Calvert Cliffs Nuclear Power Plant Constellation Generation Group, LLC 1650 Calvert Cliffs Parkway Lusby, Maryland 20657

May 15, 2006

U. S. Nuclear Regulatory Commission Washington, DC 20555

- **ATTENTION:** Document Control Desk
- SUBJECT:Calvert Cliffs Nuclear Power Plant; Unit Nos. 1 & 2; Docket Nos. 50-317 & 50-318Independent Spent Fuel Storage Installation; Docket No. 72-8Annual Radiological Environmental Operating Report
- **REFERENCES:** (a) Calvert Cliffs Nuclear Power Plant Technical Specification 5.6.2
 - (b) Calvert Cliffs Independent Spent Fuel Storage Installation Technical Specification 6.2

In accordance with References (a) and (b), Calvert Cliffs Nuclear Power Plant is submitting the Annual Radiological Environmental Operating Report, for the calendar year 2005.

Should you have questions regarding this matter, please contact Mr. L. S. Larragoite at (410) 495-4922.

Very truly yours, Steven R.) Sanders General Supervisor - Chemistry

SRS/CAN/bjd

Attachment: As stated

cc: P. D. Milano, NRC S. J. Collins, NRC Resident Inspector, NRC R. I. McLean, DNR R. Manley, MDE

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR THE CALVERT CLIFFS NUCLEAR POWER PLANT UNITS 1 AND 2 AND THE INDEPENDENT SPENT FUEL STORAGE INSTALLATION


January 1 - December 31, 2005

A. M Barnett L. J. Bartal, Ph.D. R. L. Conatser

124

CONSTELLATION ENERGY CONSTELLATION GENERATION GROUP, LLC

APRIL 2006

TABLE OF CONTENTS

LIST OF FIGURES	iii
LIST OF TABLES	v
I. SUMMARY	1
II. CALVERT CLIFFS NUCLEAR POWER PLANT RADIOLOGICAL	
ENVIRONMENTAL MONITORING PROGRAM	3
II.A. INTRODUCTION	
II.B. PROGRAM	
II.B.1 Objectives	
II.B.2 Sample Collection.	
II.B.3 Data Interpretation	
II.B.4 Program Exceptions	
II.C. RESULTS AND DISCUSSIONS	
II.C.1 Aquatic Environment	
II.C.1.a Bay Water	
II.C.1.b Aquatic Organisms	
II.C.1.c Shoreline Sediment	
II.C.2 Atmospheric Environment	
II.C.2.a Air Particulate Filters	
II.C.2.b Air Iodine	
II.C.3 <u>Terrestrial Environment</u>	
II.C.3.a Vegetation	10
II.C.4 Direct Radiation	10
ILD. CONCLUSION	12
III. INDEPENDENT SPENT FUEL STORAGE INSTALLATION RADIOLOGICAL	
ENVIRONMENTAL MONITORING PROGRAM	21
III.A. INTRODUCTION	
III.B. PROGRAM	
III.B.1 Objectives	
III.B.2 Sample Collection	
III.B.3 Data Interpretation	
III.B.4 Program Exceptions	
III.C. RESULTS AND DISCUSSIONS	
III.C.1 <u>Atmospheric Environment</u>	
III.C.1.a Air Particulate Filters	
III.C.2 Terrestrial Environment	
III.C.2.a <u>Vegetation</u> III.C.2.b <u>Soils</u>	23
III.C.2.a <u>Vegetation</u> III.C.2.b <u>Soils</u>	23
III.C.2.a Vegetation	24
III.C.2.a Vegetation III.C.2.b Soils III.C.3 Direct Radiation III.D. CONCLUSION	24 24
III.C.2.a Vegetation III.C.2.b Soils III.C.3 Direct Radiation III.D. CONCLUSION III. IV. REFERENCES III.	24 24 28
III.C.2.a Vegetation III.C.2.b Soils III.C.3 Direct Radiation III.D. CONCLUSION IV. REFERENCES APPENDIX A Sample Locations for the REMP and the ISFSI	24 24 28 29
III.C.2.a Vegetation III.C.2.b Soils III.C.2.b Soils III.C.3 Direct Radiation III.D. CONCLUSION IV. REFERENCES APPENDIX A Sample Locations for the REMP and the ISFSI APPENDIX B Analysis Results for the REMP and the ISFSI	24 24 28 29 43
III.C.2.a Vegetation III.C.2.b Soils III.C.3 Direct Radiation III.C.3 Direct Radiation III.D. CONCLUSION IV. REFERENCES APPENDIX A Sample Locations for the REMP and the ISFSI APPENDIX B Analysis Results for the REMP and the ISFSI APPENDIX B Analysis Results for the REMP and the ISFSI	24 28 29 43 67
III.C.2.a Vegetation III.C.2.b Soils III.C.2.b Soils III.C.3 Direct Radiation III.D. CONCLUSION IV. REFERENCES APPENDIX A Sample Locations for the REMP and the ISFSI APPENDIX B Analysis Results for the REMP and the ISFSI	24 28 29 43 67 83

i

ĺ.

ii

(LEFT BLANK)

į

LIST OF FIGURES

Figure	Title	Page
1	Tritium in Chesapeake Bay Water	6
2	Silver-110m and Potassium-40 in Chesapeake Bay Oysters	7
3	Nuclear Fallout in the Calvert Cliffs Area	9
4	Mean TLD Gamma Dose, Calvert Cliffs Nuclear Power Plant	11
5	Atmospheric Dispersion Around CCNPP Average Relative Air Concentrations	15
6	Atmospheric Dispersion Around CCNPP Average Relative Ground Deposition	17
7	Mean TLD Gamma Dose, ISFSI	25
A-1	Map of Southern Maryland and Chesapeake Bay Showing Location of Calvert Cliffs Nuclear Power Plant	34
A-2	Calvert Cliffs Nuclear Power Plant Sampling Locations, 0-2 Miles	
A-3	Calvert Cliffs Nuclear Power Plant Sampling Locations, 0-10 Miles	37
A-4	Independent Spent Fuel Storage Installation Sampling Locations	40
A-5	Enlarged Map of the Independent Spent Fuel Storage Installation Sampling Locations.	41

 $\mathcal{I}_{\mathcal{I}}$

e e e para Contraction of the second s · · · · · · · · (i) A set of the se ÷ a second second second and the second se • • • • • and the president of the second part of the Article Control and Articles and the second second second second se na an an an ann an Aonaichtean ann an ann an ann an an Aonaichtean ann an Aonaichtean ann an Aonaichtean ann a Ann an ann an ann an ann an Aonaichtean ann an Aonaichtean ann an Aonaichtean ann an Aonaichtean ann an Aonaicht and the second dependence were seen as the based of · · · · · · · · · · • . and the second second second second president and the second second second second second second second second s 1.1.1.

(LEFT BLANK)

LIST OF TABLES

Table	Title	Page
1	Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Radiological Environmental Monitoring Program	19
2	Annual Summary of Radioactivity in the Environs of the Calvert Cliffs Nuclear Power Plant Units 1 and 2	
3	Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Independent Spent Fuel Storage Installation Radiological Environmental Monitoring Program	
4	Annual Summary of Radioactivity in the Environs of the Calvert Cliffs Nuclear Power Plant Independent Spent Fuel Storage Installation	27
A-1	Locations of Environmental Sampling Stations for the Calvert Cliffs Nuclear Power Plant	33
A-2	Locations of Environmental Sampling Stations for the Independent Spent Fuel Storage Installation at Calvert Cliffs	
B-1	Concentration of Tritium and Gamma Emitters in Bay Water	
B-2	Concentration of Gamma Emitters in the Flesh of Edible Fish	
B-3	Concentration of Gamma Emitters in Oyster Samples	
B-4	Concentration of Gamma Emitters in Shoreline Sediment	
B-5	Concentration of Iodine-131 in Filtered Air	
B-6	Concentration of Beta Emitters in Air Particulates	
B-7	Concentration of Gamma Emitters in Air Particulates	
B-8a	Concentration of Gamma Emitters in Vegetation Samples	57
B-8b	Concentration of Gamma Emitters in Vegetation From Locations Around the IFSFI	
B-9	Concentration of Gamma Emitters in Soil Samples From Locations Around the ISFSI	
B-10	Typical MDA Ranges for Gamma Spectrometry	61
B-11	Typical LLDs for Gamma Spectrometry	62
B-12	Direct Radiation	
C-1	Results of Participation in Cross Check Programs	71
C-2	Results of Quality Assurance Program	74
C-3	Teledyne Brown Engineering's Typical MDAs for Gamma Spectrometry	82
D-1	Land Use Survey	83
E-1	Locations of Non-Tech Spec Environmental Sampling Stations for Calvert Cliffs Nuclear Power Plant	88
E-2	Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Non-Tech Spec Radiological Environmenta Monitoring Program	
E-3	Annual Summary for Calvert Cliffs Nuclear Power Plant Units 1 & 2 Non-Tech Spec Radiological Environmental Monitoring Program	90
E-4	Concentration of Gamma Emitters in Bottom Sediment	91
E-5	Concentration of Iodine-131 in Filtered Air	92
E-6	Concentration of Beta Emitters in Air Particulates	94
E-7	Concentration of Gamma Emitters in Air Particulates	96
E-8	Concentration of Tritium and Gamma Emitters in Taylors Island Well Water	97
E-9	Direct Radiation as Measured in Pressurized Ion Chamber	98
E-10	Direct Radiation	99
E-11	Direct Radiation from Resin Storage Area	100

v

(LEFT BLANK)

1 1

vi

I. SUMMARY

During this operating period for Calvert Cliffs Nuclear Power Plant (CCNPP) Units 1 and 2, a total of 3303 radiological analyses were performed and the analytical results reviewed. Most of these analyses were performed to satisfy the requirements of the Offsite Dose Calculation Manual (ODCM) (Ref. 6) and the Environmental and Independent Spent Fuel Storage Installation (ISFSI) Technical Specifications (Ref. 10). Some of these samples, although not required by either the ODCM or the Technical Specifications, were collected to maintain our commitments to the surrounding community and to maintain historical continuity of the CCNPP Radiological Environmental Monitoring Program (REMP) that started in 1970. The entire monitoring program in place around CCNPP is divided into three parts: the original REMP, the ISFSI monitoring program, and the Non-ODCM Radiological Environmental Monitoring. The following paragraphs describe each of these parts in more detail.

A total of 660 radiochemical analyses were performed on 592 environmental samples, and 546 thermoluminescent dosimeters (TLDs) were analyzed for ambient radiation exposure rates as part of the original REMP. These analyses were performed to satisfy the requirements of the ODCM (Ref. 6) and the Environmental Technical Specifications (Ref. 5).

For the ISFSI monitoring program, 358 radiochemical analyses were performed on 298 environmental samples, 52 of which were in common with the original REMP. In addition, 480 TLDs, 24 in common with the original REMP, were analyzed for ambient radiation exposure rates. These analyses were performed to satisfy the requirements of the ODCM (Ref. 6) and the ISFSI Technical Specifications (Ref. 10).

In addition, 572 analyses were performed on 526 additional environmental samples, and 480 additional TLDs were analyzed for ambient radiation exposure rates. Also, six pressurized ion chambers continuously monitored the environs around the plant for ambient radiation levels resulting in 72 monthly measurements. As mentioned earlier, these additional analyses reflect a commitment to maintain historical continuity for samples and sampling pathways discontinued from the program when the Environmental Technical Specifications were changed in March 1985 and to satisfy monitoring commitments made to the surrounding community.

And lastly, 197 radiochemical analyses were performed on 193 quality assurance samples and 120 quality assurance TLDs were analyzed as part of an internal and external quality assurance program associated with Teledyne Brown Engineering. Laboratory intercomparison samples obtained from Environmental Resource Associates (ERA) and Analytics' Inc. were also analyzed.

Samples collected from the aquatic environment included bay water, fish, oysters, and shoreline sediment. Bay water was analyzed for tritium and gamma emitters. Fish, oysters, and shoreline sediments were analyzed for gamma emitting radionuclides.

Monitoring the atmospheric environment involved sampling the air at various locations surrounding CCNPP and the ISFSI. Air particulates and gaseous iodine were collected on glass fiber filters and silver zeolite molecular sieve cartridges, respectively. The particulate filters were analyzed for beta activity and gamma emitting nuclides. The molecular sieve cartridges were analyzed for airborne gaseous radioiodine.

Samples from the terrestrial environment consisted of vegetation and soil samples collected and analyzed for gamma emitters. Vegetation samples for the original REMP were also analyzed for I-131.

Measurements of direct radiation, as required by the ODCM, were performed by analyzing TLDs from forty locations surrounding CCNPP and the ISFSI.

Natural radioactivity was detected in essentially all 3303 radiological analyses performed. Low levels of various man-made fission and activation products were also observed in 20 of these analyses. Seventeen of these observations were attributed to fallout from past atmospheric weapons testing, while three analyses yielded low level positive results for the presence of H-3, which were attributable to plant operation. Detailed discussions about the results of these analyses are contained in the body of this report.

To assess the plant's contribution to the radiation levels of the ambient environment, dose calculations were performed using the plant's effluent release data, on-site meteorological data, and appropriate pathways. The results of these dose calculations indicate:

- a maximum thyroid dose of 5.80 x 10⁻³ mrem via liquid and gaseous pathways, which is less than 0.01% of the acceptable limit of 75 mrem/yr as specified in 40 CFR Part 190;
- b. a maximum whole body dose of 4.79 x 10⁻³ mrem via liquid and gaseous pathways, which is less than 0.02% of the acceptable limit of 25 mrem/yr as specified in 40 CFR Part 190;
- c. a maximum calculated dose to all other organs via liquid and gaseous pathways was equal to 9.50×10^{-2} mrem to the bone. This dose is less than 0.4% of the allowable limit of 25 mrem/yr as specified in 40 CFR Part 190.

Thus, it is concluded based upon the levels of radioactivity observed and the various dose calculations performed, that CCNPP Units 1 and 2 and the ISFSI did not cause any significant radiological impact on the surrounding environment

II. CALVERT CLIFFS NUCLEAR POWER PLANT RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

II.A. INTRODUCTION

Constellation Energy (CE), previously known as Baltimore Gas and Electric Company (BGE), has been conducting a REMP in the environs of the CCNPP since the summer of 1970. The Calvert Cliffs site is an operating nuclear generating station consisting of two pressurized water reactors. Unit 1 achieved criticality on October 7, 1974 and commenced commercial operation in May 1975. Unit 2 achieved criticality on November 30, 1976 and went into commercial operation April 1, 1977. The location of the plant in relation to local metropolitan areas is shown on Figure A-1, page 34.

Results of the monitoring program for the pre-operational and previous operational periods through December 31, 2004 have been reported in a series of documents (Ref. 1-4) The results from previous operational periods are contained in annual reports submitted to the NRC as required.

Results of the monitoring program for the current operational period are included in this report. The report presents the content of the REMP (Table 1), the sampling locations (Appendix A), the summary of the analytical results (Table 2), a compilation of the analytical data (Appendix B), the results of the Analytics Intercomparison Program and the Quality Assurance Program (Appendix C), the results of the Land Use Survey (Appendix D), and a compilation of the analytical data for extra samples collected (Appendix E). Interpretation of the data and conclusions are presented in the body of the report.

The environmental surveillance data collected during this reporting period were compared with that generated in previous periods whenever possible to evaluate the environmental radiological impact of CCNPP Units 1 and 2.

