:		
Setpoint les suspend th channel or	bactive liquid effluent monitoring instrumentation channel is so conservative than required by the above control, immed e release of radioactive liquid effluents monitored by the a declare the channel inoperable or change the setpoint so conservative.	diately affected
instrumenta Restore the unsuccessf	an the minimum number of radioactive liquid effluent mor ation channels OPERABLE, take the ACTION shown in Ta e inoperable instrumentation to OPERABLE status within 3 ul, explain in the next Annual Radioactive Effluent Releas ability was not corrected in a timely manner.	able 3.3-12. 30 days and, if
c. Report all de	eviations in the Annual Radioactive Effluent Release Repo	ort.
SURVEILLANCE	REQUIREMENTS	
demons SOURC	dioactive liquid effluent monitoring instrumentation channe trated OPERABLE by performance of the CHANNEL CHI E CHECK, CHANNEL CALIBRATION and CHANNEL FU the frequencies shown in Table 4.3-8.	ECK,

EVISION NO .:	PROCEDURE TITLE:		PAGE:
28 OFFSITE DOSE CALCULATION MANUAL (ODCM)			18 of 220
ROCEDURE NO.:			10 01 220
C-200 ST. LUCIE PLANT			
RADIOA	TABLE 3.3-12 CTIVE LIQUID EFFLUENT MONIT (Page 1 of 2)		<u>TATION</u>
	INSTRUMENT	MINIMUM CHANNELS	ACTION
1. Radioactivity M Termination of	Ionitors Providing Alarm and Automatic Release		
a) Liquid Ra	dwaste Effluent Line	1	35
b) Steam Ge	enerator Blowdown Effluent Line	1/SG	36, 37
2. Flow Rate Measurement Devices			
L. HOW RULE MEE		NA	38
	dwaste Effluent Line	N.A	
		N.A	38

SG - Denotes Steam Generator

ACTION STATEMENTS

ACTION 35 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue provided that prior to initiating a release:

a. At least two independent samples are analyzed in accordance with the Surveillance Requirement for concentration limit of Control 4.11.1.1.

AND

b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge line valving.

Otherwise, suspend release of radioactive effluents via this pathway.

ACTION 36 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 2.E-07 micro-Curie/ml:

a. At least once per 8 hours⁽¹⁾ when the specific activity of the secondary coolant is greater than 0.01 micro-Curies/gram DOSE EQUIVALENT I-131

OR

b. At least once per 24 hours⁽¹⁾ when the specific activity of the secondary coolant is less than or equal to 0.01 micro-Curies/gram DOSE EQUIVALENT I-131.

C-200	ST. LUCIE PLANT	
PROCEDURE NO.:		1901220
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	19 of 220
REVISION NO .:	PROCEDURE TITLE:	PAGE:

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION (Page 2 of 2)

ACTION STATEMENTS (continued)

ACTION 37 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, isotopic grab samples shall be obtained and analyzed at a Lower Limit of Detection for I-131, Co-58, Co-60, Cs-134, and Cs-137 to achieve detection sensitivity capable of detecting a primary-to-secondary leak rate of 5 gallons per day, provided that the Reactor Coolant System has sufficient activity present.

The applicable frequency shall be:

In MODES 1, 2, 3, 4

a. At least once per day⁽¹⁾ for isotopic activity on the affected Steam Generator, provided that the Air Ejector Gas Activity Monitor is OPERABLE,

OR

b. At least every 8 hours⁽¹⁾ for isotopic activity on the affected Steam Generator, if the Air Ejector Gas Activity Monitor is INOPERABLE.

This requirement is intended to meet EPRI PWR Primary-to-Secondary Leak Guidelines (TR-104788-R2) per reference PMAI 00-08-109.

ACTION 38 - Minimum system design flow of required running pumps shall be utilized for ECL calculations for discharge canal flow and maximum system design flow be utilized for ECL calculations for effluent line flow.

TABLE 3.3-12 Notation

(1) - The initial sample shall be completed prior to the frequency interval specified. Subsequent samples (of the same INOPERABLE condition) may be performed per ODCM surveillance requirement 4.0.2 (a maximum allowable extension not to exceed 25% of the surveillance interval).

	ISION NO.:	PROCEDURE TITLE:		<u> </u>	P	AGE:
	28	OFFSITE DOSE CAL	CULATION	I MANUA	L (ODCM)	20 of 220
RO	CEDURE NO.:					20 01 220
	C-200	\$1.L	UCIE PLA	NI		
	RADIOAC	TIVE LIQUID EFFLUEN SURVEILLANCE				ATION
	IN	STRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST
1.		nitors Providing Alarm and nation of Release				
	a) Liquid Radv	vaste Effluent Line	D	Р	R (2)	Q (1)
	b) Steam Gene Line	erator Blowdown Effluent	D	м	R (2)	Q (1)
2.	Flow Rate Measu					
		vaste Effluent Line	D (3)	N.A.	R	Q
	b) Discharge C c) Steam Gene	anai erator Blowdown Effluent	D (3)	N.A.	R	Q
	Line		D (3)	N.A.	R	Q
•		TABLE		<u>IS</u>		
1)		EL FUNCTIONAL TEST sh control room alarm annunc				
1)	pathway and		ciation occur	if any of t	he following co	onditions exist:
1)	pathway and 1. Instru	control room alarm annunc	ciation occur	if any of t	he following co	onditions exist:
1)	pathway and 1. Instru 2. Circu	control room alarm annund ment indicates measured le	siation occur evels above	if any of t	he following co	onditions exist:
1)	pathway and 1. Instru 2. Circu 3. Instru	control room alarm annund iment indicates measured le it failure or	siation occur evels above e failure or	f any of t the alarm	he following co	onditions exist:
	pathway and 1. Instru 2. Circu 3. Instru 4. Instru The initial CH reference sta or using stand These standa and rate cap	control room alarm annund ment indicates measured le it failure or ment indicates a downscale	e failure or erate mode. all be perfor tional Institu rated agains ng the syste ormal plant	med using te of Stand t standard m over its operation.	one or more of dards & Techn s certified by t intended rang For subseque	onditions exist: of the ology (NIST) he NIST. e of energy ent CHANNEL
2)	pathway and 1. Instru 2. Circu 3. Instru 4. Instru The initial Chreference stard or using stand These standa and rate cap CALIBRATIC used. CHANNEL C CHANNEL C	control room alarm annund iment indicates measured le it failure or iment indicates a downscale ment controls not set in operation HANNEL CALIBRATION sh indards traceable to the Nationards that have been calibriting ards should permit calibrating abilities that are typical of n	siation occur evels above e failure or erate mode. all be perfor tional Institu rated agains ormal plant e been relat ying indications st once per	med using the alarm the alarm te of Stand t standard m over its operation. ed to the in	he following co ftrip setpoint of dards & Techn s certified by t intended rang For subseque nitial calibratio during periods	onditions exist: of the ology (NIST) he NIST. e of energy ent CHANNEL n may be of release.

REVISION N	0.:	PROCEDURE TITLE:	PAGE:				
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	o				
PROCEDURE NO .:			21 of 220				
c-	-200	ST. LUCIE PLANT					
INSTRUMENTATION							
RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION							
CONTROLS							
3.3.3.10	effluent m OPERAB Control 3. shall be d	ance with St. Lucie Plant TS 6.8.4.f.1), the radioactive g onitoring instrumentation channels shown in Table 3.3- LE with their Alarm/Trip Setpoints set to ensure that the 11.2.1.are not exceeded. The Alarm/Trip Setpoints of t etermined and adjusted in accordance with the method rs in the ODCM.	13 shall be limits of hese channels				
APPLICA	ABILITY:	As shown in Table 3.3-13					
ACTION:	<u>.</u>						
Se su ch	etpoint less spend the annel or de	ctive gaseous effluent monitoring instrumentation chan conservative than required by the above control, imme release of radioactive gaseous effluents monitored by t eclare the channel inoperable or change the setpoint so onservative.	diately he affected				
ins Re un	strumentati estore the in successful	n the minimum number of radioactive gaseous effluent on channels OPERABLE, take the ACTION shown in T noperable instrumentation to OPERABLE status within , explain in the next Annual Radioactive Effluent Releas ility was not corrected in a timely manner.	able 3.3-13. 30 days and, if				
c. Re	eport all de	viations in the Annual Radioactive Effluent Release Rep	port.				
SURVEIL	SURVEILLANCE REQUIREMENTS						
4.3.3.10	demonstra SOURCE	oactive gaseous effluent monitoring instrumentation cha ated OPERABLE by performance of the CHANNEL CH CHECK, CHANNEL CALIBRATION and CHANNEL FU he frequencies shown in Table 4.3-9.	ECK,				

REVISION NO .:	PROCEDURE TITLE:			PAGE:
28	OFFSITE DOSE	E CALCULATION MANU	AL (ODCM)	
PROCEDURE NO.:				22 of 220
C-200		ST. LUCIE PLANT		i
C-200				
		TABLE 3.3-13		
RADIOACTI	VE GASEOUS FE	FLUENT MONITORING		
RADIOAOTT		(Page 1 of 3)		
		(i age i or o)		
INCTOL		MINIMUM CHANNELS	APPLICABILI	TY ACTION
INSTRU		OPERABLE	APPLICABILI	ACTION
1. Waste Gas Holdu				
	ctivity Monitor -			
	arm and Automatic	1/Rx	*	45
Termination				
2. Condenser Evacu		4/0	**	47
a) Noble Gas A	ctivity Monitor	1/Rx		47
2 Diant Vant System	•		Modes 1, 2, 3	, 4 48
3. Plant Vent System a) Noble Gas A	ctivity Monitor			
(Low Range)		1/Rx	*	47
b) Iodine Samp		1/Rx	*	51
c) Particulate S		1/Rx	*	51
d) Flow Rate M		N.A. (3)	*	53
	w Rate Monitor	1/Rx	*	46
4. Fuel Storage Area				
System				
	ctivity Monitor	1/Rx	*	47
(Low Range)				
b) lodine Samp		1/Rx	*	51
c) Particulate S		1/Rx	*	51
d) Flow Rate M		N.A. (3)	*	53
	w Rate Monitor	1/Rx	*	46
5. Steam Generator	Blowdown Building			
	ctivity Monitor			
(Low Range)		1	*	47
b) lodine Samp		1	*	51
c) Particulate S		1	*	51
d) Flow Rate M		N.A. (3)	*	53
- Whenderson	w Rate Monitor	1	*	46

* - At all times while making releases via this pathway

** - At all times when air ejector exhaust is not directed to plant vent.

Rx - Denotes reactor

ACTION STATEMENTS

ACTION 45 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating a release:

- a. At least two independent samples of the tank's contents are analyzed and
- b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup.

Otherwise, suspend release of radioactive effluents via this pathway.

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:				
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	23 of 220				
PROCE	DURE NO.:						
	C-200	ST. LUCIE PLANT					
	TABLE 3.3-13 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION (Page 2 of 3)						
		ACTION STATEMENTS (continued)					
Chan	nels OPERAB	he number of channels OPERABLE less than required I LE requirement, effluent releases via this pathway may I the flow rate is estimated at least once per 4 hours.					
Minim		the number of channels OPERABLE less than required OPERABLE, effluent releases via this pathway may co	-				
a.		operability is due to loss of activity indication, <u>Then</u> grab t once per 8 hours ⁽¹⁾ and these samples are analyzed fo a 24 hours.					
		OR					
b.	discovered d following rea	operability is due to loss of Control Room alarm annunci uring a channel functional test because of any one or m sons listed, <u>Then</u> channel checks are performed once p indication and current assigned setpoints are NOT exc	ore of the er hour ⁽¹⁾ to				
	1. Failur	e to annunciate when testing alarm/trip setpoints.					
	2. Circui	t failure.					
	3. Down	scale failure.					
	4. Contro	ols NOT set in OPERATE mode.					
Chani analy: achiev	ACTION 48 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, noble gas isotopic grab samples shall be obtained and analyzed at a Lower Limit of Detection for Ar-41, Kr-88, Xe-133, Xe-133m, and Xe-135 to achieve detection sensitivity capable of detecting a primary-to-secondary leak rate of 5 gallons per day, provided that the Reactor Coolant System has sufficient activity present.						
The a	pplicable freq	uency shall be:					
a.		e per 12 hours ^{(1),(2)} for noble gas isotopic activity on the <i>P</i> vided that <u>each</u> affected Unit's Steam Generator Blowdo					
		OR					
b.		e per 8 hours ^{(1),(2)} for noble gas isotopic activity on the Ai <u>her</u> of the affected Unit's Steam Generator Blowdown M E.					

REVISION NO .:	PROCEDURE TITLE:	PAGE:					
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	24 of 220					
PROCEDURE NO.:		24 01 220					
C-200	ST. LUCIE PLANT						
TABLE 3.3-13 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION (Page 3 of 3)							
ACTION STATEMENTS (continued)							
ACTION 48 (continu	led)						
(TR-104788-R2), the	intended to meet EPRI PWR Primary-to-Secondary Lea erefore grab samples shall be taken regardless of the A while in Modes 1, 2, 3, 4. (Reference PMAI 00-08-109)	lignment of the					
Channels OPERABI continue for up to 30	ne number of channels OPERABLE less than required LE requirement, effluent releases via the affected pathw days provided samples are continuously collected with as required in Table 4.11-2.	vay may					
	um system flows shall be utilized in the determination on se monitor alarm setpoint.	of the					
TABLE 3.13-13 NOT	<u>TATION</u>						
Subsequent s ODCM survei	mple shall be completed prior to the frequency interval s samples (of the same INOPERABLE condition) may be illance requirement 4.0.2 (a maximum allowable extens ercent of the surveillance interval).	performed per					
<u>Then</u> the same ejector shall b	(2) - If there is no steam flow to the air ejector nozzles while the Reactor is in Mode 4, <u>Then</u> the sample may be omitted, but the steam flow condition (status) to the air ejector shall be reverified once per 8 hours to initiate grab samples if steam flow to the air ejector nozzles is established.						
	monitors are not functional. Vent flow is based on des nd values in the UFSAR. EPIP-09 contains the correct						

REVISION NO.:	PROCEDURE T	TTLE:	1 1 81		PAGE:
28	OFFSITE	DOSE CA		MANUAL (ODCM	
PROCEDURE NO.:		25 of 220			
C-200		ST. LUCIE PLANT			
· · · ·			_		
			BLE 3.3-14		
RA	DIOACTIVE			R SETPOINT BAS	IS
		(Pa	age 1 of 4)		
		CHANNEL	BASIS	ALERT	HIGH
ODCM Effluent Ga	s Channels	ID	DOCUMENT	SETPOINT ^e	SETPOINT [®]
1PV LOW RANGE GA	S	01-05	C-200 ^ª	5 x Bkg. ^q	Allotted % Of Site Limit ⁹
1FHB LOW RANGE G	AS	04-05	C-200 ^a	5 x Bkg. ^q	Allotted % Of Site Limit ⁹
2A PV PIG LOW RAN	GE GAS	423	C-200 ^ª	5 x Bkg. ^q	Allotted % Of Site
2B PV PIG LOW RAN	433	C-200 ^a	5 x Bkg.	Limit ⁹ For Plant Vent #2	
2FHB LOW RANGE G	413	C-200 ^a	5 x Bkg.	Allotted % Of Site	
SGBDB LOW RANGE	45-6	C-200 ^a	5 x Bkg.	Allotted % Of Site Limit ⁹	
1 CONDENSER AIR E	35	C-200	2 x Bkg. ^b	3 x Bkg.	
2 CONDENSER AIR E	403	C-200	2 x Bkg. ^b	3 x Bkg.	
1 BATCH GAS EFFLU	ENT	42	C-200 ^a	As Per COP-01.06	As Per COP-01.06 ^{a,t}
2 BATCH GAS EFFLUENT		203	C-200 ^a	As Per COP-01.06	As Per COP-01.06 ^{a,t}
2PV WRGM	Chan				
Low Range Gas	621	a a P	3	P	Allotted % Of Site
Mid Range Gas	622	624 ^P	C-200 ^a	5 x Bkg. ^P uCi/sec	Limit ^P uCi/sec
High Range Gas	623				
2A ECCS WRGM	Chan				
Low Range Gas	601	oo 4P	0.000	0.75 x High ^P	Allotted % Of Site
Mid Range Gas	602	604 ^P	C-200 ^a	uCi/sec	Limit ^P uCi/sec
High Range Gas	603				
2B ECCS WRGM	<u>Chan</u>				**************************************
Low Range Gas	611	614 ^P	C-200 ^ª	0.75 x High ^P	Allotted % Of Site
Mid Range Gas	612	014	0-200	uCi/sec	Limit ^P uCi/sec
High Range Gas	613				
ODCM Related Particu	ulate Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT [®]
1PV PARTICULATE		01-01	FUSAR	5000 CPM	10,000 CPM ^c
1FHB PARTICULATE		04-01	FUSAR & TS ^d	5000 CPM	10,000 CPM ^c
2A PV PIG PARTICUL	ATE	421	FUSAR	5000 CPM	10,000 CPM [°]
2B PV PIG PARTICUL		431	FUSAR	5000 CPM	10,000 CPM ^c
2FHB PARTICULATE		411	FUSAR & TS ^d	5000 CPM	10,000 CPM ^c
SGBDB PARTICULAT	-	45-4	FUSAR	5000 CPM	10,000 CPM ^c

REVISION NO .:	PROCEDURE 1	TITLE:			PAGE:		
28	28 OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:	OCEDURE NO.:						
C-200		ST.	LUCIE PLAN	IT			
RA		EFFLUE		<u>R SETPOINT BAS</u>	<u>IS</u>		
		(P	age 2 of 4)				
ODCM Related Iodii	ne Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT [®]		
1PV IODINE		01-03	FUSAR	5000 CPM	10,000 CPM ^c		
1FHB IODINE		04-03	FUSAR	5000 CPM	10,000 CPM ^c		
2A PV PIG IODINE		422	FUSAR	5000 CPM	10,000 CP M ^c		
2B PV PIG IODINE		432	FUSAR	5000 CPM	10,000 CPM ^c		
2FHB IODINE		412	FUSAR	5000 CPM	10,000 CPM ^c		
SGBDB IODINE		45-5	FUSAR	5000 CPM	10,000 CPM ^c		
ODCM Related Liqu	id Channels	CHANNEL	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT [®]		
1A S/G BLOWDOWN		44	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}		
1B S/G BLOWDOWN		45	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}		
2A S/G BLOWDOWN	121	C-200	2 x Bkg.	2.E-04 uCi/ml ^m			
2B S/G BLOWDOWN		122	C-200	2 x Bkg.	2.E-04 uCi/ml ^m		
1 BATCH LIQUID EFF	As Per COP-01.05	As Per COP-01.05 ⁿ					
2 BATCH LIQUID EFF	LUENT	301	C-200	As Per COP-01.05	As Per COP-01.05 ⁿ		
Monitor channels no TABLE NOTATION a - ODCM Control b - ODCM Table 4 c - ODCM Control	<u>S</u> 3.11.2.1a .11-1 Note	·	er COP-07.05				
d - TS Table 3.3-6	required in	strument 2	.a.ii with setpo	oint per ODCM			
e - Setpoints may	be rounded	for analog	and digital di	splay input limitati	ons.		
f - The channel se	etpoint to be	in cpm eq	uivalent to thi	s activity			
g - per ODCM Me	thodology S	tep 2.2.2					
h - Batch Gaseous Plant Vent (PV				ty limits shall be u ot be exceeded.	sed such that		
i, j, k, and I not used	l in notation	for clarity					

REVISION NO .:	PROCEDURE TITLE:	PAGE:						
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	27 of 220						
PROCEDURE NO.:								
C-200 ST. LUCIE PLANT								
TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 3 of 4)								
TABLE NOTATION	IS (continued)							
m - Continuous Li	quid setpoint methodology per ODCM 1.3.2							
n - Batch liquid se	etpoint methodology per ODCM 1.3.1							
o - Note "oscar" is	s not used in this table notation							
p - The individual	Channel 621, 622 and 623 (Plant Vent No. 2)							
	Channel 601, 602 and 603 (ECCS 2A)							
and	Channel 611, 612 and 613 (ECCS 2B)							
Data Base Alert and High Alarm Setpoint Items do not provide activation of a Control Room Alarm. Only the Skid's Effluent Channel Setpoint provides an alarm function. After the first Alert and High Effluent Channel Alarms are received they will stay locked in if the release is increasing to higher activity levels. Transfer of Skid internal control to Effluent Channel input from the Mid or High Range Gas Channels will not reset an alarm, nor provide additional alarms. The Effluent Channel on the respective Skid has to be reset to new Setpoints by I&C. References to "Alert Alarm" and "High Alarm" settings for the Low Mid and High Channels are for display information only. This is why Table 3.3-14 only list Channel 624, 604 and 614 as the Channel ID for Alarm Setpoints. These are the respective Skid's Alarm Channel.								
Channel ID number 604 and 614 are the uCi/sec indication and ALERT/HIGH Alarm channel. Channels for ECCS 2A and ECCS 2B respectively. The ECCS exhaust pathways each have a single fan. Their Skid's Monitor Item #059 will be set per the measured ft3/minute exhaust rate. Their Skid's Monitor Item #060 (Accident Flow rate) will be set to zero since there is only one flow rate possible for these ECCS pathways. The uCi/sec value indicated on ECCS skids should be valid regardless of Normal or Accident conditions.								
the uCi/sec ar by) to the Low Vent 2's skid I could occur ui	D number 624 (generically called the Plant Vent 2 Skid' nd Control Room active ALERT/HIGH Alarm that is Com (621), Mid (622), and High (623) Range Gas Channels Monitor Item #059 will be set for the maximum ft3/minute nder all circumstances. The Plant Vent 2 Channel 624's what is set in Monitor Item #059 and Monitor Item #060	mon (shared The Plant flow rate that actual uCi/sec						

REVISION NO .:	PROCEDURE TITLE:	PAGE:					
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO .:		28 of 220					
C-200	ST. LUCIE PLANT						
TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 4 of 4)							
TABLE NOTATIO	<u>NS</u> (continued)						
p - (continued)							
ALERT/High COP-07.05)	L value for the Common Channel 624 uCi/sec indication Alarms should be based on the equivalent uCi/sec of the uCi/cc of the Low Range Channel #621 and RIM 26-90 N XIMUM process ft3/minute flow rate that could occur in t	5 x Bkg (use Ionitor Item					
switching (at display a uCi Range Chan Item #060 6,	The ACCIDENT value for the Common Channel 624's uCi/sec is based on the Skid switching (at a preset activity value) input from the Low Range Channel to calculate / display a uCi/sec value based on receiving activity uCi/cc input from either the Mid Range Channel 622 (OR from the High Range Channel 623) and RIM 26-90 Monitor Item #060 6,600 ft3/minute (use COP-07.05) flow rate that is expected during a LOCA Safety Injection sequence.						
2-HVE-6B, 2 2-HVE-10B t flow rate that new Setpoint actual Plant the Effluent (Setpoints wil	During an ACCIDENT you have to access the running status of 2-HVE-6A, 2-HVE-6B, 2-HVE-7A, 2-HVE-7B, 2-HVE-8A, 2-HVE-8B, 2-HVE-10A and 2-HVE-10B to determine actual Plant Vent exhaust flow rate ft3/minute. This is the flow rate that should be inserted into Plant Vent #2 Skid's Monitor Item #060 with new Setpoints for Alert and High Alarms in units of uCi/sec calculated by using the actual Plant Vent exhaust flow during the Accident. If fan operating status changes, the Effluent Channel 624 uCi/sec indication and existing Alert and High Alarm Setpoints will not be valid for a new flow rate. This is the reason that EPIP-09 does not utilize Channel 624 indication for calculating off-site dose.						
slightly above less than the	tage, the Low Range gas activity ALERT Alarm Setpoint i e outage anticipated activity levels, but shall always be se High Alarm Setpoint. Examples of outage activities are in Main Purge and venting the S/G primary side bowls.	t to a value					
FUSAR - Channel listed in fusar, but not required by ODCM Control 3.3.10 Table 3.3-13. The setpoints are used to provide alarm well before exceeding ODCM Control 3.11.2.1.b Site Dose Rate Limit. The inoperability of a fusar channel above does not involve an ACTION statement unless TS (Technical Specification) is noted.							
is the ap	5 x Bkg. etc., denotes the number of times the normal chopropriate Alarm Setting. These type of setpoints should ed to insure alarm sensitivity is maintained as per COP-07	be periodically					

REV	ISION	NO.:	PROCEDURE TI	TLE:				PAGE:
		28	OFFSITE	DOSE CALCULATION MANUAL (ODCM)				29 of 220
PRO	CEDU	RE NO.:						29 01 220
	(
						•		L
					BLE 4.3-	9 NITORING IN		
	<u> </u>					REMENTS (4		
			<u></u>		age 1 of 2		,	
		INSTRUME	NT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEI FUNCTION TEST	which
1.	Was	ste Gas Holdup	System					
	a)	Noble Gas Act Providing Alar Automatic Ter Release	m and	Ρ	Ρ	R (3)	Q (1)	*
2.	Con	denser Evacua						
	a)	Noble Gas Ac	tivity Monitor	D	М	R (3)	Q (2)	**
3.		nt Vent System						
	a)	Noble Gas Ac		D	M	R (3)	Q (2)	*
	b)	lodine Sample		W	N.A.	N.A.	N.A.	*
	<u>c)</u>	Particulate Sa		W	N.A.	N.A.	N.A.	*
4.	e)	Sampler Flow		D	N.A.	R	N.A.	*
4.	Syst		venulation					
	a)	Noble Gas Ac	tivity Monitor	D	М	R (3)	Q (2)	*
	b)	lodine Sample	r	W	N.A.	N.A.	N.A.	*
	C)	Particulate Sa	mpler	W	N.A.	N.A.	N.A.	*
	e)	Sampler Flow	Rate Monitor	D	N.A.	R	N.A.	*
5.		am Generator B ding Vent	lowdown					
	a)	Noble Gas Act	tivity Monitor	D	М	R (3)	Q (2)	*
	b)	lodine Sample	r	W	N.A.	N.A.	N.A.	*
	C)	Particulate Sa	mpler	W	N.A.	N.A.	N.A.	*
	e)	Sampler Flow	Rate Monitor	D	N.A.	R	N.A.	*

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:							
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	30 of 220							
PROCE	EDURE NO	.:		30 01 220							
	C-200	C	ST. LUCIE PLANT								
	TABLE 4.3-9RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATIONSURVEILLANCE REQUIREMENTS (4)(Page 2 of 2)										
			TABLE NOTATIONS								
* _	• At all	times w	hen making releases via this pathway.								
** -	At all	times w	hen air ejector exhaust is not directed to plant vent.								
(1)	this p		EL FUNCTIONAL TEST shall also demonstrate automa and control room alarm annunciation occurs if any of th ist:								
	1.	Instrur	nent indicates measured levels above the alarm/trip se	tpoint or							
	2.	Circuit	failure or								
	3.	Instrur	nent indicates a downscale failure or								
	4.	Instrur	nent controls not set in operate mode.								
(2)			EL FUNCTIONAL TEST shall also demonstrate that cor occurs if any of the following conditions exist:	ntrol room alarm							
	1.	Instrur	nent indicates measured levels above the alarm/trip se	tpoint or							
	2.	Circuit	failure or								
	3.	Instrur	nent indicates a downscale failure or								
	4.	Instrur	nent controls not set in operate mode.								
(3)	The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards traceable to the National Institute of Standards & Technology (NIST) or using standards that have been calibrated against standards certified by the NIST. These standards should permit calibrating the system over its intended range of energy and rate capabilities that are typical of normal plant operation. For subsequent CHANNEL CALIBRATION, button sources that have been related to the initial calibration may be used.										
(4)	the IN	ISTRUN	ents to perform the surveillances is not applicable, if Ta IENT MINIMUM CHANNELS OPERABLE as not applic R 99-0361, PMAI 99-04-106).								

r	DIE ST. LUCIE PLANT RADIOACTIVE EFFLUENTS LIQUID EFFLUENTS RATION	31 of 220
C-20 3/4.11 3/4.11.1 CONCENT CONTROL 3.11.1.1	0 ST. LUCIE PLANT RADIOACTIVE EFFLUENTS LIQUID EFFLUENTS RATION	
3/4.11 3/4.11.1 CONCENT CONTROL 3.11.1.1	RADIOACTIVE EFFLUENTS LIQUID EFFLUENTS RATION	
3/4.11.1 CONCENT CONTROL 3.11.1.1	LIQUID EFFLUENTS RATION	
CONCENT CONTROL 3.11.1.1 li	RATION	
CONTROL 3.11.1.1		
3.11.1.1 li	S	
r		
ir r	n accordance with the St. Lucie Plant TS 6.8.4.f.2) and 3), the co adioactive material released in liquid effluents to UNRESTRICTE see TS Figure 5.1-1) shall be limited to ten times the concentration 10 CFR Part 20.1001-20.2401, Appendix B, Table 2, Column 2 adionuclides other than dissolved or entrained noble gases. For ntrained noble gases, the concentration shall be limited to 2.E-0 nicro-Curie/ml total activity.	ED AREAS ons specified for dissolved or
APPLICAB	LITY: At all times.	
ACTION:		
UNF	the concentration of radioactive material released in liquid efflue ESTRICTED AREAS exceeding the above limits, immediately re entration to within the above limits.	
SURVEILL	ANCE REQUIREMENTS	
4.11.1.1.1	Radioactive liquid wastes shall be sampled and analyzed accors sampling and analysis program of Table 4.11-1.	ording to the
4.11.1.1.2	The results of the radioactivity analyses shall be used in accord the methodology and parameters in the ODCM to assure that concentrations at the point of release are maintained within the Control 3.11.1.1.	the
4.11.1.1.3	Post-release analyses of samples composited from batch rele performed in accordance with Table 4.11-1 and results of the post-release analyses shall be used with the calculational met ODCM to assure that the concentrations at the point of release	previous hods in the

REVISION NO .:	PROCEDURE	TITLE:			PAGE:					
28	OFFSITE	E DOSE CAL		MANUAL (ODCM)						
PROCEDURE NO.:					32 of 220					
C-200		ст		r						
0-200		51.								
		ТАВ	LE 4.11-1							
RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM										
			ge 1 of 4)							
		(i a	ge i 014)							
			Minimum		Lower Limit of					
Liquid Release	Type	Sampling	Analysis	Type of Activity	Detection					
		Frequency	Frequency	Analysis	LLD (1) (µCi/ml)					
A. Batch Waste Releas	e Tanks (2)	Р	Each Batch	P.G.E. (3)	5.E-07					
		Each Batch		I-131	1.E-06					
		P	М	Dissolved and	1.E-05					
		One Batch/M		Entrained Gases						
				(Gamma Emitters)						
		Р	М	H-3	1.E-05					
		Each Batch	Composite (4)	Gross Alpha	1.E-07					
		Р	Q	Sr-89, Sr-90	5.E-08					
		Each Batch	Composite (4)	C-14, Fe-55, Ni-63	1.E-06					
B. Continuous Release	es (5, 6)	Daily	4/M	P.G.E.(3)	5.E-07					
			Composite	I-131	1.E-06					
		Daily	4/M	Dissolved and						
		Grab Sample	Composite	Entrained Gases	1.E-05					
				(Gamma Emitters)	4 5 65					
		Daily	M	H-3	1.E-05					
			Composite	Gross Alpha	1.E-07					
		Daily	Q	Sr-89, Sr-90	5.E-08					
C. Settling Basin (7)		W	Composite	C-14, Fe-55, Ni-63	1.E-06					
		vv Grab Sample	W	P.G.E. (3)	5.E-07 1.E-06					
D. Settling Basin as a B	Batch	Grab Sample		I-131 P.G.E. (3)	5.E-07					
Release Pathway. (Р		I-131	1.E-06					
(Reference CR 99-1		Each Batch	Each Batch	Dissolved and	1.L-00					
99-08-084 PMAI-01		(8)		Entrained Gases	1.E-05					
				(Gamma Emitters)						
				H-3	1.E-05					
		Feeb Datat	Cook Dotak	Gross Alpha	1.E-07					
		Each Batch	Each Batch	Sr-89, Sr-90	5.E-08					
				C-14, Fe-55, Ni-63	1.E-06					
E. Groundwater Dewa		W (11)	W (11)	H-3	1E-05					
Batch Releases (10	۱ ۱	VV(17)	VV (11)	P.G.E. (3)	5.E-07					

P.G.E. - Denotes Principal Gamma Emitter

	ON NO.:	F	PROCEDURE TITLE:	PAGE:			
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	33 of 220			
PROCE	DURE NO.:			55 01 220			
	C-200		ST. LUCIE PLANT				
	RADIOA	CTIN	TABLE 4.11-1 VE LIQUID WASTE SAMPLING AND ANALYSIS PR (Page 2 of 4)	OGRAM			
			TABLE NOTATIONS				
(1)	radioactive backgroun	e ma d, th	fined for purposes of these controls, as the smallest co Iterial in a sample that will yield a net count, above sys nat will be detected with 95% probability with only 5% p ling that a blank observation represents a real signal.	stem			
	For a partie	cula	r measurement system, which may include radiochem	ical separation:			
			4.66 S _b				
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$				
	LLD	LLD = the a priori lower limit of detection (micro-Curie per unit mass or volume),					
	 S_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute), 						
	Е	=	the counting efficiency (counts per disintegration),				
	V	=	the sample size (units of mass or volume),				
	2.22E+06	=	the number of disintegrations per minute per micro-0	Curie.,			
	Y	=	the fractional radiochemical yield, when applicable,				
	λ	=	the radioactive decay constant for the particular radi and	onuclide (sec ⁻¹)			
	ΔΤ	=	the elapsed time between the midpoint of sample co the time of counting (sec).	llection and			
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.				
	It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.						

	ION NO.:	PROCEDURE TITLE:	PAGE:						
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	34 of 220						
PROCI	EDURE NO.:		54 01 220						
	C-200	ST. LUCIE PLANT							
	TABLE 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 3 of 4)								
		TABLE NOTATIONS (continued)							
(2)	sampling for	ase is the discharge of liquid wastes of a discrete volume analyses, each batch shall be isolated and then thoroug scribed in the ODCM to assure representative sampling	ghly mixed by						
(3)	following rad Cs-137 and (are to be cor of the above Radioactive	I gamma emitters for which the LLD control applies inclu ionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99 Ce-141 and Ce-144. This list does not mean that only the nsidered. Other gamma peaks that are identifiable, toge nuclides, shall also be analyzed and reported in the An Effluent Release Report pursuant to Control 3.11.2.6 in egulatory Guide 1.21, Appendix B, Revision 1, June 197	, Cs-134, nese nuclides ther with those nual the format						
(4)	A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.								
(5)		s release is the discharge of liquid wastes of a nondiscre volume of a system that has an input flow during the cor							
(6)	activity on the less than or e	It Cooling Water activity is > 1.E-5 μ Ci/ml, perform a we e Intake Cooling Water System outlet to ensure the acti equal to 2.E-07 μ Ci/ml LLD limit. If ICW is >2.E-07 μ Ci/ ccordance with a Plant Continuous Release on this Tab	vity level is ml, perform						
(7)		es to be taken when there is confirmed primary to secon- cated by the air ejector monitor indicating greater than o							
(8)	requirement	ndependent samples are analyzed in accordance with t for concentration limit of control 4.11.1.1.1 and at least mbers of the facility staff independently verify the releas	two technically						
(9)	therefore the secondary le	pasin(s) may receive low level activity per the guidance se samples shall be taken regardless of the absence of ak (note (7) on liquid release type C. settling. basin doe e type D. settling basin as a batch release pathway).	a primary-to-						

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:								
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	25 - 5 000								
PROCE	DURE NO.:	· · · · · · · · · · · · · · · · · · ·	35 of 220								
	C-200	ST. LUCIE PLANT									
	TABLE 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 4 of 4)										
		TABLE NOTATIONS (continued)									
(10)	Protected Area where radiological contamination is not expected at significant levels. This expectation may be a judgment based on local and peripheral samples that indicate radiological contaminant levels below the LLD from sources in the dewatering pump's zone of influence. These samples may include dewatering pump well samples (taken by small-volume sample pumps), upgradient groundwater samples, and upgradient samples taken from surface waters (e.g., IWW percolation basins) within the zone of influence. The sampling protocol for these releases shall be precautionary in nature. A conservative value shall be established in the discharge permit for the effluent activity; however, the permit shall be reconciled with actual activity concentrations ascertained from sample										
(11)	analysis of the actual effluent. Each outfall shall be sampled at some point in the discharge header at the frequency described herein. Any outfall that includes a well (or well point) that has not yet achieved its steady state flow rate (indicating that it has not yet reached its steady state zone of influence) shall be sampled weekly. After the wells of an outfall reaches steady state, the sampling and analysis frequency may be extended to monthly.										

/R28

REVISION NO	D.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE	E NO.:		36 of 220
C-	200	ST. LUCIE PLANT	
RADIOA	CTIVE EFF	LUENTS	
DOSE			
CONTRO	DLS		
3.11.1.2	commitme liquid efflu	ance with St. Lucie Plant TS 6.8.4.f.4) and 6.8.4.f.5), the ent to a MEMBER OF THE PUBLIC from radioactive ma ents released, from each unit, to UNRESTRICTED AR -1) shall be limited:	aterials in
		ring any calendar quarter to less than or equal to 1.5 mi ble body and to less than or equal to 5 mrems to any or	
		ing any calendar year to less than or equal to 3 mrems ly and to less than or equal to 10 mrems to any organ.	to the whole
APPLICA	BILITY:	At all times.	
ACTION:			
exe da exe rec	ceeding an ys, pursuar ceeding the duce the re	ulated dose from the release of radioactive materials in y of the above limits, prepare and submit to the Commint to Plant TS 6.9.2, a Special Report that identifies the e limit(s) and defines the corrective actions that have be leases and the proposed corrective actions to be taken eleases will be in compliance with the above limits.	ssion within 30 cause(s) for een taken to
SURVEIL	LANCE RE	EQUIREMENTS	
4.11.1.2	quarter an	e dose contributions from liquid effluents for the current d the current calendar year shall be determined in acco dology and parameters in the ODCM at least once per	ordance with

REVISION NO .:		PROCEDURE TITLE:	PAGE:
28	i	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.	:		37 of 220
C-200		ST. LUCIE PLANT	
<u>RADIOACTI'</u>	VE EFF	LUENTS	
LIQUID RAD	WASTE	TREATMENT SYSTEM	
CONTROLS			
Tro sh to Fig	eatment all be us the liqui gure 5.1	ince with St. Lucie Plant TS 6.8.4.f.6), the Liquid Radwa System shall be OPERABLE and appropriate portions and to reduce releases of radioactivity when the project d effluent, from each unit, to UNRESTRICTED AREAS -1) would exceed 0.06 mrem to the whole body or 0.2 r 31-day period.	of the system ed doses due s (see TS
APPLICABIL	<u>ITY:</u>	At all times.	
<u>ACTION:</u>			
the ab opera	ove lim tion, pre	ve liquid waste being discharged without treatment and its and any portion of the Liquid Radwaste Treatment S pare and submit to the Commission within 30 days, pu pecial Report that includes the following information:	System not in
1.	identifi	ation of why liquid radwaste was being discharged with cation of any inoperable equipment or subsystems and perability,	
2.	Action(and	s) taken to restore the inoperable equipment to OPER/	ABLE status
3.	Summa	ary description of action(s) taken to prevent a recurrence	ce.
SURVEILLA	NCE RE	QUIREMENTS	
4.11.1.3.1	shall be method	due to liquid releases from each unit to UNRESTRICTI e projected at least once per 31 days in accordance wit lology and parameters in the ODCM when Liquid Radw ent Systems are not being fully utilized.	th the
4.11.1.3.2	OPER/ for at le system	stalled Liquid Radwaste Treatment System shall be der ABLE by operating the liquid radwaste treatment syster east 30 minutes at least once per 92 days unless the lic has been utilized to process radioactive liquid effluents is 92 days.	n equipment juid radwaste

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:		38 of 220
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	
<u>3/4.11.2 GASE</u>	OUS EFFLUENTS	
DOSE RATE		
CONTROLS		
from radio	ance with St. Lucie Plant TS 6.8.4.f.3) and 7), the dose bactive materials released in gaseous effluents to areas BOUNDARY (see TS Figure 5.1-1) shall be limited to th	at or beyond
	r noble gases: Less than or equal to 500 mrems/yr to th d less than or equal to 3000 mrems/yr to the skin and	ne total body
pa	r lodine-131, for lodine-133, for tritium and for all radion rticulate form with half-lives greater than 8 days: Less t 00 mrems/yr to any organ	
APPLICABILITY:	At all times.	
ACTION:		
	e rate(s) exceeding the above limits, immediately restor the above limit(s).	e the release
SURVEILLANCE R	EQUIREMENTS	
to be v	ose rate due to noble gases in gaseous effluents shall b within the above limits in accordance with the methodolo eters in the ODCM.	
particu be det metho sample	ose rate due to lodine-131, lodine-133, tritium and all ra late form with half-lives greater than 8 days in gaseous ermined to be within the above limits in accordance with dology and parameters in the ODCM by obtaining repre- es and performing analyses in accordance with the sam- is program specified in Table 4.11-2.	effluents shall n the esentative

REVISION NO .:	PROCEDURE	TITLE:			PAGE:
28 PROCEDURE NO.:	OFFSITE	E DOSE CALC	CULATION M	ANUAL (ODCM)	39 of 220
C-200		ST. L	UCIE PLANT		
RADIOACTIV	E GASEO	US WASTE S		ND ANALYSIS P	ROGRAM
		(Pag	e 1 of 3)		
Gaseous Release	е Туре	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection LLD (1) (μCi/ml)
1. Waste Gas Storage	Tank	P Each Tank Grab Sample	P Each Tank	Noble Gas P.G.E. (2)	1.E-04
2. Containment Purge		P Each Purge (6)	P Each Purge (6)	Noble Gas P.G.E. (2)	1.E-04
		Grab Sample	(7)	H-3	1.E-06
3. Vents:		4/M Grab Sample	4/M (7)	Noble Gas P.G.E. (2)	1.E-04
a. Plant b. Fuel Bldg (5) c. S/G Blowdown	Bldg.			H-3	1.E-06
 All Release Types as above 	s listed in 3.	Continuous (3)	4/M Charcoal Sample (4)	I-131	1.E-12
			4/M Particulate Sample (4)	P.G.E.	1.E-11
			4/M Particulate Sample	Gross Alpha	1.E-11
	i		Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11
			Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.E-06

P.G.E. - Denotes Principal Gamma Emitter

REVISI	ON NO.:	F	PROCEDURE TITLE:	PAGE:
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	40 of 220
ROCE	DURE NO.: C-200		ST. LUCIE PLANT	
	C-200		ST. LUCIE FLANT	
	RADIOAC	TIVE	TABLE 4.11-2E GASEOUS WASTE SAMPLING AND ANALYSIS P(Page 2 of 3)	ROGRAM
			TABLE NOTATIONS	
1)	radioactive backgroun	e ma d, th	fined for purposes of these controls, as the smallest controls in a sample that will yield a net count, above systemat will be detected with 95% probability with only 5% ling that a blank observation represents a real signal.	stem
	For a parti	cula	r measurement system, which may include radiochem	ical separation:
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$	
			$E \bullet V \bullet 2.22E + 06 \bullet Y \bullet exp(-\lambda \bullet \Delta T)$	
	Where:			
	LLD	=	the a priori lower limit of detection (micro-Curie per ι volume),	init mass or
	LLD	=	the a priori lower limit of detection (micro-Curie per ι volume),	init mass or
	Sb	=	the standard deviation of the background counting race of a blank sample as appropriate (cour	
	E	=	the counting efficiency (counts per disintegration),	
	V	=	the sample size (units of mass or volume),	
	2.22E+06	=	the number of disintegrations per minute per micro-0	Curie.,
	Y	=	the fractional radiochemical yield, when applicable,	
	λ	=	the radioactive decay constant for the particular radi and	onuclide (sec ⁻¹)
	ΔΤ	=	the elapsed time between the midpoint of sample co the time of counting (sec).	llection and
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.	
	representir	ng th	cognized that the LLD is defined as an <u>a priori</u> (before ne capability of a measurement system and not as an limit for a particular measurement.	

	ION NO.:	PROCEDURE TITLE:	PAGE:
PROCI	28 EDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	41 of 220
	C-200	ST. LUCIE PLANT	
	RADIOACTIV	TABLE 4.11-2 E GASEOUS WASTE SAMPLING AND ANALYSIS P (Page 3 of 3)	ROGRAM
		TABLE NOTATIONS (continued)	
(2)	following radie noble gas rele Cs-137, Ce-1 mean that onli identifiable, to reported in th	gamma emitters for which the LLD control applies inclu onuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135 and eases and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, 41 and Ce-144 in lodine and particulate releases. This by these nuclides are to be considered. Other gamma p ogether with those of the above nuclides, shall also be a e Annual Radioactive Effluent Release Report pursuan 2.6 in the format outlined in Regulatory Guide 1.21, App une 1974.	I Xe-138 in I-131, Cs-134, list does not beaks that are analyzed and t to
(3)	for the time p	ne sample flow rate to the sampled stream flow rate sha eriod covered by each dose or dose rate calculation ma vith Controls 3.11.2.1, 3.11.2.2 and 3.11.2.3.	
(4)	completed with Sampling shat following each of RATED TH completed with are analyzed, requirement of I-131 concent	I be changed at least four times per month and analyse thin 48 hours after changing or after removal from samp II also be performed at least once per 24 hours for at le in shutdown, startup or THERMAL POWER change exc IERMAL POWER within a 1-hour period and analyses s thin 48 hours of changing. When samples collected for the corresponding LLDs may be increased by a factor loes not apply if: (1) analysis shows that the DOSE EC ration in the reactor coolant has not increased more that a noble gas monitor shows that effluent activity has not actor of 3.	oler. east 7 days eeding 15% shall be 24 hours of 10. This QUIVALENT an a factor of
(5)	-	amples shall be taken at least 4/M from the ventilation pool area, whenever spent fuel is in the spent fuel poo	
(6)	THERMAL PO 1 hour unless in the primary	analysis shall also be performed following shutdown, s DWER change exceeding 15% of RATED THERMAL P (1) analysis shows that the DOSE EQUIVALENT I-131 coolant has not increased more than a factor of 3; and onitor shows that effluent activity has not increased by	OWER within concentration (2) the noble
(7)	Tritium analys new counting	is may be delayed for up to 14 days if the LLD is still at time.	tainable at the

REVISION NO	<u>)</u> .	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE	ENO.:		42 of 220
C-	200	ST. LUCIE PLANT	
RADIOAC	CTIVE EFF	LUENTS	
DOSE - N	NOBLE GA	<u>SES</u>	
CONTRC	DLS		
3.11.2.2	noble gas	ance with St. Lucie Plant TS 6.8.4.f.5) and 8), the air do es released in gaseous effluents, from each unit, to are e SITE BOUNDARY (see TS Figure 5.1-1) shall be limi	as at and
		ring any calendar quarter: Less than or equal to 5 mrac liation and less than or equal to 10 mrads for beta radia	
		ring any calendar year: Less than or equal to 10 mrads liation and less than or equal to 20 mrads for beta radia	
APPLICA	BILITY:	At all times.	
ACTION:			
ex da ex	ceeding an ys, pursuai ceeding the	ulated air dose from radioactive noble gases in gaseous y of the above limits, prepare and submit to the Commi nt to Plant TS 6.9.2, a Special Report that identifies the e limit(s) and defines the corrective actions that have be ubsequent releases will be in compliance with the above	ssion within 30 cause(s) for en taken to
SURVEIL	LANCE RE	EQUIREMENTS	
			d current

REVISION NO .:		PROCEDURE TITLE:	PAGE:
28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	43 of 220
PROCEDURE NO. C-200		ST. LUCIE PLANT	
RADIOACTIN	VE EFF	LUENTS	
		I, IODINE-133, TRITIUM AND RADIOACTIVE MATERI ATE FORM	<u>AL IN</u>
CONTROLS			
OF pai rele	THE P rticulate eased, f	ance with St. Lucie Plant TS 6.8.4.f.5) and 9), the dose PUBLIC from lodine-131, lodine-133, tritium and all radio form with half-lives greater than 8 days in gaseous effl from each unit, to areas at and beyond the SITE BOUN 5.1-1) shall be limited to the following:	onuclides in uents
a.		ring any calendar quarter: Less than or equal to 7.5 mm an and,	ems to any
b.	Dur	ing any calendar year: Less than or equal to 15 mrems	s to any organ.
APPLICABIL	ITY:	At all times.	
ACTION:			
radion effluer within cause	uclides nts exce 30 days (s) for e aken to	ulated dose from the release of Iodine-131, Iodine-133, in particulate form with half-lives greater than 8 days, in eeding any of the above limits, prepare and submit to th s, pursuant to Plant TS 6.9.2, a Special Report that ider exceeding the limit(s) and defines the corrective actions assure that subsequent releases will be in compliance	n gaseous e Commission ntifies the that have
SURVEILLAN	NCE RE	EQUIREMENTS	
cal for	endar y m with ł	e dose contributions for the current calendar quarter an ear for lodine-131, lodine-133, tritium and radionuclide nalf-lives greater than 8 days shall be determined in ac dology and parameters in the ODCM at least once per	s in particulate cordance with

REVISION N	0.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	44 - 6 000
PROCEDUR	E NO.:		44 of 220
C-200		ST. LUCIE PLANT	
	CTIVE EFF	<u>FLUENTS</u> ASTE TREATMENT SYSTEM	,
CONTRO			
3.11.2.4	Treatmen OPERAB releases effluent re	ance with St. Lucie Plant TS 6.8.4.f.6), the VENTILATIC t System and the WASTE GAS HOLDUP SYSTEM sha LE and appropriate portions of the system shall be used of radioactivity when the projected doses in 31 days due eleases, from each unit, to areas at and beyond the SIT Figure 5.1-1) would exceed:	II be to reduce to gaseous
	a. 0.2	2 mrad to air from gamma radiation or	
	b. 0.4	mrad to air from beta radiation or	
	c. 0.3	B mrem to any organ.	
APPLICA	<u>ABILITY:</u>	At all times.	
ACTION	<u>.</u>		
of pu	the above	tive gaseous waste being discharged without treatment limits, prepare and submit to the Commission within 30 Plant TS 6.9.2, a Special Report that includes the followi	days,
1.		ication of any inoperable equipment or subsystems and operability,	the reason for
2.	Action and	(s) taken to restore the inoperable equipment to OPER	ABLE status
3.	Summ	ary description of action(s) taken to prevent a recurrent	ce.

RADIOACT		LUENTS	
GASEOUS	RADWA	STE TREATMENT SYSTEM (continued)	
SURVEILLA	NCE RE	EQUIREMENTS	
4.11.2.4.1	SITE E accord	due to gaseous releases from each unit to areas at and BOUNDARY shall be projected at least once per 31 day lance with the methodology and parameters in the ODC ous Radwaste Treatment Systems are not being fully uti	s in M when
4.11.2.4.2	WAST operati VENTI minute	stalled VENTILATION EXHAUST TREATMENT SYSTE E GAS HOLDUP SYSTEM* shall be demonstrated OPI ing the WASTE GAS HOLDUP SYSTEM equipment an LATION EXHAUST TREATMENT SYSTEM equipment es, at least once per 92 days unless the appropriate syst to process radioactive gaseous effluents during the pro-	ERABLE d for at leatem has
FUN(perfo	CTIONAI	EGAS HOLDUP SYSTEM is not being fully utilized, an L TEST on the WASTE GAS HOLDUP SYSTEM shall a addition to the requirements of 4.11.2.4.2's "at least 30 lays, by performing the following:	also be
1)	Place a	a Gas Decay Tank (containing less than 30 psi) in servi	ce.
2)	With a 150 ps	Waste Gas Compressor, charge the Gas Decay Tank t i.	o at leas
		ing appropriate holdup decay time, sample and release Tank with an OPERABLE Waste Gas Holdup System i	
3)		/ Monitor (per TABLE 3.3-13).	

REVISION NO .:	PROCEDURE TITLE:	PAGE:					
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	46 of 220					
PROCEDURE NO .:		40 01 220					
C-200	ST. LUCIE PLANT						
RADIOACTIVE EF	RADIOACTIVE EFFLUENTS						
<u>3/4.11.4 TOTA</u>	L DOSE						
CONTROLS							
	ance with St. Lucie Plant TS 6.8.4.f.10), the annual (cale lose commitment to any MEMBER OF THE PUBLIC due						

dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

APPLICABILITY: At all times.

ACTION:

a. With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Control 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a or 3.11.2.3.b, calculations shall be made including direct radiation contributions from the units (including outside storage tanks etc.) to determine whether the above limits of Control 3.11.4 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in Subpart M of 10 CFR Part 20, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits and if the release condition resulting in violation of 40 Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request and a variance is granted until staff action on the request is complete.

