Exel:

May 24, 2006

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

Peach Bottom Atomic Power Station Unit Nos. 2 and 3 Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos. 50-277 and 50-278

SUBJECT: Annual Radiological Environmental Operating Report No. 63 January 1, 2005 through December 31, 2005

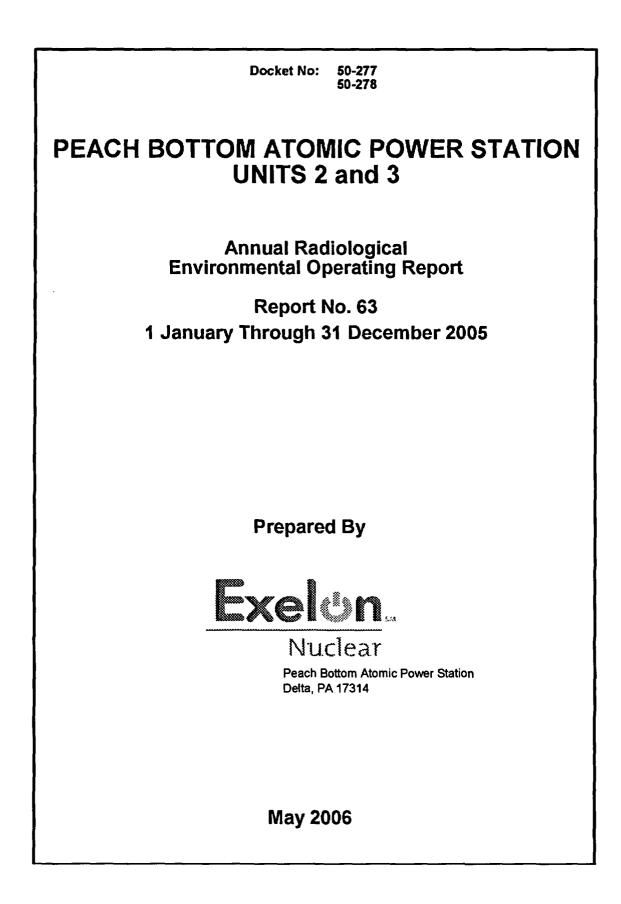
In accordance with the requirements of Section 5.6.2 of the Peach Bottom Atomic Power Station, Units 2 and 3 Technical Specifications, this letter submits the Annual Radiological Environmental Operating Report No. 63. This report provides the 2005 results for the Radiological Environmental Monitoring Program (REMP) as called for in the Offsite Dose Calculation Manual.

In assessing the data collected for the REMP, we have concluded that the operation of PBAPS, Units 2 and 3, had no adverse impact on the environment. Co-60 and Mn-54 were found at the nearest downstream sediment sampling location. Calculated doses were at small fractions of 10CFR50 limits.

There are no commitments contained in this letter.

If you have any questions or require additional information, please do not hesitate to contact us.

Sincerely,


Robert C. Braun Site Vice President, Peach Bottom Atomic Power Station RCB/JPG/FLJ/DLO/bcb

Enclosure

ccn 06-14040

cc: S. J. Collins, Administrator, Region I, US NRC
 T. Valentine, Project Manager, US NRC
 F. Bower, US NRC Senior Resident Inspector, PBAPS A4





### TABLE OF CONTENTS

| I. I                 | Executive Summary                                                                                                            | 1                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Α.                   | Introduction<br>Objectives<br>Implementation                                                                                 | 3                          |
| A.<br>B.<br>C.<br>D. | Program Description<br>Sample Collection<br>Sample Analysis<br>Data Interpretation.<br>Program Exceptions<br>Program Changes | 4<br>6<br>8                |
|                      | Results and Discussion<br>Aquatic Environment<br>1. Surface Water<br>2. Drinking Water<br>3. Fish<br>4. Sediment             | 9<br>9<br>9<br>10          |
| В.                   | Atmospheric Environment<br>1. Airborne                                                                                       | 11<br>11<br>12<br>12<br>12 |
| D.                   | Ambient Gamma Radiation                                                                                                      | 13<br>13                   |
| V.                   | References                                                                                                                   | 16                         |

### Appendices

| Appendix A                    | Radiological Environmental Monitoring Report Summary                                                                                                             |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Tables</u><br>Table A-1    | Radiological Environmental Monitoring Program Annual Summary for the Peach Bottom Atomic Power Station, 2005                                                     |
| Appendix B                    | Sample Designation and Locations                                                                                                                                 |
| <u>Tables</u><br>Table B-1:   | Radiological Environmental Monitoring Program – Sampling Locations,<br>Distance and Direction from Reactor Buildings, Peach Bottom Atomic<br>Power Station, 2005 |
| Table B-2:                    | Radiological Environmental Monitoring Program – Summary of Sample<br>Collection and Analytical Methods, Peach Bottom Atomic Power Station,<br>2005               |
| <u>Figures</u><br>Figure B-1: | Environmental Sampling Locations within One Mile of the Peach Bottom<br>Atomic Power Station, 2005                                                               |
| Figure B-2:                   | Environmental Sampling Locations Between One and Approximately<br>Five Miles of the Peach Bottom Atomic Power Station, 2005                                      |
| Figure B-3:                   | Environmental Sampling Locations Greater than Five Miles from the<br>Peach Bottom Atomic Power Station, 2005                                                     |
| Appendix C:                   | Data Tables and Figures - Primary Laboratory                                                                                                                     |
| <u>Tables</u><br>Table C-I.1  | Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.                                         |
| Table C-I.2                   | Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.                                  |
| Table C-II.1                  | Concentrations of Total Gross Beta Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.                                  |
| Table C-II.2                  | Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.                                        |

| Table C-II.3 | Concentrations of Gamma Emitters in Drinking Water Samples            |
|--------------|-----------------------------------------------------------------------|
|              | Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005. |

- Table C-III.1Concentrations of Gamma Emitters in Predator & Bottom Feeder (Fish)Samples Collected in the Vicinity of Peach Bottom Atomic PowerStation, 2005.
- Table C-IV.1
   Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table C-V.1Concentrations of Gross Beta in Air Particulate Samples Collected in the<br/>Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table C-V.2Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3<br/>pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of<br/>Peach Bottom Atomic Power Station, 2005.
- Table C-V.3Concentrations of Gamma Emitters in Air Particulate Samples Collected<br/>in the Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table C-VI.1Concentrations of I-131 in Air lodine Samples Collected in the Vicinity of<br/>Peach Bottom Atomic Power Station, 2005.
- Table C-VII.1
   Concentrations of I-131 in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table C-VII.2
   Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table C-VIII.2
   Concentrations of Gamma Emitters in Food Product Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table C-IX.1 Quarterly TLD Results for Peach Bottom Atomic Power Station, 2005.
- Table C-IX.2
   Mean Quarterly TLD Results for the Site Boundary, Intermediate and Control Locations for Peach Bottom Atomic Power Station Site Boundary, 2005.
- Table C-IX.3
   Summary of the Ambient Dosimetry Program for Peach Bottom Atomic Power Station, 2005.
- Table C-X.1Summary of Collection Dates for Samples Collected in the Vicinity of<br/>Peach Bottom Power Station, 2005.

#### Figures

- Figure C-1 Monthly Total Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of PBAPS, 2005.
- Figure C-2 Mean Annual Cs-137 Concentrations in Fish Samples Collected in the Vicinity of PBAPS, 1971-2005.
- Figure C-3 Mean Semi-Annual Cs-137 Concentrations in Sediment Samples Collected in the Vicinity of PBAPS, 1971-2005.
- Figure C-4 Mean Weekly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 2005.
- Figure C-5 Mean Monthly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 1970-2005.
- Figure C-6 Mean Annual Cs-137 Concentrations in Milk Samples Collected in the Vicinity of PBAPS, 1971-2005.
- Figure C-7 Mean Quarterly Ambient Gamma Radiation Levels (TLD) in the Vicinity of PBAPS, 1973-2005.
- Figure C-8 Quarterly Ambient Gamma Radiation Levels (TLD) Near the Independent Spent Fuel Storage Installation Located at PBAPS, 1998-2005.
- Appendix D: Data Tables and Figures QC Laboratory

Tables

- Table D-I.1Concentrations of Total Gross Beta Drinking Water Samples Collected<br/>in the Vicinity of Peach Bottom Atomic Power Station, 2005.
- Table D-I.2Concentrations of Gamma Emitters in Drinking Water Samples<br/>Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.

# Table D-II.1Concentrations of Gross Beta in Air Particulate Samples Collected in the<br/>Vicinity of Peach Bottom Atomic Power Station, 2005.

| Table D-II.2  | Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table D-III.1 | Concentrations of I-131 by Chemical Separation and Gamma Emitters in<br>Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power<br>Station, 2005. |
| Table D-IV.1  | Summary of Collection Dates for Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2005.                                                 |
| Figures       |                                                                                                                                                               |
| Figure D-1    | Comparison of Monthly Total Gross Beta Concentrations in Drinking<br>Water Samples Split between the Primary and QC Laboratories, 2005.                       |
| Figure D-2    | Comparison of Weekly Gross Beta Concentrations from Collocated Air<br>Particulate Locations Split between the Primary And QC Laboratories,<br>2005.           |
| Appendix E    | Quality Control - Inter-Laboratory Comparison Program                                                                                                         |
| Tables        |                                                                                                                                                               |
| Table E-1     | Analytics Environmental Radioactivity Cross Check Program<br>Teledyne Brown Engineering, 2005                                                                 |
| Table E-2     | ERA Environmental Radioactivity Cross Check Program<br>Teledyne Brown Engineering, 2005                                                                       |
| Table E-3     | DOE's Mixed Analyte Performance Evaluation Program (MAPEP)<br>Teledyne Brown Engineering, 2005                                                                |
| Table E-4     | ERA Statistical Summary Proficiency Testing Program<br>Environmental, Inc., 2005                                                                              |
| Table E-5     | DOE's Mixed Analyte Performance Evaluation Program (MAPEP)<br>Environmental, Inc., 2005                                                                       |
|               |                                                                                                                                                               |

Intentionally Left Blank

#### I. Executive Summary

This report on the Radiological Environmental Monitoring Program conducted for the Peach Bottom Atomic Power Station (PBAPS) by Exelon Nuclear covers the period 1 January 2005 through 31 December 2005. During that time period, 1,070 analyses were performed on 910 samples.

Surface water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No tritium, fission or activation products were found.

Drinking water samples were analyzed for concentrations of gross beta, tritium, and gamma emitting nuclides. No fission or activation products were found. Gross beta and tritium activities detected were consistent with those observed in previous years.

The remaining sample media representing the aquatic environment included fish and sediment samples. These media were analyzed for concentrations of gamma emitting nuclides. Fish samples showed no detectable fission or activation products from the operation of PBAPS. Cesium-137 activity was found at most sediment locations and was consistent with data from previous years. Co-60 and Mn-54 were found at the nearest downstream sediment sampling location. The dose to a teenager's skin from the sediment pathway was calculated to be 1.94 E–03 mrem/year, which represents 0.010% of the allowable fraction of 10 CFR 50, Appendix I limits. The dose to a teenager's whole body from the sediment pathway was calculated to be 1.65 E-03 mrem/year, which represents 0.027% of the allowable fraction of 10 CFR 50, Appendix I limits.

The atmospheric environment was divided into two parts for examination: airborne and terrestrial. Sample media for determining airborne effects included air particulates and air iodine samples. Analyses performed on air particulate samples included gross beta and gamma spectrometry. No fission or activation products were found. The gross beta results were consistent with results from the previous years. Furthermore, no notable differences between control and indicator locations were observed. These findings indicate no measurable effects from the operation of PBAPS.

High sensitivity lodine-131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity.

Examination of the terrestrial environment was accomplished by analyzing milk and food product samples. Milk samples were analyzed for low level concentrations of lodine-131 and gamma emitting nuclides. No activation or fission products were found. Food product samples were analyzed for concentrations of gamma emitting nuclides. Concentrations of naturally occurring Be-7 and K-40 were detected. No activation or fission products were detected.

Ambient gamma radiation levels were measured quarterly throughout the year. All measurements were below 10 mR/standard month and the results were consistent with those measured in previous years.

The results of the TLD monitoring program were used to determine if the Independent Spent Fuel Storage Installation (ISFSI) had any measurable impact on the dose rate in the environs. One on-site location showed an increase dose of 0.5 to 1 mR per standard month. No increase in dose was evident at the nearest residence.

The control milk farm A in the WSW sector at 30,493 feet went out of the milking business. The control farm was replaced by farm T in the W sector at 34,581 feet. No milk samples were missed as a result of the change of milk farms.

TLD 1K was added in the SW sector at 4,604 feet. The TLD was added to comply with ODCMS Table 4.8.E.1.1 requirement for TLD stations in the general area of the SITE BOUNDARY and a residence at the location.

Food products were sampled on Oct. 6, 2005 at three locations:

55 at about 9.9 miles in the NE sector 2B at about 0.7 miles in the SSE sector 1Q at about 0.8 miles in the WNW sector

In assessing all the data gathered for this report and comparing these results with preoperational data, it was evident that the operation of PBAPS had no adverse radiological impact on the environment.

#### II. Introduction

Peach Bottom Atomic Power Station (PBAPS) is located along the Susquehanna River between Holtwood and Conowingo Dams in Peach Bottom Township, York County, Pennsylvania. The initial loading of fuel into Unit 1, a 40 MWe (net) high temperature, gas-cooled reactor, began on 5 February 1966, and initial criticality was achieved on 3 March 1966. Shutdown of Peach Bottom Unit 1 for decommissioning was on 31 October 1974. For the purposes of the monitoring program, the beginning of the operational period for Unit 1 was considered to be 5 February 1966. A summary of the Unit 1 preoperational monitoring program was presented in a previous report <sup>(1)</sup>. PBAPS Units 2 and 3 are boiling water reactors, each with a power output of approximately 1170 MWe. The first fuel was loaded into Peach Bottom Unit 2 on 9 August 1973. Criticality was achieved on 16 September 1973, and full power was reached on 16 June 1974. The first fuel was loaded into Peach Bottom Unit 3 on 5 July 1974. Criticality was achieved on 7 August 1974, and full power was first reached on 21 December 1974. Preoperational summary reports <sup>(2)(3)</sup> for Units 2 and 3 have been previously issued and summarize the results of all analyses performed on samples collected from 5 February 1966 through 8 August 1973.

A Radiological Environmental Monitoring Program (REMP) for PBAPS was initiated in 1966. This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 01 January 2005 through 31 December 2005.

A. Objectives

The objectives of the REMP are:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

Implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.

3. Continuously monitoring those media before and during plant Station operation to assess Station radiological effects (if any) on man and the environment.

#### III. Program Description

A. Sample Collection

Normandeau Associates Inc., (NAI), collected samples for the PBAPS REMP for Exelon Nuclear. This section describes the general collection methods used by NAI to obtain environmental samples for the PBAPS REMP in 2005. Sample locations and descriptions can be found in Table B-1, and Figures B-1 through B-3, Appendix B. The collection procedures used by NAI are listed in Table B-2, Appendix B.

#### Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, fish, and sediment. Surface water from two locations (1LL and 1MM) and drinking water from two locations (4L and 6l) were collected weekly by automatic sampling equipment. Weekly samples from each of the surface and drinking water locations were composited into a separate monthly sample for analysis. Approximately, two quarts of water were removed from the weekly sample container and placed into a clean two-gallon polyethylene bottle to form a monthly composite. Control locations were 1LL and 6l. Fish samples comprising the flesh from two groups: Bottom Feeder (catfish) and Predator (smallmouth bass, largemouth bass, or bass) were collected semiannually from two locations: 4 and 6 (control). Sediment samples composed of recently deposited substrate were collected semiannually at three locations: 4J, 4T and 6F (control). An additional set of sediment samples was collected in December to validate results.

#### Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on air particulate, airborne iodine and milk samples. Air particulate and air iodine samples were collected and analyzed weekly from five locations (1B, 1Z, 1C, 3A, and 5H2). The control location was 5H2. Airborne iodine and particulate samples were obtained at each location using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately 1 cubic

foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at six locations (A (T), J, O, R, and S) from April through November and monthly from December through March. Seven additional locations (B, C, D, E, L, and P) were sampled quarterly. Locations A, B, C, E and T were controls. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food product samples were collected annually at three locations (1Q, 2B, and 55) in October. All samples were collected in new unused plastic bags and shipped promptly to the laboratory.

#### **Ambient Gamma Radiation**

Direct radiation measurements were made using Panasonic 814 calcium sulfate ( $CaSO_4$ ) thermoluminescent dosimeters (TLD). The TLD locations were placed on and around the PBAPS site as follows:

A <u>site boundary ring</u>, consisting of 19 locations (1L, 1P, 1A, 1Q, 1D, 2, 1M, 1R, 1I, 1C, 1J, 1K, 1F, 40, 1NN, 1H, 1G, 1B, and 1E), near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off-site doses) from PBAPS releases.

An <u>intermediate distance ring</u>, consisting of 19 locations (15, 22, 44, 32, 45, 14, 17, 31A, 4K, 23, 27, 48, 3A, 49, 50, 51, 26, 6B, and 42), extending to approximately 5 miles from the site and designed to measure possible exposures to close-in population.

The balance of nine locations (2B, 43, 5, 16, 24, 46, 47, 18, and 19) representing control and special interests areas such as population centers, schools, etc.

The specific TLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- 2. Site meteorological data taking into account distance and elevation for each of the 36 ten-degree sectors around the site, where estimated annual dose from PBAPS, if any, would be more significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);

4. And near the dwelling closest to the vents in the prevailing down wind direction.

Two TLDs – each comprised of three CaSO<sub>4</sub> themoluminescent phosphors enclosed in plastic – were placed at each location in a Formica "birdhouse" or polyethylene jar located approximately six feet above ground level. The TLD sets were exchanged quarterly, then sent to the laboratory for analysis.

B. Sample Analysis

This section describes the general analytical methods used by Teledyne Brown Engineering and Environmental Inc. to analyze the environmental samples for radioactivity for the PBAPS REMP in 2005. The analytical procedures used by the laboratories are listed in Table B-2, Appendix B.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in drinking water and air particulates.
- 2. Concentrations of gamma emitting nuclides in surface and drinking water, air particulates, milk, fish, sediment and food products.
- 3. Concentrations of tritium in surface and drinking water.
- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

The radiological and direct radiation data collected prior to PBAPS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, PBAPS was considered operational at initial critically. In addition, data were compared to previous years' operational data for consistency and trending. Several factors are important in the interpretation of the data. These factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required PBAPS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

#### 2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations will result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface and drinking 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For fish eight nuclides, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Cs-134, and Cs-137 were reported.

For sediment six nuclides, K-40, Mn-54, Co-58, Co-60, Cs-134, and Cs-137 were reported.

For air particulate six nuclides, Be-7, Mn-54, Co-58, Co-60, Cs-134, and Cs-137 were reported.

For milk five nuclides, K-40, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For food product seven nuclides, Be-7, Mn-54, Co-58, Co-60, I-131, Cs-134, and Cs-137 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

#### D. Program Exceptions

For 2005 the PBAPS REMP had a sample collection recovery rate of better than 99%. The exceptions to this program are listed below:

- 1. The air particulate and iodine sampler 5H2 (control) had a loss of power due to a transformer failure. The transformer was repaired prior to the next period as required by the ODCM.
- 2. Air particulate and iodine sampler 1C had a pump performance issue. The pump was repaired prior to the next sample period as required by the ODCM.
- 3. A NRC non-cited violation was issued for failure to sample food products in the highest D/Q sectors if milk sampling was not performed in the highest D/Q sectors. Food products were sampled on October 6, 2005 at three locations.

55 at about 9.9 miles in the N sector 2B at about 0.7 miles in the SSE sector 1Q at about 0.8 miles in the WNW sector

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent a recurrence. Occasional equipment breakdowns and power outages were unavoidable.

E. Program Changes

Drinking water analysis of soluble and insoluble fractions was discontinued in December 2004. Drinking water is being analyzed for total gross beta. The drinking water data for the soluble and insoluble fractions was combined to create the total gross beta graph in Appendix C, Figure C-1. The previous data included summation of the less than values.

Milk farm A (control) went out of the milking business and was replaced by farm T at about 5.7 miles in the W sector.

TLD station 1K was added 10/07/05.

Food products were added to the PBAPS program in October 2005.

- IV. Results and Discussion
  - A. Aquatic Environment
    - 1. Surface Water

Samples were taken from a continuous sampler at two locations (1LL and 1MM) on a monthly schedule. Of these locations, 1MM located downstream, could be affected by Peach Bottom's effluent releases. The following analyses were performed:

#### Tritium

Monthly samples from both locations were composited quarterly and analyzed for tritium activity (Table C-I.1, Appendix C). No tritium activity was detected. Results ranged from <155 to <198 pCi/l and averaged 176 pCi/l at the control location and 166 pCi/l at the indicator location.

#### Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C-I.2, Appendix C). All nuclides were less than the MDC.

2. Drinking Water

Monthly samples were collected from continuous water samplers at two locations (4L and 6I). One location (4L) could be affected by Peach Bottom's effluent releases. The following analyses were performed:

#### Gross Beta

Samples from both locations were analyzed for concentrations of total gross beta activity (Tables C-II.1 and Figures C-1 Appendix C). The values ranged from <2.2 to 8.8 pCi/l. Concentrations detected were generally below those detected in previous years.

#### Tritium

Monthly samples from both locations were composited quarterly and analyzed for tritium activity (Table C-II.2, Appendix C). Positive tritium activity was detected in two of eight samples. The concentrations detected, 187 and 191 pCi/L, were from downstream and upstream sample points respectively. The tritium came from upstream and not from Peach Bottom Atomic Power Station.

#### Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C-II.3, Appendix C). All nuclides were less than the MDC.

3. Fish

Fish samples comprised of bottom feeder (catfish) and predator (bass) were collected at two locations (4 and 6) semiannually. Location 4 could be affected by Peach Bottom's effluent releases. The following analysis was performed:

#### Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C-III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,710 to 3,260 pCi/kg wet and was consistent with levels detected in previous years. No fission or activation products were found. Historical levels of Cs-137 are shown in Figure C-3, Appendix C.

#### 4. Sediment

Aquatic samples were collected at three locations (4J, 4T and 6F) semiannually. Of these locations two, 4J and 4T located downstream, could be affected by Peach Bottom's effluent releases. The following analysis was performed:

#### Gamma Spectrometry

Sediment samples from all three locations were analyzed for gamma emitting nuclides (Table C-IV.1, Appendix C). Nuclides detected were naturally occurring Be7 and K-40. Radioactive nuclides Mn-54 and Co-60 originating from Peach Bottom were found at location 4J. Beryllium-7 was found at one location with a concentration of 1,080 pCi/kg dry. Potassium-40 was found at eight of nine samples in all locations and ranged from 10,100 to 22,500 pCi/kg dry. Manganese-54 was found at location 4J in two of three samples at concentrations of 36 and 61 pCi/kg dry. Cobalt-60 was found at location 4J in two samples at concentrations of 144 and 174 pCi/kg dry. Concentrations of the fission product Cs-137 were found in five

of nine sediment samples in all locations. Location 4T had the highest average concentration Cs-137 of 133 pCi/kg dry. The activity of Cs-137 detected was consistent with those detected in the pre-operational years (Figure C-4, Appendix C). No other Peach Bottom fission or activation products were found.

The shoreline doses due to the activity in the sediment were calculated using the methodology of Regulatory Guide 1.109, Calculation of Annual Doses to Man From Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance With 10 CFR Part 50, Appendix I. The following nuclides concentrations (Pu-238, Pu-239, Pu-241, Am-241, Cm-242 and Cm-244, C-14, Ni-63 and Tc-99) were scaled from 10 CFR 61 analyses and added to the dose calculations. There was insignificant additional dose due to these additional nuclides.

- B. Atmospheric Environment
  - 1. <u>Airborne</u>
    - a. <u>Air Particulates</u>

Continuous air particulate samples were collected from five locations on a weekly basis. The five locations were separated into three groups: Group I represents locations within the PBAPS site boundary (1B, 1Z and 1C), Group II represents the location at an intermediate distance from the PBAPS site (3A), and Group III represents the control location at a remote distance from PBAPS (5H2). The following analyses were performed.

#### Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Tables C-V.1 and C-V.2 and Figures C-5 and C-6, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of PBAPS. The results from the On-Site locations (Group I) ranged from <6 to 34 E-3 pCi/m<sup>3</sup>, with a mean of 17 E-3 pCi/m<sup>3</sup>. The results from the Intermediate Distance location (Group II) ranged from <7 to 38 E-3 pCi/m<sup>3</sup> with a mean of 16 E-3 pCi/m<sup>3</sup>. The results from the Distant location (Group III) ranged from <7 to 35 E-3 pCi/m<sup>3</sup> with a mean of 16 E-3 pCi/m<sup>3</sup> A comparison of the weekly mean values for 2005 indicate no notable differences among the three groups (Figure C-5, Appendix C). In addition, a comparison of the 2005 air particulate data with previous years data indicate no effects from the operation of PBAPS (Figure C-4, Appendix C).

#### Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C-V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in all samples. These values ranged from 37 to 73 E-3 pCi/m<sup>3</sup>. All other nuclides were less than the MDC.

#### b. <u>Airborne lodine</u>

Continuous air samples were collected from five locations (1B, 1Z, 1C, 3A, and 5H2) and analyzed weekly for I-131 (Table C-VI.1, Appendix C). All results were less than the MDC.

#### 2. <u>Terrestrial</u>

#### a. <u>Milk</u>

Samples were collected from six locations (A(T), J, O, R, and S) biweekly April through November and monthly December through March. Samples from six additional locations (B, C, D, E, L, P) were taken quarterly. The following analyses were performed.

#### lodine-131

Milk samples from all locations were analyzed for concentrations of I-131 (Tables C-VII.1, Appendix C). All results were less than the MDC.

#### Gamma Spectrometry

Each milk sample from locations A(T), J, O, R, and S was analyzed for concentrations of gamma emitting nuclides (Table C-VII.2, Appendix C).

Naturally occurring K-40 was found in all samples and ranged from 1,090 to 1,640 pCi/l. All other nuclides were less than the

MDC. Comparison of the 2005 Cs-137 milk data with previous years data indicate no effects from the operation of PBAPS (Figure C-7 (Appendix C).

b. <u>Food Products</u>

#### Gamma Spectrometry

Each food product sample from locations 1Q, 2B and 55 was analyzed for concentrations of gamma emitting nuclides (Table C-VIII.1, Appendix C).

Naturally occurring Be-7 and K-40 activity was found at all locations. Beryllium-7 activity was found in eight of nine samples and ranged from <220 to 1,190 pCi/kg wet. Potassium-40 activity was found in all samples and ranged from 3,840 to 9,290 pCi/kg wet. All other nuclides were less than the MDC.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured using Panasonic 814 (CaSO<sub>4</sub>) thermoluminescent dosimeters. Forty-seven TLD locations were established around the site. Results of TLD measurements are listed in Tables C-IX.1 through C-IX.3 and Figure C-7, Appendix C.

All TLD measurements were below 10 mR per standard month, with a range of 4.1 to 8.8 mR per standard month. A comparison of the Site Boundary and Intermediate Distance data to the Control locations data indicate that the ambient gamma radiation levels from the Control locations 16, 18, 19 and 24 were essentially the same as the other locations. The historical ambient gamma radiation data from the Control locations was plotted along with similar data from the Site and the Intermediate Distance locations (Figure C-7, Appendix C)

D. Independent Spent Fuel Storage Installation (ISFSI)

The Independent Spent Fuel Storage Installation (ISFSI) was utilized beginning June 2000. As of 2005, a total of 28 TN-68 casks, each loaded with 68 fuel bundles were in place on the ISFSI pad. As part of the overall REMP, additional TLDs were placed at locations near the site boundary and at the nearest resident. Although there was a general trend for increased dose at all REMP locations (see Figure C-7, Appendix C), Onsite location 1R, which is located on the hillside overlooking the ISFSI showed an increase trend of 0.5 to 1 mR per standard month when compared to

controls (Figure C-8, Appendix C). Location 2B, which represents the nearest residence showed no increase in dose rates when compared to controls. Data from location 2B is used to demonstrate compliance to both 40CFR190 and 10CFR72.104 limits.

E. Land Use Census

A Land Use Survey conducted during the 2005 growing season around the Peach Bottom Atomic Power Station (PBAPS) was performed by Normandeau Associates, Inc., NAI Environmental Services Division for Exelon Nuclear to comply with Section 3.8.E.2 of PBAPS's Offsite Dose Calculation Manual Specifications (ODCMS) and Bases. The purpose of the survey was to document the nearest milk producing animal in each of the sixteen meteorological sectors out to five miles. In addition, the nearest residence and garden of >500 square feet were documented. The distance and direction of all locations were positioned using Global Positioning System (GPS) technology. The control milk farm (A) went out of business and a new control farm T was added to the PBAPS REMP. The results of this survey are summarized below.

| Dis    | Distance in Miles from the PBAPS Reactor Buildings |                 |                     |  |  |  |  |  |  |  |
|--------|----------------------------------------------------|-----------------|---------------------|--|--|--|--|--|--|--|
| Sector | Residence<br>Miles                                 | Garden<br>Miles | Milk Farm<br>Miles_ |  |  |  |  |  |  |  |
| 1 N    | 2.4                                                | 2.8             | 2.8                 |  |  |  |  |  |  |  |
| 2 NNE  | 2.1                                                | 2.1             | 2.1                 |  |  |  |  |  |  |  |
| 3 NE   | 2.1                                                | 2.1             | 2.1                 |  |  |  |  |  |  |  |
| 4 ENE  | 2.0                                                | 2.4             | 2.1                 |  |  |  |  |  |  |  |
| 5 E    | 2.0                                                | 2.8             | 2.8                 |  |  |  |  |  |  |  |
| 6 ESE  | 3.8                                                | 3.8             | 3.8                 |  |  |  |  |  |  |  |
| 7 SE   | 3.6                                                | 3.6             | 3.6                 |  |  |  |  |  |  |  |
| 8 SSE  | 0.7                                                | 0.7             | -                   |  |  |  |  |  |  |  |
| 9 S    | 1.0                                                | 1.0             | -                   |  |  |  |  |  |  |  |
| 10 SSW | 1.2                                                | 1.8             | 2.2                 |  |  |  |  |  |  |  |
| 11 SW  | 0.9                                                | 0.9             | 2.3                 |  |  |  |  |  |  |  |
| 12 WSW | 0.7                                                | -               | 0.9                 |  |  |  |  |  |  |  |
| 13 W   | 1.0                                                | 1.0             | 1.0                 |  |  |  |  |  |  |  |
| 14 WNW | 0.6                                                | 0.8             | -                   |  |  |  |  |  |  |  |
| 15 NW  | 0.6                                                | 3.4             | 3.4                 |  |  |  |  |  |  |  |
| 16 NNW | 1.0                                                | -               | -                   |  |  |  |  |  |  |  |

#### F. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, food products and water matrices for 19 analytes (Appendix E). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's

Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is  $\pm$  20% of the reference value. Performance is acceptable with warning when a mean result falls in the range from  $\pm$ 20% to  $\pm$ 30% of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 18 out of 19 analytes met the specified acceptance criteria. One sample did not meet the specified acceptance criteria for the following reason:

1. Teledyne Brown Engineering's Analytics' September 2005 air particulate Fe-59 ratio of 1.35 exceeded the upper control limit of 1.30 due to a new technician not counting the air particulate in a petri dish.