II.B. PROGRAM

II.B.1 Objectives

The objectives of the REMP for the Calvert Cliffs Nuclear Power Plant are:

- a. To verify that radioactivity and ambient radiation levels attributable to plant operation are within the limits specified in the ODCM (Ref. 6) and the
 - Environmental Radiation Protection Standards as stated in 40 CFR Part 190,
- b. To detect any measurable buildup of long-lived radionuclides in the environment,

c. To monitor and evaluate ambient radiation levels,

d. To determine whether any statistically significant increase occurs in the concentration of radionuclides in important pathways.

II.B.2 Sample Collection

The locations of the individual sampling stations are listed in Table A-1 and shown in Figures A-2 and A-3. All samples were collected by contractors to, or personnel of Constellation Energy according to CCNPP Procedures (Ref. 7,12).

II.B.3 Data Interpretation

Many results in environmental monitoring occur at or below the minimum detectable activity (MDA). In this report, all results at or below the relevant MDA are reported as being "less than" the MDA value.

the second second

II.B.4 Program Exceptions in a second de la construcción de El terreterio de la construcción de

There were no program exceptions for this operating period.

II.C. RESULTS AND DISCUSSIONS

All the environmental samples collected during the year were analyzed using Constellation Energy laboratory procedures (Ref. 8). The analytical results for this reporting period are presented in Appendix B and are also summarized in Table 2. For discussion, the analytical results are divided into four categories. The categories are the Aquatic Environment, the Atmospheric Environment, the Terrestrial Environment, and Direct Radiation. These categories are further divided into subcategories according to sample type (e.g., Bay Water, Aquatic Organisms, etc., for the Aquatic Environment).

II.C.1 Aquatic Environment

The aquatic environment surrounding the plant was monitored by analyzing samples of bay water, aquatic organisms, and shoreline sediment. These samples were obtained from various sampling locations on the Chesapeake Bay near the plant.

II.C.1.a Bay Water

Monthly bay water samples were taken from two locations during the year. These locations are the Intake Area (sample code Wa1) and the Discharge Area (sample code Wa2). The samples were obtained from a composite sampling system operating at each location for the entire sampling period. These samples were analyzed for tritium and gamma emitters.

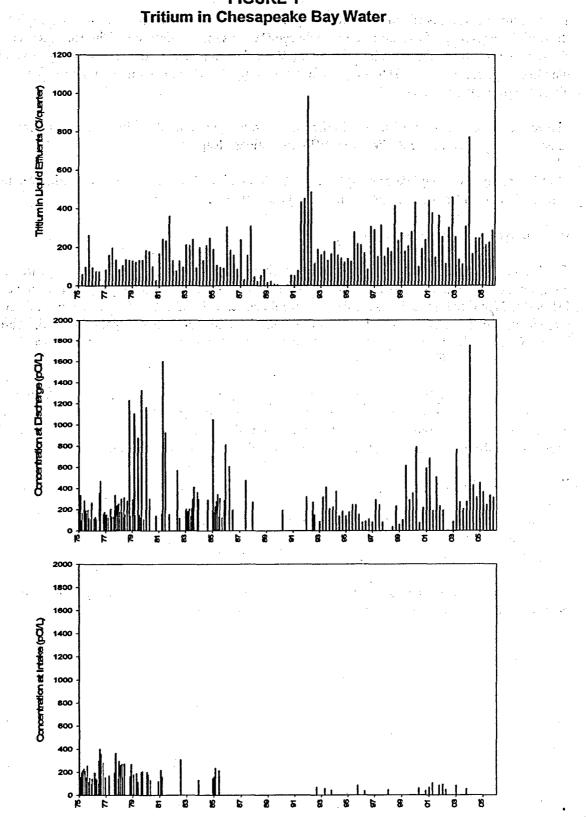
The tritium analyses, performed on quarterly composites of the monthly bay water samples, showed the presence of tritium in the Discharge (Wa2) samples in three of the four quarters. There was no tritium observed in the Intake (Wa1). The detectable concentrations observed in the Discharge ranged from 316 ± 142 to 364 ± 154 pCi/L, which is similar to the ranges observed in previous years.

Figure 1 compares tritium observed in the plant discharge and intake with annual effluent releases as reported in the Radioactive Effluent Release Report.

Monthly analyses of bay water samples from both locations for gamma emitters exhibited no detectable concentrations of any plant-related radionuclides.

II.C.1.b Aquatic Organisms

Twelve samples of aquatic organisms were obtained from four locations during the year. Samples of fish, when in season, are normally collected from the Discharge Area (sample codes Ia1 and Ia2) and from the Patuxent River (sample codes Ia4 and Ia5). As shown in Table B-2, two species of fish were sampled at both the plant discharge and the control point in the Patuxent River. Oyster samples were obtained quarterly from Camp Conoy (sample code Ia3) and Kenwood Beach (Ia6).


Edible portion of the fish and oyster samples were analyzed for gamma emitters. Gamma spectrometric analyses of the fish exhibited naturally occurring K-40, but no detectable concentrations of any plant-related radionuclides. Oyster samples likewise exhibited naturally occurring K-40, but no detectable concentrations of any plant related radionuclides.

II.C.1.c Shoreline Sediment

Semiannual shoreline sediment samples were taken from one location during the year. This location is Shoreline at Barge Road (sample code Wb1). The samples obtained from this location were analyzed for gamma emitters.

Gamma spectrometric analyses of these samples exhibited naturally occurring radionuclides, but no detectable concentration of any plant-related radionuclides.

7.11

FIGURE 1

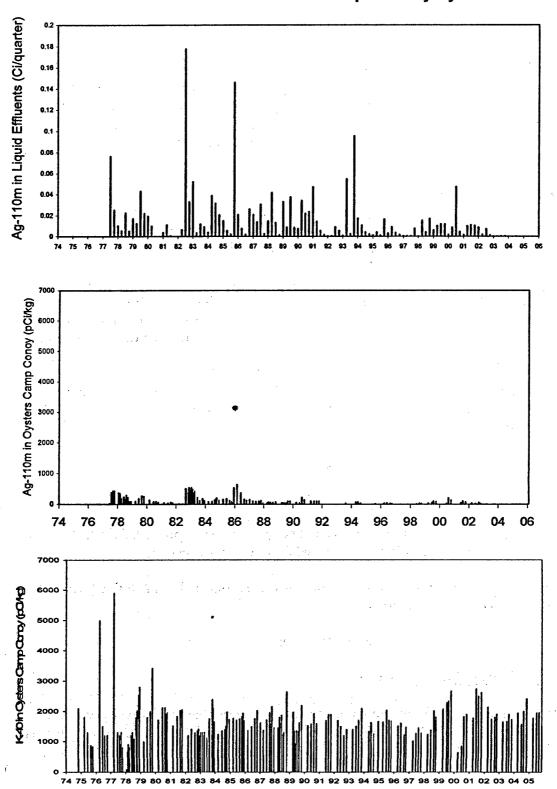


FIGURE 2 Silver-110m and Potassium-40 in Chesapeake Bay Oysters

II.C.2 Atmospheric Environment

The atmospheric environment was monitored by analyzing air particulate filters and silver zeolite cartridges (for trapping radioiodine species). These samples were collected from five locations surrounding the plant. These locations are On Site before the Entrance to Camp Conoy (sample code A1), Camp Conoy Road at the Emergency Siren (sample code A2), Bay Breeze Road (sample code A3), Route 765 at Lusby (sample code A4), and at the Emergency Operations Facility (sample code A5).

II.C.2.a Air Particulate Filters

Weekly composite air particulate filter samples were collected from the five locations during the year. These samples were analyzed for beta activity and gamma emitters.

Weekly analyses for beta activity on air particulate filters collected from all five locations showed values characteristic of background levels. The values ranged from 0.3×10^{-2} to 5.7×10^{-2} pCi/m³ for the indicator locations and 0.8×10^{-2} to 3.3×10^{-2} pCi/m³ at the control location. The location with the highest overall mean of 1.8×10^{-2} pCi/m³ was A1, Entrance to Camp Conoy.

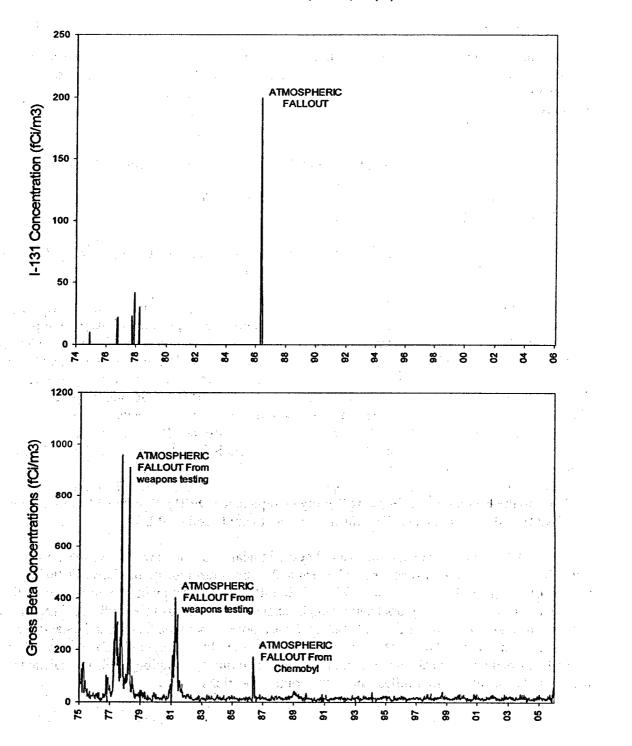
Gamma spectrometric analyses of monthly composited air particulate samples exhibited no detectable concentrations of any plant-related radionuclides in any of these samples. Naturally occurring radionuclides, such as Be-7, were detected in nearly all samples.

Figure 3 depicts the historical trends of beta activity.

II.C.2.b <u>Air Iodine</u>

Silver zeolite cartridges (for trapping radioiodine species) were collected from the five locations during the year. These samples were analyzed for radioiodine species.

Weekly radioiodine analyses of silver zeolite cartridges collected from all five locations exhibited no detectable concentrations of I-131.


Figure 3 depicts the historical trends of radioiodine.

II.C.3 Terrestrial Environment

The terrestrial environment was monitored by analyzing samples of vegetation collected monthly, when available, from various sampling locations near the plant during the normal growing season.

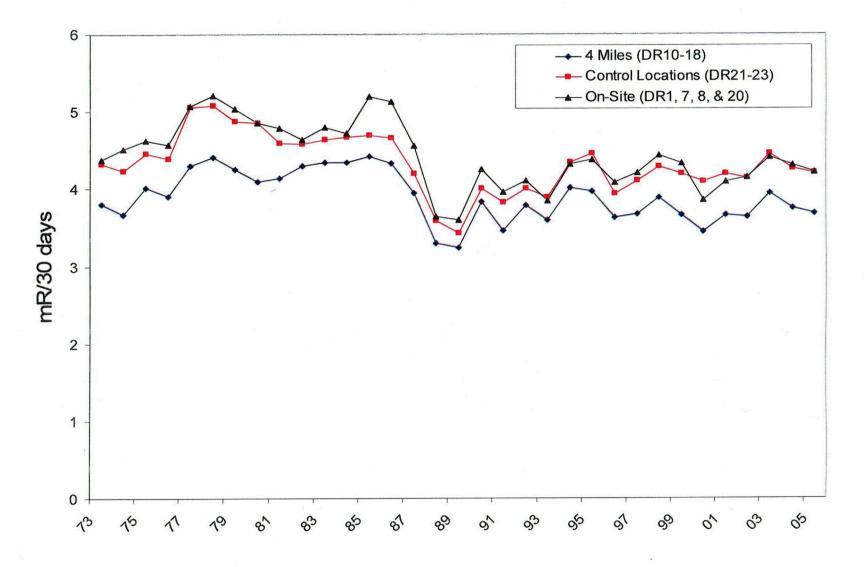
FIGURE 3 Nuclear Fallout in the Calvert Cliffs Area

SURFACE AIR VAPORS, LUSBY, MD (A4)

II.C.3.a Vegetation

Nine vegetation samples were collected from three locations during the year. These locations are Garden Plot off Bay Breeze Road (sample codes Ib1, Ib2, and Ib3), On Site before the Entrance to Camp Conoy (sample codes Ib4, Ib5, and Ib6), and the Emergency Operations Facility (sample codes Ib7, Ib8, and Ib9). These samples were analyzed for gamma emitters, including analyses for I-131.

All samples showed detectable amounts of naturally occurring K-40 and Be-7. No plant related radionuclides were found in any of these samples.


II.C.4 Direct Radiation

Direct radiation is measured by a network of TLDs in each overland sector surrounding the Plant both at the plant boundary and at 4 miles from the Plant.

TLDs were collected quarterly from twenty-three locations surrounding the plant. The twenty indicator locations are On Site Along the Cliffs (sample code DR1), Route 765 Auto Dump (sample code DR2), Giovanni's Tavern (sample code DR3), Route 765 across from White Sands (sample code DR4), John's Creek (sample code DR5), Lusby (sample code DR6), On Site before the Entrance to Camp Conoy (sample code DR7), On Site at Emergency Siren (sample code DR8), Bay Breeze Road (sample code DR9), Decatur and Calvert Beach Roads (sample code DR10), Dirt Road off Mackall and Parran Roads (sample code DR11), Mackall and Bowen Roads (sample code DR12), Wallville (sample code DR13), Rodney Point (sample code DR14), Mill Bridge and Turner Roads (sample code DR15), Appeal School (sample code DR16), Cove Point and Little Cove Point Roads (sample code DR17), Cove Point (sample code DR18), Long Beach (sample code DR19), and On Site Near Shore (sample code DR20). The three control locations are the Emergency Operations Facility (sample code DR21), Solomons Island (sample code DR22), and Taylors Island, Carpenters Property (sample code DR23).

The mean 90 day ambient radiation measured at the indicator locations was 11.35 mR and ranged from 9.11 to 14.93 mR as reported in Table 2. The control locations showed a 90 day mean of 12.62 mR with ranges from 10.75 to 15.88 mR. The location with the highest overall mean of 15.14 was DR23, Taylors Island, which ranged from 14.30 to 15.88 mR. A comparison of the means and ranges of the current TLD data with those of both the historical data and the regional data shows no plant-related contribution to the measured direct radiation exposure. Figure 4 shows the historical comparison of the average monthly radiation levels per calendar year for TLDs on site, at four miles, and at the control locations.

FIGURE 4 Mean TLD Gamma Dose, Calvert Cliffs Nuclear Power Plant

COI

II.D. CONCLUSION

Low levels of tritium, a man-made fission by-product, was observed in the environment surrounding the plant. Tritium, found in quarterly composites of bay water samples, was related to the operation of the plant.

Historical trends for tritium in bay water, Ag-110m and K-40 in oyster samples, nuclear fallout in the Calvert Cliffs area, and TLD data are depicted in Figures 1 through 4. As can be seen from these figures, the plant made no adverse radiological contributions to the surrounding environment.

To assess the plant's contribution to the ambient radiation levels of the surrounding environment, dose calculations were performed using the plant's effluent release data, on site meteorological data (see X/Q and D/Q values presented in Figures 5 and 6), and appropriate pathways. The results of these dose calculations indicate:

Gaseous Pathways

A maximum thyroid dose of 4.70 x 10⁻³ mrem to a child via the plume, ground, vegetable, meat, and inhalation pathways at 1.8 km SW of the containments at Calvert Cliffs. This is less than 0.01% of the acceptable limit of 75 mrem/year as specified in 40CFR190, "Environmental Radiation Protection Standards for Nuclear Power Operations".

A maximum whole body gamma dose of 4.40×10^{-4} mrem to a child at 1.8 km SSW of the containments at Calvert Cliffs. This is less than 0.002% of the acceptable dose limit of 25 mrem/year as specified in 40CFR190.