REVISION NO	O.:	PROCEDURE TITLE:	PAGE:
28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	47 of 220
PROCEDUR			
C-	200	ST. LUCIE PLANT	
RADIOA	CTIVE EFF	LUENTS	
3/4.11.4	ΤΟΤΑΙ	LDOSE (continued)	
SURVEIL	LANCE RI	EQUIREMENTS	
4.11.4.1	determine	re dose contributions from liquid and gaseous effluents ed in accordance with Controls 4.11.1.2, 4.11.2.2 and 4. ce with the methodology and parameters in the ODCM.	
4.11.4.2	outside st methodolo	re dose contributions from direct radiation from the units orage tanks etc.) shall be determined in accordance wit ogy and parameters in the ODCM. This requirement is r conditions set forth in ACTION a. of Control 3.11.4.	the

.

REVISION NO	D.:		PROCEDURE TITLE:	PAGE:				
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)					
PROCEDURE				48 of 220				
C-200 ST. LUCIE PLANT								
RADIOACTIVE EFFLUENTS								
<u>3/4.11.5</u>			R CHANGES TO RADIOACTIVE LIQUID, GASEOUS A E TREATMENT SYSTEMS*	ND SOLID				
ADMINIS			CONTROLS					
·								
3.11.2.5			nitiated major changes to the radioactive waste system nd solid):	ıs (liquid,				
	1)	Rel	all be reported to the Commission in the Annual Radioa ease Report for the period in which the evaluation was Facility Review Group (FRG). The discussion of each	reviewed by				
		a)	A summary of the evaluation that led to the determi change could be made in accordance with 10 CFR					
		b)	Sufficient detailed information to totally support the change without benefit of additional or supplementation					
		c)	A detailed description of the equipment, component processes involved and the interfaces with other pla					
		d)	An evaluation of the change which shows the predic of radioactive materials in liquid and gaseous efflue quantity of solid waste that differ from those previou in the license application and amendments thereto;	nts and/or				
		e)	An evaluation of the change which shows the experience exposure to individuals in the UNRESTRICTED AR general population that differ from those previously the license application and amendments thereto;	EA and to the				
		f)	A comparison of the predicted releases of radioactive liquid and gaseous effluents and in solid waste, to the releases for the period when the changes are to be	he actual				
		g)	An estimate of the exposure to plant operating pers result of the change; and	onnel as a				
		h)	Documentation of the fact that the change was revie found acceptable by the FRG.	ewed and				
	2)	Sha	Il become effective upon review and acceptance by the	e FRG.				
			y choose to submit the information called for in this Ad t of the annual FUSAR update.	ministrative				

REVISION NO	0.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE			49 of 220
<u> </u>	-200	ST. LUCIE PLANT	
RADIOA	CTIVE EFI	FLUENTS	
3/4.11.6	ANNU	JAL RADIOACTIVE EFFLUENT RELEASE REPORT TO) THE
		MISSION*	
ADMINIS	STRATIVE	CONTROLS	
3.11.2.6	Report co operation report sh gaseous provided through f	echnical Specification 6.9.1.7, a Annual Radioactive Effle overing the operation of each unit during the previous 12 a shall be submitted within 60 days after January 1 of ea all include a summary of the quantities of radioactive liqu effluents and solid waste released from each unit. The shall be (1) consistent with the objectives outlined in by below, using the example report format in the ODCM a unce with 10 CFR 50.36a and Section IV.B.1 of Appendix	months of ch year. The uid and material items a) nd (2) be in
	the rel Ev Ra Co su	the Radioactive Effluent Release Reports shall include a sequantities of radioactive liquid and gaseous effluents a leased from the unit as outlined in Regulatory Guide 1.2 valuating and Reporting Radioactivity in Solid Wastes an adioactive Materials in Liquid and Gaseous Effluents from boled Nuclear Power Plants, Revision 1, June 1974, with mmarized on a quarterly basis following the format of Age ereof.	nd solid waste 1, Measuring, d Releases of n Light-Water- i data
	aft me su ma pre of rej rad	The Radioactive Effluent Release Report to be submitted ver the January 1 of each year shall include an annual summe eteorological data collected over the previous year. This mmary may be either in the form of an hour-by-hour listi agnetic tape of wind speed, wind direction, atmospheric ecipitation (if measured) or in the form of joint frequency wind speed, wind direction and atmospheric stability.** port shall include an assessment of the radiation doses dioactive liquid and gaseous effluents released from the rring the previous calendar year.	hary of hourly annual ng on stability and distributions This same due to the
C L	combine th units with s	bmittal may be made for a multiple unit station. The sub ose sections that are common to all units at the station; eparate radwaste systems, the submittal shall specify th material from each unit.	however, for
h	has the opt	ubmission with the Radioactive Effluent Release Report, tion of retaining this summary of required meteorological t shall be provided to the NRC upon request.	

•

REVISION N	0.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDUR			50 of 220
	-200		
	-200	ST. LUCIE PLANT	
RADIOA	CTIVE EF	FLUENTS	
<u>3/4.11.6</u>		JAL RADIOACTIVE EFFLUENT RELEASE REPORT TO MISSION* (continued)	<u>D THE</u>
ADMINIS		CONTROLS	
3.11.2.6	(continue	ed)	
	b. (c	ontinued)	
	fro P Fi th st cc ef be ar m	his same report shall also include an assessment of the normadioactive liquid and gaseous effluents to MEMBER UBLIC due to their activities inside the SITE BOUNDARY gure 5.1-1) during the report period. All assumptions us ese assessments, i.e., specific activity, exposure time an nall be included in these reports. The meteorological corroncurrent with the time of release of radioactive materials fluents, as determined by sampling frequency and meas a used for determining the gaseous pathway doses, or and conservative method used in lieu of actual meteorological activity ensurements. The assessment of radiation doses shall accordance with the methodology and parameters in the	S OF THE ((see TS ed in making nd location, nditions in gaseous urement, shall n approximate gical be performed
	de us ou gr O	very 2 years using the previous 6 months release history etermine the controlling age group for liquid pathways. E sing the previous 1 year or longer interval (to include a re utage) and historical meteorological data determine the c oup for gaseous pathways. If changed from current sub DCM to reflect new tables for these groups and use the i ubsequent dose calculations.	very 2 years fueling ontrolling age mit change to
	Ja do re Ca	ne Radioactive Effluent Release Report to be submitted on nuary 1 of each year shall also include an assessment of oses to the likely most exposed MEMBER OF THE PUBL actor releases for the previous calendar year. Acceptab ilculating the dose contribution from liquid and gaseous of ven in Regulatory Guide 1.109 March 1976.	of radiation LIC from le methods for

REVISION NO	D.:		PROCEDURE TITLE:	PAGE:
	28			
PROCEDURE			OFFSITE DOSE CALCULATION MANUAL (ODCM)	51 of 220
C-	200		ST. LUCIE PLANT	
RADIOA	CTIVE	EFF	LUENTS	
3/4.11.6	ΔΝ	JNI L	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO	
0/4.11.0			IISSION* (continued)	
ADMINIS	TRATI	VE (CONTROLS	
3.11.2.6	(conti	nuec	1)	
	e.	info	e Radioactive Effluent Release Reports shall include the ormation for each class of solid waste (as defined by 10 oped offsite during the report period:	
		1.	Volume	
		2.	Total Curie quantity (specify whether determined by measurement or estimate)	,
		3.	Principal radionuclides (specify whether determined measurement or estimate)	l by
		4.	Type of waste (e.g., dewatered spent resin, compare evaporator bottoms)	cted dry waste,
		5.	Type of container (e.g., LSA, Type A, Type B, Large and	e Quantity)
		6.	Solidification agent or absorbent (e.g., cement, urea formaldehyde).	a
	f.	des AR	e Radioactive Effluent Release Reports shall include a cription of unplanned releases from the site to UNRES EAS of radioactive materials in gaseous and liquid effluing the reporting period.	TRICTED
	g.	mae PRe MA calo	e Radioactive Effluent Release Reports shall include and de during the reporting period to the PROCESS CONT OGRAM (PCP) and to the OFFSITE DOSE CALCULA NUAL (ODCM), as well as a listing of new locations for culations and/or environmental monitoring identified by news of ODCM Control 3.12.2.	ROL FION dose
	h.	provina in a sinc met	e format for an Annual Radioactive Effluent Release Revided in ODCM Methodology Section 4.0. The information annual report shall not apply to any ODCM Control E the methodology for the annual report is based on a second gradient data, instead of historical conditions that the the trols and Control required calculations are based on.	tion contained lose Limit(s) ctual

REVIS	SION NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	52 of 220
PROC	EDURE NO.:		02 01 220
	C-200	ST. LUCIE PLANT	
RAD	DIOLOGICAL EN	VIRONMENTAL MONITORING	
3/4.1	12.1 MONI	ORING PROGRAM	
CON	ITROLS		
3.12		ance with St. Lucie Plant TS 6.8.4.g.1), the Radiologica Program shall be conducted as specified in Table 3.1	
APP	LICABILITY:	At all times.	
ACT	<u>ION:</u>		
a.	specified in T Radiological I description of	iological Environmental Monitoring Program not being of able 3.12-1, prepare and submit to the Commission, in Environmental Operating Report required by Control 3. The reasons for not conducting the program as require venting a recurrence.	the Annual 12.4, a
b.	environmenta levels of Tabl submit to the Report that id corrective act annual dose* of Controls 3.	irmed* level of radioactivity as the result of plant effluer I sampling medium at a specified location exceeding th e 3.12-2 when averaged over any calendar quarter, pre Commission within 30 days, pursuant to Plant TS 6.9.2 entifies the cause(s) for exceeding the limit(s) and definitions to be taken to reduce radioactive effluents so that * to a MEMBER OF THE PUBLIC is less than the caler 11.1.2, 3.11.2.2 or 3.11.2.3. When more than one of the in Table 3.12-2 are detected in the sampling medium, hitted if:	ne reporting epare and 2, a Special nes the the potential ndar year limit ne

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + > \text{ or } = 1.01$

** The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.

^{*} A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate. The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis but in any case within 30 days.

REVISION N	<u>.</u>	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDUR			53 of 220
С	-200	ST. LUCIE PLANT	
RADIOL	OGICAL EN	IVIRONMENTAL MONITORING	
<u>3/4.12.1</u>	MONI	ORING PROGRAM	
Controls	(continued)		
ACTION			
b. (c	ontinued)		
to th re ho	a MEMBER e calendar quired if the owever, in s	effluents, this report shall be submitted if the potential R OF THE PUBLIC from all radionuclides is equal to or year limits of Control 3.11.1.2, 3.11.2.2 or 3.11.2.3. This measured level of radioactivity was not the result of pl uch an event, the condition shall be reported and descr logical Environmental Operating Report required by Co	greater than is report is not ant effluents; ibed in the
sa re Er fro pr Ef re su	ample locati placement nvironmenta om which sa ogram. Put fluent Relea vised figure upporting inf	proad leaf vegetation samples unavailable from one or r ons required by Table 3.12-1, identify specific locations samples and add them within 30 days to the Radiologic al Monitoring Program given in the ODCM. The specific amples were unavailable may then be deleted from the rsuant to Control 3.11.2.6, submit in the next Annual Ra ase Report documentation for a change in the ODCM ir (s) and table for the ODCM reflecting the new location formation identifying the cause of the unavailability of sa selection of the new location(s) for obtaining samples.	o for obtaining cal c locations monitoring adioactive ncluding a (s) with
SURVEI	LLANCE RE	EQUIREMENTS	
4.12.1	to Table 3 ODCM an	gical environmental monitoring samples shall be collec .12-1 from the specific locations given in the table and d shall be analyzed pursuant to the requirements of Ta ion capabilities required by Table 4.12-1.	figure(s) in the

PF	ROCEDURE TITLE:			PAGE:	
(OFFSITE DOSE CALCULATION MANUAL (ODCM) 54 of 220				
	ST. LUC				
DIOLO	GICAL ENVIRONMEN	TAL MONITORING PI	ROGR/	<u>AM</u> ^{a)}	
THWAY PLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) c)}	SAMPLING AND COLLECTION FREQUENCY ^{d)}	FR	TYPE AND EQUENCY ^{d)} F ANALYSIS	
ion ^{e)}	27 Monitoring Locations	Continuous monitoring with sample collection quarterly ^{f)}		a exposure rate - ly	
ioiodine tes	5 Locations	Continuous sampler operation with sample collection weekly or more frequently if required by dust loading	I-131 an Particul Gross b analysis followin Gamma analysis	idine filter: nalysis weekly ate Filter: s ≥24 hours g a filter change ^{g)} a isotopic ^{h)} s of composite ^{g)} ation) quarterly	
	1 Location ^{m)}	Weekly		a isotopic ^{h)} & analyses weekly	
	1 Location ⁿ⁾	Monthly		a isotopic ^{h)} & analyses monthly	
from	2 Locations	Semiannually		a isotopic ^{h)} es semiannually	
ites					
acea	2 Locations	Semiannually	Gamma analyse	a isotopic ^{h)} es semiannually	
	2 Locations	Semiannually		a isotopic ^{h)} s semiannually	
ducts					
l leaf ation	3 Locations ^{p)}	Monthly when available		a isotopic ^{h)} and nalyses monthly	
	DIOLC DIOLC THWAY PLE on ^{e)} ioiodine tes from tes acea	ST. LUC TABLE DIOLOGICAL ENVIRONMEN (Page OIDENCICAL ENVIRONMEN (Page THWAY NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) (c)} on ^{e)} 27 Monitoring Locations ioiodine tes 5 Locations ioiodine tes 5 Locations ioiodine tes 1 Location ^{m)} from 2 Locations ites 2 Locations acea 2 Locations ducts 3 Locations ^{P)}	OFFSITE DOSE CALCULATION MANUAL (O ST. LUCIE PLANT TABLE 3.12-1 DIOLOGICAL ENVIRONMENTAL MONITORING PI (Page 1 of 3) NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) (c)} on ^(e) 27 Monitoring Locations ioiodine tes 5 Locations 5 Locations Continuous sampler operation with sample collection quarterly ^(f) Continuous sampler operation weekly or more frequently if required by dust loading 1 Location ^(m) Weekly 1 Location ^(m) Monthly from 2 Locations Semiannually dust 2 Locations Semiannually 2 Locations Semiannually dusts 1 Leaf 3 Locations ^(f) Monthly when available	OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT TABLE 3.12-1 DIOLOGICAL ENVIRONMENTAL MONITORING PROGRA (Page 1 of 3) THWAY NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{(b)(c)} SAMPLING AND COLLECTION FREQUENCY ^(d) FR 27 Monitoring Locations Continuous monitoring with sample collection quarterly ^(h) Gamma analysis followin ioiodine les 5 Locations Continuous sampler operation with sample collection weekly or more frequently if required by dust loading Radioic Gross t analysis followin 1 Location ^{m)} Weekly Gamma tritium at analysis followin 1 Location ^{m)} Semiannually Gamma analysis followin from 2 Locations Semiannually Gamma analysis acea 2 Locations Semiannually Gamma analysis ducts 2 Semiannually Gamma analysis ducts 3 Semiannually Gamma analysis	

REVIS	ION NO.:	PRC	DCEDURE TITLE:	PAGE:
0000	28	0	FFSITE DOSE CALCULATION MANUAL (ODCM)	55 of 220
PROC	C-200 ST. LUCIE PLANT			
	RADIO	<u>LOC</u>	TABLE 3.12-1 GICAL ENVIRONMENTAL MONITORING PROGR/ (Page 2 of 3)	AM ^{a)}
			TABLE NOTATIONS	
a.	unobtainable automatic sar unobtainable taken prior to schedule sha	due npli due the II be	ermitted from the required sampling schedule if spece to hazardous conditions, seasonal unavailability, ming equipment or other legitimate reasons. If specin to sampling equipment malfunction, corrective active end of the next sampling period. All deviations from the documented in the Annual Radiological Environment to Control 3.12.4.	nalfunction of nens are on shall be m the sampling
b.	reactor and a	ddit	ters of distance and direction sector from the center tional description where pertinent, shall be provided required by Table 3.12-1, in Appendix-B and applica	for each
C.	media of choi alternative me question and	ce a edia app	not be possible or practicable to continue to obtain s at the most desired location or time. In these instan a and locations may be chosen for the particular path propriate substitutions made within 30 days in the ra onitoring program.	ces suitable hway in
d.	The following	def	finition of frequencies shall apply to Table 3.12-1 on	ly:
	Weekly	-	Not less than once per calendar week. A maximur 11 days is allowed between the collection of any tw consecutive samples.	
	Semi-Monthly	/ -	Not less than 2 times per calendar month with an in not less than 7 days between sample collections. interval of 24 days is allowed between collection of consecutive samples.	A maximum
	Monthly	-	Not less than once per calendar month with an inte less than 10 days between sample collections.	erval of not
	Quarterly	-	Not less than once per calendar quarter.	
	Semiannually	-	One sample each between calendar dates (Januar and (July 1 - December 31). An interval of not less will be provided between sample collections.	
	The frequency	y of	analyses is to be consistent with the sample collect	tion frequency.

 e. One or n recording integratin (TLD) is consider Refers to when co Airborne or more the requi also requi per cubio sample. n. Gamma emitting k. Discharg pathways n. Atlantic (Hutchins 	a isotopic analysis means the identification and quantification o g radionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	asuring and on to, ent dosimeter packet are on is permitted tivity 24 hours In addition to na isotopic is is >1.0 pCi
 PROCEDURE NO.: C-200 RA One or n recording integratin (TLD) is consider Refers to when co Airborne or more the requi also requi per cubio sample. Gamma emitting Discharg pathways Atlantic O Hutchins 	ST. LUCIE PLANT TABLE 3.12-1 ADIOLOGICAL ENVIRONMENTAL MONITORING PROGRA (Page 3 of 3) TABLE NOTATIONS (continued) more instruments, such as a pressurized ion chamber, for means ng dose rate continuously may be used in place of or in addition ting dosimeters. For purposes of this table, a thermoluminesce s considered to be one phosphor; two or more phosphors in a pared as two or more dosimeters. to normal collection frequency. More frequent sample collection onditions warrant. te particulate sample filters are analyzed for gross beta radioaction outing dor each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of the satistication and quantification of gradionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	. <u>M</u> ^{a)} asuring and on to, ent dosimeter packet are on is permitted tivity 24 hours In addition to na isotopic is is >1.0 pCi
 P. One or m recording integratin (TLD) is consider Refers to when co Airborne or more the requi also requi per cubio sample. Gamma emitting Discharg pathways Atlantic O Hutchins 	TABLE 3.12-1 TABLE NOTAL MONITORING PROGRA (Page 3 of 3) TABLE NOTATIONS (continued) more instruments, such as a pressurized ion chamber, for mean ng dose rate continuously may be used in place of or in addition ting dosimeters. For purposes of this table, a thermoluminesce s considered to be one phosphor; two or more phosphors in a pered as two or more dosimeters. to normal collection frequency. More frequent sample collection onditions warrant. te particulate sample filters are analyzed for gross beta radioact e after sampling to allow for radon and thoron daughter decay. uirement for a gamma isotopic on a composite sample a gamma quired for each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of a isotopic analysis means the identification and quantification of g radionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	asuring and on to, ent dosimeter packet are on is permitted tivity 24 hours In addition to na isotopic is is >1.0 pCi
e. One or n recording integratin (TLD) is consider 7. Refers to when co or more the requi also requi per cubio sample. n. Gamma emitting x. Discharg pathways m. Atlantic (Hutchins	ADIOLOGICAL ENVIRONMENTAL MONITORING PROGRA (Page 3 of 3) <u>TABLE NOTATIONS</u> (continued) more instruments, such as a pressurized ion chamber, for means of dose rate continuously may be used in place of or in addition ting dosimeters. For purposes of this table, a thermoluminesce is considered to be one phosphor; two or more phosphors in a pered as two or more dosimeters. to normal collection frequency. More frequent sample collection conditions warrant. The particulate sample filters are analyzed for gross beta radioaction after sampling to allow for radon and thoron daughter decay. uirement for a gamma isotopic on a composite sample a gamma quired for each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of a isotopic analysis means the identification and quantification of g radionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	asuring and on to, ent dosimeter packet are on is permitted tivity 24 hours In addition to na isotopic is is >1.0 pCi
recording integratin (TLD) is consider f. Refers to when co g. Airborne or more the requi also requi per cubio sample. h. Gamma emitting k. Discharg pathways m. Atlantic ((continued) more instruments, such as a pressurized ion chamber, for means of dose rate continuously may be used in place of or in addition ting dosimeters. For purposes of this table, a thermoluminesce is considered to be one phosphor; two or more phosphors in a pered as two or more dosimeters. to normal collection frequency. More frequent sample collection onditions warrant. The particulate sample filters are analyzed for gross beta radioac a after sampling to allow for radon and thoron daughter decay. uirement for a gamma isotopic on a composite sample a gamma quired for each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of the analysis means the identification and quantification of gradionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	on to, ent dosimeter packet are on is permitted ctivity 24 hours In addition to na isotopic is is >1.0 pCi
recording integratin (TLD) is consider f. Refers to when co g. Airborne or more the requi also requi per cubio sample. h. Gamma emitting k. Discharg pathways m. Atlantic (ng dose rate continuously may be used in place of or in addition ting dosimeters. For purposes of this table, a thermoluminesce is considered to be one phosphor; two or more phosphors in a p ered as two or more dosimeters. to normal collection frequency. More frequent sample collection conditions warrant. The particulate sample filters are analyzed for gross beta radioact e after sampling to allow for radon and thoron daughter decay. uirement for a gamma isotopic on a composite sample a gamm quired for each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of the association of the most recent of the particulates that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	on to, ent dosimeter packet are on is permitted ctivity 24 hours In addition to na isotopic is is >1.0 pCi
 when co g. Airborne or more or more the required also required per cubic sample. h. Gamma emitting k. Discharg pathways m. Atlantic C Hutchins 	e particulate sample filters are analyzed for gross beta radioad e after sampling to allow for radon and thoron daughter decay. uirement for a gamma isotopic on a composite sample a gamm quired for each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of a isotopic analysis means the identification and quantification of g radionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	ctivity 24 hours In addition to na isotopic is is >1.0 pCi
or more the requi also requi per cubic sample. h. Gamma emitting k. Discharg pathways m. Atlantic of Hutchins	e after sampling to allow for radon and thoron daughter decay. uirement for a gamma isotopic on a composite sample a gamm quired for each sample having a gross beta radioactivity which bic meters and which is also >10 times that of the most recent of a isotopic analysis means the identification and quantification of g radionuclides that may be attributable to the effluents from the rges from the St. Lucie Plant do not influence drinking water or	In addition to na isotopic is is >1.0 pCi
emitting k. Discharg pathways m. Atlantic (Hutchins	g radionuclides that may be attributable to the effluents from th rges from the St. Lucie Plant do not influence drinking water or	
pathway m. Atlantic (Hutchins	-	
Hutchins	ys.	^r ground water
n Atlantic (Ccean, in the vicinity of the public beaches along the eastern son Island near the St. Lucie Plant (grab sample)	shore of
1. / (duritie v	Ocean, at a location beyond influence from plant effluents (gra	ab sample).
locations similar b	es of broad leaf vegetation grown nearest each of two different ns of highest predicted annual average ground level D/Q and o broad leaf vegetation at an available location 15-30 kilometers revalent wind direction based upon historical data in the ODCN	one sample of distant in the
i, j, l (lower cas	ase) and o are not used on notation for clarity reasons]	

REVISION NO .:		PAGE:					
28 PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)					
C-200		ST. LUC	CIE PLANT				
REP		TABLE <u>ELS FOR RADI</u> <u>N ENVIRONMEN</u> (Page <u>REPORTIN</u>	OACTIVITY CO ITAL SAMPLE 1 of 1)		<u>ONS</u>		
ANALYSIS	WATER pCi/l	AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet		
H-3	30,000*						
Mn-54	1,000		30,000				
Fe-59	400		10,000				
Co-58	1,000		30,000				
Co-60	300		10,000				
Zn-65	300		20,000				
Zr- Nb-95***	400						
I-131	2**	0.9		3	100		
Cs-134	30	10	1,000	60	1,000		
Cs-137	50	20	2,000	70	2,000		
Ba- La-140***	200			300			

I - as in pCi/l denotes liter

 Since no drinking water pathway exists, a value of 30,000 pCi/l is used. For drinking water samples, a value of 20,000 pCi/l is used; this is 40 CFR Part 141 value.

** - Applies to drinking water pathway exists, 2 pCi/l is the limit for drinking water.

*** - An equilibrium mixture of the parent daughter isotopes which corresponds to the reporting value of the parent isotope.

EVISION NO .:		PROCE	DURE TITLE:				PAGE:
28 OCEDURE NO.:		OFF	OFFSITE DOSE CALCULATION MANUAL (ODCM) 58 of 2				
C-200				T. LUCIE PL			
0-200			0		.An i		
				ABLE 4.12-			
DETECT	ION C	APAE	BILITIES FOR			MPLE ANA	
			I	(Page 1 of 2)			
		L	OWER LIMIT	OF DETEC	TION (LLD) ⁽³⁾	
ANALYSIS	WAT pC		AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCT pCi/kg, we	
Gross Beta	4		0.01				
H-3	300	0*					
Mn-54	15	5		130			
Fe-59	30)		260			
Co-58, Co-60	15	5		130			
Zn-65	30)	-	260			
Zr-95, Nb-95 ⁽⁴⁾	15	5					
I-131	1*	*	0.07		1	60	
Cs-134	15	5	0.05	130	15	60	150
Cs-137	18	3	0.06	150	18	80	180
Ba-140, La-140 ⁽⁴⁾	15	5			15		

No drinking water pathway exists, a value of 2000 pCi/l is for drinking water.

 ** LLD for drinking water samples. If no drinking water pathway exists, a value of 15 pCi/l may be used.

TABLE NOTATIONS

(1) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

(2) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.

REVI	SION NO.:			PROCEDURE TITLE:	PAGE:	
	28			OFFSITE DOSE CALCULATION MANUAL (ODCM)	59 of 220	
PRO	DCEDURE NO.:				39 01 220	
	C-20	C-200 ST. LUCIE PLANT				
	DETEC	TIC	<u>DN C</u>	TABLE 4.12-1 APABILITIES FOR ENVIRONMENTAL SAMPLE ANA (Page 2 of 2)	ALYSIS (1)(2)	
				TABLE NOTATIONS (continued)		
(3)	radio: backę	activ grou	/e m ind, f	efined for purposes of these controls, as the smallest co aterial in a sample that will yield a net count, above sys that will be detected with 95% probability with only 5% uding that a blank observation represents a real signal.	stem	
	For a	par	ticul	ar measurement system, which may include radiochem	ical separation:	
				$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$		
	Where:					
	LLD	=	the	a priori lower limit of detection (pico-Curie per unit mas	ss or volume),	
	Sb	=		e standard deviation of the background counting rate or e of a blank sample as appropriate (counts per minute),		
	Е	=	the	counting efficiency (counts per disintegration),		
	V	=	the	sample size (units of mass or volume),		
	2.22	=	the	number of disintegrations per minute per pico-Curie,		
	Y	=	the	fractional radiochemical yield, when applicable,		
	λ	=	the	radioactive decay constant for the particular radionucli	de (sec ⁻¹) and	
	ΔΤ	Ξ		elapsed time between the midpoint of sample collectio counting (sec).	n and the time	
	Typical	valu	es o	f E, V, Y and ΔT should be used in the calculation.		
	repres (after such Occas prese these identi	sent the a m sion nce LLI fied	ting fact anne ally of ir Ds u and	ecognized that the LLD is defined as an <u>a priori</u> (before the capability of a measurement system and not as an) limit for a particular measurement. Analyses shall be er that the stated LLDs will be achieved under routine of background fluctuations, unavoidable small sample siz interfering nuclides or other uncontrollable circumstance nachievable. In such cases, the contributing factors sha described in the Annual Radiological Environmental O ant to Control 3.12.4.	a posteriori performed in conditions. es, the es may render all be	
(4)				n mixture of the parent and daughter isotopes which co f the parent isotope.	rresponds to	

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28 PROCEDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	60 of 220
C-200	ST. LUCIE PLANT	
RADIOLOGICA	L ENVIRONMENTAL MONITORING	
3/4.12.2 LA	ND USE CENSUS	
CONTROLS		
condu each reside	cordance with St. Lucie Plant TS 6.8.4.g.2), a Land Use Cen icted and shall identify within a distance of 8 km (5 miles) th of the 16 meteorological sectors of the nearest milk animal, ence and the nearest garden* of greater than 50 square met e feet) producing broad leaf vegetation.	e location in the nearest
	At all times.	
ACTION:		
dose con 4.11.2.3,	and Use Census identifying a location(s) that yields a calcula mitment greater than the values currently being calculated pursuant to Control 3.11.2.6, identify the new location(s) in adioactive Effluent Release Report.	in Control
dose con from white 3.12.1, a Monitorir control st via the sa after Octo Pursuant Report do table(s) f	and Use Census identifying a location(s) that yields a calcula mitment (via the same exposure pathway) 20% greater that sh samples are currently being obtained in accordance with dd the new location(s) within 30 days to the Radiological En g Program given in the ODCM. The sampling location(s), e ation location, having the lowest calculated dose or dose co ume exposure pathway, may be deleted from this monitoring ober 31 of the year in which this Land Use Census was cond to TS 6.14, submit in the next Annual Radioactive Effluent I becumentation for a change in the ODCM including a revised or the ODCM reflecting the new location(s) with information in sampling locations.	n at a location Control vironmental xcluding the mmitment(s), program ducted. Release figure(s) and
of two diffe census. C	vegetation sampling may be performed at the SITE BOUND rent direction sectors with the highest predicted D/Qs in lieu ontrols for broad leaf vegetation sampling in Table 3.12-1, P I, including analysis of control samples.	of the garden

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	61 of 220
PROCEDURE NO.: C-200	ST. LUCIE PLANT	
RADIOLOGICAL EI	VIRONMENTAL MONITORING	
3/4.12.2 LAND USE CENSUS (Continued)		
SURVEILLANCE R	EQUIREMENTS	
	Use Census shall be conducted during the growing sea	1

once per 12 months using that information that will provide the best results, such as by a door-to-door survey, aerial survey or by consulting local agriculture authorities. The results of the Land Use Census shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	62 of 220
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
RADIOLOGICAL EN	VIRONMENTAL MONITORING	
3/4.12.3 INTER	LABORATORY COMPARISON PROGRAM	
CONTROLS		
on all radio	nce with St. Lucie Plant TS 6.8.4.g.3), analyses shall b pactive materials, supplied as part of an Interlaboratory hat correspond to samples required by Table 3.12-1. At all times.	
ACTION:		
taken to preve	s not being performed as required above, report the cor ent a recurrence to the Commission in the Annual Radi Il Operating Report pursuant to Control 3.12.4.	

4.12.3 A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4. If the Interlaboratory Comparison Program is other than the program conducted by the EPA, then the Interlaboratory Comparison Program shall be described in the ODCM.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	63 of 220
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
RADIOLOGICAL EN	IVIRONMENTAL MONITORING	
3/4.12.4 ANNU	AL RADIOLOGICAL ENVIRONMENTAL OPERATING	REPORT
(AREC		
ADMINISTRATIVE	CONTROLS	
Environme previous o shall inclu of the resu reporting p the object	ance with St. Lucie Plant TS 6.9.1.8, an Annual Radiolo ental Operating Report covering the operation of the un calendar year shall be submitted before May 1 of each y de summaries, interpretations and information based of ults of the Radiological Environmental Monitoring Progra period. The material provided in the AREOR shall be co ives outlined below and with Sections IV.B.2, IV.B.3 and I to 10 CFR Part 50.	it during the /ear. The report n trend analysis am for the onsistent with
interpretations and in environmental surve appropriate, with pre environmental surve	gical Environmental Operating Reports shall include sur information based on trend analysis of the results of the illance activities for the report period, including a compa eoperational studies, with operational controls and with illance reports and an assessment of the observed imp he environment. The reports shall also include the resu Control 3.12.2.	radiological arison, as previous acts of the
analysis of all radiolo measurements taken and Figures in the O and measurements i Technical Position, F are not available for explaining the reaso	gical Environmental Operating Reports shall include the ogical environmental samples and of all environmental in on during the period pursuant to the locations specified in DCM, as well as summarized and tabulated results of t in the format of the table in the Radiological Assessmer Revision 1, November 1979. In the event that some ind inclusion with the report, the report shall be submitted in ns for the missing results. The missing data shall be su a supplementary report.	radiation n the Table hese analyses nt Branch lividual results noting and
The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling ocations keyed to a table giving distances and directions from the centerline of one reactor; the results of the Interlaboratory Comparison Program, required by Control 3.12.3; discussion of all deviations from the sampling schedule of Table 3.12-1; and discussion of all analyses in which the LLD required by Table 4.12-1 was not achievable.		
	nittal may be made for multiple unit station. Il cover stations near the SITE BOUNDARY; a second s ant stations.	shall include

EVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	64 -4 000
ROCEDURE NO .:		64 of 220
C-200	ST. LUCIE PLANT	
C-200	ST. LUCIE PLANT	
	DA OFO	
	BASES	
	FOR THE	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	
·	NOTE	j
Controls in	S contained in succeeding pages summarize the reasons Section 3.0 and 4.0, but are not part of these Controls.	
		•

REVISION NO	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	65 of 220
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
INSTRUMENTATI	ON	
BASES		

3.3.3.9 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluent during actual or potential releases of liquid effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

3.3.3.10 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases of gaseous effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	66 of 220
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
3/4.11 RADIC	DACTIVE EFFLUENTS	
BASES		
	<u>DEFFLUENTS</u> ENTRATION	
in liquid waste efflue levels specified in 10 provides additional a UNRESTRICTED A objectives of Append	ded to ensure that the concentration of radioactive mate ents to UNRESTRICTED AREAS will be less than the co O CFR Part 20, Appendix B, Table 2, Column 2. This lin assurance that the levels of radioactive materials in bod REAS will result in exposures within: (1) the Section II. dix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC t 20. The concentration limit for dissolved or entrained	oncentration nitation ies of water in A design and (2) the

(submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

based upon the assumption that Xe-135 is the controlling radioisotope and its ECL in air

This control applies to the release of radioactive materials in liquid effluents from all units at the site.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L.A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

3/4.11.1.2 DOSE

his control is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

	· · · · · · · · · · · · · · · · · · ·	
REVISION NO.:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	67 of 220
PROCEDURE NO.:		07 01 220
C-200	ST. LUCIE PLANT	
<u>3/4.11 RADIO</u>	DACTIVE EFFLUENTS (Continued)	
BASES		
<u>3/4.11.1 LIQUID EFFLUENTS</u> (Continued) 3/4.11.1.2 DOSE (Continued)		
The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR		

Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.113, Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I, April 1977.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.1.3 LIQUID RADWASTE TREATMENT SYSTEM

The OPERABILITY of the Liquid Radwaste Treatment System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the Liquid Radwaste Treatment System were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50 for liquid effluents.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	68 of 220
PROCEDURE NO .:		00 01 220
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	
BASES		
3/4.11.2 GASE	OUS EFFLUENTS	

3/4.11.2.1 DOSE RATE

This control is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. The annual dose limits are the doses associated with the concentration of 10 CFR Part 20, Appendix B, Table 2, Column I. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either within or outside the SITE BOUNDARY, to an annual average concentration exceeding the limits specified in Appendix B, Table 2 of 10 CFR Part 20 (Subpart D of 10 CFR Part 20). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year.

This control applies to the release of radioactive materials in gaseous effluents from all units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	60 of 220
PROCEDURE NO .:		69 of 220
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	<u> </u>
BASES		

3/4.11.2.1 DOSE - NOBLE GASES

This control is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The control implements the guides set forth in Section I.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM

This control is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	70 of 220
PROCEDURE NO .:		70 01 220
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFFLUENTS		
BASES		
3/4.11.2.1 DO	SE - NOBLE GASES (Continued)	

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM (Continued)

The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject material are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for lodine-131, lodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of the calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man and (4) deposition on the ground with subsequent exposure of lman.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	71 of 220
PROCEDURE NO.:		7101220
C-200	ST. LUCIE PLANT	

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.4 GASEOUS RADWASTE TREATMENT SYSTEM

The OPERABILITY of the WASTE GAS HOLDUP SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensure that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Section II.B and II.C of Appendix I, 10 CFR Part 50 for gaseous effluents.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

3/4.11.2.5 NOT USED

3/4.11.2.6 NOT USED

3/4.11.3 NOT USED

3/4.11.4 TOTAL DOSE

This control is provided to meet the dose limitations of 10 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The control requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units (including outside storage tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits.

REVISION NO .:	PROCEDURE TITLE:	PAGE:			
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	72 of 220			
PROCEDURE NO .:		72 01 220			
C-200	ST. LUCIE PLANT				
RADIOACTIVE EFFLUENTS					
BASES					
3/4.11.4 TO	TAL DOSE (Continued)				

For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 kilometers must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and Subpart M of 10 CFR Part 20, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	73 of 220
PROCEDURE NO .:		7301220
C-200	ST. LUCIE PLANT	
<u>3/4.12 RADIO</u>	DLOGICAL ENVIRONMENTAL MONITORING	
BASES		

3/4.12.1	MONITORING PROGRAM
0/=f. 12. 1	

The Radiological Environmental Monitoring Program required by this control provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from the plant operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979. The initially specified monitoring program will be effective for at least the first three years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 4.12-1 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

3/4.12.2 LAND USE CENSUS

This control is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used.

REVISION NO .:	PROCEDURE TITLE:	PAGE:			
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	74 of 220			
PROCEDURE NO .:		74 01 220			
C-200	ST. LUCIE PLANT				
RADIOLOGICAL ENVIRONMENTAL MONITORING					
BASES					

3/4.12.2 LAND USE CENSUS (Continued)

This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 square meters provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kilograms/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage) and (2) a vegetation yield of 2 kilograms per square meter.

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

This requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive materials in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	75 of 220
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
	METHODOLOGY SECTION	
	METHODOLOGY	
	for the	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	
1		

REVISION NO.:			PAGE:		
28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	76 of 220		
PROCEDURE NO.: C-200		ST. LUCIE PLANT			
C-200		ST. LOCIE PLANT			
<u>GLOSS/</u>	METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 1 of 3)				
D _B	-	Dose from Beta Radiation			
CC or cc	-	Cubic centimeter			
Ci	-	Curies - a unit of radioactivity see μ Ci			
Ci	-	Activity or concentration of a nuclide in the release sou of μ Ci, μ Ci/cc or μ Ci/ml	rce. Units		
CFR	-	Code of Federal Regulations			
Control(s)	-	Regulations for operating, controlling, monitoring and re radioactive effluent related activity as indicated by the (Section of the ODCM.			
Dose	-	The exposure, in mrem or mrad, the organ or the indivi from radioactive effluents	dual receives		
Dose Factor	-	Normally, a factor that converts the effect of ingesting r material into the body, to dose to a specific organ. Boo radioactive decay and organ uptake are some of the fa determine a dose factor for a given nuclide	ly elimination,		
Dose Pathway	-	A specific path that radioactive material physically trave prior to exposing an individual to radiation. The Grass- Infant is a dose pathway			
Dose Rate	-	The dose received per unit time			
(D/Q)	-	A long term D over Q - a factor with units of $1/m^2$ which deposition of particulate matter from a plume at a point from the source. It can be thought of as what part of th going to fallout and deposit over one square meter of g (See Appendix C).	downrange e cloud is		
ECL	-	Effluent Concentration Limit			
FUSAR	-	Final Updated Safety Analysis Report.			
Y	-	A gamma photon - The dose from Gammas in air, etc.			

REVISION NO .:		PROCEDURE TITLE:	PAGE:		
28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	77 (000		
PROCEDURE NO.:			77 of 220		
C-200		ST. LUCIE PLANT			
GLOSSA	METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 2 of 3)				
Ground Plane	-	Radioactive material deposited uniformly over the grou radiation that produces an exposure pathway when an standing, sitting, etc., in the area. It is assumed that ar receives the same exposure as an infant, regardless of height differences. Only the whole body is considered	individual is n adult f the physical		
Н-3	-	Hydrogen-3 or Tritium, a weak Beta emitter			
I&8DP	-	Radioiodines and particulates with half-lives greater that	an 8 days		
m ³	-	Cubic Meters			
m²	-	Square Meters			
nuclide	-	For the purposes of this manual, a radioactive isotope. signifies a specific nuclide, the 1st, 2nd, 3rd one under If nuclide (i) is I-131, then the Mi (dose factor) under co should be M_{I-131} for example.	consideration.		
Organ	-	For the ODCM either the bone, liver, thyroid, kidney, lu the Whole Body. Whole Body is considered an organ f writing the methodology in the ODCM.			
pCi	-	1 pico-Curie = 1.E-12 Curies.			
(Q Dot) _i	-	(Q Dot) _i - Denotes a release rate in $\mu\text{Ci/sec}$ for nuclide	(i).		
Qi	-	Denotes μ Ci of nuclide (i) released over a specified time	e interval.		
Radioiodines	-	lodine-131 and lodine I-133 for gaseous release pathw	ays.		
Receptor	-	The individual receiving the exposure in a given location ingests food products from an animal for example. A receive dose from one or more pathways.			
Release Source	(s)	- A subsystem, tank or vent where radioactive materi released independently of other radioactive release			
TS		- The St. Lucie Plant Standard Technical Specificatio	ns		
Total Body		- Same as Whole Body in Control Statements			
μCi		- micro Curies. 1 μ Ci = 10 ⁻⁶ Curies. The μ Ci is the si radioactivity for all dose calculations in the ODCM.	tandard unit of		

PROCEDURE NO: OFFSITE DOSE CALCULATION MANUAL (ODCM) Prace: 78 of 220 PROCEDURE NO: C-200 ST. LUCIE PLANT 78 of 220 METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) - A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q)_D - A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)_D perseents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C). dt, Δt or delta t - A specific delta time interval that corresponds with the release interval data etc.	REVISION NO.:	PROCEDURE TITLE:	PAGE:			
PROCEDURE NO.: C-200 ST. LUCIE PLANT METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q)D - A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C). dt, Δt or delta t - A specific delta time interval that corresponds with the release			TAGE.			
 C-200 ST. LUCIE PLANT METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) - A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q)_D - A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C). dt, Δt or delta t 		OF STE DOSE CALCULATION MANDAE (ODOM)	78 of 220			
 GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C). A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C). A specific delta time interval that corresponds with the release 		ST. LUCIE PLANT				
 characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C). A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C). dt, ∆t or delta t - A specific delta time interval that corresponds with the release 	GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION					
 dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C). dt, ∆t or delta t - A specific delta time interval that corresponds with the release 	characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground.					
	(X/Q) _D	dispersion characteristics of a semi-infinite cloud of iodines and particulates as the cloud travels downra lodines and particulates tend to settle out (fallout of the ground, the (X/Q) _D represents what physically recloud and its dispersion qualities at a given location	radioactive ange. Since the cloud) on emains of the			
	dt, ∆t or delta t		he release			

8 NO.: 200 UID RELE dioactive L e FUSAR of cription th The St Atlanti Norma Circula approx for sub of radi wind a are su and no There			
200 2010 RELE 2010 RELE 20			
UID RELE dioactive L FUSAR of cription th The St Atlanti Norma Circula approx for sub of radi wind a are su and no			
dioactive L FUSAR of cription th The St Atlanti Norma Circula approv for sub of radi wind a are su and no			
dioactive L FUSAR of cription th The St Atlanti Norma Circula approv for sub of radi wind a are su and no			
e FUSAR of cription th The Si Atlanti Norma Circula approx for sub of radi wind a are su and no			
The Si Atlanti Norma Circula approx for sub of radi wind a are su and no			
Atlanti Norma Circula approx for sub of radi wind a are su and no			
There			
or sou Indian to prov Water No rac the Int discha source constru- second that we descrip			
Only those nuclides that appear in the Liquid Dose Factor Tables will be considered for dose calculation.			

~.--

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:		
28			OFFSITE DOSE CALCULATION MANUAL (ODCM)	80 of 220		
PROCEDURE NO.:				00 01 220		
	C-200		ST. LUCIE PLANT			
			METHODOLOGY SECTION			
1.2	<u>Determ</u> Source		g the Fraction F of 10 CFR Part 20 ECLs Limits for A Liqu	iid Release		
	Discussion - Control 3.11.1.1 requires that the sampling and analysis results of liquid waste (prior to discharge) be used with calculation methods in the in-plant procedures to assure that the concentration of liquid radioactive material in the unrestricted areas will not exceed ten times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2. COP-01.05, Processing Aerated Liquid Waste, provides instruction for ensuring batch release tanks will be sampled after adequate mixing. This section presents the calculation method to be used for this determination. This method only addresses the calculation for a specific release source. The in-plant procedures will provide instructions for determining that the summation of each release rate, dilution rate, etc., will also have to be obtained from in-plant procedures. The basic equation is:					
	$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)_{i}}$					
	Where:					
	FL	=	the fraction of 10 CFR Part 20 ECL that would result if th source was discharged under the conditions specified.	e release		
	R	=	The undiluted release rate in gpm of the release source. Liquid Rad Waste = 170 gpm for Waste Monitor Tank Steam Generator = 125 gpm/Steam Generator Liquid Rad Waste = 60 gpm for AWST #2 Liquid Rad Waste = 60 gpm for Laundry Drain Pumps 24	V2B		
	D		The dilution flow in gpm of Intake Cooling Water or Circu Pumps Intake Cooling flow is 14,500 gpm/pump Circulating Water flow is 121,000 gpm/pump	lating Water		
	Ci	=	The undiluted concentration of nuclide (i) in μ Ci/ml from	sample assay		
	(ECL) _i		The Effluent Concentration Limit of nuclide (i) in μ Ci/ml fir For dissolved or entrained noble gases the ECL value is for the sum of all gases.			

PROCEEDURE NO: C-200 OFFSITE DOSE CALCULATION MANUAL (ODCM) B1 of 220 PROCEDURE NO: C-200 ST. LUCIE PLANT METHODOLOGY SECTION 1.2 Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release Source (continued) The fraction of the 10 CFR Part 20 ECL limit may be determined by a nuclide-by-nuclide evaluation or for purposes of simplifying the calculation by a cumulative activity evaluation. If the simplified method is used, the value of 3 X 10 ⁸ µCi/ml (unidentified ECL value) should be substituted for (ECL), and the cumulative activity evaluation. If the simplified method is used, the value of a X 10 ⁸ µCi/ml (unidentified to the other of the 10 CFR Part 20 ECL The following section provides a step-by-step procedure for determining the ECL fraction. 1. Calculation Process for Solids A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C _{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10 ⁻⁸ µCi/ml should be used for the simplified method. E. Divide C ₁ by (ECL), and write down the quotient F. If the simplified method is used, the rundide-by-nuclide evaluation, repeat steps 1.2.1. C through 1.2.1. E for each nuclide reported in the assay, for H ₃ from previous month composite and for SR8990 and Fe55 from previous quarter composite with known results.	REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:
PROCEDURE NO.: C-200 ST. LUCIE PLANT B1 of 220 METHODOLOGY SECTION 1.2 Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release Source (continued) The fraction of the 10 CFR Part 20 ECL limit may be determined by a nuclide-by-nuclide evaluation or for purposes of simplifying the calculation by a cumulative activity evaluation. If the simplified method is used, the value of 3 X 10 ³ µCi/ml (unidentified ECL value) should be substituted for (ECL), and the cumulative concentration (sum of all identified radionuclide concentrations) or the gross concentration should be substituted for C _i . As long as the diluted concentration (Stuff ZID) is less than 3 X 10 ³ µCi/ml, the nuclide-by-nuclide calculation is not required to demonstrate compliance with the 10 CFR Part 20 ECL The following section provides a step-by-step procedure for determining the ECL fraction. 1. Calculation Process for Solids A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C _i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C _{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10 ³ µCi/ml should be used for the simplified method. E. Divide C _i by (ECL) _i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-b					
 METHODOLOGY SECTION Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release Source (continued) The fraction of the 10 CFR Part 20 ECL limit may be determined by a nuclide-by-nuclide evaluation or for purposes of simplifying the calculation by a cumulative activity evaluation. If the simplified method is used, the value of 3 X 10³ µCi/ml (unidentified ECL value) should be substituted for (ECL); and the cumulative concentration (sum of all identified radionuclide concentrations) or the gross concentration should be substituted for C_i. As long as the diluted concentration should be substituted for C_i. As long as the diluted concentration (Cotal R/D) is less than 3 X 10³ µCi/ml, the nuclide-by-nuclide calculation is not required to demonstrate compliance with the 10 CFR Part 20 ECL The following section provides a step-by-step procedure for determining the ECL fraction. Calculation Process for Solids A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 					81 of 220
 1.2 Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release Source (continued) The fraction of the 10 CFR Part 20 ECL limit may be determined by a nuclide-by-nuclide evaluation or for purposes of simplifying the calculation by a cumulative activity evaluation. If the simplified method is used, the value of 3 X 10⁻⁸ µCi/ml (unidentified ECL value) should be substituted for (ECL), and the cumulative concentration (sum of all identified radionuclide concentrations) or the gross concentration should be substituted for C_i. As long as the diluted concentration (C_{total} R/D) is less than 3 X 10⁻⁶ µCi/ml, the nuclide-by-nuclide calculation is not required to demonstrate compliance with the 10 CFR Part 20 ECL The following section provides a step-by-step procedure for determining the ECL fraction. 1. Calculation Process for Solids A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 		C-200		ST. LUCIE PLANT	
 Source (continued) The fraction of the 10 CFR Part 20 ECL limit may be determined by a nuclide-by-nuclide evaluation or for purposes of simplifying the calculation by a cumulative activity evaluation. If the simplified method is used, the value of 3 X 10⁴ µCi/ml (unidentified ECL value) should be substituted for (ECL)_i and the cumulative concentration (sum of all identified radionuclide concentrations) or the gross concentration should be substituted for C_i. As long as the diluted concentration (C_{total} R/D) is less than 3 X 10⁻⁸ µCi/ml, the nuclide-by-nuclide calculation is not required to demonstrate compliance with the 10 CFR Part 20 ECL The following section provides a step-by-step procedure for determining the ECL fraction. 1. Calculation Process for Solids A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 				METHODOLOGY SECTION	L
 nuclide-by-nuclide evaluation or for purposes of simplifying the calculation by a cumulative activity evaluation. If the simplified method is used, the value of 3 X 10⁸ µCi/ml (unidentified ECL value) should be substituted for (ECL); and the cumulative concentration (sum of all identified radionuclide concentrations) or the gross concentration should be substituted for C_i. As long as the diluted concentration (C_{total} R/D) is less than 3 X 10⁻⁸ µCi/ml, the nuclide-by-nuclide calculation is not required to demonstrate compliance with the 10 CFR Part 20 ECL The following section provides a step-by-step procedure for determining the ECL fraction. 1. Calculation Process for Solids A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 	1.2				<u>iid Release</u>
 A. Obtain from the in-plant procedures, the release rate value (R) in gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 		nucli cumi 3 X 1 cumi gross conc calcu The	de-by-nu ulative a 10 ⁻⁸ µCi/ ulative c s concer contration contration following	uclide evaluation or for purposes of simplifying the calcu- ctivity evaluation. If the simplified method is used, the v ml (unidentified ECL value) should be substituted for (E oncentration (sum of all identified radionuclide concentr ntration should be substituted for C _i . As long as the dilu n (C _{total} R/D) is less than 3 X 10 ⁻⁸ μ Ci/ml, the nuclide-by- s not required to demonstrate compliance with the 10 CF	Ilation by a value of CL) _i and the ations) or the ted -nuclide FR Part 20 ECL.
 gpm for the release source. B. Obtain from the in-plant procedures, the dilution rate (D) in gpm. No credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 		1.	Calcu	lation Process for Solids	
 credit is taken for any dilution beyond the discharge canal flow. C. Obtain (C_i), the undiluted assay value of nuclide (i), in µCi/ml. If the simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in µCi/ml. The value of 3 X 10⁻⁸ µCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 			А.	• •	alue (R) in
 simplified method is used, the cumulative concentration (C_{total}) is used. D. From Table L-1, obtain the corresponding (ECL) for nuclide (i) in μCi/ml. The value of 3 X 10⁻⁸ μCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 			В.		
 μCi/ml. The value of 3 X 10⁻⁸ μCi/ml should be used for the simplified method. E. Divide C_i by (ECL)_i and write down the quotient F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H₃ from previous month composite and for SR89/90 and 			C.	simplified method is used, the cumulative concentration	
F. If the simplified method is used, proceed to the next step. If determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H_3 from previous month composite and for SR89/90 and			D.	μ Ci/ml. The value of 3 X 10 ⁻⁸ μ Ci/ml should be used for	
determining the ECL fraction by the nuclide-by-nuclide evaluation, repeat steps 1.2.1.C through 1.2.1.E for each nuclide reported in the assay, for H_3 from previous month composite and for SR89/90 and			E.	Divide C_i by (ECL) _i and write down the quotient	
			F.	determining the ECL fraction by the nuclide-by-nuclide repeat steps 1.2.1.C through 1.2.1.E for each nuclide r assay, for H_3 from previous month composite and for S	evaluation, eported in the \$R89/90 and
				r ess nom previous quarter composite with known rest	1115.