For the secondary laboratory, 19 out of 23 analytes met the specified

acceptance criteria. Four samples did not meet the specified acceptance criteria for the following reasons:

- 1. Environmental Inc.'s ERA's November 2005 water Gross Alpha result of 41.1 pCi/L exceeded the upper control limit of 33.4 pCi/L. This was due to using an Am-241 efficiency instead of a Th-232 efficiency when counting the sample. Using the correct efficiency gave a result of 27.0 pCi/L.
- 2. Environmental Inc.'s ERA's November 2005 water Ra-228 result of 5.5 pCi/L exceeded the upper control limit of 5.0 pCi/L due to presence of radium daughters. Delay in counting 100 minutes gave a result of 4.01 pci/L.
- 3. Environmental Inc.'s MAPEP's January 2005 air particulate Sr-90 result of 2.2 exceeded the upper control limit of 1.76 Bq/kg. Reanalysis result was 1.56 Bq/kg.
- 4. Environmental Inc.'s MAPEP's July 2005 soil Am-241 result of 48.4 exceeded the lower control limit of 56.77 Bq/kg due to incorrect sample weight being used in the calculation. When recalculated with the correct sample weight, the result was 97.0 Bq/kg.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

#### V. References

- 1. Preoperational Environs Radioactivity Survey Summary Report, March 1960 through January 1966. (September 1967).
- Interex Corporation, Peach Bottom Atomic Power Station Regional Environs Radiation Monitoring Program Preoperational Summary Report, Units 2 and 3, 5 February 1966 through 8 August 1973, June 1977, Natick, Massachusetts.
- 3. Radiation Management Corporation Publication, Peach Bottom Atomic Power Station Preoperational Radiological Monitoring Report for Unit 2 and 3, January 1974, Philadelphia, Pennsylvania.

### APPENDIX A

### RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

| Name of Facility:<br>Location of Facili                  | WER STATION                       | INDICATOR                          | DOCKET N<br>REPORTING<br>CONTROL                 | G PERIOD:                         | 50-277 & 50-278<br>2005<br>VITH HIGHEST ANNUAL MEAN |                             |                                                                       |                                                     |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN<br>(F)<br>RANGE | LOCATION<br>MEAN<br>(F)<br>RANGE                    | MEAN<br>(F)<br>RANGE        | STATIONS #<br>NAME<br>DISTANCE AND DIRECTION                          | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENTS |
| SURFACE WATER<br>(PCI/LITER)                             | Н-3                               | 8                                  | 200                                              | 166<br>(0/4)<br>(<155/<179)       | 176<br>(0/4)<br>(<157/<198)                         | 176<br>(0/4)<br>(<157/<198) | ILL CONTROL<br>PEACH BOTTOM UNITS 2 AND 3 IN<br>0.24 MILES NE OF SITE | 0<br>Itake                                          |
|                                                          | GAMMA<br>MN-54                    | 24                                 | 15                                               | 4<br>(0/12)<br>(<1/<8)            | 4<br>(0/12)<br>(<1/<6)                              | 4<br>(0/12)<br>(<1/<8)      | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>GE                                             |
|                                                          | CO-58                             |                                    | 15                                               | 5<br>(0/12)<br>(<1/<7)            | 4<br>(0/12)<br>(<1/<6)                              | 5<br>(0/12)<br>(<1/<7)      | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>GE                                             |
|                                                          | FE-59                             |                                    | 30                                               | 9<br>(0/12)<br>(<3/<16)           | 8<br>(0/12)<br>(<2/<14)                             | 9<br>(0/12)<br>(<3/<16)     | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>IGE                                            |
|                                                          | CO-60                             |                                    | 15                                               | 5<br>(0/12)<br>(<1/<8)            | 5<br>(0/12)<br>(<1/<7)                              | 5<br>(0/12)<br>(<1/<7)      | ILL CONTROL<br>PEACH BOTTOM UNITS 2 AND 3 IN<br>0.24 MILES NE OF SITE | 0<br>ITAKE                                          |
|                                                          | ZN-65                             |                                    | 30                                               | 9<br>(0/12)<br>(<3/<17)           | 8<br>(0/12)<br>(<2/<14)                             | 9<br>(0/12)<br>(<3/<17)     | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>IGE                                            |
|                                                          | NB-95                             |                                    | 15                                               | 5<br>(0/12)<br>(<1/<9)            | 5<br>(0/12)<br>(<1/<7)                              | 5<br>(0/12)<br>(<1/<9)      | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>IGE                                            |
|                                                          | ZR-95                             |                                    | 30                                               | 8<br>(0/12)<br>(<3/<14)           | 7<br>(0/12)<br>(<2/<13)                             | 8<br>(0/12)<br>(<3/<14)     | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>GE                                             |

| Name of Facility<br>Location of Fa                       | : PEACH BOTTO<br>cility: YORK COUNT |                                    | WER STATION                                      | INDICATOR                         | DOCKET N<br>REPORTING            | G PERIOD:                      | 50-277 & 50-278<br>2005<br>WITH HIGHEST ANNUAL MEAN                   |                                                     |
|----------------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED   | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN<br>(F)<br>RANGE | LOCATION<br>MEAN<br>(F)<br>RANGE | MEAN<br>(F)<br>RANGE           | STATIONS #<br>NAME<br>DISTANCE AND DIRECTION                          | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENTS |
|                                                          | I-131                               |                                    | 15                                               | 10<br>(0/12)<br>(<3/<16)          | 9<br>(0/12)<br>(<3/<12)          | 10<br>(0/12)<br>(<3/<16)       | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>RGE                                            |
|                                                          | CS-134                              |                                    | 15                                               | 4<br>(0/12)<br>(<1/<9)            | 4<br>(0/12)<br>(≤1∕≤6)           | 4<br>(0/12)<br>(<:1/<9)        | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>RGE                                            |
|                                                          | CS-137                              |                                    | 18                                               | 4<br>(0/12)<br>(<1/<8)            | 4<br>(0/12)<br>(≤1/≤7)           | 4<br>(0/12)<br>(<1/<7)         | ILL CONTROL<br>PEACH BOTTOM UNITS 2 AND 3 IN<br>0.24 MILES NE OF SITE | 0<br>JTAKE                                          |
|                                                          | BA-140                              |                                    | 60                                               | 23<br>(0/12)<br>(<9/<38)          | 23<br>(0/12)<br>(<6/<32)         | 23<br>(0/12)<br>(<6/<32)       | ILL CONTROL<br>PEACH BOTTOM UNITS 2 AND 3 IN<br>0.24 MILES NE OF SITE | 0<br>VTAKE                                          |
| •                                                        | LA-140                              |                                    | 15                                               | 9<br>(0/12)<br>(<3/<14)           | 7<br>(0/12)<br>(<2/<11)          | 9<br>(0/12)<br>(<3/<14)        | 1MM INDICATOR<br>PEACH BOTTOM CANAL DISCHAR<br>1.04 MILES SE OF SITE  | 0<br>RGE                                            |
| DRINKING WATER<br>(PCI/LITER)                            | GR-B                                | 24                                 | 4                                                | 3.7<br>(11/12)<br>(< 2.3/ 5.9)    | 3.8<br>(11/12)<br>(< 2.2/ 8.8)   | 3.8<br>(11/12)<br>(< 2.2/ 8.8) | 61 CONTROL<br>HOLTWOOD DAM HYDROELECTR<br>5.75 MILES NW OF SITE       | 0<br>IC STATION                                     |
|                                                          | H-3                                 | 8                                  | 200                                              | 169<br>(1/4)<br>(<153/187)        | 170<br>(1/4)<br>(<153/191)       | 170<br>(1/4)<br>(<153/191)     | 6I CONTROL<br>HOLTWOOD DAM HYDROELECTR<br>5.75 MILES NW OF SITE       | 0<br>IC STATION                                     |
|                                                          | GAMMA<br>MN-54                      | 24                                 | 15                                               | 5<br>(0/12)<br>(<3/<9)            | 5<br>(0/12)<br>(<3/<7)           | 5<br>(0/12)<br>(<3/<9)         | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE     | 0                                                   |

| Name of Facility:<br>Location of Facili                  | PEACH BOTTO<br>ty: YORK COUNTY    |                                    | OWER STATION                                     | INDICATOR                         | DOCKET N<br>REPORTING            | G PERIOD:                | 50-277 & 50-278<br>2005                                                  |                                                     |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------|--------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN<br>(F)<br>RANGE | LOCATION<br>MEAN<br>(F)<br>RANGE | MEAN<br>(F)<br>RANGE     | WITH HIGHEST ANNUAL MEAN<br>STATIONS #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENTS |
|                                                          | CO-58                             |                                    | 15                                               | 5<br>(0/12)<br>(<3/<9)            | 5<br>(0/12)<br>(<3/<7)           | 5<br>(0/12)<br>(<3/<9)   | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                   |
|                                                          | FE-59                             |                                    | 30                                               | 10<br>(0/12)<br>(<6/<17)          | 10<br>(0/12)<br>(<6/<16)         | 10<br>(0/12)<br>(<6/<17) | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                   |
|                                                          | CO-60                             |                                    | 15                                               | 5<br>(0/12)<br>(<3/<10)           | 6<br>(0/12)<br>(<2/<8)           | 6<br>(0/12)<br>(<2/<8)   | 61 CONTROL<br>HOLTWOOD DAM HYDROELECTR<br>5.75 MILES NW OF SITE          | 0<br>LIC STATION                                    |
|                                                          | ZN-65                             |                                    | 30                                               | 10<br>(0/12)<br>(<7/<19)          | 11<br>(0/12)<br>(<7/<18)         | 11<br>(0/12)<br>(<7/<18) | 61 CONTROL<br>HOLTWOOD DAM HYDROELECTR<br>5.75 MILES NW OF SITE          | 0<br>RIC STATION                                    |
|                                                          | NB-95                             |                                    | 15                                               | 6<br>(0/12)<br>(<3/<11)           | 5<br>(0/12)<br>(<3/<8)           | 6<br>(0/12)<br>(<3/<11)  | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                   |
|                                                          | ZR-95                             |                                    | 30                                               | 10<br>(0/12)<br>(<5/<16)          | 9<br>(0/12)<br>(<5/<14)          | 10<br>(0/12)<br>(<5/<16) | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                   |
|                                                          | I-131                             |                                    | 15                                               | 11<br>(0/12)<br>(<5/<16)          | 10<br>(0/12)<br>(<6/<14)         | 11<br>(0/12)<br>(<5/<16) | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                   |
|                                                          | CS-134                            |                                    | 15                                               | 5<br>(0/12)<br>(<3/<10)           | 5<br>(0/12)<br>(<2/<8)           | 5<br>(0/12)<br>(<3/<10)  | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                   |

| Name of Facility:<br>Location of Facili                  |                                   | WER STATION                        |                                                  | DOCKET N<br>REPORTIN                           |                                             | 50-277 & 50-278<br>2005            |                                                                          |                                                   |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------|------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN<br>(F)<br>RANGE | CONTROL<br>LOCATION<br>MEAN<br>(F)<br>RANGE | LOCATION V<br>MEAN<br>(F)<br>RANGE | WITH HIGHEST ANNUAL MEAN<br>STATIONS #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMEN |
|                                                          | CS-137                            |                                    | 18                                               | 6<br>(0/12)<br>(<4/<9)                         | 5<br>(0/12)<br>(<3/<8)                      | 6<br>(0/12)<br>(∽4/⊴9)             | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                 |
|                                                          | BA-140                            |                                    | 60                                               | 26<br>(0/12)<br>(<15/<40)                      | 25<br>(0/12)<br>(<17/<34)                   | 26<br>(0/12)<br>(≪15/≪40)          | 4L INDICATOR<br>CONOWINGO DAM EL 33' MSL<br>8.66 MILES SE OF SITE        | 0                                                 |
|                                                          | LA-140                            |                                    | 15                                               | 8<br>(0/12)<br>(<2/<15)                        | 8<br>(0/12)<br>(≤4,≤13)                     | 8<br>(0/12)<br>(<4/<13)            | 6I CONTROL<br>HOLTWOOD DAM HYDROELECTR<br>5.75 MILES NW OF SITE          | 0<br>LC STATION                                   |
| BOTTOM FEEDER (FISH)<br>PCI/KG WET                       | GAMMA<br>K-40                     | 4                                  | N/A                                              | 2810<br>(2/2)<br>(2730/2890)                   | 2985<br>(2/2)<br>(2710/3260)                | 2985<br>(2/2)<br>(2710/3260)       | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND                   | 0                                                 |
|                                                          | MN-54                             |                                    | 130                                              | 29<br>(0/2)<br>(<11/<46)                       | 30<br>(0/2)<br>(<11/<49)                    | 30<br>(0/2)<br>(<11/<49)           | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND                   | 0                                                 |
|                                                          | CO-58                             |                                    | 130                                              | 26<br>(0/2)<br>(<10/<41)                       | 26<br>(0/2)<br>(<12/<41)                    | 26<br>(0/2)<br>(<12/<41)           | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND                   | 0                                                 |
|                                                          | FE-59                             |                                    | 260                                              | 71<br>(0/2)<br>(<24/<118)                      | 63<br>(0/2)<br>(<25/<102)                   | 71<br>(0/2)<br>(<24/<118)          | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO                    | 0                                                 |
|                                                          | CO-60                             |                                    | 130                                              | 24<br>(0/2)<br>(<11/<36)                       | 29<br>(0/2)<br>(<12/<45)                    | 29<br>(0/2)<br>(<12/<45)           | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND                   | 0                                                 |

| Name of Facility:<br>Location of Facil                   | WER STATION                       | INDICATOR                          | DOCKET N<br>REPORTING<br>CONTROL                 | G PERIOD:                         | 50-277 & 50-278<br>2005<br>VITH HIGHEST ANNUAL MEAN |                                       |                                                        |                                                    |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|-----------------------------------------------------|---------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN<br>(F)<br>RANGE | LOCATION<br>MEAN<br>(F)<br>RANGE                    | MEAN<br>(F)<br>RANGE                  | STATIONS #<br>NAME<br>DISTANCE AND DIRECTION           | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENT |
|                                                          | ZN-65                             |                                    | 260                                              | 61<br>(0/2)<br>(<24/<99)          | 61<br>(0/2)<br>(<23/<100)                           | 61<br>(0/2)<br>(<24/<99)              | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO  | 0                                                  |
|                                                          | CS-134                            |                                    | 130                                              | 28<br>(0/2)<br>(<11/<45)          | 28<br>(0/2)<br>(<10/<45)                            | 28<br>(0/2)<br>(<10/<45)              | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND | 0                                                  |
|                                                          | CS-137                            |                                    | 150                                              | 26<br>(0/2)<br>(<11/<41)          | 32<br>(0/2)<br>(<12/<51)                            | 32<br>(0/2)<br>(<12/<51)              | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND | 0                                                  |
| PREDATOR (FISH)<br>PCI/KG WET                            | GAMMA<br>K-40                     | 4                                  | N/A                                              | 3400<br>(2/2)<br>(3010/3790)      | 3310<br>(2/2)<br>(3250/3370)                        | 3400<br>(2/2)<br>(3010/3 <b>7</b> 90) | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO  | 0                                                  |
|                                                          | MN-54                             |                                    | 130                                              | 34<br>(0/2)<br>(<29/<39)          | 31<br>(0/2)<br>(<12/<49)                            | 34<br>(0/2)<br>(<29/<39)              | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO  | 0                                                  |
|                                                          | CO-58                             |                                    | 130                                              | 32<br>(0/2)<br>(<27/<38)          | 30<br>(0/2)<br>(<13/<47)                            | 32<br>(0/2)<br>(<27/<38)              | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO  | 0                                                  |
|                                                          | FE-59                             |                                    | 260                                              | 63<br>(0/2)<br>(<53/<73)          | 68<br>(0/2)<br>(<30/<107)                           | 68<br>(0/2)<br>(<30/<107)             | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND | 0                                                  |
|                                                          | CO-60                             |                                    | 130                                              | 37<br>(0/2)<br>(<33/<40)          | 32<br>(0/2)<br>(<14/<49)                            | 37<br>(0/2)<br>(<33/<40)              | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO  | 0                                                  |

| Name of Facility:<br>Location of Facili                  | PEACH BOTTO<br>ty: YORK COUNTY    |                                    | WER STATION                                      |                                                | DOCKET NU<br>REPORTING                      | PERIOD:                            | 50-277 & 50-278<br>2005                                                 | ··· 2. ···                                          |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------|------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN<br>(F)<br>RANGE | CONTROL<br>LOCATION<br>MEAN<br>(F)<br>RANGE | LOCATION W<br>MEAN<br>(F)<br>RANGE | ITH HIGHEST ANNUAL MEAN<br>STATIONS #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENTS |
| <u>.</u>                                                 | ZN-65                             |                                    | 260                                              | 63<br>(0/2)<br>(<58/≤68)                       | 64<br>(0/2)<br>(≤28/≤100)                   | 64<br>(0/2)<br>(<28/<100)          | 6 CONTROL<br>HOLTWOOD POND<br>LOCATED IN HOLTWOOD POND                  | 0                                                   |
|                                                          | CS-134                            |                                    | 130                                              | 31<br>(0/2)<br>(<27/<34)                       | 29<br>(0/2)<br>(<13/<44)                    | 31<br>(0/2)<br>(<27/<34)           | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO                   | 0                                                   |
|                                                          | CS-137                            |                                    | 150                                              | 36<br>(0/2)<br>(<35/<36)                       | 26<br>(0/2)<br>(<13/<38)                    | 36<br>(0/2)<br>(<35/<36)           | 4 INDICATOR<br>CONOWINGO POND<br>LOCATED IN CONOWINGO                   | 0                                                   |
| SEDIMENT<br>PCI/KG DRY                                   | GAMMA<br>BE-7                     | 9                                  | N/A                                              | 505<br>(1/6)<br>(<162/1080)                    | 402<br>(1/3)<br>(<236/<504)                 | 666<br>(1/3)<br>(<162/1080)        | 4T INDICATOR<br>CONOWINGO POND NEAR CONOV<br>7.92 MILES SE OF SITE      | 0<br>WINGO DAM                                      |
|                                                          | K-40                              |                                    | N/A                                              | 14567<br>(6/6)<br>(10100/22500)                | 8603<br>(2/3)<br>(<1210/14200)              | 18367<br>(3/3)<br>(14800/22500)    | 4T INDICATOR<br>CONOWINGO POND NEAR CONOW<br>7.92 MILES SE OF SITE      | 0<br>VINGO DAM                                      |
|                                                          | MN-54                             |                                    | N/A                                              | 55<br>(2/6)<br>(<21/<88)                       | 42<br>(0/3)<br>(<29/<61)                    | 60<br>(0/3)<br>(<21/<88)           | 4T INDICATOR<br>CONOWINGO POND NEAR CONOV<br>7.92 MILES SE OF SITE      | 0<br>VINGO DAM                                      |
|                                                          | CO-58                             |                                    | N/A                                              | 46<br>(0/6)<br>(<18/<74)                       | 38<br>(0/3)<br>(<30/<52)                    | 52<br>(0/3)<br>(<18/<74)           | 4T INDICATOR<br>CONOWINGO POND NEAR CONOV<br>7.92 MILES SE OF SITE      | 0<br>VINGO DAM                                      |
|                                                          | CO-60                             |                                    | N/A                                              | 86<br>(2/6)<br>(<22/174)                       | 38<br>(0/3)<br>(<31/<45)                    | 122<br>(2/3)<br>(<48/174)          | 4J INDICATOR<br>CONOWINGO POND NEAR BERKIN<br>1.39 MILES SE OF SITE     | 0<br>N'S RUN                                        |

| Name of Facility:<br>Location of Facil                   | Name of Facility: PEACH BOTTOM ATOMIC POWER STATION<br>Location of Facility: YORK COUNTY, PA |                                    |                                                  |                                   | DOCKET NU<br>REPORTING<br>CONTROL | FPERIOD:                      | 50-277 & 50-278<br>2005<br>VITH HIGHEST ANNUAL MEAN                  |                                                    |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------|----------------------------------------------------------------------|----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED                                                            | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN<br>(F)<br>RANGE | LOCATION<br>MEAN<br>(F)<br>RANGE  | MEAN<br>(F)<br>RANGE          | STATIONS #<br>NAME<br>DISTANCE AND DIRECTION                         | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENT |
|                                                          | CS-134                                                                                       |                                    | 150                                              | 44<br>(0/6)<br>(<17/<76)          | 35<br>(0/3)<br>(<23/<51)          | 51<br>(0/3)<br>(<17/<76)      | 4T INDICATOR<br>CONOWINGO POND NEAR CONO<br>7.92 MILES SE OF SITE    | 0<br>WINGO DAM                                     |
|                                                          | CS-137                                                                                       |                                    | 180                                              | 85<br>(3/6)<br>(38/166)           | 192<br>(2/3)<br>(<26/451)         | 192<br>(2/3)<br>(<26/451)     | 6F CONTROL<br>HOLTWOOD DAM<br>5.96 MILES NW OF SITE                  | 0                                                  |
| AIR PARTICULATE<br>(E-3 PCI/CU.METER)                    | GR-B                                                                                         | 261                                | 10                                               | 16<br>(244/261)<br>(<6/38)        | N/A                               | 17<br>(49/52)<br>(6/31)       | 1Z INDICATOR<br>WEATHER STATION #1<br>0.26 MILES SE OF SITE          | 0                                                  |
|                                                          | GAMMA<br>BE-7                                                                                | 20                                 | N/A                                              | 65<br>(18/18)<br>(37/94)          | N/A                               | 72<br>(4/4)<br>(59/94)        | 1C INDICATOR<br>PEACH BOTTOM SOUTH SUB STA<br>0.85 MILES SSE OF SITE | 0<br>ATION                                         |
|                                                          | MN-54                                                                                        |                                    | N/A                                              | 1.9<br>(0/20)<br>(< 0.6/< 4.0)    | N/A                               | 1.9<br>(0/4)<br>(< 0.6/< 4.0) | 1B INDICATOR<br>WEATHER STATION #2<br>0.49 MILES NW OF SITE          | 0                                                  |
|                                                          | CO-58                                                                                        |                                    | N/A                                              | 2.0<br>(0/20)<br>(< 0.6/< 5.1)    | N/A                               | 2.5<br>(0/4)<br>(< 0.7/< 5.1) | 1B INDICATOR<br>WEATHER STATION #2<br>0.49 MILES NW OF SITE          | 0                                                  |
|                                                          | CO-60                                                                                        |                                    | N/A                                              | 1.8<br>(0/20)<br>(< 0.6/< 3.9)    | N/A                               | 2.2<br>(0/4)<br>(< 0.7/< 3.9) | 1B INDICATOR<br>WEATHER STATION #2<br>0.49 MILES NW OF SITE          | 0                                                  |
|                                                          | CS-134                                                                                       |                                    | 50                                               | 1.7<br>(0/20)<br>(< 0.6/< 3.6)    | N/A                               | 2.0<br>(0/4)<br>(< 0.6/< 3.4) | 1B INDICATOR<br>WEATHER STATION #2<br>0.49 MILES NW OF SITE          | 0                                                  |

| Name of Facility: PEACH BOTTOM ATOMIC POWER STATION<br>Location of Facility: YORK COUNTY, PA |                                   |                                    |                                                  | INDICATOR                      | DOCKET NUMBER:<br>REPORTING PERIOD:<br>CONTROL LOCATION W |                                | 50-277 & 50-278<br>2005<br>VITH HIGHEST ANNUAL MEAN          |                                                     |
|----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|--------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT)                                     | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN<br>(F)       | LOCATION<br>MEAN<br>(F)<br>RANGE                          | MEAN<br>(F)<br>RANGE           | STATIONS #<br>NAME<br>DISTANCE AND DIRECTION                 | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENTS |
|                                                                                              | CS-137                            |                                    | 60                                               | 1.7<br>(0/20)<br>(< 0.7/< 3.5) | N/A                                                       | 1.9<br>(0/4)<br>(< 0.7/< 3.5)  | 1B INDICATOR<br>WEATHER STATION #2<br>0.49 MILES NW OF SITE  | 0                                                   |
| AIR IODINE<br>(E-3 PCI/CU.METER)                                                             | I-131                             | 261                                | 70                                               | 23<br>(0/261)<br>(<7/<47)      | N∉A                                                       | 25<br>(0/52)<br>(<11/<46)      | 3A INDICATOR<br>DELTA PA SUBSTATION<br>3.62 MILES SW OF SITE | 0                                                   |
| MILK<br>(PCI/LITER)                                                                          | I-131                             | 129                                | 1                                                | 0.5<br>(0/96)<br>(< 0.2/< 0.8) | 0.5<br>(0/33)<br>(<0.2'<0.8)                              | 0.6<br>(0/4)<br>(< 0.3/< 0.8)  | C CONTROL<br>9.54 MILES NW OF SITE                           | 0                                                   |
|                                                                                              | GAMMA<br>K-40                     | 105                                | N/A                                              | 1326<br>(84/84)<br>(1090/1640) | 1344<br>(21/21)<br>(1150/1510)                            | 1395<br>(21/21)<br>(1290/1640) | R INDICATOR<br>0.89 MILES WSW OF SITE                        | 0                                                   |
|                                                                                              | CS-134                            |                                    | 15                                               | 5<br>(0/84)<br>(<3/<13)        | 5<br>(0/21)<br>(<3/<8)                                    | 5<br>(0/21)<br>(<4/<13)        | J INDICATOR<br>0.97 MILES W OF SITE                          | 0                                                   |
|                                                                                              | CS-137                            |                                    | 18                                               | 6<br>(0/84)<br>(<4/<15)        | 6<br>(0/21)<br>(<4/<10)                                   | 7<br>(0/21)<br>(<4/<15)        | J INDICATOR                                                  | 0                                                   |
|                                                                                              | BA-140                            |                                    | 60                                               | 23<br>(0/84)<br>(<11/<38)      | 22<br>(0/21)<br>(<15/<39)                                 | 24<br>(0/21)<br>(<15/<38)      | J INDICATOR                                                  | 0                                                   |
|                                                                                              | LA-140                            |                                    | 15                                               | 7<br>(0/84)<br>(<2/<11)        | 6<br>(0/21)<br>(<2/<12)                                   | 24<br>(0/21)<br>(<4/<10)       | S INDICATOR<br>3.61 MILES ESE OF SITE                        | 0                                                   |

| Name of Facility:<br>Location of Facility                | WER STATION                       | INDICATOR                          | DOCKET NUMBER:<br>REPORTING PERIOD:<br>CONTROL LOCATION WI |                                   | 50-277 & 50-278<br>2005<br>WITH HIGHEST ANNUAL MEAN |                            |                                                                  |                                                     |
|----------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|----------------------------|------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSES<br>PERFORMED | NUMBER OF<br>ANALYSES<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD)           | LOCATIONS<br>MEAN<br>(F)<br>RANGE | LOCATION<br>MEAN<br>(F)<br>RANGE                    | MEAN<br>(F)<br>RANGE       | STATIONS #<br>NAME<br>DISTANCE AND DIRECTION                     | NUMBER OF<br>NONROUTIME<br>REPORTED<br>MEASUREMENTS |
| FOOD PRODUCTS                                            | BE-7                              | 9                                  | N/A                                                        | 613<br>(5/6)<br>(<220/1190)       | 333<br>(3/3)<br>(258/470)                           | 646<br>(3/3)<br>(242/1060) | IQ INDICATOR<br>NW SECTOR                                        | 0                                                   |
|                                                          | MN-54                             |                                    | N/A                                                        | 15<br>(0/6)<br>(<13/<19)          | 14<br>(0/3)<br>(<11/<17)                            | 17<br>(0/3)<br>(<14/<19)   | IQ INDICATOR<br>NW SECTOR                                        | 0                                                   |
|                                                          | CO-58                             |                                    | N/A                                                        | 15<br>(0/6)<br>(<12/<19)          | 14<br>(0/3)<br>(<11/<17)                            | 16<br>(0/3)<br>(<14/<19)   | 2B INDICATOR<br>SSE SECTOR                                       | 0                                                   |
|                                                          | CO-60                             |                                    | N/A                                                        | 16<br>(0/6)<br>(<13/<19)          | 16<br>(0/3)<br>(<15/<17)                            | 16<br>(0/3)<br>(<15/<17)   | 55 CONTROL<br>NE SECTOR                                          | 0                                                   |
|                                                          | I-131                             |                                    | 60                                                         | 50<br>(0/6)<br>(<41/<57)          | 42<br>(0/3)<br>(<32/<50)                            | 51<br>(0/3)<br>(<41/<57)   | IQ INDICATOR<br>NW SECTOR                                        | 0                                                   |
|                                                          | CS-134                            |                                    | 60                                                         | 14<br>(0/6)<br>(<12/<16)          | 13<br>(0/3)<br>(<10/<15)                            | 15<br>(0/3)<br>(<12/<16)   | IQ INDICATOR<br>NW SECTOR                                        | 0                                                   |
|                                                          | CS-137                            |                                    | 80                                                         | 16<br>(0/6)<br>(<14/<19)          | 15<br>(0/3)<br>(<11/<17)                            | 15<br>(0/3)<br>(<14/<19)   | IQ INDICATOR<br>NW SECTOR                                        | 0                                                   |
| DIRECT RADIATION<br>(MILLI-ROENTGEN/STD.MO.)             | TLD-QUARTERLY                     | 185                                | N/A                                                        | 6.8<br>(169/169)<br>(4.1/8.8)     | 6.6<br>(16/16)<br>(5.4/7.6)                         | 8.3<br>(4/4)<br>(7.9/8.6)  | IR INDICATOR<br>TRANSMISSION LINE HILL<br>0.53 MILES SSE OF SITE | 0                                                   |

Intentionally Left Blank

### **APPENDIX B**

### SAMPLE DESIGNATION AND LOCATIONS

| Location             | Location Description                                                                                | Distance & Direction<br>from PBAPS Vents         |
|----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------|
| A. Surface W         | /ater                                                                                               |                                                  |
| 1LL                  | Peach Bottom Units 2 and 3 Intake - Composite<br>(Control)                                          | 0.24 miles NE                                    |
| 1MM                  | Peach Bottom Canal Discharge -Composite                                                             | 1.04 miles SE                                    |
| 3. Drinking (I       | Potable) Water                                                                                      |                                                  |
| 4L<br>61             | Conowingo Dam EL 33' MSL - Composite<br>Holtwood Dam Hydroelectric Station - Composite<br>(Control) | 8.66 miles SE<br>5.75 miles NW                   |
| <u>C. Fish</u>       |                                                                                                     |                                                  |
| 4                    | Conowingo Pond                                                                                      | Located in Conowingo<br>Pond below the discharge |
| 6                    | Holtwood Pond (Control)                                                                             | Located in Holtwood Pond                         |
| D. Sediment          |                                                                                                     |                                                  |
| 4J                   | Conowingo Pond near Berkin's Run                                                                    | 1.39 miles SE                                    |
| 4Ť<br>6F             | Conowingo Pond near Conowingo Dam<br>Holtwood Dam (Control)                                         | 7.92 miles SE<br>5.96 miles NW                   |
| E. Air Particu       | late - Air Iodine                                                                                   |                                                  |
| 1B                   | Weather Station #2                                                                                  | 0.49 miles NW                                    |
| 1Z                   | Weather Station #1                                                                                  | 0.26 miles SE                                    |
| 1A                   | Weather Station #1                                                                                  | 0.26 miles SE                                    |
| 10                   | Peach Bottom South Sub Station                                                                      | 0.85 miles SSE                                   |
| 3A<br>5H2            | Delta, PA – Substation<br>Manor Substation                                                          | 3.62 miles SW<br>30.79 miles NE                  |
| . Milk – bi-w        | <u>eekly / monthly</u>                                                                              |                                                  |
| A                    | (Control)                                                                                           | 5.78 miles WSW                                   |
| J                    |                                                                                                     | 0.97 miles W                                     |
| 0                    |                                                                                                     | 2.32 miles SW                                    |
| R                    |                                                                                                     | 0.89 miles WSW                                   |
| S                    |                                                                                                     | 3.61 miles SE                                    |
| Т                    | (Control)                                                                                           | 6.55 miles W                                     |
| <u> . Milk – qua</u> | rterly                                                                                              |                                                  |
|                      |                                                                                                     | 10.58 miles S                                    |
| В                    | (Control)                                                                                           |                                                  |
| B<br>C               | (Control)                                                                                           | 9.54 miles NW                                    |
|                      | • •                                                                                                 |                                                  |
| С                    | • •                                                                                                 | 9.54 miles NW                                    |
| C<br>D               | (Control)                                                                                           | 9.54 miles NW<br>3.51 miles NE                   |

# TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and<br/>Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2005

| ocation         | Location Description                  | Distance & Direction<br>from PBAPS Vents          |  |  |
|-----------------|---------------------------------------|---------------------------------------------------|--|--|
|                 | · · · · · · · · · · · · · · · · · · · |                                                   |  |  |
| Food Proc       | lucts – annually                      |                                                   |  |  |
| 1Q              |                                       | 0.79 miles NW                                     |  |  |
| 2B              |                                       | 0.73 miles SSE                                    |  |  |
| 55              | (Control)                             | 9.9 miles NE                                      |  |  |
| Environme       | ental Dosimetry - TLD                 |                                                   |  |  |
| te Boundary     |                                       |                                                   |  |  |
| 1L              | Peach Bottom Unit 3 Intake            | 0.24 miles NE                                     |  |  |
| 1P              | Tower B & C Fence                     | 0.40 miles ESE                                    |  |  |
| 1A              | Weather Station #1                    | 0.26 miles SE                                     |  |  |
| 1Q              | Tower D & E Fence                     | 0.62 miles SE                                     |  |  |
| 1D              | 140° Sector                           | 0.67 miles SE                                     |  |  |
| 2               | Peach Bottom 130° Sector Hill         | 0.88 miles SE                                     |  |  |
| 1M              | Discharge                             | 1.03 miles SE                                     |  |  |
| 1R              | Transmission Line Hill                | 0.53 miles SSE                                    |  |  |
| 11              | Peach Bottom South Substation         | 0.54 miles SSE                                    |  |  |
| 10              | Peach Bottom South Substation         | 0.85 miles SSE                                    |  |  |
| 1J              | Peach Bottom 180° Sector Hill         | 0.71 miles S                                      |  |  |
| 1K              | Peach Bottom Site Area                | 0.87 miles SW                                     |  |  |
| 1F              | Peach Bottom 200° Sector Hill         | 0.51 miles SSW                                    |  |  |
| 40              | Peach Bottom Site Area                | 1.46 miles SW                                     |  |  |
| 1NN             | Peach Bottom Site                     | 0.48 miles WSW                                    |  |  |
| 1H              | Peach Bottom 270° Sector Hill         | 0.59 miles W                                      |  |  |
| 1G              | Peach Bottom North Substation         |                                                   |  |  |
| 18              | Weather Station #2                    | 0.60 miles WNW                                    |  |  |
| 1E              | Peach Bottom 350° Sector Hill         | 0.49 miles NW<br>0.59 miles NNW                   |  |  |
| ermediate Dista | ance                                  |                                                   |  |  |
| 2B              | Burk Property                         | 0.71 miles SSE                                    |  |  |
| 5               | Wakefield, PA                         | 4.64 miles E                                      |  |  |
| 5<br>15         | Silver Spring Rd                      | 3.68 miles N                                      |  |  |
| 22              | Eagle Road                            | 2.39 miles NNE                                    |  |  |
| 22<br>44        | Goshen Mill Rd                        | 5.07 miles NE                                     |  |  |
| 44<br>32        | Slate Hill Rd                         | 2.75 miles ENE                                    |  |  |
|                 |                                       | 3.38 miles ENE                                    |  |  |
| 45              | PB-Keeney Line                        | ****                                              |  |  |
| 14              | Peters Creek                          | 1.97 miles E                                      |  |  |
| 17              | Riverview Rd                          | 4.07 miles ESE                                    |  |  |
| 31A             | Eckman Rd                             | 4.57 miles SE                                     |  |  |
| 4K              | Conowingo Dam Power House Roof        | 8.61 miles SE                                     |  |  |
| 23              | Peach Bottom 150° Sector Hill         | 1.01 miles SSE                                    |  |  |
| 27              | N. Cooper Road                        | 2.68 miles S                                      |  |  |
| 48              | Macton Substation                     | 4.99 miles SSW                                    |  |  |
| ЗA              | Delta, PA Substation                  | 3.62 miles SW                                     |  |  |
| 49              | PB-Conastone Line                     | 4.05 miles WSW                                    |  |  |
| 50              | TRANSCO Pumping Station               | 4.99 miles W                                      |  |  |
|                 | Fin Substation                        | 3.98 miles WNW                                    |  |  |
| 51              | Slab Road                             | 4.23 miles NW                                     |  |  |
|                 |                                       |                                                   |  |  |
| 26              |                                       | 5.78 miles NW                                     |  |  |
| 26<br>6B        | Holtwood Dam Power House Roof         | 5.78 miles NW<br>4 13 miles NNW                   |  |  |
| 26              |                                       | 5.78 miles NW<br>4.13 miles NNW<br>5.00 miles NNE |  |  |

# TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and<br/>Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2005

| Location | Location Description                 | Distance & Direction<br>from PBAPS Vents |  |  |
|----------|--------------------------------------|------------------------------------------|--|--|
| 47       | Broad Creek Scout Camp               | 4.26 miles S                             |  |  |
| Control  |                                      |                                          |  |  |
| 16       | Nottingham, PA Substation (Control)  | 12.72 miles E                            |  |  |
| 24       | Harrisville, MD Substation (Control) | 10.91 miles ESE                          |  |  |
| 18       | Fawn Grove, PA (Control)             | 9.86 miles W                             |  |  |
| 19       | Red Lion, PA (Control)               | 20.21 miles WNW                          |  |  |

# TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and<br/>Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2005

.

-

# TABLE B-2 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2005

| Sample<br>Medium | Analysis              | Sampling Method                                                                | Collection Procedure Number                                                                                                       | Sample Size                                    | Analytical Procedure Number                                                                                           |
|------------------|-----------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Surface Water    | Gamma<br>Spectroscopy | Monthly composite<br>from a continuous<br>water compositor.                    | NAI-ER15 Collection of water samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                          | 2 gallon                                       | TBE, TBE-2007 Gamma emitting radioisotope<br>analysis<br>Env. Inc., GS-01 Determination of gamma emitters             |
|                  |                       |                                                                                |                                                                                                                                   |                                                | by gamma spectroscopy                                                                                                 |
| Surface Water    | Tritium               | Quarterly composite<br>from a continuous<br>water compositor.                  | NAI-ER15 Collection of water samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                          | 500 mi                                         | TBE, TBE-2010 Tritium and carbon-14 analysis by<br>liquid scintillation                                               |
|                  |                       |                                                                                |                                                                                                                                   |                                                | Env. Inc., T-02 Determination of tritium in water<br>(direct method)                                                  |
| Drinking Water   | Gross Beta            | Monthly composite<br>from a continuous<br>water compositor.                    | NAI-ER15 Collection of water samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                          | 2 gallon                                       | TBE, TBE-2008 Gross alpha and/or gross beta activity in various matrices                                              |
|                  |                       |                                                                                |                                                                                                                                   |                                                | Env. Inc., W(DS)-01 Determination of gross alpha<br>and/or gross beta in water (dissolved solids or total<br>residue) |
| Drinking Water   | Gamma<br>Spectroscopy | Monthly composite<br>from a continuous<br>water compositor.                    | NAI-ER15 Collection of water samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                          | 2 gallon                                       | TBE, TBE-2007 Gamma emitting radioisotope<br>analysis                                                                 |
|                  |                       |                                                                                |                                                                                                                                   |                                                | Env. Inc., GS-01 Determination of gamma emitters<br>by gamma spectroscopy                                             |
| Drinking Water   | Tritium               | Quarterly composite<br>from a continuous<br>water compositor.                  | NAI-ER15 Collection of water samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                          | 500 ml                                         | TBE, TBE-2010 Tritium and carbon-14 analysis by<br>liquid scintillation                                               |
|                  |                       |                                                                                |                                                                                                                                   |                                                | Env. Inc., T-02 Determination of tritium in water<br>(direct method)                                                  |
| Fish             | Gamma<br>Spectroscopy | Semi-annual samples<br>collected via<br>electroshocking or<br>other techniques | NAI-ER3 Collection of fish samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                            | 1000 grams (wet)                               | TBE, TBE-2007 Gamma emitting radioisotope analysis                                                                    |
| Sediment         | Gamma<br>Spectroscopy | Semi-annual grab<br>samples                                                    | NAI-ER2 Collection of sediment samples<br>for radiological analysis (Peach Bottom<br>Atomic Power Station)                        | 500 grams (dry)                                | TBE, TBE-2007 Gamma emitting radioisotope<br>analysis                                                                 |
| Air Particulates | Gross Beta            | One-week composite<br>of continuous air<br>sampling through                    | NAI-ER16 Collection of air particulate and<br>air iodine samples for radiological analysis<br>(Peach Bottom Atomic Power Station) | 1 filter<br>(approximately 280<br>cubic meters | TBE, TBE-2008 Gross alpha and/or gross beta<br>activity in various matrices                                           |
|                  |                       | glass fiber filter paper                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                             | weekly)                                        | Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters                            |

#### TABLE B-2 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2005

| Sample<br>Medium | Analysis                        | Sampling Method                                                                              | Collection Procedure Number                                                                                                                       | Sample Size                                               | Analytical Procedure Number                                                                                                                                       |
|------------------|---------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Particulates | Gamma Spectroscopy              | Quarterly composite<br>of each station                                                       | TBE, TBE-2023 Compositing of samples<br>Env. Inc., AP-03 Procedure for compositing<br>air particulate fitters for gamma<br>spectroscopic analysis | 13 filters<br>(approximately 3600<br>cubic meters)        | TBE, TBE-2007 Gamma emitting radioisotope<br>analysis<br>Env. Inc., GS-01 Determination of gamma emitters<br>by gamma spectroscopy                                |
| Air Iodine       | Gamma Spectroscopy              | One-week composite<br>of continuous air<br>sampling through<br>charcoal filter               | NAI-ER8 Collection of air particulate and<br>air iodine samples for radiological analysis<br>(Peach Bottom Atomic Power Station)                  | 1 filter<br>(approximately 280<br>cubic meters<br>weekly) | TBE, TBE-2007 Gamma emitting radioisotope<br>analysis<br>Env. Inc., I-131-02 Determination of I-131 in charcoal<br>canisters by gamma spectroscopy (batch method) |
| Milk             | F131                            | Bi-weekly grab<br>sample when cows<br>are on pasture.<br>Monthly all other<br>times          | NAI-ER10 Collection of milk samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                                           | 2 gallon                                                  | TBE, TBE-2012 Radiolodine in various matrices<br>Env. Inc., I-131-01 Determination of I-131 in milk by<br>anion exchange                                          |
| Milk             | Gamma Spectroscopy              | Bi-weekly grab<br>sample when cows<br>are on pasture.<br>Monthly all other<br>times          | NAI-ER10 Collection of milk samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                                           | 2 gallon                                                  | TBE, TBE-2007 Gamma emitting radioisotope<br>analysis<br>Env. Inc., GS-01 Determination of gamma emitters<br>by gamma spectroscopy                                |
| Food Products    | Gamma Spectroscopy              | Annual grab samples                                                                          | NAI-ER12 Collection of vegetation<br>samples for radiological analysis (Peach<br>Bottom Atomic Power Station)                                     | 1000 grams                                                | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy                                   |
| TLD              | Thermoluminescence<br>Dosimetry | Quarterly TLDs<br>comprised of two<br>Panasonic 814<br>(containing 3 each<br>CaSO4 elements) | NAI-ER9 Collection of TLD samples for<br>radiological analysis (Peach Bottom<br>Atomic Power Station)                                             | 2 dosimeters                                              | Global Dosimetry                                                                                                                                                  |

.

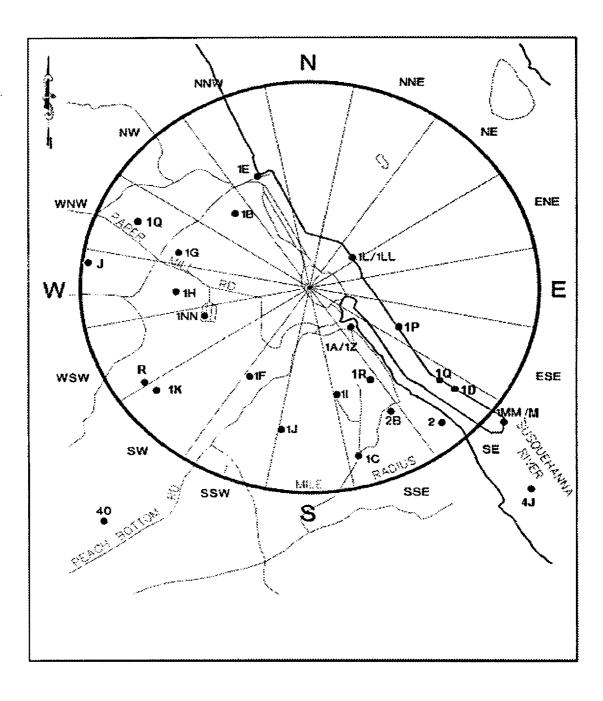



Figure B-1 Environmental Sampling Locations Within One Mile of the Peach Bottom Atomic Power Station, 2005

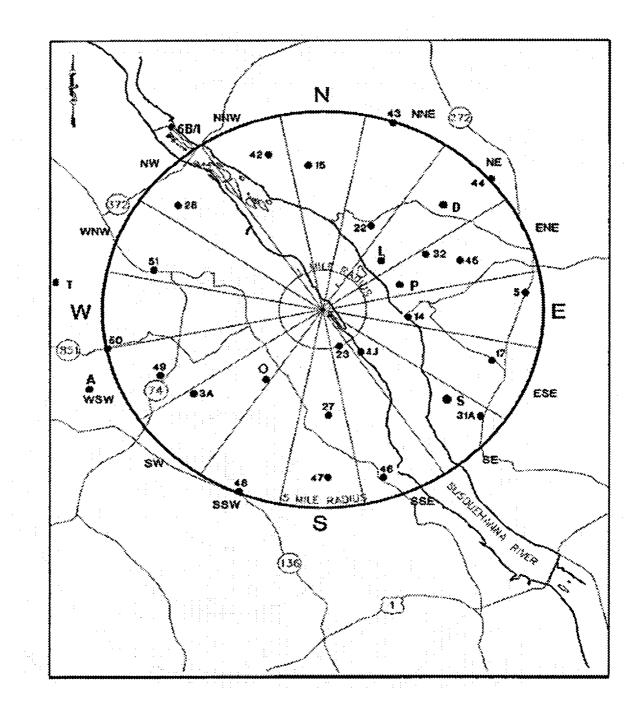



Figure B-2 Environmental Sampling Locations Between One and Approximately Five Miles of the Peach Bottom Atomic Power Station, 2005

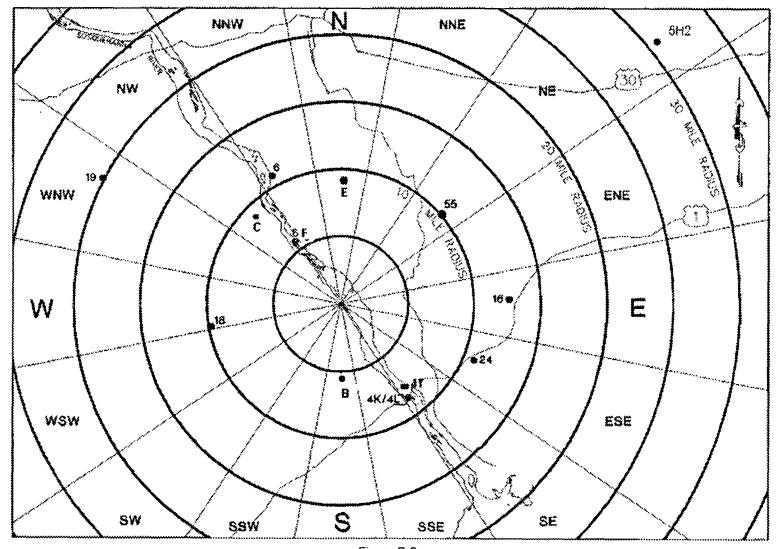



Figure B-3 Environmental Sampling Locations Greater Than Five Miles from the Peach Bottom Atomic Power Station, 2005

**APPENDIX C** 

### DATA TABLES AND FIGURES PRIMARY LABORATORY

## TABLE C-I.1CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED<br/>IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | 1LL      | 1MM      |
|----------------------|----------|----------|
| JAN-MAR              | < 157    | < 155    |
| APR-JUN              | < 179    | < 179    |
| JUL-SEP              | < 170    | < 169    |
| OCT-DEC              | < 198    | < 162    |
| MEAN                 | 176 ± 34 | 166 ± 20 |

|    | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr9-5 | I-131  | Cs-134 | Cs-137 | Ba-140  | La-140 |
|----|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------|--------|
| LŁ | JAN                  | < 6   | < 5   | < 14  | < 7   | < 14  | < 7   | < 10  | < 12   | < 5    | < 7    | < 29    | < 8    |
|    | FEB                  | < 4   | < 3   | < 6   | < 4   | < 7   | < 3   | < 7   | < 7    | < 3    | < 3    | < 18    | < 6    |
|    | MAR                  | < 5   | < 2   | < 7   | < 7   | < 8   | < 5   | < 5   | < 12   | < 3    | < 5    | < 32    | < 9    |
|    | APR                  | < 5   | < 5   | < 11  | < 5   | < 11  | < 5   | < 7   | < 9    | < 4    | < 4    | < 23    | < 2    |
|    | MAY                  | < 6   | < 6   | < 13  | < 6   | < 12  | < 7   | < 8   | < 10   | < 5    | < 6    | < 28    | < 11   |
|    | JUN                  | < 4   | < 4   | < 6   | < 5   | < 6   | < 6   | < 8   | < 8    | < 4    | < 5    | < 27    | < 9    |
|    | JUL                  | < 6   | < 5   | < 12  | < 6   | < 11  | < 7   | < 13  | < 12   | < 6    | < 6    | < 30    | < 10   |
|    | AUG                  | < 3   | < 3   | < 6   | < 4   | < 5   | < 3   | < 5   | < 6    | < 2    | < 3    | < 15    | < 4    |
|    | SEP                  | < 3   | < 4   | < 9   | < 5   | < 8   | < 3   | < 7   | < 12   | < 3    | < 4    | < 26    | < 8    |
|    | OCT                  | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 3    | < 1    | < 1    | < 6     | < 2    |
|    | NOV                  | < 4   | < 5   | < 7   | < 3   | < 7   | < 4   | < 8   | < 9    | < 3    | < 5    | < 21    | < 7    |
|    | DEC                  | < 4   | < 4   | < 5   | < 4   | < 8   | < 4   | < 7   | < 7    | < 4    | < 4    | < 19    | < 5    |
|    | MEAN                 | 4 ± 3 | 4 ± 3 | 8 ± 7 | 5 ± 3 | 8 ± 6 | 5 ± 4 | 7 ± 5 | 9 ± 6  | 4 ± 3  | 4 ± 3  | 23 ± 15 | 7 ± 6  |
| мм | JAN                  | < 5   | < 5   | < 6   | < 6   | < 9   | < 6   | < 8   | < 7    | < 4    | < 3    | < 18    | < 10   |
|    | FEB                  | < 4   | < 4   | < 8   | < 4   | < 9   | < 5   | < 7   | < 8    | < 4    | < 4    | < 22    | < 5    |
|    | MAR                  | < 6   | < 5   | < 12  | < 6   | < 10  | < 6   | < 9   | < 16   | < 5    | < 6    | < 33    | < 14   |
|    | APR                  | < 6   | < 6   | < 11  | < 6   | < 9   | < 5   | < 9   | < 11   | < 5    | < 5    | < 26    | < 8    |
|    | MAY                  | < 5   | < 5   | < 11  | < 5   | < 12  | < 6   | < 10  | < 9    | < 5    | < 5    | < 27    | < 10   |
|    | JUN                  | < 4   | < 4   | < 7   | < 4   | < 7   | < 4   | < 7   | < 7    | < 4    | < 5    | < 16    | < 9    |
|    | JUL                  | < 4   | < 5   | < 8   | < 5   | < 9   | < 5   | < 7   | < 11   | < 4    | < 3    | < 19    | < 8    |
|    | AUG                  | < 3   | < 4   | < 7   | < 4   | < 7   | < 4   | < 6   | < 8    | < 3    | < 3    | < 20    | < 7    |
|    | SEP                  | < 4   | < 4   | < 9   | < 4   | < 7   | < 4   | < 7   | < 12   | < 3    | < 4    | < 27    | < 10   |
|    | ост                  | < 1   | < 1   | < 3   | < 1   | < 3   | < 1   | < 3   | < 3    | < 1    | < 1    | < 9     | < 3    |
|    | NOV                  | < 3   | < 5   | < 10  | < 4   | < 7   | < 5   | < 7   | < 7    | < 4    | < 4    | < 18    | < 6    |
|    | DEC                  | < 8   | < 7   | < 16  | < 8   | < 17  | < 9   | < 14  | < 15   | < 9    | < 8    | < 38    | < 14   |
|    | MEAN                 | 4 ± 4 | 5 ± 3 | 9 ± 6 | 5 ± 3 | 9 ± 7 | 5 ± 3 | 8 ± 6 | 10 ± 7 | 4 ± 4  | 4 ± 3  | 23 ± 16 | 9 ± 7  |

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED

### IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-I.2

### TABLE C-II.1CONCENTRATIONS OF TOTAL GROSS BETA IN DRINKING WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | 4L        | 61        |
|----------------------|-----------|-----------|
| JAN                  |           | 4.3 ± 1.3 |
| FEB                  | < 2.3     | 8.8 ± 1.9 |
| MAR                  | 3.6 ± 1.4 | 3.7 ± 1.4 |
| APR                  | 3.9 ± 1.4 | 3.7 ± 1.5 |
| MAY                  | 5.9 ± 1.8 | < 2.2     |
| JUN                  | 3.3 ± 1.7 | 3.3 ± 1.7 |
| JUL                  | 4.5 ± 1.6 | 4.6 ± 1.6 |
| AUG                  | 3.0 ± 1.6 | 2.6 ± 1.6 |
| SEP                  | 4.8 ± 1.7 | 2.9 ± 1.5 |
| OCT                  | 3.7 ± 1.5 | 3.5 ± 1.5 |
| NOV                  | 2.5 ± 1.3 | 3.6 ± 1.4 |
| DEC                  | 3.8 ± 1.5 | 3.1 ± 1.5 |
| MEAN                 | 3.7 ± 2.0 | 3.8 ± 3.4 |

### TABLE C-II.2CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES COLLECTED IN<br/>THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | 4L        | 61        |
|----------------------|-----------|-----------|
| JAN-MAR              | < 153     | < 153     |
| APR-JUN              | 187 ± 113 | 191 ± 114 |
| JUL-SEP              | < 178     | < 172     |
| OCT-DEC              | < 159     | < 162     |
| MEAN                 | 169 ± 32  | 170 ± 33  |

| STC | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59  | Co-60 | Zn-65  | Zr-95 | Nb-95  | I-131  | Cs-134 | Cs-137 | Ba-140  | La-140 |
|-----|----------------------|-------|-------|--------|-------|--------|-------|--------|--------|--------|--------|---------|--------|
| 4L  | JAN                  | < 7   | < 8   | < 16   | < 6   | < 14   | < 10  | < 12   | < 13   | < 7    | < 9    | < 34    | < 9    |
|     | FEB                  | < 4   | < 4   | < 6    | < 4   | < 8    | < 4   | < 8    | < 7    | < 3    | < 4    | < 15    | < 6    |
|     | MAR                  | < 5   | < 5   | < 9    | < 5   | < 8    | < 6   | < 10   | < 12   | < 4    | < 5    | < 24    | < 6    |
|     | APR                  | < 6   | < 4   | < 10   | < 7   | < 11   | < 6   | < 12   | < 11   | < 6    | < 7    | < 25    | < 6    |
|     | MAY                  | < 3   | < 4   | < 7    | < 3   | < 7    | < 3   | < 7    | < 5    | < 3    | < 4    | < 15    | < 2    |
|     | JUN                  | < 5   | < 5   | < 8    | < 3   | < 13   | < 5   | < 5    | < 10   | < 5    | < 6    | < 22    | < 6    |
|     | JUL                  | < 6   | < 6   | < 14   | < 5   | < 12   | < 6   | < 16   | < 13   | < 5    | < 8    | < 35    | < 15   |
|     | AUG                  | < 5   | < 4   | < 11   | < 4   | < 9    | < 4   | < 8    | < 10   | < 4    | < 5    | < 25    | < 8    |
|     | SEP                  | < 4   | < 6   | < 7    | < 5   | < 8    | < 4   | < 8    | < 12   | < 4    | < 4    | < 32    | < 7    |
|     | OCT                  | < 7   | < 3   | < 10   | < 8   | < 9    | < 9   | < 10   | < 13   | < 5    | < 5    | < 25    | < 7    |
|     | NOV                  | < 5   | < 5   | < 11   | < 4   | < 9    | < 6   | < 8    | < 6    | < 4    | < 5    | < 18    | < 6    |
|     | DEC                  | < 9   | < 9   | < 17   | < 10  | < 19   | < 11  | < 15   | < 16   | < 10   | < 9    | < 40    | < 13   |
|     | MEAN                 | 5 ± 3 | 5 ± 4 | 10 ± 7 | 5 ± 4 | 10 ± 7 | 6 ± 5 | 10 ± 7 | 11 ± 6 | 5 ± 4  | 6 ± 4  | 26 ± 16 | 8 ± 7  |
| 61  | JAN                  | < 4   | < 3   | < 9    | < 7   | < 7    | < 4   | < 6    | < 7    | < 4    | < 5    | < 20    | < 5    |
|     | FEB                  | < 4   | < 5   | < 8    | < 4   | < 9    | < 5   | < 7    | < 8    | < 4    | < 5    | < 21    | < 7    |
|     | MAR                  | < 4   | < 5   | < 8    | < 5   | < 10   | < 6   | < 10   | < 11   | < 5    | < 3    | < 29    | < 5    |
|     | APR                  | < 5   | < 6   | < 12   | < 6   | < 10   | < 6   | < 11   | < 10   | < 6    | < 6    | < 27    | < 7    |
|     | MAY                  | < 3   | < 3   | < 7    | < 6   | < 8    | < 4   | < 6    | < 6    | < 4    | < 5    | < 17    | < 5    |
|     | JUN                  | < 7   | < 6   | < 12   | < 7   | < 12   | < 6   | < 11   | < 10   | < 6    | < 7    | < 30    | < 12   |
|     | JUL                  | < 5   | < 4   | < 11   | < 6   | < 9    | < 3   | < 7    | < 7    | < 4    | < 5    | < 17    | < 4    |
|     | AUG                  | < 3   | < 3   | < 6    | < 2   | < 7    | < 3   | < 5    | < 7    | < 2    | < 3    | < 17    | < 6    |
|     | SEP                  | < 5   | < 5   | < 9    | < 6   | < 11   | < 6   | < 8    | < 14   | < 4    | < 4    | < 34    | < 10   |
|     | ост                  | < 5   | < 6   | < 12   | < 7   | < 11   | < 7   | < 10   | < 13   | < 5    | < 7    | < 27    | < 13   |
|     | NOV                  | < 7   | < 7   | < 16   | < 7   | < 16   | < 8   | < 14   | < 11   | < 7    | < 8    | < 29    | < 11   |
|     | DEC                  | < 7   | < 7   | < 13   | < 8   | < 18   | < 7   | < 13   | < 11   | < 8    | < 7    | < 33    | < 11   |
|     | MEAN                 | 5 ± 3 | 5 ± 3 | 10 ± 6 | 6 ± 3 | 11 ± 7 | 5 ± 4 | 9 ± 6  | 10 ± 5 | 5 ± 3  | 5 ± 3  | 25 ± 13 | 8 ± 6  |

CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED

IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-II.3

## TABLE C-III.1 CONCENTRATIONS OF GAMMA EMITTERS IN PREDATOR & BOTTOM FEEDER (FISH) SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

| STC | COLLECTION       | K-40        | Mn-54   | Co-58   | Fe-59    | Co-60   | Zn-65    | Cs-134  | Cs-137  |
|-----|------------------|-------------|---------|---------|----------|---------|----------|---------|---------|
| 4   | PREDATOR         |             |         |         |          |         |          |         |         |
|     | 06/09 - 06/16/05 | 3010 ± 703  | < 39    | < 38    | < 73     | < 33    | < 68     | < 34    | < 36    |
|     | 10/12 - 10/12/05 | 3790 ± 863  | < 29    | < 27    | < 53     | < 40    | < 58     | < 27    | < 35    |
|     | MEAN             | 3400 ± 1103 | 34 ± 14 | 32 ± 15 | 63 ± 28  | 37 ± 9  | 63 ± 14  | 31 ± 10 | 36 ± 2  |
|     | BOTTOM FEEDER    |             |         |         |          |         |          |         |         |
|     | 06/08 - 06/13/05 | 2890 ± 307  | < 11    | < 10    | < 24     | < 11    | < 24     | < 11    | < 11    |
|     | 10/12 - 10/12/05 | 2730 ± 712  | < 46    | < 41    | < 118    | < 36    | < 99     | < 45    | < 41    |
|     | MEAN             | 2810 ± 226  | 29 ± 50 | 26 ± 43 | 71 ± 134 | 24 ± 36 | 61 ± 106 | 28 ± 48 | 26 ± 42 |
| 6   | PREDATOR         |             |         |         |          |         |          |         |         |
|     | 06/08 - 06/09/05 | 3250 ± 269  | < 12    | < 13    | < 30     | < 14    | < 28     | < 13    | < 13    |
|     | 10/17 - 10/18/05 | 3370 ± 667  | < 49    | < 47    | < 107    | < 49    | < 100    | < 44    | < 38    |
|     | MEAN             | 3310 ± 170  | 31 ± 51 | 30 ± 48 | 68 ± 110 | 32 ± 50 | 64 ± 102 | 29 ± 44 | 26 ± 35 |
|     | BOTTOM FEEDER    |             |         |         |          |         |          |         |         |
|     | 06/08 - 06/09/05 | 2710 ± 215  | < 11    | < 12    | < 25     | < 12    | < 23     | < 10    | < 12    |
|     | 10/12 - 10/12/05 | 3260 ± 747  | < 49    | < 41    | < 102    | < 45    | < 100    | < 45    | < 51    |
|     | MEAN             | 2985 ± 778  | 30 ± 53 | 26 ± 41 | 63 ± 109 | 29 ± 47 | 61 ± 109 | 28 ± 49 | 32 ± 54 |

#### RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

င်္ဂ

| TABLE C-IV.1 | CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN |
|--------------|-------------------------------------------------------------------|
|              | THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005           |

| STC | COLLECTION<br>PERIOD | K-40         | Mn-54            | Co-58   | Co-60     | Cs-134  | Cs-137   |
|-----|----------------------|--------------|------------------|---------|-----------|---------|----------|
| 4J  | 06/16/05             | 11700 ± 1180 | < 53             | < 49    | < 48      | < 42    | < 55     |
|     | 11/01/05             | 10100 ± 832  | 61 ± 36          | < 44    | 174 ± 36  | < 37    | < 40     |
|     | 12/20/05             | 10500 ± 332  | 36 ± 15          | < 27    | 144 ± 14  | < 31    | 38 ± 12  |
|     | MEAN                 | 10900 ± 2263 | 57 ± 11          | 46 ± 6  | 111 ± 178 | 39 ± 7  | 47 ± 22  |
| 4T  | 06/16/05             | 17800 ± 1460 | < 72             | < 64    | < 62      | < 61    | < 100    |
|     | 11/01/05             | 22500 ± 1600 | < 88             | < 74    | < 69      | < 76    | 166 ± 66 |
|     | 12/20/05             | 14800 ± 458  | < 21             | < 18    | < 22      | < 17    | 108 ± 19 |
|     | MEAN                 | 20150 ± 6647 | 80 ± 22          | 69 ± 14 | 65 ± 10   | 68 ± 21 | 133 ± 93 |
| 6F  | 06/16/05             | 10400 ± 1100 | < 61             | < 52    | < 45      | < 51    | 451 ± 56 |
|     | 11/01/05             | < 1210       | < 2 <del>9</del> | < 30    | < 37      | < 23    | < 26     |
|     | 12/20/05             | 14200 ± 693  | < 36             | < 31    | < 31      | < 31    | 100 ± 30 |
|     | MEAN                 | 5805 ± 12997 | 45 ± 44          | 41 ± 32 | 41 ± 12   | 37 ± 39 | 239 ± ## |

#### RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

#### TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

|      |         | GROUPI  |         | GROUPI     | GROUP III |
|------|---------|---------|---------|------------|-----------|
| WEEK | 1B      | 1C      | 12      | 3A         | 5H2       |
| 1    | 12 ± 5  | 8 ± 5   | 12 ± 5  | $12 \pm 5$ | 27 ± 6    |
| 2    | < 6     | 7 ± 4   | 6 ± 4   | 9 ± 4      | 13 ± 5    |
| 3    | 20 ± 4  | 20 ± 4  | 23 ± 4  | 23 ± 4     | 12 ± 5    |
| 4    | 25 ± 5  | 21 ± 5  | 23 ± 5  | 17 ± 4     | 19 ± 5    |
| 5    | 20 ± 4  | 20 ± 4  | 19 ± 4  | 18 ± 4     | 16 ± 5    |
| 6    | 15 ± 6  | 16 ± 6  | 14 ± 5  | 12 ± 5     | 18 ± 5    |
| 7    | 14 ± 5  | 16 ± 5  | 16 ± 5  | 11 ± 4     | 13 ± 5    |
| 8    | 10 ± 4  | 16 ± 5  | 15 ± 5  | 13 ± 5     | 10 ± 5    |
| 9    | 12 ± 5  | 10 ± 5  | 9 ± 4   | 9 ± 4      | 15 ± 5    |
| 10   | 16 ± 5  | 17 ± 5  | 17 ± 5  | 17 ± 5     | 9±5       |
| 11   | 13 ± 5  | 17 ± 5  | 13 ± 5  | 19 ± 5     | 10 ± 5    |
| 12   | 7 ± 4   | 12 ± 4  | 11 ± 4  | 12 ± 4     | 16 ± 5    |
| 13   | 7 ± 5   | < 6     | < 7     | 9 ± 5      | 11 ± 5    |
| 14   | 14 ± 5  | 10 ± 5  | 12 ± 5  | 11 ± 5     | 8 ± 5     |
| 15   | 11 ± 5  | 9 ± 4   | 15 ± 5  | 10 ± 4     | 10 ± 5    |
| 16   | 16 ± 5  | 15 ± 5  | 24 ± 5  | 17 ± 5     | 11 ± 5    |
| 17   | 8 ± 5   | 8 ± 5   | 8 ± 5   | 8 ± 5      | 12 ± 5    |
| 18   | 14 ± 5  | 13 ± 5  | 10 ± 5  | 13 ± 5     | 13 ± 5    |
| 19   | 6 ± 4   | 9 ± 4   | 8 ± 4   | 8 ± 4      | 14 ± 5    |
| 20   | 14 ± 5  | 12 ± 4  | 11 ± 4  | 11 ± 4     | 17 ± 5    |
| 21   | 7 ± 4   | < 6     | 7 ± 4   | 7 ± 4      | 13 ± 5    |
| 22   | 12 ± 5  | 13 ± 5  | 13 ± 5  | 12 ± 5     | < 7       |
| 23   | 17 ± 5  | 11 ± 5  | 12 ± 5  | 14 ± 5     | < 9       |
| 24   | 16 ± 5  | 19 ± 5  | 14 ± 5  | 14 ± 5     | 24 ± 5    |
| 25   | 8 ± 5   | < 7     | < 7     | < 7        | < 7       |
| 26   | 12 ± 5  | 11 ± 5  | 14 ± 5  | 14 ± 5     | 17 ± 5    |
| 27   | 15 ± 5  | 13 ± 5  | 18 ± 5  | 16 ± 5     | 11 ± 4    |
| 28   | 19 ± 5  | 20 ± 5  | 20 ± 5  | 16 ± 5     | 12 ± 5    |
| 29   | 17 ± 5  | 15 ± 5  | 15 ± 5  | 18 ± 5     | 20 ± 5    |
| 30   | 26 ± 6  | 20 ± 6  | 23 ± 6  | 24 ± 6     | 19 ± 5    |
| 31   | 28 ± 5  | 31 ± 6  | 27 ± 5  | 26 ± 5     | 22 ± 6    |
| 32   | 18 ± 5  | 25 ± 6  | 10 ± 5  | 21 ± 5     | 35 ± 6    |
| 33   | 25 ± 6  | 34 ± 9  | 28 ± 6  | 24 ± 6     | 27 ± 6    |
| 34   | 23 ± 5  | 24 ± 5  | 25 ± 5  | 23 ± 5     | 23 ± 5    |
| 35   | 16 ± 4  | 13 ± 4  | 17 ± 5  | 14 ± 4     | 12 ± 5    |
| 36   | 20 ± 5  | 22 ± 5  | 23 ± 5  | 18 ± 5     | 13 ± 5    |
| 37   | 22 ± 5  | 23 ± 6  | 25 ± 6  | 30 ± 6     | 21 ± 5    |
| 38   | 28 ± 6  | 20 ± 5  | 30 ± 6  | 24 ± 6     | 20 ± 5    |
| 39   | 15 ± 5  | 12 ± 5  | 16 ± 5  | 16 ± 5     | 24 ± 5    |
| 40   | 18 ± 5  | 20 ± 5  | 20 ± 5  | 21 ± 5     | 13 ± 5    |
| 41   | < 6     | < 6     | < 6     | 8 ± 4      | 11 ± 5    |
| 42   | 14 ± 5  | 17 ± 5  | 17 ± 5  | 17 ± 5     | < 7       |
| 43   | < 7     | < 7     | 7 ± 5   | < 7        | 20 ± 5    |
| 44   | 16 ± 5  | 21 ± 5  | 22 ± 5  | 22 ± 5     | 9 ± 5     |
| 45   | 30 ± 6  | 27 ± 6  | 29 ± 6  | 24 ± 6     | 24 ± 5    |
| 46   | 18 ± 5  | 18 ± 5  | 19 ± 5  | 17 ± 5     | 25 ± 5    |
| 47   | 24 ± 5  | 23 ± 5  | 23 ± 5  | 27 ± 5     | 19 ± 5    |
| 48   | 17 ± 4  | 14 ± 4  | 15 ± 4  | 14 ± 4     | 12 ± 5    |
| 49   | 33 ± 6  | 29 ± 6  | 25 ± 6  | 23 ± 6     | 10 ± 5    |
| 50   | 20 ± 6  | 15 ± 6  | 19 ± 6  | 20 ± 6     | 31 ± 6    |
| 51   | 28 ± 6  | 34 ± 6  | 31 ± 6  | 38 ± 6     | 14 ± 5    |
| 52   | 26 ± 5  |         |         | 25 ± 5     | 24 ± 5    |
|      |         |         |         |            | 8 ± 5     |
|      |         |         |         |            |           |
| MEAN | 17 ± 14 | 17 ± 15 | 17 ± 14 | 16 ± 13    | 16 ± 13   |

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

# TABLE C-V.2MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (E-3 PCI/CU METER) IN AIR<br/>PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM, 2005

| GROUP I - ON-SITE    |      | IONS |                | GROUP II - INTERMEE<br>LOCATIC |      | DISTAN | CE             | GROUP III - CONTRO  |      | ATIONS |                |
|----------------------|------|------|----------------|--------------------------------|------|--------|----------------|---------------------|------|--------|----------------|
| COLLECTION<br>PERIOD | MIN. | MAX. | MEAN ±<br>2 SD |                                | MIN. | MAX.   | MEAN ±<br>2 SD |                     | MIN. | MAX.   | MEAN ±<br>2 SD |
| 12/28/04 - 01/31/05  | < 6  | 25   | 15 ± 15        | 12/28/04 - 01/31/05            | 9    | 23     | 15 ± 12        | 12/28/04 - 01/31/05 | 12   | 27     | 17 ± 12        |
| 01/31/05 - 02/28/05  | 10   | 20   | 16 ± 6         | 01/31/05 - 02/28/05            | 11   | 18     | 13 ± 6         | 01/31/05 - 02/28/05 | 10   | 18     | 14 ± 7         |
| 02/28/05 - 03/28/05  | < 6  | 17   | 12 ± 8         | 02/28/05 - 03/28/05            | 9    | 19     | 13 ± 9         | 02/28/05 - 03/28/05 | 9    | 16     | 11 ± 6         |
| 03/28/05 - 05/02/05  | 8    | 24   | 12 ± 9         | 03/28/05 - 05/02/05            | 8    | 17     | 11 ± 8         | 03/28/05 - 05/02/05 | 8    | 13     | 11 ± 4         |
| 05/02/05 - 05/31/05  | < 6  | 14   | 10 ± 6         | 05/02/05 - 05/31/05            | 7    | 13     | 10 ± 5         | 05/02/05 - 05/31/05 | < 7  | 17     | 13 ± 9         |
| 05/31/05 - 06/27/05  | < 7  | 19   | 12 ± 8         | 05/31/05 - 06/27/05            | < 7  | 14     | 12 ± 7         | 05/31/05 - 06/27/05 | < 7  | 24     | 14 ± 15        |
| 06/27/05 - 08/01/05  | 13   | 26   | 18 ± 7         | 06/27/05 - 08/01/05            | 16   | 5 24   | 18 ± 7         | 06/27/05 - 08/01/05 | 11   | 22     | 17 ± 10        |
| 08/01/05 - 08/29/05  | 10   | 34   | 23 ± 13        | 08/01/05 - 08/29/05            | 14   | 4 26   | 22 ± 9         | 08/01/05 - 08/29/05 | 12   | 35     | 24 ± 19        |
| 08/29/05 - 10/03/05  | 12   | 30   | 21 ± 10        | 08/29/05 - 10/03/05            | 16   | 30     | 22 ± 13        | 08/29/05 - 10/03/05 | 13   | 24     | 18 ± 10        |
| 10/03/05 - 10/31/05  | < 6  | 20   | 12 ± 12        | 10/03/05 - 10/31/05            | < 7  | 21     | 13 ± 14        | 10/03/05 - 10/31/05 | < 7  | 20     | 12 ± 11        |
| 10/31/05 - 11/28/05  | 14   | 30   | 21 ± 10        | 10/31/05 - 11/28/05            | 14   | 27     | 21 ± 11        | 10/31/05 - 11/28/05 | 12   | 25     | 20 ± 12        |
| 11/28/05 - 01/03/06  | 15   | 34   | 27 ± 12        | 11/28/05 - 01/03/06            | 20   | 38     | 26 ± 16        | 11/28/05 - 01/03/06 | 8    | 31     | 17 ± 20        |
| 12/28/04 - 01/03/06  | < 6  | 34   | 17 ± 11        | 12/28/04 - 01/03/06            | < 7  | 38     | 16 ± 10        | 12/28/04 - 01/03/06 | < 7  | 35     | 16 ± 8         |

C-8

#### TABLE C-V.3 CONCENTRATION OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

| STC | COLLECTION<br>PERIOD | Be-7    | Mn-54     | Co-58     | Co-60     | Cs-134    | Cs-137    |
|-----|----------------------|---------|-----------|-----------|-----------|-----------|-----------|
| 1B  | 12/31 - 04/01/05     | 58 ± 11 | < 0.9     | < 1.1     | < 0.9     | < 0.8     | < 0.9     |
|     | 04/01 - 07/01/05     | 61 ± 12 | < 0.6     | < 0.7     | < 0.7     | < 0.6     | < 0.7     |
|     | 07/01 - 09/30/05     | 73 ± 7  | < 4.0     | < 5.1     | < 3.5     | < 3.4     | < 3.5     |
|     | 09/30 - 12/30/05     | 59 ± 23 | < 2.3     | < 2.9     | < 3.9     | < 3.1     | < 2.4     |
|     | MEAN                 | 63 ± 14 | 1.9 ± 3.1 | 2.5 ± 4.0 | 2.2 ± 3.4 | 2.0 ± 3.0 | 1.9 ± 2.7 |
| 1C  | 12/31 - 04/01/05     | 59 ± 11 | < 0.8     | < 0.9     | < 1.0     | < 0.7     | < 0.8     |
|     | 04/01 - 07/01/05     | 70 ± 13 | < 0.7     | < 0.6     | < 0.6     | < 0.6     | < 0.7     |
|     | 07/01 - 09/30/05     | 94 ± 37 | < 2.7     | < 2.6     | < 1.4     | < 2.0     | < 2.3     |
|     | 09/30 - 12/30/05     | 64 ± 21 | < 3.1     | < 3.0     | < 2.5     | < 3.6     | < 2.7     |
|     | MEAN                 | 72 ± 31 | 1.8 ± 2.5 | 1.8 ± 2.4 | 1.4 ± 1.7 | 1.7 ± 2.8 | 1.6 ± 2.1 |
| 1Z  | 12/31 - 04/01/05     | 57 ± 14 | < 1.0     | < 1.2     | < 1.1     | < 1.0     | < 1.1     |
|     | 04/01 - 07/01/05     | 66 ± 15 | < 1.1     | < 0.9     | < 1.1     | < 0.9     | < 1.0     |
|     | 07/01 - 09/30/05     | 90 ± 31 | < 2.6     | < 2.9     | < 2.6     | < 1.7     | < 1.7     |
|     | 09/30 - 12/30/05     | 37 ± 19 | < 2.8     | < 2.2     | < 3.0     | < 2.6     | < 3.2     |
|     | MEAN                 | 62 ± 44 | 1.9 ± 1.9 | 1.8 ± 1.8 | 1.9 ± 2.0 | 1.6 ± 1.6 | 1.7 ± 2.1 |
| ЗA  | 12/31 - 04/01/05     | 59 ± 15 | < 1.1     | < 1.1     | < 1.6     | < 1.1     | < 1.0     |
|     | 04/01 - 07/01/05     | 59 ± 12 | < 0.9     | < 1.1     | < 0.9     | < 0.8     | < 0.9     |
|     | 07/01 - 09/30/05     | 61 ± 36 | < 2.3     | < 2.5     | < 2.5     | < 1.5     | < 1.6     |
|     | 09/30 - 12/30/05     | 74 ± 26 | < 3.1     | < 3.4     | < 3.3     | < 3.5     | < 2.6     |
|     | MEAN                 | 63 ± 15 | 1.8 ± 2.0 | 2.0 ± 2.2 | 2.1 ± 2.1 | 1.7 ± 2.4 | 1.5 ± 1.6 |
| 5H2 | 12/28 - 03/28/05     | 64 ± 20 | < 1.1     | < 1.0     | < 1.1     | < 0.7     | < 0.8     |
|     | 03/28 - 06/26/05     | 61 ± 13 | < 1.1     | < 1.4     | < 0.8     | < 1.1     | < 1.0     |
|     | 06/26 - 09/26/05     | 67 ± 34 | < 2.2     | < 1.9     | < 1.4     | < 1.5     | < 1.8     |
|     | 09/26 - 01/03/06     | 48 ± 20 | < 3.0     | < 2.6     | < 2.8     | < 3.4     | < 2.7     |
|     | MEAN                 | 60 ± 17 | 1.9 ± 1.8 | 1.7 ± 1.3 | 1.5 ± 1.7 | 1.7 ± 2.4 | 1.6 ± 1.7 |

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

### TABLE C-VI.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

|          |              | GROUPI       |              | GROUP        | GROUP III   |
|----------|--------------|--------------|--------------|--------------|-------------|
| WEEK     | 18           | 1Z           | 1C           | 3A           | 5H2         |
| 1        | < 27         | < 27         | < 26         | < 26         | < 13        |
| 2        | < 22         | < 22         | < 22         | < 22         | < 12        |
| 3        | < 23         | < 23         | < 23         | < 23         | < 13        |
| 4        | < 21         | < 21         | < 21         | < 21         | < 16        |
| 7        | < 19         | < 18         | < 18         | < 18         | < 29        |
| 6        | < 24         | < 24         | < 24         | < 24         | < 16        |
| 7        | < 15         | < 14         | < 14         | < 14         | < 13        |
| 8        | < 21         | < 21         | < 21         | < 21         | < 16        |
| 9        | < 24         | < 24         | < 24         | < 24         | < 10        |
| 10       | < 20         | < 20         | < 20         | < 20         | < 9         |
| 11       | < 25         | < 25         | < 25         | < 25         | < 14        |
| 12       | < 18         | < 18         | < 18         | < 18         | < 16        |
| 13       | < 22         | < 22         | < 22         | < 22         | < 11        |
| 14       | < 18         | < 18         | < 18         | < 18         | < 10        |
| 15       | < 11         | < 11         | < 11         | < 11         | < 8         |
| 16       | < 15         | < 15         | < 15         | < 15         | < 8         |
| 17       | < 22         | < 22         | < 22         | < 22         | < 8<br>< 8  |
| 18       | < 19<br>< 19 | < 19<br>< 19 | < 19<br>< 10 | < 19<br>< 19 | < 0<br>< 13 |
| 19       | < 26         | < 26         | < 26         | < 26         | < 18        |
| 20<br>21 | < 22         | < 22         | < 21         | < 21         | < 15        |
| 21       | < 23         | < 23         | < 23         | < 23         | < 14        |
| 22       | < 20         | < 20         | < 20         | < 20         | < 17        |
| 23       | < 24         | < 24         | < 24         | < 24         | < 11        |
| 25       | < 19         | < 19         | < 19         | < 19         | < 14        |
| 26       | < 18         | < 18         | < 18         | < 18         | < 13        |
| 27       | < 21         | < 21         | < 21         | < 21         | < 7         |
| 28       | < 25         | < 25         | < 25         | < 25         | < 25        |
| 29       | < 27         | < 27         | < 27         | < 27         | < 14        |
| 30       | < 26         | < 27         | < 27         | < 27         | < 14        |
| 31       | < 17         | < 17         | < 18         | < 17         | < 23        |
| 32       | < 21         | < 21         | < 21         | < 21         | < 18        |
| 33       | < 27         | < 38         | < 28         | < 27         | < 15        |
| 34       | < 25         | < 25         | < 26         | < 25         | < 8         |
| 35       | < 27         | < 27         | < 27         | < 27         | < 20        |
| 36       | < 29         | < 29         | < 30         | < 29         | < 15        |
| 37       | < 24         | < 24         | < 24         | < 24         | < 13        |
| 38       | < 28         | < 28         | < 28         | < 28         | < 9         |
| 39       | < 34         | < 34         | < 35         | < 34         | < 11        |
| 40       | < 32         | < 31         | < 32         | < 32         | < 11        |
| 41       | < 27         | < 28         | < 28         | < 27         | < 23        |
| 42       | < 28         | < 43         | < 43         | < 43         | < 15        |
| 43       | < 30         | < 31         | < 31         | < 31         | < 11        |
| 44       | < 16         | < 16         | < 17         | < 16         | < 13        |
| 45       | < 32         | < 18         | < 32         | < 32         | < 11        |
| 46       | < 42         | < 42         | < 43         | < 42         | < 15        |
| 47       | < 23         | < 23         | < 24         | < 23         | < 26        |
| 48       | < 29         | < 29         | < 16         | < 30         | < 12        |
| 49       | < 46         | < 47         | < 47         | < 46         | < 11        |
| 50       | < 39         | < 40         | < 40         | < 40         | < 13        |
| 51       | < 25         | < 25         | < 26         | < 26         | < 15        |
| 52       | < 41         | < 42         | < 43         | < 41         | < 19        |
| 53       |              |              |              |              | < 13        |
| MEAN     | 25 ± 14      | 25 ± 15      | 25 ± 16      | 25 ± 15      | 14 ± 9      |

#### RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

#### TABLE C-VII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTON ATOMIC POWER STATION, 2005

|            |          | NEARBY FAR | MS    | 1        | INTERMEDIATE | DISTANCE FA | RMS   | 1     |       | DISTANT FAR | MS    |         |
|------------|----------|------------|-------|----------|--------------|-------------|-------|-------|-------|-------------|-------|---------|
| COLLECTION | <u>1</u> | 0          | R     | <u> </u> | D            | L           | P     | A     | В     | С           | E     | Ť       |
| 01/17/05   | < 0.3    | < 0.3      | < 0.3 | < 0.3    |              |             |       | < 0.3 |       |             |       |         |
| 02/14/05   | < 0.5    | < 0.8      | < 0.7 | < 0.6    | < 0.7        | < 0.6       | < 0.6 | < 0.6 | < 0.6 | < 0.8       | < 0.6 |         |
| 03/14/05   | < 0.5    | < 0.6      | < 0.4 | < 0.4    |              |             |       | < 0.4 |       |             |       |         |
| 04/11/05   | < 0.3    | < 0.3      | < 0.3 | < 0.7    |              |             |       | < 0.2 |       |             |       |         |
| 04/25/05   | < 0.8    | < 0.3      | < 0.6 | < 0.2    |              |             |       | < 0.3 |       |             |       |         |
| 05/09/05   | < 0.6    | < 0.5      | < 0.8 | < 0.5    |              |             |       | < 0.5 |       |             |       |         |
| 05/23/05   | < 0.8    | < 0.6      | < 0.6 | < 0.6    | < 0.6        | < 0.6       | < 0.6 | < 0.5 | < 0.5 | < 0.7       | < 0.5 |         |
| 06/06/05   | < 0.2    | < 0.2      | < 0.2 | < 0.2    |              |             |       | < 0.2 |       |             |       |         |
| 06/20/05   | < 0.3    | < 0.5      | < 0.5 | < 0.4    |              |             |       | < 0.4 |       |             |       |         |
| 07/05/05   | < 0.3    | < 0.3      | < 0.3 | < 0.3    |              |             |       | < 0.3 |       |             |       |         |
| 07/18/05   | < 0.8    | < 0.8      | < 0.5 | < 0.4    |              |             |       | < 0.4 |       |             |       |         |
| 08/01/05   | < 0.5    | < 0.3      | < 0.4 | < 0.4    | < 0.4        | < 0.5       | < 0.5 | < 0.5 | < 0.4 | < 0.5       | < 0.5 |         |
| 08/15/05   | < 0.5    | < 0.3      | < 0.3 | < 0.3    |              |             |       | < 0.6 |       |             |       |         |
| 08/29/05   | < 0.4    | < 0.7      | < 0.4 | < 0.3    |              |             |       | < 0.4 |       |             |       |         |
| 09/11/05   | < 0.6    | < 0.4      | < 0.5 | < 0.5    |              |             |       | < 0.4 |       |             |       |         |
| 09/26/05   | < 0.4    | < 0.3      | < 0.4 | < 0.4    |              |             |       | < 0.4 |       |             |       |         |
| 10/10/05   | < 0.4    | < 0.4      | < 0.4 | < 0.7    |              |             |       | (1)   |       |             |       | < 0.3 ( |
| 10/24/05   | < 0.6    | < 0.6      | < 0.8 | < 0.6    |              |             |       |       |       |             |       | < 0.5   |
| 11/07/05   | < 0.4    | < 0.4      | < 0.3 | < 0.7    | < 0.4        | < 0.4       | < 0.5 |       | < 0.4 | < 0.3       | < 0.4 | < 0.4   |
| 11/21/05   | < 0.4    | < 0.5      | < 0.4 | < 0.4    |              |             |       |       |       |             |       | < 0.4   |
| 12/19/05   | < 0.5    | < 0.4      | < 0.5 | < 0.5    |              |             |       |       |       |             |       | < 0.6   |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

MEAN 0.5 ± 0.3 0.4 ± 0.3 0.5 ± 0.3 0.4 ± 0.3 0.5 ± 0.3 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.2 0.5 ± 0.2 0.6 ± 0.4 0.5 ± 0.2 0.4 ± 0.2

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

### TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

| STC | COLLECTION<br>PERIOD | K-40       | Cs-134 | Cs-137 | Ba-140  | La-140 |
|-----|----------------------|------------|--------|--------|---------|--------|
| A   | 01/16/05             | 1220 ± 140 | < 4    | < 5    | < 17    | < 4    |
|     | 02/13/05             | 1250 ± 204 | < 5    | < 6    | < 24    | < 6    |
|     | 03/13/05             | 1280 ± 156 | < 6    | < 5    | < 20    | < 7    |
|     | 04/10/05             | 1360 ± 135 | < 5    | < 6    | < 20    | < 8    |
|     | 04/24/05             | 1240 ± 127 | < 5    | < 5    | < 21    | < 5    |
|     | 05/08/05             | 1230 ± 189 | < 5    | < 5    | < 19    | < 5    |
|     | 05/22/05             | 1410 ± 115 | < 3    | < 5    | < 16    | < 4    |
|     | 06/05/05             | 1490 ± 132 | < 5    | < 5    | < 18    | < 6    |
|     | 06/19/05             | 1390 ± 194 | < 8    | < 9    | < 23    | < 4    |
|     | 07/04/05             | 1390 ± 142 | < 4    | < 6    | < 19    | < 6    |
|     | 07/18/05             | 1440 ± 146 | < 5    | < 7    | < 20    | < 6    |
|     | 08/01/05             | 1240 ± 183 | < 7    | < 9    | < 36    | < 7    |
|     | 08/14/05             | 1450 ± 217 | < 7    | < 10   | < 35    | < 9    |
|     | 08/28/05             | 1350 ± 157 | < 6    | < 6    | < 39    | < 12   |
|     | 09/11/05             | 1470 ± 139 | < 3    | < 5    | < 20    | < 6    |
|     | 09/25/05             | 1260 ± 134 | < 3    | < 5    | < 15    | < 4    |
|     | (1)                  |            |        |        |         |        |
|     | MEAN                 | 1342 ± 191 | 5 ± 3  | 6 ± 3  | 22 ± 15 | 6 ± 4  |
| J   | 01/17/05             | 1600 ± 135 | < 5    | < 6    | < 19    | < 6    |
|     | 02/14/05             | 1400 ± 174 | < 5    | < 7    | < 31    | < 8    |
|     | 03/14/05             | 1330 ± 173 | < 5    | < 5    | < 23    | < 5    |
|     | 04/10/05             | 1310 ± 136 | < 5    | < 6    | < 21    | < 5    |
|     | 04/25/05             | 1310 ± 114 | < 4    | < 4    | < 15    | < 5    |
|     | 05/09/05             | 1280 ± 161 | < 6    | < 7    | < 27    | < 7    |
|     | 05/22/05             | 1240 ± 141 | < 5    | < 7    | < 18    | < 2    |
|     | 06/05/05             | 1220 ± 144 | < 5    | < 6    | < 20    | < 4    |
|     | 06/19/05             | 1440 ± 152 | < 5    | < 6    | < 24    | < 7    |
|     | 07/04/05             | 1380 ± 154 | < 5    | < 6    | < 21    | < 6    |
|     | 07/18/05             | 1450 ± 188 | < 6    | < 7    | < 24    | < 10   |
|     | 08/01/05             | 1520 ± 181 | < 5    | < 6    | < 30    | < 5    |
|     | 08/15/05             | 1200 ± 303 | < 13   | < 15   | < 38    | < 8    |
|     | 08/29/05             | 1510 ± 159 | < 5    | < 7    | < 27    | < 8    |
|     | 09/10/05             | 1350 ± 122 | < 4    | < 5    | < 28    | < 8    |
|     | 09/26/05             | 1320 ± 169 | < 6    | < 8    | < 26    | < 7    |
|     | 10/10/05             | 1380 ± 155 | < 5    | < 6    | < 29    | < 9    |
|     | 10/24/05             | 1370 ± 108 | < 4    | < 5    | < 16    | < 5    |
|     | 11/06/05             | 1430 ± 173 | < 6    | < 7    | < 31    | < 7    |
|     | 11/20/05             | 1310 ± 128 | < 5    | < 5    | < 25    | < 6    |
|     | 12/18/05             | 1280 ± 120 | < 4    | < 5    | < 19    | < 5    |
|     | MEAN                 | 1363 ± 205 | 5 ± 4  | 7 ± 4  | 24 ± 12 | 6 ± 4  |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION C-12

### TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

| STO | COLLECTION<br>PERIOD | K-40                     | Cs-134 | Cs-137 | Ba-140  | La-140      |
|-----|----------------------|--------------------------|--------|--------|---------|-------------|
| 0   | 01/16/05             | 1310 ± 139               | < 3    | < 4    | < 14    | < 4         |
| Ŭ   | 02/13/05             | 1320 ± 152               | < 6    | < 7    | < 25    | < 9         |
|     | 03/13/05             | 1280 ± 163               | < 5    |        |         | < 6         |
|     |                      |                          |        |        |         |             |
|     | 04/10/05             | 1190 ± 169               | -      | < 5    | < 13    | < 3         |
|     | 04/24/05             | 1130 ± 113               | < 3    | < 4    | < 15    | < 4         |
|     | 05/08/05             | 1190 ± 176               | < 4    | < 6    | < 21    | < 7         |
|     | 05/22/05             | 1280 ± 131               | < 3    | < 4    | < 16    | < 4         |
|     | 06/05/05             | 1190 ± 177               | < 6    | < 8    | < 23    | < 7         |
|     | 06/19/05             | 1390 ± 203               | < 7    | < 8    | < 30    | < 7         |
|     | 07/04/05             | 1260 ± 161               | < 5    | < 5    | < 17    | < 3         |
|     | 07/18/05             | 1220 ± 212               | < 7    | < 9    | < 33    | < 11        |
|     | 08/01/05             | 1250 ± 131               | < 5    | < 6    | < 20    | < 8         |
|     | 08/15/05             | 1210 ± 160               | < 7    | < 8    | < 22    | < 8         |
|     | 08/28/05             | 1200 ± 129               | < 5    | < 6    | < 30    | < 10        |
|     | 09/11/05             | 1290 ± 146               | < 4    | < 5    | < 23    | < 7         |
|     | 09/25/05             | 1180 ± 130               | < 4    | < 6    | < 18    | < 5         |
|     | 10/09/05             | 1290 ± 125               | < 4    | < 6    | < 26    | < 8         |
|     | 10/23/05             | 1160 ± 113               | < 4    | < 4    | < 14    | < 4         |
|     | 11/06/05             | 1220 ± 118               | < 5    | < 5    | < 22    | < 6         |
|     | 11/20/05             | 1090 ± 140               | < 3    | < 5    | < 23    | < 3         |
|     | 12/18/05             | 1270 ± 139               | < 4    | < 5    | < 15    | < 7         |
|     |                      |                          |        |        |         |             |
|     | MEAN                 | 1234 ± 140               | 5 ± 3  | 6 ± 3  | 21 ± 11 | 6 ± 5       |
| R   | 01/17/05             | 1360 ± 128               | < 4    | < 4    | < 17    | < 6         |
|     | 02/14/05             | 1320 ± 168               | < 5    | < 5    | < 24    | < 3         |
|     | 03/14/05             | 1290 ± 150               | < 3    | < 5    | < 16    | < 7         |
|     | 04/11/05             | 1320 ± 169               | < 4    | < 5    | < 17    | < 5         |
|     | 04/25/05             | 1390 ± 193               | < 6    | < 7    | < 29    | < 7         |
|     | 05/09/05             | 1370 ± 160               | < 6    | < 7    | < 24    | < 6         |
|     | 05/23/05             | 1360 ± 144               | < 5    | < 6    | < 21    | < 6         |
|     | 06/06/05             | 1450 ± 138               | < 4    | < 6    | < 19    | < 6         |
|     | 06/20/05             | 1390 ± 171               | < 5    | < 5    | < 19    | < 7         |
|     | 07/04/05             | 1540 ± 176               | < 6    | < 7    | < 27    | < 9         |
|     | 07/18/05             | 1350 ± 153               | < 5    | < 6    | < 21    | < 7         |
|     | 08/01/05             | 1330 ± 164               | < 6    | < 7    | < 30    | < 8         |
|     | 08/15/05             | 1450 ± 192               | < 4    | < 6    | < 22    | < 5         |
|     | 08/29/05             | 1470 ± 196               | < 6    | < 7    | < 27    | < 5         |
|     | 09/10/05             | 1640 ± 140               | < 4    | < 6    | < 30    | < 9         |
|     | 09/26/05             | 1340 ± 149               | < 4    | < 5    | < 19    | < 4         |
|     | 10/10/05             | 1380 ± 148               | < 4    | < 4    | < 24    | < 5         |
|     | 10/24/05             | 1480 ± 154               | < 5    | < 6    | < 22    | < 8         |
|     | 11/07/05             | 1310 ± 132               | < 5    | < 6    | < 20    | < 8         |
|     | 11/21/05             | 1350 ± 152               | < 6    | < 6    | < 33    | < 8<br>< 10 |
|     | 12/19/05             | 1350 ± 152<br>1410 ± 151 | < 4    | < 6    | < 23    | < 8         |
|     | 12/10/00             |                          | - 4    |        | ~ 23    | <b>`</b> 0  |
|     | MEAN                 | 1395 ± 170               | 5 ± 2  | 6 ± 2  | 23 ± 10 | 7 ± 4       |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

C-13

### TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

| STC | COLLECTION<br>PERIOD | K-40       | Cs-134 | Cs-137 | Ba-140  | La-140 |
|-----|----------------------|------------|--------|--------|---------|--------|
| s   | 01/17/05             | 1290 ± 143 | < 3    | < 5    | < 12    | < 5    |
|     | 02/14/05             | 1230 ± 165 | < 6    | < 8    | < 27    | < 10   |
|     | 03/14/05             | 1240 ± 173 | < 7    | < 7    | < 25    | < 9    |
|     | 04/11/05             | 1200 ± 158 | < 4    | < 5    | < 18    | < 5    |
|     | 04/25/05             | 1230 ± 133 | < 5    | < 5    | < 22    | < 7    |
|     | 05/09/05             | 1280 ± 157 | < 6    | < 7    | < 27    | < 9    |
|     | 05/23/05             | 1150 ± 118 | < 3    | < 4    | < 11    | < 4    |
|     | 06/06/05             | 1270 ± 130 | < 5    | < 6    | < 20    | < 6    |
|     | 06/20/05             | 1440 ± 195 | < 4    | < 5    | < 18    | < 5    |
|     | 07/05/05             | 1580 ± 169 | < 5    | < 8    | < 22    | < 8    |
|     | 07/18/05             | 1400 ± 158 | < 4    | < 4    | < 18    | < 6    |
|     | 08/01/05             | 1280 ± 187 | < 5    | < 6    | < 26    | < 7    |
|     | 08/15/05             | 1300 ± 211 | < 9    | < 9    | < 37    | < 9    |
|     | 08/29/05             | 1210 ± 130 | < 4    | < 5    | < 25    | < 9    |
|     | 09/10/05             | 1560 ± 158 | < 4    | < 5    | < 24    | < 8    |
|     | 09/26/05             | 1280 ± 148 | < 5    | < 7    | < 21    | < 7    |
|     | 10/10/05             | 1210 ± 130 | < 5    | < 6    | < 26    | < 10   |
|     | 10/24/05             | 1280 ± 106 | < 4    | < 4    | < 18    | < 4    |
|     | 11/07/05             | 1390 ± 137 | < 5    | < 6    | < 21    | < 6    |
|     | 11/21/05             | 1370 ± 131 | < 5    | < 6    | < 27    | < 5    |
|     | 12/19/05             | 1320 ± 131 | < 4    | < 5    | < 20    | < 6    |
|     | MEAN                 | 1310 ± 224 | 5 ± 3  | 6 ± 3  | 22 ± 11 | 7 ± 4  |
| т   | 10/10/05             | 1380 ± 151 | < 4    | < 5    | < 23    | < 8    |
|     | 10/23/05             | 1400 ± 126 | < 5    | < 6    | < 19    | < 7    |
|     | 11/06/05             | 1510 ± 152 | < 4    | < 5    | < 15    | < 2    |
|     | 11/20/05             | 1310 ± 142 | < 3    | < 4    | < 22    | < 6    |
|     | 12/18/05             | 1150 ± 138 | < 3    | < 4    | < 18    | < 3    |
|     | MEAN                 | 1350 ± 266 | 4 ± 1  | 5 ± 1  | 19 ± 6  | 5 ± 5  |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

# TABLE C-VIII.1CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT<br/>SAMPLES COLLECTED IN THE VICINITY OF THREE<br/>MILE ISLAND NUCLEAR STATION, 2005

#### RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

| STC              | COLLECTION<br>PERIOD | Be-7       | Mn-54  | Co-58  | Co-60  | I-131   | Cs-134 | Cs-137 |
|------------------|----------------------|------------|--------|--------|--------|---------|--------|--------|
| 1Q<br>Asparagus  | 10/06/05             | 1060 ± 231 | < 17   | < 16   | < 17   | < 55    | < 16   | < 17   |
| 1Q<br>Domestic G | 10/06/05<br>Grapes   | 637 ± 182  | < 19   | < 17   | < 18   | < 57    | < 16   | < 19   |
| 1Q<br>Pokeweed   | 10/06/05             | 242 ± 113  | < 14   | < 12   | < 13   | < 41    | < 12   | < 14   |
|                  | MEAN                 | 646 ± 818  | 17 ± 5 | 15±5   | 16 ± 5 | 51 ± 18 | 15 ± 5 | 16 ± 4 |
| 2B<br>Tomatoes   | 10/06/05 ·           | < 220      | < 13   | < 19   | < 19   | < 50    | < 15   | < 15   |
| 2B<br>Wild Grape | 10/06/05<br>s        | 1190 ± 169 | < 13   | < 15   | < 14   | < 50    | < 14   | < 14   |
| 28<br>Pokeweed   | 10/06/05             | 326 ± 154  | < 14   | < 14   | < 16   | < 46    | < 13   | < 16   |
|                  | MEAN                 | 579 ± 1064 | 13 ± 2 | 16±5   | 16 ± 5 | 49 ± 5  | 14 ± 2 | 15 ± 2 |
| 55<br>Lima Beans | 10/06/05             | 470 ± 181  | < 17   | < 15   | < 17   | < 50    | < 14   | < 16   |
| 55<br>Rhubarb    | 10/06/05             | 258 ± 130  | < 11   | < 11   | < 15   | < 32    | < 10   | < 11   |
| 55<br>Tomatoes   | 10/06/05             | 271 ± 172  | < 15   | < 17   | < 17   | < 43    | < 15   | < 17   |
|                  | MEAN                 | 333 ± 238  | 14 ± 6 | 14 ± 6 | 16 ± 3 | 42 ± 18 | 13 ± 5 | 15 ± 6 |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDA AND POSITIVE VALUES C-15

#### TABLE C-IX.1 QUARTERLY TLD RESULTS FOR PEACH BOTTOM ATOMIC POWER STATION, 2005

| STATION              | MEAN                   | JAN - MAR              | APR - JUN              | JUL - SEP              | OCT - DEC              |
|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| CODE                 | ± 2 S. D.              |                        |                        |                        |                        |
| 1A                   | 6.8 ± 0.7              | 6.3 ± 0.5              | 6.9 ± 0.5              | 6.7 ± 0.6              | 7.1 ± 0.6              |
| 1 <b>B</b>           | 6.1 ± 0.6              | 5.9 ± 0.7              | 5.8 ± 0.5              | 6.0 ± 0.4              | 6.5 ± 0.4              |
| 1C                   | 7.2 ± 0.4              | 7.0 ± 0.6              | 7.0 ± 0.4              | 7.2 ± 0.4              | 7.4 ± 0.5              |
| 1D                   | 7.0 ± 0.7              | 6.7 ± 0.8              | 6.7 ± 0.8              | 7.0 ± 0.5              | 7.4 ± 0.3              |
| 1E                   | 6.6 ± 0.6              | 6.3 ± 0.5              | 6.5 ± 0.8              | 6.6 ± 0.7              | 7.0 ± 0.3              |
| 1F                   | 8.1 ± 0.9              | 7.7 ± 0.5              | 7.9 ± 0.8              | 7.9 ± 0.5              | 8.7 ± 0.5              |
| 1G                   | 5.5 ± 0.7              | 5.3 ± 0.4              | 5.3 ± 0.3              | 5.3 ± 0.4              | 6.0 ± 0.3              |
| 1H                   | 7.2 ± 0.5              | 7.0 ± 0.9              | 7.1 ± 0.5              | 7.1 ± 1.0              | 7.6 ± 0.6              |
| 11                   | 6.0 ± 1.1              | 5.7 ± 0.8              | 5.8 ± 0.4              | 5.7 ± 0.3              | 6.8 ± 0.2              |
| 1J                   | 8.0 ± 1.0              | 7.4 ± 0.4              | 8.0 ± 1.2              | 8.1 ± 1.1              | 8.6 ± 0.7              |
| 1 <b>K</b>           |                        |                        |                        |                        | 7.8 ± 1.0 (1)          |
| 1L                   | 5.8 ± 0.6              | 5.7 ± 0.2              | 5.8 ± 0.5              | 5.4 ± 0.2              | 6.1 ± 0.2              |
| 1M                   | 4.3 ± 0.3              | 4.3 ± 0.4              | 4.2 ± 0.3              | 4.1 ± 0.4              | 4.5 ± 0.5              |
| 1P                   | 4.8 ± 0.5              | 4.8 ± 0.4              | 4.6 ± 0.4              | $4.6 \pm 0.2$          | 5.1 ± 0.4              |
| 1Q                   | 5.4 ± 0.7              | 5.4 ± 0.6              | 5.1 ± 0.4              | 5.3 ± 0.4              | 5.9 ± 0.2              |
| 1R                   | 8.3 ± 0.6              | 7.9 ± 0.4              | 8.3 ± 0.6              | 8.4 ± 0.6              | 8.6 ± 0.7              |
| 2                    | 6.8 ± 0.8              | 6.5 ± 0.6              | 6.6 ± 0.5              | 6.8 ± 0.7              | 7.4 ± 1.3              |
| 2B                   | 6.5 ± 0.8              | 6.1 ± 0.5              | 6.4 ± 0.4              | $6.4 \pm 0.4$          | 7.1 ± 1.0              |
| 3A                   | 5.3 ± 0.3              | 5.2 ± 0.8              | 5.1 ± 0.5              | 5.3 ± 0.4              | 5.5 ± 0.4              |
| 4K                   | 4.8 ± 0.3              | $4.7 \pm 0.4$          | 4.9 ± 0.6              | 4.7 ± 0.6              | $5.0 \pm 0.4$          |
| 5                    | 6.4 ± 0.8              | $6.0 \pm 0.3$          | $6.5 \pm 0.2$          | 6.3 ± 0.3              | 6.9 ± 0.4              |
| 1NN                  | 7.8 ± 1.1              | 7.3 ± 0.6              | 7.5 ± 0.6              | 7.7 ± 1.1              | 8.5 ± 0.6              |
| 6B                   | 5.9 ± 0.3              | 5.8 ± 0.4              | 5.7 ± 0.3              | 5.8 ± 0.7              | 6.1 ± 0.3              |
| 14                   | 7.0 ± 1.1              | 6.6 ± 0.5              | 6.7 ± 0.5              | $6.8 \pm 0.4$          | 7.8 ± 1.5              |
| 15                   | 7.3 ± 0.8              | 6.8 ± 0.6              | 7.8 ± 1.7              | 7.1 ± 0.7              | 7.3 ± 0.6              |
| 16                   | 7.1 ± 0.9              | $6.6 \pm 0.4$          | 6.7 ± 0.6              | 7.4 ± 0.8              | 7.5 ± 0.6              |
| 17                   | 7.8 ± 0.8              | 7.4 ± 0.4              | 7.7 ± 0.5              | 7.7 ± 0.3              | 8.4 ± 0.7              |
| 18                   | 7.2 ± 0.7              | $6.8 \pm 0.9$          | 7.2 ± 0.5              | 7.1 ± 0.4              | 7.6 ± 0.8              |
| 1 <del>9</del><br>22 | $6.6 \pm 0.6$          | $6.4 \pm 0.7$          | 6.5 ± 1.1              | $6.3 \pm 0.3$          | 7.0 ± 0.3              |
| 22                   | $7.2 \pm 0.5$          | $7.0 \pm 1.0$          | 7.0 ± 0.7              | 7.5 ± 0.6              | $7.4 \pm 0.8$          |
| 23<br>24             | 7.5 ± 0.9<br>5.7 ± 0.4 | 7.1 ± 0.5<br>5.4 ± 0.7 | 7.5 ± 0.8<br>5.7 ± 0.4 | 7.2 ± 0.3<br>5.8 ± 0.5 | 8.1 ± 0.7<br>5.9 ± 0.9 |
| 26                   | $7.7 \pm 0.4$          | 7.6 ± 0.9              | 7.6 ± 0.8              | 7.5 ± 1.2              | 8.0 ± 0.4              |
| 27                   | $7.2 \pm 0.4$          | $6.9 \pm 0.5$          | 7.2 ± 0.2              | $7.3 \pm 0.7$          | $7.4 \pm 0.6$          |
| 31A                  | $5.7 \pm 0.2$          | 5.7 ± 0.4              | $5.6 \pm 0.4$          | $5.8 \pm 0.3$          | $5.8 \pm 0.5$          |
| 32                   | $7.5 \pm 0.4$          | $7.2 \pm 0.5$          | 7.7 ± 0.5              | 7.6 ± 0.2              | 7.6 ± 1.5              |
| 40                   | $8.3 \pm 0.8$          | 7.9 ± 0.6              | 8.0 ± 0.4              | 8.3 ± 0.9              | 8.8 ± 0.6              |
| 42                   | 6.1 ± 0.9              | $6.2 \pm 0.7$          | $5.7 \pm 0.4$          | $5.9 \pm 0.4$          | 6.7 ± 1.0              |
| 43                   | 7.8 ± 0.5              | 7.7 ± 0.8              | 7.7 ± 0.8              | 7.7 ± 0.5              | 8.2 ± 1.0              |
| 44                   | 6.8 ± 0.4              | 6.6 ± 0.5              | 6.8 ± 0.6              | $6.7 \pm 0.4$          | 7.1 ± 0.3              |
| 45                   | $7.6 \pm 0.7$          | 7.1 ± 0.6              | 7.4 ± 0.4              | 7.8 ± 0.8              | 7.9 ± 0.7              |
| 46                   | 6.7 ± 1.3              | $6.3 \pm 0.6$          | $6.3 \pm 0.8$          | $6.4 \pm 0.3$          | 7.6 ± 1.1              |
| 47                   | 7.7 ± 0.4              | 7.5 ± 0.7              | 7.6 ± 0.4              | 7.8 ± 1.0              | 8.0 ± 0.4              |
| 48                   | 7.1 ± 0.3              | 7.0 ± 0.5              | 7.0 ± 0.6              | 6.9 ± 0.5              | 7.3 ± 0.3              |
| 49                   | 7.0 ± 0.6              | 6.7 ± 0.3              | 7.1 ± 0.5              | 6.7 ± 0.3              | 7.3 ± 0.4              |
| 50                   | 7.9 ± 1.2              | 7.0 ± 0.8              | 8.0 ± 0.5              | 7.9 ± 0.6              | 8.5 ± 1.2              |
| 51                   | 7.5 ± 0.3              | 7.7 ± 1.0              | 7.5 ± 0.8              | 7.3 ± 0.3              | 7.6 ± 0.7              |
|                      |                        |                        |                        |                        |                        |

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH ± 2 STANDARD DEVIATIONS

# TABLE C-IX.2MEAN QUARTERLY TLD RESULTS FOR THE SITE BOUNDARY,<br/>INTERMEDIATE AND CONTROL LOCATIONS FOR PEACH BOTTOM ATOMIC<br/>POWER STATION, 2005

### RESULTS IN UNITS OF MILLI-ROENTGEN/ STD. MONTH $\pm 2$ STANDARD DEVIATIONS OF THE STATION DATA

| COLLECTION<br>PERIOD | SITE BOUNDARY<br>± 2 S. D. | INTERMEDIATE | CONTROL   |
|----------------------|----------------------------|--------------|-----------|
| JAN-MAR              | 6.4 ± 2.1                  | 6.7 ± 1.6    | 6.3 ± 1.2 |
| APR-JUN              | 6.5 ± 2.4                  | 6.9 ± 1.8    | 6.5 ± 1.2 |
| JUL-SEP              | 6.6 ± 2.5                  | 6.9 ± 1.8    | 6.7 ± 1.5 |
| OCT-DEC              | 7.1 ± 2.4                  | 7.3 ± 1.8    | 7.0 ± 1.6 |

### TABLE C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR PEACH BOTTOM<br/>ATOMIC POWER STATION, 2005

#### RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH

| LOCATION      | SAMPLES  | PERIOD  | PERIOD  | PERIOD MEAN | PRE-OP MEAN |
|---------------|----------|---------|---------|-------------|-------------|
|               | ANALYZED | MINIMUM | MAXIMUM | ±2 S. D.    | ±2S.D.      |
| SITE BOUNDARY | 77       | 4.1     | 8.8     | 6.7 ± 2.4   | 5.4 ± 1.7   |
| INTERMEDIATE  | 92       | 4.7     | 8.5     | 6.9 ± 1.8   | 5.3 ± 1.3   |
| CONTROL       | 16       | 5.4     | 7.6     | 6.6 ± 1.3   | 5.7 ± 1.8   |

THE PRE-OPERATIONAL MEAN WAS CALCULATED FROM MONTHLY TLD READINGS 01/07/73 TO 08/05/73.

SITE BOUNDARY STATIONS - 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1NN, 1P, 1Q, 1R, 2, 2B, 40 INTERMEDIATE STATIONS - 3A, 4K, 5, 6B, 14, 15, 17, 22, 23, 26, 27, 31A, 32, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51

CONTROL STATIONS - 16, 18, 19, 24

### TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### SURFACE WATER (TRITIUM LIQUID SCINTILLATION)

| SAMPLING PERIOD | 1LL                     | 1MM                     |
|-----------------|-------------------------|-------------------------|
| JAN-MAR         | 12/29/2005 - 03/30/2005 | 12/29/2005 - 03/30/2005 |
| APR-JUN         | 03/30/2005 - 06/29/2005 | 03/30/2005 - 06/29/2005 |
| JUL-SEP         | 06/29/2005 - 09/28/2005 | 06/29/2005 - 09/28/2005 |
| OCT-DEC         | 09/28/2005 - 12/28/2005 | 09/28/2005 - 12/28/2005 |

#### SURFACE WATER (GAMMA SPECTROSCOPY)

|                 | 1LL                     | 1MM                     |
|-----------------|-------------------------|-------------------------|
| SAMPLING PERIOD |                         |                         |
| JAN             | 12/29/2004 - 02/02/2005 | 12/29/2004 - 02/02/2005 |
| FEB             | 02/02/2005 - 03/02/2005 | 02/02/2005 - 03/02/2005 |
| MAR             | 03/02/2005 - 03/30/2005 | 03/02/2005 - 03/30/2005 |
| APR             | 03/30/2005 - 04/27/2005 | 03/30/2005 - 04/27/2005 |
| MAY             | 04/27/2005 - 06/01/2005 | 04/27/2005 - 06/01/2005 |
| JUN             | 06/01/2005 - 06/29/2005 | 06/01/2005 - 06/29/2005 |
| JUL             | 06/29/2005 - 08/03/2005 | 06/29/2005 - 08/03/2005 |
| AUG             | 08/03/2005 - 08/31/2005 | 08/03/2005 - 08/31/2005 |
| SEP             | 08/31/2005 - 09/28/2005 | 08/31/2005 - 09/28/2005 |
| ост             | 09/28/2005 - 11/02/2005 | 09/28/2005 - 11/02/2005 |
| NOV             | 11/02/2005 - 11/30/2005 | 11/02/2005 - 11/30/2005 |
| DEC             | 11/30/2005 - 12/28/2005 | 11/30/2005 - 12/28/2005 |

#### DRINKING WATER (TRITIUM )

| SAMPLING PERIOD | 4L                      | 61                      |
|-----------------|-------------------------|-------------------------|
| JAN-MAR         | 12/31/2004 - 04/01/2005 | 12/31/2004 - 04/01/2005 |
| APR-JUN         | 04/01/2005 - 07/01/2005 | 04/01/2005 - 07/01/2005 |
| JUL-SEP         | 07/01/2005 - 09/30/2005 | 07/01/2005 - 09/30/2005 |
| OCT-DEC         | 09/30/2005 - 12/30/2005 | 09/30/2005 - 12/30/2005 |

#### DRINKING WATER (GROSS BETA & GAMMA)

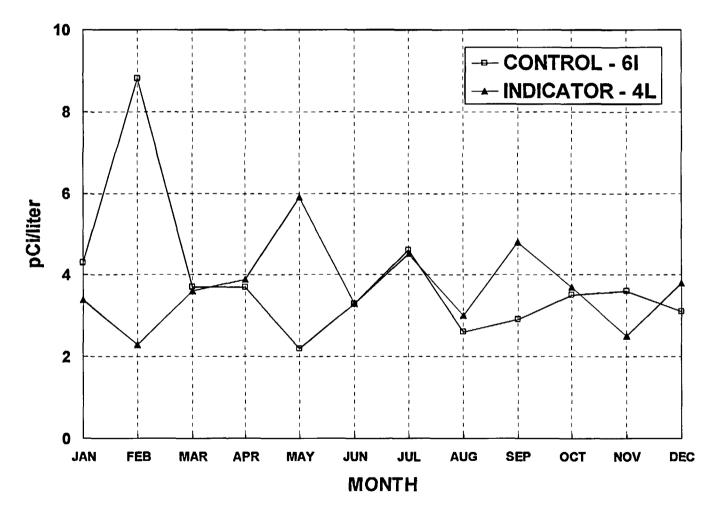
| SAMPLING PERIOD | 4L                      | 61                      |
|-----------------|-------------------------|-------------------------|
| JAN             | 12/31/2005 - 02/04/2005 | 12/31/2005 - 02/04/2005 |
| FEB             | 02/04/2005 - 03/04/2005 | 02/04/2005 - 03/04/2005 |
| MAR             | 03/04/2005 - 04/01/2005 | 03/04/2005 - 04/01/2005 |
| APR             | 04/01/2005 - 04/29/2005 | 04/01/2005 - 04/29/2005 |
| MAY             | 04/29/2005 - 06/03/2005 | 04/29/2005 - 06/03/2005 |
| JUN             | 06/03/2005 - 07/01/2005 | 06/03/2005 - 07/01/2005 |
| JUL             | 07/01/2005 - 08/05/2005 | 07/01/2005 - 08/05/2005 |
| AUG             | 08/05/2005 - 09/02/2005 | 08/05/2005 - 09/02/2005 |
| SEP             | 09/02/2005 - 09/28/2005 | 09/02/2005 - 09/28/2005 |
| OCT             | 09/30/2005 - 11/04/2005 | 09/30/2005 - 11/04/2005 |
| NOV             | 11/04/2005 - 12/04/2005 | 11/04/2005 - 12/04/2005 |
| DEC             | 12/04/2005 - 12/30/2005 | 12/04/2005 - 12/30/2005 |

## TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### AIR PARTICULATE (GAMMA SPECTROSCOPY)

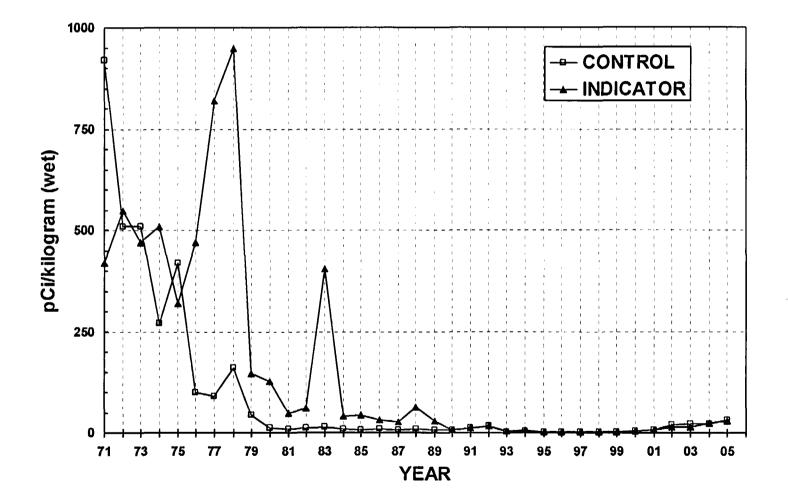
| SAMPLING<br>PERIOD | 1B                 | 1Z                 | 1 <u>C</u>         | 3A                 | 5H2                |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| JANHMAR            | 12/31 - 04/01/2005 | 12/31 - 04/01/2005 | 12/31 - 04/01/2005 | 12/31 - 04/01/2005 | 12/28 - 03/28/2005 |
| APR-JUN            | 04/01 - 07/01/2005 | 04/01 - 07/01/2005 | 04/01 - 07/01/2005 | 04/01 - 07/01/2005 | 03/28 - 06/27/2005 |
| JUL-SEP            | 07/01 - 09/30/2005 | 07/01 - 09/30/2005 | 07/01 - 09/30/2005 | 07/01 - 09/30/2005 | 06/27 - 09/26/2005 |
| OCT-DEC            | 09/30 - 12/30/2005 | 09/30 - 12/30/2005 | 09/30 - 12/30/2005 | 09/30 - 12/30/2005 | 09/26 - 01/03/2005 |

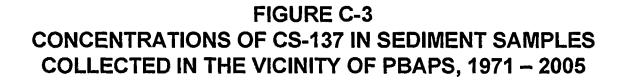
#### AIR PARTICULATE (G. BETA & I-131)