A maximum dose to any other organ, in this case the skin, of 1.50×10^{-3} mrem to a child at 1.8 km SSW of the containments at Calvert Cliffs. This is less than 0.01% of the acceptable dose limit of 25 mrem/yr as specified in 40CFR190.

Liquid Pathways

- A maximum thyroid dose of 1.1 x 10⁻³ mrem to an adult for all liquid pathways, which is less than 0.001% of the acceptable dose limit of 75 mrem/yr as specified in 40CFR190.
- A maximum whole body dose of 4.35×10^{-3} mrem to a child via all liquid pathways, which is less than 0.02% of the acceptable dose limit of 25 mrem/year as set forth in 40CFR190.

A maximum dose to any other organ, in this case bone, of 2.36×10^{-2} mrem to a child for all pathways, which is 9.4E-02% of the acceptable dose limit of 25 mrem/yr as specified in 40CFR190.

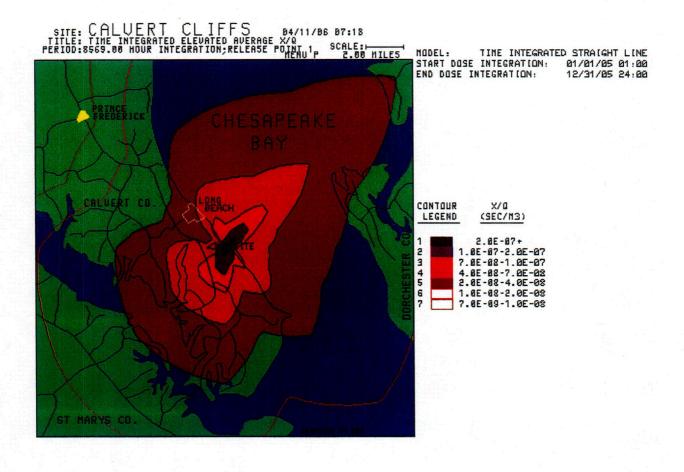
Gaseous and Liquid Pathways Combined

A maximum thyroid dose of 5.80×10^{-3} mrem via liquid and gaseous pathways, which is less than 0.01% of the acceptable limit of 75 mrem/yr as specified in 40CFR190.

A maximum whole body dose of 4.79×10^{-3} mrem via liquid and gaseous pathways, which is less than 0.02% of the acceptable limit of 25 mrem/yr as specified in 40CFR190.

A maximum calculated dose to all other organs via liquid and gaseous pathways was equal to 9.50×10^{-2} mrem to the bone. This dose was less than 0.4% of the allowable limit of 25 mrem/yr as specified in 40CFR190.

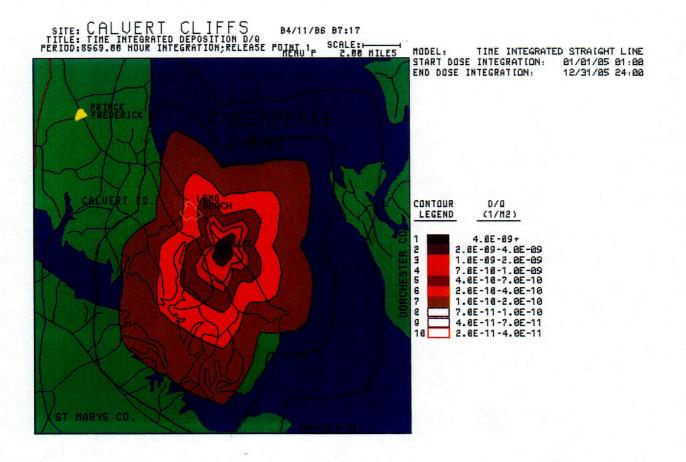
In all cases, the calculated doses are a small fraction of the applicable limits specified in 40 CFR Part 190.


Therefore, it is concluded that the operation of Calvert Cliffs Units 1 & 2 produced radioactivity and ambient radiation levels significantly below the limits of the ODCM and 40 CFR Part 190, and there was no significant buildup of plant-related radionuclides in the environment due to the operation of the CCNPP.

(LEFT BLANK)

500

FIGURE 5


Atmospheric Dispersion Around CCNPP Average Relative Air Concentrations

(LEFT BLANK)

FIGURE 6

Atmospheric Dispersion Around CCNPP Average Relative Ground Deposition

0

(LEFT BLANK)

18

1.116.11

Table 1

Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Radiological Environmental Monitoring Program

Sample Type	Sampling Frequency ¹	Number of Locations	Number Collected	Analysis	Analysis Frequency ¹	Number Analyzed
Aquatic Environment Bay Water	MC	2	24	Gamma H-3	M QC	24 8
Fish ²	Α	4	4	Gamma	Α	4
Oysters	Q	2	8	Gamma	Q	8
Shoreline Sediment	SA	1	2	Gamma	SA	2
Atmospheric Environment					······································	
Air Iodine ³	Ŵ	5	259	I-131	w w	259
Air Particulates ⁴	W	5	259	Gross Beta . Gamma	W MC	259 60
Direct Radiation				· .		
Ambient Radiation	Q	23	540	TLD	Q	540
Terrestrial Environment Vegetation⁵	M	3	36	Gamma	М	36

¹ W=weekly, M=monthly, Q=quarterly, SA=semiannual, A=annual, C=composite
 ² Once in Season, July through September
 ³ The collection device contains silver zeolite
 ⁴ Beta counting is performed after >=72 hour decay, Gamma spectroscopy performed on monthly composites of weekly samples

⁵ Monthly during growing season

Table 2

Annual Summary of Radioactivity in the Environs of the Calvert Cliffs Nuclear Power Plant Units 1 and 2

						· •
Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	Indicator Locations Mean (F)/Range ¹	Location with Highest Annual Mean Name/Distance & Direction ²	Highest Annual Mean (F) / Range ¹	Control Locations Mean (F)/Range
Aquatic Environment						· · · · ·
Bay Water (pCi/L)	H-3 (8)	251	339 (3/4) (316-364)	Discharge Vicinity Wa2 0.3 km N	339 (3/4) (316-364)	_3
Atmospheric Environment						
Air Particulates (10 ⁻² pCi/m ³)	Gross Beta (259)	0.5	1.5 (207/207) (0.3-5.7)	Entrance to Camp Conoy A1 0.7 km S	1.8 (52/52) (0.6-4.2)	1.7 (52/52) (0.8-3.3)
Direct Radiation			. *		· ·	
Ambient Radiation (mR/90 days)	TLD (540)		11.35 (468/468) (9.11-14.93)	Taylors Island DR23 12.6 km ENE	15.14 (24/24) (14.30-15.88)	12.62 (72/72) (10.75-15.88)

¹ Mean and range based upon detectable measurements only. Fraction (F) of detectable measurements at specified location is indicated in parentheses ² From the centerpoint between the two containment buildings ³ There was no detectable activity at the control location, Wa1 (Intake)

III. INDEPENDENT SPENT FUEL STORAGE INSTALLATION RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

III.A. INTRODUCTION

In August 1990 BGE initiated a program of additional radiological environmental monitoring around the site for the Independent Spent Fuel Storage Installation (ISFSI). The first dry fuel storage canister was loaded into the ISFSI in November of 1993, with more canisters being loaded in subsequent years. During this operating period, two additional canisters of spent fuel were transferred to the ISFSI.

Results of the monitoring program for the ISFSI for the current period are included in this report.

This report presents the content of the ISFSI REMP (Table 3), the ISFSI sampling locations (Appendix A), the summary of the analytical results of the period (Table 4), and a compilation of the analytical data for the period (Appendix B). Interpretation of the data and conclusions are presented in the body of the report.

The ISFSI monitoring program is as described in this section of the report. Pressurized Ion Chambers (PICs), because they duplicate direct surveillance by TLDs and they experience problems with reliability, were excluded from the Technical Specification portion of the ISFSI monitoring program. PIC results, however, are given in Table E-9 and will continue to be Non-ODCM surveillance to satisfy our commitment to the surrounding community.

The results were compared with that generated during the previous ISFSI pre-operational periods (Ref. 11) and the current and previous CCNPP REMP periods. These comparisons show little deviations from previous periods and are very close to the natural background levels for the region with the exception of TLDs around the north end of the ISFSI. More detailed discussions of these results are given in Section III. C.

III.B. PROGRAM

III.B.1 Objectives

The objectives of the radiological environmental monitoring program for the ISFSI are:

a. To satisfy the community concern regarding the impact of the ISFSI on the environment,

b. To verify that radioactivity and ambient radiation levels attributable to operation of the ISFSI are within the limits specified in the Environmental Radiation Protection Standards as stated in 40 CFR Part 190,

c. To detect any measurable buildup of long-lived radionuclides in the environment due to the ISFSI,

- d. To monitor and evaluate ambient radiation levels around the ISFSI,
- e. To determine whether any statistically significant increase occurs in the concentration of radionuclides near the ISFSI.

III.B.2 Sample Collection

The locations of the individual sampling sites are listed in Table A-2 and shown in Figures A-4 and A-5. All samples were collected by contractors to, or personnel of, Constellation Energy personnel according to CP-234, Specification and Surveillance for the Radiological Environmental Monitoring Program (Ref. 7).

III.B.3 Data Interpretation

Many results in environmental monitoring occur at or below the minimum detectable activity (MDA). In this report, all results at or below the relevant MDA are reported as being "less than" the MDA value.

III.B.4 Program Exceptions

There were no program exceptions during this operating period.

III.C. RESULTS AND DISCUSSIONS

All the environmental samples collected were analyzed using Constellation Energy laboratory procedures (Ref. 8). The analytical results for this reporting period are presented in Appendix B and are also summarized for the period in Table 4. For discussion, the analytical results are divided into three categories. The categories are the Atmospheric Environment, the Terrestrial Environment, and Direct Radiation. These categories are further divided into subcategories according to sample type (e.g., Vegetation and Soil for Terrestrial Environment).

III.C.1 Atmospheric Environment

The atmospheric environment was monitored by analyzing air particulate filters. These samples were collected from five locations surrounding the ISFSI.

No source of airborne radioiodine exists for the ISFSI. Airborne radioiodine is, therefore, not considered in assessing the radiological impact of the ISFSI.

III.C.1.a Air Particulate Filters

Weekly composite air particulate filter samples were collected from five locations during the period. These locations are On Site before the Entrance to Camp Conoy (sample code A1; in common with the CCNPP REMP), Meteorological Station (SFA1), CCNPP Visitor's Center (SFA2), NNW of the ISFSI (SFA3), and SSE of the ISFSI (SFA4). These samples were analyzed for beta radioactivity and gamma emitting radionuclides.

and prices

Weekly analyses for beta activity on air particulate filters collected from all five locations showed values characteristic of levels routinely observed in the REMP. These values ranged from 0.6×10^{-2} to 4.2×10^{-2} pCi/m³ for the indicator locations and 0.6×10^{-2} to 2.7×10^{-2} pCi/m³ for the control location. The location with the highest overall mean of 1.8×10^{-2} pCi/m³ was A1, Entrance to Camp Conoy.

Gamma spectrometric analyses of monthly composited air particulate samples exhibited no detectable concentrations of any plant-related radionuclides in any of these samples. Naturally occurring radionuclides, such as Be-7, were detected in nearly all samples.

III.C.2 Terrestrial Environment

The terrestrial environment was monitored by analyzing samples of vegetation and soil collected quarterly from the vicinity of the air sampling locations for the ISFSI.

III.C.2.a Vegetation

Vegetation samples were collected quarterly from five locations during the year. These locations are: Meteorological Station (sample code SFb1), CCNPP Visitor's Center (sample code SFb2), NNW of the ISFSI (sample code SFb3), SSE of the ISFSI (sample code SFb4), and On Site before the Entrance to Camp Conoy (sample code SFb5). These samples were analyzed for gamma emitters.

No detectable concentration of plant-related radionuclides were found in any of these samples. Naturally occurring radionuclides such as K-40 were detected in all samples.

III.C.2.b Soils

Soil samples were collected quarterly from five locations surrounding the ISFSI in the vicinity of the air samplers. These locations are: Meteorological Station (sample code SFS1), CCNPP Visitor's Center (sample code SFS2), NNW of the ISFSI (sample code SFS3), SSE of the ISFSI (sample code SFS4), and On Site before the Entrance to Camp Conoy (sample code SFS5).

Soil samples were analyzed for gamma emitting radionuclides. Cesium-137 was detected in thirteen quarterly samples from both indicator and control locations. The Cs-137 concentrations ranged from 38 ± 39 to 852 ± 117 pCi/kg. While the presence of Cs-137 in these samples may be plant-related, this range is consistent with residual fallout from past atmospheric nuclear weapons testing. The activities of this radionuclide are well below the federal limits established in 40 CFR Part 190, "Environmental Radiation Protection Standards for Nuclear Power Operations" and are comparable to those observed in previous annual reporting periods for the CCNPP REMP and in the earlier pre-operational data for the ISFSI. No other detectable concentrations of plant-related radionuclides were found in any of these samples. Naturally occurring radionuclides such as K-40, were also detected in all these samples.

III.C.3 Direct Radiation

Direct radiation is measured by a network of TLDs surrounding the ISFSI. These TLDs are collected quarterly from nineteen locations surrounding the ISFSI, plus one control TLD location at the Visitor's Center (sample code SFDR7). The locations include On Site before the Entrance to Camp Conoy (sample code DR7, common to both the CCNPP Program and the ISFSI Program) and the Meteorological Station (sample code DR30, previously a location maintained for historical continuity.) The other sampling locations are: SW of ISFSI, (sample code SFDR1); NNW of ISFSI, (sample code SFDR2); North of ISFSI, (sample code SFDR3); NE of ISFSI, (sample code SFDR4); East of ISFSI, (sample code SFDR5); ESE of ISFSI, (sample code SFDR6); NNW of ISFSI, (sample code SFDR8); SSE of ISFSI, (sample code SFDR9); NW of ISFSI, (sample code SFDR10); WNW of ISFSI, (sample code SFDR11); WSW of ISFSI, (sample code SFDR10); WNW of ISFSI, (sample code SFDR11); WSW of ISFSI, (sample code SFDR10); WNW of ISFSI, (sample code SFDR11); WSW of ISFSI, (sample code SFDR12); South of ISFSI, (sample code SFDR13); SE of ISFSI, (sample code SFDR10); WNW of ISFSI, (sample code SFDR11); WSW of ISFSI, (sample code SFDR12); South of ISFSI, (sample code SFDR13); SE of ISFSI, (sample code SFDR16); NNE of ISFSI, (sample code SFDR17) and West of ISFSI, (sample code SFDR18). Sampling locations are shown on Figures A-4 and A-5.

The mean 90 day ambient radiation measured at the ISFSI indicator locations was 24.37 mR and ranged from 9.75 to 48.30 mR as reported in Table 4. The control location showed a 90 day mean of 12.04 mR and ranged from 11.52 to 12.43 mR. The location with the highest overall mean of 40.44 mR with a range of 38.21 to 41.93 mR was SFDR18, West of ISFSI. These readings are consistent with those expected from the storage of spent fuel in the ISFSI. A comparison of the average monthly radiation levels per calendar year of the ISFSI TLD data from the indicator locations with the ISFSI control location at the Visitor's Center, SFDR7, can be seen in Figure 7.

III.D. CONCLUSION

Low levels of Cs-137 were observed in the environment surrounding the ISFSI during the period. The Cs-137 observations were attributed to fallout from past atmospheric weapons testing. No plant-related radionuclide was observed in the environs of the ISFSI.

In general, the results in the following tables continue the historical trends previously observed at the official sites of the CCNPP REMP.