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:
28			OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE	ROCEDURE NO.: C-200			82 of 220
			ST. LUCIE PLANT	
			METHODOLOGY SECTION	
.2		ermining rce (conti	the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquinued)	iid Release
	1.	Calcul	ation Process for Solids (continued)	
		G.	Add each $C_i/(ECL)$ quotient from step 1.2.1.E and solve follows:	e for F_L as
			$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)i}$	
			F_L = a unit-less value where:	
			the value of F_L could be \leq or >1. The purpose of the carbon determine what the initial value of F_L is for a given set conditions.	
		H.	The F_{L} value just obtained is for one release pathway. ODCM control 3.11.1.1 allow for a site limit of F_{L} less the 10. Chemistry Procedure COP-01.05 administratively pathway's allocation. Compare your F_{L} result with the control for the release pathway in COP-01.05.	nan or equal to controls each
	2.	Calcul	ation Process for Gases in Liquid	
		A.	Sum the μ Ci/ml of each noble gas activity reported in the time time the time time time time time time time tim	ne release.
		В.	The values of R and D from 1.2.1 above shall be used calculations below:	in the
			$F_g = \frac{(\text{sum of } 1.2.2.A) \mu \text{Ci/m!}}{1} X \frac{\text{R}}{\text{D}}$	
		C.	F _g shall be less than 2 X 10 ⁻⁴ μCi/ml for the site for all r progress. Each release point will be administratively co Consult COP-01.05 procedure for instructions.	
			-	

.

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00 - 6 000
ROCE	DURE NO.:		83 of 220
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
.3	Determining S	Setpoints for Radioactive Liquid Effluent Monitors	
	301 on	nts for Batch Liquid Release Monitors channel numbers Table 3.3-14, Radioactive Effluent Monitor Setpoint Ba Liquid Effluent Monitors.	
	instrumentation radioactivity of concentration	Control 3.3.3.9 requires that the liquid effluent monitorin on alarm / trip setpoints be set to initiate an alarm or trip concentration in water in the unrestricted area does not of 10 CFR Part 20, Appendix B, Table 2 as a result of s (Control 3.11.1.1).	so that the exceed the
	Monitors base gross cpm an in the dischar reports was u These concer discharge car 121,000 gpm	a. total liquid activity curves are available for Batch Liqued on a composite of real release data. A direct correlated the concentrations that would achieve 10 CFR Part 2 ge canal can be estimated. The 1978 liquid release dates to determine the average undiluted release concernations were then projected to a diluted concentration hal assuming a 1 gpm release rate and a constant dilutification from 1 circ. water pump. This diluted activity was divid bective 10 CFR Part 20 ECL value (Table L-1) to obtain hat follows:	tion between 0 ECL levels ta from annual ntration. in the on flow of ed by the

REVISI	ON NO.:	PROCEDURE TI	ſLE:		PAGE:	
	28	OFFSITE I	DOSE CALCULATION	MANUAL (ODCM)	84 of 220	
ROCE	DURE NO.:				84 01 220	
	C-200		ST. LUCIE PLAN	IT		
		N	METHODOLOGY SEC	ΓΙΟΝ		
.3	Determining \$	_	Radioactive Liquid Effl		nued)	
	Determing				naca,	
	NUCLIDE SY	MBOL	1978 UNDILUTED µCi/r	ml ¹ M _i ² (no	units)	
	I-131		4.43 E-5	3.66	E-4	
	I-132		2.23 E-7	1.84	E-8	
	I-133		3.17 E-6	3.74	E-6	
	I-135		1.31 E-6	3.61	E-7	
	Na-24		1.72 E-7	2.84	E-8	
	Cr-51 Mn-54		2.51 E-5	4.15	E-7	
			5.64 E-6	1.55	E-6	
	Mn-56		1.11 E-9	1.31	E-10	
	Co-57		3.69 E-7	5.08	E-8	
	Co-58		1.51 E-4	6.24	E-5	
	Fe-59		2.92 E-6	2.41	E-6	
	Co-60		3.66 E-5	1.01	1 E-4	
	Zn-65		4.55 E-7	7.52	E-7	
	Ni-65		8.23 E-7	6.8	E-8	
	Ag-110)	1.96 E-6	2.70	E-6	
	Sn-113	1	5.75 E-7	1.58	E-7	
	Sb-122	2	2.15 E-6	1.78	E-6	
	Sb-124		8.40 E-6	9.92	E-6	
	W-187		3.51 E-6	9.67	E-7	
	Np-239)	1.57 E-7	6.49	E-8	
	Br-82		3.64 E-7	7.52	E-8	
	Zr-95		2.82 E-5	1.17	E-5	
	Zr-97		4.05 E-6	3.72	E-6	
	Mo-99		3.24 E-6	1.34	E-6	
	Ru-103	}	3.84 E-8	1.06		
	Sb-125		2.26 E-6	6.23	E-7	
	Cs-134	·	2.14 E-5	1.97	E-4	
	Cs-136		7.82 E-7	1.08	E-6	
	Cs-137		4.85 E-5	4.01	E-4	
	Ba-140		6.44 E-7	6.65	E-7	
	Ce-141		3.04 E-8	8.38		
	Ce-144		2.37 E-6	6.53		
	A _{tot} =		4.01 E-4			
	M _{Total} =			1.18	E 3	

(1) 1978 Undiluted Release Volume = 7 E 9 ml.

(2) $M_{i} = \frac{1978 \text{ Undil. Act Nuclide (i)}}{ECL_{i} \text{ (from Table L - 1)}} \times \frac{1 \text{ gpm (release rate)}}{121000 \text{ gpm (dil rate)}}$

	ION NO.:		PROCEDURE TITLE:	PAGE:							
000	28 EDURE NO) ·	OFFSITE DOSE CALCULATION MANUAL (ODCM)	85 of 220							
	C-20		ST. LUCIE PLANT								
			METHODOLOGY SECTION								
3	Determining Setpoints for Radioactive Liquid Effluent Monitors (continued)										
	the fra A _{Tot} b equiv disch	action o oy M _{⊺ot} y alent to arges.	al average μ Ci/ml concentration of the reference mixture of the MPC of all nuclides for the release conditions specields A_{Max} , which is the maximum total activity concent the ECL limit for the nuclide distribution typical of radw The Technical Specifications allow 10 times the ECL lim to times A_{Max} as follows:	cified. Dividing ration vaste							
		$A_{Max} = \frac{A_{Tot}}{M_{Tot}} = \frac{4.01 \text{ E} - 4}{1.18 \text{ E} - 3} = 0.34 \mu\text{Ci/ml} = \text{ECL Limit}$									
	Site Limit = 10 x A _{Max} = 10 x 0.34 = 3.4 µCi/ml										
	Ton	ovido oc									
	as fol		onservative administrative control, A_{Max} of 0.34 μ Ci/ml s	should be used							
		lows: If the e cpm sł	effluent monitor requires counts per minute units, a (C_m hould be obtained for the A_{max} (0.34 µCi/mI) from the re ctive liquid effluent monitor curve of cpm vs. µCi/mI.	_{ax}) value in							
	as fol 1.	lows: If the e cpm sł radioae	effluent monitor requires counts per minute units, a (C_m hould be obtained for the A_{max} (0.34 µCi/mI) from the re	_{ax}) value in elease sources							
	as fol 1. This s	lows: If the e cpm sł radioad setpoint For es (or C _{ma} (i.e., ad contrib	effluent monitor requires counts per minute units, a (C _m hould be obtained for the A _{max} (0.34 μCi/ml) from the re ctive liquid effluent monitor curve of cpm vs. μCi/ml. <u>NOTE</u>	_{ax}) value in elease sources lution es, the A _{max} ease conditions v rate and the							
	as fol 1. This s flow.	lows: If the e cpm sł radioad setpoint For es (or C _{ma} (i.e., ad contrib	effluent monitor requires counts per minute units, a (C_m hould be obtained for the A_{max} (0.34 µCi/ml) from the rective liquid effluent monitor curve of cpm vs. µCi/ml. <u>NOTE</u> is for a specified release of 1 gpm into 121000 gpm di tablishing the setpoint prior to liquid radwaste discharg ax) will be adjusted as needed to account for actual relectual design maximum discharge flow rate, dilution flow puttion of dissolved and entrained Nobles Gas Activity to	_{ax}) value in elease sources lution es, the A _{max} ease conditions v rate and the							
	as fol 1. This s flow.	lows: If the e cpm sł radioad setpoint For es (or C _{ma} (i.e., ad contrib	effluent monitor requires counts per minute units, a (C_m hould be obtained for the A_{max} (0.34 µCi/ml) from the rective liquid effluent monitor curve of cpm vs. µCi/ml. <u>NOTE</u> is for a specified release of 1 gpm into 121000 gpm di tablishing the setpoint prior to liquid radwaste discharg ax) will be adjusted as needed to account for actual relectual design maximum discharge flow rate, dilution flow puttion of dissolved and entrained Nobles Gas Activity to	_{ax}) value in elease sources lution es, the A _{max} ease conditions v rate and the							
	as fol 1. This s flow.	lows: If the e cpm sł radioad setpoint For es (or C _{ma} (i.e., ad contrib	effluent monitor requires counts per minute units, a (C_m hould be obtained for the A_{max} (0.34 µCi/ml) from the rective liquid effluent monitor curve of cpm vs. µCi/ml. <u>NOTE</u> is for a specified release of 1 gpm into 121000 gpm di tablishing the setpoint prior to liquid radwaste discharg ax) will be adjusted as needed to account for actual relectual design maximum discharge flow rate, dilution flow puttion of dissolved and entrained Nobles Gas Activity to	_{ax}) value in elease sources lution es, the A _{max} ease conditions v rate and the							
	as fol 1. This s flow.	lows: If the e cpm sł radioad setpoint For es (or C _{ma} (i.e., ad contrib	effluent monitor requires counts per minute units, a (C_m hould be obtained for the A_{max} (0.34 µCi/ml) from the rective liquid effluent monitor curve of cpm vs. µCi/ml. <u>NOTE</u> is for a specified release of 1 gpm into 121000 gpm di tablishing the setpoint prior to liquid radwaste discharg ax) will be adjusted as needed to account for actual relectual design maximum discharge flow rate, dilution flow puttion of dissolved and entrained Nobles Gas Activity to	_{ax}) value in elease sources lution es, the A _{max} ease conditions v rate and the							

REVISION NO .:		PROCEDURE TITLE:	PAGE:					
28		OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:			86 of 220					
C-200		ST. LUCIE PLANT						
METHODOLOGY SECTION								
1.3 <u>Determi</u>	ning \$	Setpoints for Radioactive Liquid Effluent Monitors (conti	inued)					
1.3.2 S	etpoi	nts for Continuous Liquid Release Monitors						
M G R S b V O O O T f C C T f C	Ionito Senera Leacto xist a ite Lid b bas vith 1 DCM f solic ontrol emain or soli nerefo	sion - The activity mixture described in 1.3.1 for Liquid ors cannot be used for Continuous Liquid Pathways sind ator (S/G) Blowdown Secondary Side is subject to what or Coolant System (RCS) activity and primary-to-second t any time. Although S/G blowdown is not normally alig quid Radwaste Release Point (Figure 1-1), the monitor and on the ODCM maximum design S/G blowdown rate Circulating Water Pump (CWP) 121,000 gpm in operation and COP-01.05, Processing Liquid Waste assume that ds entering the Discharge Canal to the site release point led less than or equal to 1.0, with batch release using 8 and 20% allocated to continuous sources on site. The a ds is 10 times the concentration specified in 10 CFR Pa ore a conservation factor of 10 is already included in the strative site limit.	the Steam the current dary leakage ned to the setpoints will of 125 gpm ion. The the fraction the fraction at are 30% and the actual site limit art 20,					
m ca (F D	nonito anal a ⁻ L) as Pissolv	source in-leakage to a S/G cannot be controlled, a High or setpoint is calculated based on one S/G releasing to t at design blowdown rate while attaining the 20 percent suming all the gross solid activity is I-131. The contribu- ved and Entrained Gases is assumed to be zero with al us activity going to the Steam Condenser and Air Ejector	the discharge of the site limit ution from I of the					
F	∟at 2	0% = <u>0.2</u> = <u>Design blowdown rate</u> x <u>I-131 uCi/ml</u> 1 1 CWP Dilution rate I-131 uCi/ml (Tabl						
F	∟at 2	0% = <u>0.2</u> = <u>125 gal/min</u> x <u>I-131 uCi/ml (S/0</u> 1 121,000 gal/min 1.E-06 uCi/ml (I-131 Tabl						
S	olving	g for the S/G High Alarm Setpoint I-131 Activity,						
	tha	81 uCi/ml (S/G) = ~2E-04 uCi/ml I-131 is the maximum t could be allowed such that 20 percent of the administr charge canal limit would not be exceeded.	•					
		/G Monitor High Alarm Setpoint activity may be convert _iquid Monitor uC/ml to cpm conversion constants.	ed to cpm					
fa pı th	actor (urpos nat it i	etpoint is conservative given that the actual Liquid Site of ten times higher than the administrative limit used for es, that I-131's ECL is conservative vs other isotope m s unlikely that more than one S/G would be allowed to on per day primary-to-secondary leak rate.	^r calculation ixtures, and					

REVISI	ON NO.:		PROC	EDURE TITLE:	PAGE:			
	28			FSITE DOSE CALCULATION MANUAL (ODCM)				
PROCE	DURE NO).:			87 of 220			
	C-200	0		ST. LUCIE PLANT				
				METHODOLOGY SECTION				
1.4	Deter	mining t	the D	ose for Radioactive Liquid Releases				
	<u>Discussion</u> - Control 3.11.1.2 requires calculations be performed at least once per 31 days to verify that cumulative radioactive liquid effluents do not cause a dose in excess of 1.5 mrem to the whole body and 5 mrem to any organ during any calendar quarter and not in excess of 3 mrem to the whole body and 10 mrem to any organ during any calendar year. This section presents calculational method to be used for this verification.							
	NURE both t pathw can a are us at St. which 3.11.2	EG-0133 the fish a vay for v lso be c sed for t Lucie si age gro	3 Rev and s which alcul he or ince t oup is	sed on the methodology suggested by sections 4.3 vision 1, November, 1978. The dose factors are a shellfish pathways so that the fish-shellfish pathwa dose will be calculated. The dose for adult, child ated by this method provided that their appropriate rgan of interest. An infant is excluded from Liquid they do not eat fish-shellfish. The effluent supervises the controlling (most restrictive) age group (see those nuclides that appear in the Tables of this mat	composite of y is the only and teenager dose factors Dose Pathway sor will track control			
	1.	. This method provides for a dose calculation to the whole body or any organ for a given age group based on real release conditions during a specified time interval for radioactive liquid release sources. The equation is:						
		Where	:					
	$D_{1T} = \frac{A_{iT} dt_1 Q_{i1}}{(DF)_1}$							
			=	dose commitment in mrem received by organ T o (to be specified) during the release time interval				
		A _{iT}	=	the composite dose factor for the fish-shellfish pa nuclide (i) for organ T of age group (to be specifi values listed in the Tables in this manual are inde any site specific information and have the units	ed). The A _{it}			
				mrem - ml µCi - hr				
		dt ₁	=	the number of hours that the release occurs.				
		Q _{il}	=	The total quantity of nuclide (i) release during dt1	(µCi)			
		(DF) ₁	=	The total volume of dilution that occurred during time period dt_1 (i.e., the circulating water flow tim				

REVIS	ION NO.:		PROCEDURE TITLE:		PAGE:					
28			OFFSITE DOSE CAL	CULATION MANUAL (ODCM)						
PROC	EDURE NO) .:	1		88 of 220					
	C-20	0	ST. I							
METHODOLOGY SECTION										
1.4	<u>Dete</u>	mining	the Dose for Radioactiv	ve Liquid Releases (continued)						
	1.	(conti	nued)							
		the cu	doses associated with each release may then be summed to provide cumulative dose over a desired time period (e.g., sum all doses for ase during a 31 day period, calendar quarter or a year).							
			D _{tota}	$_{\text{IT}} = \Sigma D_{\text{IT}}$						
		Where	9:							
		releases								
	NOTE Table 1.4 may be used for compiling the dose accounting.									
		A. Determine the time interval dt _i in hours that the release t For once per 31 day dose calculations dt _i would be for th month's hours.								
		n the quarter, s in the year. If								
			a batch release.	surs of aquation of a single relea.	se to evaluate					
		B.	a batch release.	ne period dt _i from Liquid Waste N						
		B. C.	a batch release. Obtain (DF) _I for the tim Records for the release	ne period dt₁ from Liquid Waste M e source(s) of interest.) for the time period dt₁ from the	lanagement					
			a batch release. Obtain (DF) _i for the tim Records for the release Obtain Q _i for nuclide (ij Management Records	ne period dt₁ from Liquid Waste M e source(s) of interest.) for the time period dt₁ from the	lanagement Liquid Waste					
		C.	a batch release. Obtain (DF) _i for the tim Records for the release Obtain Q _i for nuclide (ij Management Records	ne period dt _i from Liquid Waste M e source(s) of interest.) for the time period dt ₁ from the	lanagement Liquid Waste					
		C.	a batch release. Obtain (DF) _i for the tim Records for the release Obtain Q _i for nuclide (i Management Records Obtain A _{iT} from the app	ne period dt _i from Liquid Waste M e source(s) of interest.) for the time period dt ₁ from the propriate Liquid Dose Factor Tab	lanagement Liquid Waste					
		C.	a batch release. Obtain (DF) _I for the tim Records for the release Obtain Q _i for nuclide (i Management Records Obtain A _{iT} from the app Age Group	ne period dt₁ from Liquid Waste M e source(s) of interest.) for the time period dt₁ from the propriate Liquid Dose Factor Tat Dose Factor Table	lanagement Liquid Waste					
		C.	a batch release. Obtain (DF) _i for the tim Records for the release Obtain Q _i for nuclide (i Management Records Obtain A _{iT} from the app Age Group Infant	ne period dt _i from Liquid Waste N e source(s) of interest.) for the time period dt ₁ from the propriate Liquid Dose Factor Tak Dose Factor Table N/A	lanagement Liquid Waste					

REVISION NO .:	PROCEDURE TITLE:		1		PAGE:
28	OFFSITE DOSE C	ALCULATIO	ÓN MANUA	L (ODCM)	90 of 000
PROCEDURE NO.:			,	. ,	89 of 220
C-200	ST	. LUCIE PL	ANT		
	METHOD	OLOGY SI	ECTION		
1.4 <u>Determining</u>	the Dose for Radioac	tive Liquid f	<u>Releases</u> (c	ontinued)	
1. (contir					
	FISH AND S	TABLE 1.4 HELLFISH	PATHWAY	, -	
TIME/DATE START:_	://	_ TIME/DAT	TE STOP:		/HOURS
TOTAL DILUTION VO	DLUME: ORGAN:	mls	DOSE	FACTOR TA	BLE #:
NUCLIDE (i)	C _i (µCi)	A _{iT}		DOSE (i) mr	em
· · · · · · · · · · · · · · · · · · ·					
		···· ·			
L		TOTAL DO	DSE _T =		mrem
E.	Solve for Dece (i)		·		
C .	Solve for Dose (i)				

$$Dose(i) = \frac{Q_{i1} dt_1 A_{iT}}{(DF)_1}$$

- F. For the age group(s) of interest, repeat steps 1.4.1.C through 1.4.1.E for each nuclide reported and each organ required.
- G. For the age group(s) of interest, sum the Dose (i) values to obtain the total dose to organ T from the fish-shellfish pathway.

	ION NO.:		PROCEDURE TITLE:	PAGE:					
28			OFFSITE DOSE CALCULATION MANUAL (ODCM) 90 o						
PROCE	EDURE NO								
	C-20	0	ST. LUCIE PLANT						
			METHODOLOGY SECTION						
1.5	<u>Proje</u>	cting Do	se for Radioactive Liquid Effluents						
	radwa efflue UNRI whole methe	aste trea ents whe ESTRIC e body o od is pro	Control 3.11.1.3 requires that appropriate subsystems of atment system be used to reduce radioactive material in n the projected doses due to the liquid effluent, from ea TED AREAS (see TS Figure 5.1-1) would exceed 0.06 r 0.2 mrem to any organ in a 31 day period. The follow ovided for performing this dose projection. The method lated in section 1.4 with the adult as the bases for projection	n liquid ach unit, to mrem to the ring calculation is based on					
	1.	For the controlling age group obtain the latest result of the monthly calculation of the whole body dose and the highest organ dose. These doses can be obtained from the in-plant records.							
	2.	Divide each dose by the number of days the reactor plant was operational during the month.							
	3.	3. Multiply the quotient of each dose by the number of days the reactor plant is projected to be operational during the next month. The products are the projected dose for the next month. These values should be adjusted as needed to account for any changes in failed fuel or other identifiable operating conditions that could significantly alter the actual releases.							
	4.	than 0	projected dose is greater than 0.06 mrem to the whole b 2 mrem to the adults highest exposed organ, the liquid a shall be used.						

REVISION NO.: PROCEDURE TITLE: PAGE:									
PPOCE	28 DURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	91 of 220						
FRUCE	C-200	ST. LUCIE PLANT							
		L							
	METHODOLOGY SECTION								
2.0	GASEOUS R	ELEASES METHODOLOGY							
2.1	Gaseous Effl	uent Model Assumptions							
	characteristic purposes only sides by the A Private prope meteorologica are 16 sectors tower is calible A bearing of a and 11.25° de private prope calculation, th Unrestricted A over water are O.W. (over wa sector is O.W calculations u Historical ME	<u>f Site</u> - (The FUSAR contains the official description of the s. The description that follows is a brief summary for diverse of the second structure of the sector such that the sector of the sector such that bearing second structure of the north sector. The nearest define the boundaries of the north sector. The nearest define the boundaries of the north sector. The nearest define the boundaries of the north sector such that bearing second second structure of the sector at approximately 0.97 miles of the north sector. The nearest define the boundaries of the north sector such that bearing second sector for conservative using the historical MET data.	ose calculation ed on two stlantic Ocean. ns. A rty line. There h. The MET RUE NORTH. gs of 348.75° istance to es. For ease of h the real ses calculated nay be listed as ange in the NW e dose						
	from the St. Lucie MET Tower was analyzed by Dames & Moore of Washington, D.C. The methodology used by Dames & Moore was consistent with methods suggested by Regulatory Guide 1.111, Revision 1. Recirculation correction factor were also calculated for the St. Lucie Site and are incorporated into the historica MET tables (Tables M5, M6 and M7) in Appendix A of this manual. It was determined that these two years are representative data for this locale.								
	<u>Dose Calculations</u> - Dose calculations for Control dose limits are normally calculated using historical MET data and receptor location(s) which yield calcula doses no lower than the real location(s) experiencing the most exposure. Actua MET data factors are calculated and are normally used in dose calculations for t annual reports. Approximate and conservative methods may be used in lieu of actual meteorological measurements.								
	manual. Histo used for ease limits may be dose calculati the annual rep with Regulato	a and hour-by-hour dose calculations are beyond the s orical information and conservative receptor locations, of of Control dose limit calculations. Dose calculations for performed using actual MET data and real receptor loc ons performed with actual data should note the source port. Actual MET data reduction should be performed i ry Guide 1.111, Revision 1 and should incorporate Rec ctors from Table M-4 of this manual.	etc., are only or Control dose ations. Any of the data in n accordance						

REVISION NO.:	PROCEDURE TITLE:	PAGE:						
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	92 of 220						
PROCEDURE NO.: C-200	ST. LUCIE PLANT							
	METHODOLOGY SECTION							
2.1 <u>Gaseous Effl</u>	uent Model Assumptions (continued)							
Dose Calcula	itions - (continued)							
The St. Lucie site uses the long term ground release model for all gaseous effluents. Only those radionuclides that appear in the gaseous effluent dose factor tables will be considered in any dose calculations. Radioiodines are defined as lodine-131 and I-133 for application to Controls. Other nuclides of lodine may be included in dose calculations for ease of performing calculations, but their dose contribution does not have to be included in the Control requirements. Land Census information will apply to the calendar year following the year that the census was taken in to avoid splitting quarters, etc.								
	2 <u>Determining the Total Body and Skin Dose Rates for Noble Gas Releases And</u> Establishing Setpoints for Effluent Monitors							
releases to < requires that operable with exceeded. T	<u>Discussion</u> - Control 3.11.2.1 limits the dose rate from noble gases in airborne releases to <500 mrem/yr - total body and <3000 mrem/yr - skin. Control 3.3.3.11 requires that the gaseous radioactive effluent monitoring instrumentation be operable with alarm/trip setpoints set to ensure that these dose rate limits are not exceeded. The results of the sampling and analysis program of Control Table 4.11-2 are used to demonstrate compliance with these limits.							
total body and are based on releases on t release point The calculatio	The following calculation method is provided for determining the dose rates to the total body and skin from noble gases in airborne releases. The alarm/trip setpoint are based on the dose rate calculations. The Controls apply to all airborne releases on the site but all releases may be treated as if discharged from a single release point. Only those noble gases appearing in Table G-2 will be considere The calculation methods are based on Sections 5.1 and 5.2 of NUREG-0133, November 1978. The equations are:							
For TOTAL BODY Dose Rate:								
	n DR _{TB} = Σ _K _i (X/Q) (Q DOT) _i i							
For TOTAL S	KIN Dose Rate:							
D	n R _{skin} = $\Sigma [L_i + 1.1M_i] (X/Q) (Q DOT)_i$ i							

PROCEDURE NO:: C-200 ST. LUCIE PLANT METHODOLOGY SECTION 2.2 Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued) Where: DR _{TB} = total body dose rate from noble gases in airborne releases (mrem/yr) ⁿ _i Σ = a mathematical symbol to signify the operations to the right of the symbol are to be performed for each noble gas nuclide (i) throw and the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K _i = the total body dose factor due to gamma emissions for each no gas nuclide reported in the release source. (mrem-m ³ /µCi-yr) L _i = the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M _i are in (mrad-m ³ /µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m ³) (Q DOT) _i = The release rate of noble gas nuclide (i) in µCi/sec from the release	PROCEDUR	E NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	93 of 220
PROCEDURE NO.: C-200 ST. LUCIE PLANT METHODOLOGY SECTION 2.2 Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued) Where: DR _{TB} = total body dose rate from noble gases in airborne releases (mrem/yr) n° _E a mathematical symbol to signify the operations to the right of the symbol are to be performed for each noble gas nuclide (i) throw and the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K _i = the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m³/µCi-yr) L _i = the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M _i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historiar relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT) _i The release rate of noble gas nuclide (i) in µCi/sec from the release concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³)					
 2.2 Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued) Where: DR_{TB} = total body dose rate from noble gases in airborne releases (mrem/yr) ⁿΣ = a mathematical symbol to signify the operations to the right of th symbol are to be performed for each noble gas nuclide (i) througen and the individual nuclide doses are summed to arrive at the total dose rate for the release source. K_i = the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m³/µCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historia relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release for the releas				ST. LUCIE PLANT	
 Establishing Setpoints for Effluent Monitors (continued) Where: DR_{TB} = total body dose rate from noble gases in airborne releases (mrem DR_{skin} = skin dose rate from noble gases in airborne releases (mrem/yr) ⁿΣ = a mathematical symbol to signify the operations to the right of the symbol are to be performed for each noble gas nuclide (i) throw and the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K_i = the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m³/µCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release factor function for any of the release for the release factor function for any of the release for the rele				METHODOLOGY SECTION	
 DR_{TB} = total body dose rate from noble gases in airborne releases (mrem/yr) n_iΣ = skin dose rate from noble gases in airborne releases (mrem/yr) n_iΣ = a mathematical symbol to signify the operations to the right of th symbol are to be performed for each noble gas nuclide (i) througend the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K_i = the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m³/µCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. (mrem-m³/µCi-yr) M_i = the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historia relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release for the					eases And
 DR_{skin} = skin dose rate from noble gases in airborne releases (mrem/yr) ⁿΣ = a mathematical symbol to signify the operations to the right of th symbol are to be performed for each noble gas nuclide (i) througen and the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K_i = the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m³/µCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas n (i) reported in the assay of the release source. (mrem-m³/µCi-yr) M_i = the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historia relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release for the releas	W	/here:			
 ⁿΣ = a mathematical symbol to signify the operations to the right of the symbol are to be performed for each noble gas nuclide (i) througe and the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K_i = the total body dose factor due to gamma emissions for each no gas nuclide reported in the release source. (mrem-m³/µCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. (mrem-m³/µCi-yr) M_i = the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release rate of noble gas nuclide (i) in µCi/sec from the release factor (i) in µCi/sec from the release factor is the second factor (i) in µCi/sec from the release factor is the second factor (i) in µCi/sec factor the release factor is the second factor (i) in µCi/sec factor factor (i) in µCi/sec factor factor (i) in µCi/sec factor (i) in	D	R _{TB}	=	total body dose rate from noble gases in airborne rele	eases (mrem/y
 symbol are to be performed for each noble gas nuclide (i) througe and the individual nuclide doses are summed to arrive at the tot dose rate for the release source. K_i = the total body dose factor due to gamma emissions for each no gas nuclide reported in the release source. (mrem-m³/µCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas n (i) reported in the assay of the release source. (mrem-m³/µCi-yr) M_i = the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/µCi-yr) (X/Q) = for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release source is the release for the release form the release source is a source in the release form the release for	D	R _{skin}	=	skin dose rate from noble gases in airborne releases	(mrem/yr)
 gas nuclide reported in the release source. (mrem-m³/μCi-yr) L_i = the skin dose factor due to beta emissions for each noble gas n (i) reported in the assay of the release source. (mrem-m³/μCi-yr M_i = the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/μCi-yr) (X/Q) = for ground level, the highest calculated annual long term historia relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in μCi/sec from the release 	n i	Σ	=	symbol are to be performed for each noble gas nuclic and the individual nuclide doses are summed to arriv	le (i) through
 (i) reported in the assay of the release source. (mrem-m³/μCi-yr M_i = the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/μCi-yr) (X/Q) = for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release 	Ki	i	=		
 nuclide (i) reported in the assay of the release source. The con 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/μCi-yr) (X/Q) = for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in µCi/sec from the release 	Li		=		
 relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m³) (Q DOT)_i = The release rate of noble gas nuclide (i) in μCi/sec from the release 	Μ	i	=	nuclide (i) reported in the assay of the release source 1.1 converts mrad to mrem since the units of M_i are in	e. The consta
	(X	(/Q)	=	relative concentration for any of the 16 sectors, at or	
	(C	Q DOT)i	=	The release rate of noble gas nuclide (i) in μ Ci/sec from source of interest	om the releas

REVIS	ON NO.:	PROCEDURE TITLE:		PAGE:
	28	OFFSITE DOSE CALC	ULATION MANUAL (ODCM)	94 of 220
PROCE	EDURE NO.:			94 01 220
	C-200	ST. LI	JCIE PLANT	
		METHODOL	OGY SECTION	
2.2		the Total Body and Skin Setpoints for Effluent Mo	Dose Rates for Noble Gas Rel nitors (continued)	eases And
	1. Setpoi			
		established to ensure the exceed the ODCM Cont the site. Using pre-ODC determined to be more I therefore the site release mrem/yr has been deter being released from the equivalent of 100 percer may be allotted a portion release point portions al percent. The release point account the physical relevant volume release rate and point since uCi/sec is pr		gress do not rate limit for ody dose was a dose, ate of 500 +05 uCi/sec is the point on site the sum of all al to 100 hall take into im expected gle release ODCM actual
		(Exa	ample)	
	ODC	M Release Point	Percent <u>Allotment</u>	
	Unit 1 ECCS ECCS Unit 2 Unit 2 ECCS ECCS Blowd	S 1B 2 Plant Vent 2 Fuel Bldg. Vent S 2A	40 5 1 1 40 5 1 1 + 5 99 or 1 percent below the Site Limit	,

REVISI	ON NO.:		PROCED	URE TITLE:		PAGE:
	28		OFF	SITE DOSE CALCULATION MANUAL (OF	DCM)	05 - 5 000
PROCE	EDURE NO	D.:	1		,	95 of 220
	C-20	0		ST. LUCIE PLANT		
				METHODOLOGY SECTION		
2.2				al Body and Skin Dose Rates for Noble Ga ts for Effluent Monitors (continued)	as Rel	eases And
	1.	(contir	nued)			
		A.	(contin	ued)		
			sum of never l Auxilia points, short p Chemi Chemi calcula based percer engine	or less percentage may be used for a releat the total percent allocated to the above R be allowed to exceed 100 percent. The E0 ry Building Exhaust are not ODCM required but a small percentage should be allotted periodic fan surveillance runs. This allocati stry Procedure COP-07.05, Process Monit stry Supervisor approval is required. COP ation steps to calculate a Noble Gas Releat on the methodology steps described below at allotment will be converted into the releat ering unit of uCi/cc that will be equivalent of the site limit.	elease CCS F ed mor to eac ion is o tor Set 2-07.05 se Ra w. A r se poi	e Points shall leactor nitored release ch to cover controlled per points where 5 provides te Setpoint elease point's nt's indicating
				Obtain the release point's <u>maximum expe</u> release rate (V) in Cubic Feet per Minute Effluent Supervisor.		
				Obtain the release point's percent of site I from the Chemistry Supervisor.	imit all	otment (PA)
				Substitute the release point's V and PA va equation(s) to obtain the Release Point's s desired engineering unit (uCi/cc or uCi/se	Setpoi	
			SP = uCi/cc	<u>3.5E+05 uCi x 60 sec x min x ft3</u> sec min V ft3 28317 c	×F	^A_)0%
			SP = uCi/cc	uCi/cc which is the TABLE SETPOINT for ODCI Channels that have a Limit" declared as the	M Efflu a "Allo	uent Gas tted % of Site
			SP = uCi/cc	<u>3.5E+05 uCi x</u> <u>PA</u> sec 100%		
			SP = uCi/cc	uCi/cc		

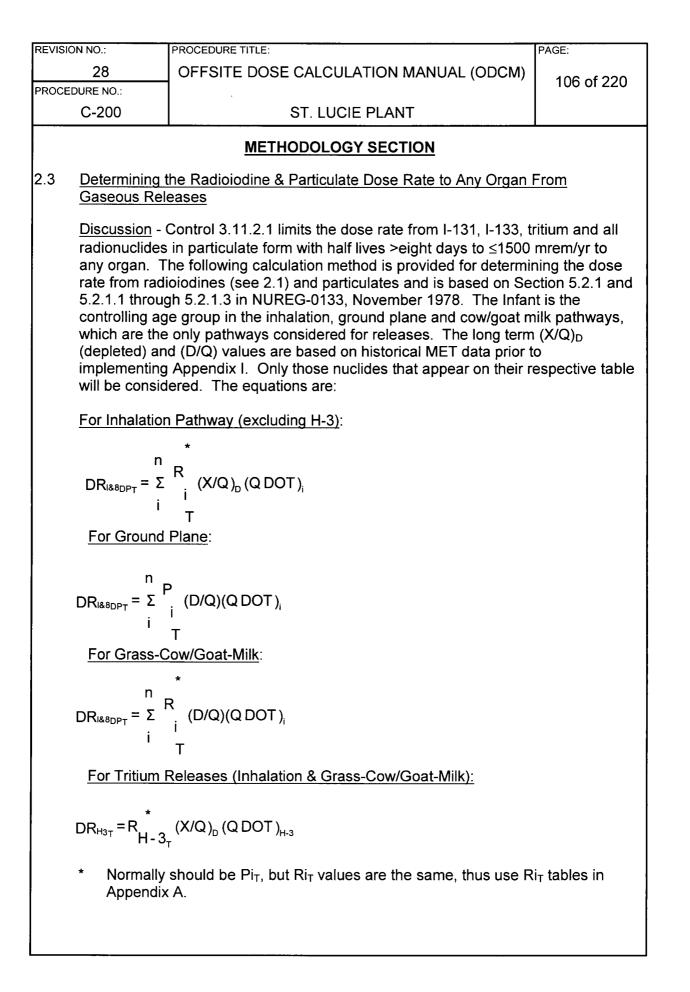
REVIS	ON NO.: 28			PAGE:
PROC	ZO EDURE NO.:		DOSE CALCULATION MANUAL (ODCM)	96 of 220
	C-200		ST. LUCIE PLANT	
		Γ	METHODOLOGY SECTION	
2.2			dy and Skin Dose Rates for Noble Gas Re Effluent Monitors (continued)	eases And
	1. (co	ntinued)		
	A.	(continued)		
		Channels M HIGH SETF GAS and 2E uCi/sec bas rate. Since	of Unit 2 Plant Vent there are 3 ODCM Effl onitoring the Plant Vent. The wide range of POINT in uCi/sec is equivalent to 2A PV Plo 3 PIG LOW RANGE GAS channel 624 use ed on the uCi/cc at the maximum expected they are monitoring the same release poin hels does not receive their own allotted % of	channel 624 G LOW RANG s the equivaler I process flow t (i.e., each of
		"Allot discu	significance of an ODCM Effluent Gas Cha ted % of Site Limit" HIGH Setpoint require ssion (Mid and High Noble Gas Accident (of this discussion):	s further
		a.	For Plant Vent Release Points on each re "Allotted % of Site Limit" needs to be hig allow for Batch Releases from Gas Deca Containment Venting Operations, and at COP-01.06, Processing Gaseous Waste instruction for administratively controlling such that the radioactive concentration a will not be allowed to exceed the site limit	h enough to y Tank and the same time shall provide Batch Release nd release rate
		b.	The receipt of a valid HIGH Alarm on a rewhere the ODCM Low Range Gas Channis approximately equal to the HIGH Alarm not mean the site limit has been exceeded a concentration that is equivalent to the "Site Limit".	nel's radioactiv n setpoint does ed, rather it is a
		setpoint in <u>u</u>	Ci/cc V or Vmax ft3/minute vent flow	V
	uC	SP = /sec (equivalen	t) <u>uCi</u> x <u>28317 cc</u> x <u>Vmax ft3</u> cc ft3 minute	x <u>minute</u> 60 second
		SP = (uCi/sec)	<u>uCi</u> equivalent to a channe sec uCi/cc concentration a volume release rate o	ssuming a
	(%	SP = of Site Limit)	<u>uCi x 100</u> = (above) sec 350,000 uCi/sec of \$	% Site Limit

REVISI	ON NO.:		PROCE	DURE TIT	LE:						PAGE:
	28		OFF	SITE D	oos				JAL (O	DCM)	07 - 5 000
PROCE	EDURE NO) .:	1		-			-	v -	,	97 of 220
	C-20	0				ST. L	UCIE PLA	NT			
				N	IETł	HODOL	OGY SEC	TION			
2.2							Dose Rate			as Rel	eases And
	1.	(contir	nued)								
		A.	(conti	nued)							
			4.	(conti	nue	d)					
				C.	wh rad	ere the lioactivi	ODCM Lo	ow Ran er than	ge Gas the HI	Chanr GH Ala	elease point nel's rm setpoint
			F _{SL} =	RP _{SL} +	· (Su	ım of <u>al</u>	<u>I other</u> Re	lease F	Point's F	RP _{SL} or	n site)
			RP _{SL}		nnel	's x		x con	v. x	time conv. const.	x 1/(site limit)
			RP _{SL}	= <u>uCi</u> cc		<u>V ft³</u> min	x <u>28317</u> ft ₃	<u>cc</u> x	<u>min</u> 60 sec	x3.5	<u>sec</u> E+05 uCi
				Wher	e:						
				F_{SL}	=	Fracti	on of the S	Site Lin	nit		
				RP _{SL}	=	limit (Sum of <u>all</u> m ally less	other F	Release	Point's	ution to the site s RP _{SL} on site) mal operating
				V	=		nin, the Re ne flow rele			actual	process

REVISI	ON NO.:		PROCE	DURE TIT	LE:	PAGE:
	28		OFF	SITE D	OOSE CALCULATION MANUAL (ODCM)	00.000
PROCE	DURE NO	D.:			, , , , , , , , , , , , , , , , , , ,	98 of 220
	C-20	0			ST. LUCIE PLANT	
				M	IETHODOLOGY SECTION	
2.2					y and Skin Dose Rates for Noble Gas Rel Effluent Monitors (continued)	eases And
	1.	(contin	ued)			
		A.	(contir	nued)		
			4.	(conti	nued)	
				C.	(continued)	
				Site L Proce Point	ue of RP _{SL} >1.0 or a F _{SL} >1.0 would be exc imit Based on the above <u>estimate</u> . Off No dure allow 1 hour to obtain a grab sample so that the actual site limit situation may b nethod is discussed in the following step.	rmal of the Release
			5.		antify the Release Point's <u>actual Noble Ga</u> llowing would need to be performed:	is Dose Rate,
				а.	A Noble Gas Activity Grab Sample would and analyzed to determine each Noble G concentration.	
				b.	The results would be used to perform cal ODCM Step 2.2.2 for Noble Gas Total Bo and Skin Dose Rate.	
				C.	If the Release Point's HIGH Alarms were the Table 3.3-14 ODCM Related Particul lodine Channel, then ODCM Step 2.3 cal should be performed as soon as possible continuous collection medium(s) and a T can be pulled and analyzed to evaluate of ODCM Control 3.11.2.1.b.	ate and/or culations a after the ritium Sample

REVISION NO.:		PROCEDURE TITLE:	PAGE:
28	3	OFFSITE DOSE CALCULATION MANUAL (ODCM)	99 of 220
	10.:		99 01 220
C-2	00	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
		the Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors (continued)	eases And
1.	_	inued)	
	В.	No Particulate or lodine Radioactivity Channels are reco ODCM. Table 3.3-13 requires lodine and Particulate Si Technical Specification Table 3.3-6 requires a Fuel Bui Particulate Channel (the bases for the setpoint on the I Vent Particulate Channel is described in 2.2.1.C). The describe Particulate and lodine Radioactivity Channels Channels are listed in ODCM Table 3.3-14 and ALERT Setpoints are provided. The intent of providing these s provide early warning that the effluent pathway condition increased such that a grab sample should be obtained Alarm Setpoint is reached or exceeded. The Particulat HIGH Alarm Setpoint bases is that the collection mediu filter where continuing deposition of radioactivity would increase in the channel count rate up to the setpoint ler resulting dose rate can be shown to be less than 1 per- limit for ODCM Control 3.11.2.1.b for lodine-131, loding radionuclides in particulate from with half-lives greater that these channel detectors are gross activity monitors scintillation type where the count rate is not dependent threshold) on the energy of the isotope entrained on the medium, and that these channels are qualitative trend since the channel count rate cannot be corrected for the sample collection volume. Plant historical trends have Noble Gas Activity may contribute to the count rate of f Auxiliary Building (Plant) Vent Particulate and lodine C In this event the Noble Gas contribution may be added Table 3.3-14 Alert and High Setpoints for Plant Vents of Channels in Table 3.3-14 are also controlled by the reco ODCM Table 4.11-2 which requires 4/M Minimum Anal Frequency of the sampling mediums. These analysis a confirm and quantify the isotopic composition of the rad- being monitored by these channels. The presence of f collection medium would be confirmed by these analysis	amplers only. Iding Vent Fuel Building FUSAR does These and HIGH etpoints is to ons have if a HIGH and Iodine ms are fixed cause a vel(s), the cent of the site e-133, and all than 8 days, is s of the (above e collection indicators e accrued shown that the Reactor hannel(s). to the only. and Iodine quirements of ysis are used to dioactivity Noble Gas on

REVISIC	ON NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE	DURE NO.:	–	100 of 220
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
2.2		the Total Body and Skin Dose Rates for Noble Gas Released Seturation States for Effluent Monitors (continued)	eases And
	1. (cont	inued)	
	Β.	(continued)	
		If an alarm occurs, Channel Check(s) should be perform channel(s), an ALERT Alarm should be investigated an Alarm shall require isotopic analysis of particulate and/ channel medium of the affected channel(s). The Isotop the medium shall be used to evaluate particulate and/or rate levels per the methodology of ODCM 2.3.	id a HIGH or iodine bic analysis of
	C.	To comply with Technical Specification 3.3.3.1, Table 3 Monitoring Instrumentation, "Instrument 2.a.ii. Particula with Alarm/Trip Setpoint determined and set in accorda requirements of the Offsite Dose Calculation Manual, the the BASES for Fuel Building Particulate Channel High 2 Setpoints for Unit 1 and Unit 2:	ite Activity", ince with the ne following is
		Unit 1 Fuel Building:	
		The 10,000 cpm High Setpoint is based on an Infant's A Exposed Organ Dose Rate (Liver) from Inhalation of Ca Site Boundary. The value of 10,000 cpm is very conse to the site dose rate limit of 1500 mrem/yr. The method based on measured particulate channel count rates wh detector was calibrated with a known source activity of on default assumptions as follows:	s-137 at the rvative relative dology is ien the
		 The particulate channel read 32,385 ccpm when 7.67 uCi source of Cs-137. 	exposed to a
		 Assuming that 7.67 uCi of Cs-137 were collected 1 hour of skid sample collection (fixed filter), the volume would yield ~3.3E+06 cc's. Greater than filter efficiency is assumed. 	typical sample
		3. The maximum building process flow exhaust is -	~24,576 cfm.
		 Q(dot) for Cs-137 uCi/sec release rate is approx uCi/sec as follows: 	imately 27
	<u>7.67 u</u> hour	Ci x hour x 28317 cc's x 24576 ft3 x min 3.3E+06cc.s ft3 min 60 sec	= <u>27 uCi</u> sec


REVIS	ION NO.:		PROCE	DURE TITLE:				PAGE:
	28		OFF	SITE DOSE C		ON MANUAI		
PROCI	EDURE NO.:						(,	101 of 220
	C-200			S	T. LUCIE PL	ANT		
				METHO		ECTION		
2.2				tal Body and S nts for Effluen			le Gas Rele	eases And
	1. (contin	ued)					
	C	C. ((contir	nued)				
		:	5.	The default h site boundary	•	,	vorst sector	(NW) at the
		l	6.	The dose rate ODCM Section resulting dos	on 2.3 Inhala	ation Dose R		
	Bone mrem/yr 7.4E+00	mre	ver em/yr E+00	Thyroid mrem/yr 0.0E+00	Kidney mrem/yr 4.2E-01	Lung mrem/yr 1.0E+00	GI-LLI mrem/yr 1.5E-02	W.Body mrem/yr 4.8E-01
			7.	The ODCM 3 1500 mrem/y Liver is the m site dose rate	vr. From the naximum exp	preceding c	alculation t	he Infant's
		ł	8.	A particulate conservative activity on a f product prese sample colled adequate wa were being re Cs-137 activit	setpoint giv fixed filter, C ent at all tim ction interva rning respor eleased, i.e.	en that this c s-137 is a ty es with spen ls shorter that ise if signific the above a	channel ana pical long-l It fuel in the an 1 hour w ant particul	alyzes gross ived fission pool, and that ould provide ate activity
		(9.	channel is ca compliance w performed to with real high	detection/al ons are prov pable of det vith the ODC accurately on alarm even	arm of a pro rided to docu ection sensit M site limit. calculate actu ts as per the	blem. The ument that t tivities to in Grab sam ual release ODCM me	above dose he particulate sure ples should be

REVISI	ON NO.:	PROCE	EDURE TITLE:				PAGE:
	28	OFF	SITE DOSE	CALCULATI	ON MANUAI	(ODCM)	400 + 6000
PROCE	DURE NO.:					· · ·	102 of 220
	C-200			ST. LUCIE P	LANT		
			METHO	DOLOGY S	ECTION		:
2.2			otal Body and ints for Effluer			le Gas Rel	eases And
	1. (continued)					
	C	C. (cont	inued)				
		<u>Unit</u> 2	2 Fuel Building	<u>g:</u>			
		Expo Site I to the base detec	I0,000 cpm Hi sed Organ Do Boundary. Th e site dose rate d on measure stor was calibr efault assumpt	ose Rate (Liv e value of 10 e limit of 150 d particulate ated with a k	er) from Inha 0,00 cpm is v 0 mrem/yr. channel cou nown source	alation of C ery conser The metho int rates wh	s-137 at the vative relative dology is ien the
		1.					n exposed to a 1996 data).
		2.	hour of skid	sample colle ld yield ~5.3	2E+06 cc's.	filter), the ty	pical sample
		3.	The maximu	ım building p	rocess flow	exhaust is <i>·</i>	~31,584 cfm.
		4.	Q(dot) for C 21 uCi/sec a		c release rat	e is approx	kimately
		5 <u>9 uCi</u> x 10ur 5.3	<u>hour</u> x 32E+06cc.s	<u>28317 cc's</u> ft3	x <u>31584 ft3</u> min	x <u>min</u> 60 sec	
		5.		•	Q)d for the w meters/sec.	vorst sector	· (NW) at the
		6.		ion 2.3 Inhal	nt to 10,000 c ation Dose F I.	1 /	•
	Bone mrem/yr 4.8E+00	Liver mrem/yr 5.08E+00		Kidney mrem/yr 2.7E-01	Lung mrem/yr 7.0E+01	GI-LLI mrem/yr 1.0E-02	W.Body mrem/yr 3.1E-01

REVISI	ION NO.:		PROCE	DURE TITLE:	PAGE:
	28		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	102 of 220
PROCE	EDURE NO	D.:]		103 of 220
	C-20	0		ST. LUCIE PLANT	
				METHODOLOGY SECTION	
2.2				ital Body and Skin Dose Rates for Noble Gas Rel ints for Effluent Monitors (continued)	eases And
	1.	(contir	nued)		
		C.	(conti	nued)	
			7.	The ODCM 3.11.2.1.b dose rate limit to any org mrem/yr. From the preceding calculation the In the maximum exposed organ at 0.34 percent of rate limit.	fant's Liver is
			8.	A particulate channel setpoint of 10,000 cpm pro- conservative setpoint given that this channel an activity on a fixed filter, Cs-137 is a typical long- product present at all times with spent fuel in the sample collection intervals shorter than 1 hour w adequate warning response if significant particu- were being released, i.e., the above assumption Cs-137 activity of ~1.4E-06 uCi/cc.	alyzes gross lived fission e pool, and that vould provide late activity
			9.	The setpoint of 10,000 cpm was administratively provide early detection/alarm of a problem. The rate calculations are provided to document that channel is capable of detection sensitivities to in compliance with the ODCM site limit. Grab sam performed to accurately calculate actual release with real high alarm events as per the ODCM m performing dose rate calculations.	above dose the particulate sure ples should be as associated

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	101 - 6 220
PROCE	DURE NO.	:		104 of 220
	C-200)	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.2			he Total Body and Skin Dose Rates for Noble Gas Rel Setpoints for Effluent Monitors (continued)	eases And
	2.	Total E	Body and Skin Nuclide Specific Dose Rate Calculations	
		body d compli	llowing outline provides a step-by-step explanation of h lose rate is calculated on a nuclide-by-nuclide basis to a ance with Control 3.11.2.1. This method is only used if es exceed the value of 3.5 X 10 ⁵ μCi/sec.	evaluate
			The (X/Q) value =sec/m ³ and limiting sector at the exclusion area. (See Table M-1 for sector.)	is the most or value and
			Enter the release rate in ft ³ /min of the release source a to:	ind convert it
			$= \frac{() ft^{3}}{min} X \frac{2.8317 X 10^{4} cc}{ft^{3}} X \frac{min}{60 sec}$	
			= cc/sec volume release rate	
			Solve for(Q DOT) _i for nuclide (i) by obtaining the μ Ci/co of the release source and multiplying it by the product above.	
			(Q DOT) _i = (nuclide [i])	
			(assay) µCi x (2.2.2.B value) cc sec	
			$(Q DOT)_i = \mu Ci/sec \text{ for nuclide (i)}$	
			To evaluate the total body dose rate obtain the K_i value from Table G-2.	e for nuclide (i)
		E.	Solve for DR _{TBi}	
			$DR_{TBi} = K_i (X/Q) (Q DOT)_i = \frac{mrem - m^3}{\mu Ci - yr} X \frac{sec}{m^3} X \frac{\mu Ci}{sec}$	
			$DR_{TBi} = \frac{mrem}{yr}$ total body dose from nuclide (i) for the release source	specified