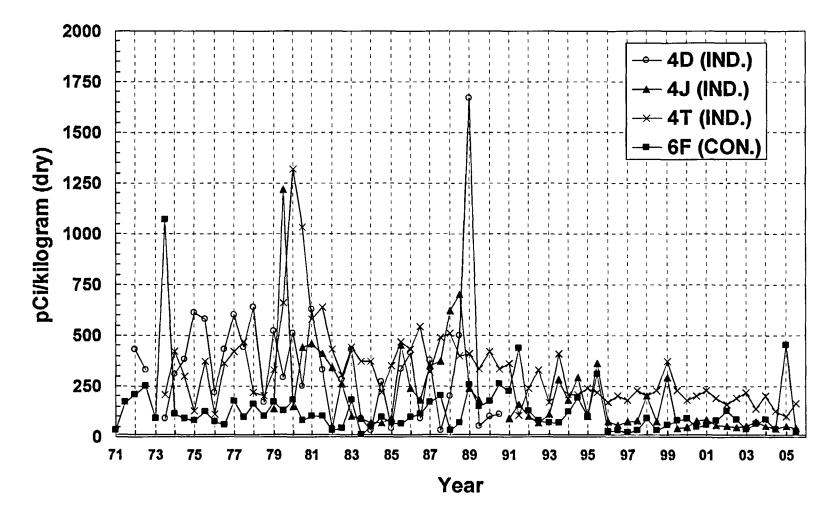

| 1         12/31         01/07/2005         12/31         01/07/2005         12/28         01/07           2         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/07         01/13/2005         01/10         01/10         01/11         01/21/2005         01/21         01/21/2005         01/21         01/28/2005         01/21         01/28/2005         01/21         01/28/2005         01/21         01/28/2005         01/21         01/28/2005         02/04         02/11/2005         02/04         02/11/2005         02/04         02/11/2005         02/04         02/11/2005         02/04         02/18/2005         02/11         02/18/2005         02/14         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21         02/21                                                                                                                                                            | 2005 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3       01/13       01/21/2005       01/13       01/21/2005       01/13       01/21/2005       01/13       01/21/2005       01/13       01/21/2005       01/13       01/21/2005       01/14       01/21       01/28/2005       01/17       01/28/2005       01/17       01/28/2005       01/17       01/28/2005       01/17       01/21       01/28/2005       01/14       01/21       01/28/2005       01/14       01/21       01/28/2005       01/14       01/21       01/28/2005       01/14       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21                                                                                                                                                                                                                                                    | 2005 |
| 4       01/21 - 01/28/2005       01/21 - 01/28/2005       01/21 - 01/28/2005       01/21 - 01/28/2005       01/17 - 01/24         5       01/28 - 02/04/2005       01/28 - 02/04/2005       01/28 - 02/04/2005       01/28 - 02/04/2005       01/28 - 02/04/2005       01/28 - 02/04/2005       01/21 - 01/28/2005       01/21 - 01/28/2005       01/21 - 02/18/2005       02/11 - 02/18/2005       02/11 - 02/18/2005       02/11 - 02/18/2005       02/11 - 02/18/2005       02/11 - 02/18/2005       02/11 - 02/18/2005       02/14 - 02/25         9       02/25 - 03/04/2005       02/25 - 03/04/2005       02/25 - 03/04/2005       02/25 - 03/04/2005       02/25 - 03/04/2005       02/21 - 02/26         10       03/04 - 03/11/2005       03/11 - 03/18/2005       03/11 - 03/18/2005       03/11 - 03/18/2005       03/01 - 03/18/2005       03/01 - 03/18/2005       03/01 - 03/18/2005       03/01 - 03/18/2005       03/07 - 03/14         12       03/18 - 03/25/2005       03/18 - 03/25/2005       03/18 - 03/25/2005       03/18 - 03/25/2005       03/18 - 03/28/2005       03/01 - 04/08/2005       03/01 - 03/18/2005       03/01 - 03/18/2005       03/01 - 03/18/2005       03/02 - 03/02       03/02 - 03/02       03/02 - 03/02       03/02 - 03/02       03/04 - 03/11/2005       03/22 - 04/01/2005       03/22 - 04/01/2005       03/22 - 04/01/2005       03/22 - 04/01/2005       03/22 - 03/02       03/22 - 03/02 <t< th=""><th></th></t<> |      |
| 5       01/28       02/04/2005       01/28       02/04/2005       01/28       02/04/2005       01/28       02/04/2005       01/28       02/04/2005       01/28       02/04/2005       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/11       02/18/2005       02/14       02/18/2005       02/14       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/21       02/22       03/04/2005       02/21       02/21       02/22       03/04/2005       02/21       02/22       03/04/2005       02/21       02/28       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11       03/18/2005       03/11       03/18/2005       03/11       03/18/2005       03/11       03/25       04/01/12005       03/25       04/01/12005       03/25       04/01/12005       03/25       04/01/12005       03/25       04/01/12005                                                                                                                                                                                                               | 2005 |
| 6       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/04       02/11/2005       02/11       02/18/2005       02/11       02/18/2005       02/11       02/18/2005       02/11       02/18/2005       02/11       02/18/2005       02/11       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/18/2005       02/14       02/25/2005       02/14       02/25/2005       03/04       03/04/2005       02/14       02/28/2005       02/14       02/28/2005       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11/2005       03/04       03/11/2005       03/14       03/02/2005       03/14       03/25/2005       03/14       03/25/2005       03/14       03/25/2005       03/14       03/25/2005       03/14       03/25/2005       03/14       03/25/2005       03/14       03/21       03/28/2005       03/14       03/21       03/28/2005       03/14       03/21 <th></th>                                                                                                                                                                           |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005 |
| 8         02/18         02/25/2005         02/18         02/25/2005         02/18         02/25/2005         02/14         02/25           9         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/21         02/25           10         03/04         03/11/2005         03/04         03/11/2005         03/04         03/11/2005         03/04         03/11/2005         03/04         03/11/2005         03/04         03/11/2005         03/07         03/14           10         03/18/2005         03/11         03/18/2005         03/18         03/25/2005         03/14         03/18/2005         03/14         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21         03/21                                                                                                                                                                                            | 2005 |
| 9         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/25         03/04/2005         02/27         03/04/2005         02/21         02/28         03/04/2005         02/21         02/28         03/04/2005         02/21         02/28         03/07           11         03/11         03/11/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/18/2005         03/11         03/12/2005         03/12         03/25/2005         03/14         03/25/2005         03/14         03/21         03/22           13         03/25         04/01/2005         03/21         03/25         04/01/2005         03/21         03/28         04/04         03/11         03/28         04/04/01         04/08/2005         04/04         04/11           14         04/01         04/08/2005         04/12         04/29/2005         04/12         04/29/2005         04/14         04/11         04/04         04/11           16         04/15 <th>2005</th>                                                                                                                                                                    | 2005 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2005 |
| 14       04/01       04/08/2005       04/01       04/08/2005       04/01       04/08/2005       04/01       04/08/2005       03/28       04/04         15       04/08       04/15/2005       04/08       04/15/2005       04/08       04/15/2005       04/08       04/15/2005       04/08       04/15/2005       04/08       04/15/2005       04/08       04/15/2005       04/04       04/11       04/08         16       04/15       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/22       04/22/2005       04/12       04/22/2005       04/12       04/22/2005       04/22       04/22/2005       04/12       04/22       04/22       04/22/2005       04/12       04/22       04/22       04/22/2005       04/12       04/22/2005       04/22       04/22       04/22/2005       04/12                                                                                                                                                                                                                           | 2005 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2005 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2005 |
| 22       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/27       06/03/2005       05/11       06/06/04         24       06/10       06/17/2005       06/10       06/17/2005       06/17       06/24/2005       06/17       06/24/2005       06/17       06/24/2005       06/13       06/20         25       06/17       06/24/2005       06/17       06/24/2005       06/17       06/24/2005       06/17       06/24/2005       06/17       06/24/2005       06/17       06/24/2005       06/17       06/24/2005       06/12       06/27       07/01       07/01/2005       06/27       07/05       07/01       07/01/2005       06/27       07/05       07/01       07/08/2005       07/01       <                                                                                                                                                                                                                | 2005 |
| 23       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/03       06/10/2005       06/04       06/11/2005       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05       06/05                                                                                                                                                                                                                                                           | 2005 |
| 24         06/10         06/17/2005         06/10         06/17/2005         06/10         06/17/2005         06/10         06/17/2005         06/10         06/17/2005         06/10         06/17/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/17         06/24/2005         06/27         06/27         07/08         07/01/2005         06/27         07/08         07/01         07/08/2005         06/27         07/08         07/15/2005         07/08         07/15/2005         07/08         07/15/2005         07/08         07/15/2005         07/08         07/15/2005         07/15         07/22/2005         07/15         07/22/2005         0                                                                                                                    | 2005 |
| 25         06/17         -         06/24/2005         06/17         -         06/24/2005         06/17         -         06/24/2005         06/17         -         06/24/2005         06/17         -         06/24/2005         06/17         -         06/24/2005         06/17         -         06/24/2005         06/13         -         06/20         -         06/20         06/20         06/20         06/20         06/20         06/27         07/01/2005         06/24         -         07/01/2005         06/24         -         07/01/2005         06/24         -         07/01/2005         06/27         07/05         06/24         -         07/01/2005         06/27         07/05         06/27         07/05         07/01         -         07/08/2005         07/01         -         07/08/2005         07/01         -         07/08/2005         07/05         07/05         07/05         07/05         07/05         07/05         07/05         07/05         07/01         07/08/2005         07/07         07/08/2005         07/07         07/08         07/15/2005         07/08         07/015         07/15/2005         07/07         07/01         07/08/2005         07/07         07/01         07/08/2005         07/07         07/01         07/08/                                                                                                                                                                          | 2005 |
| 26         06/24         - 07/01/2005         06/24         - 07/01/2005         06/24         - 07/01/2005         06/24         - 07/01/2005         06/27         - 07/01/2005         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         06/27         - 07/02         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 07/02/2005         07/01         - 0                                                                                                                    | 2005 |
| 27         07/01         - 07/08/2005         07/01         - 07/08/2005         07/01         - 07/08/2005         07/01         - 07/08/2005         07/01         - 07/08/2005         06/27         - 07/08/2005           28         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/15         - 07/22/2005         07/11         - 07/08/2005         07/15         - 07/22/2005         07/15         - 07/22/2005         07/11         - 07/18         - 07/18         - 07/28/2005         07/12         - 07/28/2005         07/22         - 07/28/2005         07/28         - 08/05/2005         07/25         - 08/01           30         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/25         - 08/01           31         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005                                                                                                                                   | 2005 |
| 28         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/08         - 07/15/2005         07/05         - 07/11           29         07/15         - 07/22/2005         07/15         - 07/22/2005         07/15         - 07/22/2005         07/15         - 07/22/2005         07/15         - 07/22/2005         07/15         - 07/22/2005         07/11         - 07/18           30         07/22         - 07/28/2005         07/22         - 07/28/2005         07/22         - 07/28/2005         07/12         - 07/28/2005         07/15         - 07/28/2005         07/18         - 07/25         08/05         - 08/05/2005         07/25         - 08/01         - 08/05/2005         07/25         - 08/01         - 08/05/2005         07/25         - 08/01         - 08/05/2005         07/25         - 08/01         - 08/05/2005         07/25         - 08/01         - 08/05/2005         08/05         - 08/12/2005         08/05         - 08/12/2005         08/05         - 08/12/2005         08/05         - 08/12/2005         08/05         - 08/01         - 08/08           31         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/25         - 08/01         - 08/08                                                                                                                                        | 2005 |
| 29         07/15         -         07/22/2005         07/15         -         07/22/2005         07/15         -         07/22/2005         07/15         -         07/22/2005         07/11         -         07/18         07/18         07/18         07/25         07/18         07/25         07/18         07/25         07/18         07/25         07/18         07/25         07/25         07/18         07/25         08/05/2005         07/25         08/05/2005         07/25         08/05/2005         07/25         08/05/2005         07/25         08/05/2005         07/25         08/05/2005         07/25         08/05/2005         07/25         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005         08/05/2005 <th< th=""><th>2005</th></th<>                                                                                    | 2005 |
| 30         07/22         - 07/28/2005         07/22         - 07/28/2005         07/22         - 07/28/2005         07/28         - 07/28/2005         07/28         - 07/28/2005         07/28         - 07/28/2005         07/28         - 07/28/2005         07/28         - 07/28/2005         07/28         - 07/28/2005         07/28         - 07/28/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/28         - 08/05/2005         07/25         - 08/01         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/08         - 08/01         - 08/01 <t< th=""><th>2005</th></t<>                                                                                     | 2005 |
| 31         07/28         -         08/05/2005         07/28         -         08/05/2005         07/28         -         08/05/2005         07/25         -         08/01           32         08/05         -         08/12/2005         08/05         -         08/12/2005         08/05         -         08/12/2005         08/05         -         08/12/2005         08/01         -         08/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2005 |
| 32 08/05 - 08/12/2005 08/05 - 08/12/2005 08/05 - 08/12/2005 08/05 - 08/12/2005 08/01 - 08/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2005 |
| 23 08/12 08/18/2005 08/12 08/18/2005 08/19 08/18/2005 08/19/2005 08/19/2005 08/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2005 |
| 33 08/12 - 08/18/2005 08/12 - 08/18/2005 08/12 - 08/18/2005 08/12 - 08/18/2005 08/08 - 08/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 34 08/18 - 08/25/2005 08/18 - 08/25/2005 08/18 - 08/25/2005 08/18 - 08/25/2005 08/15 - 08/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 35 08/25 - 09/02/2005 08/25 - 09/02/2005 08/25 - 09/02/2005 08/25 - 09/02/2005 08/22 - 08/29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 36 09/02 - 09/09/2005 09/02 - 09/09/2005 09/02 - 09/09/2005 09/02 - 09/09/2005 08/29 - 09/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 37 09/09 - 09/16/2005 09/09 - 09/16/2005 09/09 - 09/16/2005 09/09 - 09/16/2005 09/05 - 09/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 38 09/16 - 09/23/2005 09/16 - 09/23/2005 09/16 - 09/23/2005 09/16 - 09/23/2005 09/12 - 09/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 39 09/23 - 09/30/2005 09/23 - 09/30/2005 09/23 - 09/30/2005 09/23 - 09/30/2005 09/19 - 09/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 40 09/30 - 10/07/2005 09/30 - 10/07/2005 09/30 - 10/07/2005 09/30 - 10/07/2005 09/26 - 10/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 41 10/07 - 10/14/2005 10/07 - 10/14/2005 10/07 - 10/14/2005 10/07 - 10/14/2005 10/03 - 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 42 10/14 - 10/21/2005 10/14 - 10/21/2005 10/14 - 10/21/2005 10/14 - 10/21/2005 10/10 - 10/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 43 10/21 - 10/28/2005 10/21 - 10/28/2005 10/21 - 10/28/2005 10/21 - 10/28/2005 10/17 - 10/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 44 10/28 - 11/04/2005 10/28 - 11/04/2005 10/28 - 11/04/2005 10/28 - 11/04/2005 10/24 - 10/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 45 11/04 - 11/11/2005 11/04 - 11/11/2005 11/04 - 11/11/2005 11/04 - 11/11/2005 10/31 - 11/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 46 11/11 - 11/18/2005 11/11 - 11/18/2005 11/11 - 11/18/2005 11/11 - 11/18/2005 11/07 - 11/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 47 11/18 - 11/25/2005 11/18 - 11/25/2005 11/18 - 11/25/2005 11/18 - 11/25/2005 11/14 - 11/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 48 11/25 - 12/04/2005 11/25 - 12/04/2005 11/25 - 12/04/2005 11/25 - 12/04/2005 11/21 - 11/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 49 12/04 - 12/10/2005 12/04 - 12/10/2005 12/04 - 12/10/2005 12/04 - 12/10/2005 11/28 - 12/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 50 12/10 - 12/16/2005 12/10 - 12/16/2005 12/10 - 12/16/2005 12/10 - 12/16/2005 12/05 - 12/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 51 12/16 - 12/23/2005 12/16 - 12/23/2005 12/16 - 12/23/2005 12/16 - 12/23/2005 12/12 - 12/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 52 12/23 - 12/30/2005 12/23 - 12/30/2005 12/23 - 12/30/2005 12/23 - 12/30/2005 12/19 - 12/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005 |
| 53 12/27 - 01/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2006 |

### TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE<br/>VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

<u>TLD</u>

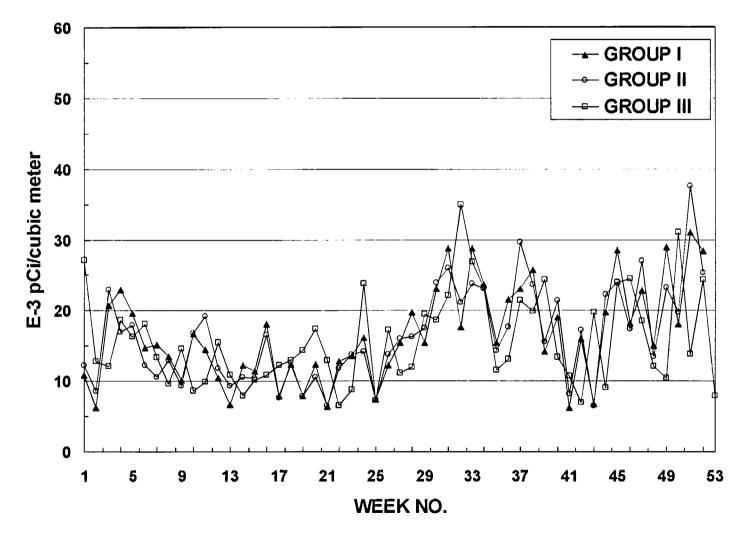

| STATION |                         |                         |                         |                         |
|---------|-------------------------|-------------------------|-------------------------|-------------------------|
| CODE    | JAN-MAR                 | APR-JUN                 | JUL-SEP                 | OCT-DEC                 |
| - 1A    | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 18      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1C      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1D      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1E      | 12/30/2004 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 - 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 1F      | 12/30/2004 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 - 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 1G      | 12/30/2004 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 ~ 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 1H      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 11      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1J      | 12/30/2004 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 - 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 1K      |                         |                         | (1)                     | 10/07/2005 - 01/05/2006 |
| 1L      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1 M     | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1P      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1Q      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 1R      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 2       | 12/30/2004 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 - 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 2B      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 3A      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 4K      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 5       | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/06/2006 |
| 1NN     | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 6B      | 12/31/2004 - 04/01/2005 | 04/01/2005 - 07/01/2005 | 07/01/2005 - 10/07/2005 | 10/07/2005 - 01/06/2006 |
| 14      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 15      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 16      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 17      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 18      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 19      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 22      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 23      | 12/30/2004 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 - 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 24      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/05/2006 |
| 26      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/05/2006 |
| 27      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/05/2006 |
| 31A     | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/05/2006 |
| 32      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/05/2006 |
| 40      | 12/29/2005 - 03/31/2005 | 03/31/2005 - 06/30/2005 | 06/30/2005 - 10/06/2005 | 10/06/2005 - 01/05/2006 |
| 42      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 43      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 44      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 45      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 46      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 47      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 48      | 12/29/2005 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 49      | 12/30/2004 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 50      | 12/30/2004 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 ~ 10/04/2005 | 10/04/2005 - 01/04/2006 |
| 51      | 12/29/2004 - 03/30/2005 | 03/30/2005 - 06/29/2005 | 06/29/2005 - 10/04/2005 | 10/04/2005 - 01/04/2006 |

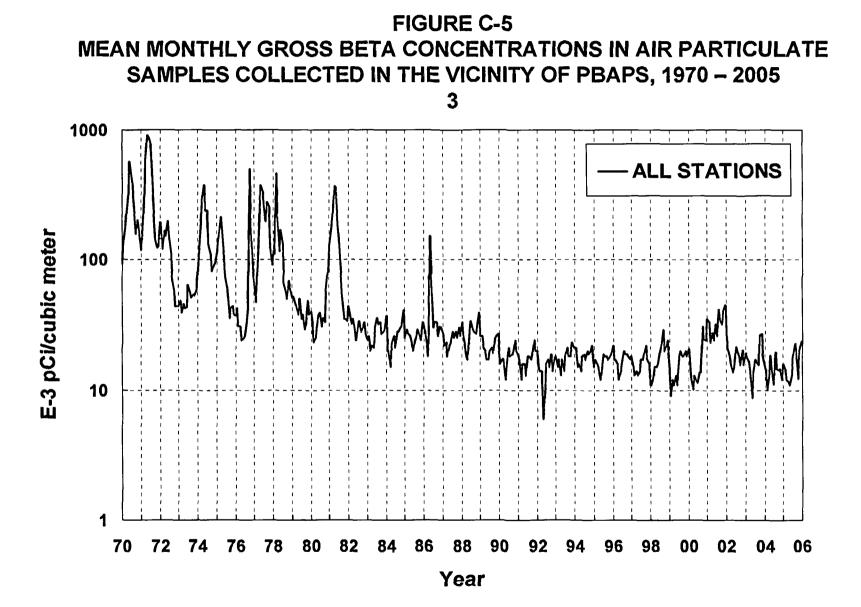


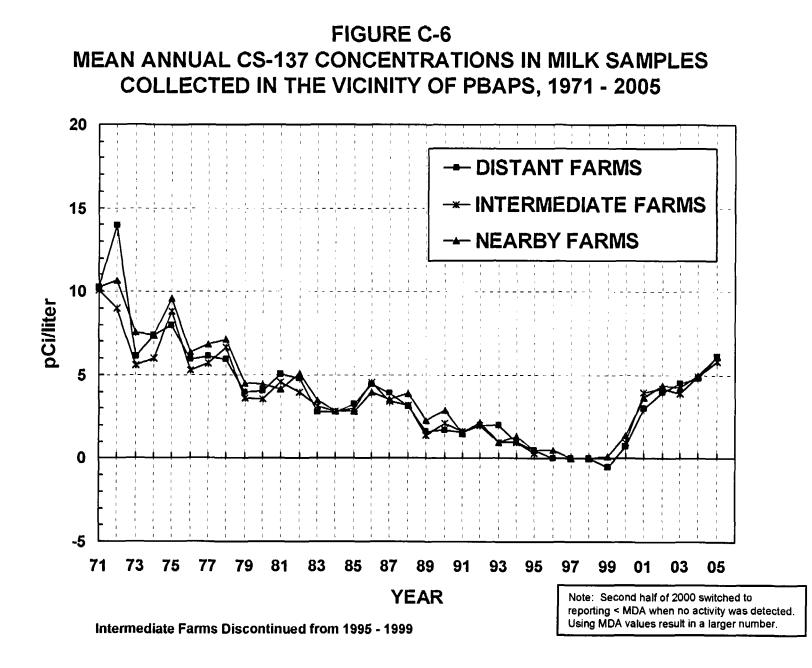



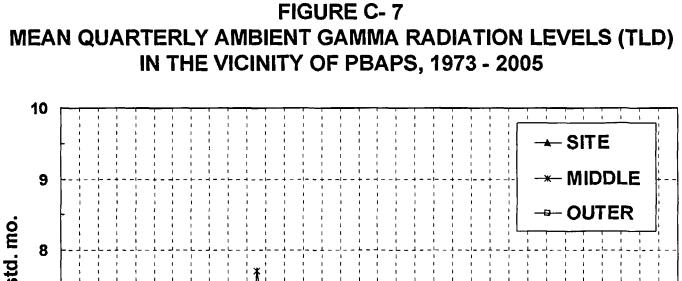

PBAPS changed to total gross beta at the beginning of 2005. Previous data included summation of less than values.

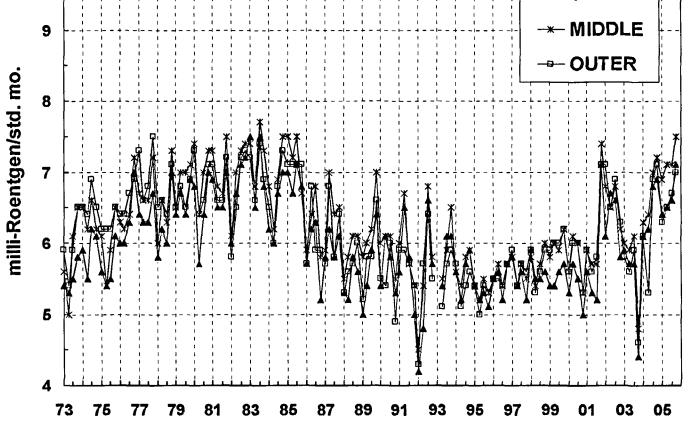




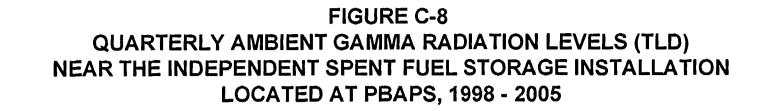



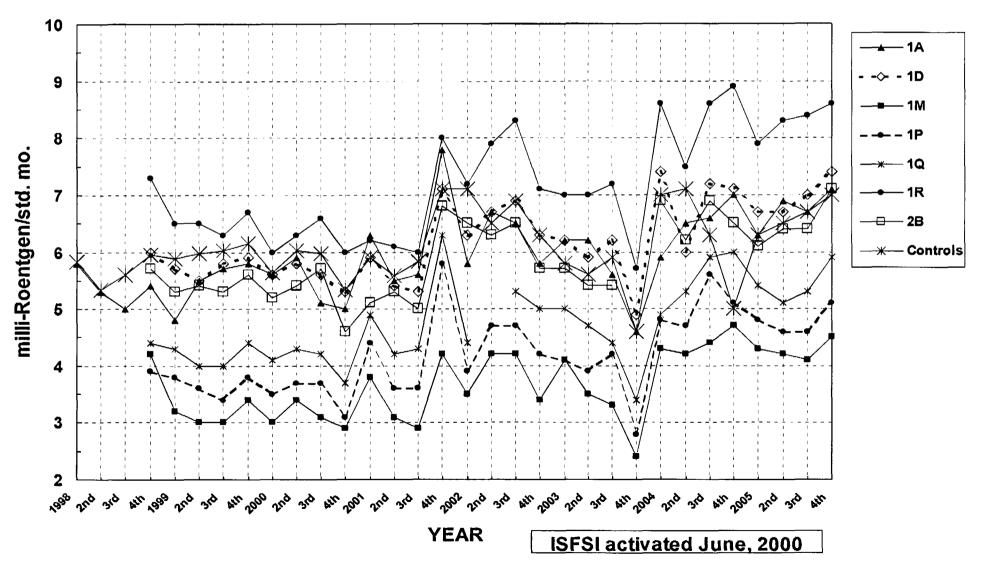





No sample collected from Station 4J in 1990 and Station 4D discontinued beginning 1991










YEAR





### APPENDIX D

- -

### DATA TABLES AND FIGURES COMPARISON LABORATORY

The following section contains data and figures illustrating the analyses performed by the QC laboratory, Environmental, Inc. Duplicate samples were obtained from several locations and media and split between the primary laboratory, Teledyne Brown Engineering (TBE) and the QC laboratory. Comparison of the results for most media were within expected ranges.

The QC laboratory results for gross beta insoluble and soluble in drinking water samples were very similar to those reported by the Primary laboratory. All results between the laboratories were within 4 pCi/l of each other. The data reported were well within the historical range.

## TABLE D-I.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER<br/>SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC<br/>POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | 4L        |  |
|----------------------|-----------|--|
| JAN                  | < 2.0     |  |
| FEB                  | < 2.0     |  |
| MAR                  | < 2.2     |  |
| APR                  | < 1.9     |  |
| MAY                  | < 1.7     |  |
| JUN                  | < 2.1     |  |
| JUL                  | < 2.0     |  |
| AUG                  | < 1.7     |  |
| SEP                  | < 1.9     |  |
| OCT                  | < 2.0     |  |
| NOV                  | < 1.8     |  |
| DEC                  | < 1.9     |  |
| MEAN                 | 1.9 ± 0.3 |  |

## TABLE D-I.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN DRINKING WATER<br/>SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC<br/>POWER STATION, 2005

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | 4L        |  |
|----------------------|-----------|--|
| JAN                  | < 1.7     |  |
| FEB                  | < 0.9     |  |
| MAR                  | < 1.8     |  |
| APR                  | < 1.6     |  |
| MAY                  | < 0.8     |  |
| JUN                  | < 2.0     |  |
| JUL                  | < 0.9     |  |
| AUG                  | < 1.9     |  |
| SEP                  | < 1.7     |  |
| OCT                  | < 2.0     |  |
| NOV                  | < 1.8     |  |
| DEC                  | < 1.6     |  |
| MEAN                 | 1.6 ± 0.9 |  |

| STC | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Zr-95 | Nb-95 | Cs-134 | Cs-137 | Ba-140  | La-140 |
|-----|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|---------|--------|
| ŧĹ  | JAN                  | < 2   | < 5   | < 9   | < 5   | < 5   | < 4   | < 5   | < 3    | < 5    | < 27    | < 4    |
|     | FEB                  | < 5   | < 5   | < 8   | < 5   | < 10  | < 7   | < 4   | < 3    | < 4    | < 15    | < 8    |
|     | MAR                  | < 4   | < 5.6 | < 7.4 | < 4.4 | < 4.3 | < 7.9 | < 3.4 | < 4.7  | < 3.1  | < 27    | < 8.3  |
|     | APR                  | < 5   | < 2.4 | < 12  | < 4.3 | < 7.6 | < 8.7 | < 5.2 | < 4.1  | < 3.5  | < 38    | < 6.7  |
|     | MAY                  | < 3   | < 2.1 | < 7   | < 3.5 | < 5.6 | < 7.1 | < 6.4 | < 0.8  | < 2.5  | < 33    | < 7.6  |
|     | JUN                  | < 3.1 | < 2.9 | < 5.1 | < 3.7 | < 3.1 | < 4.5 | < 1.9 | < 2.3  | < 3.1  | < 39    | < 12   |
|     | JUL                  | < 2.5 | < 2   | < 7   | < 1.8 | < 2.9 | < 4.1 | < 4.3 | < 1.5  | < 1.7  | < 24    | < 6    |
|     | AUG                  | < 1.7 | < 2.5 | < 2.7 | < 2.3 | < 4.2 | < 4.2 | < 2.4 | < 1.5  | < 2.3  | < 17    | < 5.4  |
|     | SEP                  | < 2   | < 2.1 | < 6.4 | < 1.8 | < 5.9 | < 5.5 | < 2   | < 1.9  | < 1.8  | < 12    | < 4.5  |
|     | ост                  | < 3   | < 2.4 | < 5.2 | < 2.4 | < 4.1 | < 6.1 | < 4.5 | < 2.5  | < 2.6  | < 21    | < 5.4  |
|     | NOV                  | < 7.4 | < 8   | < 19  | < 9   | < 12  | < 11  | < 7.1 | < 5.2  | < 5.2  | < 16    | < 7.5  |
|     | DEC                  | < 2.4 | < 2.6 | < 6.4 | < 2.4 | < 3.1 | < 3.9 | < 4.8 | < 2.1  | < 2.5  | < 14    | < 1.8  |
|     | MEAN                 | 3 ± 3 | 4 ± 4 | 8 ± 8 | 4 ± 4 | 6 ± 6 | 6 ± 5 | 4 ± 3 | 3 ± 3  | 3 ± 2  | 24 ± 19 | 6 ± 5  |

## TABLE D-I.3CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED<br/>IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

## TABLE D-II.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN AIR PARTICULATE SAMPLES<br/>COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

~

| COLLECTION<br>PERIOD | 1A                      |  |
|----------------------|-------------------------|--|
| 1                    | 22 ± 4                  |  |
| 2                    | 10 ± 4                  |  |
| 3                    | 28 ± 4                  |  |
| 4                    | $33 \pm 4$              |  |
| 5                    | 27 ± 4                  |  |
| 6                    | 17 ± 4                  |  |
| 7                    | 24 ± 4                  |  |
| 8                    | 20 ± 4                  |  |
| 9                    | 18 ± 4                  |  |
| 10                   | 23 ± 4                  |  |
| 11                   | 19 ± 4                  |  |
| 12                   | 16 ± 4                  |  |
| 13                   | 13 ± 3                  |  |
| 14                   | 18 ± 4                  |  |
| 15                   | 15 ± 4                  |  |
| 16                   | 27 ± 4                  |  |
| 17                   | 14 ± 4                  |  |
| 18                   | 22 ± 4                  |  |
| 19                   | 15 ± 4                  |  |
| 20                   | 18 ± 4                  |  |
| 21                   | 7 ± 4<br>21 ± 4         |  |
| 22<br>23             | $21 \pm 4$<br>19 ± 4    |  |
| 25<br>24             | $15 \pm 4$<br>18 ± 4    |  |
| 24                   | $15 \pm 3$              |  |
| 26                   | $24 \pm 4$              |  |
| 20                   | 18 ± 4                  |  |
| 28                   | $26 \pm 4$              |  |
| 29                   | $23 \pm 4$              |  |
| 30                   | $33 \pm 5$              |  |
| 31                   | $33 \pm 4$              |  |
| 32                   | 30 ± 5                  |  |
| 33                   | 40 ± 6                  |  |
| 34                   | 23 ± 5                  |  |
| 35                   | 20 ± 4                  |  |
| 36                   | 26 ± 5                  |  |
| 37                   | 44 ± 5                  |  |
| 38                   | 39 ± 5                  |  |
| 39                   | 24 ± 5                  |  |
| 40                   | 27 ± 5                  |  |
| 41                   | 8 ± 4                   |  |
| 42                   | 22 ± 5                  |  |
| 43                   | (1)                     |  |
| 44                   | 24 ± 4                  |  |
| 45                   | 39 ± 5                  |  |
| 46                   | 21 ± 4                  |  |
| 47                   | 38 ± 5                  |  |
| 48<br>49             | 31.04 ± 5<br>27.95 ± 5  |  |
| 49<br>50             | $27.95 \pm 5$<br>28 ± 5 |  |
| 50<br>51             | $20 \pm 5$<br>41.3 ± 5  |  |
| 52                   | 33.87 ± 5               |  |
| JL                   | UU.UT I U               |  |
|                      |                         |  |
| MEAN                 | 24 ± 17                 |  |
| -                    | 2. –                    |  |
|                      |                         |  |

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) PUMP FAILURE

## TABLE D-II.2CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE<br/>SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC<br/>POWER STATION, 2005

| STC | COLLECTION<br>PERIOD | Be-7      | Mn-54     | Co-58     | Co-60     | Cs-134    | Cs-137    |
|-----|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1A  | 12/31 - 04/01/05     | 64 ± 13.7 | < 0.7     | < 0.5     | < 0.6     | < 0.8     | < 1.0     |
|     | 04/01 - 06/27/05     | 63 ± 14.4 | < 0.8     | < 0.7     | < 0.8     | < 0.9     | < 0.4     |
|     | 07/01 - 09/30/05     | 75 ± 18   | < 1.1     | < 0.7     | < 1.1     | < 0.6     | < 0.5     |
|     | 09/30 - 12/30/05     | 66 ± 17   | < 0.7     | < 1.2     | < 1.3     | < 0.8     | < 0.6     |
|     |                      |           |           |           |           |           |           |
|     | MEAN                 | 67 ± 11   | 0.8 ± 0.4 | 0.8 ± 0.6 | 1.0 ± 0.6 | 0.8 ± 0.3 | 0.6 ± 0.5 |