C04

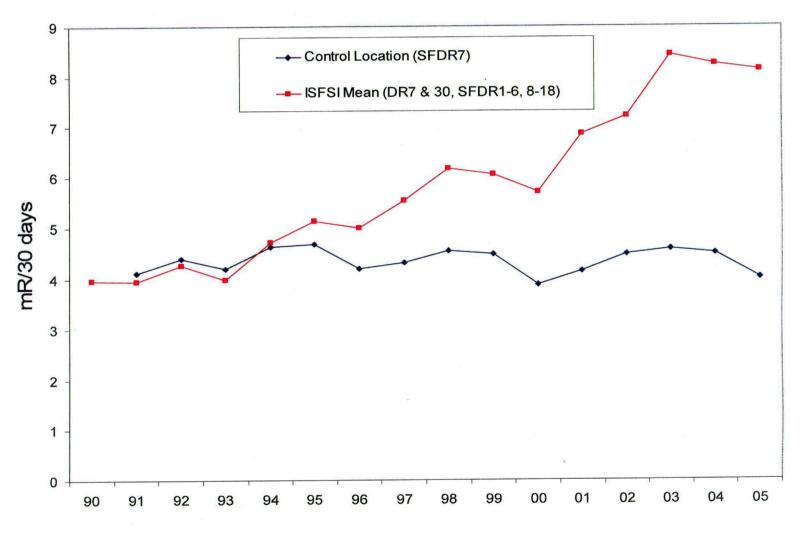


FIGURE 7 Mean TLD Gamma Dose, ISFSI

Table 3 Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Independent Spent Fuel Storage Installation Radiological Environmental Monitoring Program

T

T

E

E.

C.

Sample Type	Sampling Frequency ¹	Number of Locations	Number Collected	Analysis	Analysis Frequency ¹	Number Analyzed
Atmospheric Environment		14				
Air Particulates ²	W	5	258	Gross Beta	W	258
Failiculates				Gamma	MC	60
Direct Radiation	~			, u		
Ambient Radiation	Q (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	20	480	TLD	Q	480
Terrestrial Environment						
Vegetation	Q	5	20	Gamma	Q	20
Soil	Q	5	20	Gamma	Q	20

Γ

¹ W=weekly, M=monthly, Q=quarterly, SA=semiannual, A=annual, C=composite ² Beta counting is performed after >= 72 hour decay, Gamma spectroscopy performed on monthly composites of weekly samples

Table 4

$(x_i, b_i) \in \mathbb{R}^{n \times n}$	Annual Summary of Radioactivity in the Environs of the
Calvert	Cliffs Nuclear Power Plant Independent Spent Fuel Storage Installation

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	Indicator Locations Mean (F)/Range ¹	Location with Highest Annual Mean Name/Distance & Direction ²	Highest Annual Mean (F) / Range ¹	Control Locations Mean (F)/Range ¹
Atmospheric Environment			•	. :		• • • • • • • • • • • • • • • • •
Air Particulates (10 ⁻² pCi/m ³)	Gross Beta (258)	0.05	1.7 (206/206) (0.6-4.2)	Entrance to Camp Conoy A1 0.7 km S	1.8 (52/52) (0.6-4.2)	1.5 (52/52) (0.6-2.7)
Direct Radiation	•			-		
Ambient Radiation (mR/90 days)	TLD (480)		24.37 (456/456) (9.75-48.30)	West of ISFSI SFDR18 0.1 km W	40.44 (24/24) (38.21-41.93)	12.04 (24/24) (11.52-12.43)
Terrestrial Environment						
			· ·	• • • • • • • • •		· · · · · · · · · · · · · · · · · · ·
Soil (pCi/kg)	Gamma (20) Cs-137	17	357 (9/16) (38-852)	NNW of ISFSI SFS3 0.1 km NNW	565 (4/4) (291-852)	90 (4/4) (67-135)

27

¹ Mean and range based upon detectable measurements only. Fraction (F) of detectable measurement at specified locations is indicated in parentheses ² From the centerpoint of the ISFSI facility

IV. REFERENCES

- Cohen, L. K., "Preoperational Environmental Radioactivity Monitoring Program at Calvert Cliffs Units 1 and 2", NUS No. 882 Semiannual Report January-June 1971, December 1971; NUS No. 1025 Annual Report 1971, March 1973.
- (2) Cohen, L. K., "Preoperational Environmental Radioactivity Monitoring Program at Calvert Cliffs Units 1 and 2", NUS No. 1137 Annual Report 1972, December 1973.
- (3) Cohen, L. K. and Malmberg, M.S., "Preoperational Environmental Radioactivity Monitoring Program at Calvert Cliffs Units 1 and 2", NUS No. 1188, Annual Report 1973, October 1974.
- (4) Malmberg, M. S., "Preoperational Environmental Radioactivity Monitoring Program at Calvert Cliffs Units 1 and 2", NUS No. 1333, Data Summary Report, September 1970 to September 1974, July 1975
- (5) Calvert Cliffs Nuclear Power Plant, Units 1 and 2, License Nos. DPR-53 and DPR-69, Technical Specification 5.6.2; Annual Radiological Environmental Operating Report.
- (6) Offsite Dose Calculation Manual for the Calvert Cliffs Nuclear Power Plant.
- (7) CP-234, Specification and Surveillance for the Radiological Environmental Monitoring Program.
- (8) Constellation Energy Laboratory Procedures Manual, General Services Department.
- (9) Constellation Energy, "Land Use Survey Around Calvert Cliffs Nuclear Power Plant, August 2005."
- (10) Calvert Cliffs Independent Spent Fuel Storage Installation Technical Specifications, Appendix A to Materials License SNM-2505
- (11) Baltimore Gas and Electric Company, Radiological Environmental Monitoring Program Pre-Operational Report for the Calvert Cliffs Independent Spent Fuel Storage Installation, August 1990 - November 1993, February 1994.
- (12) CP-501, Liquid and Steam Sampling Techniques

APPENDIX A

Sample Locations for the REMP and the ISFSI

Appendix A contains information concerning the environmental samples which were collected during this operating period.

Sample locations and specific information about individual locations for the CCNPP REMP are given in Table A-1. Figure A-1 shows the location of the CCNPP in relation to Southern Maryland and the Chesapeake Bay. Figures A-2 and A-3 show the locations of the power plant sampling sites in relation to the plant site at different degrees of detail.

Sample locations and specific information about individual locations for the ISFSI radiological environmental monitoring program are given in Table A-2. Figures A-4 and A-5 show the locations of the ISFSI sampling sites in relation to the plant site at different degrees of detail.

Andreas and a state of the

and the second state of the second state of the

한 것같은 이상에 가장 이 가지 않는 것은 것은 것은 것은 것을 가지 않는다. 같은 이상에 가장 아니는 것은 것은 것은 것을 알았다. 이상 것을 많이다.

and the second second second provide the second second second second second second second second second second

and the second secon

and the second second second

30

(LEFT BLANK)

J

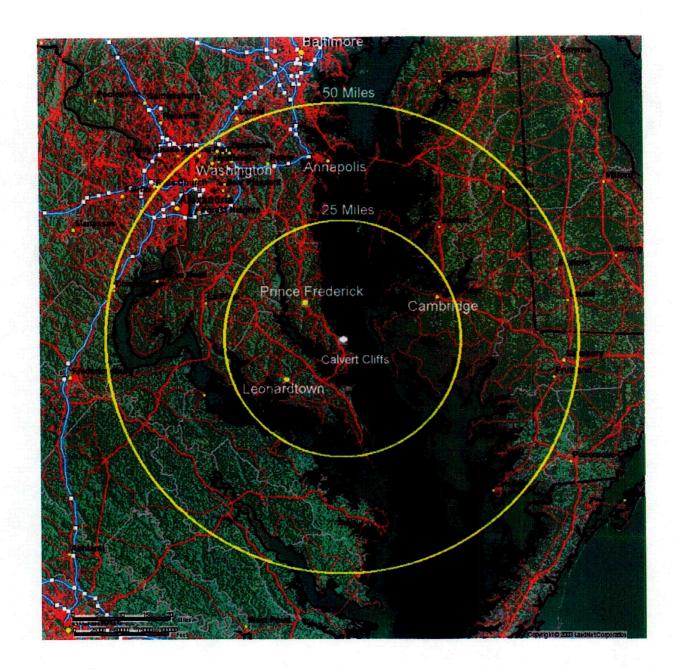
TABLE OF CONTENTS - SAMPLING LOCATIONS

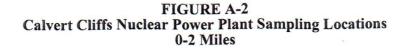
Table	Title	Page
A-1	Locations of Environmental Sampling Stations for the Calvert Cliffs Nuclear Power Plan	nt33
A-2	Locations of Environmental Sampling Stations for the Independent Spent Fuel Storage	
•	Installation at Calvert Cliffs	39
Figure	Title	Page
A-1	Map of Southern Maryland and Chesapeake Bay Showing Location of Calvert Cliffs	
	Nuclear Power Plant	34
A-2	Calvert Cliffs Nuclear Power Plant Sampling Locations, 0-2 Miles	35
A-3	Calvert Cliffs Nuclear Power Plant Sampling Locations, 0-10 Miles	37
A-4	Independent Spent Fuel Storage Installation Sampling Locations	40
A-5	Enlarged Map of the Independent Spent Fuel Storage Installation Sampling Locations	

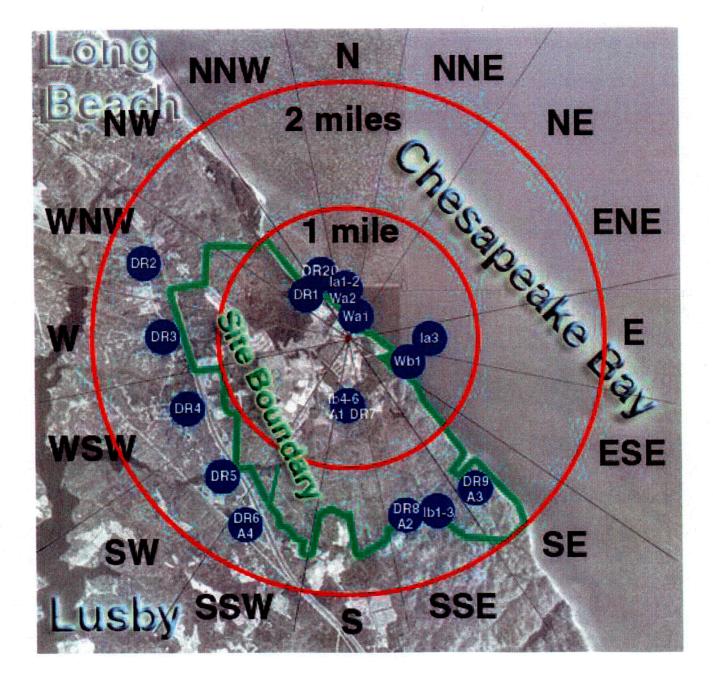
(LEFT BLANK)

TABLE A-1 Locations of Environmental Sampling Stations for the Calvert Cliffs Nuclear Power Plant

<u></u>		Dis	tance ¹	Direction ¹	
Station	Description	(KM)	(Miles)	(Sector)	
$a_{1,2}^{1} \neq a_{2}^{1} \neq a_{2}^{1}$	Air Particulate				
Al	On Site before Entrance to Camp Conoy	0.7	0.4	S	
A2	Camp Conoy at Emergency Siren	2.5	1.6	SSE	
A3	Bay Breeze Road	2.6	1.6	SE	
A4	Route 765 Lusby	2.9	1.8	SSW	
A5.	Emergency Operations Facility (EOF)	19.3	12.0	WNW	
	Direct Radiation				
DR1	On Site along Cliffs	0.6	0.4	NW	
DR2	Route 765, Auto Dump	2.7	1.7	WNW	
DR3	Route 765, Giovanni's Tavern (Knotty Pine)	2.3	1.4	W	
DR4	Route 765, across from White Sands Drive	2.0	1.2	WSW	
DR5	Route 765, John's Creek	2.4	1.5	SW	
DR6	Route 765 Lusby	2.9	1.8	SSW	
DR7 ²	On Site before Entrance to Camp Conoy	0.7	0.4	S	
DR8	Camp Conoy at Emergency Siren	2.5	1.6	SSE	
DR9	Bay Breeze Road	2.6	1.6	SE	
DR10	Calvert Beach Rd. and Decatur Street	6.4	4.0	NW	
DR11	Dirt road off Mackall & Parran Roads	6.6	4.1	WNW	
DR12	Mackall and Bowen Roads	6.7	4.2	W	
DR13	Mackall Rd. near Wallville	6.1	3.8	WSW	
DR14	Rodney Point	6.4	4.0	SW	
DR15	Mill Bridge and Turner Roads	6.2	3.9	SSW	
DR16	Across from Appeal School	6.5	4.0	S	
DR17	Cove Point and Little Cove Point Roads	5.9	3.7	SSE	
DR18	Cove Point	7.1	4.4	SE	
DR19	Long Beach	4.4	2.7	NW	
DR20	On Site near shore	0.4	0.2	NNW	
DR21	Emergency Operations Facility (EOF)	19.3	12.0	WNW	
DR22	Solomons Island	12.5	7.8	S	
DR23	Taylors Island, Carpenter's Property	12.6	7.8	ENE	
	Aquatic Organisms				
Ial,2	Discharge Area	0.3	0.2	^N N	
Ia3	Camp Conoy	0.9	0.6	Е	
Ia4,5	Patuxent River	N/A	N/A	N/A	
Ia6	Kenwood Beach	10.7	6.6	NNW	
Ia10	Hog Island	15.3	.9.5	SSE	
	Vegetation / Water / Soil				
Ib1,2,3	Garden Off Bay Breeze Road	2.6	1.6	SSE	
Ib4,5,6	On Site before Entrance to Camp Conoy	0.7	0.4	S	
Ib7,8,9	Emergency Operations Facility (EOF)	19.3	12.0	WNW	
Wal	Intake Area	0.2	0.1	NNE	
Wa2	Discharge Area	0.3	0.2	N	
Wb1	Shoreline at Barge Rd.	0.6	0.4	ESE	

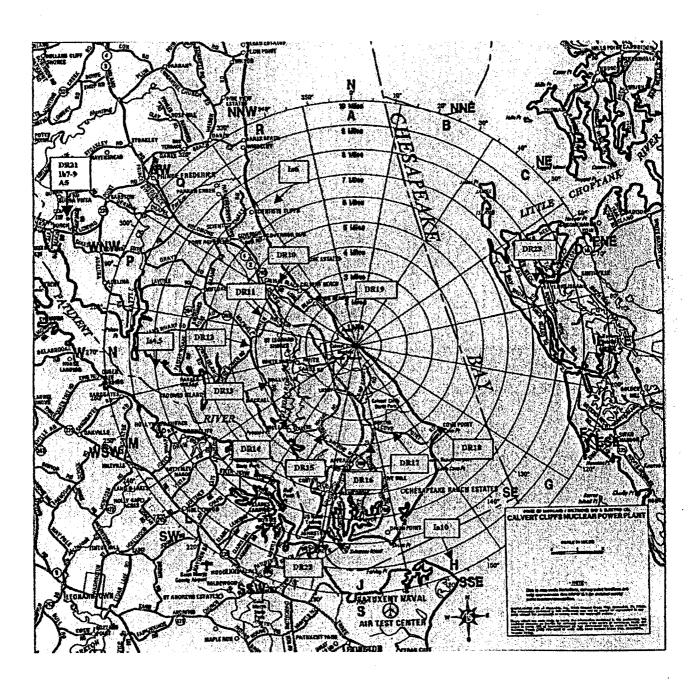

¹ Distance and direction from the central point between the two containment buildings. ² Common to both the REMP and ISFSI monitoring program