	ON NO.:		PROCEDURE TITLE:	PAGE:
PROCE	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	105 of 220
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.2			the Total Body and Skin Dose Rates for Noble Gas Rel Setpoints for Effluent Monitors (continued)	eases And
	2.	(contir	nued)	
		F.	To evaluate the skin dose rate, obtain the L_i and M_i val Table G-2 for nuclide (i).	ues from
		G.	Solve for DR _{skin i}	
			$DR_{skin i} = [L_i + 1.1 M_i] (X/Q)(Q DOT)_i$	
			$DR_{skin i} = \frac{mrem}{yr}$ skin dose from nuclide (i) for the speci	fied release
		H.	Repeat steps 2.2.2.D through 2.2.2.G for each noble g reported in the assay of the release source.	
		I.	The Dose Rate to the Total Body from radioactive nobl radiation from the specified release source is:	e gas gamma
			n	
			$DR_{TB} = \Sigma DR_{TBi}$	
		J.	The Dose Rate to the skin from noble gas radiation fro release source is:	m the specifie
			п	
			$DR_{skin} = \Sigma DR_{skin i}$	
			i	
			The dose rate contribution of this release source shall other gaseous release sources that are in progress at interest. Refer to in-plant procedures and logs to deter Dose Rate to the Total Body and Skin from noble gas	the time of mine the Tota

	ON NO.:	PROCI	EDURE TITLE:	PAGE:
	28		FSITE DOSE CALCULATION MANUAL (ODCM)	107 of 220
ROCE	DURE NO.:			107 01 220
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.3	<u>Determining</u> <u>Releases</u> (co		adioiodine & Particulate Dose Rate to Any Organ	From Gaseous
	For Total Do	se Ra	te from I & 8DP and H-3 To An Infant Organ T:	
	DR⊤ = Σ[DF	RI&8DPT	+ DR _{H-3T}]	
	Where:			
	т	=	The organ of interest for the infant age group	
	Z	=	The applicable pathways	
	DR _{I&8DP⊤}	=	Dose Rate in mrem/yr to the organ T from iodine particulates	es and 8 day
	DR _{H-3} T	=	Dose Rate in mrem/yr to organ T from Tritium	
	DR_{T}	=	Total Dose Rate in mrem/yr to organ T from all p under consideration	oathways
	ïΣ	=	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide dose rates are summe the total dose rate from the pathway.	(i) through (n)
	Σ Z	=	A mathematical symbol to indicate that the total to organ T is the sum of each of the pathways d	
	R _i	=	The dose factor for nuclide (i) for organ T for the specified (units vary by pathway)	e pathway
	Pi	=	The dose factor for instantaneous ground plane units of <u>mrem-m² sec</u> µCi-yr	pathway in

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	108 of 220
PROCE	DURE NO.:		106 01 220
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
2.3	<u>Determining</u> <u>Releases</u> (c	g the Radioiodine & Particulate Dose Rate to Any Organ I continued)	From Gaseous
	grass-cow/g the infant's >90% of the contribute e compliance particulates radioiodines Section 2.3 used, the de pathways n	aluation of the radioactive releases and environmental pa goat-milk pathway has been identified as the most limiting thyroid being the critical organ. This pathway typically co e total dose received by the infant's thyroid and the radioir essentially all of this dose. Therefore, it is possible to den with the release rate limit of Control 3.11.2.1 for radioiod by only evaluating the infant's thyroid dose for the releas s via the grass-cow/goat-milk pathway. The calculation m .3 is used for this determination. If this limited analysis ap ose calculations for other radioactive particulate matter an eed not be performed. Only the calculations of Section 2 is need be performed to demonstrate compliance with the	g pathway with ontributes odine nonstrate ines and se of nethod of pproach is nd other 2.3.3 for the
	dose rate ca and are to b particulate r high. The c used to den radioiodines (other than	tions of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 may be om alculations as specified in these sections are included for be used only for evaluating unusual circumstances where materials other than radioiodines in airborne releases are calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will ty nonstrate compliance with the dose rate limit of Control 3 is and particulates when the measured releases of particu- radioiodines and with half lives >8 days) are >10 times the radioiodines.	completeness releases of abnormally ypically be .11.2.1 for late material
	1. <u>The</u>	Inhalation Dose Rate Method:	
		<u>NOTE</u> The H-3 dose is calculated as per 2.3.4.	
	Α.	The controlling location is assumed to be an Infant loca sector at themi X/Q) _D for this location issec/m ³ . Th common to all nuclides. (See Table M-2 for value, sec	le range. The his value is
	B.	Enter the release rate in ft ³ /min of the release source a cc/sec.	nd convert to
		$= -\frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{\text{ft}^{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$	

REVISION NO .:		PROCEDURE TITLE:	PAGE:			
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	109 of 220			
ROCEDURE NO.:						
	C-200	ST. LUCIE PLANT				
	METHODOLOGY SECTION					
.3	<u>Determining</u> <u>Releases</u> (co	the Radioiodine & Particulate Dose Rate to Any Organ F ntinued)	From Gaseous			
	1. (contir	nued)				
	C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c of the release source activity and multiplying it by the p 2.3.1.B above.				
		$(Q DOT)_i = \frac{(nuclide [i] assay) \ \mu Ci}{cc} X \frac{(Value 2.3.1.B) \ cc}{sec}$				
		$(Q DOT)_i = \mu Ci/sec$ for nuclide (i)				
	D.	Obtain the R _i value from Table G-5 for the organ T.				
	E.	Solve for DR _i				
		$DR_{iT} = R_{iT} (X/Q)_{D} (Q DOT)_{i} = \frac{mrem - m^{3}}{\mu Ci - yr} X \frac{sec}{m^{3}} X \frac{\mu Ci}{sec}$				
		$DR_{iT} = \underline{mrem}_{yr}$ The Dose Rate to organ T from nuclide	e (i)			
	F.	Repeat steps 2.3.1.C through 2.3.1.E for each nuclide the assay of the release source.	(i) reported in			
	G.	The Dose Rate to the Infants organ T from the Inhalation	on Pathway is:			
		$DR_{Inhalation_T} = DR_1 + DR_2 + \ + DR_n$				
		for all nuclides except H-3. This dose rate shall be add other pathways as per 2.3.5 - Total Organ Dose.	led to the			
		NOTE				
	Steps 2.3.1.0 Infant.	C through 2.3.1.G need to be completed for each organ	T of the			

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
ROCE	DURE NO.:		110 of 220
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
2.3		the Radioiodine & Particulate Dose Rate to Any Organ	From Gaseous
	<u>Releases</u> (co	ntinued)	
	2. <u>The G</u>	round Plane Dose Rate Method:	
		<u>NOTE</u> Tritium dose via the ground plane is zero.	
	A.	The controlling location is assumed to be an Infant loca sector at the mile range. Th location is 1/m ² . This value is common to (See Table M-2 for sector, range and value.)	
	В.	Enter the release rate in ft ³ /min of the release source a cc/sec.	nd convert to
	=1 min	$\frac{ft^{3}}{ft^{3}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{ft^{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$	
	C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c from the release source activity and multiplying it by the 2.3.2.B above.	
	(Q DOT	$(nuclide [i] assay) \mu Ci}{cc} X \frac{(Value 2.3.2.B) cc}{sec}$	
	(Q DOT	μ = μ Ci/sec for nuclide (i)	
	D.	Obtain the P _i value from Table G-3	
	E.	Solve for DR _i	
	DR _i = P _i	$_{T}$ (D/Q) (Q DOT) _i = $\frac{\text{mrem} - \text{m}^2 - \text{sec}}{\mu \text{Ci} - \text{yr}} \times \frac{1}{\text{m}^2} \times \frac{\mu \text{Ci}}{\text{sec}}$	
	DR _i =	<u>mrem</u> The Dose Rate to organ T from nuclide (i) yr	
	F.	Repeat steps 2.3.2.C through 2.3.2.E for each nuclide the assay of the release source.	(i) reported in

REVISION NO .:			PROCEDURE TITLE:	PAGE:
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE	PROCEDURE NO.: C-200			111 of 220
			ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.3		rmining t ases (co	the Radioiodine & Particulate Dose Rate to Any Organ ntinued)	From Gaseous
	2.	(contir	nued)	
		G.	The Dose Rate to the Infant's Whole Body from the Gro Pathway is:	ound Plane
			$DR_{GrPl} = DR_1 + DR_2 + \ + DR_n$	
			for all nuclides. This dose rate shall be added to the of as per 2.3.5.	ther pathways
	3.	<u>The G</u>	rass-Cow/Goat-Milk Dose Rate Method:	
			<u>NOTE</u> H-3 dose is calculated as per 2.3.4.	
		A.	The controlling animal was established as a the sector at miles. The (D/ location is 1/m ² . This value is common to (See Table M-3 for sector, range and value.)	Q) for this
		В.	Enter the anticipated release rate in ft ³ /min of the relea convert to cc/sec.	se source and
			$= \frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{\text{ft}_{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/se c}$	
		C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c of the release source activity and multiplying it by the p 2.3.3.B above.	
			$(Q DOT)_{i} = \frac{(nuclide [i] assay) \ \mu Ci}{cc} X \frac{(value 2.3.3.B) \ cc}{sec}$	
			$(Q DOT)_i = \mu Ci/sec$ for nuclide (i)	
		D.	Obtain the R_i value from Table G-6(7) (whichever is the animal, cow/goat, for infant).	e controlling
			If the limited analysis approach is being used, limit the the infant thyroid.	calculation to

	ON NO.:		PROCEDURE TITLE:	PAGE:
28 ROCEDURE NO.:		<u>)</u> .	OFFSITE DOSE CALCULATION MANUAL (ODCM)	112 of 220
UUL	C-20		ST. LUCIE PLANT	
			METHODOLOGY SECTION	-
3			the Radioiodine & Particulate Dose Rate to Any Organ I ntinued)	From Gaseous
	3.	(contir	nued)	
		E.	Solve for DR _{iT}	
			$DR_{iT} = R_{iT} (D/Q) (Q DOT)_{i} = \frac{mrem - m^{2} - sec}{\mu Ci - yr} X \frac{1}{m^{2}} X \frac{\mu Ci}{sec}$	i -
			$DR_{iT} = \underline{mrem}$ the Dose Rate to organ T from nuc yr	clide (i)
		F.	Repeat steps 2.3.3.C through 2.3.3.E for each nuclide the assay of the release source.	(i) reported in
			Only the radioiodines need to be included if the limited approach is being used.	analysis
		G.	The Dose Rate to the Infant's organ T from Grass pathway is:	Milk
			DR_{grass} Milk _T = DR_1 + DR_2 + + DR_n	
			for all nuclides. This dose rate shall be added to the ot as per 2.3.5 - Total Organ Dose.	her pathways
	Infan	t. Limit	<u>NOTE</u> C through 2.3.3.G need to be completed for each organ the calculation to the infant thyroid if the limited analysis	
	appro	bach is t	being used.	

EVISI	ION NO.:		PROCEDURE TITLE:		PAGE:
28 PROCEDURE NO.: C-200			OFFSITE DOSE CALC	ULATION MANUAL (ODCM)	113 of 220
)	ST. LU	ICIE PLANT	
			METHODOL	DGY SECTION	
2.3			the Radioiodine & Particu ontinued)	late Dose Rate to Any Organ	From Gaseous
	4.	<u>The H</u>	-3 Dose Rate Method:		
		A.	The controlling locations are:	and their $(X/Q)_D$ values for ea	ch pathway
			Inhalation - Infant at	range in the	sector.
			$(X/Q)_D = sec/m^3$ (See Table M-2 for range, sect	tor and value)
			Ground Plane - Does no	t apply to H-3	
			atmiles with an In sector drinking the milk. (X/Q) _D =se sector corresponding to t	Iocated in the fant at the exclusion area in th The $(X/Q)_D$ for the c/m ³ . (From Table M-6 at the the location of the Milk Animal	elocation is range and above.)
		B.	Enter the anticipated rele convert it to cc/sec.	ease rate in ft ³ /min of the relea	se source and
			$= -\frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10}{\text{ft}^{3}}$	<u>⁴ cc</u> X <u>min</u> 60 sec.	
			= cc/sec volume	e release rate	
		C.	· · · · ·	Tritium, by obtaining the μCi/c d multiplying it by the product o	•
			$(Q DOT)_{H-3} = \frac{(H-3) \ \mu Ci}{cc}$	X (2.3.4.B value) cc sec	
			$(Q DOT)_{H-3} = \mu Ci/se$	ec activity release rate	
		D.	Obtain the Tritium dose f	actor (R _i) for Infant organ T fro	om:
			PATH	TABLE #	
			Inhalation	G-5	
			Initialation	G-3	

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:
28 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM)	114 of 220
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.3		rmining ases (co	the Radioiodine & Particulate Dose Rate to Any Organ I ntinued)	From Gaseous
	4.	(contir	nued)	
		E.	Solve for D_{H-3} (Inhalation) using the (X/Q) _D for inhalation and R_{H-3} (Inhalation) from 2.3.4.D.	n from 2.3.4.A
			$DR_{H-3_{Inh_{T}}} = R_{H-3} (X/Q)_{D} (Q DOT)_{H-3}$	
			$DR_{H-3_{InhT}} = mrem/yr from H - 3 Infant Inhalation for organ$	т
		F.	Solve for D _{H-3} (GrassMilk) using the (X/Q GrassMilk from 2.3.4.A and R _{H-3} (GrassMilk) from 2.3.4.D	l) _D for
			$DR_{H-3_{G-}-M_{T}} = R_{H-3_{G-}-M_{T}} (X/Q)_{D} (Q DOT)_{H-3}$	
			$DR_{H-3GMT} = mrem/yr from H - 3.Infant$	
		G.	Repeat steps 2.3.4.D through 2.3.4.F for each Infant or interest.	rgan T of
		H.	The individual organ dose rates from H-3 shall be adde organ pathway dose rates as per 2.3.5.	ed to the other

REVISION NO .:			PROCEDURE TITLE:			PAGE:
28			OFFSITE DOSE CA	LCULATION MANUAL (ODCM)	115 of 220
PROCEDURE NO.:					115 01 220	
	C-200		ST.	LUCIE PLANT		
METHODOLOGY SECTION						
2.3			<u>he Radioiodine & Parl</u> ntinued)	ticulate Dose Rate to Any	<u>y Organ I</u>	From Gaseous
			nining the Total Organ m Release Source(s)	Dose Rate from Iodines	<u>, 8D-Par</u>	ticulates, and
				escribes all the pathways ose rate to an organ T:	that mus	st be summed
			PATHWAY	DOSE RATE	STE	EP # REF.
		1	nhalation (I&8DP)			2.3.1.G
		Gr	ound Plane (I&8DP)	(Whole Body only)	2	2.3.2.G
		Gr	Milk (I&8DP)			2.3.3.G
			Inhalation (H-3)			2.3.4.E
		Gr-	Milk (H-3)			2.3.4.F
			DR _T =	(sum of above)		
2.4	Determ Discus effluen calend noble g Novem equatio annual	C. <u>sion</u> - (ts for g ar year gas gar ber 19 on may report s outlir	The DR _T above shall site that will be in prog procedures and logs t <u>he Gamma Air Dose f</u> Control 3.11.2.2 limits amma radiation to <5 . The following calcul nma air dose and is b 78. The dose calcula be used for Control d or for projecting dose	nmation for each Infant of be added to all other rele- gress at any instant. Ref to determine the Total DF or Radioactive Noble Ga the air dose due to noble mrads for the quarter an lation method is provided ased on section 5.3.1 of tion is independent of an lose calculation, the dose provided that the appro- lanation that follows. The	ease sour fer to in-p R _T to eac as Releas e gases i ad to <10 I for dete NUREG y age gro e calculat priate va	olant h organ. <u>Se Source(s)</u> n gaseous mrads in any rmining the -0133, oup. The tion for the lue of (X/Q) is
	D [,] - air	n - = Σ3. i	17 X 10 ⁻⁸ M _i (X/Q) Q _i			

REVISI	ON NO.:	PR	OCEDURE TITLE:	PAGE:
	28	0	OFFSITE DOSE CALCULATION MANUAL (ODCM)	110 -5000
PROCEDURE NO.:		1	, , , , , , , , , , , , , , , , , , ,	116 of 220
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.4	Determining (continued)	<u>the</u>	Gamma Air Dose for Radioactive Noble Gas Releas	se Source(s)
	Where:			
	D _Y -air	=	gamma air dose in mrad from radioactive noble gas	Ses.
	Σ	=	A mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide and summed to arrive at the total dose, from all nuc during the interval. No units apply.	(i) through (n)
	3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	units of
	Mi	=	the gamma air dose factor for radioactive noble gas units of $\frac{mrad-m^3}{\mu Ci-yr}$	s nuclide (i) in
Ĩ	(X/Q)	=	the long term atmospheric dispersion factor for group releases in units of sec/m^3 . The value of (X/Q) is the nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control is etc.	ne same for all (X/Q) does
	Qi	=	the number of micro-curies of nuclide (i) released (d during the dose calculation exposure period. (e.g., or year)	

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	117 of 220
PROCE	EDURE NO			117 01 220
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.4		<u>rmining t</u> inued)	the Gamma Air Dose for Radioactive Noble Gas Releas	e Source(s)
		following is calcul	steps provide a detailed explanation of how the radion lated.	uclide specific
	1.	the typ	ermine the applicable (X/Q) refer to Table M-1 to obtain be of dose calculation being performed. (i.e., Quarterly Projection for examples). This value of (X/Q) applies to e (i).	Control or
	2.	Detern	nine (M _i) the gamma air dose factor for nuclide (i) from [·]	Table G-2.
	3.		the micro-Curies of nuclide (i) from the in-plant radioac management logs for the sources under consideration (II.	•
	4.	Solve	for D _i as follows:	
		$D_i = \frac{3.7}{2}$	$\frac{17 \text{ X } 10^{-8} \text{ yr}}{\text{sec}} \text{ X} \frac{\text{M}_{\text{i}} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \text{ X} \frac{(\text{X}/\text{Q}) \text{ sec}}{\text{m}^{3}} \text{ X} \frac{\text{Q}_{\text{i}} \ \mu \text{Ci}}{1}$	
		D _i = r	nrad = the dose from nuclide (i)	
	5.		m steps 2.4.2 through 2.4.4 for each nuclide (i) reported terval in the source.	during the
	6.		tal gamma air dose for the pathway is determined by su f each nuclide (i) to obtain D _Y -air dose.	imming the D _i
		D _{Y-air} =	$D_1 + D_2 + \ + D_n = mrad$	
	7.		to in-plant procedures for comparing the calculated dos able limits that might apply.	e to any

<u>Discussion</u> - (noble gases i mrads in any determining the November 19 equation may reports or for as outlined in The equation	the I Con in ga cale he b 78. proj the	FFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT <u>METHODOLOGY SECTION</u> Beta Air Dose for Radioactive Noble Gas Releases trol 3.11.2.2 limits the quarterly air dose due to beta aseous effluents to <10 mrads in any calendar quar endar year. The following calculation method is pro- beta air dose and is based on Section 5.3.1 of NURI The dose calculation is independent of any age groused for Control dose calculation, dose calculation jecting dose, provided that the appropriate value of detailed explanation that follows. beta air dose is: n DB-air $\Sigma = 3.17 \times 10^{-8} N_i (X/Q) Q_i$	ter and <20 vided for EG-0133, oup. The for annual
C-200 Determining t Discussion - (noble gases i mrads in any determining th November 19 equation may reports or for as outlined in The equation	Con in ga cale he b 78. / be proj the	METHODOLOGY SECTION Beta Air Dose for Radioactive Noble Gas Releases trol 3.11.2.2 limits the quarterly air dose due to beta aseous effluents to <10 mrads in any calendar quar endar year. The following calculation method is pro beta air dose and is based on Section 5.3.1 of NURI The dose calculation is independent of any age gro used for Control dose calculation, dose calculation jecting dose, provided that the appropriate value of detailed explanation that follows. beta air dose is:	a radiation from ter and <20 vided for EG-0133, oup. The for annual
Determining t Discussion - (noble gases i mrads in any determining t November 19 equation may reports or for as outlined in The equation	Con in ga cale he b 78. / be proj the	METHODOLOGY SECTION Beta Air Dose for Radioactive Noble Gas Releases trol 3.11.2.2 limits the quarterly air dose due to beta aseous effluents to <10 mrads in any calendar quar endar year. The following calculation method is pro beta air dose and is based on Section 5.3.1 of NURI The dose calculation is independent of any age gro used for Control dose calculation, dose calculation jecting dose, provided that the appropriate value of detailed explanation that follows. beta air dose is:	ter and <20 vided for EG-0133, oup. The for annual
<u>Discussion</u> - (noble gases i mrads in any determining the November 19 equation may reports or for as outlined in The equation	Con in ga cale he b 78. / be proj the	Beta Air Dose for Radioactive Noble Gas Releases trol 3.11.2.2 limits the quarterly air dose due to beta aseous effluents to <10 mrads in any calendar quar endar year. The following calculation method is pro- beta air dose and is based on Section 5.3.1 of NURI The dose calculation is independent of any age groused for Control dose calculation, dose calculation jecting dose, provided that the appropriate value of detailed explanation that follows. beta air dose is:	ter and <20 vided for EG-0133, oup. The for annual
<u>Discussion</u> - (noble gases i mrads in any determining the November 19 equation may reports or for as outlined in The equation	Con in ga cale he b 78. / be proj	trol 3.11.2.2 limits the quarterly air dose due to beta aseous effluents to <10 mrads in any calendar quar endar year. The following calculation method is pro beta air dose and is based on Section 5.3.1 of NURI The dose calculation is independent of any age gro used for Control dose calculation, dose calculation jecting dose, provided that the appropriate value of detailed explanation that follows. beta air dose is:	ter and <20 vided for EG-0133, oup. The for annual
noble gases i mrads in any determining tl November 19 equation may reports or for as outlined in The equation	in ga cale he b 78. / be proj the	aseous effluents to <10 mrads in any calendar quar- endar year. The following calculation method is pro- beta air dose and is based on Section 5.3.1 of NURI The dose calculation is independent of any age gro- used for Control dose calculation, dose calculation jecting dose, provided that the appropriate value of detailed explanation that follows. beta air dose is: n	ter and <20 vided for EG-0133, oup. The for annual
	for	n	
		i	
Where:			
D _{B-air}	=	beta air dose in mrad from radioactive noble gases	3 .
ŗΣ	=	a mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide (n) and summed to arrive at the total dose, from al reported during the interval. No units apply.	(i) through
3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	n units of
Ni	=	the beta air dose factor for radioactive noble gas n units of $\frac{mrad-m^3}{\mu Ci-yr}$	uclide (i) in
(X/Q)	=	the long term atmospheric dispersion factor for gro releases in units of sec/m^3 . The value of (X/Q) is t nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control etc.	he same for all f (X/Q) does
Qi	=	the number of micro-Curies of nuclide (i) released during the dose calculation exposure period	(or projected)
N ()	li K/Q)	l _i = X/Q) =	 (n) and summed to arrive at the total dose, from al reported during the interval. No units apply. .17 X 10⁻⁸ = the inverse of the number of seconds per year with year/sec. iii = the beta air dose factor for radioactive noble gas n units of mrad-m³/μCi-yr X/Q) = the long term atmospheric dispersion factor for gro releases in units of sec/m³. The value of (X/Q) is t nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control etc. a the number of micro-Curies of nuclide (i) released

REVIS	REVISION NO .:		PROCEDURE TITLE:	PAGE:						
28 PROCEDURE NO.:		D.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	119 of 220						
	C-200		ST. LUCIE PLANT							
			METHODOLOGY SECTION							
2.5	Dete	rmining t	he Beta Air Dose for Radioactive Noble Gas Releases	(continued)						
	The f	ollowing	steps provide a detailed explanation of how the dose i	s calculated.						
	1.	the typ	ermine the applicable (X/Q) refer to Table M-1 to obtain be of dose calculation being performed (i.e., quarterly C tion for examples). This value of (X/Q) applies to each	ontrol or Dose						
	2.	Detern	Determine (N_i) the beta air dose factor for nuclide (i) from Table G-2.							
	3.	waste	Obtain the micro-curies of nuclide (i) from the in-plant radioactive gaseous waste management logs for the source under consideration during the time interval.							
	4.	Solve	for D _i as follows:							
		$D_i = \frac{3}{2}$	$\frac{17 \text{ X } 10^{-8} \text{ yr}}{\text{sec}} \text{ X} \frac{\text{N}_{i} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \text{ X} \frac{(\text{X}/\text{Q}) \text{ sec}}{\text{M}^{3}} \text{ X} \frac{\text{Q}_{i} \mu \text{Ci}}{1}$							
		D _i = m	rad = the dose from nuclide (i)							
	5.		n steps 2.5.2 through 2.5.4 for each nuclide (i) reported terval in the release source.	d during the						
	6.		tal beta air dose for the pathway is determined by sumi f each nuclide (i) to obtain D _{B-air} dose.	ming the D _i						
		D _{B-air} =	D ₁ + D ₂ + D _n = mrad							
	7.		to in-plant procedures for comparing the calculated dos able limits that might apply.	e to any						

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:				
PROCE	28 DURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	120 of 220				
	C-200	ST. LUCIE PLANT					
		METHODOLOGY SECTION					
2.6	Determining the Radioiodine and Particulate Dose To Any Age Group's Organ From Cumulative Releases						
	<u>Profit Culturative Releases</u> <u>Discussion</u> - Control 3.11.2.3 limits the dose to the whole body or any organ resulting from the release of I-131, I-133, tritium and particulates with half-lives >8 days to ≤7.5 mrem during any calendar quarter and ≤15 mrem during any calendar year. The following calculation method is provided for determining the critical organ dose due to releases of radioiodines and particulates and is based on Section 5.3.1 of NUREG-0133, November 1978. The equations can be used for any age group provided that the appropriate dose factors are used and the total dose reflects only those pathways that are applicable to the age group. The Effluent Supervisor will track which age group is the controlling (most restrictive) age group (see control 3.11.2.6.c). The (X/Q) _D symbol represents a DEPLETED- (X/Q) which is different from the Noble Gas (X/Q) in that (X/Q) _D takes into account the loss of I&8DP and H-3 from the plume as the semi-infinite cloud travels over a given distance. The (D/Q) dispersion factor represents the rate of fallout from the cloud that affects a square meter of ground at various distances from the site. The I&8DP and H-3 notations refer to I-131, I-133 Particulates having half-lives >8 day and Tritium. For ease of calculations, dose from other lodine nuclides may be included (see 2.1). Tritium calculations are always based on (X/Q) _D . The first ste is to calculate the I&8DP and H-3 dose for each pathway that applies to a given age group. The total dose to an organ can then be determined by summing the pathways that apply to the receptor in the sector. The infant age group does not apply to Grass-Cow-Meat or Vegetation pathway dose since they are assumed to eat only milk.						
	The equation	s are:					
	n	n Pathway (excluding H-3): 17 X 10 ⁻⁸ R _i (X/Q) _p Q _i					
	For Ground F	Plane, Grass-Cow/Goat-Milk, Grass-Cow/Goat-Milk, or	Vegetation				
	n D _{I&8DPT} = Σ3. i	17 X 10 ⁻⁸ R _i (D/Q) Q _i					
	For each path	nway above (excluding Ground Plane) For Tritium:					
	D _{H-3T} = 3.	17 X 10 ⁻⁸ R _{H-3T} (X/Q) _D Q _i					

REVISI	ÔN NO.:	PROCE	EDURE TITLE:	PAGE:			
	28		SITE DOSE CALCULATION MANUAL (ODCM)	121 of 220			
PROCE	EDURE NO.:			121 01 220			
	C-200	1	ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.6	.6 Determining the Radioiodine and Particulate Dose To Any Age Group's Orga From Cumulative Releases (continued) For Total Dose from Particulate Gaseous effluent to organ T of a specified ag group:						
	$D_{T} = \frac{\Sigma}{Z} [D_{1\&BDP} + D_{H-3}]$						
	Where:						
	Т	=	the organ of interest of a specified age group				
	z	=	the applicable pathways for the age group of inte	erest			
	D _{I&8DP}	=	Dose in mrem to the organ T of a specified age radioiodines and 8D Particulates	group from			
	D _{H-3} = Dose in mrem to the organ T of a specified age group fro Tritium						
	D _T	=	Total Dose in mrem to the organ T of a specified from Gaseous particulate Effluents	l age group			
	ŗΣ	Ξ	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide doses are summed to total dose from the pathway of interest to organ	e (i) through (n) arrive at the			
	Σ Z	=	A mathematical symbol to indicate that the total organ T is the sum of each of the pathway dose and H-3 from gaseous particulate effluents.				
	3.17 X 10 ⁻⁸	=	The inverse of the number of seconds per year year/sec.	with units of			
	R _i	=	The dose factor for nuclide (i) (or H-3) for pathw T of the specified age group. The units are eithe				
		mren yr -	$\frac{m^2 - m^3}{\mu Ci}$ for pathways OR $\frac{mrem - m^2 - sec}{yr - \mu Ci}$ for path using (X/Q) _D	ways D/Q)			

REVISI	ON NO.:	PROCEDURE TITLE:	· • · · ·	PAGE:				
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)		122 of 220				
PROCE	EDURE NO.:	ST LUCIE DI ANIT						
	C-200		ST. LUCIE PLANT					
		MET	HODOLOGY SECTION					
2.6		<u>the Radioiodine a ative Releases</u> (c	and Particulate Dose To Any Age Grou ontinued)	ıp's Organ				
	(X/Q) _D		eted-(X/Q) value for a specific location is located (see discussion). The units a					
	(D/Q)	is located	 the deposition value for a specific location where the receptor is located (see discussion). The units are 1/m² where m=meters. 					
	Qi		 The number of micro-Curies of nuclide (i) released (or projected) during the dose calculation exposure period. 					
	Q _{H-3}	= the numb	= the number of micro-Curies of H-3 released (or projected)					
	11-5	during the dose calculation exposure period.						
	1. The Inl	alation Dose Pathway Method:						
		NOTE hould be calculated as per 2.6.4.						
	A .		pplicable $(X/Q)_D$ from Table M-2 for the tor is located. This value is common to					
	В.		For the age group(s) of interest, determine the R _i factor of nuclic for the organ T and age group from the appropriate table number					
		Age Group	Inhalation Dose Factor Table Numb	er				
		Infant	G-5					
		Child	G-8					
		Teen	G-13					
		Adult	G-18					
	C.	waste managem	p-Curies (Q _i) of nuclide (i) from the radi lent logs for the release source(s) unde lring the time interval.					
	D.	Solve for D _I						
		D _i = 3.17 X 10 ⁻⁸ F	Ri(X/Q) _D Q _I					
		D _i = n	nrem from nuclide (i)					

•

REVISION NO.:			PROCEDURE TITLE		PAGE:			
28		OFESITE DO	SE CALCULATION MANUAL (ODCM)					
PROCE	DURE NO.	:	0		123 of 220			
	C-200			ST. LUCIE PLANT				
	METHODOLOGY SECTION							
2.6	Determining the Radioiodine and Particulate Dose To Any Age Group's Organ From Cumulative Releases (continued)							
	1. (continued)							
			•	2.6.1.B through 2.6.1.D for each nuclide e interval for each organ.	(i) reported			
				dose to organ T of the specified age gro summing the D _i Dose of each nuclide (i)				
			(Age Group) =	$D_1 + D_2 + _\ + D_n = mrem$				
				to determine the total dose to organ T fro 8D Particulates	om			
	2 .]	The Gro	ound Plane Dos	se Pathway Method:				
			•	NOTE plane is zero. The Whole Body is the or ound Plane pathway dose.	nly			
				applicable (D/Q) from Table M-2 for the located. This (D/Q) value is common to				
				Ri factor of nuclide (i) for the whole body e ground plane pathway dose is the sam				
				ro-Curies (Q _i) of nuclide (i) from the radio ment logs for the source under consider				
		D.	Solve for D _I					
			$D_i = 3.17 \times 10^{-6}$	${}^{3}R_{i}(D/Q)Q_{i}$				
			D _i =	mrem for nuclide (i)				
			Perform steps during the time	2.6.2.B through 2.6.2.D for each nuclide interval.	(i) reported			

· ·

REVISION NO.:		.:	PROCEDURE TITLE:			PAGE:			
	2	8	OFFSITE DO	SE CALCULATION MA	NUAL (ODCM)	124 of 220			
PROCE	EDURE	NO.:				124 01 220			
	C-2	200		ST. LUCIE PLANT					
			ME	THODOLOGY SECTIO	<u>DN</u>				
2.6			the Radioiodine ative Releases (and Particulate Dose ⁻ (continued)	To Any Age Grou	<u>p's Organ</u>			
	2.	2. (continued)							
		F.		ane dose to the whole each nuclide (i)	body is determine	ed by summing			
			D _{Gr.PlWBody} = D	$D_1 + D_2 + ___ + D_n =$	mrem				
			Refer to step 2	.6.5 to calculate total d	ose to the Whole	Body.			
	3.	The Gra	ass-Cow/Goat-Milk Dose Pathway Method:						
		NOTE							
			Tritium dose is calculated as per 2.6.4.						
		A.	the sum of eac milk from only t	t, will be the controlling h animal), as the huma the most restrictive anir ch animal is controlling	n receptor is ass mal. Refer to Tab	umed to drink ble M-3 to			
		B.		oup(s) of interest, deter organ T, from the appro animal.					
		Ag	je Group	Cow Milk Dose Factor Table Number	Goat Milk Do Factor Table Nu				
			Infant	G-6	G-7				
			Child	G-9	G-10				
			Teen	G-14	G-15				
			Adult	G-19	G-20				
		C.		ro-Curies (Q _i) of nuclide ment logs for the releas interval.					
		D.	Solve for D _i						
			$D_i = 3.17 \times 10^{-1}$	⁸ R _i (D/Q)Q _i					
			D _i = mre	em from nuclide (i)					

REVISION	NO.:	PROCEDURE TITLE:	PAGE:
ROCEDU	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	125 of 220
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
		the Radioiodine and Particulate Dose To Any Age Group lative Releases (continued)	p's Organ
3	3. (cont	inued)	
	E.	Perform steps 2.6.3.B through 2.6.3.D for each nuclide during the time interval. Only the radioiodines need to the limited analysis approach is used.	
	F.	The Grass-Cow-Milk (or Grass-Goat-Milk) pathway dos is determined by summing the Di dose of each nuclide(
		D_{G-C-M} (or D_{G-G-M}) = $D_1 + D_2 + _$ + $D_n = mrem$	1
4	I. The G	The dose to each organ should be calculated in the sar with steps 2.6.3.B through 2.6.3.F. Refer to step 2.6.5 the total dose to organ T from radioiodines &8D Particul limited analysis approach is being used the infant thyro grass-cow(goat)-milk pathway is the only dose that nee determined. Section 2.6.5 can be omitted. rass-Cow/Goat-Meat Dose Pathway method:	to determine llates. If the id dose via the
1			·····
		<u>NOTE</u> Tritium dose is calculated as per 2.6.6.	
	Α.	Determine the controlling herd location by:	
		 For dose calculations (other than the annual rep historical herd was determined to be located in S at miles. This herd shall be used for Control required dose calculations. 	Sector
		2. For annual report dose calculations the herd from Use Census having the highest (D/Q) at its locat reporting herd. The Land Use Census for 1978 shall apply to the calendar year 1979 (for examp locate the nearest herd in each sector over land. (D/Q) will be determined from actual met data the during the reporting period.	ion will be the (for example) le) and will . The real

B. Determine the applicable (D/Q) from Table M-3 for the location(s) of the herd as determined in 2.6.4.A above.

during the reporting period.

REVIS	ION NO.:		PROCEDURE TITLE:		PAGE:
	28		OFFSITE DOS	E CALCULATION MANUAL (ODCM)	126 of 220
PROCE	EDURE N	0.:			120 01 220
	C-20)0		ST. LUCIE PLANT	
			METH	HODOLOGY SECTION	
2.6	<u>Dete</u> Fron	ıp's Organ			
	4.	(conti			
		C.	Determine the de Table specified b	ose factor Ri for nuclide (i) for organ ta below:	au from the
		Γ	Age	Meat Dose Factor Table No.	
		F	Infant	N/A *	
			Child	G-11	
			Teen	G-16	
		Γ	Adult	G-21	
			nuclide (i) to be consideration du from a single rele	ent logs (for projected doses - the mid projected) for the release source(s) un uring the time interval. The dose can be ease source, but the total dose for OD reports shall be from all gaseous relea	ider e calculated CM Control
		E.	Solve for Di		
			Di = 3.17 X 10 R	li (D/Q) Qi	
			Di =	mrem from nuclide (i)	
		F.	Perform Steps 2 during the time in	.6.4.C through 2.8.4.E for each nuclidenterval.	e (i) reported
		G.		Meat pathway dose to organ tau is de dose of each nuclide (i).	termined by
			Dose	= D1 + D2 + D3 + + Dn =	mrem
			Grass-Cow-Mea Excluding Tritiun (Child, Teen, or .	n	

REVISI	ON NO.:	PROCEDURE TITLE:		PAGE:			
	28	OFFSITE DOS	E CALCULATION MANUAL (ODCM)	407 (000			
PROCE	EDURE NO.:		· · · · · · · · · · · · · · · · · · ·	127 of 220			
	C-200	ST. LUCIE PLANT					
		MET	HODOLOGY SECTION				
2.6	2.6 <u>Determining the Radioiodine and Particulate Dose To Any Age Group's Organ</u> <u>From Cumulative Releases</u> (continued)						
	5. The Ve	getation (Garden) Dose Pathway method:				
	A.	Determine the c	ontrolling garden location by:				
		 For dose calculations (other than annual reports) the historical garden was determined to be located in Sector at miles. This garden shall be used for all ODCM Control dose calculations. 					
		2. For annual report dose calculations the Land Census Garden having the highest real (D/Q) at its location will be the reporting garden. The Land Use Census for 1978 (for example) shall apply to the calendar year 1979 (for example) and will locate the nearest garden in each sector. The real (D/Q) will be determined from actual met data that occurred during the reporting period.					
	В.		pplicable (D/Q) from Table M-3 for the determined above.	location(s) of			
	C.	Determine the d Table specified	ose factor Ri for nuclide (i) for organ ta below:	u from the			
	Γ	Age	Vegetation Dose Factor Table No.				
		Infant	N/A *				
	Γ	Child	G-12				
		Teen	G-17				
		Adult	G-22				
	_		e infant does not eat vegetation and the other the pathway.	erefore does			
	D.	waste managen nuclide (i) to be consideration du from a single rel	p-Curies (Qi) of nuclide (i) from the radi nent logs (for projected doses - the mic projected) for the release source(s) un uring the time interval. The dose can b lease source, but the total dose for OD reports shall be from all gaseous relea	ro-Curies of der e calculated CM Control			

	ON NO.:		PROCEDURE TITLE:	PAGE:					
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	128 of 220					
PROCE									
	C-20	0	ST. LUCIE PLANT						
	METHODOLOGY SECTION								
2.6	6 Determining the Radioiodine and Particulate Dose To Any Age Group From Cumulative Releases (continued)								
	5. (continued)								
		E.	Solve for Di						
			Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi						
			Di = mrem from nuclide (i)						
		F.	F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval.						
		G.	The Vegetation pathway dose to organ tau is determin summing the Di dose of each nuclide (i).	ed by					
			Dose = D1 + D2 + D3 + + Dn =	mrem					
			Vegetation (Excluding Tritium) (Child, Teen, or Adult)						
	6.	The G	Saseous Tritium Dose (Each Pathway) Method:						
		A.	The controlling locations for the pathway(s) has alread determined by:	y been					
			Inhalation-as per 2.6.1.AGround Plane-not applicable for H-3Grass-Cow/Goat-Milk-as per 2.6.3.AGrass-Cow/Goat-Milk-as per 2.6.4.AVegetation (Garden)-as per 2.6.5.A						
		B.	Tritium dose calculations use the depleted $(X/Q)_D$ inste Table M-2 describes where the $(X/Q)_D$ value should be from.						

REVISIO	ON NO.:		PROCEDURE T	TTLE:		PAGE:		
PROCE	28 DCEDURE NO.:			DOSE CALCULAT	ON MANUAL (OD	CM) 129 of 220		
	C-20	0		ST. LUCIE PLANT				
				METHODOLOGY	ECTION	_		
2.6	From	Cumul	<u>the Radioio</u> ative Releas	dine and Particulate ses (continued)		<u>Group's Organ</u>		
	6.	(conti C.	For the age	e group(s) of interes) for the organ T of				
			AGE		MILK			
			AGE		COW	GOAT		
			Infant	G-5	G-6	G-7		
			Infant Child	G-5 G-8	G-6 G-9			
						G-7		
			Child	G-8	G-9	G-7 G-10		
		D.	Child Teen Adult Obtain the manageme (i) to be pro during the release sou reports sha	G-8 G-13 G-18 micro-Curies (Q) of ent logs (for projecte bjected) for the relea time interval. The d urce, but the total do all be from all gaseo	G-9 G-14 G-19 Tritium from the ra d doses - the micro ase source(s) unde ose can be calcula ose for Control limit	G-7 G-10 G-15 G-20 dioactive gas was o-Curies of nuclide r consideration ted from a single s or quarterly		
		D.	Child Teen Adult Obtain the manageme (i) to be pro during the release sou reports sha Solve for D	G-8 G-13 G-18 micro-Curies (Q) of ent logs (for projecte bjected) for the relea time interval. The d urce, but the total do all be from all gaseo	G-9 G-14 G-19 Tritium from the ra d doses - the micro ase source(s) unde ose can be calcula ose for Control limit us release sources	G-7 G-10 G-15 G-20 dioactive gas was o-Curies of nuclide r consideration ted from a single s or quarterly		
			Child Teen Adult Obtain the manageme (i) to be pro during the release sou reports sha Solve for D	G-8 G-13 G-18 micro-Curies (Q) of ent logs (for projecte bjected) for the relea time interval. The d urce, but the total do all be from all gaseo	G-9 G-14 G-19 Tritium from the ra d doses - the micro ase source(s) unde ose can be calcula ose for Control limit us release sources	G-7 G-10 G-15 G-20 dioactive gas was o-Curies of nuclide r consideration ted from a single s or quarterly		

 D_{H-3} = mrem from Tritium in the specified pathway for organ T of the specified age group

REVISION NO .:	PROCEDURE	TITLE:		PAGE:
28	OFFSITE	DOSE CALCULATION MANUAL (ODCM)		M) 130 of 220
PROCEDURE NO .:			130 01 220	
C-200		ST. LUCIE I	PLANT	
		METHODOLOGY	SECTION	
2.6 <u>Determining</u> From Cumul	Group's Organ			
		Total Organ Dose F Gaseous Releases	rom lodines, 8D-Parti	culates and H-3
Control dose from the rea			dose from all release	e sources
A. Age Group: INFAI	organ T fro release so	om a release source ources:	oe summed to arrive a or if applicable to Co _T	
	, .	IYROID KIDNEY	LUNG GI-LLI V Reference to STEP	VHOLE BODY
PATHWA	Y	DOSE	No.	Remark
Inhalation (I&	8DP)		2.6.1.F	
Inhalation (Tr	itium)		2.6.6.E	
Ground Plane (1&8DP)		2.6.2.F	
GrassM	lilk (I&8DP)		2.6.3.F	
GrassM	ilk (Tritium)		2.6.6.E	
GrassMe	eat (I&8DP)		2.6.4.G	N/A for INFANT
GrassMe	eat (Tritium)		2.6.6.E	N/A for INFANT
Vegetable Garder	ו (I&8DP)		2.6.5.G	N/A for INFANT
Vegetable Garder	n (Tritium)		2.6.6.E	N/A for INFANT
Dose _T =		(sum of above)		
В.	The dose the calculated		able age group's OR	GANS shall be

BONE, LIVER, THYROID, KIDNEY, LUNG, WHOLE BODY, & GI-LLI

The age group organ receiving the highest exposure relative to its Control Limit is the most critical organ for that age group resulting from the radioiodine & 8D Particulates gaseous effluents.

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:				
	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	131 of 220				
PROCE	DURE NO			131 01 220				
	C-200		ST. LUCIE PLANT					
METHODOLOGY SECTION								
2.7	<u>Proje</u>	cting Do	se for Radioactive Gaseous Effluents					
	<u>Discussion</u> - Control 3.11.2.4 requires that the waste gas holdup system be used to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases, from each unit, to areas at and beyond the SITE BOUNDARY (see TS Figure 5-1-1) would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The following calculation method is provided for determining the projected doses. This method is based on using the results of the calculations performed in Sections 2.4 and 2.5.							
	1.	(Sectio	the latest results of the monthly calculations of the gan on 2.4) and the beta air dose if performed (Section 2.5). e obtained from the in-plant records.					
	2.	Divide the mo	these doses by the number of days the plant was oper onth.	ational during				
	3. Multiply the quotient by the number of days the plant is projected to be operational during the next month. The product is the projected dose next month. The value should be adjusted as needed to account for a changes in failed-fuel or other identifiable operating conditions that co significantly alter the actual releases.							
	4.		projected doses are >0.2 mrads gamma air dose or > 0. se, the appropriate subsystems of the waste gas holdup ed.					
3.0	<u>40 CF</u>	R 190 [Dose Evaluation					
	cycle thyroi The fo	sources d, which ollowing	Dose or dose commitment to a real individual from all us be limited to ≤ 25 mrem to the whole body or any organ is limited to ≤ 75 mrem) over a period of 12 consecutive approach should be used to demonstrate compliance of this approach is based on NUREG-0133, Section 3.8.	n (except e months.				
3.1	<u>Evalu</u>	ation Ba	ases					
	be pe twice 3.11.2 whole gamm from r	rformed the dose 2.3a and body (li na air do radioiodi	ions to demonstrate compliance with the above dose lir if the quarterly doses calculated in Sections 1.4, 2.4 ar e limits of Controls 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2a, 3. d 3.11.2.3b respectively; i.e., quarterly doses exceeding iquid releases), 10 mrem to any organ (liquid releases) ose, 20 mrads beta air dose or 15 mrem to the thyroid o ines and particulates (atmospheric releases). Otherwis re required and the remainder of this section can be on	nd 2.6 exceed 1.2.2b, 3 mrem to the , 10 mrads r any organ e, no				

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:						
	28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	132 of 220						
PROCE	DURE NO .:		102 01 220						
	C-200								
		METHODOLOGY SECTION							
3.2	Doses From	Liquid Releases							
	For the evaluation of doses to real individuals from liquid releases, the same calculation method as employed in Section 1.4 will be used. However, more realistic assumptions will be made concerning the dilution and ingestion of fish and shellfish by individuals who live and fish in the area. Also, the results of the Radiological Environmental Monitoring program will be included in determining more realistic dose to these real people by providing data on actual measured levels of plant related radionuclides in the environment.								
3.3	Doses From	Atmospheric Releases							
	same calcula Section 2.4, t dose factor (M sequence app the actual loc consumption (Control 3.12) the results of in determining	ation of doses to real individuals from the atmospheric tion methods as employed in Section 2.4 and 2.6 will be he total body dose factor (K_i) should be substituted for M_i) to determine the total body dose. Otherwise the samples. However, more realistic assumptions will be made ation of real individuals, the meteorological conditions at of food (e.g., milk). Data obtained from the latest land .2) should be used to determine locations for evaluating the Radiological Environmental Monitoring program will g more realistic doses to these real people by providing rels of radioactivity and radiation at locations of interest	e used. In the gamma air ne calculation le concerning and the use census doses. Also, l be included data on actual						

REVISION NO.:			PROCEDURE TITLE:	PAGE:					
28 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM)	133 of 220					
	C-20		ST. LUCIE PLANT						
			METHODOLOGY SECTION						
4.0	<u>Annı</u>	ual Radio	active Effluent Report						
	Discussion - The information contained in a annual report shall not apply to any Control. The reported values are based on actual release conditions instead of historical conditions that the Control dose calculations are based on. The Control dose limits are therefore included in item 1 of the report, for information only. The ECLs in item 2 of the report shall be those listed in Tables L-1 and G-1 of this manual. The average energy in item 3 of the report is not applicable to the St. Lucie Plant. The format, order of nuclides and any values shown as an example in Tables 3.3 through 3.8 are samples only. Other formats are acceptable if they contain equivalent information. A table of contents should also accompany the report. The following format should be used:								
		ACTIVE EFFLUENTS - SUPPLEMENTAL INFORMAT	ION						
	1. Regulatory Limits:								
	1.1 For Radioactive liquid waste effluents:								
			site (see TS Figure 5.1-1) shall be limited to ten concentrations specified in 10 CFR Part 20.100 Appendix B, Table 2, Column 2 for radionuclide dissolved or entrained noble gases. For dissolv	The concentration of radioactive material released from the site (see TS Figure 5.1-1) shall be limited to ten times the concentrations specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2 X $10^{-4} \mu$ Ci/ml total activity.					
			b. The dose or dose commitment to a MEMBER Of from radioactive materials in liquid effluents relevant reactor unit to unrestricted areas (See TS Fig. 5 limited during any calendar quarter to ≤1.5 mrevant body and to ≤5 mrem to any organ and ≤3 mrevant body and ≤10 mrem to any organ during any calendar and so any organ during any calendar any organ during any calendar and so any organ during any calendar any organ durin	eased from each 5.1-1) shall be m to the whole m to the whole					
		1.2	For Radioactive Gaseous Waste Effluents:						
			 The dose rate resulting from radioactive materia gaseous effluents to areas at or beyond the SIT (See TS Figure 5.1-1) shall be limited to the foll 	E BOUNDARY					
			The dose rate limit for noble gases shall be \leq 50 the total body and \leq 3000 mrem/yr to the skin ar						
			The dose rate limit from I-131, I-133, Tritium an with half-lives >8 days shall be \leq 1500 mrem/yr f	•					

1. (((contini 1.2 (I	active	SITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT <u>METHODOLOGY SECTION</u> Effluent Report (continued) nued) The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to <5 mrad for gam and <10 mrad for beta radiation and during any to <10 mrad for gamma radiation and <20 mrad radiation	r unit, to areas nited to the ma radiation calendar year				
C-200 4.0 <u>Annual</u> 1. (c 1	(contini 1.2 (I	ued) (contir	METHODOLOGY SECTION Effluent Report (continued) nued) The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to ≤5 mrad for gam and ≤10 mrad for beta radiation and during any to ≤10 mrad for gamma radiation and ≤20 mrad	gases r unit, to areas nited to the ma radiation calendar year				
4.0 <u>Annual</u> 1. ((1	(contini 1.2 (I	ued) (contir	METHODOLOGY SECTION Effluent Report (continued) nued) The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to ≤5 mrad for gam and ≤10 mrad for beta radiation and during any to ≤10 mrad for gamma radiation and ≤20 mrad	r unit, to areas nited to the ma radiation calendar year				
1. (((contini 1.2 (I	ued) (contir	Effluent Report (continued) nued) The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to \leq 5 mrad for gam and \leq 10 mrad for beta radiation and during any to \leq 10 mrad for gamma radiation and \leq 20 mrad	r unit, to areas nited to the ma radiation calendar year				
1. (((contini 1.2 (I	ued) (contir	nued) The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to \leq 5 mrad for gam and \leq 10 mrad for beta radiation and during any to \leq 10 mrad for gamma radiation and \leq 20 mrad	r unit, to areas nited to the ma radiation calendar year				
1	1.2 ((contir	The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to \leq 5 mrad for gam and \leq 10 mrad for beta radiation and during any to \leq 10 mrad for gamma radiation and \leq 20 mrad	r unit, to areas nited to the ma radiation calendar year				
	I		The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to \leq 5 mrad for gam and \leq 10 mrad for beta radiation and during any to \leq 10 mrad for gamma radiation and \leq 20 mrad	r unit, to areas nited to the ma radiation calendar year				
2. E		b.	released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lin following: During any calendar quarter, to \leq 5 mrad for gam and \leq 10 mrad for beta radiation and during any to \leq 10 mrad for gamma radiation and \leq 20 mrad	r unit, to areas nited to the ma radiation calendar year				
2. E			and ≤ 10 mrad for beta radiation and during any to ≤ 10 mrad for gamma radiation and ≤ 20 mrad	calendar year				
2. E			ladiatori					
2. E	(С.	The dose to a MEMBER OF THE PUBLIC from Tritium and all radionuclide in particulate form, w >8 days in gaseous effluents released from each to areas at and beyond the SITE BOUNDARY (s 1 in the TS-A) shall be limited to the following:	vith half-lives				
2. E			During any calendar quarter to \leq 7.5 mrem to any during any calendar year to \leq 15 mrem to any or					
	Effluen	t Limit	ting Concentrations:					
A	Air - as	s per attached Table G-1						
V	Water -	er - as per attached Table L-1						
		verage energy of fission and activation gases in gaseous effluents is not oplicable to the St. Lucie Plant.						

REVIS	ION NO.:	PROCEDURE TI	P	AGE:								
	28	OFFSITE	DOSE C	DOSE CALCULATION MANUAL (ODCM)								
PROCE	EDURE NO.:							135 of 220				
	C-200		ST	LUCIE	PLANT							
		<u> </u>	METHOD	OLOGY	SECTION	<u>l</u>						
4.0	Annual Radioactive Effluent Report (continued)											
	4. Measu	easurements and Approximations of Total Radioactivity:										
	A sum	mary of liqui	d effluen	t accoun	ting metho	ds is desc	ribed i	n Table 3.1.				
	A sum Table	mary of gase 3.2.	eous efflu	uent acco	ounting me	thods is d	escribe	ed in				
	Estima	ate of Errors:										
				LIQ	UID	GASE	EOUS					
	Erro	r Topic		Avg. %	Max. %	Avg. %	Max.	%				
	Release F	Point Mixing	-	2	5	NA	NA					
	Sampling			1	5	2	5					
				1	5	1	5					
	Sample P	reparation		•								
	Sample P Sample A	-		3	10	3	10					
		nalysis		3 2	10 5	3 4	10 15					
	Sample A	nalysis	Total %	-	-	-						

The predictability of error for radioactive releases can only be applied to nuclides that are predominant in sample spectrums. Nuclides that are near background relative to the predominant nuclides in a given sample could easily have errors greater than the above listed maximums.