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

# TABLE D-III.1CONCENTRATIONS OF I-131 BY CHEMICAL SEPARATION AND GAMMA<br/>EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM<br/>ATOMIC POWER STATION, 2005

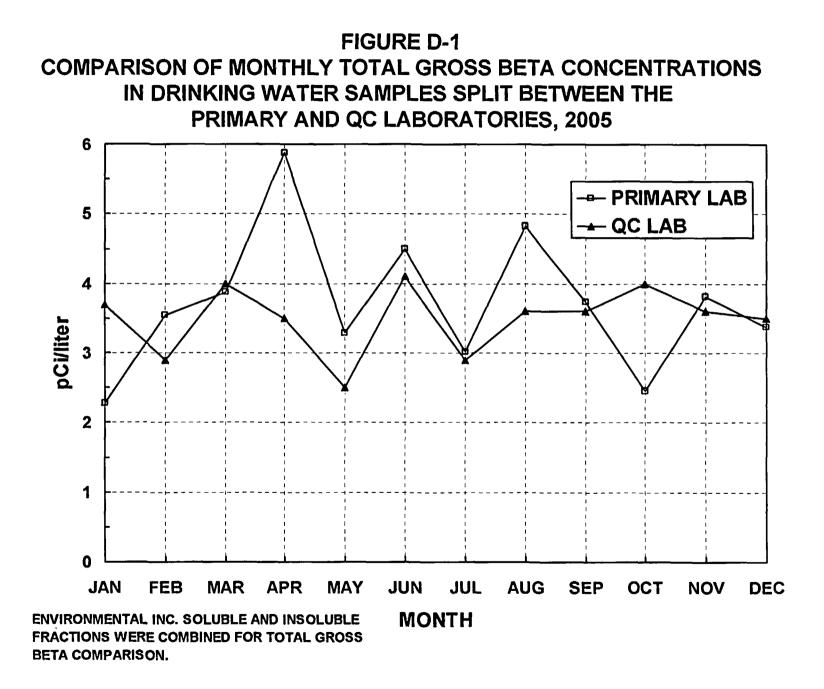
| STC | COLLECTION<br>PERIOD | I-131       | K-40         | Cs-134 | Cs-137 | Ba-140  | La-140 |
|-----|----------------------|-------------|--------------|--------|--------|---------|--------|
| A   | 02/13/05             | < 0.3       | 1297 ± 112.8 | < 4    | < 5    | < 12.5  | < 4.2  |
|     | 05/22/05             | < 0.2       | 1435 ± 126.3 | < 2    | < 4    | < 13    | < 3    |
|     | 08/01/05             | < 0.2       | 1358 ± 169.2 | < 3    | < 6    | < 34    | < 6    |
|     | 11/06/05 *           |             |              |        |        |         |        |
|     | MEAN                 | 0.25 ± 0.12 | 1341 ± 144   | 4 ± 4  | 6 ± 3  | 24 ± 25 | 6±5    |
| J   | 02/13/05             | < 0.2       | 1515 ± 181.7 | < 5    | < 7    | < 32    | < 5    |
|     | 05/22/05             | < 0.4       | 1382 ± 121.7 | < 6    | < 3    | < 16    | < 2    |
|     | 08/01/05             | < 0.1       | 1369 ± 177.1 | < 6    | < 5    | < 23    | < 9    |
|     | 11/06/05             | < 0.4       | 1444 ± 174.1 | < 6    | < 5    | < 34    | < 5    |
|     | MEAN                 | 0.28 ± 0.30 | 1427 ± 134   | 6 ± 1  | 5 ± 3  | 26 ± 17 | 5±6    |
| ο   | 02/13/05             | < 0.2       | 1354 ± 119.3 | < 3    | < 4    | < 25    | < 3    |
|     | 05/22/05             | < 0.2       | 1336 ± 122.4 | < 4    | < 3    | < 17    | < 2    |
|     | 08/01/05             | < 0.1       | 1254 ± 115.1 | < 3.   | < 3    | < 21    | < 3    |
|     | 11/06/05             | < 0.3       | 1314 ± 142.3 | < 5    | < 4    | < 36    | < 5    |
|     | MEAN                 | 0.20 ± 0.16 | 1315 ± 87    | 4 ± 1  | 3 ± 1  | 25 ± 17 | 3 ± 3  |
| т   | 11/06/05             | < 0.3       | 1274 ± 164.1 | < 7    | < 8    | < 35    | < 9    |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

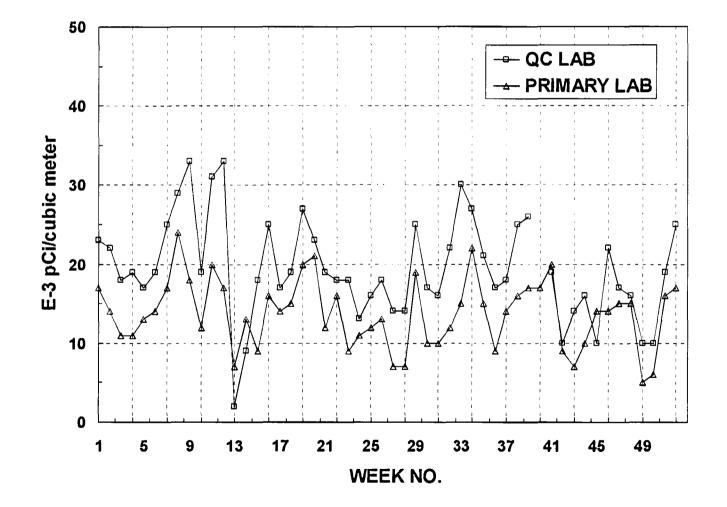
(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

## TABLE D-IV.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN<br/>THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2005

#### DRINKING WATER (GROSS BETA & GAMMA SPECTROSCOPY)


| COLLECTION<br>PERIOD | 4L                  |
|----------------------|---------------------|
| JAN                  | 12/31/04 - 02/04/05 |
| FEB                  | 02/04/05 - 03/04/05 |
| MAR                  | 03/04/05 - 04/01/05 |
| APR                  | 04/01/05 - 04/29/05 |
| MAY                  | 04/29/05 - 06/03/05 |
| JUN                  | 06/03/05 - 07/01/05 |
| JUL                  | 07/01/05 - 08/05/05 |
| AUG                  | 08/05/05 - 09/02/05 |
| SEP                  | 09/02/05 - 09/30/05 |
| OCT                  | 09/30/05 - 11/04/05 |
| NOV                  | 11/04/05 - 12/04/05 |
| DEC                  | 12/04/05 - 12/30/05 |

#### AIR PARTICULATE (GAMMA SPECTROSCOPY)


| COLLECTION |                     |
|------------|---------------------|
| PERIOD     | 1A                  |
| JAN-MAR    | 12/31/04 - 04/01/05 |
| APR-JUN    | 04/01/05 - 06/27/05 |
| JUL-SEP    | 07/01/05 - 09/30/05 |
| OCT-DEC    | 09/30/05 - 12/30/05 |

#### AIR PARTICULATE (GROSS BETA)

| COLLECTION |                     | COLLECTION |                     |
|------------|---------------------|------------|---------------------|
| PERIOD     | 1A                  | PERIOD     | <u>1A</u>           |
| 1          | 12/31/04 - 01/07/05 | 27         | 07/01/05 - 07/08/05 |
| 2          | 01/07/05 - 01/13/05 | 28         | 07/08/05 - 07/15/05 |
| 3          | 01/13/05 - 01/21/05 | 29         | 07/15/05 - 07/22/05 |
| 4          | 01/21/05 01/28/05   | 30         | 07/22/05 - 07/28/05 |
| 5          | 01/28/05 - 02/04/05 | 31         | 07/28/05 - 08/05/05 |
| 6          | 02/04/05 - 02/11/05 | 32         | 08/05/05 - 08/12/05 |
| 7          | 02/11/05 - 02/18/05 | 33         | 08/12/05 - 08/18/05 |
| 8          | 02/18/05 - 02/25/05 | 34         | 08/18/05 - 08/25/05 |
| 9          | 02/25/05 - 03/04/05 | 35         | 08/25/05 - 09/02/05 |
| 10         | 03/04/05 - 03/11/05 | 36         | 09/02/05 - 09/09/05 |
| 11         | 03/11/05 - 03/18/05 | 37         | 09/09/05 - 09/16/05 |
| 12         | 03/18/05 - 03/25/05 | 38         | 09/16/05 - 09/23/05 |
| 13         | 03/25/05 - 04/01/05 | 39         | 09/23/05 - 09/30/05 |
| 14         | 04/01/05 - 04/08/05 | 40         | 09/30/05 - 10/07/05 |
| 15         | 04/08/05 - 04/15/05 | 41         | 10/07/05 - 10/14/05 |
| 16         | 04/15/05 - 04/22/05 | 42         | 10/14/05 - 10/21/05 |
| 17         | 04/22/05 - 04/29/05 | 43         | 10/21/05 - 10/28/05 |
| 18         | 04/29/05 - 05/06/05 | 44         | 10/28/05 - 11/04/05 |
| 19         | 05/06/05 - 05/13/05 | 45         | 11/04/05 - 11/11/05 |
| 20         | 05/13/05 - 05/20/05 | 46         | 11/11/05 - 11/18/05 |
| 21         | 05/20/05 - 05/27/05 | 47         | 11/18/05 - 11/25/05 |
| 22         | 05/27/05 - 06/03/05 | 48         | 11/25/05 - 12/04/05 |
| 23         | 06/03/05 - 06/10/05 | 49         | 12/04/05 - 12/10/05 |
| 24         | 06/10/05 - 06/17/05 | 50         | 12/10/05 - 12/16/05 |
| 25         | 06/17/05 - 06/24/05 | 51         | 12/16/05 - 12/23/05 |
| 26         | 06/24/05 - 07/01/05 | 52         | 12/23/05 - 12/30/05 |



### FIGURE D-2 COMPARISON OF WEEKLY GROSS BETA CONCENTRATIONS FROM COLLOCATED AIR PARTICULATE LOCATIONS SPLIT BETWEEN THE PRIMARY AND QC LABORATORIES, 2005



**APPENDIX E** 

INTER-LABORATORY COMPARISON PROGRAM

#### ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2005

(PAGE 1 OF 3)

| Month/Year | Identification<br>Number | Matrix   | Nuclide | Units  | Reported<br>Value (a) | Known<br>Value (b) | Ratio (c)<br>TBE/Analytics | Evaluation (d) |
|------------|--------------------------|----------|---------|--------|-----------------------|--------------------|----------------------------|----------------|
| March 2005 | E4522-396                | Milk     | Sr-89   | pCi/L  | 96.9                  | 107                | 0.91                       | A              |
|            |                          |          | Sr-90   | pCi/L  | 16.9                  | 17.9               | 0.94                       | A              |
|            | E4523-396                | Milk     | I-131   | pCi/L  | 82.7                  | 92.3               | 0.90                       | А              |
|            |                          |          | Ce-141  | pCi/L  | 217                   | 229                | 0.95                       | Α              |
|            |                          |          | Cr-51   | pCi/L  | 314                   | 334                | 0.94                       | Α              |
|            |                          |          | Cs-134  | pCi/L  | 123                   | 139                | 0.89                       | A              |
|            |                          |          | Cs-137  | pCi/L  | 125                   | 130                | 0.96                       | Α              |
|            |                          |          | Co-58   | pCi/L  | 110                   | 115                | 0.96                       | Α              |
|            |                          |          | Mn-54   | pCi/L  | 158                   | 160                | 0.99                       | Α              |
|            |                          |          | Fe-59   | pCi/L  | 118                   | 111                | 1.06                       | A              |
|            |                          |          | Zn-65   | pCi/L  | 191                   | 198                | 0.96                       | Α              |
|            |                          |          | Co-60   | pCi/L  | 140                   | 144                | 0.97                       | A              |
|            | E4525-396                | AP       | Ce-141  | pCi    | 150                   | 172                | 0.87                       | Α              |
|            |                          |          | Cr-51   | pCi    | 278                   | 250                | 1.11                       | A              |
|            |                          |          | Cs-134  | pCi    | 105                   | 104                | 1.01                       | A              |
|            |                          |          | Cs-137  | pCi    | 95.6                  | 97.1               | 0.98                       | Α              |
|            |                          |          | Co-58   | pCi    | 84.4                  | 86.3               | 0.98                       | A              |
|            |                          |          | Mn-54   | pCi    | 112                   | 120                | 0.93                       | Α              |
|            |                          |          | Fe-59   | pCi    | 92.8                  | 83.2               | 1.12                       | Α              |
|            |                          |          | Zn-65   | pCi    | 162                   | 148                | 1.09                       | A              |
|            |                          |          | Co-60   | pCi    | 102                   | 108                | 0.94                       | A              |
|            | E4524-396                | Charcoal | 1-131   | pCi    | 67.4                  | 60.7               | 1.11                       | Α              |
| June 2005  | E4630-396                | Milk     | Sr-89   | pCi/L_ | 89.4                  | 88.1               | 1.01                       | Α              |
|            |                          |          | Sr-90   | pCi/L  | 11.6                  | 11.4               | 1.02                       | Α              |
|            | E4631-396                | Milk     | 1-131   | pCi/L  | 82.3                  | 86.9               | 0.95                       | Α              |
|            |                          |          | Ce-141  | pCi/L  | 91.6                  | 92.4               | 0.99                       | Α              |
|            |                          |          | Cr-51   | pCi/L  | 278                   | 303                | 0.92                       | Α              |
|            |                          |          | Cs-134  | pCi/L  | 81.1                  | 95.0               | 0.85                       | Α              |
|            |                          |          | Cs-137  | pCi/L  | 180                   | 189                | 0.95                       | Α              |
|            |                          |          | Mn-54   | pCi/L  | 124                   | 125                | 0.99                       | Α              |
|            |                          |          | Fe-59   | pCi/L  | 61.1                  | 63.9               | 0.96                       | Α              |
|            |                          |          | Zn-65   | pCi/L  | 156                   | 155                | 1.01                       | Α              |
|            |                          |          | Co-60   | pCi/L  | 136                   | 145                | 0.94                       | Α              |
|            | E4633-396                | AP       | Ce-141  | pCi    | 79.2                  | 64.2               | 1.23                       | W              |
|            |                          |          | Cr-51   | pCi    | 263                   | 210                | 1.25                       | W              |
|            |                          |          | Cs-134  | pCi    | 69.7                  | 66.1               | 1.05                       | Α              |
|            |                          |          | Cs-137  | pCi    | 135                   | 131                | 1.03                       | Α              |
|            |                          |          | Mn-54   | pCi    | 94.9                  | 87.0               | 1.09                       | Α              |
|            |                          |          | Fe-59   | pCi    | 48                    | 44.4               | 1.09                       | А              |
|            |                          |          | Zn-65   | pCi    | 120                   | 108                | 1.11                       | Α              |
|            |                          |          | Co-60   | pCi    | 104                   | 101                | 1.03                       | A              |
|            | E4632-396                | Charcoal | I-131   | pCi    | 88.9                  | 92.5               | 0.96                       | Α              |

#### ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2005

-

(PAGE 2 OF 3)

| Month/Year     | Identification<br>Number | Matrix   | Nuclide        | Units | Reported<br>Value (a) | Known<br>Value (b) | Ratio (c)<br>TBE/Analytics | Evaluation (d) |
|----------------|--------------------------|----------|----------------|-------|-----------------------|--------------------|----------------------------|----------------|
| September 2005 | E4766-396                | Milk     | Sr-89          | pCi/L | 135.0                 | 146.0              | 0.92                       | А              |
| ·              |                          |          | Sr-90          | pCi/L | 9.7                   | 11.5               | 0.84                       | Α              |
|                | E4767-396                | Milk     | I-131          | pCi/L | 87.5                  | 94.3               | 0.93                       | А              |
|                |                          |          | Ce-141         | pCi/L | 203                   | 233                | 0.87                       | A              |
|                |                          |          | Cr-51          | pCi/L | 279                   | 338                | 0.83                       | А              |
|                |                          |          | Cs-134         | pCi/L | 102                   | 122.0              | 0.84                       | А              |
|                |                          |          | Cs-137         | pCi/L | 178                   | 195                | 0.91                       | A              |
|                |                          |          | Co-58          | pCi/L | 55.3                  | 63.4               | 0.87                       | Α              |
|                |                          |          | Mn-54          | pCi/L | 81.8                  | 92.0               | 0.89                       | A              |
|                |                          |          | Fe-59          | pCi/L | 59.9                  | 61.0               | 0.98                       | Α              |
|                |                          |          | Zn-65          | pCi/L | 120                   | 123                | 0.98                       | Α              |
|                |                          |          | Co-60          | pCi/L | 146                   | 167                | 0.87                       | A              |
|                | E4769-396                | AP       | Ce-141         | pCi   | 193                   | 169                | 1.14                       | А              |
|                |                          |          | Cr-51          | pCi   | 267                   | 246                | 1.09                       | A              |
|                |                          |          | Cs-134         | рСі   | 78.4                  | 88.8               | 0.88                       | A              |
|                |                          |          | Cs-137         | pCi   | 166                   | 142                | 1.17                       | Α              |
|                |                          |          | Co-58          | pCi   | 53.7                  | 46.0               | 1.17                       | A              |
|                |                          |          | Mn-54          | pCi   | 81.6                  | 66.8               | 1.22                       | W              |
|                |                          |          | Fe-59          | pCi   | 59.6                  | 44.3               | 1.35                       | N (1)          |
|                |                          |          | Zn-65          | pCi   | 107                   | 89.6               | 1.19                       | A              |
|                |                          |          | Co-60          | pCi   | 133                   | 122                | 1.09                       | A              |
|                | E4768-396                | Charcoal | I-131          | pCi   | 63.9                  | 64.2               | 1.00                       | Α              |
| December 2005  | E4766-396                | Milk     | Sr-89          | pCi/L | 114                   | 128                | 0.89                       | Α              |
|                |                          |          | Sr-90          | pCi/L | 11.6                  | 10.3               | 1.13                       | A              |
|                | E4767-396                | Milk     | I- <b>1</b> 31 | pCi/L | 79.6                  | 74.6               | 1.07                       | А              |
|                |                          |          | Ce-141         | pCi/L | 202                   | 224                | 0.90                       | A              |
|                |                          |          | Cr-51          | pCi/L | 185                   | 193                | 0.96                       | А              |
|                |                          |          | Cs-134         | pCi/L | 74.9                  | 87.3               | 0.86                       | A              |
|                |                          |          | Cs-137         | pCi/L | 177                   | 189                | 0.94                       | A              |
|                |                          |          | Co-58          | pCi/L | 73.9                  | 77.5               | 0.95                       | A              |
|                |                          |          | Mn-54          | pCi/L | 152                   | 152                | 1.00                       | A              |
|                |                          |          | Fe-59          | pCi/L | 97.5                  | 82.4               | 1.18                       | A              |
|                |                          |          | Zn-65          | pCi/L | 161                   | 154                | 1.05                       | A              |
|                |                          |          | Co-60          | pCi/L | 102                   | 111                | 0.92                       | A              |
|                | E4633-396                | AP       | Ce-141         | pCi   | 221                   | 201                | 1.10                       | A              |
|                |                          |          | Cr-51          | pCi   | 195                   | 173                | 1.13                       | A              |
|                |                          |          | Cs-134         | pCi   | 68.4                  | 78.3               | 0.87                       | A              |
|                |                          |          | Cs-137         | pCi   | 194                   | 170                | 1.14                       | A              |
|                |                          |          | Co-58          | pCi   | 77.4                  | 69.4               | 1.12                       | A              |
|                |                          |          | Mn-54          | pCi   | 171                   | 137                | 1.25                       | W              |
|                |                          |          | Fe-59          | pCi   | 94.2                  | 73.9               | 1.27                       | W              |
|                |                          |          | Zn-65          | pCi   | 173                   | 138                | 1.25                       | Ŵ              |
|                |                          |          | Co-60          | pCi   | 109                   | 99.1               | 1.10                       | A              |

#### ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING, 2005** (PAGE 3 OF 3)

| Month/Year    | Identification<br>Number | n<br>Matrix | Nuclide | Units | Reported<br>Value (a) | Known<br>Value (b) | Ratio (c)<br>TBE/Analytics | Evaluation (d) |
|---------------|--------------------------|-------------|---------|-------|-----------------------|--------------------|----------------------------|----------------|
| December 2005 | E4632-396                | Charcoal    | I-131   | pCi   | 73.3                  | 73.3               | 1.00                       | A              |

(a) Teledyne Brown Engineering reported result.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

<sup>(1)</sup> New technician - AP not counted in petri dish resulted in high Fe-59 activity. Counting in petri dish, the Fe-59 would have been acceptable as evidenced by the 4Q05 AP recount data. NCR 06-01

<sup>(</sup>b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

<sup>(</sup>d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30, N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

| ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM |  |
|-----------------------------------------------------|--|
| TELEDYNE BROWN ENGINEERING, 2005                    |  |
| (PAGE 1 OF 1)                                       |  |

| Month/Year    | Identification<br>Number | Media | Nuclide | Units | Reported<br>Value (a) | Known<br>Value (b) | Control Limits | Evaluation (c) |
|---------------|--------------------------|-------|---------|-------|-----------------------|--------------------|----------------|----------------|
| May 2005      | Rad 61                   | Water | Sr-89   | pCi/L | 37.5                  | 41.3               | 32.6 - 50.0    | A              |
| •             |                          |       | Sr-90   | pCi/L | 5.37                  | 5.92               | 0.00 - 14.6    | Α              |
|               |                          |       | Ba-133  | pCi/L | 88.6                  | 88.4               | 73.1 - 104     | Α              |
|               |                          |       | Cs-134  | pCi/L | 70.5                  | 78.6               | 69.9 - 87.3    | Α              |
|               |                          |       | Cs-137  | pCi/L | 201                   | 201                | 184 - 218      | Α              |
|               |                          |       | Co-60   | pCi/L | 37.5                  | 37.0               | 28.3 - 45.7    | Α              |
|               |                          |       | Zn-65   | pCi/L | 122                   | 118                | 97.6 - 138     | Α              |
|               |                          |       | Gr-A    | pCi/L | 35.5                  | 37.0               | 21.0 - 53.0    | Α              |
|               |                          |       | Gr-B    | pCi/L | 35.6                  | 34.2               | 25.5 - 42.9    | Α              |
|               |                          |       | H-3     | pCi/L | 24600                 | 24400              | 20200 - 28600  | А              |
|               | Rad 61                   | Water | I-131   | pCi/L | 13.6                  | 15.5               | 10.3 - 20.7    | A              |
| November 2005 | Rad 63                   | Water | Sr-89   | pCi/L | 18.0                  | 19.0               | 10.3 - 27.7    | А              |
|               |                          |       | Sr-90   | pCi/L | 16.6                  | 16.0               | 7.37 - 24.7    | Α              |
|               |                          |       | Ba-133  | pCi/L | 31.7                  | 31.2               | 22.5 - 39.9    | Α              |
|               |                          |       | Cs-134  | pCi/L | 30.8                  | 33.9               | 25.2 - 42.6    | А              |
|               |                          |       | Cs-137  | pCi/L | 26.8                  | 28.3               | 19.6 - 37.0    | Α              |
|               |                          |       | Co-60   | pCi/L | 83.9                  | 84.1               | 75.4 - 92.8    | Α              |
|               |                          |       | Zn-65   | pCi/L | 109                   | 105                | 86.8 - 123     | Α              |
|               |                          |       | Gr-A    | pCi/L | 19.5                  | 23.3               | 13.2 - 33.4    | Α              |
|               |                          |       | Gr-B    | pCi/L | 34.0                  | 39.1               | 30.4 - 47.8    | А              |
|               |                          |       | H-3     | pCi/L | 12400                 | 12200              | 10100 - 14300  | A              |
|               | Rad 63                   | Water | I-131   | pCi/L | 17.8                  | 17.4               | 12.2 - 22.6    | А              |

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

<sup>(</sup>c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

| TABLE E-3  | DOE's Mi                 | DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)<br>TELEDYNE BROWN ENGINEERING, 2005<br>(PAGE 1 OF 2) |         |       |                       |                    |                     |                |  |  |
|------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|---------|-------|-----------------------|--------------------|---------------------|----------------|--|--|
| Month/Year | Identification<br>Number | Media                                                                                                           | Nuclide | Units | Reported<br>Value (a) | Known<br>Value (b) | Acceptance<br>Range | Evaluation (c) |  |  |
| April 2005 | 05-MaW13                 | Water                                                                                                           | Cs-134  | Bq/L  | 108                   | 127                | 88.90 - 165.10      | А              |  |  |
|            |                          |                                                                                                                 | Cs-137  | Bq/L  | 305                   | 332                | 232.40 - 461.60     | Α              |  |  |

|              |          |            | Co-57  | Bq/L      | 215    | 227   | 158.90 - 295.10    | A  |
|--------------|----------|------------|--------|-----------|--------|-------|--------------------|----|
|              |          |            | Co-60  | Bq/L      | 241    | 251   | 175.70 - 326.30    | A  |
|              |          |            | H-3    | Bq/L      | 283    | 280   | 196.00 - 364.00    | A  |
|              |          |            | Mn-54  | Bq/L      | 314    | 331   | 231.70 - 430.30    | А  |
|              |          |            | Sr-90  | Bq/L      | 0.093  |       | no range given (1) | Α  |
|              |          |            | Zn-65  | Bq/L      | 509    | 496   | 347.20 - 644.80    | A  |
|              |          |            |        | •         |        |       |                    |    |
|              | MaS13    | Soil       | Cs-134 | Bq/L      | 655    | 759   | 531.30 - 986.70    | Α  |
|              |          |            | Cs-137 | Bq/L      | 310    | 315   | 220.50 - 409.50    | Α  |
|              |          |            | Co-57  | Bq/L      | 234    | 242   | 169.40 - 314.60    | Α  |
|              |          |            | Co-60  | Bq/L      | 219    | 212   | 148.40 - 275.60    | Α  |
|              |          |            | Mn-54  | Bq/L      | 512    | 485   | 339.50 - 630.50    | Α  |
|              |          |            | K-40   | Bq/L      | 642    | 604   | 422.80 - 785.20    | Α  |
|              |          |            | Zn-65  | Bq/L      | 890    | 810   | 567.00 - 1053      | Α  |
|              | GrW13    | Water      | Gr-A   | Bq/L      | 0.601  | 0.525 | >0.0 - 1.05        | А  |
|              |          |            | Gr-B   | Bq/L      | 1.54   | 1.67  | 0.84 - 2.51        | Α  |
|              | RdF13    | AP         | Cs-134 | Bq/sample | 3.26   | 3.51  | 2.46 - 4.56        | Α  |
|              |          |            | Cs-137 | Bq/sample | 2.05   | 2.26  | 1.58 - 2.94        | Α  |
|              |          |            | Co-57  | Bq/sample | 4.78   | 4.92  | 3.44 - 6.40        | Α  |
|              |          |            | Co-60  | Bq/sample | 3.02   | 3.03  | 2.12 - 3.94        | Α  |
|              |          |            | Mn-54  | Bq/sample | 3.31   | 3.33  | 2.33 - 4.33        | Α  |
|              |          |            | Sr-90  | Bq/sample | 1.15   | 1.35  | 0.95 - 1.76        | Α  |
|              |          |            | Zn-65  | Bq/sample | 3.14   | 3.14  | 2.20 - 4.08        | Α  |
|              | GrF13    | AP         | Gr-A   | Bq/sample | 0.0764 | 0.232 | >0.0 - 0.46        | А  |
|              |          |            | Gr-B   | Bq/sample | 0.305  | 0.297 | 0.15 - 0.45        | Α  |
|              | -        |            |        |           |        | _     |                    |    |
| April 2005   | RdV13    | Vegetation |        | Bq/kg     | 5.45   | 5     | 3.50 - 6.50        | A  |
|              |          |            | Cs-137 | Bq/kg     | 4.80   | 4.1   | 2.88 - 5.34        | A  |
|              |          |            | Co-57  | Bq/kg     | 13.4   | 9.88  | 6.92 - 12.84       | A* |
|              |          |            | Co-60  | Bq/kg     | 3.67   | 3.15  | 2.21 - 4.10        | A  |
|              |          |            | Mn-54  | Bq/kg     | 6.45   | 5.18  | 3.63 - 6.73        | A  |
|              |          |            | Sr-90  | Bq/kg     | 1.49   | 1.65  | 1.16 - 2.15        | A  |
|              |          |            | Zn-65  | Bq/kg     | 7.71   | 6.29  | 4.40 - 8.18        | Α  |
| October 2005 | 05-MaW14 | Water      | Cs-134 | Bq/L      | 142    | 167   | 116.90 - 217.10    | Α  |
|              |          |            | Cs-137 | Bq/L      | 302    | 333   | 233.10 - 432.90    | Α  |
|              |          |            | Co-57  | Bq/L      | 251    | 272   | 190.40 - 353.60    | A  |
|              |          |            | Co-60  | Bq/L      | 243    | 261   | 182.70 - 339.30    | A  |
|              |          |            | H-3    | Bq/L      | 547    | 527   | 368.90 - 685.10    | A  |
|              |          |            | Mn-54  | Bq/L      | 383    | 418   | 292.60 - 543.40    | A  |
|              |          |            | Sr-90  | Bq/L      | 8.75   | 8.98  | 6.29 - 11.67       | A  |
|              |          |            | Zn-65  | Bq/L      | 324    | 330   | 231.00 - 429.00    | Α  |
|              |          |            |        |           |        |       |                    |    |

| DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) |
|------------------------------------------------------------|
| <b>TELEDYNE BROWN ENGINEERING, 2005</b>                    |
| (PAGE 2 OF 2)                                              |

| ManthAlean   | Identification |            | Nualida | Linite    | Reported<br>Value (a) | Known<br>Value (b) | Acceptance      | Evaluation (c) |
|--------------|----------------|------------|---------|-----------|-----------------------|--------------------|-----------------|----------------|
| Month/Year   | Number         | Media      | Nuclide | Units     | value (a)             | Value (b)          | Range           | Evaluation (c) |
| October 2005 | MaS14          | Soil       | Cs-134  | Bq/L      | 494                   | 568                | 397.60 - 738.40 | А              |
|              |                |            | Cs-137  | Bq/L      | 446                   | 439                | 307.30 - 570.70 | A              |
|              |                |            | Co-57   | Bq/L      | 506                   | 524                | 366.80 - 681.20 | A              |
|              |                |            | Co-60   | Ba/L      | 289                   | 287                | 200.90 - 373.10 | А              |
|              |                |            | Mn-54   | Ba/L      | 460                   | 439                | 307.30 - 570.70 | Α              |
|              |                |            | K-40    | Bq/L      | 626                   | 604                | 422.80 - 785.20 | А              |
|              |                |            | Zn-65   | Bq/L      | 889                   | 823                | 576.10 - 1070   | Α              |
|              | GrW14          | Water      | Gr-A    | Bq/L      | 0.858                 | 0.79               | 0.21 - 1.38     | А              |
|              |                |            | Gr-B    | Bq/L      | 1.22                  | 1.35               | 0.85 - 1.92     | Α              |
| October 2005 | RdF14          | AP         | Cs-134  | Bq/sample | 4.11                  | 3.85               | 2.70 - 5.01     | А              |
|              |                |            | Cs-137  | Bq/sample | 3.16                  | 3.23               | 2.26 - 4.20     | Α              |
|              |                |            | Co-57   | Bq/sample | 6.14                  | 6.2                | 4.34 - 8.06     | А              |
|              |                |            | Co-60   | Bq/sample | 2.86                  | 2.85               | 2.00 - 3.71     | Α              |
|              |                |            | Mn-54   | Bq/sample | 4.54                  | 4.37               | 3.06 - 5.68     | Α              |
|              |                |            | Sr-90   | Bq/sample | 2.12                  | 2.25               | 1.58 - 2.93     | А              |
|              |                |            | Zn-65   | Bq/sample | 4.28                  | 4.33               | 3.03 - 5.63     | A              |
|              | GrF14          | AP         | Gr-A    | Bq/sample | 0.304                 | 0.482              | >0.0 - 0.80     | А              |
|              |                |            | Gr-B    | Bq/sample | 0.858                 | 0.827              | 0.55 - 1.22     | А              |
|              | RdV13          | Vegetation | Cs-134  | Bq/kg     | 4.35                  | 4.09               | 2.86 - 5.32     | А              |
|              |                |            | Cs-137  | Bq/kg     | 5.99                  | 5.4                | 3.80 - 7.06     | Α              |
|              |                |            | Co-57   | Bq/kg     | 17.0                  | 13.30              | 9.31 - 17.29    | W              |
|              |                |            | Co-60   | Bq/kg     | 4.87                  | 4.43               | 3.10 - 5.76     | А              |
|              |                |            | Mn-54   | Bq/kg     | 7.40                  | 6.57               | 4.60 - 8.54     | А              |
|              |                |            | Sr-90   | Bq/kg     | 2.03                  | 2.42               | 1.69 - 3.15     | Α              |
|              |                |            | Zn-65   | Bq/kg     | 11.8                  | 10.2               | 7.14 - 13.26    | А              |

\* Under investigation. MAPEP reported the result as acceptable although the reported value of 13.4 is higher than the acceptance range upper limit of 12.84.