C05


FIGURE A-1 Map of Southern Maryland and Chesapeake Bay Showing Location of Calvert Cliffs Nuclear Power Plant

l

8

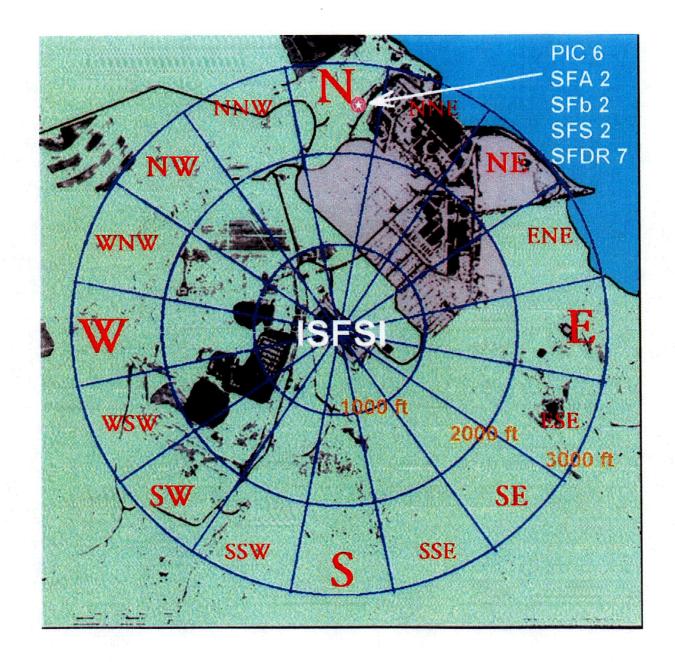

(LEFT BLANK)

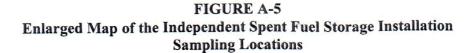
Π

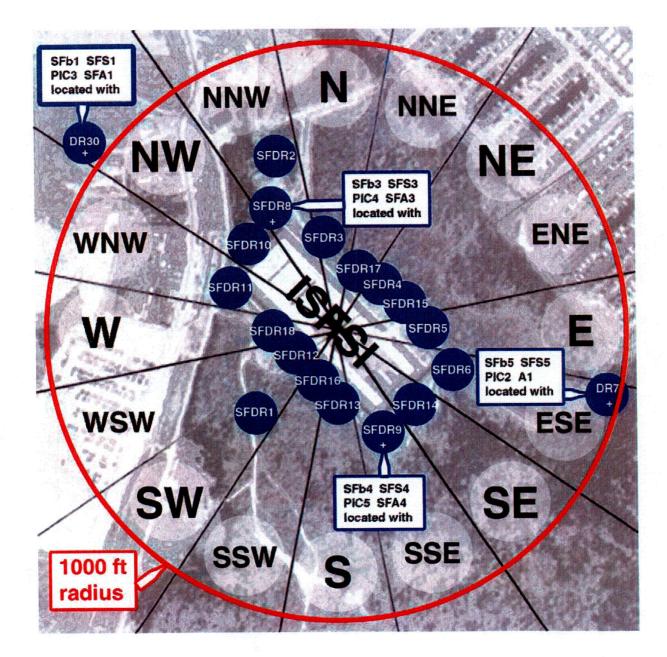
η

Π

FIGURE A-3 Calvert Cliffs Nuclear Power Plant Sampling Locations 0-10 Miles


(LEFT BLANK)


TABLE A-2 Locations of Environmental Sampling Stations for the Independent Spent Fuel Storage Installation at Calvert Cliffs.


<u> </u>		Distance ¹	Direction ¹ (Sector)	
Station	Description	(KM)		
的现代的	Air Particulate		AND STREET, STORE	
Al ²	On Site before Entrance to Camp Conoy	0.3	ESE	
SFA1	Meteorological Station	0.3	NW	
SFA2	CCNPP Visitor's Center	0.8	1 N	
SFA3	NNW of ISFSI	0.1	NNW	
SFA4	SSE of ISFSI	0.1	SSE	
Briter Market	Direct Radiation	an ant all residents as	<u>《子》的关于这</u> 实内的系列	
SFDR1	SW of ISFSI	0.2	SW	
SFDR2	NNW of ISFSI	0.2	NNW	
SFDR3	North of ISFSI	0.1	N	
SFDR4	NE of ISFSI	0.1	NE	
SFDR5	East of ISFSI	0.1	E	
SFDR6	ESE of ISFSI	0.1	ESE	
SFDR7	CCNPP Visitor's Center	0.8	N	
SFDR8	NNW of ISFSI	0.1	NNW	
SFDR9	SSE of ISFSI	0.1	SSE	
SFDR10	NW of ISFSI	0.1	NW	
SFDR11	WNW of ISFSI	0.1	WNW	
SFDR12	WSW of ISFSI	0.04	WSW	
SFDR13	South of ISFSI	0.1	S	
SFDR14	SE of ISFSI	0.1	SE	
SFDR15	ENE of ISFSI	0.1	ENE	
SFDR16	SSW of ISFSI	0.04	SSW	
SFDR17	NNE of ISFSI	0.1	NNE	
SFDR18	West of ISFSI	0.04	W	
DR7 ²	On Site before Entrance to Camp Conoy	0.3	ESE	
DR30	Meteorological Station	0.3	NW	
	Vegetation	CARTA AND A STREET	up cause i se a la Mark	
SFb1	Meteorological Station	0.3	NW	
SFb2	CCNPP Visitor's Center	0.8	N	
SFb3	NNW of ISFSI	0.1	NNW	
SFb4	SSE of ISFSI	0.1	SSE	
SFb5	On Site before Entrance to Camp Conov	0.3	ESE	
新建和机构	Soil		ANT CONTRACTOR	
SFS1	Meteorological Station	0.3	NW	
SFS2	CCNPP Visitor's Center	0.8	N	
SFS3	NNW of ISFSI	0.1	NNW	
SFS4	SSE of ISFSI	0.1	SSE	
SFS5	On Site before Entrance to Camp Conoy	0.3	ESE	

¹ Distance and direction from the central point of the ISFSI ² Common to both REMP and ISFSI monitoring program

FIGURE A-4 Independent Spent Fuel Storage Installation Sampling Locations

(LEFT BLANK)

<u>APPENDIX B</u> Analysis Results for the REMP and the ISFSI

Appendix B is a presentation of the analytical results for the CCNPP and the ISFSI radiological environmental monitoring programs.

ر.

(LEFT BLANK)

TABLE OF CONTENTS - ANALYTICAL RESULTS

Table	Title	Page
B-1	Concentration of Tritium and Gamma Emitters in Bay Water	46
B-2	Concentration of Gamma Emitters in the Flesh of Edible Fish	47
B-3	Concentration of Gamma Emitters in Oyster Samples	48
B-4	Concentration of Gamma Emitters in Shoreline Sediment	49
B-5	Concentration of Iodine-131 in Filtered Air	50
B-6	Concentration of Beta Emitters in Air Particulates	52
B-7	Concentration of Gamma Emitters in Air Particulates	56
B-8a	Concentration of Gamma Emitters in Vegetation Samples	57
B-8b	Concentration of Gamma Emitters in Vegetation From Locations Around the IFSFI	59
B-9	Concentration of Gamma Emitters in Soil Samples From Locations Around the ISFSI	60
B-10	Typical MDA Ranges for Gamma Spectrometry	61
B-11	Typical LLDs for Gamma Spectrometry	62
B-12	Direct Radiation	63

Sample Code	Sample	H-3 ¹	Gamma Emitters
-	Date	•	
Wa1	1/31/2005		*
Intake Vicinity	2/25/2005		*
	3/31/2005	<248	*
	4/28/2005		*
	5/31/2005		*
	6/30/2005	<249	*
	8/1/2005		*
	8/31/2005		*
	9/28/2005		*
	9/30/2005	<248	
	10/28/2005		*
	11/29/2005		*
	12/30/2005	x	*
	12/31/2005	<232	
Wa2	1/31/2005		*
Discharge Vicinity	2/25/2005		*
• •	3/31/2005	364 +/- 154	*
	4/28/2005		*
	5/31/2005		*
	6/30/2005	<247	*
	8/1/2005		*
	8/31/2005		*
	9/28/2005		*
	9/30/2005	337 +/- 151	
	10/28/2005		*
	11/29/2005		*
	12/30/2005		*
	12/31/2005	316 +/- 142	

Table B-1 Concentration of Tritium and Gamma Emitters in Bay Water (Results in units of pCi/kg (wet) +/- 2σ)

¹ Quarterly composites of monthly samples * All Non-Natural Gamma Emitters <MDA

7

Table B-2

SAMPLE CODE	Sample Date	Sample Type		Gamma Emitters
la1 Discharge Area	8/23/2005	Spot		• · · · · · · · · · · · · · · · · · · ·
la2 Discharge Area	8/23/2005	Striped bass		#
la4 ¹ Patuxent River	8/17/2005	Spot	2000 - 2000	*
la5 ¹ Patuxent River	8/17/2005	Striped bass		•
		÷	and and The second se	
		3 J		
¹ Control location * All Non-Natural Gamm	na Emitters <mda< td=""><td></td><td></td><td></td></mda<>			
				en e
			,	

Concentration of Gamma Emitters in the Flesh of Edible Fish (Results in units of pCi/kg (wet) +/- 2σ)

Table B-3

Concentration of Gamma Emitters in Oyster Samples (Results in units of pCi/kg (wet) +/- 2σ)

SAMPLE CODE	Sample Date	Gamma Emitters	···· · · · · · · · · · · · · · · · · ·
la3	3/30/2005	. *	,
Camp Conoy	6/23/2005	· •	the contract of the second sec
	8/23/2005	*	
	10/27/2005	*	
la6 ¹	3/30/2005	*	
Kenwood Beach	6/23/2005	*	
	8/23/2005	*	
	10/27/2005	*	

¹ Control location

*All Non-Natural Gamma Emitters <MDA

Table B-4

Concentration of Gamma Emitters in Shoreline Sediment (Results in units of pCi/kg (dry) +/- 2σ)

Wb1	5/9/2005	•	
Shoreline at Barge Rd.	10/3/2005	antan antan antan antan Antana antan Antana antan	 Apple of the second seco
,		in an Arlanda Anna Arlanda Maria an Arlanda	
			e B
. ·			
			•
	•		
		an 1995 - Angelander and	an a
* All Non-Natural Gamma Emitters <	MDA		

Table B-5

Concentration of Iodine-131 in Filtered Air (Results in units of 10^{-3} pCi/m³ +/- 2σ)

	·					. –1
Start Date	Stop Date	A1	A2	A3	A4	A5 ¹
		Entrance to	Camp Conoy	Bay Breeze	Route 765 at	EOF
		Camp Conoy	Siren	Rd	Lusby	
1/3/2005	1/10/2005	*	*	*	*	*.
1/10/2005	1/17/2005	*	*	*	*	*
1/17/2005	1/24/2005	*	*	*	*	* 1
1/24/2005	1/31/2005	*	*	*	*	*
1/24/2005	1/3 1/2003					
1/31/2005	2/7/2005	*	*	*	* -	* .
2/7/2005	2/14/2005	*	*	*	*	* ·
2/14/2005	2/21/2005	*	*	*	*	*
2/21/2005	2/28/2005	*	*	*	*	*
2/28/2005	3/7/2005	*	*	*	•	*
3/7/2005	3/14/2005	*	*	*	*	* .
3/14/2005	3/21/2005	*	*	*	*	* .
3/21/2005	3/28/2005	*	*	*	* 1	*
3/28/2005	4/4/2005	*	*	*	*	*
4/4/2005	4/11/2005	*	*	*	*	.*
4/11/2005	4/18/2005	*	*	* .	*	* .
4/18/2005	4/25/2005	*	*	*	*	*
4/25/2005	5/2/2005	*	*	*	*	*
5/2/2005	5/9/2005	*	*	*	*	*
5/9/2005	5/16/2005	*	*	*	*	*
5/16/2005	5/23/2005	*	*	*	*	· •
5/23/2005	5/30/2005	*	*	*	*	*
					_	
5/30/2005	6/6/2005	*	*	*	*	*
6/6/2005	6/13/2005		*	*	*	*
6/13/2005	6/20/2005	*	*	*	*	*
6/20/2005	6/27/2005	-		-	-	-
6/27/2005	7/4/2005	*	*	*	*	★
7/4/2005	7/11/2005	*	*	*	*	*
7/11/2005	7/18/2005	•	*	*	*	*
7/18/2005	7/25/2005	•	*	*	*	*
7/25/2005	8/1/2005	*	*	*	*	*
1120/2000	0/1/2003					
8/1/2005	8/8/2005	*	*	*	•	*
8/8/2005	8/15/2005	.	*	*	*	*
8/15/2005	8/22/2005		*	*	*	*
		* .	*	*	*	*
8/22/2005	8/29/2005	# .		-	*	*

¹ Control location

* <MDA

Table B-5 - Continued

Start Date	Stop Date	A1 Entrance to Camp Conoy	A2 Camp Conoy Siren	A3 Bay Breeze Rd	A4 Route 765 at Lusby	A5 ¹ EOF
				· · · · · ·		
8/29/2005	9/5/2005	. 	* *	•	±	*
9/5/2005	9/12/2005	*	*	*	🔹 – K. S.	· •
9/12/2005	9/19/2005	*	*	*	• · · · · · · ·	* 1977 - 1
9/19/2005	9/26/2005	*	, 🔹	*	🔹 - ²	*
	9/20/2005	•	•	•	*	•
9/26/2005	10/3/2005					
40/0/0005	40400005	•	•	•	•	
10/3/2005	10/10/2005		-	-		
10/10/2005	10/17/2005					
10/17/2005	10/24/2005	*	· •	*	*	10 * 10 mere
10/24/2005	10/31/2005	*	*	*	• St. 1	*
	• .				_	
10/31/2005	11 <i>/7/</i> 2005	*	4 · · · · · ·	* *	. . 2	- •
11/7/2005	11/14/2005	` +	*	*	1 - *	. •
11/14/2005	11/21/2005	* 5	*	*	*	
11/21/2005	11/28/2005	*	* -	*	 * 1	tta t a ta ta ta
11/28/2005	12/5/2005	* •	*	*	*	*
12/5/2005	12/12/2005	*	* · · ·	*	+	*
12/12/2005	12/19/2005	*	*	•	★ 1. 10	*
12/19/2005	12/26/2005	* .	*	*	🔹 de la companya	* ·
12/27/2005	1/2/2006	*	*	•	★ 1	+
.22112000	1122000					

Concentration of Iodine-131 in Filtered Air (Results in units of 10^{-3} pCi/m³ +/- 2σ)