REVISION NO.:		PROCEDURE TITLE:		PAGE:							
28		OFFSITE DOSE CALC	136 of 220								
PROCEDURE NO.:				130 01 220							
C-200											
	METHODOLOGY SECTION										
4.0 <u>Annual Ra</u>	adio	active Effluent Report (continued)								
4. (co	ntin	ued)									
TABLE 3.1 RADIOACTIVE LIQUID EFFLUENT SAMPLING AND ANALYSIS											
LIQUID SOURCE	SA	AMPLING FREQUENCY TYPE OF ANALYSI		METHOD OF ANALYSIS							
		EACH BATCH	PRINCIPAL GAMMA EMITTERS	p.h.a.							
MONITOR			TRITIUM	L.S.							
TANK RELEASES	N	IONTHLY COMPOSITE	GROSS ALPHA	A.I.C.							
	QL	JARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.							
STEAM		FOUR PER MONTH	PRINCIPAL GAMMA EMITTERS AND DISSOLVED GASES	p.h.a.							
GENERATOR BLOWDOWN			TRITIUM	L.S.							
RELEASES	N	IONTHLY COMPOSITE	GROSS ALPHA	A.I.C.							
	QL	JARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.							

TABLE NOTATION:

p.h.a. - gamma spectrum pulse height analysis using Lithium Germanium detectors. All peaks are identified and quantified.

L.S. - Liquid Scintillation counting

C.S. - Chemical Separation

A.I.C. - Air Ion Chamber

R	EVISION NO.:	PROCEDURE TITLE:	PAGE:								
	28	OFFSITE DOSE CAL	OFFSITE DOSE CALCULATION MANUAL (ODCM)								
PF	ROCEDURE NO .:		LUCIE PLANT	137 of 220							
	C-200										
METHODOLOGY SECTION											
4.0 <u>Annual Radioactive Effluent Report</u> (continued)											
	4. (conti	nued)									
TABLE 3.2 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS											
	GASEOUS SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	METHOD OF ANALYSIS							
			TYPE OF ANALYSIS Principal Gamma Emitters								
	SOURCE Waste Gas Decay Tank	FREQUENCY		ANALYSIS							
	SOURCE Waste Gas Decay Tank Releases	FREQUENCY Each Tank	Principal Gamma Emitters	ANALYSIS G, p.h.a.							
	SOURCE Waste Gas Decay Tank Releases Containment	FREQUENCY Each Tank	Principal Gamma Emitters Principal Gamma Emitters	ANALYSIS G, p.h.a. G, p.h.a.							
	SOURCE Waste Gas Decay Tank Releases Containment	FREQUENCY Each Tank Each Purge	Principal Gamma Emitters Principal Gamma Emitters H-3	ANALYSIS G, p.h.a. G, p.h.a. L.S.							
	SOURCE Waste Gas Decay Tank Releases Containment Purge Releases	FREQUENCY Each Tank Each Purge	Principal Gamma Emitters Principal Gamma Emitters H-3 Principal Gamma Emitters	ANALYSIS G, p.h.a. G, p.h.a. L.S. (G, C, P) - p.h.a. L.S.							
	SOURCE Waste Gas Decay Tank Releases Containment	FREQUENCY Each Tank Each Purge Four per Month	Principal Gamma Emitters Principal Gamma Emitters H-3 Principal Gamma Emitters H-3	ANALYSIS G, p.h.a. G, p.h.a. L.S. (G, C, P) - p.h.a.							
	SOURCE Waste Gas Decay Tank Releases Containment Purge Releases	FREQUENCY Each Tank Each Purge Four per Month Monthly Composite	Principal Gamma Emitters Principal Gamma Emitters H-3 Principal Gamma Emitters H-3 Gross	ANALYSIS G, p.h.a. G, p.h.a. L.S. (G, C, P) - p.h.a. L.S.							

TABLE NOTATION:

- G Gaseous Grab Sample
- C Charcoal Filter Sample
- P Particulate Filter Sample
- L.S. Liquid Scintillation Counting
- C.S. Chemical Separation
- p.h.a. Gamma spectrum pulse height analysis using Lithium Germanium detectors. All peaks are identified and quantified.
- A.I.C. Air Ion Chamber

		id	138 of 220
<u>.nnual R</u> . Ba	itch Rele Liqu	METHODOLOGY SECTION ve Effluent Report (continued) eases id	
. Ba	itch Rele Liqu	<u>ve Effluent Report</u> (continued) eases id	
. Ba	itch Rele Liqu	ases	
	Liqu	id	
A.	•		
	1.		
		Number of batch releases:	
	2.	Total time period of batch releases:	minutes
	3.	Maximum time period for a batch release:	minutes
4. 5.		Average time period for a batch release:	minutes
		Minimum time period for a batch release:	minutes
	6.	Average dilution stream flow during the period (see Note 1 on Table 3.3):	GPM
	/	All liquid releases are summarized in tables	
В.	Gas	eous	
	1.	Number of batch releases:	
	2.	Total time period for batch releases:	minutes
	3.	Maximum time period for a batch release:	minutes
	4.	Average time period for batch releases:	minutes
	5.	Minimum time period for a batch release:	minutes
	All ga	seous waste releases are summarized in tables	
	B.	3. 4. 5. 6. B. Gas 1. 2. 3. 4. 5.	 3. Maximum time period for a batch release: 4. Average time period for a batch release: 5. Minimum time period for a batch release: 6. Average dilution stream flow during the period (see Note 1 on Table 3.3): All liquid releases are summarized in tables B. Gaseous 1. Number of batch releases: 2. Total time period for batch releases: 3. Maximum time period for a batch releases: 4. Average time period for batch releases:

REVIS	ON NO.:		PROC	CEDURE TITLE:	PAGE:						
28				FSITE DOSE CALCULATION MANUAL (ODCM)	139 of 220						
PROCE	PROCEDURE NO.: C-200			ST. LUCIE PLANT							
	0 20										
				METHODOLOGY SECTION							
4.0	<u>Annı</u>	Annual Radioactive Effluent Report (continued)									
	6.	Unpla	anned	nned Releases							
		Α.	Liqu	id							
			1.	Number of releases:							
			2.	Total activity releases:	Curies						
		В.	Gas	eous							
			1.	Number of releases:							
			2.	Total activity released:	Curies						
	C. See attachments (if applicable) for:										
			1.	A description of the event and equipment involv	ed.						
			2.	Cause(s) for the unplanned release.							
			3.	Actions taken to prevent a recurrence							
			4.	Consequences of the unplanned release							
	7.	to the	gene	n of dose assessment of radiation dose from radioa eral public due to their activities inside the site are i inual report.							
	8.	Offsite dose calculation manual revisions initiated during this reporting period. See Control 3.11.2.6 for required attachments to the Annual Report.									
	9.		blid waste and irradiated fuel shipments as per requirements of ontrol 3.11.2.6.								
	10.	Proce	cess Control Program (PCP) revisions as per requirements of TS 6.13.								
	11.	-		ges to Radioactive Liquid, Gaseous and Solid Wass per requirements of Control 3.11.2.5.	ste Treatment						

REVI	SION NO.:		PROCEDURE TITLE:	PAGE:							
PROC	28 CEDURE NO.	:	OFFSITE DOSE CALCULATIO	140 of 220							
	C-200		ST. LUCIE PL	ANT							
	ST. LUCIE UNIT # ANNUAL REPORT/ THROUGH/ _/										
	TA	BLE 3.	3: LIQUID EFFLUENTS - SUM	MATION O	F ALL RELE	ASES					
А.	Fissio	n and A	Activation Products	<u>UNIT</u>	QUARTER	# QUARTER #					
	1.		Release - (Not including Tritium, , Alpha)	Ci	E	E					
	2.	Averaç Period	ge Diluted Concentration During	µCi/ml	E	E					
В.	Tritiun	n									
	1.	Total F	Release	Ci	E	E					
	2.	Averag Period	ge Diluted Concentration During	μCi/ml	E	E					
C.	Dissol	ved an	d Entrained Gases								
	1.	Total F	Release	Ci	E	E					
	2.	Avera Period	ge Diluted Concentration During	µCi/ml	E	E					
D.	Gross	Alpha	Radioactivity								
	1.	Total F	Release	Ci	E	E					
E.		e of W to Dilut	aste Released ion)	LITERS	E	E					
F.			lution Water Period ¹	LITERS	E	E					
1 -	during r	elease	ported should be for the entire in intervals. This volume should al flow during the period.			-					

REVISION NO.: PROCEDURE TITLE: PAGE:											
28	OFFSIT	E DOSE	(ODCM)								
PROCEDURE NO .:				· /	141 of 220						
C-200			ST. LUCIE P								
	METHODOLOGY SECTION										
FLORIDA POWER & LIGHT COMPANY											
ST. LUCIE UNIT #											
ANNUAL REPORT/ THROUGH//											
TA	TABLE 3.4: LIQUID EFFLUENTS (EXAMPLE FORMAT)										
		LINUT	CONTINUC	DUS MODE	BATC	HMODE					
NUCLIDES RELE	ASED"	UNIT	QUARTER #	QUARTER #	QUARTER #	# QUARTER #					
-131		CI	E	E	E	E					
I-133		CI	E	E	E	E					
I-135		CI	E	E	E	E					
NA-24		CI	E	E	E	E					
CR-51		CI	E	E	E	E					
MN-54	MN-54			E	E	E					
CO-57	CO-57			E	E	E					
CO-58	CO-58			E	E	E					
FE-59		CI	E	E	E	E					
CO-60		CI	E	E	E	E					
ZN-65		CI	E	E	E	E					
NI-65		CI	E	E	E	E					
AG-110		CI	E	E	E	E					
SN-113		CI	E	E	E	E					
SB-122		CI	E	E	E	E					
SB-124		CI	E	E	E	E					
W-187		CI	E	E	E	E					
NP-239		CI	E	E	E	E					
ZR-95		CI	E	E	E	E					
MO-99		Cl	E	E	Ε	E					
RU-103		CI	E	E	E	E					
CS-134		CI	E	E	E	E					
CS-136		CI	E	E	E	E					
CS-137		CI	E	E	E	E					
BA-140		CI	E	E	E	E					
CE-141		CI	E	E	E	E					
BR-82		CI	E	E	E	E					
ZR-97		CI	E	E	E	E					
SB-125		CI	E	E	E	E					

.

* All nuclides that were detected should be added to the partial list of the example format.

VISION NO.:	PROCEDUF	RE TITLE:	PAGE:				
28	OFFSI	SITE DOSE CALCULATION MANUAL (ODCM) 142 of 220					
OCEDURE NO.:							
C-200			ST. LUCIE P	LANT			
		METH	ODOLOGY S	ECTION			
TA	BLE 3.4:	LIQUID	EFFLUENTS (continued)		FORMAT)		
			CONTINUC	DUS MODE	BATC	H MODE	
NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	# QUARTER #	
CE-144		CI	E	E	E	E	
SR-89		CI	E	E	E	E	
SR-90		CI	E	E	E	E	
UNIDENTIFIE	ED	CI	E	E	E	E	
TOTAL FOR PE (ABOVE)	TOTAL FOR PERIOD (ABOVE)		E	E	E	E	
			CONTINUC	DUS MODE	BATC	HMODE	
NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	UUARTER #	
AR-41		CI	E	E	E	E	
KR-85		CI	E	E	E	E	
XE-131M		CI	E	E	E	E	
XE-133		CI	E	E	E	E	
XE-133M		CI	E	E	E	E	
		CI	E	E	E	E	

REVISION NO .:		PROCEDUF	RE TITLE:		PAGE:
28		OFFSI	143 of 220		
PROCEDURE NO.:					143 01 220
C-200		IE PLANT			
			METHODOLO	GY SECTION	
		FL	ORIDA POWER &	LIGHT COMPANY	
			ST. LUCIE U	NIT #	
	ΤА	BLE 3.5:	LIQUID EFFLUE	NTS - DOSE SUMMATION	
	Age	e Group:	Lo	ocation:	
Exposu	ure li	nterval:	From	Through	
Fis	sh &	Shellfish	Pathway to Organ	CALENDAR YEAR DOSE (m	nrem)
		BC	DNE		
		LIV	/ER		
		THY	ROID		
		KIE	NEY		
		LL	ING		
		GI	-LLI		
		WHOL	E BODY		

REVISION NO .:			PROCEDURE TITLE:	PAGE:		
PROC	28 EDURE N		OFFSITE DOSE CALCU	LATION MANUAL	(ODCM)	144 of 220
	C-20	00	ST. LUC	IE PLANT		
			METHODOLOG	GY SECTION		
			FLORIDA POWER &	LIGHT COMPAN	Y	
			ST. LUCIE UI	NIT #		
		ANNU	UAL REPORT//	THROUGH	/	<u>/</u>
	-	TABLE 3	.6: GASEOUS EFFLUENT	S - SUMMATION	OF ALL R	ELEASES
	Fiee	ion and (Activation Gases	<u>UNIT</u> <u>C</u>	UARTER	# QUARTER#
Α.	F155					
	1.	Total F	Release	Ci	E	E
	2.	Avera	ge Release Rate For Period	μCi/SEC	E	E
В.	lodir	nes				
	1.	Total I	odine-131	Ci	E	E
	2.	Avera	ge Release Rate for Period	μCi/SEC	E	E
C.	Part	iculates				
	1.	Particu	ulates T-1/2 > 8 Days	Ci	E	E
	2.	Avera	ge Release Rate for Period	μCi/SEC	E	E
	3.	Gross	Alpha Radioactivity	Ci	E	EE
D.	Tritiu	um				
	1.	Total F	Release	Ci	E	E
	2.	Avera	ge Release Rate for Period	μCi/SEC	E	E

REVIS	SION NO.:	PROCEDUR	E TITLE:		· · · · · · · · ·	P/	AGE:					
	28	OFFSIT	E DOSE	CALCULATI	ON MANUAL		445 6000					
PROC	EDURE NO.:						145 of 220					
	C-200			ST. LUCIE PI	LANT							
		I				I						
			METHO	DOLOGY S	ECTION							
		FLC	RIDA PO	OWER & LIGH	HT COMPAN	Y						
			ST. L	UCIE UNIT #	<u> </u>							
	ANNU	JAL REP	ORT		THROUGH	//						
	TABLE 3	.7: GASE	OUS EF	FLUENTS - G		VEL RELEAS	SES					
			(EX	AMPLE FOR	MAT)							
	NUCLIDES RELEASED* UNIT CONTINUOUS MODE BATCH MODE											
	NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #					
1.	Fission Gases											
	AR-41		CI	E	E	Е	E					
	KR-85		CI	E	E	E	E					
	KR-85M		CI	E	E	Е	E					
	KR-87		CI	E	E	Е	E					
	KR-88		CI	E	E	Е	E					
	XE-131M		CI	E	E	E	E					
	XE-133		CI	E	E	E	E					
	XE-133M		CI	E	E	Е	E					
	XE-135		CI	E	E	E	E					
	XE-135M		CI	E	E	Е	E					
	XE-138		CI	E	E	E	E					
	UNIDENTIFIE	ED	CI	E	E	E	E					
	TOTAL FOR PE (ABOVE)	RIOD	CI	E	E	Е	Е					
2.	lodines											
	I-131		Cl	E	E	E	E					
	I-133		CI	E	E	E	E					
	I-135		CI	E	E	E	E					
	TOTAL FOR PE (ABOVE)	RIOD	CI	E	E	E	Е					
3.	Particulates											
	CO-58		CI	E	E	E	E					
	SR-89		CI	Е	Е	E	Е					
	SR-90		Cl	Е	E	Е	E					

* All nuclides that were detected should be added to the partial list of the example format.

REVISION NO .:	PROCEDURE TI	TLE:							PAGE:
28		0	FFSITE DO	SE CALCULA		AL (ODCM)			140 - 5000
PROCEDURE NO .:									146 of 220
C-200				ST. LUCIE	PLANT				
			MET	HODOLOG	SECTION	- 1 / August			
				POWER & L					
	TABI	_E 3.8: GASE	EOUS EFFLU	JENTS - DOS	SE SUMMAT	ION - CALEN			
A	GE GROUF	P: <u>INFANT</u>	EXPOSUR	E INTERVAL	: FROM	THF	ROUGH	,	
PATH	HWAY	BONE (mrem)	LIVER (mrem)	THYROID (mrem)	KIDNEY (mrem)	LUNG (mrem)	GI-LLI (mrem)	WHOLE (mre	
Ground Plan		<i>/</i>							
	Milk (B)								
Inhalation	(A)								
TOTAL									
A) SECT	OR:	RANGE:	miles	(B) CO	W/GOAT	SECTOR:	RAN	GE:	miles
		NOBLE GAS	SES	CALEND	AR YEAR (m	urad)			
		Gamma Air [/				
		Beta Air Do	se						
	Sector:			Range:			0.97 mile	s	
]	
		ues above we with MET dat			l meteorologi		ng the specifi	ed	
			<u> </u>						

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	1.47 - 5.000
PROCEDURE NO .:		147 of 220
C-200	ST. LUCIE PLANT	
C-200	ST. LUCIE PLANT	
	APPENDIX A	
	ECL, DOSE FACTOR	
	AND	
	HISTORICAL METEOROLOGICAL TABLES	
	HISTORICAL METEOROLOGICAL TABLES	
1		

VISION NO.:	PROCEDURE	TITLE:			PAGE:									
28		DOSE CALC	ULATION MAN	JAL (ODCM)	148 of 220									
OCEDURE NO.:					140 01 220									
C-200		ST. LL	JCIE PLANT											
EFFLUEN			LE L-1 S IN WATER IN I	UNRESTRICT	<u>ED AREAS</u>									
Effluent	<u>NOTE</u> If a nuclide is not listed below, refer to 10 CFR Part 20, Appendix B, Table 2 Effluent Concentrations Column 2 and use the most conservative ECL listed for the nuclide.													
Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml									
H-3	1 E-3	Sr-92	4 E-5	Te-129	4 E-4									
C-14	3 E-5	Y-90	7 E-6	Te-131m	8 E-6									
Na-24	5 E-5	Y-91m	2 E-3	Te-131	8 E-5									
P-32	9 E-6	Y-91	8 E-6	Te-132	9 E-6									
Cr-51	5 E-4	Y-92	4 E-5	I-130	2 E-5									
Mn-54	3 E-5	Y-93	2 E-5	I-131	1 E-6									
Mn-56	7 E-5	Zr-95	2 E-5	I-132	1 E-4									
Fe-55	1 E-4	Zr-97	9 E-6	I-133	7 E-6									
Fe-59	1 E-5	Nb-95	3 E-5	I-134	4 E-4									
Co-57	6 E-5	Nb-97	3 E-4	I-135	3 E-5									
Co-58	2 E-5	Mo-99	2 E-5	Cs-134	9 E-7									
Co-60	3 E-6	Tc-99m	1 E-3	Cs-136	6 E-6									
Ni-63	1 E-4	Tc-101	2 E-3	Cs-137	1 E-6									
Ni-65	1 E-4	Ru-103	3 E-5	Cs-138	4 E-4									
Cu-64	2 E-4	Ru-105	7 E-5	Ba-139	2 E-4									
Zn-65	5 E-6	Ru-106	3 E-6	Ba-140	8 E-6									
Zn-69	8 E-4	Ag-110	6 E-6	Ba-141	3 E-4									
Br-82	4 E-5	Sn-113	3 E-5	Ba-142	7 E-4									
Br-83	9 E-4	In-113m	7 E-4	La-140	9 E-6									
Br-84	4 E-4	Sb-122	1 E-5	La-142	1 E-4									
Rb-86	7 E-6	Sb-124	7 E-6	Ce-141	3 E-5									
Rb-88	4 E-4	Sb-125	3 E-5	Ce-143	2 E-5									
Rb-89	9 E-4	Te-125m	2 E-5	Ce-144	3 E-6									
Sr-89	8 E-6	Te-127m	9 E-6	Pr-144	6 E-4									
Sr-90	5 E-7	Te-127	1 E-4	W-187	3 E-5									
Sr-91		Te-129m	7 E-6	Np-239	2 E-5									

EVISION NO .:	PROCEDURE TITLE:						PAGE:
28	_	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		149 of 22
ROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
			TABI	LE L-2			
	ENVIRONMEN	TAL PATHWA	-DOSE CONVE	RSION FACTOR	RS FOR LIQUID	DISCHARGES	
	PATHWA	Y - SALT WAT	ER FISH AND	SHELLFISH	AGE GROUP	- ADULT	
		ORGAN E	OSE FACTOR	(MREM/HR PE	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3				3.60E-01	3.60E-01	3.60E-01	3.60E-01
		3.60E-01	3.60E-01				
<u>C-14</u>	1.45E+04	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03
NA-24	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01
P-32	1.67E+07	1.05E+06	0.	0.	0.	1.88E+06	6.47E+05
CR-51	0.	0.	3.34E+00	1.23E+00	7.42E+00	1.41E+03	5.59E+00
MN-54	0.	7.07E+03	0.	2.10E+03	0.	2.17E+04	1.35E+03
MN-56	0.	1.78E+02	0.	2.26E+02	0.	5.68E+03	3.17E+01
FE-55	1.15E+05	5.19E+05	0.	0.	6.01E+05	2.03E+05	1.36E+05
FE-59	8.08E+04	1.92E+05	0.	0.	5.32E+04	6.33E+05	7.29E+04
CO-57	0.	1.42E+02	0.	0.	0.	3.60E+03	2.36E+02
CO-58	0.	6.05E+02	0.	0.	0.	1.22E+04	1.35E+03
CO-60	0.	1.74E+03	0.	0.	0.	3.26E+04	3.83E+03
Ni-63	4.97E+04	3.45E+03	0.	0.	0.	7.19E+02	1.67E+03
NI-65	2.02E+02	2.63E+01	0.	0.	0.	6.65E+02	1.20E+01
CU-64	0.	2.15E+02	0.	5.41E+02	0.	1.83E+04	1.01E+02
ZN-65	1.62E+05	5.13E+05	0.	3.43E+05	0.	3.23E+05	2.32E+05
ZN-69	3.43E+02	6.60E+02	0.	4.27E+02	0.	9.87E+01	4.57E+01

REVISION NO .:	PROCEDURE TITLE	· · · · · · · · · · · · · · · · · · ·					PAGE:
28		OFFSI	TE DOSE CALC	ULATION MAN	JAL (ODCM)		150 of 220
ROCEDURE NO .:							150 01 220
C-200			ST. LU	JCIE PLANT			
			TAB	LE L-2			
					RS FOR LIQUI	D DISCHARGES	
	PATHW		ER FISH AND		AGE GROU	P - ADULT	
		ORGAN [DOSE FACTOR	(MREM/HR P	'ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
BR-82	0.	0.	0.	0.	0.	4.68E+00	4.08E+00
BR-83	0.	0.	0.	0.	0.	1.05E-01	7.26E-02
BR-84	0.	0.	0.	0.	0.	7.38E-07	9.42E-02
BR-85	0.	0.	0.	0.	0.	0.	3.86E-03
RB-86	0.	6.25E+02	0.	0.	0.	1.23E+02	2.91E+02
RB-88	0.	1.79E+00	0.	0.	0.	0.	9.50E-01
RB-89	0.	1.19E+00	0.	0.	0.	0.	8.38E-01
SR-89	5.01E+03	0.	0.	0.	0.	8.01E+02	1.44E+02
SR-90	1.23E+05	0.	0.	0.	0.	1.65E+03	3.02E+04
SR-91	9.43E+01	0.	0.	0.	0.	4.75E+02	4.15E+00
SR-92	3.50E+01	0.	0.	0.	0.	6.91E+02	1.51E+00
Y-90	6.07E+00	0.	0.	0.	0.	6.43E+04	1.63E-01
Y-91M	5.74E-02	0.	0.	0.	0.	1.68E-01	2.23E-03
Y-91	8.89E+01	0.	0.	0.	0.	4.89E+04	2.38E+00
Y-92	5.34E-01	0.	0.	0.	0.	9.33E+03	1.56E-02

REVISION NO .:	PROCEDURE TITLE	:					PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		454 -6000
ROCEDURE NO .:					. ,		151 of 220
C-200			ST. LU	ICIE PLANT			
	•		TAR	LE L-2			
	ENVIRONMEN				RS FOR LIQUID	DISCHARGES	
		AY - SALT WAT			AGE GROUP		-
		ORGAN E	OOSE FACTOR	(MREM/HR P	ER μCi/ML)		
				,	, ,		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
Y-93	1.69E+00	0.	0.	0.	0.	5.36E+04	4.67E-02
ZR-95	1.60E+01	5.13E+00	0.	8.09E+00	0.	1.59E+04	3.47E+00
ZR-97	8.82E-01	1.78E-01	0.	2.69E-01	0.	5.51E+04	8.19E-02
NB-95	4.48E+02	2.49E+02	0.	2.47E+02	0.	1.51E+06	9.79E+01
NB-97	3.76E+00	9.50E-01	0.	1.11E+00	0.	3.51E+03	3.47E-01
MO-99	0.	1.28E+02	0.	2.90E+02	0.	2.97E+02	2.43E+01
TC-99M	1.30E-02	3.67E-02	0.	5.57E-01	1.80E-02	2.17E+01	4.67E-01
TC-101	1.33E-02	1.93E-02	0.	3.47E-01	9.82E-03	0.	1.89E-01
RU-103	1.07E+02	0.	0.	4.09E+02	0.	1.25E+04	4.61E+01
RU-105	8.90E+00	0.	0.	1.15E+02	0.	5.44E+03	3.51E+00
RU-106	1.59E+03	0.	0.	3.08E+03	0.	1.03E+05	2.01E+02
AG-110	1.57E+03	1.45E+03	0.	2.85E+03	0.	5.92E+05	8.62E+02
SB-124	2.78E+02	5.23E+00	6.71E-01	0.	2.15E+02	7.85E+03	1.10E+02
SB-125	2.20E+02	2.37E+00	1.96E-01	0.	2.30E+04	1.95E+03	4.42E+01
TE-125M	2.17E+02	7.89E+01	6.54E+01	8.83E+02	0.	8.67E+02	2.91E+01

EVISION NO .:	PROCEDURE TITLE	•			· · · · · · · · · · · ·		PAGE:				
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		450 (00)				
ROCEDURE NO.:					, , ,		152 of 220				
C-200			ST. LU	ICIE PLANT							
	· · · · · · · · · · · · · · · · · · ·			LE L-2	······································						
	ENVIRONMEN				RS FOR LIQUID	DISCHARGES	i				
	ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGE PATHWAY - SALT WATER FISH AND SHELLFISH AGE GROUP - ADULT										
		ORGAN E	OOSE FACTOR	(MREM/HR P	ER μCi/ML)						
				,	. ,						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
TE-127M	5.50E+02	1.92E+02	1.40E+02	2.23E+03	0.	1.84E+03	6.70E+01				
TE-127	8.92E+00	3.20E+00	6.61E+00	3.63E+01	0.	7.04E+02	1.93E+00				
TE-129M	9.32E+02	3.49E+02	3.20E+02	3.89E+03	0.	4.69E+03	1.48E+02				
TE-129	2.55E+00	9.65E-01	1.95E+00	1.07E+01	0.	1.92E+00	6.21E-01				
TE-131M	1.41E+02	6.87E+01	1.09E+02	6.95E+02	0.	6.81E+03	5.72E+01				
TE-131	1.60E+00	6.68E-01	1.31E+00	7.00E+00	0.	2.39E-01	5.04E-01				
TE-132	2.05E+03	1.33E+02	1.46E+02	1.28E+03	0.	6.25E+03	1.24E+02				
I-130	3.98E+01	1.18E+02	1.50E+04	1.83E+02	0.	1.01E+02	4.63E+01				
I-131	2.18E+02	3.13E+02	1.02E+05	5.36E+02	0.	8.24E+01	1.79E+02				
I-132	1.07E+01	2.85E+01	3.76E+03	4.55E+01	0.	5.36E+00	1.01E+01				
I-133	7.51E+01	1.30E+02	2.51E+04	2.27E+02	0.	1.15E+02	3.98E+01				
I-134	5.57E+00	1.51E+01	1.96E+03	2.41E+01	0.	1.32E-02	5.41E+00				
I-135	2.33E+01	6.14E+01	8.03E+03	9.77E+01	0.	6.88E+01	2.25E+01				
CS-134	6.85E+03	1.63E+04	0.	5.29E+03	1.75E+03	2.85E+02	1.33E+04				
CS-136	7.17E+02	2.83E+03	0.	1.58E+03	2.16E+02	3.22E+02	2.04E+03				

REVISION NO .:	PROCEDURE TITLE	:					PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		153 of 220
PROCEDURE NO .:							155 01 220
C-200			ST. LU	JCIE PLANT			
			TAB	LE L-2			
	ENVIRONMEN	NTAL PATHWA		ERSION FACTO	RS FOR LIQUID	DISCHARGES	i
	PATHW	AY - SALT WAT	ER FISH AND	SHELLFISH	AGE GROUP	- ADULT	•
		ORGAN [DOSE FACTOR	(MREM/HR P	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
CS-137	8.79E+03	1.20E+04	0.	4.09E+03	1.36E+03	2.31E+02	7.88E+03
CS-138	6.08E+00	1.20E+01	0.	8.84E+00	8.73E-01	5.12E-05	5.96E+00
BA-139	7.87E+00	5.61E-03	0.	5.24E-03	3.18E-03	1.39E+01	2.30E-01
BA-140	1.65E+03	2.07E+00	0.	7.04E-01	1.18E+00	3.39E+03	1.09E+02
BA-141	0.	2.89E-03	0.	2.68E-03	1.64E-03	1.80E-09	1.29E-01
BA-142	1.73E+00	1.78E-03	0.	1.50E-03	1.01E-03	0.	1.09E-01
LA-140	1.58E+00	7.95E-01	0.	0.	0.	5.83E+04	2.11E-01
LA-142	8.07E-02	3.67E-02	0.	0.	0.	2.68E+02	9.15E-03
CE-141	3.43E+00	2.32E+00	0.	1.08E+00	0.	8.87E+03	2.63E-01
CE-143	6.05E-01	4.47E+02	0.	1.97E-01	0.	1.67E+04	4.95E-02
CE-144	1.79E+02	7.48E+01	0.	4.43E+01	0.	6.05E+04	9.60E+00
PR-144	1.91E-02	7.88E-03	0.	4.45E-03	0.	2.73E-09	9.65E-04
W-187	9.17E+00	7.68E+00	0.	0.	0.	2.51E+03	2.69E+00
NP-239	3.56E-02	3.50E-03	0.	1.08E-02	0.	7.12E+02	1.92E-03

ISION NO.:	PROCEDURE TITLE	:					PAGE:
28 CEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		154 of 22
C-200			ST. LU	CIE PLANT			
			TABI	_E L-3			
	ENVIRONMEN	TAL PATHWA	-DOSE CONVE	RSION FACTO	RS FOR LIQUID	DISCHARGES	6
		- SALT WATER			AGE GROUP - 1		•
		ORGAN D	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.17E-01	2.17E-01	2.74E-01	2.17E-01	2.17E-01	2.17E-01
C-14	2.94E+03	2.94E+03	2.94E+03	2.22E+03	2.94E+03	2.94E+03	2.94E+03
NA24	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01
P32	1.27E+07	7.98E+05	0.	0.	0.	1.43E+06	4.93E+05
CR51	0.	0.	2.54E+00	9.38E-01	5.64E+00	1.07E+03	4.25E+00
MN54	0.	5.38E+03	0.	1.60E+03	0.	1.65E+04	1.03E+03
MN56	0.	1.36E+02	0.	1.72E+02	0.	4.32E+03	2.42E+01
FE55	8.78E+04	3.95E+05	0.	0.	4.57E+05	1.54E+05	1.04E+05
FE59	6.14E+04	1.46E+05	0.	0.	4.05E+04	4.81E+05	5.55E+04
CO57	0.	1.08E+02	0.	0.	0.	2.74E+03	1.79E+02
CO58	0.	6.12E+02	0.	0.	0.	8.26E+03	1.39E+03
CO60	0.	1.70E+03	0.	0.	0.	2.04E+04	3.88E+03
Ni-63	3.78E+04	2.63E+03	0.	0.	0.	5.47E+02	1.27E+03
NI65	1.54E+02	2.00E+01	0.	0.	0.	5.07E+02	9.11E+00
CU64	0.	1.64E+02	0.	4.12E+02	0.	1.39E+04	7.69E+01
ZN65	1.23E+05	3.90E+05	0.	2.61E+05	0.	2.46E+05	1.77E+05
ZN69	2.61E+02	5.02E+02	0.	3.24E+02	0.	7.50E+01	3.47E+01
BR82	0.	0.	0.	0.	0.	3.55E+00	3.10E+00
BR83	0.	0.	0.	0.	0.	7.95E-02	5.52E-02
BR84	0.	0.	0.	0.	0.	5.61E-07	7.16E-02
BR85	0.	0.	0.	0.	0.	0.	2.94E-03

REVISION NO.:	PROCEDURE TITLE	;					PAGE:				
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		155 of 220				
ROCEDURE NO.:											
C-200			ST. LU	JCIE PLANT							
				LE L-3							
	ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGES										
	PATHWAY	- SALT WATE			AGE GROUP -	TEENAGER					
		ORGAN E	DOSE FACTOR	(MREM/HR P	ER μCi/ML)						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
RB86	0.	4.76E+02	0.	0.	0.	9.37E+01	2.22E+02				
RB88	0.	1.37E+00	0.	0.	0.	0.	7.23E-01				
RB89	0.	9.04E-01	0.	0.	0.	0.	6.38E-01				
SR89	5.67E+03	0.	0.	0.	0.	6.15E+02	1.63E+02				
SR90	1.28E+05	0.	0.	0.	0.	2.71E+03	3.17E+04				
SR91	7.18E+01	0.	0.	0.	0.	3.61E+02	3.16E+00				
SR92	2.66E+01	0.	0.	0.	0.	5.25E+02	1.15E+00				
Y90	1.58E+01	0.	0.	0.	1.80E+04	5.23E+04	4.25E-01				
Y91M	4.36E-02	0.	0.	0.	0.	1.28E-01	1.69E-03				
Y91	9.40E+01	0.	0.	0.	0.	3.61E+04	2.51E+00				
Y92	4.06E-01	0.	0.	0.	0.	7.10E+03	1.18E-02				
Y93	1.29E+00	0.	0.	0.	0.	4.08E+04	3.55E-02				
ZR95	1.49E+01	4.96E+00	0.	6.16E+00	0.	1.07E+04	3.46E+00				
ZR97	6.72E-01	1.36E-01	0.	2.05E-01	0.	4.20E+04	6.24E-02				
NB95	3.97E+02	2.39E+02	0.	1.88E+02	0.	9.76E+05	1.35E+02				
NB97	2.87E+00	7.24E-01	0.	8.45E-01	0.	2.67E+03	2.64E-01				
MO99	0.	9.74E+01	0.	2.21E+02	0.	2.26E+02	1.85+01				
TC-99M	9.87E-03	2.79E-02	0.	4.24E-01	1.37E-02	1.65E+01	3.56E-01				
TC-101	1.02E-02	1.47E-02	0.	2.64E-01	7.47E-03	0.	1.44E-01				

REVISION NO .:	PROCEDURE TITLE	:					PAGE:		
		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		156 of 220		
C-200		ST. LUCIE PLANT							
			TAB	LE L-3					
	ENVIRONMEN	TAL PATHWA	-DOSE CONVE	RSION FACTO	<u>RS FOR LIQUID</u>	DISCHARGES			
	PATHWAY	- SALT WATE			AGE GROUP -	TEENAGER	_		
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY		
RU-103	1.04E+02	0.	0.	3.11E+02	0.	8.13E+03	4.66E+01		
RU-105	6.77E+00	0.	0.	8.74E+01	0.	4.14E+03	2.67E+00		
RU-106	1.76E+03	0.	0.	2.34E+03	0.	7.95E+04	2.21E+02		
AG110	1.19E+03	1.10E+03	0.	2.17E+03	0.	4.51E+05	6.56E+02		
SB-124	2.11E+02	3.99E+00	5.11E-01	0.	1.64E+02	5.98E+03	8.35E+01		
SB-125	1.68E+02	1.81E+00	1.49E-01	0.	1.75E+04	1.48E+03	3.37E+01		
TE 125M	2.36E+02	8.45E+01	6.66E+01	6.72E+02	0.	6.60E+02	3.13E+01		
TE 127M	4.18E+02	1.46E+02	1.07E+02	1.70E+03	0.	1.40E+03	5.09E+01		
TE-127	9.31E+00	3.28E+00	6.35E+00	2.76E+01	0.	7.52E+02	1.99E+00		
TE 129M	1.02E+03	3.79E+02	3.27E+02	2.96E+03	0.	3.58E+03	1.61E+02		
TE-129	1.94E+00	7.34E-01	1.49E+00	8.14E+00	0.	1.46E+00	4.72E-01		
TE 131M	1.07E+02	5.22E+01	8.26E+01	5.29E+02	0.	5.18E+03	4.35E+01		
TE-131	1.21E+00	5.08E-01	9.99E-01	5.33E+00	0.	1.82E-01	3.83E-01		
TE-132	2.19E+02	1.37E+02	1.46E+02	9.74E+02	0.	4.93E+03	1.30E+02		
I130	3.03E+01	8.95E+01	1.14E+04	1.39E+02	0.	7.67E+01	3.52E+01		
I131	2.23E+02	3.14E+02	9.07E+04	4.08E+02	0.	5.95E+01	1.87E+02		
I132	8.11E+00	2.17E+01	2.86E+03	3.46E+01	0.	4.08E+00	7.71E+00		
I133	8.11E+01	1.37E+02	2.50E+04	1.73E+02	0.	9.99E+01	4.24E+01		
I134	4.24E+00	1.15E+01	1.49E+03	1.83E+01	0.	1.00E-02	4.12E+00		

ISION NO.:	PROCEDURE TITLE						PAGE:
28 CEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		157 of 22
C-200			ST. LU	JCIE PLANT			
	ENVIRONMEN	ITAL PATHWA		LE L-3 ERSION FACTO	RS FOR LIQUID		• • • • • • • • • • • • • • • • • • •
	PATHWAY	- SALT WATE ORGAN [R FISH AND SH DOSE FACTOR		AGE GROUP - ΞR μCi/ML)	TEENAGER	-
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	1.77E+01	4.68E+01	6.11E+03	7.43E+01	0.	5.23E+01	1.71E+01
CS-134	6.75E+03	1.63E+04	0.	4.03E+03	1.97E+03	1.88E+02	7.60E+03
CS-136	5.46E+02	2.16E+03	0.	1.20E+03	1.65E+02	2.45E+02	1.55E+03
CS-137	8.98E+03	1.21E+04	0.	3.11E+03	1.60E+03	1.61E+02	4.24E+03
CS-138	4.63E+00	9.15E+00	0.	6.73E+00	6.65E-01	3.90E-05	4.54E+00
BA-139	5.99E+00	4.27E-03	0.	3.99E-03	2.42E-03	1.06E+01	1.75E-01
BA-140	1.75E+03	2.15E+00	0.	5.35E-01	1.44E+00	2.55E+02	1.12E+02
BA-141	0.	2.20E-03	0.	2.04E-03	1.25E-03	1.37E-09	9.80E-02
BA-142	1.31E+00	1.35E-03	0.	1.14E-03	7.64E-04	0.	8.26E-02
LA-140	1.67E+00	8.25E-01	0.	0.	0.	4.55E+04	2.18E-01
LA-142	6.14E-02	2.79E-02	0.	0.	0.	2.04E+02	6.95E-03
CE-141	3.51E+00	2.36E+00	0.	8.19E-01	0.	6.38E+03	2.70E-01
CE-143	4.60E-01	3.40E+02	0.	1.50E-01	0.	1.27E+04	3.76E-02
CE-144	2.01E+02	8.25E+01	0.	3.37E+01	0.	4.74E+04	1.07E+01
PR-144	1.45E-02	5.99E-03	0.	3.39E-03	0.	2.08E-09	7.34E-04
W187	6.98E+00	5.85E+00	0.	0.	0.	1.91E+03	2.05E+00
NP-239	2.71E-02	2.67E-03	0.	8.25E-03	0.	5.43E+02	1.46E-03

ISION NO.:	PROCEDURE TITLE	:					PAGE:
28	_	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		158 of 22
CEDURE NO .:							
C-200			ST. LU	ICIE PLANT			
			TABI	LE L-4			
				RSION FACTO	<u>RS FOR LIQUID</u>	DISCHARGES	<u>b</u>
	PATHW	AY - SALT WA			AGE GROUP	- CHILD	
		ORGAN E	OSE FACTOR	(MREM/HR PE	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.81E-01	1.81E-01	1.19E-01	1.81E-01	1.81E-01	1.81E-01
C-14	3.82E+03	3.82E+03	3.82E+03	9.61E+02	3.82E+03	3.82E+03	3.82E+03
NA24	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01
P32	5.53E+06	3.47E+05	0.	0.	0.	6.22E+05	2.14E+05
CR51	0.	0.	1.12E+00	4.13E-01	2.48E+00	4.70E+02	1.87E+00
MN54	0.	2.34E+03	0.	6.95E+02	0.	7.15E+03	4.46E+02
MN56	0.	5.88E+01	0.	7.46E+01	0.	1.88E+03	1.05E+01
FE55	3.87E+04	1.74E+05	0.	0.	2.02E+05	6.81E+04	4.58E+04
FE59	2.71E+04	6.43E+04	0.	0.	1.79E+04	2.12E+05	2.45E+04
CO57	0.	4.78E+01	0.	0.	0.	1.21E+03	7.94E+01
CO58	0.	5.05E+02	0.	0.	0.	3.00E+03	1.52E+03
CO60	0.	1.41E+03	0.	0.	0.	7.80E+03	4.23E+03
Ni-63	1.66E+04	1.15E+03	0.	0.	0.	2.39E+02	5.55E+02
NI65	6.73E+01	8.74E+00	0 .	0.	0.	2.22E+02	3.98E+00
CU64	0.	7.15E+01	0.	1.80E+02	0.	6.09E+03	3.36E+01
ZN65	5.47E+04	1.74E+05	0.	1.16E+05	0.	1.09E+05	7.86E+04
ZN69	1.16E+02	2.23E+02	0.	1.44E+02	0.	3.34E+01	1.55E+01
BR82	0.	0.	0.	0.	0.	1.59E+00	1.39E+00
BR83	0.	0.	0.	0.	0.	3.55E-02	2.47E-02
BR84	0.	0.	0.	0.	0.	2.51E-07	3.20E-02
BR85	0.	0.	0.	0.	0.	0.	1.31E-03

REVISION NO .:	PROCEDURE TITLE						PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		159 of 22
ROCEDURE NO.:							
C-200			ST. LU	JCIE PLANT			
				LE L-4			
				ERSION FACTO			
	PATHW	AY - SALT WA				P - CHILD	
		URGAN L	DOSE FACTOR	(MREM/HR PI	ER µCI/IVIL)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RB86	0.	2.08E+02	0.	0.	0.	4.09E+01	9.68E+01
RB88	0.	5.96E-01	0.	0.	0.	0.	3.16E-01
RB89	0.	3.95E-01	0.	0.	0.	0.	2.78E-01
SR89	7.53E+03	0.	0.	0.	0.	2.81E+02	2.16E+02
SR90	9.39E+04	0.	0.	0.	0.	1.25E+03	2.38E+04
SR91	3.18E+01	0.	0.	0.	0.	1.60E+02	1.40E+00
SR92	1.18E+01	0.	0.	0.	0.	2.33E+02	5.08E-01
Y90	9.00E+00	0.	0.	0.	0.	2.57E+04	2.42E-01
Y91M	1.95E-02	0.	0.	0.	0.	5.71E-02	7.55E-04
Y91	1.25E+02	0.	0.	0.	0.	1.66E+04	3.34E+00
Y92	1.81E-01	0.	0.	0.	0.	3.16E+03	5.28E-03
Y93	5.73E-01	0.	0.	0.	0.	1.82E+04	1.58E-02
ZR95	1.80E+01	4.19E+00	0.	2.67E+00	0.	4.33E+03	3.81E+00
ZR97	2.91E-01	5.87E-02	0.	8.86E-02	0.	1.82E+04	2.70E-02
NB95	4.61E+02	1.97E+02	0.	8.11E+01	0.	3.41E+05	1.45E+02
NB97	1.24E+00	3.12E-01	0.	3.64E-01	0.	1.15E+03	1.14E-01
MO99	0.	4.23E+01	0.	9.59E+01	0.	9.81E+01	8.05E+00
TC-99M	4.34E-03	1.23E-02	0.	1.86E-01	6.01E-03	7.26E+00	1.57E-01
TC-101	4.47E-03	6.45E-03	0.	1.16E-01	3.29E-03	0.	6.33E-02

REVISION NO .:	PROCEDURE TITLE	:					PAGE:
28 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		160 of 220
C-200			ST. LU	ICIE PLANT			
	· · · · · · · · · · · · · · · · · · ·	AY - SALT WA	-DOSE CONVE		AGE GROUF		<u>.</u>
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RU-103	1.33E+02	0.	0.	1.39E+02	0.	3.50E+03	5.38E+01
RU-105	3.03E+00	0.	0.	3.91E+01	0.	1.85E+03	1.19E+00
RU-106	2.34E+03	0.	0.	1.05E+03	0.	3.63E+04	2.91E+02
AG110	5.18E+02	4.80E+02	0.	9.43E+02	0.	1.96E+05	2.85E+02
SB-124	9.13E+01	1.72E+00	2.21E-01	0.	7.08E+01	2.58E+03	3.61E+01
SB-125	7.24E+01	7.80E-01	6.43E-02	0.	7.57E+03	6.40E+02	1.46E+01
TE 125M	3.11E+02	8.43E+01	8.73E+01	2.97E+02	0.	3.00E+02	4.15E+01
TE 127M	1.85E+02	6.47E+01	4.72E+01	7.50E+02	0.	6.19E+02	2.25E+01
TE-127	1.23E+01	3.27E+00	8.46E+00	1.22E+01	0.	5.24E+02	2.63E+00
TE129M	1.35E+03	3.77E+02	4.31E+02	1.31E+03	0.	1.63E+03	2.09E+02
TE-129	8.59E-01	3.25E-01	6.58E-01	3.60E+00	0.	6.47E-01	2.09E-01
TE131M	4.75E+01	2.31E+01	3.66E+01	2.34E+02	0.	2.29E+03	1.93E+01
TE-131	5.38E-01	2.25E-01	4.42E-01	2.36E+00	0.	8.05E-02	1.70E-01
TE-132	2.78E+02	1.23E+02	1.81E+02	4.31E+02	0.	2.15E+03	1.48E+02
I130	1.33E+01	3.94E+01	5.01E+03	6.12E+01	0.	3.38E+01	1.55E+01
I131	2.87E+02	2.94E+02	9.55E+04	1.79E+02	0.	2.51E+01	2.22E+02
I132	3.57E+00	9.55E+00	1.26E+03	1.52E+01	0.	1.79E+00	3.39E+00
I133	1.05E+02	1.30E+02	3.13E+04	7.61E+01	0.	5.26E+01	5.10E+01
I134	1.86E+00	5.06E+00	6.58E+02	8.07E+00	0.	4.41E-03	1.81E+00

EVISION NO .:	PROCEDURE TITLE				_		PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		161 of 220
ROCEDURE NO.:							101 01 220
C-200			ST. LU	JCIE PLANT			
			TAB	LE L-4			
	ENVIRONMEN	ITAL PATHWA		ERSION FACTO	<u>RS FOR LIQUID</u>	DISCHARGES	
	PATHW	'AY - SALT WA	TER FISH AND		AGE GROUP	P - CHILD	
		ORGAN [DOSE FACTOR	(MREM/HR P	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	7.79E+00	2.06E+01	2.69E+03	3.27E+01	0.	2.30E+01	7.54E+00
CS-134	8.14E+03	1.37E+04	0.	1.75E+03	1.52E+03	7.42E+01	2.92E+03
CS-136	2.37E+02	9.34E+02	0.	5.20E+02	7.13E+01	1.06E+02	6.73E+02
CS-137	1.13E+04	1.10E+04	0.	1.35E+03	1.29E+03	6.69E+01	1.64E+03
CS-138	2.01E+00	3.96E+00	0.	2.92E+00	2.88E-01	1.69E-05	1.97E+00
BA-139	2.65E+00	1.89E-03	0.	1.77E-03	1.07E-03	4.69E+00	7.75E-02
BA-140	2.25E+03	1.98E+00	0.	2.37E-01	1.18E+00	1.15E+02	1.32E+02
BA-141	0.	9.71E-04	0.	9.03E-04	5.51E-04	6.06E-10	4.34E-02
BA-142	5.81E-01	5.98E-04	0.	5.05E-04	3.38E-04	0.	3.66E-02
LA-140	2.16E+00	7.52E-01	0.	0.	0.	2.14E+04	2.54E-01
LA-142	2.74E-02	1.24E-02	0.	0.	0.	9.09E+01	3.10E-03
CE-141	4.67E+00	2.34E+00	0.	3.66E-01	0.	2.93E+03	3.48E-01
CE-143	2.05E-01	1.52E+02	0.	6.69E-02	0.	5.67E+03	1.68E-02
CE-144	2.66E+02	8.33E+01	0.	1.50E+01	0.	2.16E+04	1.42E+01
PR-144	6.46E-03	2.67E-03	0.	1.51E-03	0.	9.26E-10	3.27E-04
W187	3.03E+00	2.54E+00	0.	0.	0.	8.31E+02	8.90E-01
NP-239	1.18E-02	1.16E-03	0.	3.58E-03	0.	2.36E+02	6.34E-04

28	OFFSITE	DOSE CALC	162 of 220		
OCEDURE NO.:					
C-200		ST. LL	JCIE PLANT		
EFFLUI	ENT CONCENTI		LE G-1 TS IN AIR IN UN		AREAS
Effluent		pelow, refer to	DTE 10 CFR Part 20 I use the most co		
Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)	Nuclide	ECL (μCi/ml)
Ar-41	1 E-8	Co-57	9 E-10	Sb-124	3 E-10
Kr-83m	5 E-5	Co-58	1 E-9	Sb-125	7 E-10
Kr-85m	1 E-7	Fe-59	5 E-10	Te-125m	1 E-9
Kr-85	7 E-7	Co-60	5 E-11	Te-127m	4 E-10
Kr-87	2 E-8	Zn-65	4 E-10	Te-129m	3 E-10
Kr-88	9 E-9	Rb-86	1 E-9	I-130	3 E-9
Kr-89	None	Rb-88	9 E-8	I-131	2 E-10
Kr-90	None	Sr-89	2 E-10	I-132	2 E-8
Xe-131m	2 E-6	Sr-90	6 E-12	I-133	1 E-9
Xe-133m	6 E-7	Y-91	2 E-10	I-134	6 E-8
Xe-133	5 E-7	Zr-95	4 E-10	I-135	6 E-9
Xe-135m	4 E-8	Nb-95	2 E-9	Cs-134	2 E-10
Xe-135	7 E-8	Ru-103	9 E-10	Cs-136	9 E-10
Xe-137	None	Ru-106	2 E-11	Cs-137	2 E-10
Xe-138	2 E-8	Ag-110	1 E-10	Ba-140	2 E-9
H-3	1 E-7	Sn-113	8 E-10	La-140	2 E-9
P-32	1 E-9	In-113m	2 E-7	Ce-141	8 E-10
Cr-51	3 E-8	Sn-123	2 E-10	Ce-144	2 E-11
Mn-54	1 E-9	Sn-126	8 E-11		

ï

PAGE:

REVISION NO .:

PROCEDURE TITLE:

VISION NO.:	PROCEDUF	RE TITLE:			PAGE:			
28 OCEDURE NO.:		OFFSITE [OOSE CALCULATION MA	NUAL (ODCM)	163 of 22			
C-200	C-200 ST. LUCIE PLANT							
		DOSE	TABLE G-2 FACTORS FOR NOBLE C	GASES*				
RADIONUC	LIDE	TOTAL BODY DOSE FACTOR K _i (mrem/yr per μCi/m ³)	SKIN DOSE FACTOR L _i (mrem/yr per μCi/m³)	GAMMA AIR DOSE FACTOR M _i (mrad/yr per μCi/m³)	BETA AIR DOSE FACTOR Νι (mrad/yr per μCi/m³)			
Kr-83m		7.56E-02**		1.93E+01	2.88E+02			
Kr-85m		1.17E+03	1.46E+03	1.23E+03	1.97E+03			
Kr-85		1.61E+01	1.34E+03	1.72E+01	1.95E+03			
Kr-87		5.92E+03	9.73E+03	6.17E+03	1.03E+04			
Kr-88		1.47E+04	2.37E+03	1.52E+04	2.93E+03			
Kr-89		1.66E+04	1.01E+04	1.73E+04	1.06E+04			
Kr-90		1.56E+04	7.29E+03	1.63E+04	7.83E+03			
Xe-131ı	m	9.15E+01	4.76E+02	1.56E+02	1.11E+03			
Xe-133r	m	2.51E+02	9.94E+02	3.27E+02	1.48E+03			
Xe-133		2.94E+02	3.06E+02	3.53E+02	1.05E+03			
Xe-135	m	3.12E+03	7.11E+02	3.36E+03	7.39E+02			
Xe-135		1.81E+03	1.86E+03	1.92E+03	2.46E+03			
Xe-137		1.42E+03	1.22E+04	1.51E+03	1.27E+04			
Xe-138		8.83E+03	4.13E+03	9.21E+03	4.75E+03			
Ar-41		8.84E+03	2.69E+03	9.30E+03	3.28E+03			

* The listed dose factors are for radionuclides that may be detected in gaseous effluents.