(1) The Sr-90 in water was a MAPEP false positive test. The TBE reported result of 0.093  $\pm$  0.0908 Bq/L was the forced Sr-90 activity and uncertainty, as required by MAPEP. The MDC for the sample was 0.145 pCi/L.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

\_\_\_\_

### ERA<sup>(a)</sup> STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2005

(Page 1 of 2)

|                          |          |           | Concentr        |         |                   |            |
|--------------------------|----------|-----------|-----------------|---------|-------------------|------------|
| Lab Code                 | Date     | Analysis  | Laboratory      | ERA     | Control           |            |
| الأسريون فيهوالدي الأغاب |          |           | Result          | Result  | Limits            | Acceptance |
| STW-1051                 | 02/15/05 | Sr-89     | 28.0 ± 1.2      | 29.4    | 20.7 - 38.1       | Pass       |
| STW-1051                 | 02/15/05 | Sr-90     | $25.1 \pm 0.7$  | 24.4    | 15.7 - 33.1       | Pass       |
| STW-1052                 | 02/15/05 | Ba-133    | $52.9 \pm 2.8$  | 53.4    | 44.2 - 62.6       | Pass       |
| STW-1052                 | 02/15/05 | Co-60     | $54.4 \pm 0.4$  | 56.6    | 47.9 - 65.3       | Pass       |
| STW-1052                 | 02/15/05 | Cs-134    | 67.7 ± 1.8      | 64.9    | 56.2 - 73.6       | Pass       |
| STW-1052                 | 02/15/05 | Cs-137    | 39.6 ± 1.8      | 40.2    | 31.5 - 48.9       | Pass       |
| STW-1052                 | 02/15/05 | Zn-65     | 159.7 ± 3.0     | 161.0   | 133.0 - 189.0     | Pass       |
| STW-1053                 | 02/15/05 | Gr. Alpha | 55.1 ± 1.8      | 67.9    | 38.5 - 97.3       | Pass       |
| STW-1053                 | 02/15/05 | Gr. Beta  | 46.8 ± 1.3      | 51.1    | 38.5 - 97.3       | Pass       |
| STW-1054                 | 02/15/05 | Ra-226    | 13.7 ± 1.5      | 14.1    | 10.4 - 17.8       | Pass       |
| STW-1054                 | 02/15/05 | Ra-228    | 13.3 ± 0.6      | 13.7    | 7.8 - 19.6        | Pass       |
| STW-1054                 | 02/15/05 | Uranium   | $5.1 \pm 0.2$   | 5.0     | 0.0 - 10.2        | Pass       |
|                          |          |           |                 |         |                   |            |
| STW-1055                 | 05/17/05 | Sr-89     | 45.1 ± 4.1      | 41.3    | 32.6 - 50.0       | Pass       |
| STW-1055                 | 05/17/05 | Sr-90     | 7.5 ± 0.9       | 5.9     | 0.0 - 14.6        | Pass       |
| STW-1056                 | 05/17/05 | Ba-133    | 87.1 ± 2.0      | 88.4    | 73.1 - 104.0      | Pass       |
| STW-1056                 | 05/17/05 | Co-60     | 38.4 ± 0.8      | 37.0    | 28.3 - 45.7       | Pass       |
| STW-1056                 | 05/17/05 | Cs-134    | 75.3 ± 0.7      | 78.6    | 69.9 - 87.3       | Pass       |
| STW-1056                 | 05/17/05 | Cs-137    | 201.0 ± 8.4     | 194.0   | 184.0 - 218.0     | Pass       |
| STW-1056                 | 05/17/05 | Zn-65     | 130.0 ± 6.7     | 118.0   | 97.6 - 138.0      | Pass       |
| STW-1057                 | 05/17/05 | Gr. Alpha | 42.7 ± 2.9      | 37.0    | 21.0 - 53.0       | Pass       |
| STW-1057                 | 05/17/05 | Gr. Beta  | 34.0 ± 0.4      | 34.2    | 25.5 - 42,9       | Pass       |
| STW-1058                 | 05/17/05 | I-131     | 14.7 ± 0.5      | 15.5    | 10.3 - 20,7       | Pass       |
| STW-1059                 | 05/17/05 | Ra-226    | 6.6 ± 0.1       | 7.6     | 5.6 - 9.5         | Pass       |
| STW-1059                 | 05/17/05 | Ra-228    | 19.3 ± 0.7      | 18.9    | 10.7 - 27.1       | Pass       |
| STW-1059                 | 05/17/05 | Uranium   | 9.6 ± 0.1       | 10.1    | 4.9 - 15.3        | Pass       |
| STW-1060                 | 05/17/05 | H-3       | 24100.0 ± 109.0 | 24400.0 | 20200.0 - 28600.0 | Pass       |
| STW-1067                 | 08/16/05 | Sr-89     | 29.1 ± 3.0      | 28.0    | 19.3 - 36.7       | Pass       |
| STW-1067                 | 08/16/05 | Sr-90     | 36.0 ± 0.6      | 33.8    | 25.1 - 42.5       | Pass       |
| STW-1068                 | 08/16/05 | Ba-133    | 107.0 ± 1.7     | 106.0   | 87.7 - 124.0      | Pass       |
| STW-1068                 | 08/16/05 | Co-60     | 15.2 ± 0.2      | 13.5    | 4.8 - 22.2        | Pass       |
| STW-1068                 | 08/16/05 | Cs-134    | 89.1 ± 0.3      | 92.1    | 83.4 - 101.0      | Pass       |
| STW-1068                 | 08/16/05 | Cs-137    | 72.1 ± 1.0      | 72.7    | 64.0 - 81.4       | Pass       |
| STW-1068                 | 08/16/05 | Zn-65     | 67.4 ± 1.4      | 65.7    | 54.3 - 77.1       | Pass       |
| STW-1069                 | 08/16/05 | Gr. Alpha | 44.3 ± 1.5      | 55.7    | 31.6 - 79.8       | Pass       |
| STW-1069                 | 08/16/05 | Gr. Beta  | 58.4 ± 2.1      | 61.3    | 44.0 - 78.6       | Pass       |
| STW-1070                 | 08/16/05 | Ra-226    | 16.6 ± 1.5      | 16.6    | 12.3 - 20.9       | Pass       |
| STW-1070                 | 08/16/05 | Ra-228    | 6.2 ± 0.3       | 6.2     | 3.5 - 8.9         | Pass       |
| STW-1070                 | 08/16/05 | Uranium   | $4.5 \pm 0.1$   | 4.5     | 0.0 - 9.7         | Pass       |

#### ERA<sup>(a)</sup> STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2005

(Page 1 of 2)

| Concentration (pCi/L) |                      |           |                                   |               |                   |            |  |  |
|-----------------------|----------------------|-----------|-----------------------------------|---------------|-------------------|------------|--|--|
| Lab Code              | Date                 | Analysis  | Laboratory<br>Result <sup>o</sup> | ERA<br>Result | Control<br>Limits | Acceptance |  |  |
| CTN/ 4070             | 44/45/05             | C+ 00     |                                   | 10.0          | 40.2              | Dees       |  |  |
| STW-1072              | 11/15/05<br>11/15/05 | Sr-89     | $20.6 \pm 0.4$                    | 19.0          | 10.3 - 27.7       | Pass       |  |  |
| STW-1072              |                      | Sr-90     | $15.0 \pm 0.3$                    | 16.0          | 7.3 - 24.7        | Pass       |  |  |
| STW-1073              | 11/15/05             | Ba-133    | 31.8 ± 1.8                        | 31.2          | 22.5 - 39.9       | Pass       |  |  |
| STW-1073              | 11/15/05             | Co-60     | 85.0 ± 1.4                        | 84.1          | 75.4 - 92.8       | Pass       |  |  |
| STW-1073              | 11/15/05             | Cs-134    | 37.2 ± 2.1                        | 33.9          | 25.2 - 42.6       | Pass       |  |  |
| STW-1073              | 11/15/05             | Cs-137    | 27.8 ± 0.7                        | 28.3          | 19.6 - 37.0       | Pass       |  |  |
| STW-1073              | 11/15/05             | Zn-65     | 109.0 ± 1.0                       | 105.0         | 86.8 - 123.0      | Pass       |  |  |
| STW-1074 a            | 11/15/05             | Gr. Alpha | 41.1 ± 1.2                        | 23.3          | 13.2 - 33.4       | Fail       |  |  |
| STW-1074              | 11/15/05             | Gr. Beta  | 42.7 ± 0.5                        | 39.1          | 30.4 - 47.8       | Pass       |  |  |
| STW-1075              | 11/15/05             | I-131     | 20.5 ± 0.6                        | 17.4          | 12.2 - 22.6       | Pass       |  |  |
| STW-1076              | 11/15/05             | Ra-226    | 7.8 ± 0.6                         | 8.3           | 6.2 - 10.5        | Pass       |  |  |
| STW-1076 °            | 11/15/05             | Ra-228    | 5.5 ± 0.6                         | 3.5           | 2.0 - 5.0         | Fail       |  |  |
| STW-1076              | 11/15/05             | Uranium   | 15.5 ± 0.3                        | 16.1          | 10.9 - 21.3       | Pass       |  |  |
| STW-1077              | 11/15/05             | H-3       | 12500.0 ± 238.0                   | 12200.0       | 10100.0 - 14300.0 | Pass       |  |  |

Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

<sup>b</sup> Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

<sup>c</sup> Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

<sup>d</sup> The original samples were calculated using an Am-241 efficiency. The samples were spiked with Th-232. Samples were recounted and calculated using the Th-232 efficiency. Results of the recount: 27.01 ± 2.35 pCi/L.

\* Decay of short-lived radium daughters contributed to a higher counting rate. Delay of counting for 100 minutes provided better results. The reported result was the average of the first cycle of 100 minutes, the average of the second cycle counts was 4.01 pCi/L

#### DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)<sup>\*</sup> ENVIRONMENTAL, INC., 2005

(Page 1 of 3)

|                        |            |                       | Concentration <sup>b</sup>         |              |                            |              |  |  |  |  |
|------------------------|------------|-----------------------|------------------------------------|--------------|----------------------------|--------------|--|--|--|--|
|                        |            |                       |                                    | Known        | Control                    |              |  |  |  |  |
| Lab Code <sup>v</sup>  | Date       | Analysis              | Laboratory result                  | Activity     | Limits <sup>a</sup>        | Acceptance   |  |  |  |  |
| STW-1045               | 01/01/05   | Gr Alpha              | 0.45 ± 0.10                        | 0.53         | 0.00 - 1.05                | Base         |  |  |  |  |
| STW-1045<br>STW-1045   | 01/01/05   | Gr. Alpha<br>Gr. Beta | $0.45 \pm 0.10$<br>1.90 ± 0.10     | 0.53<br>1.67 | 0.84 - 2.51                | Pass         |  |  |  |  |
| 51 99-1045             | 01/01/05   | Gr. Beta              | 1.90 ± 0.10                        | 1.67         | 0.64 - 2.51                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Am-241                | 1.62 ± 0.12                        | 1.72         | 1.20 - 2.24                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Co-57                 | 239.40 ± 1.20                      | 227.00       | 158.90 - 295.10            | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Co-60                 | 248.70 ± 1.00                      | 251.00       | 175.70 - 326.30            | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Cs-134                | 115.50 ± 1.80                      | 127.00       | 88.90 - 165.10             | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Cs-137                | 328.50 ± 1.70                      | 332.00       | 232.40 - 431.60            | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Fe-55                 | 64.90 ± 7.00                       | 75.90        | 53.13 <i>-</i> 98.67       | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | H-3                   | 304.00 ± 9.70                      | 280.00       | 196.00 - 364.00            | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Mn-54                 | 334.80 ± 1.90                      | 331.00       | 231.70 - 430.30            | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Ni-63                 | 7.10 ± 1.60                        | 9.00         | 0.00 - 20.00               | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Pu-238                | 0.01 ± 0.02                        | 0.02         | 0.00 - 1.00                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Pu-239/40             | 2.50 ± 0.14                        | 2.40         | 1.68 - 3.12                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Sr-90                 | 0.70 ± 0.80                        | 0.00         | 0.00 - 5.00                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Tc-99                 | 43.20 ± 1.40                       | 42.90        | 30.03 - 55.77              | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | U-233/4               | 3.31 ± 0.20                        | 3.24         | 2.27 - 4.21                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | U-238                 | 3.38 ± 0.20                        | 3.33         | 2.33 - 4.33                | Pass         |  |  |  |  |
| STW-1046               | 01/01/05   | Zn-65                 | 538.40 ± 3.80                      | 496.00       | 347.20 - 644.80            | Pass         |  |  |  |  |
| STVE-1047              | 01/01/05   | Co-57                 | 10.60 ± 0.20                       | 9.88         | 6.92 - 12.84               | Pass         |  |  |  |  |
| STVE-1047<br>STVE-1047 | 01/01/05   | Co-60                 | $3.00 \pm 0.20$                    | 3.15         | 2.21 - 4.10                | Pass         |  |  |  |  |
| STVE-1047              | 01/01/05   | Co-00<br>Cs-134       | $3.00 \pm 0.20$<br>4.80 ± 0.40     | 5.00         | 3.50 - 6.50                |              |  |  |  |  |
| STVE-1047              | 01/01/05   | Cs-134<br>Cs-137      | $4.80 \pm 0.40$<br>$4.10 \pm 0.30$ | 5.00<br>4.11 | 2.88 - 5.34                | Pass<br>Pass |  |  |  |  |
| STVE-1047              | 01/01/05   | Mn-54                 | $4.10 \pm 0.30$<br>5.10 ± 0.30     | 5.18         | 2.68 - 5.34<br>3.63 - 6.73 | Pass         |  |  |  |  |
| STVE-1047<br>STVE-1047 | 01/01/05   | Zn-65                 | $6.20 \pm 0.50$                    | 6.29         | 4.40 - 8.18                | Pass         |  |  |  |  |
|                        |            |                       |                                    |              |                            |              |  |  |  |  |
| STSO-1048              | 01/01/05   | Am-241                | 96.60 ± 10.00                      | 109.00       | 76.30 - 141.70             | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Co-57                 | 264.00 ± 2.00                      | 242.00       | 169.40 - 314.60            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Co-60                 | 226.50 ± 2.20                      | 212.00       | 148.40 - 275.60            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Cs-134                | 760.60 ± 3.70                      | 759.00       | 531.30 - 986.70            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Cs-137                | 336.20 ± 3.60                      | 315.00       | 220.50 - 409.50            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | K-40                  | 663.70 ± 18.00                     | 604.00       | 422.80 - 785.20            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Mn-54                 | 541.30 ± 3.90                      | 485.00       | 339.50 - 630.50            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Ni-63                 | 924.30 ± 17.20                     | 1220.00      | 854.00 - 1586.00           | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Pu-238                | 0.60 ± 0.80                        | 0.48         | 0.00 - 1.00                | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Pu-239/40             | 78.00 ± 4.80                       | 89.50        | 62.65 - 116.35             | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Sr-90                 | 514.60 ± 18.70                     | 640.00       | 448.00 - 832.00            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | U-233/4               | 47.90 ± 4.00                       | 62.50        | 43.75 - 81.25              | Pass         |  |  |  |  |
| STSO-1048              |            | U-238                 | 226.30 ± 8.60                      | 249.00       | 174.30 - 323.70            | Pass         |  |  |  |  |
| STSO-1048              | 01/01/05   | Zn-65                 | 851.30 ± 7.30                      | 810.00       | 567.00 - 1053.00           | Pass         |  |  |  |  |
| STAP-1050              | 01/01/05   | Gr. Alpha             | 0.11 ± 0.03                        | 0.23         | 0.00 - 0.46                | Pass         |  |  |  |  |
| STAP-1050              | 01/01/05   | Gr. Beta              | $0.38 \pm 0.05$                    | 0.30         | 0.15 - 0.45                | Pass         |  |  |  |  |
| 0171-1000              | 0 110 1100 |                       | 0.00 1 0.00                        | 0.00         | 0.10 - 0.40                | 1 000        |  |  |  |  |

#### TABLE E-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)\* ENVIRONMENTAL, INC., 2005

(Page 2 of 3)

|                       |          |           | Conc              | entration <sup>b</sup> |                     |            |
|-----------------------|----------|-----------|-------------------|------------------------|---------------------|------------|
|                       |          |           |                   | Known                  | Control             |            |
| Lab Code <sup>v</sup> | Date     | Analysis  | Laboratory result | Activity               | Limits <sup>a</sup> | Acceptance |
| STAP-1049             | 01/01/05 | Am-241    | 0.10 ± 0.04       | 0.10                   | 0.07 - 0.13         | Pass       |
| STAP-1049             | 01/01/05 | Co-57     | 4.76 ± 0.64       | 4.92                   | 3.44 - 6.40         | Pass       |
| STAP-1049             | 01/01/05 | Co-60     | $2.84 \pm 0.22$   | 3.03                   | 2.12 - 3.94         | Pass       |
| STAP-1049             | 01/01/05 | Cs-134    | $3.54 \pm 0.37$   | 3.51                   | 2.46 - 4.56         | Pass       |
| STAP-1049             | 01/01/05 | Cs-137    | $2.20 \pm 0.27$   | 2.26                   | 1.58 - 2.94         | Pass       |
| STAP-1049             | 01/01/05 | Mn-54     | $3.15 \pm 0.21$   | 3.33                   | 2.33 - 4.33         | Pass       |
| STAP-1049             | 01/01/05 | Pu-238    | $0.16 \pm 0.04$   | 0.20                   | 0.14 - 0.25         | Pass       |
| STAP-1049             | 01/01/05 | Pu-239/40 | $0.17 \pm 0.02$   | 0.17                   | 0.14 - 0.25         | Pass       |
| STAP-1049*            | 01/01/05 | Sr-90     | $2.24 \pm 0.34$   | 1.35                   | 0.95 - 1.76         | Fail       |
| STAP-1049             | 01/01/05 | U-233/4   | $0.34 \pm 0.02$   | 0.34                   | 0.24 - 0.44         | Pass       |
| STAP-1049             | 01/01/05 | U-238     | $0.35 \pm 0.02$   | 0.35                   | 0.25 - 0.46         | Pass       |
| STAP-1049             | 01/01/05 | Zn-65     | $3.12 \pm 0.15$   | 3.14                   | 2.20 - 4.08         | Pass       |
|                       |          |           |                   |                        |                     |            |
| STW-1061              | 07/01/05 | Am-241    | 2.21 ± 0.13       | 2.23                   | 1.56 - 2.90         | Pass       |
| STW-1061              | 07/01/05 | Co-57     | 293.20 ± 7.30     | 272.00                 | 190.40 - 353.60     | Pass       |
| STW-1061              | 07/01/05 | Co-60     | 275.70 ± 1.30     | 261.00                 | 182.70 - 339.30     | Pass       |
| STW-1061              | 07/01/05 | Cs-134    | 171.80 ± 4.00     | 167.00                 | 116.90 - 217.10     | Pass       |
| STW-1061              | 07/01/05 | Cs-137    | 342.10 ± 2.20     | 333.00                 | 233.10 - 432.90     | Pass       |
| STW-1061              | 07/01/05 | Fe-55     | 167.80 ± 9.30     | 196.00                 | 137.20 - 254.80     | Pass       |
| STW-1061              | 07/01/05 | H-3       | 514.20 ± 12.60    | 527.00                 | 368.90 - 685.10     | Pass       |
| STW-1061              | 07/01/05 | Mn-54     | 437.00 ± 2.50     | 418.00                 | 292.60 - 543.40     | Pass       |
| STW-1061              | 07/01/05 | Ni-63     | 105.10 ± 3.60     | 100.00                 | 70.00 - 130.00      | Pass       |
| STW-1061              | 07/01/05 |           | 1.64 ± 0.12       | 1.91                   | 1.34 - 2.48         | Pass       |
| STW-1061              | 07/01/05 | Pu-239/40 | 2.32 ± 0.13       | 2.75                   | 1.93 - 3.58         | Pass       |
| STW-1061              | 07/01/05 | Sr-90     | 9.20 ± 1.30       | 8.98                   | 6.29 - 11.67        | Pass       |
| STW-1061              | 07/01/05 | Tc-99     | 72.30 ± 2.30      | 66.50                  | 46.55 - 86.45       | Pass       |
| STW-1061              | 07/01/05 | U-233/4   | 4.11 ± 0.18       | 4.10                   | 2.87 - 5.33         | Pass       |
| STW-1061              | 07/01/05 | U-238     | 4.14 ± 0.18       | 4.26                   | 2.98 - 5.54         | Pass       |
| STW-1061              | 07/01/05 | Zn-65     | $364.60 \pm 4.90$ | 330.00                 | 231.00 - 429.00     | Pass       |
| STW-1062              | 07/01/05 | Gr. Alpha | 0.57 ± 0.05       | 0.79                   | 0.21 - 1.38         | Pass       |
| STW-1062              | 07/01/05 | Gr. Beta  | 1.36 ± 0.05       | 1.35                   | 0.85 - 1.92         | Pass       |
| STSO-1063 '           | 07/01/05 | Am-241    | 48.40 ± 3.90      | 81.10                  | 56.77 - 105.43      | Fail       |
| STSO-1063             | 07/01/05 | Co-57     | 608.30 ± 2.80     | 524.00                 | 366.80 - 681.20     | Pass       |
| STSO-1063             | 07/01/05 | Co-60     | 322.70 ± 2.40     | 287.00                 | 200.90 - 373.10     | Pass       |
| STSO-1063             | 07/01/05 |           | 632.10 ± 5.20     | 568.00                 | 397.60 - 738.40     | Pass       |
| STSO-1063             | 07/01/05 |           | 512.40 ± 4.20     | 439.00                 | 307.30 - 570.70     | Pass       |
| STSO-1063             | 07/01/05 |           | 720.50 ± 19.00    | 604.00                 | 422.80 - 785.20     | Pass       |
| STSO-1063             | 07/01/05 |           | 516.80 ± 5.10     | 439.00                 | 307.30 - 570.70     | Pass       |
| STSO-1063             | 07/01/05 |           | 366.50 ± 13.30    | 445.00                 | 311.50 - 578.50     | Pass       |
| STSO-1063             | 07/01/05 |           | 68.80 ± 15.00     | 60.80                  | 42.56 - 79.04       | Pass       |
| STSO-1063             | 07/01/05 | Pu-239/40 | $0.00 \pm 0.00$   | 0.00                   | 0.00 - 0.00         |            |
| STSO-1063             | 07/01/05 | Sr-90     | 602.90 ± 17.20    | 757.00                 | 529.90 - 984.10     | Pass       |
| STSO-1063             | 07/01/05 | U-233/4   | 61.50 ± 1.00      | 52.50                  | 36.75 - 68.25       | Pass       |
| STSO-1063             | 07/01/05 | U-238     | 164.50 ± 16.70    | 168.00                 | 117.60 - 218.40     | Pass       |
| STSO-1063             | 07/01/05 | Zn-65     | 874.70 ± 8.40     | 823.00                 | 576.10 - 1070.00    | Pass       |
| 5155-1000             | 0,70,700 | 2         |                   | 0                      |                     | 1 000      |

#### DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)<sup>\*</sup> ENVIRONMENTAL, INC., 2005

(Page 3 of 3)

|                       |          |           | Conc              | entration <sup>b</sup> |                     |            |
|-----------------------|----------|-----------|-------------------|------------------------|---------------------|------------|
| Lab Code <sup>-</sup> | Dete     | Analysia  |                   | Known                  | Control             | Accentance |
| Lab Code              | Date     | Analysis  | Laboratory result | Activity               | Limits <sup>a</sup> | Acceptance |
| STVE-1064             | 07/01/05 | Am-241    | 0.18 ± 0.03       | 0.23                   | 0.16 - 0.30         | Pass       |
| STVE-1064             | 07/01/05 | Co-57     | 15.90 ± 0.20      | 13.30                  | 9.31 - 17.29        | Pass       |
| STVE-1064             | 07/01/05 | Co-60     | 4.80 ± 0.10       | 4.43                   | 3.10 - 5.76         | Pass       |
| STVE-1064             | 07/01/05 | Cs-134    | 4.60 ± 0.20       | 4.09                   | 2.86 - 5.32         | Pass       |
| STVE-1064             | 07/01/05 | Cs-137    | 5.90 ± 0.30       | 5.43                   | 3.80 - 7.06         | Pass       |
| STVE-1064             | 07/01/05 | Mn-54     | 7.20 ± 0.20       | 6.57                   | 4.60 - 8.54         | Pass       |
| STVE-1064             | 07/01/05 | Pu-238    | 0.04 ± 0.02       | 0.00                   | 0.00 - 1.00         | Pass       |
| STVE-1064             | 07/01/05 | Pu-239/40 | 0.13 ± 0.02       | 0.16                   | 0.11 - 0.21         | Pass       |
| STVE-1064             | 07/01/05 | Sr-90     | 2.80 ± 0.30       | 2.42                   | 1.69 - 3.15         | Pass       |
| STVE-1064             | 07/01/05 | U-233/4   | 0.28 ± 0.03       | 0.33                   | 0.23 - 0.43         | Pass       |
| STVE-1064             | 07/01/05 | U-238     | 0.33 ± 0.04       | 0.35                   | 0.24 - 0.45         | Pass       |
| STVE-1064             | 07/01/05 | Zn-65     | $11.00 \pm 0.50$  | 10.20                  | 7.14 - 13.26        | Pass       |
| STAP-1065             | 07/01/05 | Gr. Alpha | 0.30 ± 0.04       | 0.48                   | 0.00 - 0.80         | Pass       |
| STAP-1065             | 07/01/05 | Gr. Beta  | 0.97 ± 0.06       | 0.83                   | 0.55 - 1.22         | Pass       |
| STAP-1066             | 07/01/05 | Am-241    | 0.14 ± 0.03       | 0.16                   | 0.11 - 0.21         | Pass       |
| STAP-1066             | 07/01/05 | Co-57     | 5.81 ± 0.17       | 6.20                   | 4.34 - 8.06         | Pass       |
| STAP-1066             | 07/01/05 | Co-60     | 2.79 ± 0.14       | 2.85                   | 2.00 - 3.71         | Pass       |
| STAP-1066             | 07/01/05 | Cs-134    | 3.67 ± 0.12       | 3.85                   | 2.70 - 5.01         | Pass       |
| STAP-1066             | 07/01/05 | Cs-137    | 2.93 ± 0.23       | 3.23                   | 2.26 - 4.20         | Pass       |
| STAP-1066             | 07/01/05 | Mn-54     | 4.11 ± 0.26       | 4.37                   | 3.06 - 5.68         | Pass       |
| STAP-1066             | 07/01/05 | Pu-238    | 0.11 ± 0.02       | 0.10                   | 0.07 - 0.13         | Pass       |
| STAP-1066             | 07/01/05 | Pu-239/40 | 0.10 ± 0.01       | 0.09                   | 0.06 - 0.12         | Pass       |
| STAP-1066             | 07/01/05 | Sr-90     | 2.25 ± 0.29       | 2.25                   | 1.58 - 2.93         | Pass       |
| STAP-1066             | 07/01/05 | U-233/4   | 0.28 ± 0.02       | 0.27                   | 0.19 - 0.35         | Pass       |
| STAP-1066             | 07/01/05 | U-238     | 0.28 ± 0.02       | 0.28                   | 0.20 - 0.37         | Pass       |
| STAP-1066             | 07/01/05 | Zn-65     | 4.11 ± 0.26       | 4.33                   | 3.06 - 5.68         | Pass       |

\* Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

<sup>b</sup> Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation) as requested by the Department of Energy.

<sup>c</sup> Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

<sup>d</sup> MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

• The strontium carbonate precipitates were redissolved and processed. The average of the three analyses was 1.34 pCi/L, although the recovery was only 30%. The result of a new analysis was 1.56 pCi/L.

<sup>f</sup> Incorrect sample weight used in calculation. Result of recalculation: 97.0 ± 7.8 Bq/kg.

| . :: | Martin Cent |  |
|------|-------------|--|
|      | (2)2513     |  |
|      |             |  |

----

 Set grad data and the set of the set . . . . . . .

| • • •   |     |             | ang Alwana gina sa |                            |           |                                       |
|---------|-----|-------------|--------------------------------------------------------|----------------------------|-----------|---------------------------------------|
|         |     |             | dt 1<br>                                               | je čučer<br>na zrad v stat | •         |                                       |
|         |     |             | · · · · · · · · · · · · · · · · · · ·                  |                            |           |                                       |
|         |     |             |                                                        | € + :<br>• : : : : :       | · · · , , | · · · ·                               |
|         | •   | •<br>•<br>• |                                                        |                            | · ·       |                                       |
|         |     |             |                                                        |                            |           |                                       |
| •'<br>, | • . | . *         |                                                        |                            | •         |                                       |
|         |     |             |                                                        |                            | <u> </u>  | • • • • •                             |
|         |     |             |                                                        |                            |           |                                       |
|         |     |             | · · · · · · · · · · · · · · · · · · ·                  | * * *<br>* * *             | · · · ·   | · · · · · · · · · · · · · · · · · · · |
|         |     |             |                                                        | •••••                      |           |                                       |
|         |     |             |                                                        |                            |           |                                       |
|         |     |             | 2.<br>1                                                | i                          |           | •                                     |

 A contract of the second state of .

.

• • •

•

E-12