¹ Control location ² Sampler malfunction; loss of data

Table B-6

Start Date	Stop Date	A1 Entrance to Camp Conoy	A2 Camp Conoy Siren	A3 Bay Breeze Rd	A4 Route 765 at Lusby	A5 ¹ EOF
				• •		
1/3/2005	1/10/2005	1.2 +/- 0.2	0.9 +/- 0.2	1.0 +/- 0.2	1.1 +/- 0.2	1.0 +/- 0.2
1/10/2005	1/17/2005	1.9 +/- 0.2	1.7 +/- 0.2	1.6 +/- 0.2	2.1 +/- 0.2	1.8 +/- 0.2
1/17/2005	1/24/2005	2.5 +/- 0.2	2.1 +/- 0.2	2.1 +/- 0.2	2.2 +/- 0.2	2.4 +/- 0.2
1/24/2005	1/31/2005	1.8 +/- 0.2	1.4 +/- 0.2	1.5 +/- 0.2	2.0 +/- 0.2	1.1 +/- 0.2
1/31/2005	2/7/2005	2.2 +/- 0.2	1.7 +/- 0.2	1.9 +/- 0.2	2.1 +/- 0.2	2.2 +/- 0.2
2/7/2005	2/14/2005	1.5 +/- 0.2	1.4 +/- 0.2	1.4 +/- 0.2	1.5 +/- 0.2	1.7 +/- 0.3
2/14/2005	2/21/2005	2.1 +/- 0.3	1.6 +/- 0.2	1.7 +/- 0.2	2.0 +/- 0.2	1.9 +/- 0.2
2/21/2005	2/28/2005	2.4 +/- 0.3	1.2 +/- 0.2	1.5 +/- 0.2	1.6 +/- 0.2	1.7 +/- 0.2
2/28/2005	3/7/2005	1.3 +/- 0.2	1.5 +/- 0.2	1.6 +/- 0.2	1.6 +/- 0.2	1.5 +/- 0.2
3/7/2005	3/14/2005	2.0 +/- 0.2	1.6 +/- 0.2	2.0 +/- 0.2	1.8 +/- 0.2	2.0 +/- 0.2
3/14/2005	3/21/2005	1.8 +/- 0.2	1.4 +/- 0.2	1.4 +/- 0.2	1.8 +/- 0.2	1.5 +/- 0.2
3/21/2005	3/28/2005	1.1 +/- 0.2	0.6 +/- 0.1	0.9 +/- 0.2	0.8 +/- 0.2	1.0 +/- 0.2
3/28/2005	4/4/2005	0.6 +/- 0.2	0.6 +/- 0.2	0.5 +/- 0.2	1.1 +/- 0.2	0.8 +/- 0.2
4/4/2005	4/11/2005	1.8 +/- 0.2	1.4 +/- 0.2	1.4 +/- 0.2	1.6 +/- 0.2	1.8 +/- 0.2
4/11/2005	4/18/2005	1.7 +/- 0.2	1.2 +/- 0.2	1.8 +/- 0.2	1.7 +/- 0.2	1.8 +/- 0.2
4/18/2005	4/25/2005	2.0 +/- 0.3	1.7 +/- 0.2	1.7 +/- 0.2	1.5 +/- 0.2	1.6 +/- 0.2
4/25/2005	5/2/2005	1.2 +/- 0.2	1.2 +/- 0.2	1.1 +/- 0.2	1.7 +/- 0.2	1.0 +/- 0.2
5/0/0005	E IO IO OO E	40.400	40.400	40.400	40.000	40.400
5/2/2005	5/9/2005	1.9 +/- 0.2	1.2 +/- 0.2	1.3 +/- 0.2	1.6 +/- 0.2	1.6 +/- 0.2
5/9/2005	5/16/2005	0.9 +/- 0.2	0.8 +/- 0.2	0.9 +/- 0.2	1.1 +/- 0.2	1.1 +/- 0.2
5/16/2005	5/23/2005	1.4 +/- 0.3	1.0 +/- 0.2	1.1 +/- 0.2	1.2 +/- 0.2	1.2 +/- 0.2
5/23/2005	5/30/2005	1.1 +/- 0.2	0.9 +/- 0.2	0.9 +/- 0.2	1.1 +/- 0.2	1.2 +/- 0.2
5/30/2005	6/6/2005	0.8 +/- 0.2	0.9 +/- 0.2	0.5 +/- 0.2	0.9 +/- 0.2	1.0 +/- 0.2
6/6/2005	6/13/2005	1.4 +/- 0.2	0.5 +/- 0.2	0.8 +/- 0.2	1.3 +/- 0.2	1.1 +/- 0.2
6/13/2005	6/20/2005	0.7 +/- 0.2	1.0 +/- 0.2	0.8 +/- 0.2	1.0 +/- 0.2	0.9 +/- 0.2
6/20/2005	6/27/2005	1.3 +/- 0.2	1.3 +/- 0.2	1.0 +/- 0.2	1.6 +/- 0.2	1.2 +/- 0.2
0/20/2000	0/2/12000	1.0 1/2 0.2	1.0 17-0.2		1,0 1/- 0.2	1.2 17-0.2
6/27/2005	7/4/2005	1.1 +/- 0.2	0.6 +/- 0.2	0.5 +/- 0.2	1.1 +/- 0.2	1.2 +/- 0.2
7/4/2005	7/11/2005	1.4 +/- 0.2	0.5 +/- 0.2	0.6 +/- 0.2	1.1 +/- 0.2	1.6 +/- 0.3
7/11/2005	7/18/2005	1.2 +/- 0.2	0.3 +/- 0.2	0.6 +/- 0.2	1.0 +/- 0.2	1.1 +/- 0.2
7/18/2005	7/25/2005	1.6 +/- 0.2	1.2 +/- 0.2	1.2 +/- 0.2	1.0 +/- 0.3	1.6 +/- 0.2
7/25/2005	8/1/2005	1.1 +/- 0.2	2.1 +/- 0.2	2.4 +/- 0.2	2.0 +/- 0.2	2.5 +/- 0.2
8/1/2005	8/8/2005	2.9 +/- 0.3	0.8 +/- 0.3	0.8 +/- 0.2	2.4 +/- 0.3	2.6 +/- 0.3
8/8/2005	8/15/2005	1.8 +/- 0.2	1.1 +/- 0.2	1.0 +/- 0.2	1.9 +/- 0.2	1.9 +/- 0.2
8/15/2005	8/22/2005	1.1 +/- 0.2	1.0 +/- 0.2	0.6 +/- 0.2	1.6 +/- 0.2	1.3 +/- 0.2
8/22/2005	8/29/2005	1.9 +/- 0.2	0.6 +/- 0.2	0.8 +/- 0.2	1.6 +/- 0.2	1.7 +/- 0.2
· ·				1		

Concentration of Beta Emitters in Air Particulates (Results in units of 10⁻² pCi/m³ +/- 2σ)

¹ Control Location

٦,

Table B-6 - Continued

Start Date	Stop Date	A1 Entrance to Camp Conoy	A2 Camp Conoy Siren	A3 Bay Breeze Rd	A4 Route 765 at Lusby	A5 ¹ EOF
8/29/2005	9/5/2005	2.0 +/- 0.2	0.5 +/- 0.2	0.6 +/- 0.2	1.7 +/- 0.2	1.6 +/- 0.2
9/5/2005	9/12/2005	1.9 +/- 0.2	1.1 +/- 0.2	1.2 +/- 0.2	2.2 +/- 0.2	2.5 +/- 0.2
9/12/2005	9/19/2005	1.4 +/- 0.2	0.7 +/- 0.2	0.8 +/- 0.2	1.4 +/- 0.2	1.5 +/- 0.2
9/19/2005	9/26/2005	2.7 +/- 0.2	1.5 +/- 0.2	2.1 +/- 0.2	3.1 +/- 0.3	3.3 +/- 0.3
9/26/2005	10/3/2005	1.7 +/- 0.2	1.7 +/- 0.2	1.1 +/- 0.2	1.8 +/- 0.2	1.7 +/- 0.2
		•				
10/3/2005	10/10/2005	0.9 +/- 0.2	0.8 +/- 0.2	⇒ 1.1 +/- 0.2	1.1 +/- 0.2	1.2 +/- 0.2
10/10/2005	10/17/2005	1.2 +/- 0.2	0.4 +/- 0.2	0.3 +/- 0.1	0.9 +/- 0.2	1.0 +/- 0.2
10/17/2005	10/24/2005	1.8 +/- 0.2	i 1.3 +/- 0.2 👘	0.8 +/- 0.1	2.0 +/- 0.2	1.5 +/- 0.2
10/24/2005	10/31/2005	2.3 +/- 0.2	0.8 +/- 0.2	1.0 +/- 0.2	1.9 +/- 0.3	1.4 +/- 0.2
			· · ·		· .	
10/31/2005	11/7/2005	0.0 0.2	🐂 1.3 +/- 0.2 🕬	. E.O O.E	•	2.7 +/- 0.2
11/7/2005	11/14/2005	2.7 +/- 0.2	0.8 +/- 0.3	1.1 +/- 0.2	2.6 +/- 0.3	2.2 +/- 0.2
11/14/2005	11/21/2005	🐪 3.9 +/- 0.3 🖓	0.7 +/- 0.3	2.4 +/- 0.2	3.1 +/- 0.3	2.8 +/- 0.3
11/21/2005	11/28/2005	1.8 +/- 0.3	2.4 +/- 0.2	1.4 +/- 0.2	1.8 +/- 0.3	1.6 +/- 0.2
11/28/2005	12/5/2005	2.0 +/- 0.3	1.6 +/- 0.2	1.3 +/- 0.2	2.4 +/- 0.3	3.1 +/- 0.2
12/5/2005	12/12/2005	4.2 +/- 0.3		2.4 +/- 0.2	5.7 +/- 0.4	2.6 +/- 0.2
12/12/2005	12/19/2005	3.5 +/- 0.3	5 2.1 +/- 0.2	2.6 +/- 0.2	3.1 +/- 0.3	3.0 +/- 0.3
12/19/2005	12/27/2005	3.0 +/- 0.3	2.2 +/- 0.2	2.2 +/- 0.2	3.4 +/- 0.3	2.5 +/- 0.2
12/27/2005	1/2/2006	2.2 +/- 0.3	1.3 +/- 0.2	1.5 +/- 0.2	2.0 +/- 0.3	1.9 +/- 0.3

Concentration of Beta Emitters in Air Particulates (Results in units of 10^{-2} pCi/m³ +/- 2σ)

¹ Control location ² Sample malfunction; loss of data

Table B-6 - Continued

Start Date	Stop Date	SFA1	SFA2 ¹	SFA3	SFA4
		MET Station	Visitors Center	NNW of ISFSI	SSE of ISFSI
				:	
1/3/2005	1/10/2005	0.8 +/- 0.2	1.0 +/- 0.2	1.0 +/- 0.2	1.0 +/- 0.2
1/10/2005	1/17/2005	1.7 +/- 0.2	1.6 +/- 0.2	1.9 +/- 0.2	2.1 +/- 0.2
1/17/2005	1/24/2005	2.4 +/- 0.2	2.2 +/- 0.2	2.6 +/- 0.2	2.8 +/- 0.3
1/24/2005	1/31/2005	1.4 +/- 0.2	1.6 +/- 0.2	1.5 +/- 0.2	2.0 +/- 0.2
1/31/2005	2/7/2005	1.9 +/- 0.2	2.2 +/- 0.2	2.3 +/- 0.2	2.2 +/- 0.2
2/7/2005	2/14/2005	1.6 +/- 0.2	1.3 +/- 0.2	I.O II OL	1.8 +/- 0.2
2/14/2005	2/21/2005	1.5 +/- 0.2	1.8 +/- 0.2	2.1 +/- 0.2	2.2 +/- 0.2
2/21/2005	2/28/2005	1.4 +/- 0.2	1.5 +/- 0.2	1.7 +/- 0.2	2.0 +/- 0.2
	270005	40400	45.000	47.100	40.400
2/28/2005	3/7/2005	1.6 +/- 0.2	1.5 +/- 0.2	1.7 +/- 0.2	1.8 +/- 0.2
3/7/2005	3/14/2005	1.7 +/- 0.2	1.6 +/- 0.2	2.1 +/- 0.2	1.8 +/- 0.2
3/14/2005	3/21/2005	1.3 +/- 0.2	1.5 +/- 0.2	1.6 +/- 0.2	2.1 +/- 0.2
3/21/2005	3/28/2005	0.7 +/- 0.2	0.7 +/- 0.2	0.7 +/- 0.2	0.8 +/- 0.2
3/28/2005	4/4/2005	0.7 +/- 0.2	0.6 +/- 0.2	0.7 +/- 0.2	0.7 +/- 0.2
4/4/2005	4/11/2005	1.5 +/- 0.2	1.8 +/- 0.2	1.6 +/- 0.2	1.7 +/- 0.2
4/11/2005	4/18/2005	1.0 +/- 0.2	1.7 +/- 0.2	1.6 +/- 0.2	1.8 +/- 0.2
4/18/2005	4/25/2005	1.4 +/- 0.2	1.6 +/- 0.2	1.8 +/- 0.2	1.5 +/- 0.2
4/25/2005	5/2/2005	1.3 +/- 0.2	1.4 +/- 0.2	1.4 +/- 0.2	1.2 +/- 0.2
HIZJIZUUJ	51212005	1.5 47-0.2	1.4 +/- 0.2	1.4 +1- 0.2	1.2 +1- 0.2
5/2/2005	5/9/2005	1.4 +/- 0.2	1.5 +/- 0.2	1.6 +/- 0.2	1.3 +/- 0.2
5/9/2005	5/16/2005	0.8 +/- 0.2	0.9 +/- 0.2	1.2 +/- 0.2	0.9 +/- 0.2
5/16/2005	5/23/2005	1.1 +/- 0.2	1.1 +/- 0.2	1.3 +/- 0.2	0.8 +/- 0.1
5/23/2005	5/30/2005	1.0 +/- 0.2	1.2 +/- 0.2	1.2 +/- 0.2	1.0 +/- 0.2
5/30/2005	6/6/2005	0.8 +/- 0.2	0.9 +/- 0.2	1.1 +/- 0.2	0.7 +/- 0.2
6/6/2005	6/13/2005	1.3 +/- 0.2	1.4 +/- 0.2	1.3 +/- 0.2	1.2 +/- 0.2
6/13/2005	6/20/2005	1.1.+/- 0.2	1.0 +/- 0.2	1.0 +/- 0.2	1.1 +/- 0.2
6/20/2005	6/27/2005	1.1 +/- 0.2	1.3 +/- 0.2	1.0 +/- 0.2	1.0 +/- 0.2
0070005					
6/27/2005	7/4/2005	1.3 +/- 0.2	0.8 +/- 0.2	0.7 +/- 0.1	1.0 +/- 0.2
7/4/2005	7/11/2005	1.5 +/- 0.3	1.6 +/- 0.2	1.2 +/- 0.2	1.3 +/- 0.2
7/11/2005	7/18/2005	0.9 +/- 0.2	0.9 +/- 0.2	0.9 +/- 0.2	0.7 +/- 0.2
7/18/2005	7/25/2005	1.3 +/- 0.2	1.6 +/- 0.2	1.4 +/- 0.2	1.2 +/- 0.2
7/25/2005	8/1/2005	2.3 +/- 0.2	1.7 +/- 0.2	1.0 +/- 0.1	1.0 +/- 0.1
8/1/2005	8/8/2005	2	1.1 +/- 0.2	3.3 +/- 0.3	1.9 +/- 0.2
8/8/2005	8/15/2005	1.8 +/- 0.2	2.2 +/- 0.2	2.4 +/- 0.2	1.9 +/- 0.2
8/15/2005	8/22/2005	1.2 +/- 0.2	2.2 +/- 0.2 1.7 +/- 0.2	2.4 +/- 0.2 1.6 +/- 0.2	0.9 +/- 0.2
8/22/2005	8/29/2005	1.5 +/- 0.2	1.5 +/- 0.2	1.5 +/- 0.2	0.9 +/- 0.2 1.7 +/- 0.2
012212000	0/23/2000	1.0 7/- 0.2	1.0 7/- 0.2	1.0 1/- 0.2	1.1 TI- U.Z

Concentration of Beta Emitters in Air Particulates (Results in units of 10^{-2} pCi/m³ +/- 2σ)