** 7.56E-02 = 7.56 X 10⁻²

REVISION NO .:	PROCEDURE TITLE:				PAGE:
28	OFFS	SITE DOSE CALC	ULATION MANUAL	(ODCM)	
ROCEDURE NO .:	7			. ,	164 of 220
C-200		ST. LU	JCIE PLANT		
		ТАВ	LE G-3	·	
E	NVIRONMENTAL PATHWAY-I			FOR GASEOUS DISCHARGES	S
	PATHWAY - GROL			GROUP - INFANT	-
	ORGAN DOSE	FACTOR (SQ.	METER - MREM/YR	t PER μCi/Sec)	
				- <i>•</i>	
	Г			1	
	_	NUCLIDE	WHOLE BODY	-	
	_	H-3 CR-51	0. 6.68E+06	-	
	_	MN-54	1,10E+09	-	
	_	FE-59	3.92E+08	-	
		CO-57	1.64E+08	-	
	_	CO-58	5.27E+08	-	
	_	CO-60	4.40E+09	-	
		ZN-65	6.87E+08	-	
			1.29E+07	-	
	-	SR-89	3.07E+04	-	
	_	SR-90	5.94E+05	-	
,	_	Y-91	1.53E+06	-	
		ZR-95	6.94E+08	-	
		NB-95	1.95E+08	1	
		RU-103	1.57E+08	-	
		RU-106	2.99E+08	1	
	-			1	
	_	AG-110	3.18E+09]	

REVISION NO .:	PROCEDURE TITLE:				PAGE:
28	OF	FSITE DOSE CALC	ULATION MANUAL ((ODCM)	405 - 6000
PROCEDURE NO .:					165 of 220
C-200		ST. LU	ICIE PLANT		
		TAR	LE G-3		*
E	NVIRONMENTAL PATHWA			FOR GASEOUS DISCHA	RGES
_		OUND PLANE DEPO		GROUP - INFANT	<u> </u>
	ORGAN DO	SE FACTOR (SQ.	METER - MREM/YR	PER μCi/Sec)	
		NUCLIDE	WHOLE BODY		
		SN-126	4.80E+09		
		SB-124	8.42E+08		
		SB-125	7.56E+08		
		TE-125M	2.19E+06		
		TE-127M	1.15E+06		
		TE-129M	5.49E+07		
		I-130	7.90E+06		
		I-131	2.46E+07		
		I-132	1.78E+06		
		I-133	3.54E+06		
		I-134	6.43E+05		
		I-135	3.66E+06		
		CS-134	2.82E+09		
		CS-136	2.13E+08		
		CS-137	1.15E+09		
		BA-140	2.39E+08		
		CE-141	1.95E+07		
		CE-144	9.52E+07]	

REVISION NO .:	PROCEDURE TITLE:				PAGE:
28	OF	FSITE DOSE CALC	ULATION MANUAL		
PROCEDURE NO.:	-			· · · · ·	166 of 220
C-200		ST. LU	JCIE PLANT		
		ТАР	LE G-4		•
F	NVIRONMENTAL PATHWA			FOR GASEOUS DISCHARGE	5
	PATHWAY - GROUND PLAN			ILD - TEEN-ADULT & INFANT	
-			METER - MREM/YR		
				. ,	
				7	
		NUCLIDE	WHOLE BODY		
		H-3	0.		
		CR-51	4.68E+06		
		MN-54	1.38E+09		
		FE-59	2.75E+08		
		CO-57	1.89E+08		
		CO-58	3.80E+08		
		CO-60	2.15E+10		
		ZN-65	7.43E+08		
		RB-86	9.01E+06		
		SR-89	2.17E+04		
		SR-90	5.35E+06		
		Y-91	1.08E+06		
		ZR-95	5.01E+08	1	
		NB-95	1.36E+08		
		RU-103	1.10E+08	-	
				4	
		RU-106	4.19E+08		

REVISION NO .:	PROCEDURE TITLE:			······································	PAGE:		
28	OF	FSITE DOSE CALC	ULATION MANUAL	(ODCM)	407 - 5000		
PROCEDURE NO.:					167 of 220		
C-200		ST. LUCIE PLANT					
		TAP	_E G-4		,		
E	NVIRONMENTAL PATHWA			FOR GASEOUS DISCHARG	ES		
	ATHWAY - GROUND PLAN			ILD - TEEN-ADULT & INFA			
	ORGAN DO	SE FACTOR (SQ.	METER - MREM/YR	PER μCi/Sec)			
				, ,			
				1			
		NUCLIDE SN-126	WHOLE BODY 5.16E+10	-			
		SIN-126 SB-124	5.98E+08	-			
		SB-124 SB-125	2.30E+09	-			
		TE-125M	1.55E+06	-			
		TE-127M	8.79E+05				
		TE-129M	3.85E+07				
		I-130	5.53E+06				
		I-130	1.72E+07	-			
		I-132	1.25E+06	-			
		I-132	2.48E+06				
		I-135	4.50E+05	-			
		I-135	2.56E+06	-			
		CS-134	6.99E+09	-			
		CS-136	1.49E+08	-			
		CS-137	1.03E+10	1			
		BA-140	1.68E+08	-			
		CE-141	1.37E+07	-			
			1.01 - 01				

REVISION NO .:	PROCEDURE TITLE						PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		168 of 220
ROCEDURE NO .:							100 01 220
C-200			ST. LU	JCIE PLANT			
			TAB	LE G-5			
ENV	IRONMENTAL					EOUS DISCHA	<u>RGES</u>
			- INHALATION		UP - INFANT		
		ORGAN DOS	SE FACTOR (MREM/YR PER	μCi/Cu Meter)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	4.30E+02	4.30E+02	1.88E+02	4.30E+02	4.30E+02	4.30E+02
P-32	2.31E+05	1.35E+04	0.	0.	0.	1.51E+04	8.78E+03
CR-51	0.	0.	1.40E+01	3.99E+00	2.52E+03	5.81E+02	1.75E+01
MN-54	0.	6.93E+03	0.	1.72E+03	2.45E+05	1.35E+04	1.10E+03
FE-59	2.06E+03	4.86E+06	0.	0.	1.78E+05	3.29E+04	1.85E+03
CO-57	0.	1.21E+02	0.	0.	6.47E+04	5.50E+03	1.18E+02
CO-58	0.	1.18E+02	0.	0.	8.79E+05	1.21E+04	1.68E+02
CO-60	0.	8.40E+02	0.	0.	5.57E+06	3.28E+04	1.17E+03
ZN-65	5.67E+03	1.81E+04	0.	1.21E+04	1.53E+05	9.35E+03	8.15E+03
RB-86	0.	2.37E+04	0.	0.	0.	2.91E+03	1.03E+04
SR-89	4.31E+04	0.	0.	0.	2.31E+06	6.80E+04	1.24E+03
SR-90	1.32E+07	0.	0.	0.	1.53E+07	1.39E+05	8.06E+05
Y-91	5.98E+04	0.	0.	0.	2.63E+06	7.17E+04	1.60E+03
ZR-95	1.08E+04	2.73E+03	0.	9.48E+03	1.81E+06	1.41E+04	1.95E+03
NB-95	1.28E+03	5.75E+02	0.	1.35E+03	4.77E+05	1.21E+04	3.37E+02
RU-103	1.69E+02	0.	0.	1.02E+03	5.66E+05	1.58E+04	5.85E+01
RU-106	9.31E+03	0.	0.	2.34E+04	1.50E+07	1.76E+05	1.14E+03
AG-110	1.89E+03	1.75E+03	0.	3.44E+03	8.12E+05	5.29E+04	1.04E+03

REVISION NO .:	PROCEDURE TITLE						PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		169 of 220
ROCEDURE NO.:							100 01 220
C-200			ST. LI	JCIE PLANT			
			ΤΔΒ	LE G-5			
ENV	/IRONMENTAL	PATHWAY-DOS		N FACTORS R(I)/P(I) FOR GAS	EOUS DISCHA	RGES
• • • • • •			- INHALATION		UP - INFANT		
		ORGAN DOS	SE FACTOR	(MREM/YR PER	μCi/Cu Meter)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	3.11E+04	6.45E+02	6.45E+02	0.	3.61E+06	5.99E+04	1.02E+03
SN-126	2.21E+05	5.85E+03	1.72E+03	0.	1.64E+06	2.23E+04	8.40E+03
SB-124	5.46E+03	1.03E+02	1.32E+01	0.	4.34E+05	7.11E+04	2.17E+03
SB-125	1.16E+04	1.25E+02	1.03E+01	0.	3.85E+05	1.76E+04	2.32E+03
TE-125M	4.54E+02	1.95E+02	1.53E+02	2.17E+03	4.96E+05	1.36E+04	6.16E+01
TE-127M	2.21E+03	9.83E+02	5.75E+02	8.01E+03	1.68E+05	2.62E+04	2.74E+02
TE-129M	1.32E+03	5.80E+02	5.08E+02	6.40E+03	1.83E+06	7.32E+04	2.06E+02
I-130	8.02E+02	2.35E+03	3.05E+05	3.65E+03	0.	1.35E+03	9.25E+02
I-131	3.63E+04	4.27E+04	1.41E+07	1.07E+04	0.	1.07E+03	2.51E+04
I-132	2.03E+02	5.70E+02	7.67E+04	9.09E+02	0.	7.11E+01	2.03E+02
I-133	1.34E+04	1.93E+04	4.66E+06	4.55E+03	0.	2.28E+03	5.87E+03
I-134	1.13E+02	3.02E+02	4.02E+04	4.82E+02	0.	1.76E-01	1.08E+02
I-135	4.70E+02	1.22E+03	1.64E+05	1.95E+03	0.	9.18E+02	4.51E+02
CS-134	4.80E+05	8.25E+05	0.	5.04E+04	1.01E+05	1.37E+03	7.32E+04
CS-136	6.85E+03	2.56E+04	0.	1.50E+04	2.10E+03	2.04E+03	1.95E+04
CS-137	6.86E+05	7.31E+05	0.	3.89E+04	9.45E+04	1.32E+03	4.41E+04
BA-140	5.70E+03	4.27E+00	0.	2.93E+00	1.64E+06	3.88E+03	2.95E+02
CE-141	2.52E+03	1.55E+03	0.	1.10E+03	5.24E+05	2.06E+04	1.81E+02
CE-144	4.68E+05	1.82E+05	0.	1.48E+05	1.27E+07	1.61E+05	2.49E+04

EVISION NO.:	PROCEDURE TITLE	:					PAGE:
28 OCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		170 of 22
C-200			ST. LU	ICIE PLANT			
			TABI	_E G-6			
ENV	IRONMENTAL I	PATHWAY-DOS		N FACTORS R(I)/P(I) FOR GAS	EOUS DISCHA	RGES
				ED FORAGE)			
	(ORGAN DOSE F	ACTOR (SQ.	METER - MREN	//YR PER μi/Se	c)	
[··· ··					1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	2.37E+03	2.37E+03	1.04E+03	2.37E+03	2.37E+03	2.37E+03
P-32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR-51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN-54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE-59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO-57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO-58	0.	2.55E+07	0.	0.	0.	6.60E+07	6.24E+07
CO-60	0.	8.73E+07	0.	0.	0.	2.16E+08	2.09E+08
ZN-65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB-86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR-89	1.47E+10	0.	0.	0.	0.	2.75E+08	4.22E+08
SR-90	1.65E+11	0.	0.	0.	0.	1.61E+09	4.21E+10
Y-91	8.12E+04	0.	0.	0.	0.	5.37E+06	2.16E+03
ZR-95	2.12E+05	9.41E+04	0.	1.86E+04	0.	7.47E+07	5.56E+04
NB-95	5.49E+05	2.47E+05	0.	4.84E+04	0.	1.98E+08	1.45E+05
RU-103	8.30E+03	0.	0.	4.16E+03	0.	1.04E+05	2.86E+03
RU-106	2.01E+05	0.	0.	4.20E+04	0.	1.56E+06	2.46E+04
AG-110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu\text{Ci/Cu}.$ Meter)

EVISION NO .:	PROCEDURE TITLE:						PAGE:
	_	OFFSI	TE DOSE CALC	JLATION MANU	AL (ODCM)		171 of 22
			от I I I				
C-200			51. LU	CIE PLANT			
			TABL	.E G-6			
ENV	IRONMENTAL F	PATHWAY-DOS	E CONVERSIO	N FACTORS R(I)/P(I) FOR GASI	EOUS DISCHA	RGES
			(CONTAMINATE		AGE GROU		
	C	RGAN DOSE F.	ACTOR (SQ. I	METER - MREM	/YR PER μCi/Se	c)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07
SB-124 SB-125	3.59E+07	3.27E+06	2.93E+06	3.96E+06	2.83E+09	2.43E+08	6.62E+06
TE-125M	1.57E+08	5.30E+07	5.18E+07	7.05E+07	0.	7.57E+07	2.10E+07
TE-127M	5.54E+07	1.93E+07	1.79E+07	2.00E+08	0.	3.24E+08	7.38E+06
TE-129M	5.87E+08	2.02E+08	2.21E+08	2.70E+08	0.	3.54E+08	8.95E+07
I-130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05
I-131	2.59E+09	3.09E+09	9.94E+11	7.24E+08	0.	1.16E+08	1.81E+09
I-132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01
I-133	3.75E+07	5.48E+07	1.30E+10	1.29E+07	0.	9.74E+06	1.66E+07
I-134	0.	0.	1.06E-09	0.	0.	0.	0.
I-135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04
CS-134	4.43E+10	7.97E+10	0.	4.65E+09	9.12E+09	1.90E+08	6.75E+09
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08
CS-137	6.44E+10	7.21E+10	0.	3.66E+09	8.69E+09	1.86E+08	4.14E+09
BA-140	2.45E+08	2.47E+05	0.	1.22E+04	1.51E+05	8.13E+06	1.27E+07
CE-141	2.65E+05	1.62E+05	0.	9.72E+03	0.	7.87E+07	1.90E+04
CE-144	2.10E+07	8.29E+06	0.	5.67E+05	0.	8.66E+08	1.13E+06

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci}/\text{Cu}.$ Meter)

REVISION NO .:	PROCEDURE TITLE:						PAGE:
	_	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		172 of 22
C-200			ST LL	CIE PLANT			
<u> </u>			51. LU				
			TABI	E G-7			
ENV	IRONMENTAL P	PATHWAY-DOS)/P(I) FOR GASI	EOUS DISCHA	RGES
			(CONTAMINAT				
	0	RGAN DOSE F	ACTOR (SQ. I	METER - MREM	/YR PER µCi/Se	c)	
	· · · · · · · · · · · · · · · · · · ·		·			-	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	4.84E+03	4.84E+03	2.11E+03	4.84E+03	4.84E+03	4.84E+03
P-32	2.19E+10	1.37E+09	0.	0.	0.	2.46E+09	8.46E+08
CR-51	0.	0.	2.19E+03	8.07E+02	4.85E+03	9.19E+05	3.66E+03
MN-54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05
FE-59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05
CO-57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05
CO-58	0.	3.06E+06	0.	0.	0.	7.92E+06	7.49E+06
CO-60	0.	1.05E+07	0.	0.	0.	2.59E+07	2.51E+07
ZN-65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08
RB-86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08
SR-89	3.09E+10	0.	0.	0.	0.	5.77E+08	8.87E+08
SR-90	3.46E+11	0.	0.	0.	0.	3.35E+09	8.83E+10
Y-91	9.74E+03	0.	0.	0.	0.	6.45E+05	2.60E+02
ZR-95	2.54E+04	1.13E+04	0.	2.23E+03	0.	8.95E+06	6.67E+03
NB-95	6.59E+04	2.97E+04	0.	5.81E+03	0.	2.37E+07	1.75E+04
RU-103	9.96E+02	0.	0.	4.99E+02	0.	1.24E+04	3.43E+02
RU-106	2.41E+04	0.	0.	5.04E+03	0.	1.87E+05	2.96E+03
AG-110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu\text{Ci}/\text{Cu}.$ Meter)

REVISION NO.:	PROCEDURE TITLE:						PAGE:
28	_	OFFSI	TE DOSE CALC	JLATION MANU	IAL (ODCM)		173 of 22
ROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
			TABI	.E G-7			
ENV	IRONMENTAL F	PATHWAY-DOS)/P(I) FOR GAS	EOUS DISCHA	RGES
			(CONTAMINAT			JP - INFANT	
	C	RGAN DOSE F	ACTOR (SQ.	METER - MREM	I/YR PER μCi/Se	eC)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06
SB-124 SB-125	4.31E+06	3.92E+05	3.52E+05	4.76E+05	3.40E+08	2.92E+07	7.94E+05
TE-125M	4.31E+00 1.89E+07	6.36E+06	6.21E+06	8.46E+06	<u> </u>	9.09E+06	2.52E+06
TE-125M	6.64E+06	2.31E+06	2.15E+06	2.40E+07	0.	3.88E+07	8.85E+05
TE-127M	7.05E+07	2.31E+00 2.42E+07	2.66E+07	3.23E+07	0.	4.25E+07	1.07E+07
I-130	5.45E+05	1.61E+06	2.05E+07	2.51E+06	0.	4.25E+07 1.38E+06	6.35E+05
I-130	3.11E+09	3.70E+09			0.	1.39E+08	2.17E+09
I-131	2.13E-01	5.71E-01	1.19E+12 7.51E+01	9.28E+08 9.10E-01		1.07E-01	2.17E+09 2.03E-01
I-132		6.57E+07			0.		
	4.50E+07	0.57E+07	1.55E+10	1.55E+07		1.17E+07	1.99E+07
I-134	0.	•.	1.27E-09	0.	0. 2.42E-01	0.	•.
I-135	1.79E+04	4.72E+04	6.18E+06	7.51E+04		5.29E+04	1.73E+04
CS-134	1.33E+11	2.39E+11	0.	1.39E+10	2.74E+10	5.69E+08	2.02E+10
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09
CS-137	1.93E+11	2.16E+11	0.	1.10E+10	2.61E+10	5.59E+08	1.24E+10
BA-140	2.95E+07	2.96E+04	0.	1.47E+03	1.81E+04	9.76E+05	1.52E+06
CE-141	3.17E+04	1.95E+04	0.	1.17E+03	0.	9.44+06	2.28E+03
CE-144	2.52E+06	9.95E+05	0.	6.80E+04	0.	1.04E+08	1.36E+05

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci}/\text{Cu}.$ Meter)

REVISION NO .:	PROCEDURE TITLE	:					PAGE:
28	_	OFFSI	TE DOSE CALCU	JLATION MANU	IAL (ODCM)		174 of 220
ROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
				.E G-8			
<u>E1</u>	VIRONMENTA		DSE CONVERSI			OUS DISCHARC	<u>SES</u>
			INHALATION				
		ORGAN DOSE	EFACTOR (M	REM/YR PER µ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	7.51E+02	7.51E+02	4.96E+02	7.51E+02	7.51E+02	7.51E+02
P32	6.11E+05	3.57E+04	0.	0.	0.	4.00E+04	2.32E+04
CR51	0.	0.	2.75E+01	1.06E+01	6.66E+03	1.54E+03	4.63E+01
MN54	0.	1.83E+04	0.	4.55E+03	6.48E+05	3.58E+04	2.91E+03
FE59	5.44E+03	1.28E+07	0.	0.	4.70E+05	8.70E+04	4.88E+03
CO57	0.	3.20E+02	0.	0.	1.71E+05	1.45E+04	3.10E+02
CO58	0.	1.52E+02	0.	0.	1.13E+06	3.62E+04	2.68E+02
CO60	0.	1.07E+03	0.	0.	6.92E+06	9.36E+04	1.88E+03
ZN65	1.50E+04	4.77E+04	0.	3.19E+04	4.03E+05	2.47E+04	2.15E+04
RB86	0.	6.25E+04	0.	0.	0.	7.70E+03	2.73E+04
SR89	5.37E+04	0.	0.	0.	2.24E+06	1.69E+05	1.54E+03
SR90	1.64E+07	0.	0.	0.	1.48E+07	3.45E+05	9.99E+05
Y91	7.44E+04	0.	0.	0.	2.55E+06	1.78E+05	1.98E+03
ZR95	1.41E+04	3.28E+03	0.	2.51E+04	2.12E+06	5.74E+04	2.98E+03
NB95	1.70E+03	7.25E+02	0.	3.58E+03	5.85E+05	3.32E+04	5.33E+02
RU-103	2.16E+02	0.	0.	2.70E+03	6.33E+05	4.22E+04	8.73E+01
RU-106	1.15E+04	0.	0.	6.18E+04	1.45E+07	4.37E+05	1.44E+03
AG110	5.00E+03	4.63E+03	0.	9.10E+03	2.15E+06	1.40E+05	2.75E+03

1

REVISION NO .:	PROCEDURE TITLE						PAGE:
28	_	OFFSI	TE DOSE CALC	JLATION MANU	IAL (ODCM)		175 of 220
C-200			STIU	CIE PLANT			
			01.20				
				.E G-8			
<u>E1</u>	NVIRONMENTA	L PATHWAY-DO				OUS DISCHAR	GES
					ROUP - CHILD		
		ORGAN DOSE	FACTOR (M	REM/YR PER µ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	3.85E+04	6.44E+02	6.81E+02	0.	3.50E+06	1.49E+05	1.27E+03
SN-126	5.85E+05	1.55E+04	4.55E+03	0.	4.33E+06	5,88E+04	2.22E+04
SB-124	1.44E+04	2.72E+02	3.49E+01	0.	1.15E+06	1.88E+05	5.74E+03
SB-125	3.06E+04	3.30E+02	2.72E+01	0.	1.02E+06	4.66E+04	6.14E+03
TE 125M	5.62E+02	1.94E+02	1.61E+02	5.74E+03	4.81E+05	3.38E+04	7.62E+01
TE 127M	5.85E+03	2.60E+03	1.52E+03	2.12E+04	4.44E+05	6.92E+04	7.25E+02
TE 129M	1.64E+03	5.85E+02	5.40E+02	1.69E+04	1.80E+06	1.82E+05	2.60E+02
I130	2.12E+03	6.22E+03	8.07E+05	9.66E+03	0.	3.56E+03	2.45E+03
I131	4.55E+04	4.63E+04	1.54E+07	2.84E+04	0.	2.65E+03	3.50E+04
I132	5.37E+02	1.51E+03	2.03E+05	2.40E+03	0.	1.88E+02	5.37E+02
I133	1.68E+04	2.05E+04	5.03E+06	1.20E+04	0.	5.55E+03	8.03E+03
I134	2.98E+02	7.99E+02	1.06E+05	1.27E+03	0.	4.66E-01	2.85E+02
I135	1.24E+03	3.23E+03	4.33E+05	5.14E+03	0.	2.43E+03	1.19E+03
CS-134	6.22E+05	9.95E+05	0.	1.33E+05	1.19E+05	3.77E+03	2.23E+05
CS-136	1.81E+04	6.77E+04	0.	3.96E+04	5.55E+03	5.40E+03	5.14E+04
CS-137	8.66E+05	7.99E+05	0.	1.03E+05	1.00E+05	3.41E+03	1.25E+05
BA-140	7.14E+03	4.66E+00	0.	7.73E+00	1.74E+06	9.92E+03	4.22E+02
CE-141	3.13E+03	1.57E+03	0.	2.90E+03	5.14E+05	5.44E+04	2.33E+02
CE-144	5.81E+05	1.82E+05	0.	3.92E+05	1.23E+07	4.00E+05	3.10E+04

EVISION NO .:	PROCEDURE TITLE	:					PAGE:
	_	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		176 of 22
C-200			ST. LU	CIE PLANT			
			TABL	E G-9			
<u>E1</u>	VIRONMENTAL	L PATHWAY-DO	DSE CONVERSI	ON FACTORS R	(I) FOR GASEC	DUS DISCHAR	GES
		,	CONTAMINATE	•		OUP - CHILD	
	C	ORGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.57E+03	1.57E+03	1.04E+03	1.57E+03	1.57E+03	1.57E+03
P32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO58	0.	1.25E+07	0.	0.	0.	7.41E+07	3.76E+07
CO60	0.	4.22E+07	0.	0.	0.	2.33E+08	1.27E+08
ZN65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR89	6.92E+09	0.	0.	0.	0.	2.58E+08	1.98E+08
SR90	1.13E+11	0.	0.	0.	0.	1.52E+09	2.87E+10
Y91	3.80E+04	0.	0.	0.	0.	5.05E+06	1.01E+03
ZR95	1.06E+05	4.47E+04	0.	1.86E+04	0.	7.68E+07	3.29E+04
NB95	2.75E+05	1.18E+05	0.	4.84E+04	0.	2.03E+08	8.63E+04
RU-103	3.99E+03	0.	0.	4.16E+03	0.	1.05E+05	1.61E+03
RU-106	9.39E+04	0.	0.	4.20E+04	0.	1.46E+06	1.17E+04
AG110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

Note - the units for C---14 and H----3 are (mrem/yr per µCi/cu. meter)

VISION NO.:	PROCEDURE TITLE:						PAGE:
28 OCEDURE NO.:	_	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		177 of 22
C-200			ST. LU	CIE PLANT			
<u>El</u>		- COWS MILK (D FORAGE)	AGE GRO	OUP - CHILD	ES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07
SB-125	3.13E+07	1.41E+06	1.18E+06	3.96E+06	2.83E+09	2.43E+08	5.99E+06
TE 125M	7.38E+07	2.00E+07	2.07E+07	7.05E+07	0.	7.12E+07	9.84E+06
TE 127M	5.18E+07	1.78E+07	1.46E+07	2.00E+08	0.	2.99E+08	6.60E+06
TE 129M	2.77E+08	7.73E+07	8.85E+07	2.70E+08	0.	3.33E+08	4.28E+07
I130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05
I131	1.24E+09	1.27E+09	4.12E+11	7.74E+08	0.	1.09E+08	9.56E+08
I132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01
I133	1.78E+07	2.20E+07	5.30E+09	1.29E+07	0.	8.90E+06	8.63E+06
I134	0.	0.	1.06E-09	0.	0.	0.	0.
I135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04
CS-134	2.17E+10	3.65E+10	0.	4.65E+09	4.06E+09	1.97E+08	7.76E+09
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08
CS-137	3.08E+10	2.98E+10	0.	3.66E+09	3.49E+09	1.81E+08	4.44E+09
BA-140	1.17E+08	1.02E+05	0.	1.22E+04	6.09E+04	7.75E+06	6.84E+06
CE-141	1.24E+05	6.22E+04	0.	9.72E+03	0.	7.80E+07	9.26E+03
CE-144	1.00E+07	3.14E+06	0.	5.67E+05	0.	8.15E+08	5.34E+05

Note - the units for C---14 and H----3 are (mrem/yr per µCi/cu. meter)

VISION NO .:	PROCEDURE TITLE	:					PAGE:
28	_	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		178 of 22
			07.11				
C-200			ST. LU	CIE PLANT			
			TABL	E G-10			
<u>E</u>	NVIRONMENTA	PATHWAY-DO	DSE CONVERSI		R(I) FOR GASEC	OUS DISCHAR	GES
	PATHWAY	GOATS MILK	CONTAMINATE	D FORAGE)	AGE GR	OUP - CHILD	
	C	RGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3							
	•••	3.20E+03	3.20E+03	2.11E+03	3.20E+03	3.20E+03	3.20E+03
P32	2.19E+10	1.37E+09	0.	0.	0.	2.46E+09	8.46E+08
CR51	0.	0.	2.19E+03	8.07E+02	4.85E+03	9.19E+05	3.66E+03
MN54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05
FE59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05
CO57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05
CO58	0.	1.50E+06	0.	0.	0.	8.90E+06	4.51E+06
CO60	0.	5.06E+06	0.	0.	0.	2.80E+07	1.52E+07
ZN65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08
RB86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08
SR89	1.45E+10	0.	0.	0.	0.	5.43E+08	4.16E+08
SR90	2.37E+11	0.	0.	0.	0.	3.16E+09	6.02E+10
Y91	4.56E+03	0.	0.	0.	0.	6.06E+05	1.22E+02
ZR95	1.27E+04	5.37E+03	0.	2.23E+03	0.	9.22E+06	3.96E+03
NB95	3.30E+04	1.41E+04	0.	5.81E+03	0.	2.44E+07	1.04E+04
RU-103	4.79E+02	0.	0.	4.99E+02	0.	1.26E+04	1.94E+02
RU-106	1.13E+04	0.	0.	5.04E+03	0.	1.75E+05	1.40E+03
AG110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06

Note - the units for C---14 and H----3 are (mrem/yr per μ Ci/cu. meter)

EVISION NO .:	PROCEDURE TITLE:						PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		179 of 22
ROCEDURE NO.:							
C-200		<u></u>	ST. LU	CIE PLANT			
			TABL	E G-10			
<u>E1</u>	NVIRONMENTAL						GES
			CONTAMINATE	-		OUP - CHILD	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06
SB-125	3.75E+06	1.70E+05	1.43E+05	4.76E+05	3.40E+08	2.92E+07	7.19E+05
TE 125M	8.85E+06	2.40E+06	2.49E+06	8.46E+06	0.	8.54E+06	1.18E+06
TE 127M	6.21E+06	2.14E+06	1.75E+06	2.40E+07	0.	3.58E+07	7.92E+05
TE 129M	3.32E+07	9.27E+06	1.06E+07	3.23E+07	0.	4.00E+07	5.15E+06
I130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05
I131	1.48E+09	1.52E+09	4.94E+11	9.28E+08	0.	1.30E+08	1.15E+09
I132	2.13E-01	5.71E-01	7.51E+01	9.10E-01	0.	1.07E-01	2.03E-01
I133	2.14E+07	2.64E+07	6.36E+09	1.55E+07	0.	1.07E+07	1.04E+07
I134	0.	0.	1.27E-09	0.	0.	0.	0.
I135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04
CS-134	6.50E+10	1.10E+11	0.	1.39E+10	1.22E+10	5.92E+08	2.33E+10
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09
CS-137	9.23E+10	8.93E+10	0.	1.10E+10	1.05E+10	5.44E+08	1.33E+10
BA-140	1.40E+07	1.23E+04	0.	1.47E+03	7.31E+03	9.30E+05	8.21E+05
CE-141	1.49E+04	7.46E+03	0.	1.17E+03	0.	9.36E+06	1.11E+03
CE-144	1.20E+06	3.76E+05	0.	6.80E+04	0.	9.78E+07	6.41E+04

Note - the units for C---14 and H----3 are (mrem/yr per μ Ci/cu. meter)

VISION NO.:	PROCEDURE TITLE:						PAGE:
28 OCEDURE NO.:	_	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		180 of 22
			o T				
C-200			SI.LU	CIE PLANT		<u></u>	
			TABL	E G-11			
EN						OUS DISCHARGE	<u>S</u>
		•		,			
	0	RGAN DUSE F	ACTOR (SQ.)	METER-MREM/	rR PER µCI/SE	(ت	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.33E+02	2.33E+02	1.54E+02	2.33E+02	2.33E+02	2.33E+02
P32	1.74E+09	1.09E+08	0.	0.	0.	1.96E+08	6.73E+07
CR51	0.	0.	1.58E+03	5.82E+02	3.50E+03	6.63E+05	2.64E+03
MN54	0.	3.42E+06	0.	1.02E+06	0.	1.05E+07	6.54E+05
FE59	9.95E+07	2.36E+08	0.	0.	6.55E+07	7.79E+08	8.98E+07
CO57	0.	2.10E+06	0.	0.	0.	5.33E+07	3.50E+06
CO58	0.	1.69E+07	0.	0.	0.	1.00E+08	5.10E+07
CO60	0.	6.77E+07	0.	0.	0.	3.75E+08	2.03E+08
ZN65	1.33E+08	4.22E+08	0.	2.82E+08	0.	2.66E+08	1.91E+08
RB86	0.	1.82E+08	0.	0.	0.	3.59E+07	8.50E+07
SR89	5.04E+08	0.	0.	0.	0.	1.88E+07	1.44E+07
SR90	1.05E+10	0.	0.	0.	0.	7.02E+08	2.67E+09
Y91	1.76E+06	0.	0.	0.	0.	2.33E+08	4.69E+04
ZR95	4.62E+06	1.51E+06	0.	7.47E+05	0.	2.22E+09	1.20E+06
NB95	2.68E+06	1.15E+06	0.	4.72E+05	0.	1.98E+09	8.41E+05
RU-103	1.45E+08	0.	0.	1.51E+08	0.	3.81E+09	5.87E+07
RU-106	4.51E+09	0.	0.	2.02E+09	0.	7.01E+10	5.61E+08
AG110	2.50E+06	2.31E+06	0.	4.55E+06	0.	9.44E+08	1.38E+06

Note - the units for C---14 and H----3 are (mrem/yr per μ Ci/cu. meter)

ISION NO.:	PROCEDURE TITLE:						PAGE:
28 CEDURE NO.	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		181 of 22
C-200							
C-200			51. LU	CIE PLANT			
			TABL				
<u>EN</u>	VIRONMENTAL						<u>ES</u>
	U	IRGAN DOSE F	ACTOR (SQ. I		YR PER µCI/SE	(ت	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	6.92E+09	1.37E+08	4.02E+07	0.	2.41E+06	2.31E+09	1.98E+08
SB-124	7.40E+06	1.40E+05	1.79E+04	0.	5.74E+06	2.10E+08	2.93E+06
SB-125	7.66E+07	1.84E+07	1.90E+07	6.47E+07	9.26E+08	1.44E+08	1.08E+07
TE 125M	5.69E+08	1.54E+08	1.60E+08	5.44E+08	0.	5.49E+08	7.59E+07
TE 127M	4.40E+08	1.51E+08	1.24E+08	1.70E+09	0.	2.54E+09	5.61E+07
TE 129M	1.84E+09	5.12E+08	5.87E+08	1.78E+09	0.	2.21E+09	2.84E+08
I130	8.87E-07	2.63E-06	3.34E-04	4.08E-06	0.	2.25E-06	1.03E-06
I131	1.58E+07	1.62E+07	5.25E+09	9.86E+06	0.	1.38E+06	1.22E+07
I132	0.	0.	0.	0.	0.	0.	0.
I133	6.86E-01	8.47E-01	2.04E+02	4.97E-01	0.	3.43E-01	3.33E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	3.21E-02	2.96E-02	0.	1.12E-02	3.37E-03	6.92E-04	1.32E-02
CS-134	8.83E+08	1.49E+09	0.	1.89E+08	1.65E+08	8.04E+06	3.16E+08
CS-136	4.41E+06	1.74E+07	0.	9.69E+06	1.33E+06	1.98E+06	1.25E+07
CS-137	1.27E+09	1.23E+09	0.	1.51E+08	1.44E+08	7.50E+06	1.84E+08
BA-140	4.37E+07	3.84E+04	0.	4.59E+03	2.29E+04	6.03E+06	2.57E+06
CE-141	2.10E+04	1.05E+04	0.	1.65E+03	0.	1.32E+07	1.57E+03
CE-144	2.38E+06	7.46E+05	0.	1.35E+05	0.	1.94E+08	1.27E+05

REVISION NO.:	PROCEDURE TITLE:						PAGE:
	-	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		182 of 220
C-200			ST. LU	CIE PLANT			
		÷	TABL	E G-12			
<u>EN</u>			DSE CONVERSI				GES
			JITS AND VEGE		AGE GROU		
	C	DRGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.47E+02	2.47E+02	1.63E+02	2.47E+02	2.47E+02	2.47E+02
P32	4.22E+08	2.64E+07	0.	0.	0.	4.74E+07	1.63E+07
CR51	0.	0.	4.68E+03	1.73E+03	1.04E+04	1.97E+06	7.83E+03
MN54	0.	1.98E+07	0.	5.89E+06	0.	6.07E+07	3.78E+06
FE59	1.48E+07	3.51E+07	0.	0.	9.75E+06	1.16E+08	1.34E+07
CO57	0.	7.53E+05	0.	0.	0.	1.91E+07	1.25E+06
CO58	0.	6.94E+06	0.	0.	0.	4.13E+07	2.09E+07
CO60	0.	2.33E+07	0.	0.	0.	1.29E+08	6.98E+07
ZN65	2.08E+07	6.59E+07	0.	4.41E+07	0.	4.15E+07	2.98E+07
RB86	0.	5.28E+07	0.	0.	0.	1.04E+07	2.46E+07
SR89	4.84E+09	0.	0.	0.	0.	1.81E+08	1.39E+08
SR90	7.79E+10	0.	0.	0.	0.	1.52E+09	1.98E+10
Y91	2.12E+06	0.	0.	0.	0.	2.82E+08	5.65E+04
ZR95	4.06E+05	9.87E+04	0.	6.07E+04	0.	1.08E+08	8.81E+04
NB95	6.20E+04	2.64E+04	0.	1.09E+04	0.	4.58E+07	1.94E+04
RU-103	2.24E+06	0.	0.	2.34E+06	0.	5.88E+07	9.05E+05
RU-106	5.19E+07	0.	0.	2.32E+07	0.	8.07E+08	6.46E+06
AG110	6.87E+05	6.36E+05	0.	1.25E+06	0.	2.59E+08	3.78E+05

EVISION NO.:	PROCEDURE TITLE:						PAGE:
28		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		183 of 22
ROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
			TABL	E G-12			
<u>EN</u>					R(I) FOR GASEC		GES
			JITS AND VEG		AGE GROUI		
	C	RGAN DOSE F.	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	1.71E-05	2.14E-07	2.26E-07	0.	0.	8.50E-06	4.21E-07
SN-126	3.87E+08	7.68E+06	2.25E+06	0.	1.75E+06	3.44E+08	1.19E+07
SB-124	1.02E+07	1.93E+05	2.47E+04	0.	7.93E+06	2.89E+08	4.04E+06
SB-125	1.22E+07	6.99E+05	6.22E+05	2.09E+06	1.04E+09	9.02E+07	2.29E+06
TE 125M	4.12E+07	1.12E+07	1.16E+07	3.94E+07	0.	3.97E+07	5.49E+06
TE 127M	2.88E+07	9.90E+06	8.09E+06	1.11E+08	0.	1.65E+08	3.67E+06
TE 129M	1.56E+08	4.35E+07	4.99E+07	1.51E+08	0.	1.88E+08	2.41E+07
I130	1.60E+05	4.73E+05	6.02E+07	7.35E+05	0.	4.05E+05	1.86E+05
I131	1.24E+08	1.27E+08	4.13E+10	7.75E+07	0.	1.09E+07	9.58E+07
I132	2.26E+01	6.05E+01	7.97E+03	9.65E+01	0.	1.14E+01	2.15E+01
I133	3.61E+06	4.46E+06	1.08E+09	2.62E+06	0.	1.81E+06	1.75E+06
I134	4.18E-05	1.14E-04	1.47E-02	1.81E-04	0.	9.89E-08	4.06E-05
I135	1.64E+04	4.33E+04	5.67E+06	6.89E+04	3.51E-03	4.85E+04	1.59E+04
CS-134	9.97E+08	1.68E+09	0.	2.14E+08	1.87E+08	9.08E+06	3.57E+08
CS-136	1.35E+07	5.32E+07	0.	2.96E+07	4.06E+06	6.05E+06	3.83E+07
CS-137	1.41E+09	1.37E+09	0.	1.68E+08	1.60E+08	8.34E+06	2.04E+08
BA-140	1.70E+08	1.56E+05	0.	1.78E+04	8.87E+04	2.08E+08	9.96E+06
CE-141	1.17E+05	5.84E+04	0.	9.13E+03	0.	7.33E+07	8.69E+03
CE-144	9.23E+06	2.89E+06	0.	5.22E+05	0.	7.51E+08	4.92E+05

EVISION NO .:	PROCEDURE TITLE	•					PAGE:
28 ROCEDURE NO.:	_	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		184 of 220
C-200				CIE PLANT			
0-200	_						
			TABL	E G-13			
<u>E1</u>	VIRONMENTA	L PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	DUS DISCHAR	GES
		PATHWAY - IN	HALATION	AGE GROU	JP - TEENAGEF	2	
		ORGAN DOSE	EFACTOR (M	REM/YR PER μ(CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	8.48E+02	8.48E+02	1.07E+03	8.48E+02	8.48E+02	8.48E+02
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02
CO58	0.	1.76E+02	0.	0.	1.37E+06	9.52E+04	2.34E+02
CO60	0.	1.24E+03	0.	0.	8.56E+06	2.35E+05	1.65E+03
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04
SR89	3.87E+04	0.	0.	0.	2.50E+06	3.54E+05	1.11E+03
SR90	1.18E+07	0.	0.	0.	1.66E+07	7.24E+05	7.23E+05
Y91	5.38E+04	0.	0.	0.	2.86E+06	3.74E+05	1.44E+03
ZR95	1.09E+04	3.63E+03	0.	5.42E+04	2.56E+06	1.33E+05	2.54E+03
NB95	1.36E+03	8.24E+02	0.	7.74E+03	7.17E+05	8.80E+04	4.62E+02
RU-103	1.63E+02	0.	0.	5.83E+03	7.51E+05	9.44E+04	7.32E+01
RU-106	8.40E+03	0.	0.	1.34E+05	1.64E+07	9.28E+05	1.06E+03
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03

REVISION NO .:	PROCEDURE TITLE	:	······································				PAGE:
28 ROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		185 of 220
C-200			ST. LU	CIE PLANT			
EN		L PATHWAY-DO		E G-13 ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	SES
		PATHWAY - INI	HALATION	AGE GRO	UP - TEENAGER		
		ORGAN DOSE	FACTOR (IVI	REM/YR PER μ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	2.79E+04	6.14E+02	4.92E+02	0.	3.91E+06	3.13E+05	9.20E+02
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04
TE 125M	4.07E+02	1.86E+02	1.17E+02	1.24E+04	5.36E+05	7.08E+04	5.53E+01
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03
TE 129M	1.19E+03	5.64E+02	3.90E+02	3.66E+04	2.03E+06	3.84E+05	1.92E+02
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03
I131	3.37E+04	4.72E+04	1.39E+07	6.14E+04	0.	5.96E+03	2.82E+04
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03
I133	1.23E+04	2.06E+04	3.83E+06	2.60E+04	0.	1.00E+04	6.34E+03
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03
CS-134	4.83E+05	1.10E+06	0.	2.88E+05	1.44E+05	8.96E+03	5.44E+05
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05
CS-137	6.42E+05	8.24E+05	0.	2.22E+05	1.18E+05	7.68E+03	3.03E+05
BA-140	5.30E+03	4.85E+00	0.	1.67E+01	2.02E+06	2.12E+04	3.42E+02
CE-141	2.27E+03	1.52E+03	0.	6.26E+03	5.83E+05	1.14E+05	1.74E+02
CE-144	4.19E+05	1.74E+05	0.	8.48E+05	1.38E+07	8.40E+05	2.24E+04

REVISION NO .:	PROCEDURE TITLE			_		•	PAGE:
	-	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		186 of 22
C-200			ST LU	CIE PLANT			
							
				E G-14			
<u>E1</u>			DSE CONVERSI				
			NTAMINATED F	-		P - TEENAGER	•
	C	DRGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER μCl/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	9.93E+02	9.93E+02	1.26E+03	9.93E+02	9.93E+02	9.93E+02
P32	2.21E+10	1.38E+09	0.	0.	0.	2.48E+09	8.54E+08
CR51	0.	0.	2.21E+04	8.15E+03	4.90E+04	9.29E+06	3.69E+04
MN54	0.	1.09E+07	0.	3.23E+06	0.	3.33E+07	2.07E+06
FE59	3.84E+07	9.12E+07	0.	0.	2.53E+07	3.01E+08	3.47E+07
CO57	0.	1.65E+06	0.	0.	0.	4.19E+07	2.75E+06
CO58	0.	8.10E+06	0.	0.	0.	1.10E+08	1.85E+07
CO60	0.	2.73E+07	0.	0.	0.	3.27E+08	6.23E+07
ZN65	1.77E+09	5.63E+09	0.	3.77E+09	0.	3.55E+09	2.55E+09
RB86	0.	3.35E+09	0.	0.	0.	6.61E+08	1.56E+09
SR89	2.80E+09	0.	0.	0.	0.	3.03E+08	8.03E+07
SR90	8.29E+10	0.	0.	0.	3.38E+06	1.76E+09	2.05E+10
Y91	1.54E+04	0.	0.	0.	0.	5.93E+06	4.12E+02
ZR95	4.78E+04	2.84E+04	0.	2.25E+04	0.	1.15E+08	1.60E+04
NB95	1.24E+05	7.46E+04	0.	5.87E+04	0.	3.05E+08	4.21E+04
RU-103	1.69E+03	0.	0.	5.04E+03	0.	1.32E+05	7.56E+02
RU-106	3.83E+04	0.	0.	5.09E+04	0.	1.73E+06	4.81E+03
AG-110	7.53E+07	6.97E+07	0.	1.37E+08	0.	2.84E+10	4.14E+07

EVISION NO .:	PROCEDURE TITLE:	:					PAGE:
	-	OFFSIT	TE DOSE CALCU	JLATION MANU	AL (ODCM)		187 of 22
C-200			ST. LU	CIE PLANT			
			TARI	E G-14			
<u>E1</u>	VIRONMENTAI	_ PATHWAY-DO			R(I) FOR GASEC	OUS DISCHARC	SES
		•	NTAMINATED I	,		P - TEENAGER	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.12E+09	4.21E+07	1.24E+07	0.	6.03E+06	1.41E+09	6.37E+07
SB-124	3.33E+07	6.29E+05	8.05E+04	0.	2.59E+07	9.43E+08	1.32E+07
SB-125	3.45E+07	9.58E+05	5.05E+05	4.80E+06	3.43E+09	2.95E+08	6.82E+06
TE 125M	3.00E+07	1.08E+07	8.47E+06	8.55E+07	0.	8.39E+07	3.98E+06
TE 127M	6.02E+07	2.11E+07	1.59E+07	2.43E+08	0.	3.02E+08	7.45E+06
TE 129M	1.13E+08	4.18E+07	3.61E+07	3.27E+08	0.	3.93E+08	1.78E+07
I130	5.51E+05	1.63E+06	2.07E+08	2.53E+06	0.	1.40E+06	6.41E+05
I131	5.12E+08	7.24E+08	2.09E+11	9.38E+08	0.	1.37E+08	4.31E+08
I132	2.16E-01	5.76E-01	7.59E+01	9.19E-01	0.	1.08E-01	2.05E-01
I133	7.33E+06	1.24E+07	2.26E+09	1.56E+07	0.	9.02E+06	3.83E+06
I134	0.	0.	1.29E-09	0.	0.	0.	0.
I135	1.81E+04	4.77E+04	6.24E+06	7.58E+04	9.79E-02	5.34E+04	1.75E+04
CS-134	9.44E+09	2.28E+10	0.	5.63E+09	2.76E+09	2.63E+08	1.06E+10
CS-136	3.37E+08	1.33E+09	0.	7.41E+08	1.02E+08	1.51E+08	9.58E+08
CS-137	1.28E+10	1.72E+10	0.	4.43E+09	2.28E+09	2.29E+08	6.04E+09
BA-140	4.84E+07	5.95E+04	0.	1.48E+04	3.98E+04	9.16E+06	3.11E+06
CE-141	5.05E+04	3.39E+04	0.	1.18E+04	0.	9.18E+07	3.89E+03
CE-144	4.10E+06	1.68E+06	0.	6.87E+05	0.	9.65E+08	2.17E+05

ISION NO.:	PROCEDURE TITLE	:					PAGE:
28 DCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		188 of 22
C-200			ST. LU	ICIE PLANT			
<u>E</u>		OATS MILK (CO	DSE CONVERSI		AGE GROU	IP - TEENAGE	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.03E+03	2.03E+03	2.56E+03	2.03E+03	2.03E+03	2.03E+03
P32	2.65E+10	1.66E+09	0.	0.	0.	2.98E+09	1.03E+09
CR51	0.	0.	2.65E+03	9.78E+02	5.88E+03	1.11E+06	4.43E+03
MN54	0.	1.30E+06	0.	3.88E+05	0.	3.99E+06	2.49E+05
FE59	4.99E+05	1.19E+06	0.	0.	3.29E+05	3.91E+06	4.51E+05
CO57	0.	1.98E+05	0.	0.	0.	5.03E+06	3.30E+05
CO58	0.	9.72E+05	0.	0.	0.	1.31E+07	2.22E+06
CO60	0.	3.28E+06	0.	0.	0.	3.93E+07	7.48E+06
ZN65	2.13E+08	6.76E+08	0.	4.52E+08	0.	4.26E+08	3.06E+08
RB86	0.	4.02E+08	0.	0.	0.	7.93E+07	1.88E+08
SR89	5.87E+09	0.	0.	0.	0.	6.37E+08	1.69E+08
SR90	1.74E+11	0.	0.	0.	4.05E+05	3.68E+09	4.30E+10
Y91	1.85E+03	0.	0.	0.	0.	7.11E+05	4.94E+01
ZR95	5.74E+03	3.41E+03	0.	2.70E+03	0.	1.38E+07	1.93E+03
NB95	1.49E+04	8.96E+03	0.	7.05E+03	0.	3.66E+07	5.05E+03
RU-103	2.03E+02	0.	0.	6.05E+02	0.	1.58E+04	9.08E+01
RU-106	4.59E+03	0.	0.	6.11E+03	0.	2.08E+05	5.78E+02
AG110	9.04E+06	8.36E+06	0.	1.64E+07	0.	3.41E+09	4.97E+06

EVISION NO .:	PROCEDURE TITLE						PAGE:
28 ROCEDURE NO.:		OFFSI	TE DOSE CÁLC	ULATION MANU	JAL (ODCM)		189 of 22
			07.11				
C-200			S1. LU		<u>.</u>		
			TABL	E G-15			
<u>E</u>	NVIRONMENTA	L PATHWAY-D	OSE CONVERS	ON FACTORS			
		•	ONTAMINATED	•		JP - TEENAGE	२
	(ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	EC)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0	0.
SN-126	2.54E+08	5.05E+06	1.48E+06	0.	7.23E+05	1.69E+08	7.64E+06
SB-124	4.00E+06	7.54E+04	9.66E+03	0.	3.10E+06	1.13E+08	1.58E+06
SB-125	4.14E+06	1.15E+05	6.06E+04	5.77E+05	4.12E+08	3.54E+07	8.19E+05
TE 125M	3.61E+06	1.29E+06	1.02E+06	1.03E+07	0.	1.01E+07	4.78E+05
TE 127M	7.23E+06	2.52E+06	1.91E+06	2.92E+07	0.	3.63E+07	8.94E+05
TE 129M	1.35E+07	5.02E+06	4.34E+06	3.92E+07	0.	4.72E+07	2.13E+06
I130	6.61E+05	1.96E+06	2.49E+08	3.04E+06	0.	1.68E+06	7.69E+05
I131	6.15E+08	8.68E+08	2.50E+11	1.13E+09	0.	1.64E+08	5.17E+08
I132	2.59E-01	6.92E-01	9.11E+01	1.10E+00	0.	1.30E-01	2.46E-01
I133	8.79E+06	1.49E+07	2.71E+09	1.88E+07	0.	1.08E+07	4.59E+06
I134	0.	0.	1.55E-09	0.	0.	0.	0.
I135	2.17E+04	5.73E+04	7.49E+06	9.10E+04	2.94E-01	6.41E+04	2.10E+04
CS-134	2.83E+10	6.83E+10	0.	1.69E+10	8.27E+09	7.88E+08	3.19E+10
CS-136	1.01E+09	3.99E+09	0.	2.22E+09	3.05E+08	4.54E+08	2.87E+09
CS-137	3.84E+10	5.16E+10	0.	1.33E+10	6.85E+09	6.88E+08	1.81E+10
BA-1 4 0	5.81E+06	7.14E+03	0.	1.78E+03	4.78E+03	1.10E+06	3.73E+05
CE-141	6.06E+03	4.07E+03	0.	1.41E+03	0.	1.10E+07	4.66E+02
CE-144	4.92E+05	2.02E+05	0.	8.24E+04	0.	1.16E+08	2.61E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
28 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	JLATION MANU	IAL (ODCM)		190 of 22
			_				
C-200			ST. LU	CIE PLANT			
			TABL	E G-16			
<u>E</u> !	VIRONMENTAL						GES
			AMINATED FOR	•	AGE GROUP -		
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.93E+02	1.93E+02	2.44E+02	1.93E+02	1.93E+02	1.93E+02
P32	2.76E+09	1.73E+08	0.	0.	0.	3.10E+08	1.07E+08
CR51	0.	0.	2.50E+03	9.22E+02	5.55E+03	1.05E+06	4.18E+03
MN54	0.	5.42E+06	0.	1.61E+06	0.	1.66E+07	1.04E+06
FE59	1.58E+08	3.74E+08	0.	0.	1.04E+08	1.24E+09	1.42E+08
CO57	0.	3.33E+06	0.	0.	0.	8.45E+07	5.54E+06
CO58	0.	1.44E+07	0.	0.	0.	1.94E+08	3.27E+07
CO60	0.	5.73E+07	0.	0.	0.	6.87E+08	1.31E+08
ZN65	2.11E+08	6.69E+08	0.	4.47E+08	0.	4.21E+08	3.03E+08
RB86	0.	2.89E+08	0.	0.	0.	5.69E+07	1.35E+08
SR89	2.66E+08	0.	0.	0.	0.	2.89E+07	7.64E+06
SR90	1.01E+10	0.	0.	0.	2.79E+08	1.02E+09	2.49E+09
Y91	9.34E+05	0.	0.	0.	0.	3.59E+08	2.49E+04
ZR95	2.67E+06	1.24E+06	0.	1.18E+06	0.	4.20E+09	7.61E+05
NB95	1.58E+06	9.51E+05	0.	7.48E+05	0.	3.88E+09	5.37E+05
RU-103	8.05E+07	0.	0.	2.40E+08	0.	6.28E+09	3.60E+07
RU-106	2.40E+09	0.	0.	3.20E+09	0.	1.09E+11	3.02E+08
AG110	3.97E+06	3.67E+06	0.	7.21E+06	0.	1.50E+09	2.18E+06