¹ Control location ² Sample malfunction; loss of data

Table B-6 - Continued

Start Date	Stop Date	SFA1 MET Station	SFA2 ¹ Visitors Center	SFA3 NNW of ISFSI	SFA4 SSE of ISFSI
		Strate in the	ale de la companya de		
8/29/2005	9/5/2005	1.3 +/- 0.2	1.5 +/- 0.2	1.6 +/- 0.2	1.4 +/- 0.2
9/5/2005	9/12/2005	1.6 +/- 0.2	2.0 +/- 0.2	2.4 +/- 0.2	1.9 +/- 0.2
9/12/2005	9/19/2005	1.7 +/- 0.2	1.7 +/- 0.2	1.8 +/- 0.2	1.6 +/- 0.2
9/19/2005	9/26/2005	2.5 +/- 0.2	2.7 +/- 0.2	3.0 +/- 0.2	2.6 +/- 0.2
9/26/2005	10/3/2005	1.7 +/- 0.2	1.6 +/- 0.2		1.5 +/- 0.2
10/3/2005	10/10/2005	1.0 +/- 0.2	1.1 +/- 0.2	1.2 +/- 0.2	0.9 +/- 0.2
10/10/2005	10/17/2005	1.0 +/- 0.2	0.9 +/- 0.2	1.1 +/- 0.2	0.8 +/- 0.2
10/17/2005	10/24/2005	1.5 +/- 0.2	1.5 +/- 0.2	2	1.7 +/- 0.2
10/24/2005	10/31/2005	1.3 +/- 0.2	1.2 +/- 0.2	1.4 +/- 0.2	1.6 +/- 0.2
10/31/2005	11/7/2005	3.0 +/- 0.3	2.4 +/- 0.2	2.8 +/- 0.2	2.6 +/- 0.2
11/7/2005	11/14/2005	2.5 +/- 0.3	2.6 +/- 0.2	2.6 +/- 0.2	2.2 +/- 0.2
11/14/2005	11/21/2005	1.9 +/- 0.2	1.8 +/- 0.2	2.1 +/- 0.2	2.6 +/- 0.3
11/21/2005	11/28/2005	1.2 +/- 0.2	1.3 +/- 0.2	1.7 +/- 0.2	1.7 +/- 0.2
11/28/2005	12/5/2005	2.1 +/- 0.2	1.8 +/- 0.2	1.8 +/- 0.2	1.9 +/- 0.2
12/5/2005	12/12/2005	2.9 +/- 0.3	2.4 +/- 0.2	2.9 +/- 0.2	2.8 +/- 0.2
12/12/2005	12/19/2005	2.6 +/- 0.3	2.0 +/- 0.2	2.2 +/- 0.2	1.8 +/- 0.2
12/19/2005	12/27/2005	2.1 +/- 0.2	2.1 +/- 0.2	2.2 +/- 0.2	2.2 +/- 0.2
12/27/2005	1/2/2006	1.9 +/- 0.3	1.8 +/- 0.2	1.8 +/- 0.2	2.1 +/- 0.3

Concentration of Beta Emitters in Air Particulates (Results in units of 10⁻² pCi/m³ +/- 2σ)

¹Control location ²Sample malfunction; loss of data

Table B-7

Sample Date	A1 Entrance to Camp Conoy	A2 Camp Conoy Siren	A3 Bay Breeze Rd	A4 Route 765 at Lusby	A5 ¹ EOF
1/15/2005	*	*	*	. *	*
2/15/2005	*	*	*	*	*
3/15/2005	*	*	*	*	*
4/15/2005	*	*	*	*	*
5/15/2005	* .	۰. ا	. *	*	*
6/15/2005	*	*	•	*	*
7/15/2005	*	*	•	*	*
8/15/2005	. 🔹	*	. +	*	*
9/15/2005	*	*	*	*	*
10/15/2005	*	*	*	*	*
11/15/2005	*	*	*	. +	*
12/15/2005	*	*	*	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	*
Sample Date	SFA1 MET Station	SFA Visitors C		SFA3 W of ISFSI	SFA4 SSE of ISFSI
1/15/2005	*	*	· · ·		*
2/15/2005	a ≜ 12	. +			★ 2 1 1 1
3/15/2005	· · · · · · · · · · · · · · · · · · ·	. *		*	* ·
4/15/2005	*	*		*	*
5/15/2005	*	*		*	* 1
6/15/2005	*	*		*	*
7/15/2005	*	*		*	*
8/15/2005	*	*		*	*
9/15/2005	*	. *		44 J.	*
10/15/2005	*	*		* *	*
11/15/2005 12/15/2005	*	*		*	*
			· · · · · · · · · · · · · · · · · · ·		
			· · · ·		
		• :			
	۰.				

Concentration of Gamma Emitters in Air Particulates (Results in units of 10⁻³ pCi/m³ +/- 2σ)

¹ Control location ^{*} All Non-Natural Gamma Emitters <MDA

Table B-8a

SAMPLE CODE	Sample Date	Sample Type	Gamma Emitters
11. A	0.007/0005	0-11	
lb1	6/27/2005	Collards	
Bay Breeze Rd	7/25/2005	Collards	■ ÷ ,
	8/29/2005	Collards	
· .	9/26/2005	Collards	
lb2	6/27/2005	Cabbage	★ 100 100 100 100 100 100 100 100 100 10
Bay Breeze Rd	7/25/2005	Cabbage	*
	8/29/2005	Cabbage	*
	9/26/2005	Cabbage	★ 1.1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
lb3	6/27/2005	Broccoli	A set of the set of
Bay Breeze Rd	7/25/2005	Cauliflower	
-	8/29/2005	Brussels sprouts	۸۰ ۲۰۰۰ ۲ ۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲
	9/26/2005	Brussels sprouts	*
		4 B	
164	6/27/2005	Collards	•
Camp Conoy Entrance	7/25/2005 ~	Collards	
	8/29/2005	Collards	•
	9/26/2005	Collards	★ 100 100 100 100 100 100 100 100 100 10
lb5	6/27/2005	Cabbage	an a
Camp Conoy Entrance	7/25/2005	Cabbage	*
Camp Concy Entrance	8/29/2005	Cabbage	*
· ·	9/26/2005	Cabbage	*
,	9/20/2003	Cabbaye	
lb6	6/27/2005	Broccoli	•
Camp Conoy Entrance	7/25/2005	Cauliflower	*
• •	8/29/2005	Brussels sprouts	*
	9/26/2005	Brussels sprouts	* .
lb7 ¹	6/27/2005	Collards	*
EOF	7/25/2005	Collards	*
	8/29/2005	Collards	*
	9/26/2005	Collards	*
	312012003	COllary	
lb8 ¹	6/27/2005	Cabbage	*
EOF	7/25/2005	Cabbage	*
	8/29/2005	Cabbage	*
	9/26/2005	Cabbage	*

Concentration of Gamma Emitters in Vegetation Samples (Results in units of pCi/kg (wet) $+/-2\sigma$)

¹ Control location ^{*} All Non-Natural Gamma Emitters <MDA

Table B-8a - Continued

Concentration of Gamma Emitters in Vegetation Samples (Results in units of pCi/kg (wet) +/- 2σ)

SAMPLE CODE	Sample Date	Sample Type	Gamma Emitters
lb9 ¹	6/27/2005	Broccoli	*
EOF	7/25/2005	Cauliflower	*
	8/29/2005	Brussels sprouts	• · · · · · · · · · · · · · · · · · · ·
	9/26/2005	Brussels sprouts	•

¹ Control location

Table B-8b

Concentration of Gamma Emitters in Vegetation From Locations Around the IFSFI (Results in units of pCi/kg (wet) +/- 2σ)

	· · · ·		N 1	
SAMPLE CODE	Sample	i na rita	Gamma Emitters	· · · · · · · · · · · · · · · · · · ·
	Date	•••••		
			۰. ۲	2014 - 1 10 - 1
SFb1	3/21/2005	5 ° .	tan an a	
MET Station	5/9/2005		· · · · · · · · · · · · · · · · · · ·	
	9/5/2005	· .	*	
	12/12/2005		*	:
SFb2 ¹	3/21/2005		*	
Visitor's Center	5/9/2005		*	
	9/5/2005		* 11	
	12/12/2005		*	*
SFb3	3/21/2005		*	
NNW of ISFSI	5/9/2005		*	•.
	9/5/2005		*	
	12/12/2005		*	
SFb4	3/21/2005		•	
SSE of ISFSI	5/9/2005		*	
	9/5/2005		*	
	12/12/2005		*	
SFb5	3/21/2005		*	
On Site before Entrance to Camp	5/9/2005		*	
Conoy	9/5/2005		*	
-	12/12/2005		*	

¹ Control location

* All Non-Natural Gamma Emitters < MDA

Table B-9

Concentration of Gamma Emitters in Soil Samples From Locations Around the ISFSI (Results in units of pCi/kg (dry) +/- 2σ)

	•		
SAMPLE CODE	Sample Date	Cs-137	Gamma Emitters
SFS1	3/21/2005	1	*
MET station	5/9/2005	1 · · · · ·	*
	9/5/2005	1	. *
	12/12/2005	1	*
SFS2 ²	3/21/2005	82 +/- 25	*
Visitors Center	5/9/2005	67 +/- 49	*
	9/5/2005	135 +/- 81	*
	12/12/2005	77 +/- 53	*
FS3	3/21/2005	582 +/- 115	
INW of ISFSI	5/9/2005	536 +/- 81	*
	9/5/2005	852 +/- 117	*
	12/12/2005	291 +/- 105	*
FS4	3/21/2005	1	*
SSE of ISFSI	5/9/2005	1	*
	9/5/2005	1	. *
	12/12/2005	38 +/- 39	*
SFS5	3/21/2005	285 +/- 69	*
Entrance to Camp	5/9/2005	191 +/- 50	*
Conoy	9/5/2005	188 +/- 45	*
,	12/12/2005	247 +/- 60	*

¹ This isotope <MDA ² Control Location

* All Other Non-Natural Gamma Emitters <MDA

TABLE B-10

Selected Nuclides	Bay Water pCi/l	Fish pCi/kg	Shellfish pCi/kg	Shoreline pCi/kg	Vegetation pCi/kg	Soil pCi/kg	Particulates 10 ⁻³ pCi/m ³
Na-22	1.6 - 3.8	21 – 29	18 – 30	28 – 29	16 – 37	33 - 95	1.3 – 3.4
Cr-51	12 - 40	160 - 166	118 - 176	208 - 213	14 - 164	203 - 486	13 – 39
Mn-54	1.4 - 3.2	16 – 20	15 – 22	26 – 30	13 – 28	32 - 81	1.2 - 6.2
Co-58	1.5 - 4.0	20 – 23	16 - 26	28 – 32	13 – 26	28 - 79	1.4 – 3.4
Fe-59	3.5 – 11	53 – 74	36 - 65	60 – 77	28 – 69	65 - 174	3.7 - 8.2
Co-60	1.5 - 3.7	18 – 25	18 - 26	27 – 39	15 - 35	23 - 97	1.3 - 3.3
Zn-65	3.3 - 7.9	46 - 62	36 - 57	69 – 97	32 – 73	67 - 238	3.0 - 6.9
Nb-95	1.7 - 5.8	25 - 31	20 – 35	34 - 40	13 - 27	34 - 93	2.1 - 5.0
Zr-95	2.8 - 6.9	35 – 44	29 - 43	45 – 62	21 - 48	53 - 141	2.1 - 6.4
Ru-106	12 - 26	131-149	124 - 185	224 - 287	108 - 239	264 - 643	10 - 25
g-110m	1.2 - 2.9	15 - 18	15 – 18	21 – 31	11 – 25	29 - 88	0.1 - 2.6
e-129m	18 - 60	247 - 280	192 - 284	321 - 367	135 - 281	346 - 855	19 – 55
I-131	2.4 - 49	99 - 1 21	30 - 89	50 - 52	11 – 37	32.7 - 179	in the 1 second
Cs-134	1.2 - 2.6	14 – 17	13 – 19	24 - 34.5	11 – 24	27 – 94	1.0 - 2.4
Cs-137	1.2 - 3.0	15 - 18	15 – 34	25 - 30	1.5 – 26	27 - 72	1.0 - 2.8
Ba-140	7.3 – 66	174 - 208	75 - 184	138 - 150	41 - 109	112 - 430	12 - 84
.a-140	3.2 - 29	-	49 – 74	75 – 75	17 – 51	60 - 138	8.7 – 19
Ce-144	7.1 – 12	45 – 49	42 – 49	101 - 111	49 - 86	110 - 245	2.8 - 8.2

Typical MDA Ranges for Gamma Spectrometry

¹ The MDA range for I-131 on a silver zeolite cartridge is typically 4.16×10^{-3} to 3.40×10^{-2}

T.

·	TABLE B-11
Typical LLD	s for Gamma Spectrometry

E

į

Selected Nuclides	Bay Water pCi/l	Fish pCi/kg	Shellfish pCi/kg	Sediment pCi/kg	Particulate 10 ⁻³ pCi/m ³	Precipitation pCi/l	Vegetation pCi/Kg	Soil pCi/Kg	Well Water pCi/l
Na-22	2,9	22	22	24	2.9	2.9	35	24	2.9
Cr-51	. 17	88	88	110	12	17	162	110	17
Mn-54	2.4	17	17	18	2.1	2.4	27	18	2.4
Co-58	2.4		16	17	2.0	2.4	25	17	2.4
Fe-59	5.2	37	37	38	4.6	5.2	60	38	5.2
Co-60	2.8	22	22	21	2.7	2.8	33	21	2.8
Zn-65	5.6	³ ² 23	23	54	2.8	5.6	66	54	5.6
Nb-95	2.2	15	15	18	1.9	2.2	25	18	2.2
Zr-95	3.8	27	27	29	3.3	3.8	44	29	3.8
Ru-106	20	135	135	146	17	20	223	146	20
Ag-110m	2.1	14	14	16	1.8	2.1	25	16	2.1
Te-129m	, 26 .	149	149	180	20	26	265	180	26
I-131	2.0	11	11	14	1.5	2.0	20	14	2.0
Cs-134	2.2	15	15	20	1.9	2.2	24	20	2.2
Cs-137	2.3	15	15	17	1.8	2.3	27	17	2.3
Ba-140	7.3	48	48	54	6.1	7.3	80	54	7.3
La-140	4.1	26	26	25	3.4	4.1	41	25	4.1
Ce-144	12	43	43	75	5.5	12	101	75	12

*The LLD for I-131 measured on a silver zeolite cartridge is 2.0 x10⁻³ pCi/m³

. . . .

E

Table B-12

Direct Radiation (Results in Units of mR/90 days +/- 2σ)

Site Code	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
DR01	On Site, along Cliffs	12.64 +/- 1.29	13.91 +/- 3.81	12.61 +/- 0.63	14.39 +/- 3.01
DR02	Route 765, Auto Dump	10.61 +/- 0.85	•	10.17 +/- 1.33	10.64 +/- 0.73
DR03	Route 765, Giovanni's Tavern	10.65 +/- 0.93	10.63 +/- 0.54	9.97 +/- 1.06	10.97 +/- 1.24
DR04	Route 765, across from White Sands Drive.	12.11 +/- 0.98	12.29 +/- 0.58	11.84 +/- 1.21	11.68 +/- 0.40
DR05	Route 765, John's Creek	11.68 +/- 1.20	12.28 +/- 0.43	11.42 +/- 1.10	11.67 +/- 0.90
DR06	Route 765 at Lusby	10.05 +/- 0.57	9.74 +/- 0.25	9.78 +/- 0.92	10.01 +/- 0.68
DR07	Entrance to Camp Conoy	10.00 +/- 0.09	10.16 +/- 0.58	9.75 +/- 0.70	10.13 +/- 0.54
DR08	Camp Conoy Rd at Emergency Siren	14.27 +/- 1.53	14.82 +/- 0.68	14.07 +/- 1.60	14.93 +/- 1.53
DR09	Bay Breeze Rd	11.09 +/- 1.30	11.14 +/- 1.62	10.99 +/- 1.14	11.38 +/- 0.69
DR10	Calvert Beach Rd and Decatur Street	10.45 +/- 0.85	10.59 +/- 1.08	10.27 +/- 0.96	10.48 +/- 1.01
DR11	Dirt road off Mackall & Parren Rd	10.44 +/- 0.39	10.41 +/- 0.66	10.43 +/- 1.39	10.77 +/- 0.69
DR12	Mackall & Bowen Rds	10.54 +/- 0.96	10.79 +/- 1.14	10.54 +/- 0.48	10.52 +/- 1.55
DR13	Mackall Rd, near Wallville	12.14 +/- 1.42	11.74 +/- 0.88	11.51 +/- 1.01	12.02 +/- 0.78
DR14	Rodney Point	•	12.31 +/- 1.16	12.77 +/- 1.09	13.38 +/- 0.65

*Missing data

E.