EVISION NO.:	PROCEDURE TITLE:						PAGE:
28 ROCEDURE NO.:		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		191 of 22
C-200			ST. LU	CIE PLANT			
			TABL	E G-16			
<u>E1</u>	VIRONMENTAL		DSE CONVERSI	ON FACTORS F			GES
		•	AMINATED FOR		AGE GROUP -		
	C	RGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.10E+10	2.18E+08	6.38E+07	0.	3.82E+06	3.66E+09	3.14E+08
SB-124	1.17E+07	2.21E+05	2.84E+04	0.	9.11E+06	3.32E+08	4.64E+06
SB-125	5.01E+07	1.31E+07	1.02E+07	1.03E+08	1.47E+09	2.25E+08	7.60E+06
TE 125M	3.03E+08	1.08E+08	8.55E+07	8.63E+08	0.	8.47E+08	4.02E+07
TE 127M	6.68E+08	2.34E+08	1.77E+08	2.69E+09	0.	3.35E+09	8.28E+07
TE 129M	9.78E+08	3.63E+08	3.13E+08	2.83E+09	0.	3.41E+09	1.53E+08
I130	1.41E-06	4.16E-06	5.30E-04	6.47E-06	0.	3.57E-06	1.64E-06
I131	8.54E+06	1.21E+07	3.48E+09	1.56E+07	0.	2.28E+06	7.19E+06
I132	0.	0.	0.	0.	0.	0.	0.
I133	3.69E-01	6.26E-01	1.14E+02	7.88E-01	0.	4.55E-01	1.93E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	5.08E-02	4.69E-02	0.	1.78E-02	5.34E-03	1.10E-03	2.08E-02
CS-134	5.03E+08	1.21E+09	0.	3.00E+08	1.47E+08	1.40E+07	5.66E+08
CS-136	6.99E+06	2.76E+07	0.	1.54E+07	2.11E+06	3.14E+06	1.99E+07
CS-137	6.92E+08	9.31E+08	0.	2.40E+08	1.24E+08	1.24E+07	3.27E+08
BA-140	2.37E+07	2.93E+04	0.	7.28E+03	1.95E+04	9.19E+06	1.53E+06
CE-141	1.12E+04	7.51E+03	0.	2.61E+03	0.	2.03E+07	8.61E+02
CE-144	1.28E+06	5.23E+05	0.	2.14E+05	0.	3.00E+08	6.76E+04

ISION NO.:	PROCEDURE TITLE:						PAGE:
28 CEDURE NO.:	-	OFFSI	TE DÓSE CALCU	JLATION MANU	AL (ODCM)		192 of 22
C-200			ST. LU	CIE PLANT			
							I
FN				E G-17 ON EACTORS E			255
			S AND VEGETA		AGE GROUP -		525
			ACTOR (SQ. I				
	BONE						1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.09E+02	2.09E+02	2.64E+02	2.09E+02	2.09E+02	2.09E+02
P32	6.81E+08	4.27E+07	0.	0.	0.	7.66E+07	2.64E+07
CR51	0.	0.	7.56E+03	2.79E+03	1.68E+04	3.18E+06	1.27E+04
MN54	0.	3.20E+07	0.	9.52E+06	0.	9.80E+07	6.11E+06
FE59	2.39E+07	5.67E+07	0.	0.	1.57E+07	1.87E+08	2.16E+07
CO57	0.	1.22E+06	0.	0.	0.	3.09E+07	2.02E+06
CO58	0.	6.01E+06	0.	0.	0.	8.12E+07	1.37E+07
CO60	0.	2.01E+07	0.	0.	0.	2.41E+08	4.58E+07
ZN65	3.35E+07	1.06E+08	0.	7.12E+07	0.	6.70E+07	4.82E+07
RB86	0.	8.52E+07	0.	0.	0.	1.68E+07	3.97E+07
SR89	2.61E+09	0.	0.	0.	0.	2.83E+08	7.48E+07
SR90	7.61E+10	0.	0.	0.	2.41E+08	2.31E+09	1.88E+10
Y91	1.15E+06	0.	0.	0.	0.	4.41E+08	3.06E+04
ZR95	2.35E+05	8.19E+04	0.	9.81E+04	0.	1.92E+08	5.61E+04
NB95	3.72E+04	2.24E+04	0.	1.76E+04	0.	9.14E+07	1.26E+04
RU-103	1.27E+06	0.	0.	3.77E+06	0.	9.87E+07	5.66E+05
RU-106	2.82E+07	0.	0.	3.75E+07	0.	1.28E+09	3.54E+06
AG110	1.11E+06	1.03E+06	0.	2.02E+06	0.	4.19E+08	6.10E+05

REVISION NO .:	PROCEDURE TITLE						PAGE:
28 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		193 of 220
C-200			ST. LU	ICIE PLANT			
							<u>I</u>
				E G-17			
<u>CI</u>	VIRONMENTA PATHWAY	- FRESH FRUIT			AGE GROUP -		323
				METER-MREM/			
·	-					-,	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	9.25E-06	1.53E-07	1.22E-07	0.	0.	1.33E-05	2.28E-07
SN-126	6.25E+08	1.24E+07	3.64E+06	0.	2.83E+06	5.55E+08	1.94E+07
SB-124	1.65E+07	3.12E+05	3.99E+04	0.	1.28E+07	4.67E+08	6.53E+06
SB-125	1.73E+07	5.97E+05	3.48E+05	3.38E+06	1.68E+09	1.45E+08	3.40E+06
TE 125M	2.23E+07	7.99E+06	6.30E+06	6.36E+07	0.	6.24E+07	2.96E+06
TE 127M	4.46E+07	1.55E+07	1.18E+07	1.80E+08	0.	2.23E+08	5.51E+06
TE 129M	8.46E+07	3.14E+07	2.71E+07	2.45E+08	0.	2.95E+08	1.33E+07
I130	2.58E+05	7.64E+05	9.72E+07	1.19E+06	0.	6.55E+05	3.00E+05
131	6.84E+07	9.66E+07	2.79E+10	1.25E+08	0.	1.83E+07	5.76E+07
I132	3.65E+01	9.77E+01	1.29E+04	1.56E+02	0.	1.84E+01	3.47E+01
I133	1.98E+06	3.36E+06	6.10E+08	4.23E+06	0.	2.44E+06	1.04E+06
I134	6.75E-05	1.83E-04	2.38E-02	2.92E-04	0.	1.60E-07	6.56E-05
I135	2.65E+04	7.00E+04	9.15E+06	1.11E+05	5.67E-03	7.84E+04	2.57E+04
CS-134	5.79E+08	1.40E+09	0.	3.45E+08	1.69E+08	1.61E+07	6.52E+08
CS-136	2.18E+07	8.60E+07	0.	4.78E+07	6.56E+06	9.77E+06	6.19E+07
CS-137	7.83E+08	1.05E+09	0.	2.72E+08	1.40E+08	1.41E+07	3.70E+08
BA-140	9.38E+07	1.21E+05	0.	2.88E+04	7.73E+04	3.19E+08	6.04E+06
CE-141	6.32E+04	4.24E+04	0.	1.47E+04	0.	1.15E+08	4.86E+03
CE-144	5.03E+06	2.06E+06	0.	8.43E+05	0.	1.19E+09	2.67E+05

REVISION NO .:	PROCEDURE TITLE						PAGE:
28 ROCEDURE NO.:	4	OFFSI	TE DOSE CALC	JLATION MANU	AL (ODCM)		194 of 220
			o .				
C-200			ST. LU	CIE PLANT			
			TABI	E G-18			
E	VIRONMENTA	L PATHWAY-DO			R(I) FOR GASEC	US DISCHARC	SES
			INHALATION		OUP - ADULT		
		ORGAN DOSE	EFACTOR (M	REM/YR PER μ0	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02
CO58	0.	1.58E+03	0.	0.	9.28E+05	1.06E+05	2.07E+03
CO60	0.	1.15E+04	0.	0.	5.98E+06	2.85E+05	1.48E+04
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04
SR89	3.04E+05	0.	0.	0.	1.40E+06	3.50E+05	8.72E+03
SR90	9.92E+07	0.	0.	0.	9.60E+06	7.22E+05	6.10E+06
Y91	4.62E+05	0.	0.	0.	1.70E+06	3.85E+05	1.24E+04
ZR95	1.07E+05	3.44E+04	0.	5.42E+04	1.78E+06	1.50E+05	2.33E+04
NB95	1.41E+04	7.82E+03	0.	7.74E+03	5.06E+05	1.04E+05	4.21E+03
RU-103	1.53E+03	0.	0.	5.83E+03	5.06E+05	1.10E+05	6.58E+02
RU-106	6.91E+04	0.	0.	1.34E+05	9.44E+06	9.12E+05	8.72E+03
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03

EVISION NO .:	PROCEDURE TITLE						PAGE:
28 ROCEDURE NO.:	-	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		195 of 22
C-200			ST. LU	CIE PLANT			
	•		TABL	E G-18			
EN	VIRONMENTA				R(I) FOR GASEC	OUS DISCHAR	GES
		ORGAN DOSE	FACTOR (M	REM/YR PER µ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	2.42E+05	5.33E+03	4.53E+03	0.	2.30E+06	3.14E+05	7.86E+03
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04
TE 125M	3.42E+03	1.58E+03	1.05E+03	1.24E+04	3.14E+05	7.06E+04	4.67E+02
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03
TE 129M	9.76E+03	4.67E+03	3.44E+03	3.66E+04	1.16E+06	3.83E+05	1.58E+03
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03
I131	2.52E+04	3.58E+04	1.19E+07	6.14E+04	0.	6.28E+03	2.05E+04
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03
I133	8.64E+03	1.49E+04	2.93E+06	2.60E+04	0.	8.72E+03	4.54E+03
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03
CS-134	3.74E+05	8.48E+05	0.	2.88E+05	9.76E+04	1.04E+04	7.29E+05
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05
CS-137	4.78E+05	6.22E+05	0.	2.22E+05	7.53E+04	8.40E+03	4.29E+05
BA-140	3.90E+04	4.90E+01	0.	1.67E+01	1.27E+06	2.18E+05	2.57E+03
CE-141	1.99E+04	1.35E+04	0.	6.26E+03	3.62E+05	1.20E+05	1.53E+03
CE-144	3.43E+06	1.43E+06	0.	8.48E+05	7.78E+06	8.16E+05	1.84E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:
28 PROCEDURE NO.:	-	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		196 of 220
C-200			ST. LU	CIE PLANT			
			TABI	E G-19	¥	····	
EI	NVIRONMENTAL	_ PATHWAY-DO				OUS DISCHAR	GES
	PATHWAY ·	COWS MILK (CONTAMINATE	D FORAGE)	AGE GRO	OUP - ADULT	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02
P32	1.71E+10	1.07E+09	0.	0.	0.	1.92E+09	6.62E+08
CR51	0.	0.	1.71E+04	6.32E+03	3.80E+04	7.20E+06	2.86E+04
MN54	0.	8.41E+06	0.	2.50E+06	0.	2.58E+07	1.61E+06
FE59	2.98E+07	7.06E+07	0.	0.	1.96E+07	2.33E+08	2.69E+07
CO57	0.	1.28E+06	0.	0.	0.	3.25E+07	2.13E+06
CO58	0.	4.72E+06	0.	0.	0.	9.56E+07	1.06E+07
CO60	0.	1.65E+07	0.	0.	0.	3.08E+08	3.62E+07
ZN65	1.37E+09	4.36E+09	0.	2.92E+09	0.	2.75E+09	1.98E+09
RB86	0.	2.60E+09	0.	0.	0.	5.12E+08	1.21E+09
SR89	1.46E+09	0.	0.	0.	0.	2.33E+08	4.17E+07
SR90	4.70E+10	0.	0.	0.	0.	6.37E+08	1.15E+10
Y91	8.60E+03	0.	0.	0.	0.	4.73E+06	2.31E+02
ZR95	3.18E+04	1.75E+04	0.	1.75E+04	0.	1.05E+08	6.95E+03
NB95	8.26E+04	4.59E+04	0.	4.55E+04	0.	2.79E+08	1.80E+04
RU-103	1.02E+03	0.	0.	3.91E+03	0.	1.19E+05	4.41E+02
RU-106	2.04E+04	0.	0.	3.95E+04	0.	1.32E+06	2.58E+03
AG110	5.84E+07	5.40E+07	0.	1.06E+08	0.	2.20E+10	3.21E+07

.

REVISION NO .:	PROCEDURE TITLE:						PAGE:
28	4	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		197 of 220
C-200				CIE PLANT			
			51. LU				
			TABI	E G-19			
EN	VIRONMENTAL	PATHWAY-DO			R(I) FOR GASEC	OUS DISCHAR	GES
			CONTAMINATE			UP - ADULT	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
		·····					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.65E+09	3.27E+07	9.56E+06	0.	4.67E+06	1.09E+09	4.94E+07
SB-124	2.58E+07	4.87E+05	6.24E+04	0.	2.00E+07	7.31E+08	1.02E+07
SB-125	2.64E+07	6.06E+05	2.99E+05	3.72E+06	2.66E+09	2.29E+08	5.23E+06
TE 125M	1.63E+07	5.91E+06	4.91E+06	6.63E+07	0.	6.50E+07	2.18E+06
TE 127M	4.63E+07	1.63E+07	1.21E+07	1.88E+08	0.	2.11E+08	5.72E+06
TE 129M	6.06E+07	2.27E+07	2.09E+07	2.53E+08	0.	3.04E+08	9.61E+06
I130	4.27E+05	1.26E+06	1.61E+08	1.96E+06	0.	1.08E+06	4.97E+05
I131	2.96E+08	4.25E+08	1.39E+11	7.27E+08	0.	1.12E+08	2.43E+08
I132	1.67E-01	4.47E-01	5.88E+01	7.12E-01	0.	8.39E-02	1.59E-01
I133	4.00E+06	6.94E+06	1.33E+09	1.21E+07	0.	6.10E+06	2.12E+06
I134	0.	0.	9.98E-10	0.	0.	0.	0.
I135	1.40E+04	3.70E+04	4.84E+06	5.88E+04	7.58E-02	4.14E+04	1.36E+04
CS-134	5.66E+09	1.35E+10	0.	4.36E+09	1.45E+09	2.36E+08	1.10E+10
CS-136	2.61E+08	1.03E+09	0.	5.74E+08	7.87E+07	1.17E+08	7.43E+08
CS-137	7.39E+09	1.01E+10	0.	3.44E+09	1.14E+09	1.95E+08	6.62E+09
BA-140	2.69E+07	3.38E+04	0.	1.15E+04	1.93E+04	5.70E+07	1.78E+06
CE-141	2.91E+04	1.97E+04	0.	9.13E+03	0.	7.52E+07	2.23E+03
CE-144	2.15E+06	8.97E+05	0.	5.32E+05	0.	7.26E+08	1.15E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:
28 ROCEDURE NO.:	-	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		198 of 220
C-200			ST. LU	CIE PLANT			i
			TARI	E G-20	<u> </u>		·
E	NVIRONMENTAL	_ PATHWAY-DO				DUS DISCHAR	GES
			CONTAMINATE	-		DUP - ADULT	
	C	ORGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03
P32	2.05E+10	1.29E+09	0.	0.	0.	2.31E+09	7.94E+08
CR51	0.	0.	2.05E+03	7.58E+02	4.56E+03	8.64E+05	3.43E+03
MN54	0.	1.01E+06	0.	3.00E+05	0.	3.09E+06	1.93E+05
FE59	3.87E+05	9.18E+05	0.	0.	2.55E+05	3.03E+06	3.50E+05
CO57	0.	1.54E+05	0.	0.	0.	3.90E+06	2.55E+05
CO58	0.	5.67E+05	0.	0.	0.	1.15E+07	1.27E+06
CO60	0.	1.98E+06	0.	0.	0.	3.70E+07	4.34E+06
ZN65	1.65E+08	5.24E+08	0.	3.50E+08	0.	3.30E+08	2.37E+08
RB86	0.	3.12E+08	0.	0.	0.	6.15E+07	1.45E+08
SR89	3.06E+09	0.	0.	0.	0.	4.89E+08	8.76E+07
SR90	9.87E+10	0.	0.	0.	0.	1.32E+09	2.41E+10
Y91	1.03E+03	0.	0.	0.	0.	5.68E+05	2.77E+01
ZR95	3.82E+03	2.10E+03	0.	2.10E+03	0.	1.26E+07	8.34E+02
NB95	9.92E+03	5.51E+03	0.	5.46E+03	0.	3.34E+07	2.17E+03
RU-103	1.23E+02	0.	0.	4.69E+02	0.	1.43E+04	5.30E+01
RU-106	2.45E+03	0.	0.	4.73E+03	0.	1.58E+05	3.10E+02
AG110	7.00E+06	6.48E+06	0.	1.27E+07	0.	2.64E+09	3.85E+06

/ISION NO.:	PROCEDURE TITLE:						PAGE:
28	_	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		199 of 22
C-200			ST. LU	CIE PLANT			
			TABL	E G-20			
EN	VIRONMENTAL	PATHWAY-DO			R(I) FOR GASEC	US DISCHAR	<u>GES</u>
		•	CONTAMINATE	•		OUP - ADULT	
	0	RGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.97E+08	3.92E+06	1.15E+06	0.	5.61E+05	1.31E+08	5.92E+06
SB-124	3.10E+06	5.85E+04	7.49E+03	0.	2.40E+06	8.77E+07	1.22E+06
SB-125	3.16E+06	7.28E+04	3.58E+04	4.47E+05	3.19E+08	2.74E+07	6.29E+05
TE 125M	1.96E+06	7.10E+05	5.89E+05	7.95E+06	0.	7.81E+06	2.62E+05
TE 127M	5.57E+06	1.94E+06	1.47E+06	2.26E+07	0.	2.52E+07	6.86E+05
TE 129M	7.27E+06	2.72E+06	2.51E+06	3.04E+07	0.	3.65E+07	1.15E+06
I130	5.12E+05	1.52E+06	1.93E+08	2.36E+06	0.	1.30E+06	5.96E+05
I131	3.56E+08	5.10E+08	1.67E+11	8.72E+08	0.	1.34E+08	2.92E+08
I132	2.00E-01	5.36E-01	7.06E+01	8.55E-01	0.	1.01E-01	1.91E-01
I133	4.80E+06	8.32E+06	1.60E+09	1.45E+07	0.	7.32E+06	2.54E+06
I134	0.	0.	1.20E-09	0.	0.	0.	0.
I135	1.68E+04	4.44E+04	5.80E+06	7.05E+04	2.28E-01	4.97E+04	1.63E+04
CS-134	1.70E+10	4.04E+10	0.	1.31E+10	4.34E+09	7.06E+08	3.30E+10
CS-136	7.84E+08	3.09E+09	0.	1.72E+09	2.36E+08	3.52E+08	2.23E+09
CS-137	2.22E+10	3.03E+10	0.	1.03E+10	3.42E+09	5.83E+08	1.99E+10
BA-140	3.23E+06	4.05E+03	0.	1.38E+03	2.32E+03	6.84E+06	2.13E+05
CE-141	3.49E+03	2.36E+03	0.	1.10E+03	0.	9.02E+06	2.68E+02
CE-144	2.58E+05	1.08E+05	0.	6.39E+04	0.	8.71E+07	1.38E+04

REVISION NO .:	PROCEDURE TITLE	•		_			PAGE:
28 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		200 of 220
C-200			ST. LU	ICIE PLANT			
			TARI	E G-21			
<u>E1</u>	VIRONMENTA		DSE CONVERSI	ON FACTORS F			GES
				•			
	C C	DRGAN DOSE F	ACTOR (SQ.	METER-MREM/		C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02
P32	4.67E+09	2.93E+08	0.	0.	0.	5.25E+08	1.81E+08
CR51	0.	0.	4.23E+03	1.56E+03	9.38E+03	1.78E+06	7.07E+03
MN54	0.	9.18E+06	0.	2.73E+06	0.	2.81E+07	1.75E+06
FE59	2.67E+08	6.33E+08	0.	0.	1.76E+08	2.09E+09	2.41E+08
CO57	0.	5.64E+06	0.	0.	0.	1.43E+08	9.38E+06
CO58	0.	1.83E+07	0.	0.	0.	3.70E+08	4.09E+07
CO60	0.	7.55E+07	0.	0.	0.	1.41E+09	1.66E+08
ZN65	3.56E+08	1.13E+09	0.	7.57E+08	0.	7.13E+08	5.12E+08
RB86	0.	4.89E+08	0.	0.	0.	9.64E+07	2.28E+08
SR89	3.03E+08	0.	0.	0.	0.	4.84E+07	8.67E+06
SR90	1.25E+10	0.	0.	0.	0.	1.45E+09	3.05E+09
Y91	1.14E+06	0.	0.	0.	0.	6.26E+08	3.05E+04
ZR95	3.78E+06	1.67E+06	0.	2.01E+06	0.	8.30E+09	8.26E+05
NB95	2.30E+06	1.28E+06	0.	1.27E+06	0.	7.75E+09	5.02E+05
RU-103	1.06E+08	0.	0.	4.06E+08	0.	1.24E+10	4.59E+07
RU-106	2.80E+09	0.	0.	5.41E+09	0.	1.81E+11	3.54E+08
AG110	6.71E+06	6.21E+06	0.	1.22E+07	0.	2.53E+09	3.69E+06

EVISION NO .:	PROCEDURE TITLE:						PAGE:
28 ROCEDURE NO.:	4	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		201 of 220
			07.111				
C-200			ST. LU	CIE PLANT			
			TABL	E G-21			
<u>EI</u>	NVIRONMENTAL						GES
		•	NTAMINATED F	,	AGE GROUP		
	C	RGAN DOSE F	ACTOR (SQ. I	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.86E+10	3.69E+08	1.08E+08	0.	6.46E+06	6.19E+09	5.33E+08
SB-124	1.99E+07	3.75E+05	4.80E+04	0.	1.54E+07	5.62E+08	7.85E+06
SB-125	6.65E+07	1.58E+07	1.29E+07	1.74E+08	2.49E+09	3.80E+08	1.05E+07
TE 125M	3.59E+08	1.30E+08	1.08E+08	1.46E+09	0.	1.43E+09	4.81E+07
TE 127M	1.13E+09	3.93E+08	2.96E+08	4.56E+09	0.	5.11E+09	1.39E+08
TE 129M	1.14E+09	4.29E+08	3.95E+08	4.79E+09	0.	5.76E+09	1.82E+08
I130	2.38E-06	7.05E-06	8.96E-04	1.10E-05	0.	6.04E-06	2.77E-06
I131	1.08E+07	1.55E+07	5.06E+09	2.65E+07	0.	4.07E+06	8.85E+06
I132	0.	0.	0.	0.	0.	0.	0.
I133	4.40E-01	7.63E-01	1.47E+02	1.33E+00	0.	6.71E-01	2.33E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	8.60E-02	7.94E-02	0.	3.01E-02	9.04E-03	1.86E-03	3.53E-02
CS-134	6.58E+08	1.57E+09	0.	5.08E+08	1.68E+08	2.74E+07	1.28E+09
CS-136	1.18E+07	4.67E+07	0.	2.60E+07	3.56E+06	5.31E+06	3.36E+07
CS-137	8.73E+08	1.19E+09	0.	4.06E+08	1.35E+08	2.30E+07	7.82E+08
BA-140	2.88E+07	3.63E+04	0.	1.23E+04	2.07E+04	6.87E+07	1.90E+06
CE-141	1.41E+04	9.52E+03	0.	4.41E+03	0.	3.63E+07	1.08E+03
CE-144	1.46E+06	6.10E+05	0.	3.62E+05	0.	4.93E+08	7.83E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
28 ROCEDURE NO.:	4	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		202 of 22
C-200			ST. LU	CIE PLANT			
			TABL	E G-22			
<u>E1</u>	NVIRONMENTAI	_ PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES
	PATHWA	Y - FRESH FRU	JITS AND VEGE	TABLES	AGE GROUP	P - ADULT	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02
P32	1.04E+09	6.51E+07	0.	0.	0.	1.17E+08	4.02E+02
CR51	0.	0.	1.15E+04	4.25E+03	2.56E+04	4.85E+06	1.93E+04
MN54	0.	4.87E+07	0.	1,45E+07	0.	1.49E+08	9.31E+06
FE59	3.64E+07	8.64E+07	0.	0.	2.40E+07	2.85E+08	3.29E+07
CO57	0.	1.85E+06	0.	0.	0.	4.70E+07	3.08E+06
CO58	0.	6.89E+06	0.	0.	0.	1.40E+08	1.54E+07
CO60	0.	2.38E+07	0.	0.	0.	4.46E+08	5.23E+07
ZN65	5.11E+07	1.62E+08	0.	1.09E+08	0.	1.02E+08	7.34E+07
RB86	0.	1.30E+08	0.	0.	0.	2.56E+07	6.06E+07
SR89	2.67E+09	0.	0.	0.	0.	4.26E+08	7.64E+07
SR90	8.49E+10	0.	0.	0.	0.	2.14E+09	2.07E+10
Y91	1.26E+06	0.	0.	0.	0.	6.92E+08	3.37E+04
ZR95	2.93E+05	9.82E+04	0.	1.49E+05	0.	3.34E+08	6.38E+04
NB95	4.87E+04	2.71E+04	0.	2.68E+04	0.	1.64E+08	1.06E+04
RU-103	1.50E+06	0.	0.	5.75E+06	0.	1.76E+08	6.49E+05
RU-106	2.95E+07	0.	0.	5.71E+07	0.	1.91E+09	3.74E+06
AG110	1.69E+06	1.56E+06	0.	3.08E+06	0.	6.38E+08	9.30E+05

VISION NO .:	PROCEDURE TITLE:						PAGE:
28	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		203 of 22
OCEDURE NO.:							
· C-200			ST. LU	ICIE PLANT			
			ΤΔΒΙ	E G-22			
E	VIRONMENTAL	_ PATHWAY-DO			R(I) FOR GASEC	OUS DISCHAR	GES
	PATHWA	Y - FRESH FRU	JITS AND VEGE	TABLES	AGE GROUF	P - ADULT	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	1.00E-05	1.66E-07	1.41E-07	0.	0	2.04E-05	2.45E-07
SN-125	9.52E+08	1.89E+07	5.54E+06	0.	4.31E+06	8.46E+08	2.94E+07
SB-124	9.52E+08	4.75E+05	6.08E+04	0.	4.31E+08	7.12E+08	9.94E+06
SB-124 SB-125	2.58E+07	7.23E+05	4.03E+05	5.14E+06	2.56E+09	2.22E+08	5.10E+06
TE 125M	2.38E+07	8.65E+06	7,17E+06	9.69E+07	0.	9.51E+07	3.19E+06
TE 123M	6.75E+07	2.36E+07	1.77E+07	2.73E+08	0.	3.06E+08	8.32E+06
TE 129M	8.93E+07	3.34E+07	3.08E+07	3.73E+08	0.	4.49E+08	1.42E+07
I130	3.93E+05	1.16E+06	1.48E+08	1.81E+06	0.	9.98E+05	4.58E+05
I131	7.78E+07	1.12E+08	3.65E+10	1.91E+08	0.	2.94E+07	6.38E+07
I132	5.57E+01	1.49E+02	1.96E+04	2.38E+02	0.	2.80E+01	5.29E+01
I133	2.13E+06	3.69E+06	7.10E+08	6.44E+06	0.	3.24E+06	1.13E+06
I134	1.03E-04	2.79E-04	3.63E-02	4.45E-04	0.	2.43E-07	9.99E-05
I135	4.04E+04	1.07E+05	1.40E+07	1.70E+05	8.65E-03	1.19E+05	3.91E+04
CS-134	6.82E+08	1.62E+09	0.	5.26E+08	1.74E+08	2.84E+07	1.33E+09
CS-136	3.32E+07	1.31E+08	0.	7.29E+07	9.99E+06	1.49E+07	9.43E+07
CS-137	8.90E+08	1.22E+09	0.	4.14E+08	1.37E+08	2.34E+07	7.98E+08
BA-140	1.03E+08	1.35E+05	0.	4.39E+04	7.38E+04	6.65E+08	6.77E+06
CE-141	7.16E+04	4.85E+04	0.	2.25E+04	0.	1.85E+08	5.49E+03
CE-144	5.19E+06	2.17E+06	0.	1.29E+06	0.	1.75E+09	2.78E+05

	PROCEDURE TITLE:		PAGE:
28	OFFSITE DOSE CALCU	ILATION MANUAL (OE	DCM) 204 of 220
PROCEDURE NO.:			204 01 220
C-200	ST. LUC		
	TABL	E M -1	
Selecting the Appro	oriate Long Term (X/Q) for	Dose Calculations Inv	olving Noble Gases
(1) Total Body of	dose from instantaneous re	eleases	
(2) Skin dose fr	om instantaneous release	s	
(3) Gamma air	dose (cumulative)		
· · ·	· · · · · · · · · · · · · · · · · · ·		
(4) Beta air dos			
	e (cumulative)	LIMITING Sector	(X/Q) VALUE sec/m ³
(4) Beta air dos	e (cumulative) E LIMITING RANGE N (miles)		(X/Q) VALUE sec/m ³ 1.6 X 10 ⁻⁶
(4) Beta air dos TYPE OF DOS CALCULATION	e (cumulative) E LIMITING RANGE N (miles)	Sector NW	sec/m ³ 1.6 X 10 ⁻⁶
 (4) Beta air dos TYPE OF DOS CALCULATION Instantaneous 1/31 days Quarterly 	e (cumulative) E LIMITING RANGE N (miles) 0.97	Sector NW 1. Normally (X/Q) = 1	sec/m ³ 1.6 X 10 ⁻⁶ .6 X 10 ⁻⁶ sec/m ³
 (4) Beta air dos TYPE OF DOS CALCULATION Instantaneous 1/31 days 	e (cumulative) E LIMITING RANGE (miles) 0.97 0.97 0.97	Sector NW	$\frac{\text{sec/m}^3}{1.6 \times 10^{-6}}$.6 X 10 ⁻⁶ sec/m ³ actual meteorological

<u>NOTE 1</u> The (X/Q) has to be calculated based on actual meteorological data that occurred during the period of interest. The sector of interest is N/A because the limiting (X/Q) will be determined from the actual meteorological data and may occur in any sector.

0.97 miles Corresponds to the minimum site boundary distance in the north direction and 0.97 miles was chosen for all other sectors for ease of calculations when the averaging is done for quarterly reports.

REVISION NO .:	PROCEDURE TITLE:			PAGE:
28	OFFSITE DOSE	E CALCULATION MAI	NUAL (ODCM)	205 of 220
PROCEDURE NO.:				205 01 220
C-200		ST. LUCIE PLANT		
		TABLE M-2		
Selecting the Appro	priate Long Term	(X/Q) _D or (D/Q) for Do	ose	
Calculations Involvir	ng Radioiodines &	8 D Particulates for:		
(1) Inhalation				
(2) Tritium (All g	gas pathways)			
(3) Ground Plar	ne			
TYPE OF DOSE CALCULATION	LIMITING RANGE (miles)	LIMITING SECTOR (OL)	(X/Q) _D sec/m ³	(D/Q) 1/m ²
Instantaneous	0.97	NW	В 1.3 X 10 ⁻⁶	
		WNW		8.2 X 10 ⁻⁹
A served Deve est	0.97	A	A, B	
Annual Report	0.97	А		A
1/31 days, Qtr. yearly,	0.97	NW	B 1.3 X 10⁻ ⁶	
Annual Total Dose	0.97	WNW		8.2 X 10 ⁻⁹

(OL) Over land areas only

(A) To be determined by reduction of actual met data occurring during each quarter

(B) For Tritium in the Milk Animal Pathway, the (X/Q)_D value should be that of the respective controlling sector and range where the Milk Animal is located as per Table M-3. Example: If a cow was located at 4.25 miles in NW sector, use the (X/Q)_D for 4.25 miles NW.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
28	OFFSITE DOSE CALCULATION MANUAL (ODCM)	206 of 220
PROCEDURE NO .:		200 01 220
C-200	ST. LUCIE PLANT	

TABLE M-3

Selecting the Appropriate Long Term (D/Q) for Dose Calculations Involving Radioiodines and 8D Particulates for Grass-Cow-Milk or Grass-Goat-Milk:

TYPE OF DOSE CALCULATION	LIMITING RANGE	LIMITING SECTOR	(D/Q) Value 1/m²
Release Rate	A	A	A
1/31 Days	В	В	В
Quarterly - Yearly	В	В	В
Annual (Calendar Year)	В	В	В
Annual Report	С	С	С

A. The worst cow or goat as per locations from land census. If no milk animal in any sector, assume a cow at 4.25 miles in the highest (D/Q) sector over land.

- B. The historical (D/Q) of all land sectors with the worst cow or goat from each sector as reported in the Land Census. A 4.25 mile cow should be assumed in the worst sector over land when no milk animal is reported.
- C. The highest (D/Q) at a milk animal location of all milk animals reported in the Land Census Report. (If no milk animals within 5 miles a 4.25 mile cow should be assumed in the sector having the highest (D/Q) at 4.25 miles over land). Actual Met Data should be used for the selection of the worst case milk animal and for the dose calculations. If both goat and milk animals are reported inside 5 miles, dose calculations should be performed on each animal and the higher dose animal contribution should be used.

The historical wind frequency fractions for each sector are listed in Table M-8.

VISION	I NO.: PI	ROCEDURE TITLE:										PAGE:	
	28		C	OFFSITE	DOSE C	ALULATI	ON MANI	JAL (ODO	CM)			207 0	f 220
OCEDU	JRE NO.:											2070	1 2 2 0
	C-200				ST.	LUCIE P	LANT						
				TED		ABLE M-4							
				IERF		KECHU	N FACTO	<u> 183</u>					
	Florida Power &	& Light Compa	ny										
	St. Lucie Unit 1					Terra	in Correct	tion Facto	ors (PUFF	/ STRAI	GHT LIN	E)	
	Hutchinson Isla	nd, Florida					d of Reco					,	
	Dames and Mo	,	598 - 112				Distance						
		DESIGN]
	AFFECTED	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	
	SECTOR	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64	
	NNE	0.	1.906	1.576	1.465	1.404	1.338	1.318	1.334	1.386	1.346	1.338	1
	NE	0.	1.887	1.581	1.461	1.391	1.310	1.259	1.164	1.128	1.101	1.116	1
	ENE	0.	1.452	1.230	1.122	1.081	1.047	1.033	.941	.941	.906	.902	1
	E	0.	1.662	1.425	1.277	1.193	1.151	1.123	1.097	1.121	1.123	1.122	1
	ESE	0.	1.690	1.483	1.328	1.260	1.246	1.190	1.134	1.094	1.032	.968]
	SE	0.	1.818	1.691	1.470	1.427	1.435	1.361	1.366	1.331	1.279	1.239	
	SSE	0.	1.812	1.586	1.370	1.302	1.270	1.263	1.229	1.193	1.171	1.151]
	S	0.	1.398	1.321	1.125	1.083	1.108	1.127	1.073	1.063	1.047	1.024]
	SSW	0.	1.534	1.411	1.296	1.192	1.205	1.132	1.135	1.116	1.077	1.060	
	SW	0.	1.685	1.492	1.294	1.233	1.200	1.222	1.160	1.160	1.198	1.196	
	WSW	0.	1.620	1.333	1.210	1.173	1.082	1.091	1.099	1.056	1.034	1.004	
	W	0.	1.651	1.415	1.290	1.218	1.154	1.099	1.081	1.067	1.093	1.083	
	WNW	0.	1.720	1.430	1.267	1.185	1.150	1.133	1.125	1.085	1.033	1.045	
	NW	0.	1.681	1.407	1.257	1.173	1.119	1.078	1.063	.995	.998	.978	
	NNW	0.	1.739	1.488	1.316	1.212	1.172	1.122	1.135	1.080	1.099	1.091	
									1.285				

Note 1: Any interpolations between stated mileages will be done by log-log

EVISION NO .:	PROCEDURE	TITLE:								F	AGE:
28			OFFSI	TE DOSE	CALULAT	ION MAN	UAL (ODC	M)			208 of 220
ROCEDURE NO .:										ľ	208 01 220
C-200				S	T. LUCIE	PLANT					
					TABLE M	-5					
		<u>HIS</u>	TORICAL		ERM - (X/C		ency corre	cted)			
	Te	errain / Red	circulation	Adjusted	Prog	ram ANNX	OQ9 Ver	sion - 11/1	8/76		
Florida Pov	wer & Light Co	ompany									
St. Lucie U	Init 1				Ave	rage Annu	al Relative	Concentr	ation (sec/	cubic me	eter)
Hutchinsor	n Island, Floric	la			Peri	od of Reco	ord: 9/1/76	6 to 8/31/7	8		-
Dames and	d Moore Job N	lo: 1.4598	8 - 112		Base	e Distance	in Miles/K	liometers			
AFFECTED	DESIGN										
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE NE	0.	1.1E-05	1.7E-06	7.8E-07	4.5E-07	3.1E-07	2.2E-07	1.7E-07	1.5E-07	1.2E-07	
	0.	1.3E-05	2.1E-06	8.9E-07	5.1E-07	3.4E-07	2.4E-07	1.7E-07	1.4E-07	1.1E-07	
ENE E	0.	9.3E-06	1.4E-06	6.2E-07	3.7E-07	2.5E-07	1.9E-07	1.3E-07	1.1E-07	8.8E-08	
	0.	9.8E-06	1.6E-06	6.5E-07	3.7E-07	2.5E-07	1.8E-07	1.4E-07	1.2E-07	9.9E-08	
ESE	0.	1.2E-05	1.9E-06	8.1E-07	4.8E-07	3.2E-07	2.4E-07	1.8E-07	1.4E-07	1.1E-07	
SE	0.	1.4E-05	2.4E-06	9.7E-07	5.7E-07	4.0E-07	2.9E-07	2.3E-07	1.9E-07	1.4E-07	
SSE	0.	1.1E-05	1.7E-06	7.3E-07	4.3E-07	2.9E-07	2.1E-07	1.6E-07	1.3E-07	1.1E-07	
S	0.	6.2E-06	1.0E-06	4.2E-07	2.5E-07	1.8E-07	1.4E-07	1.0E-07	8.0E-08	6.6E-08	
SSW	0.	5.7E-06	9.0E-07	4.0E-07	2.3E-07	1.6E-07	1.1E-07 1.1E-07	8.9E-08	7.0E-08 7.0E-08	5.7E-08 6.0E-08	
SW	0.	6.1E-06	9.4E-07	3.9E-07	2.2E-07	1.6E-07		8.6E-08			
WSW	0.	7.3E-06	1.1E-06	4.6E-07	2.7E-07	1.7E-07	1.3E-07	1.0E-07	8.0E-08	6.5E-08	
W NA(N))A(0.	7.6E-06	1.2E-06	5.2E-07	2.9E-07	2.0E-07	1.3E-07	1.0E-07	8.4E-08	7.2E-08	
WNW	0.	1.4E-05	2.1E-06	9.1E-07	5.2E-07	3.4E-07	2.6E-07	2.0E-07	1.5E-07	1.2E-07	
NW	0.	1.6E-05	2.4E-06	1.0E-06	5.9E-07	3.9E-07	2.8E-07	2.1E-07	1.7E-07	1.4E-07	
NNW	0.	1.5E-05 9.1E-06	2.2E-06 1.4E-06	9.6E-07 6.3E-07	5.5E-07 3.6E-07	3.6E-07 2.4E-07	2.6E-07 1.8E-07	2.0E-07 1.4E-07	1.6E-07 1.2E-07	1.3E-07 9.4E-08	
N	0.										

Number of Valid Observations = 17135 Number of Invalid Observations = 385 Note 1 - Any interpolations between stated mileages will be done by log-log

Number of Calms Lower Level = 95 Number of Calms Upper Level = 0

EVISION NO .:	PROCEDURE 1	TITLE:								P/	GE:
28			OFFSI	TE DOSE	CALULAT	ION MAN	UAL (ODC	CM)			209 of 22
ROCEDURE NO.:											203 01 22
C-200				S	T. LUCIE	PLANT					
					TABLE M	-6					
		HISTORIC					Frequenc	y correcte	ed)		
	Te	errain / Re	circulation	Adjusted	Prog	ram ANNX	(OQ9 Ver	sion - 11/1	8/76		
Florida Pov	ver & Light Co	ompany									
St. Lucie U				A	Average Ar	n <mark>nual Rela</mark>	tive Conce	entration D	epleted (s	ec/cubic	neter)
Hutchinsor	Island, Florid	la			Period of R						,
	d Moore Job N		112		Base Dista						
AFFECTED	DESIGN	_		_							
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
NNE	MILES 0.	.40 1.1E-05	1.21 1.6E-06	2.01 6.6E-07	2.82 3.8E-07	3.62 2.4E-07	4.42 1.7E-07	5.23 1.3E-07	6.03 1.1E-07	6.84 9.2E-08	7.64 7.6E-08
NE	0.	1.1E-05	1.8E-06	7.6E-07	4.3E-07	2.4E-07 2.8E-07	1.7E-07	1.3E-07 1.4E-07	1.1E-07	9.2E-08 8.6E-08	7.6E-08
ENE	0.	8.9E-06	1.7E-06	5.3E-07	3.0E-07	2.0E-07	1.4E-07	1.4E-07	8.4E-08	6.6E-08	5.6E-08
E	0.	9.1E-06	1.3E-06	5.6E-07	3.1E-07	2.1E-07	1.5E-07	1.1E-07	9.1E-08	7.5E-08	6.3E-08
ESE	0.	1.2E-05	1.6E-06	6.9E-07	3.9E-07	2.6E-07	1.9E-07	1.4E-07	1.1E-07	8.5E-08	6.7E-08
SE	0.	1.3E-05	2.0E-06	8.2E-07	4.7E-07	3.3E-07	2.3E-07	1.8E-07	1.3E-07	1.1E-07	9.0E-08
SSE	0.	1.1E-05	1.6E-06	6.3E-07	3.5E-07	2.4E-07	1.8E-07	1.4E-07	1.0E-07	8.2E-08	6.8E-08
S	0.	5.9E-06	9.1E-07	3.6E-07	2.1E-07	1.4E-07	1.1E-07	7.7E-08	6.2E-08	5.0E-08	4.1E-08
SSW	0.	5.4E-06	8.0E-07	3.4E-07	1.9E-07	1.3E-07	8.9E-08	6.9E-08	5.5E-08	4.3E-08	3.6E-08
SW	0.	5.7E-06	8.4E-07	3.4E-07	1.8E-07	1.2E-07	9.2E-08	6.7E-08	5.3E-08	4.6E-08	3.8E-08
WSW	0.	7.0E-06	9.6E-07	4.0E-07	2.2E-07	1.4E-07	1.0E-07	8.0E-08	6.1E-08	5.0E-08	4.0E-08
W	0.	7.3E-06	1.1E-06	4.4E-07	2.4E-07	1.6E-07	1.1E-07	8.2E-08	6.4E-08	5.5E-08	4.4E-08
WNW	0.	1.3E-05	1.9E-06	7.9E-07	4.4E-07	2.9E-07	2.0E-07	1.6E-07	1.2E-07	9.3E-08	7.8E-08
	0.	1.5E-05	2.1E-06	8.9E-07	4.9E-07	3.1E-07	2.3E-07	1.7E-07	1.3E-07	1.0E-07	8.5E-08
NW	1	1.4E-05	2.1E-06	8.3E-07	4.5E-07	2.9E-07	2.0E-07	1.6E-07	1.2E-07	1.0E-07	8.6E-08
NW NNW	0.	1.40-05	2.12.00				1.4E-07	1.1E-07			5.8E-08

.

Number of Invalid Observations = 385Number of Calms Upper Level = 0Note 1 - Any interpolations between stated mileages will be done by log-log

EVISION NO.:	PROCEDURE 1	TITLE:								P.	AGE:
28 ROCEDURE NO.:	_		OFFSI	TE DOSE	CALULAT	ION MAN	UAL (ODC	M)			210 of 22
C-200				S	T. LUCIE	PLANT					
• • • • • • • • • • • • • • • • •					TABLE M	-7			· • · · ·		
		HIS	TORICAL		ERM - (D/0		ency corre	ected)			
	TERRAIN	/ RECIRC	ULATION	ADJUSTE	D PF	ROGRAM	ANNXOQ	VERSIC	N - 11/18/	76	
Florida Pov	wer & Light Co	ompany									
St. Lucie U	nit 1				Aver	rage Annu	al Relative	Depositio	n Rate (sc	luare me	ter - 1)
Hutchinsor	n Island, Floric	la			Peri	od of Reco	ord: 9/1/76	6 to 8/31/7	8	-	
Dames and	d Moore Job N	lo: 4598 -	112		Base	e Distance	in Miles/K	lilometers			
				1	t	1		1		·····	
AFFECTED SECTOR	DESIGN DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE	0.	6.5E-08	9.3E-09	3.7E-09	2.1E-09	1.3E-09	9.0E-10	6.8E-10	5.5E-10	4.3E-10	
NE	0.	6.0E-08	8.9E-09	3.5E-09	1.9E-09	1.2E-09	8.1E-10	5.6E-10	4.3E-10	3.3E-10	2.8E-10
ENE	0.	3.2E-08	4.8E-09	1.9E-09	1.0E-09	6.6E-10	4.6E-10	3.2E-10	2.4E-10	1.9E-10	
E	0.	3.0E-08	4.6E-09	1.8E-09	9.5E-10	6.0E-10	4.2E-10	3.1E-10	2.5E-10	2.0E-10	
ESE	0.	3.7E-08	5.8E-09	2.3E-09	1.2E-09	8.0E-10	5.4E-10	3.9E-10	3.0E-10	2.2E-10	1.7E-10
SE	0.	6.4E-08	1.0E-08	4.0E-09	2.1E-09	1.4E-09	9.7E-10	7.2E-10	5.6E-10	4.3E-10	3.5E-10
SE SSE	0. 0.	6.4E-08 6.2E-08	1.0E-08 9.5E-09	4.0E-09 3.6E-09	2.1E-09 2.0E-09	1.4E-09 1.2E-09	9.7E-10 8.7E-10	7.2E-10 6.4E-10	5.6E-10 4.9E-10	4.3E-10 3.9E-10	
											3.1E-10
SSE	0.	6.2E-08	9.5E-09	3.6E-09	2.0E-09	1.2E-09	8.7E-10	6.4E-10	4.9E-10	3.9E-10	3.1E-10 2.5E-10
SSE S	0. 0.	6.2E-08 4.2E-08	9.5E-09 7.0E-09	3.6E-09 2.6E-09	2.0E-09 1.4E-09	1.2E-09 9.5E-10	8.7E-10 6.9E-10	6.4E-10 4.9E-10	4.9E-10 3.8E-10	3.9E-10 3.0E-10	3.1E-10 2.5E-10
SSE S SSW	0. 0. 0.	6.2E-08 4.2E-08 3.4E-08	9.5E-09 7.0E-09 5.4E-09	3.6E-09 2.6E-09 2.2E-09	2.0E-09 1.4E-09 1.1E-09	1.2E-09 9.5E-10 7.5E-10	8.7E-10 6.9E-10 5.0E-10	6.4E-10 4.9E-10 3.7E-10	4.9E-10 3.8E-10 2.9E-10	3.9E-10 3.0E-10 2.3E-10	3.1E-10 2.5E-10 1.8E-10
SSE S SSW SW	0. 0. 0. 0.	6.2E-08 4.2E-08 3.4E-08 4.5E-08	9.5E-09 7.0E-09 5.4E-09 7.0E-09	3.6E-09 2.6E-09 2.2E-09 2.6E-09	2.0E-09 1.4E-09 1.1E-09 1.5E-09	1.2E-09 9.5E-10 7.5E-10 9.0E-10	8.7E-10 6.9E-10 5.0E-10 6.6E-10	6.4E-10 4.9E-10 3.7E-10 4.6E-10	4.9E-10 3.8E-10 2.9E-10 3.6E-10	3.9E-10 3.0E-10 2.3E-10 3.0E-10	3.1E-10 2.5E-10 1.8E-10 2.5E-10 2.6E-10
SSE S SSW SW WSW	0. 0. 0. 0. 0.	6.2E-08 4.2E-08 3.4E-08 4.5E-08 5.3E-08	9.5E-09 7.0E-09 5.4E-09 7.0E-09 7.7E-09	3.6E-09 2.6E-09 2.2E-09 2.6E-09 3.0E-09	2.0E-09 1.4E-09 1.1E-09 1.5E-09 1.6E-09	1.2E-09 9.5E-10 7.5E-10 9.0E-10 1.0E-09	8.7E-10 6.9E-10 5.0E-10 6.6E-10 7.3E-10	6.4E-10 4.9E-10 3.7E-10 4.6E-10 5.5E-10	4.9E-10 3.8E-10 2.9E-10 3.6E-10 4.1E-10	3.9E-10 3.0E-10 2.3E-10 3.0E-10 3.3E-10	3.1E-10 2.5E-10 1.8E-10 2.5E-10 2.6E-10 2.6E-10
SSE S SSW SW WSW W	0. 0. 0. 0. 0. 0.	6.2E-08 4.2E-08 3.4E-08 4.5E-08 5.3E-08 5.0E-08	9.5E-09 7.0E-09 5.4E-09 7.0E-09 7.7E-09 7.5E-09	3.6E-09 2.6E-09 2.2E-09 2.6E-09 3.0E-09 3.0E-09	2.0E-09 1.4E-09 1.1E-09 1.5E-09 1.6E-09 1.6E-09	1.2E-09 9.5E-10 7.5E-10 9.0E-10 1.0E-09 9.8E-10	8.7E-10 6.9E-10 5.0E-10 6.6E-10 7.3E-10 6.7E-10	6.4E-10 4.9E-10 3.7E-10 4.6E-10 5.5E-10 5.0E-10	4.9E-10 3.8E-10 2.9E-10 3.6E-10 4.1E-10 3.8E-10	3.9E-10 3.0E-10 2.3E-10 3.0E-10 3.3E-10 3.2E-10	3.1E-10 2.5E-10 1.8E-10 2.5E-10 2.6E-10 2.6E-10 4.2E-10
SSE SSW SW WSW W WNW	0. 0. 0. 0. 0. 0. 0. 0.	6.2E-08 4.2E-08 3.4E-08 4.5E-08 5.3E-08 5.0E-08 8.8E-08	9.5E-09 7.0E-09 5.4E-09 7.0E-09 7.7E-09 7.5E-09 1.3E-08	3.6E-09 2.6E-09 2.2E-09 2.6E-09 3.0E-09 3.0E-09 4.9E-09	2.0E-09 1.4E-09 1.1E-09 1.5E-09 1.6E-09 1.6E-09 2.6E-09	1.2E-09 9.5E-10 7.5E-10 9.0E-10 1.0E-09 9.8E-10 1.7E-09	8.7E-10 6.9E-10 5.0E-10 6.6E-10 7.3E-10 6.7E-10 1.1E-09	6.4E-10 4.9E-10 3.7E-10 4.6E-10 5.5E-10 5.0E-10 8.7E-10	4.9E-10 3.8E-10 2.9E-10 3.6E-10 4.1E-10 3.8E-10 6.6E-10	3.9E-10 3.0E-10 2.3E-10 3.0E-10 3.3E-10 3.2E-10 5.1E-10	3.1E-10 2.5E-10 1.8E-10 2.5E-10 2.6E-10 2.6E-10 4.2E-10 3.8E-10

Number of Valid Observations = 17135 Number of Invalid Observations = 385

Number of Calms Lower Level = 95 Number of Calms Upper Level = 0

Note 1 - Any interpolations between stated mileages will be done by log-log

EVISION NO .:		PROCEDURE					PAGE:	
28		OFFSIT	E DOSE C	ALCULA	FION MAN	UAL (OD(CM) 21	1 of 220
ROCEDURE NO	D.:							1 01 220
C-20	0		S	T. LUCIE	PLANT			
				TABLE M	-8			
oint Wind I	requent	y Distribu				ber 1, 197	76 - Augus	t 31, 197
II Winds				St.	Lucie Unit	2		
ata Source	e: On-Si	te		Hut	chinson Is	land, Flori	da	
Vind Senso	or Height	10.00 M	eters		rida Powei			
able Gene				Dai	mes and M	loore Job	No: 4598	- 112 - 2
		Wind S	Speed Cate	egories (N	leters per	Second)		
WIND	0.0-	1.5-	3.0-	5.0-	7.5-	>10.0	TOTAL ¹	MEAN
SECTOR	1.5 71	3.0 206	5.0 318	7.5	10.0 3	0	669	SPEED
NNE	.43	1.25	1.92	.43	.02	0.00	4.05	3.32
	62	292	385	128	0	0	867	3.43
NE	.38	1.77	2.33	.77	0.00	0.00	5.25	5.45
ENE	60	334	505	158	0	0	1057	3.51
	.36 69	2.02 355	3.06 510	.96 76	0.00	0.00	6.40 1010	
E	.42	2.15	3.09	.46	0.00	0.00	6.11	3.25
	115	684	744	72	1	0	1616	2.04
ESE	.70	4.14	4.50	.44	.01	0.00	9.78	3.04
SE	183	660	749	28	0	0	1620	2.88
	1.11 129	3.99 579	4.53 656	.17 93	0.00	0.00	9.81 1458	
SSE	.78	3.50	3.97	.56	.01	0.00	8.82	3.10
0	72	310	407	99	8	1	897	0.00
S	.44	1.88	2.46	.60	.05	.01	5.43	3.36
SSW	84	372	446	105	33	4	1044	3.48
	.51	2.25	2.70	.64	.20	.02 0	6.32	
SW	129 .78	440 2.66	336 2.03	106 .64	14 .08	0.00	1025 6.20	3.10
	155	320	186	29	5	0.00	695	0.50
WSW	.94	1.94	1.13	.18	.03	0.00	4.21	2.59
w	174	267	119	37	2	0	599	2.43
	1.05	1.62	.72	.22	.01	0.00	3.63	
WNW	203 1.23	304 1.84	172 1.04	17 .10	0 0.00	0 0.00	696 4.21	2.34
	143	518	424	50	0.00	0.00	1135	
NW	.87	3.14	2.57	.30	0.00	0.00	6.87	2.85
NNW	85	379	535	70	1	0	1070	3.22
	.51	2.29	3.24	.42	.01	0.00	6.46	5.22
N	91 55	194	531	148	5		969	3.69
	.55 95	1.17	3.21	.90	.03	0.00	5.86 95	
CALM	95 .57						.57	CALM
	1920	6214	7023	1287	73	5	16522	2 10
TOTAL	11.62	37.61	42.51	7.79	.44	.03	100.00	3.10

NUMBER OF VALID OBSERVATIONS 16522 NUMBER OF INVALID OBSERVATIONS 988 TOTAL NUMBER OF OBSERVATIONS 17520 94.30 PCT. 5.70 PCT. 100.00 PCT. XXX Number of Occurrences XXX Percent Occurrences

¹ - Totals below are given in <u>hours</u> & percent for wind frequency by sectors

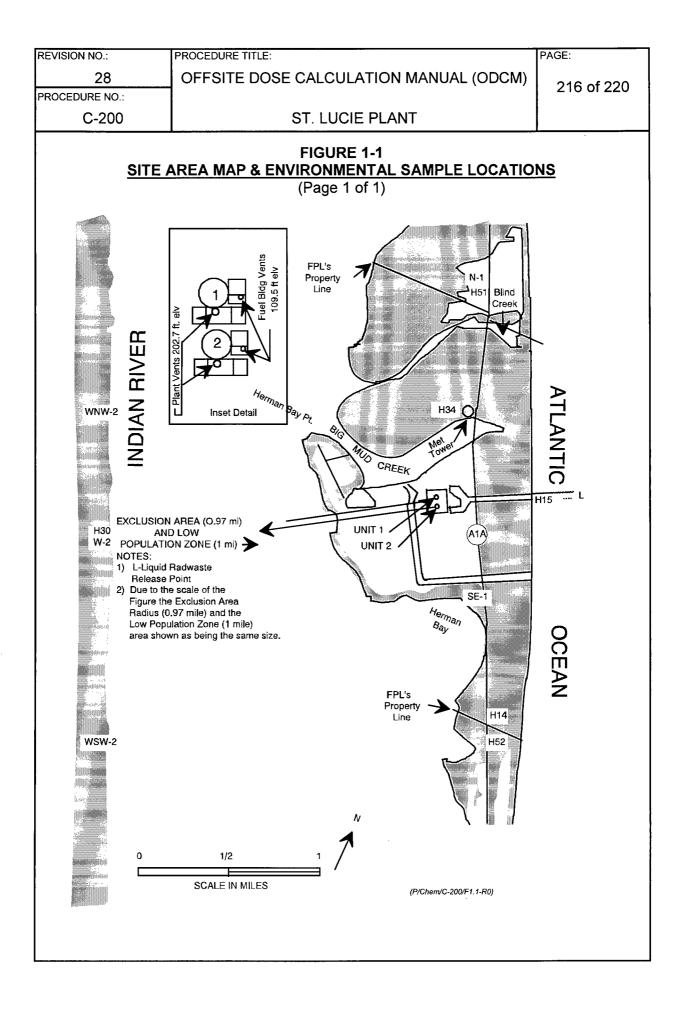
VISION NO.:	PROCEDURE TIT	LE:				PAGE:
28		OFFSITE DOSE CALULATIO	N MANUAL (ODCM)		212 of 22
OCEDURE NO.:						
C-200		ST. LUCIE PI	_ANT			
		APPENDIX E RADIOLOGICAL ENVIRONMEN (Page 1 of 4	AL SURVEIL	LANCE		
		ST. LUCIE PLA Key to Sample Loc				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	N-1	North of Blind Creek	TLD	Quarterly	1	N
Direct Radiation	NNW-5	South of Pete Stone Creek	TLD	Quarterly	5	NNW
Direct Radiation	NNW-10	C. G. Station	TLD	Quarterly	9	NNW
Direct Radiation	NW-5	Indian River Drive at Rio Vista Drive	TLD	Quarterly	6	NW
Direct Radiation	NW-10	Intersection of SR 68 and SR 607	TLD	Quarterly	10	NW
Direct Radiation	WNW-2	Cemetery South of 7107 Indian River Drive	TLD	Quarterly	3	WNW
Direct Radiation	WNW-5	US-1 at SR 712	TLD	Quarterly	5	WNW
Direct Radiation	WNW-10	SR 70, West of Turnpike	TLD	Quarterly	10	WNW
Direct Radiation	W-2	7609 Indian River Drive	TLD	Quarterly	2	W
Direct Radiation	VV-5	Oleander and Sager Streets	TLD	Quarterly	5	W
Direct Radiation		I-95 and SR 709	TLD	Quarterly	9	W
Direct Radiation	WSW-2	8503 Indian River Drive	TLD	Quarterly	2	WSW
Direct Radiation	WSW-5	Prima Vista Blvd. at Yacht Club	TLD	Quarterly	5	WSW
Direct Radiation	WSW-10	Del Rio and Davis Streets	TLD	Quarterly	10	WSW
Direct Radiation	SW-2	9207 Indian River Drive	TLD	Quarterly	2	SW
Direct Radiation	SW-5	US 1 and Village Green Drive	TLD	Quarterly	5	SW
Direct Radiation	SW-10	Port St. Lucie Blvd. and Cairo Road	TLD	Quarterly	10	SW
Direct Radiation	SSW-2	10307 Indian River Drive	TLD	Quarterly	3	SSW

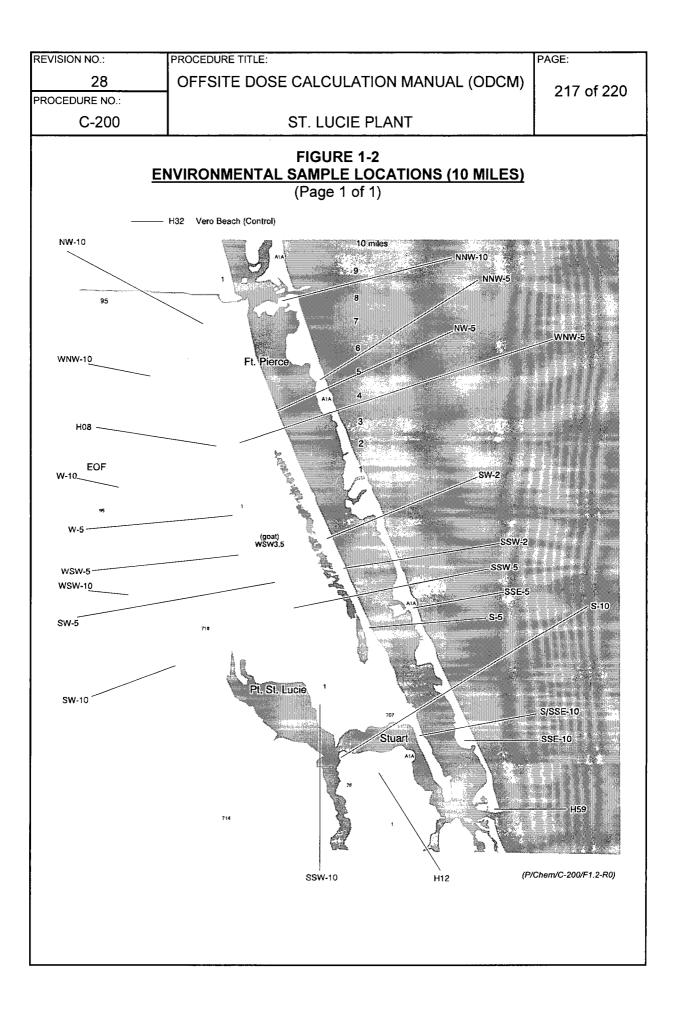
VISION NO.:	PROCEDURE TIT	LE:				PAGE:
28		OFFSITE DOSE CALULATIC	ON MANUAL (ODCM)		213 of 22
OCEDURE NO.:						2130122
C-200		ST. LUCIE P	LANT			
		APPENDIX I RADIOLOGICAL ENVIRONMEN (Page 2 of 4	TAL SURVEIL	LANCE		
		ST. LUCIE PLA Key to Sample Loo				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	SSW-5	Port St. Lucie Blvd. and US 1	TLD	Quarterly	6	SSW
Direct Radiation	SSW-10	Pine Valley and Westmoreland Roads	TLD	Quarterly	8	SSW
Direct Radiation	S-5	13179 Indian River Drive	TLD	Quarterly	5	S
Direct Radiation	S-10	US 1 and SR 714	TLD	Quarterly	10	S
Direct Radiation	S/SSE-10	Indian River Drive and Quail Run Lane	TLD	Quarterly	10	SSE
Direct Radiation	SSE-5	Entrance of Nettles Island	TLD	Quarterly	5	SSE
Direct Radiation	SSE-10	Elliot Museum	TLD	Quarterly	10	SSE
Direct Radiation	SE-1	South of Cooling Canal	TLD	Quarterly	1	SE
Direct Radiation	*H-32	U. of Florida - 1FAS Entomology Lab Vero Beach	TLD	Quarterly	19	NNW
Airborne	H08	FPL Substation - Weatherbee Road	Radioiodine & Particulates	Weekly	6	WNW
Airborne	*H12	FPL Substation - SR 76, Stuart	Radioiodine & Particulates	Weekly	12	S
Airborne	H14	Onsite - near south property line	Radioiodine & Particulates	Weekly	1	SE
Airborne	H30	Power Line - 7609 Indian River Drive	Radioiodine & Particulates	Weekly	2	W

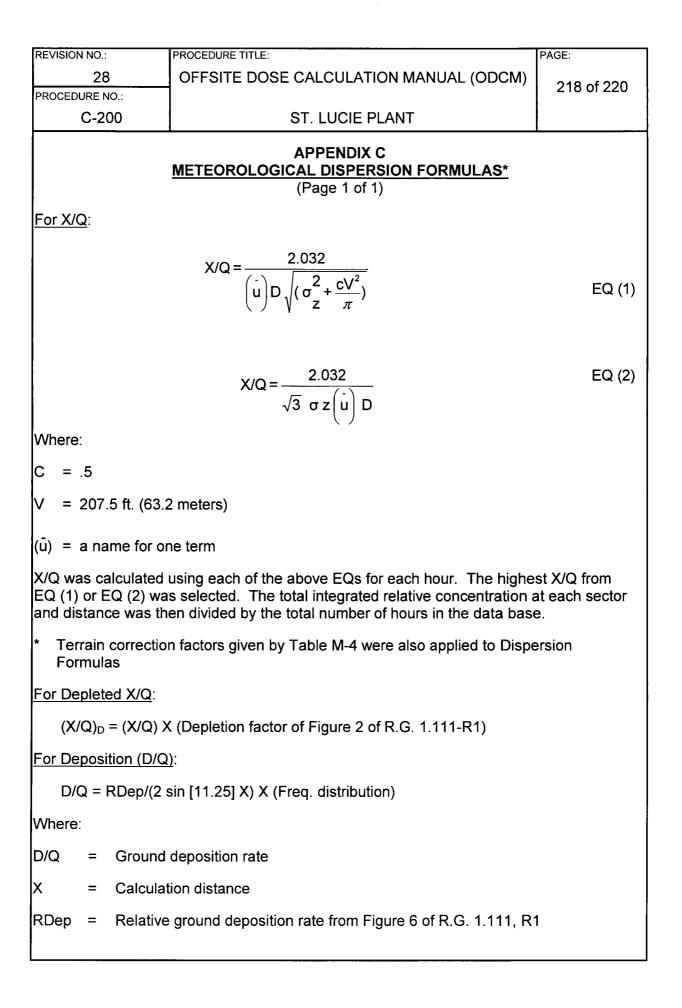
* Denotes Control Sample

REVISION NO.	PROCEDUR	E TITLE:			P	AGE:
28 PROCEDURE NO.:		OFFSITE DOSE CALULATIO	N MANUAL (O	DCM)		214 of 220
C-200		ST. LUCIE PL	ANT			
		APPENDIX E RADIOLOGICAL ENVIRONMENT (Page 3 of 4) ST. LUCIE PLA	AL SURVEILL	<u>ANCE</u>		
		Key to Sample Loc	ations			
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Airborne	H34	Onsite - At Meteorological Tower	Radioiodine & Particulates	Weekly	0.5	N
Waterborne	H15	Atlantic Ocean vicinity of public beaches east side of Route A1A	Surface Water (ocean) Sediment from shoreline	Weekly Semi-Annually	< 1	ENE/E/ESE
Waterborne	*H59	Near south end of Hutchinson Island	Surface Water (ocean) Sediment from shoreline	Monthly Semi-Annually	10-20	S/SSE
Food Products	H15	Ocean side vicinity of St. Lucie Plant (NOTE 1)	Crustacea Fish	Semi-Annually Semi-Annually	<1	ENE/E/ESE
Food Products	H51	Offsite near north property line	Broad Leaf vegetation	Monthly (when available)	1	N/NNW

* Denotes Control Sample


EVISION NO .:	VISION NO.: PROCEDURE TITLE:					AGE:
28 OFFSITE DOSE CALULATION MANUAL (ODCM) 2ROCEDURE NO.:						215 of 220
C-200 ST. LUCIE PLANT						
		APPENDIX E RADIOLOGICAL ENVIRONMEN (Page 4 of 4	TAL SURVEILL	ANCE		
		ST. LUCIE PLA Key to Sample Loo				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION
Food Products	H52	Offsite near south property line	Broad leaf vegetation	Monthly (when available)	1	S/SSE
Food Products	*H59	Near south end of Hutchinson Island	Crustacea Fish Broad leaf vegetation	Semi-Annually Semi-Annually Monthly	10-20	S/SSE
Food Products	WSW 3.5	Goat Milk per land use census (2000) off east end of Tilton Road	Milk	Quarterly (when available)	3.5	wsw


* Denotes control sample


It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Bureau of Radiation Control (BRC), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Program Controls are the responsibility of the Nuclear Plant Support Services Department.

<u>NOTE 1</u>

These samples may be collected from or supplemented by samples collected from the plant intake canal if the required analyses are unable to be performed due to unavailability or inadequate quantity of sample from the ocean side location.

REVISION NO .:			PROCEDURE TITLE:	PAGE:			
0000	28		OFFSITE DOSE CALCULATION MANUAL (ODCM)	219 of 220			
PROCI	EDURE NO C-20		ST. LUCIE PLANT				
	0-20	0	ST. EUCIE FEANT				
	DESCI	RIPTION	I OF THE INTERLABORATORY COMPARISON PROC (Page 1 of 2)	<u> GRAM (ICP)</u>			
			(1 dgc 1 01 2)				
			, Department of Health-Bureau of Radiation Control (Bl In INTERLABORATORY COMPARISON PROGRAM.	RC) Laborato			
1.	The	sample r	matrices and analytical methods shall be:				
	Α.		na isotopic on a filter sample simulating airborne radioio ulate collection.	dine and			
	В.	Gamm	na isotopic on a water sample simulating a surface wate	er grab sampl			
	C.	Gamm	na isotopic on either sediment (or soil) or broad leaf veg	etation.			
	1						
	<u>NOTE</u> Steps D, E and F reference NRC IR 99-04, PMAI 99-0716.						
	<u> </u>		Beta on an Air Filter matrix.	J			
	E.	Initium	n in water, using method employed in REMP.				
	F.	sample	na isotopic on a water sample (above) is used for milk n es are being obtained per land use census identified mi 5 miles of the plant site.				
2.	The	source o	f samples for this program:				
	A.		eral Government Laboratory Program (e.g., DOE-LAP, ng Water Program)	EPA Safe			
	В.	NIST t	e, Federal, or private (commercial) laboratory capable o traceable samples. To be eligible, a Commercial Labor the FPL Quality Assurance criteria of "Quality Related".				
	C.	sample provide vendor FPL pe	amma Analysis only, a FPL Nuclear Site Laboratory ma e matrices using known quantities of radioactivity from i ed by a FPL Contract Laboratory currently approved as r. These prepared matrices may be prepared by the ve ersonnel, but shall not exceed the participant(s) form ar ties for allowed radioactivity.	PC-1 Level ndor, or by			
3.			latrix samples shall be capable of achieving ODCM Tat _Ds on a blank sample.	ole 4.12-1			

REVIS	SION NO.:	PROCEDURE TITLE:	PAGE:				
PROC	28 EDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	220 of 220				
	C-200	ST. LUCIE PLANT					
	APPENDIX D DESCRIPTION OF THE INTERLABORATORY COMPARISON PROGRAM (ICP) (Page 2 of 2)						
4.	exceeding 20 performed to	n 20% of expected shall be considered acceptable. Res 0% but within 35% require a description of probable cau bring the analysis into conformance. Results exceedin lot Acceptable; the Matrix shall be replaced and reanaly	se and actions g 35% are				
5.		cy for performing the interlaboratory comparison program a maximum of 15 months between comparisons of sim					
-							
		0					

FLORIDA POWER AND LIGHT COMPANY ST. LUCIE UNITS # 1 AND # 2 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT JANUARY 1, 2006 THROUGH DECEMBER 31, 2006

ATTACHMENT E C-200, OFFSITE DOSE CALCULATION MANUAL REVISIONS 26 & REVISION 27 MARKED UP PAGES

~

			ST	. LUCIE P			lure No.
						C-:	200
			CI	IEMISTRY OPE	RATING	Current R	evision No.
ч.				PROCEDUF	RE		26
nentatic ument.		PL		SAFETY RELAT	ED		ve Date 2/05
FOR INFORMATION ONLY s, verify revision and change documentation able) with a controlled index or document. ERIFIED 3/3/05 INITIAL 3	Title: OF	FSITE	E DO	SE CALCUL (ODCM)		/IANU/	AL
RMA ion an control	Responsible	Departmer	nt: CHEN	MISTRY			
~ 0	REVISION S	UMMARY					
	area monitor	, delete rec	quiremen	05-0822 for CR 04-1 ts to sample goat milk, age DHRS to BRC. (F	, change drinking	water, char	
Before u (if app DATE	continue as I and two tech	long as pric inically qua	or to relea lified me	atements 35 and 45 s use, two independent s mbers of the facility sta lineup. (Al Locke, 05	amples of tank's aff independently	contents ar	e analyzed,
	Revision 24	- Made ch	anges pe	r CR 01-0140 and per	iodic review. (R.	E. Cox, 02/	14/02)
	Revision 23 of "goat (mill			page description for re r, 05/01/01)	evision 23 to read	"goat (milk)	" instead
ا منعل	Radioactivity grab sample changed gas ODCM word	Monitor to s will be tal seous conti ing, include	meet the ken, inclu nuous ve ed goat (r	e loss criteria, added a e expectation of the ne ded Carbon-14 & Nick nt release pathway, st nilk) animal to the Rac e conversion factors.	ew EPRI industry cel-63 in liquid sa candardized St. Lu liological Environ	standard, ei mpling/anal ucie with Tu mental Mon	nsured ysis, rkey Points
0 0 0	Revision 0	FRG Revie 04/22		Approved By C. M. Wethy	Approval Date 04/27/82	S_ DATE	_OPS
~1				Plant General Manager			PROCEDURE
4	Revision 26	FRG Revie 07/28		Approved By G. L. Johnston	Approval Date 07/28/05	DOCN SYS	C-200
				Plant General Manager	· · · · · · · · · · · · · · · · · · ·		COMPLETED
				N/A Authorized Approver N/A			26
				Authorized Approver (Minor Correction)		-	
183							

REVISION	NO.:	PROCEDURE TITLE:	PAGE:
:	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCED		OF OTE DOOL ONLOOLATION WINNOAL (ODOW)	2 of 219
	C-200	ST. LUCIE PLANT	
		INDEX	
		INDEX	
	SECTION		PAGE
INTRO	DUCTION		9
CONT	ROLS SECTI	ON	
DEFIN	ITIONS FOR	CONTROLS SECTION	
1.1			
1.4			
1.5			
1.6		FUNCTIONAL TEST	
1.10		IVALENT I-131	
1.13			
1.17			
1.18		ÔSE CALCULATION MANUAL	
1.19			
1.20		NAL MODE - MODE	
1.24	PURGE - P	URGING	
1.25			
1.27			
1.30			
1.31		HECK	
1.33		POWER	
1.34			
1.35	UNRESTRI		
1.39		ON EXHAUST TREATMENT SYSTEM	
1.40	VENTING		
1.41	WASTE GA	S HOLDUP SYSTEM	
3/4	CONTROLS	SAND SURVEILLANCE REQUIREMENTS	
3/4.0	APPLICABI	LITY	
	UMENTATIO		···· / · · · ·
RADIO	ACTIVE LIQU	JID EFFLUENT MONITORING INSTRUMENTATION	
RADIO	ACTIVE GAS	EOUS EFFLUENT MONITORING INSTRUMENTATIO)N24-21
1			
1			

OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT INDEX (continued) SURVEILLANCE STATEMENTS FOR CONTROLS SECT CTIVE EFFLUENTS D EFFLUENTS CONCENTRATION	-34 31 28 35 39 34 .40 37 .44 4/ .45 43 .46 43
INDEX (continued) SURVEILLANCE STATEMENTS FOR CONTROLS SECT CTIVE EFFLUENTS D EFFLUENTS CONCENTRATION DOSE LIQUID RADWASTE TREATMENT. COUS EFFLUENTS DOSE FFLUENTS DOSE RATE DOSE - NOBLE GAS. DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM. GASEOUS RADWASTE TREATMENT SYSTEM.	PAGE ION -34 3/ -39 34 -39 34 -40 37 -44 4/ -45 42 -46 43
INDEX (continued) SURVEILLANCE STATEMENTS FOR CONTROLS SECT CTIVE EFFLUENTS D EFFLUENTS CONCENTRATION DOSE LIQUID RADWASTE TREATMENT. COUS EFFLUENTS DOSE FFLUENTS DOSE RATE DOSE - NOBLE GAS. DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM. GASEOUS RADWASTE TREATMENT SYSTEM.	10N
(continued) SURVEILLANCE STATEMENTS FOR CONTROLS SECT CTIVE EFFLUENTS D EFFLUENTS CONCENTRATION	10N
SURVEILLANCE STATEMENTS FOR CONTROLS SECT CTIVE EFFLUENTS D EFFLUENTS CONCENTRATION DOSE LIQUID RADWASTE TREATMENT COUS EFFLUENTS DOSE RATE DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM. GASEOUS RADWASTE TREATMENT SYSTEM	10N
CTIVE EFFLUENTS D EFFLUENTS CONCENTRATION DOSE LIQUID RADWASTE TREATMENT. COUS EFFLUENTS DOSE RATE DOSE - NOBLE GAS. DOSE - NOBLE GAS. DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM. GASEOUS RADWASTE TREATMENT SYSTEM.	-34 3 38 35 39 34 40 3' .44 4 .45 4 .45 4
D EFFLUENTS CONCENTRATION DOSE LIQUID RADWASTE TREATMENT COUS EFFLUENTS DOSE RATE DOSE - NOBLE GAS DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	38 33 39 34 40 3'
CONCENTRATION DOSE LIQUID RADWASTE TREATMENT COUS EFFLUENTS DOSE RATE DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	
DOSE LIQUID RADWASTE TREATMENT OUS EFFLUENTS DOSE RATE DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	
OUS EFFLUENTS DOSE RATE DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM. GASEOUS RADWASTE TREATMENT SYSTEM	
DOSE RATE DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	
DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	
DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	
GASEOUS RADWASTE TREATMENT SYSTEM	
USED)	- 100000
L DOSE	45
R CHANGES TO RADIOACTIVE LIQUID, GASEOUS AN E TREATMENT SYSTEMS (ADMINISTRATIVE CONTR	ND SOLID 47 OL)
	THE 48
CTIVE ENVIRONMENTAL MONITORING	
TORING PROGRAM	
USE CENSUS	63 <i>5</i> °
RLABORATORY COMPARISION PROGRAM	
	JAL RADIOACTIVE EFFLUENT RELEASE REPORT TO MISSION (ADMINISTRATIVE CONTROL) CTIVE ENVIRONMENTAL MONITORING TORING PROGRAM USE CENSUS RLABORATORY COMPARISION PROGRAM

REVISION NO.	:	PROCEDURE TITLE:	PAGE:
2		OFFSITE DOSE CALCULATION MANUAL (ODCM)	4 of 219
PROCEDURE	1		- 51213
C-2	00	ST. LUCIE PLANT	
		INDEX (continued)	
<u>SI</u>	ECTION	· · · ·	PAGE
BASES FO		ROLS SECTION	
<u>3/4.11 R</u>	ADIOACT	IVE EFFLUENTS	
3.3.3.9	INSTRU	IMENTATION	64 6 8
3/4.11.1	LIQUID	EFFLUENTS	69
3/4.11.2	GASEO	US EFFLUENTS	7 †
3/4.11.3	(NOT U	SED)	
3/4.11.4	TOTAL	DOSE	74
<u>3/4.12 R</u>	ADIOACT	IVE ENVIRONMENTAL MONITORING	
3/4.12 .1	MONITO	ORING PROGRAM	78
3/4.12.2	LAND U	SE CENSUS	78
3/4.12.3	INTERL	ABORATORY COMPARISON PROGRAM	77
<u>LIST OF F</u>	IGURES	FOR CONTROLS SECTION	
<u>FIGURE</u>			
1.1	SITE AF	REA MAP & ENVIRONMENTAL SAMPLE LOCATIONS	
1.2	ENVIRC	NMENTAL SAMPLE LOCATIONS (10 MILES)	216

REVISION N	0.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	5 of 219
	≡ NO.: •200	ST. LUCIE PLANT	
		INDEX	
ć		(continued)	DACE
_	<u>SECTION</u>		PAGE
	DLS SECTI	ON	
LIST OF	TABLES F	OR CONTROLS SECTION	
TABLE			
1-1	FREQU		
3.3-12	RADIOA	ACTIVE LIQUID EFFLUENT MONITORING	
		MENTATION	19 /7
3.3-13		ACTIVE GASEOUS EFFLUENT MONITORING	25 22
3.3-14		ACTIVE EFFLUENT MONITORING SETPOINT BASIS.	
3.12-1		OGICAL ENVIRONMENTAL MONITORING PROGRAM	
3.12-2		TING LEVELS FOR RADIOACTIVITY CONCENTRATIO	
D. 1 Z-Z		DNMENTAL SAMPLES	
4.3-8		CTIVE LIQUID EFFLUENT MONITORING	00-0
		MENTATION SURVEILLANCE REQUIREMENTS	
4.3-9		ACTIVE GASEOUS EFFLUENT MONITORING	
4.11-1		CTIVE LIQUID WASTE SAMPLING AND ANALYSIS	_
	PROGR	AM	
4.11 -2	-	ACTIVE GASEOUS WASTE SAMPLING AND ANALYS	-
4 .1 2-1	DETECT	TION CAPABILITIES FOR ENVIRONMENTAL SAMPLE	<u> </u>
	ANALYS	SIS LOWER LIMIT OF DETECTION (LLD)	60 <i>5</i> 7

Ú1

REVISION	NO.:	P	ROCEDURE TITLE:	PAGE:
PROCED	26 JRE NO	'	OFFSITE DOSE CALCULATION MANUAL (ODCM)	6 of 219
	C-200		ST. LUCIE PLANT	
метно	<u>SECTIO</u>		INDEX (continued) CTION	PAGE
Glossa	ry for Me	thodo	logy Section	79 -75
1.0	LIQUID	RELE	EASES METHODOLOGY	82 7 <i>8</i>
	1.1	Radi	oactive Liquid Effluent Model Assumptions	
	1.2		rmining the Fraction (F) of 10 CFR Part 20 Effluent centration Limits (ECL) for a Liquid Release Source	
	1.3	Dete	rmining Setpoints for Radioactive Liquid Effluent Mon	itors
	1.4	Dete	rmining the Dose for Radioactive Liquid Releases	
	1.5	Proje	ecting Dose for Radioactive Liquid Effluents	95 89
2.0	RADIO	ACTIV	/E RELEASES OF GASEOUS EFFLUENTS	96 90
	2.1	Gase	eous Effluent Model Assumptions	97 90
	2.2		rmining the Total Body and Skin Dose Rates for Nobl ases and Establishing Setpoints for Effluent Monitors	
	2.3		rmining the Radioiodine and Particulate Dose Rate to n From Gaseous Releases	
		2.3.1	Inhalation	
		2.3.2	Ground Plane	1 16 109
		2.3.3	Milk	
		2.3.4	Tritium	<u>119</u> 112
A		2.3.5	Total Dose Rate by Release Source	.12 1 <i>1</i> 14

1441010	N NO.:	PRO	DCEDURE TITLE:	PAGE:
	26 URE NO.:	o	FFSITE DOSE CALCULATION MANUAL (ODCM)	7 of 219
RUCED	C-200		ST. LUCIE PLANT	
метн	<u>SECTI</u> ODOLOG		INDEX (continued) TION	PAGE
Glossa	ary for Me	ethodolo	gy Section (continued)	
2.0	RADIC	ACTIVE	RELEASES OF GASEOUS EFFLUENTS (continue	d)
	2.4		nining the Gamma Air Dose for Radioactive Noble G	
	2.5		nining the Beta Air Dose for Radioactive Noble Gas	<u>-124-</u> 17
	2.6		nining the Radioiodine and Particulate Dose to Any A 's Organ From Cumulative Releases	
		2.6.1	Inhalation	128 /2
		2.6.2	Ground Plane	12 9/27
		2.6.3	Milk	
		2.6.4	Meat	1 31 184
		2.6.5	Vegetation	
		2.6.6	Tritium (All pathways)	
		2.6.7	Total Organ Dose	
	2.7	Projec	ting Dose for Radioactive Gaseous Effluents	
3.0	40 CFF	R 190 D0	OSE EVALUATION	1 38 U(

REVISION NO.:		PAGE:
26 PROCEDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	8 of 219
C-200	ST. LUCIE PLANT	
<u>SECTION</u>		PAGE
APPENDIXES		
APPENDIX A	ECL, Dose Factor and Historical Meteorological Tables	146 .154-
APPENDIX B	Current R.E.M. Sample Point Locations	219 ନ୍ୟା
APPENDIX C	Description of Meteorological Dispersion Formulas Utilized Historical Data and Methodology for Determining Actual ME Data	T 217
APPENDIX D	Description of the Interlaboratory Comparison Program	

EVISION NO .:	PROCEDURE TITLE:		PAG	E:
26	OFFSITE DOS	SE CALCULATION MANU	JAL (ODCM)	
OCEDURE NO	:		, ,	22 of 219
C-200		ST. LUCIE PLANT		
		TABLE 3.3-13		
RADI	OACTIVE GASEOUS	EFFLUENT MONITORING	INSTRUMENTA	TION
		(Page 1 of 3)		
	INSTRUMENT	MINIMUM CHANNELS	APPLICABILITY	ACTION
		OPERABLE		ACTION
	as Holdup System			
a) Not	le Gas Activity Monitor -			
Pro	viding Alarm and Automatic	1/Rx	-	45
	mination of Release er Evacuation System			<u> </u>
	le Gas Activity Monitor	1/Rx	**	47
a) NOL	Bas Activity Monitor	1/KX	Modes 1, 2, 3, 4	47
3. Plant Ve	nt System		WOUES 1, 2, 3, 4	40
a) Not	le Gas Activity Monitor	·····		1
	w Range)	1/Rx	*	47
	ne Sampler	1/Rx	*	51
	ticulate Sampler	1/Rx	*	51
	v Rate Monitor	N.A. (3)	*	53
e) San	pler Flow Rate Monitor	1/Rx	*	46
	age Area Ventilation			
System				
a) Nob	le Gas Activity Monitor	1/Rx	+	47
	v Range)			
	ne Sampler	1/Rx	· · · · · · · · · · · · · · · · · · ·	51
	iculate Sampler	1/Rx		51
	v Rate Monitor	N.A. (3)		53
	pler Flow Rate Monitor	1/Rx		46
5. Steam G Vent	enerator Blowdown Building			
	le Gas Activity Monitor			
a) NOC (1 ~	v Range)	1	*	47
b) lodi	ne Sampler	1	*	51
	iculate Sampler	1	*	51
	v Rate Monitor	N.A. (3)	*	53
	pler Flow Rate Monitor	1	*	46

At all times while making releases via this pathway

** - At all times when air ejector exhaust is not directed to plant vent.

Rx - Denotes reactor

ACTION STATEMENTS

ACTION 45 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating a release:

- a. At least two independent samples of the tank's contents are analyzed and
- b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup.

Otherwise, suspend release of radioactive effluents via this pathway.

106074

/R26

ILVIOIC	DN NO.:	PROCEDURE TITLE:	PAGE:
			FAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	24 of 219
PROCE	DURE NO.:		
	C-200	ST. LUCIE PLANT	
	RADIOAC1	TABLE 3.3-13 IVE GASEOUS EFFLUENT MONITORING INSTRUMED (Page 3 of 3)	NTATION
		ACTION STATEMENTS (continued)	
ACTIO	ON 48 (conti	nued)	
(TR-1	04788-R2), t	s intended to meet EPRI PWR Primary-to-Secondary Lea therefore grab samples shall be taken regardless of the A st while in Modes 1, 2, 3, 4. (Reference PMAI 00-08-109.)	lignment of the
Chanr contin	nels OPERA	the number of channels OPERABLE less than required to BLE requirement, effluent releases via the affected pathw 30 days provided samples are continuously collected with ent as required in Table 4.11-2.	ay may
		imum system flows shall be utilized in the determination o ease monitor alarm setpoint.	of the
TABLI	E 3.13-13 NG	OTATION	
(1) -	Subsequent ODCM surv	ample shall be completed prior to the frequency interval s t samples (of the same INOPERABLE condition) may be reillance requirement 4.0.2 (a maximum allowable extension percent of the surveillance interval).	performed per
(2) -	Then the sa ejector shal	o steam flow to the air ejector nozzles while the Reactor is ample may be omitted, but the steam flow condition (statu Il be reverified once per 8 hours to initiate grab samples if tor nozzles is established.	s) to the air
	uie all eject		
(3)		NEXT PAGE	
(3)			
(3)			
(3)			
(3)			
(3)			
(3)			
(3)			
(3)			
(3)			

10607-4

(3) The flow rate monitors are not functional. Vent flow is based on design engineering documents and values in the UFSAR. EPIP-09 contains the correct flow values.

.

SEAI	ISION NO .:	PROCEDURE T	ITLE:			Р	AGE:
	26 CEDURE NO.:	OFFSITE	DOSE CA		ION MANUAL	(ODCM)	29 of 219
	C-200		ST.	LUCIE P			
	RADIOACT		JS EFFLL		NITORING IN		<u>TATION</u>
		SURV		E REQUI	I <mark>REMENTS</mark> (4 2)	.)	
	INSTRUM	ENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONA TEST	Modes in which surveillance required
1.	Waste Gas Holdur	o System					
	a) Noble Gas A Providing Ala Automatic Te Release		Ρ	Ρ	R (3)	Q (1)	*
2.	Condenser Evacu	ation System					
		ctivity Monitor	D	M	R (3)	Q (2)	**
3.	Plant Vent System						
		ctivity Monitor	D	M	R (3)	Q (2)	+
	b) Iodine Sampl	er	W	N.A.	N.A.	N.A.	*
	c) Particulate S	ampler	W	N.A.	N.A.	N.A.	+
	d) Flow Rate M			N:A.	R	0	*
	e) Sampler Flov		D	N.A.	R	N.A.	•
4.	Fuel Storage Area System	Ventilation					
	a) Noble Gas A	ctivity Monitor	D	М	R (3)	Q (2)	•
	b) Iodine Sampl	er	W	N.A.	N.A.	N.A.	*
	c) Particulate Sa		W	N.A.	N.A.	N.A.	*
	-d) Flow Rate Me	onitor	D _	<u>N:A.</u>	R	Q	
	e) Sampler Flov	Rate Monitor	D	N.A.	R	N.A.	*
5.	Steam Generator Building Vent	Blowdown					
	a) Noble Gas A	ctivity Monitor	D	М	R (3)	Q (2)	*
	b) Iodine Sampl		W	N.A.	N.A.	N.A.	*
	c) Particulate S	ampler	W	N.A.	N.A.	N.A.	*
	d)-Flow Rate M	onitor			R	Q	
	e) Sampler Flov	Rate Monitor	D	N.A.	R	N.A.	•

9.2

/R26

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	77 of 219
PROCEDURE NO .:		11 01 219
C-200	ST. LUCIE PLANT	
GLOSSAR	METHODOLOGY SECTION AY OF COMMONLY USED TERMS IN METHODOLOGY S (Page 3 of 3)	ECTION
(X/Q)	 A long term Chi over Q. It describes the physical discharacteristics of a semi-infinite cloud of noble gases cloud traverses downrange from the release point. Gases are inert, they do not tend to settle out on the (See Appendix C). 	s as the Since Noble
(X/Q) _D	 A long term Depleted Chi over Q. It describes the pl dispersion characteristics of a semi-infinite cloud of iodines and particulates as the cloud travels downra lodines and particulates tend to settle out (fallout of the ground, the (X/Q)_D represents what physically re cloud and its dispersion qualities at a given location from the release point. (See Appendix F). 	radioactive nge. Since the cloud) or mains of the
dt, ∆t or delta t	 A specific delta time interval that corresponds with the interval data etc. 	ne release

لأمير

106074

i N N **BLANK PAGE**

.

, #. .

	·						
		_			Procedure No.		
		ST. L	UCIE PI		C-200		
		CHEMI	STRY OPER	ATING	Current Revision No.		
		F	PROCEDURE		27		
ation	FPL	s	AFETY RELATED	ר	Effective Date		
nent		_	FERENCE U	-	03/10/06		
Z age	Title:						
NN ON nange d index o NITIAL	OFFSITE	E DOSE	CALCULA	ATION N	IANUAL		
FOR INFORMATION ONLY , verify revision and change documentation able) with a controlled index or document. ERIFIED INITIAL	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
IFORM revision a th a contr	Responsible Department: CHEMISTRY				AASTER COPY		
	REVISION SUMMARY	:					
	Revision 27 - Incorporated PCR 06-0622 for CR 2005-28538 to clarify operational and calibration requirements for the flow rate monitor and make various administrative changes to correct table, appendix and page number references. (AI Locke, 02/28/06)						
Before ((if app DATE	Revision 26 - Incorpora area monitor, delete red mangrove to vegitation	quirements to sa	mple goat milk, cl	hange drinking	water, change		
	Revision 25 - Revised continue as long as pric and two technically qua calculations and discha	or to release, two lified members of	o independent san of the facility staff	nples of tank's independently	contents are analyzed,		
	Revision 24 - Made ch	anges per CR 0	1-0140 and period	dic review. (R.	E. Cox, 02/14/02)		
	Devision 224 Change			tion 32 to road	"goot (milk)" instead		
	Revision 23A - Change of "goat (milk)". (Bonnie			sion 23 to read	goat (milk) insteau		
حسا							
0 0							
Ö	Revision FRG Revie 0 04/22		Approved By C. M. Wethy	Approval Date 04/27/82	SOPS DATE		
J B			General Manager		DOCT PROCEDURE		
	Revision FRG Revie		Approved By	Approval Date	DOCN <u>C-200</u>		
	02/28/		6. L. Johnston General Manager	02/28/06	SYS COM COMPLETED		
			N/A	<u> </u>	ITM 27		
iv l		Auth	orized Approver				
2 3 5 5			N/A orized Approver nor Correction)		-		
v ,							

REVISION NO .:			PROCEDURE TITLE:	PAGE:				
27			OFFSITE DOSE CALCULATION MANUAL (ODCM) 14 of 21					
PROCE	DURE NO			1401215				
	C-200)	ST. LUCIE PLANT					
1.0	DEFINITIONS for CONTROLS SECTION OF ODCM (continued)							
1.34	(continued)							
	4.	8 hours for 9 consecutive shifts, or 18 psig in 72 hours, AND the losses were determined to be to the Reactor Auxiliary Building Atmosphere, then declare the losses as an UNPLANNED RELEASE (reference CR 00-2038).						
	ع د مع Is not an UNPLANNED RELEASE if:							
	1.	1. It cannot be shown that the release went off site, i.e., gas went to another part of the system(s) that contained the loss.						
1	2.	 Normal losses through the Plant Vent due to valve and pipe leakage and purging activities to make the system safe for maintenance activities. 						
UNRI	ESTRIC	CTED A	REA					
1.35	UNRESTRICTED AREA means an area, access to which is neither limited nor controlled by the licensee.							
VENT		<u>ON EXH</u>	AUST TREATMENT SYSTEM					
1.39	and ir form i absor from t syster Safety	nstalled n efflue bers an he gase m is not y Featu	ION EXHAUST TREATMENT SYSTEM shall be any sy to reduce gaseous radioiodine or radioactive material ir nts by passing ventilation or vent exhaust gases throug d/or HEPA filters for the purpose of removing iodines of eous exhaust stream prior to the release to the environn considered to have any effect on noble gas effluents. The Atmospheric Cleanup Systems are not considered to N EXHAUST TREATMENT SYSTEM components.	n particulate h charcoal r particulates nent. Such a Engineered				
VENT	<u>ING</u>							
1.40	VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.							
WAS	TE GAS	S HOLD	UP SYSTEM					
1.41	A WASTE GAS HOLDUP SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting Reactor Coolant System offgases from the Reactor Coolant System and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.							

	PROCEDURE	TITLE:			PAGE:
27	OFFSITE	E DOSE CAI		MANUAL (ODCM)	
ROCEDURE NO.:	-				32 of 219
C-200		<u> </u>	LUCIE PLAN		
RADIOAC	TIVE LIQUI	D WASTE S	LE 4.11-1 AMPLING AI ge 1 of 3)	ND ANALYSIS PF	OGRAM
		Sampling	Minimum	Type of Activity	Lower Limit of
Liquid Release Type		Frequency	Analysis	Analysis	Detection
			Frequency		LLD (1) (µCi/ml
A. Batch Waste Rele	ase Tanks (2)	P Fach Datab	Each Batch	P.G.E. (3)	5.E-07
		Each Batch		I-131	1.E-06
		P	М	Dissolved and	1.E-05
•		One Batch/M		Entrained Gases	
		P	М	(Gamma Emitters)	
		P Each Batch	M Composite (4)	H-3 Gross Alpha	1.E-05 1.E-07
		P	Composite (4)	Gross Alpha Sr-89, Sr-90	<u> </u>
		Each Batch	Composite (4)	C-14, Fe-55, Ni-63	<u> </u>
B. Continuous Releas	Ses (5 R)		4/M	P.G.E.(3)	1.E-06 5.E-07
	555 (5, 6)	Daily	Composite	I-131	<u> </u>
				Dissolved and	1.E-00
		Daily	4/M	Entrained Gases	1.E-05
		Grab Sample	Composite	(Gamma Emitters)	1.2-00
			М	H-3	1.E-05
		Daily	Composite	Gross Alpha	1.E-07
			Q	Sr-89, Sr-90	5.E-08
		Daily	Composite	C-14, Fe-55, Ni-63	1.E-06
C. Settling Basin (7)	· · · · · · · · ·	w		P.G.E. (3)	5.E-07
		Grab Sample	w	I-131	1.E-06
D. Settling Basin as a	Batch			P.G.E. (3)	5.E-07
Release Pathway.	(9)	Р		I-131	1.E-06
	(Reference CR 99-1165 PMA) 99-08-084 PMAI-01-04-115		Each Batch	Dissolved and Entrained Gases (Gamma Emitters)	1.E-05
				H-3	1.E-05
		Each Poten	Each Batab	Gross Alpha	1.E-07
				Sr-89, Sr-90	5.E-08
				C-14, Fe-55, Ni-63	1.E-06
	1-04-115 	· · ·	Each Batch	Entrained Gases (Gamma Emitters) H-3 Gross Alpha Sr-89, Sr-90	1.E-05 1.E-07 5.E-08

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:		
	27	OFFSITE DOSE CALCULATION MANUAL (ODCM)	34 of 219		
PROCE	DURE NO.: C-200	ST. LUCIE PLANT			
	C-200	ST. LOCIE PLANT			
	RADIOACI	TABLE 4.11-1 TIVE LIQUID WASTE SAMPLING AND ANALYSIS PRO (Page 3 of 3)	OGRAM		
		TABLE NOTATIONS (continued)			
(2)	A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated and then thoroughly mixed by a method described in the ODCM to assure representative sampling.				
(3)	following rad Cs-137 and (are to be cor of the above Radioactive	I gamma emitters for which the LLD control applies inclu ionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Ce-141 and Ce-144. This list does not mean that only the sidered. Other gamma peaks that are identifiable, toge nuclides, shall also be analyzed and reported in the Ani Effluent Release Report pursuant to Control 3.11.2.6 in egulatory Guide 1.21, Appendix B, Revision 1, June 197	, Cs-134, nese nuclides ther with thos nual the format		
(4)	A composite sample is one in which the quantity of liquid sampled is proportiona the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.				
(5)	A continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release.				
(6)	activity on th less than or (It Cooling Water activity is > 1.E-5 μ Ci/ml, perform a we e Intake Cooling Water System outlet to ensure the acti equal to 2.E-07 μ Ci/ml LLD limit. If ICW is >2.E-07 μ Ci/ ccordance with a Plant Continuous Release on this Tab	vity level is ml, perform		
(7)		es to be taken when there is confirmed primary to secon cated by the air ejector monitor indicating greater than o			
(8)	requirement	independent samples are analyzed in accordance with t for concentration limit of control 4.11.1.1.1 and at least t mbers of the facility staff independently verify the releas	two technicall		
(9)	therefore the secondary le	basin(s) may receive low level activity per the guidance ese samples shall be taken regardless of the absence of eak (note (7) on liquid release type C. settling. basin doe e type D. settling basin as a batch release pathway).	a primary-to-		

2688

. ---

Attachment A-

1.) p 32 of 219

Table 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 1 of 3)

E. Groundwater Dewatering	W(11)	W(11)	H-3	1E-05
Batch Releases (10)	VV (11)	w(11)	P.G.E. (3)	5.E-07

2.)

p 34 of 219

Table 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 3 of 3)

- (10) Applies to groundwater dewatering discharges from locations outside the Plant Protected Area where radiological contamination is not expected at significant levels. This expectation may be a judgment based on local and peripheral samples that indicate radiological contaminant levels below the LLD from sources in the dewatering pump's zone of influence. These samples may include dewatering pump well samples (taken by small-volume sample pumps), upgradient groundwater samples, and upgradient samples taken from surface waters (e.g., IWW percolation basins) within the zone of influence. The sampling protocol for these releases shall be precautionary in nature. A conservative value shall be established in the discharge permit for the effluent activity; however, the permit shall be reconciled with actual activity concentrations ascertained from sample analysis of the actual effluent.
- (11) Each outfall shall be sampled at some point in the discharge header at the frequency described herein. Any outfall that includes a well (or well point) that has not yet achieved its steady state flow rate (indicating that it has not yet reached its steady state zone of influence) shall be sampled weekly. After the wells of an outfall reaches steady state, the sampling and analysis frequency may be extended to monthly.

REVISION NO .:		PROCEDURE TITLE:	PAGE:
27		OFFSITE DOSE CALCULATION MANUAL (ODCM)	78 of 219
ROCEDURE N			1001210
C-20	0	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
.0 <u>LIQU</u>	JID RELE	EASES METHODOLOGY	
.1 <u>Radi</u>	oactive L	iquid Effluent Model Assumptions	
		contains the official description of the site characteristic at follows is a brief summary for dose calculation purpo	
	Atlanti Norma Circula approx for sub of radi wind a are su	t. Lucie Plant is located on an island surrounded on two c Ocean and the Indian River, an estuary of the Atlantic ally, all radioactive liquid releases enter the Atlantic Oce ating Water Discharge Pipe terminates on the ocean flow kimately 1200 feet offshore (Figure 1-1 Point "L"). No close quent mixing of the discharge flume with the ocean. oactive material into the ocean is dependent on the corn nd some eddy currents caused by the Gulf Stream. Th fficiently random enough to distribute the discharges ov o concentrating effects are assumed.	Ocean. an where the or at a point redit is taken The diffusion ditions of tide, e conditions
*	or sour Indian to prov Water No rac Water no bac	are no direct discharge paths for liquid effluents to eithe th private property boundary lines. The Big Mud Creek River) does connect to a normally locked shut dam, that vide an emergency supply of circulating water to the Inta Canal in the event a Hurricane causes blockage of the tioactive water could be discharged directly into the Inta Canal because all plant piping is routed to the discharge ck flow can occur. Consult the FUSAR for a detailed de cteristics of the water bodies surrounding the plant site.	(part of the at is intended ake Cooling Intake Canal. ike Cooling e canal and
		nose nuclides that appear in the Liquid Dose Factor Tallered for dose calculation.	oles will be
•		UNDERLINED WORDING-FROM FMENT B	

Attachment B

p 78 of 219

1.1 Radioactive Liquid Effluent Model Assumptions

The FUSAR contains the official description of the site characteristics. The description that follows is a brief summary for dose calculation purposes:

. . .

L

There are no direct discharge paths for liquid effluents to either of the north or south private property boundary lines. The Big Mud Creek (part of the Indian River) does connect to a normally locked shut dam, that is intended to provide an emergency supply of circulating water to the Intake Cooling Water Canal in the event a Hurricane causes a blockage of the Intake Canal. No radioactive water from plant systems could be discharged directly into the Intake Cooling Water Canal because all plant piping is routed to the discharge canal and no back flow can occur. However, dilute secondary sources from such outfalls as the industrial wastewater system and construction dewatering may be pumped to the Intake Canal. These secondary sources would be secured under the extraordinary conditions that would precede opening the dam. ...

_