E

.....

Table B-12

E

Direct Radiation (Results in Units of mR/90 days +/- 2σ)

Site Code	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
DR15	Mill Bridge & Turner Rds	11.48 +/- 1.30	11.60 +/- 1.28	11.53 +/- 1.13	11.75 +/- 0.96
DR16	Across from Appeal School	10.50 +/- 0.42	10.71 +/- 0.94	9.93 +/- 0.82	10.54 +/- 0.15
DR17	Cove Point & Little Cove Point Rds	9.44 +/- 0.78	12.43 +/- 1.10	11.91 +/- 0.99	12.29 +/- 1.32
DR18	Cove Point	12.67 +/- 0.78	9.49 +/- 1.03	9.11 +/- 0.98	9.61 +/- 0.94
DR19	Long Beach	11.03 +/- 1.51	10.45 +/- 0.80	10.60 +/- 0.83	10.70 +/- 0.63
DR20	On site, near shore	12.81 +/- 1.35	12.56 +/- 1.02	12.89 +/- 1.22	12.57 +/- 0.82
DR21 ¹	EOF	12.23 +/- 0.67	11.82 +/- 0.66	11.40 +/- 0.54	11.73 +/- 0.46
DR22 ¹	Solomons Island	11.14 +/- 0.68	10.93 +/- 0.85	10.75 +/- 0.72	10.82 +/- 0.73
DR231	Taylors Island	14.30 +/- 0.59	14.71 +/- 1.18	15.68 +/- 1.74	15.88 +/- 0.82
DR30	MET Station	13.21 +/- 1.37	13.47 +/- 1.25	12.19 +/- 1.86	12.34 +/- 0.80

¹ Control location

Table B-12 - Continued

Direct Radiation (Results in Units of mR/90 days +/- 20)

Site Code	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
				· · ·	
SFDR01	SW of ISFSI	16.28 +/- 1.32	17.47 +/- 1.42	15.96 +/- 2.04	16.34 +/- 1.58
SFDR02	NNW of ISFSI	21.74 +/- 2.16	21.91 +/- 1.82	20.32 +/- 2.27	20.74 +/- 2.33
SFDR03	North of ISFSI	36.64 +/- 5.24	32.05 +/- 9.51	34.57 +/- 3.75	36.89 +/- 6.95
SFDR04	NE of ISFSI	25.19 +/- 5.56	23.13 +/- 0.36	20.84 +/- 1.52	27.49 +/- 1.36
SFDR05	East of ISFSI	17.83 +/- 1.24	16.21 +/- 2.38	17.49 +/- 4.11	16.94 +/- 1.03
SFDR06	ESE of ISFSI	16.07 +/- 1.97	16.02 +/- 0.19	14.58 +/- 2.23	16.17 +/- 1.07
SFDR071	Visitor's Center	11.86 +/- 0.63	12.43 +/- 1.00	11.52 +/- 0.84	12.36 +/- 0.17
SFDR08	NNW of ISFSI	30.98 +/- 4.69	34.03 +/- 2.15	28.18 +/- 2.91	30.74 +/- 5.56
SFDR09	SSE of ISFSI	14.10 +/- 0.96	17.01 +/- 0.94	16.10 +/- 1.96	14.88 +/- 1.30
SFDR10	NW of ISFSI	48.30 +/- 7.73	35.94 +/- 3.59	31.91 +/- 4.61	33.11 +/- 6.45
SFDR11	WNW ISFSI	28.53 +/- 3.41	32.18 +/- 4.75	29.55 +/- 0.97	25.91 +/- 2.64
SFDR12	WSW of ISFSI	33.57 +/- 7.53	32.54 +/- 5.12	28.77 +/- 5.83	32.11 +/- 7.97
·	and the second second provided and the second se				n An an Thursday an Anna Anna An an Anna Anna Anna Anna

¹ Control location 65

Table B-12 - Continued

E

E

E___

Direct Radiation (Results in Units of mR/90 days +/- 2σ)

Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter		
	n an					
South of ISFSI	21.22 +/- 3.58	23.37 +/- 6.06	22.00 +/- 4.95	22.06 +/- 3.38		
SE of ISFSI	16.85 +/- 1.55	16.21 +/- 2.75	15.74 +/- 0.72	16.37 +/- 2.64		
ENE of ISFSI	19.22 +/- 3.80	20.02 +/- 1.07	18.33 +/- 2.74	19.88 +/- 3.12		
SSW of ISFSI	34.82 +/- 5.69	34.57 +/- 6.16	32.54 +/- 5.69	34.09 +/- 6.53		
NNE of ISFSI	34.75 +/- 4.33	32.97 +/- 4.28	33.25 +/- 1.54	33.31 +/- 3.38		
West of ISFSI	41.93 +/- 6.03	41.41 +/- 6.71	38.21 +/- 7.31	40.22 +/- 6.88		
	South of ISFSI SE of ISFSI ENE of ISFSI SSW of ISFSI NNE of ISFSI	South of ISFSI 21.22 +/- 3.58 SE of ISFSI 16.85 +/- 1.55 ENE of ISFSI 19.22 +/- 3.80 SSW of ISFSI 34.82 +/- 5.69 NNE of ISFSI 34.75 +/- 4.33	South of ISFSI 21.22 +/- 3.58 23.37 +/- 6.06 SE of ISFSI 16.85 +/- 1.55 16.21 +/- 2.75 ENE of ISFSI 19.22 +/- 3.80 20.02 +/- 1.07 SSW of ISFSI 34.82 +/- 5.69 34.57 +/- 6.16 NNE of ISFSI 34.75 +/- 4.33 32.97 +/- 4.28	South of ISFSI 21.22 +/- 3.58 23.37 +/- 6.06 22.00 +/- 4.95 SE of ISFSI 16.85 +/- 1.55 16.21 +/- 2.75 15.74 +/- 0.72 ENE of ISFSI 19.22 +/- 3.80 20.02 +/- 1.07 18.33 +/- 2.74 SSW of ISFSI 34.82 +/- 5.69 34.57 +/- 6.16 32.54 +/- 5.69 NNE of ISFSI 34.75 +/- 4.33 32.97 +/- 4.28 33.25 +/- 1.54		

<u>APPENDIX C</u>

Quality Assurance Program

Appendix C is a summary of Constellation Energy laboratory's quality assurance program. It consists of Table C-1 which is a compilation of the results of the Constellation Energy Laboratory's participation in an intercomparison program with Environmental Resource Associates (ERA) located in Arvada, Colorado and Analytics, Inc. located in Atlanta, Georgia. It also includes Table C-2 which is a compilation of the results of the Constellation Energy Laboratory's participation in a split sample program with Teledyne Brown Engineering located in Knoxville, Tennessee and Table C-3 which is a list of typical MDAs achieved by Teledyne Brown for Gamma Spectroscopy.

All the Constellation Energy Laboratory's results contained in Table C-1 generally agree with the intercomparison laboratory results within $\pm 2 \sigma$ of each other, and both sets of results are also in agreement when using the NRC Resolution Test Criteria¹ for evaluation. The uncertainties for the Constellation Energy Laboratory's results and Analytics' results are $\pm 2\sigma$ while the ERA laboratory's uncertainty is based on USEPA guidelines².

All the results contained in Table C-2 generally agree with their respective Constellation Energy Laboratory replicates and/or split laboratory samples, except for three comparisons of soil samples involving Cs-137 results. The original analysis of the soil sample from SFS2 and the split analysis of the soil sample from SFS3, both of which were collected on 3/21/05, and the replicate analysis of the soil sample from SFS2 collected on 9/5/2005 do not agree within $\pm 2\sigma$ of their respective QC soil samples analyzed. These minor discrepancies, which have been observed in previous reporting periods, are most probably due to counting statistics and/or the non-homogeneous nature of this type of sample. As indicated in Table C-2, there was an instance where activity was observed in split sample, but not observed in either the original or replicate samples (viz., the 3/21/05 vegetation sample from SFb2). This is due to the lower MDA achieved by the split laboratory using very long count times. Other samples whose nature generally precludes sample splitting are marked "**" in the Split Analysis column.

¹ NRC Inspection Manual, Inspection Procedure 84750, March 15, 1994

² National Standards for Water Proficiency Testing Studies Criteria Document, December 1998

(LEFT BLANK)

TABLE OF CONTENTS - ANALYTICAL RESULTS

Table	Title	Page
C-1	Results of Participation in Cross Check Programs	71
C-2	Results of Quality Assurance Program	
C-3	Teledyne Brown Engineering's Typical MDAs for Gamma Spectrometry	

(LEFT BLANK)

ę

and Area

. n. je 1

5.153

÷

Ì

|

TABLE C-1

Sample	Sample Type	Isotope	Reported	Cross Check
Date	and Units	Observed	Laboratory's Results ¹	Lab Results ¹
2/15/05	Water-pCi/L	Ba-133	48±7	53±5
		Co-60	61±7	57±5
		Cs-134	62±6	65±5
		Cs-137	45±9	40±5
		Zn-65	178±24	161±16
3/17/05	Milk-pCi/L	I-131	111±14	92±3
		Cs-134	145±11	139±5
		Cs-137	156±16	130±4
		Ce-141	285±19	229±8
		Cr-51	420±95	334±11
		Mn-54	181±15	160±5
		Co-58	127±15	115±4
		Fe-59	137±19	111±4
	•	Co-60	164±12	144±5
		Zn-65	229±32	198±7
3/17/05	Charcoal Cartridge-pCi	I-131	73±7	60 ± 2
3/17/05	Water-pCi/L	Gross β	271±2	268±9
5/17/05	Water-pCi/L	I-131	15±1	16±3
6/6/05	Water-pCi	Gross β	216±3	214±7
6/9/05	Water-pCi/L	Cs-134	90±19	104±3
		Cs-137	217±33	206±7
		Co-60	163±23	158±5
		Mn-54	144±31	136±5
		Zn-65	162±67	169±6
6/9/05	Filter-pCi/filter	Beta	77±2	83±3

Results of Participation in Cross Check Programs

 1 See discussion at the beginning of the Appendix.

TABLE C-1 - Continued

Results of Quality Assurance Program

Sample Date	Sample Type and Units	Isotope Observed	Reported Laboratory's	Cross Chec Lab Results
		· · ·	Results ¹	
6/9/05	Filter-pCi/filter	Ce-141	72±6	61±2
. C		Cr-51	252±42	200±7
		Cs-134	56±4	63±2
		Cs-137	131±8	125±4
• •		Mn-54	92±7	83±3
		Fe-59	48±8	42±1
•		Zn-65	116±13	102±3
		Co-60	103 ± 6	96±3
8/16/05	Water-pCi/L	Ba-133	104±10	106±11
		Cs-134	82±6	92±5
		Cs-137	77±9	73±5
		Zn-65	61±14	66±7
		Co-60	13±5	14±5
11/15/05	Water-pCi/L	I-131	18±3	17±3
12/08/05	Water-pCi/L	Gross β	245±3	285±10
12/08/05	Water-pCi/L	I-131	56±10	53±2
		Ce-141	161±13	165 ± 6
		Cr-51	129±57	142±5
		Cs-134	60±6	64±2
		Cs-137	141±13	139±5
		Co-58	61±9	57±2
•		Mn-54	116±11	112±4
		Fe-59	62±12	61±32
	•	Zn-65	122±20	113±4
		Co-60	80±8	81±3

¹ See discussion at the beginning of the Appendix

١

TABLE C-1 - Continued

Results of Quality Assurance Program

Sample	Sample Type	Isotope	Reported	Cross Check
Date	and Units	Observed Laboratory's		Lab Results
			Results ¹	
12/08/05	Milk-pCi/L	I-131	82±20	75±2
12/00/00		Ce-141	249±24	224±7
		Cr-51	223±129	193±6
		Cs-134	92±12	87±3
		Cs-134	223±26	189±6
	· ·	Co-58	84±17	78±2
· · ·		Mn-54	187±23	152±5
and the		Fe-59	63±25	82±3
. * · ·	and the second sec	Zn-65	182±40	02±3 154±5
: 		Co-60	127±16	111±4
12/8/05	Filter-pCi/filter	Ce-141	234±9	205±7
	F	Cr-51	212±40	177±6
		Cs-134	69±6	80±3
• .	· · · ·	Cs-137	191±10	173±6
		Co-58	75±7	71±2
		Mn-54	159±9	139±5
		Fe-59	86±9	75±2
,		Zn-65	164±16	141±5
		Co-60	108±6	101±3
			10010	10120
12/8/05	Charcoal Cartridge-pCi	I-131	95±7	74 <u>+2</u>

¹ See discussion at the beginning of the Appendix

TABLE C-2

Results of Quality Assurance Program

Sample Type	Sample	Type of	Original	Replicate	Split
And Location	Date	Analysis	Analysis	Analysis	Analysis
				10 ⁻² pCi/m ³	
Air Iodine-A3	1/03/05	I-131	<1.4	<1.5	**
Air Iodine-A4	1/03/05	I-131	<1.1	<1.3	**
Air Filter -A1	1/03/05	Beta	3.0±0.3	3.1±0.3	**
Air Filter -A2	1/03/05	Beta	2.5±0.2	2.8±0.2	**
Air Filter -A3	1/03/05	Beta	2.6±0.2	2.5±0.2	**
Air Filter -A4	1/03/05	Beta	2.9±0.2	2.9±0.2	**
Air Filter -A5	1/03/05	Beta	3.2±0.2	3.2±0.2	**
Air Filter – SFA1	1/03/05	Beta	2.8±0.2	2.7±0.2	**
Air Filter – SFA2	1/03/05	Beta	2.8±0.2	3.0±0.2	**
Air Filter – SFA3	1/03/05	Beta	3.2±0.2	3.2±0.2	**
Air Filter – SFA4	1/03/05	Beta	2.9±0.2	3.4±0.2	**
				10 ⁻² pCi/m ³	
Air Filter-A1	2/07/05	Beta	2.2±0.2	2.0±0.2	**
Air Filter-A2	2/07/05	Beta	1.7±0.3	1.8±0.3	**
Air Filter-A3	2/07/05	Beta	1.9±0.2	1.9±0.2	**
Air Filter-A4	2/07/05	Beta	2.1±0.2	2.0±0.2	**
Air Filter-A5	2/07/05	Beta	2.2±0.2	2.2±0.2	**
Air Filter-SFA1	2/07/05	Beta	1. 9± 0.2	2.0±0.2	**
Air Filter-SFA2	2/07/05	Beta	2.2±0.2	2.2±0.2	**
Air Filter-SFA3	2/07/05	Beta	2.3±0.2	2.1±0.2	**
Air Filter-SFA4	2/07/05	Beta	2.2±0.2	2.4±0.2	**
Air Iodine-A1	2/07/05	I-131	<1.2	<1.4	**
Air Iodine-A2	2/07/05	I-131	<1.1	<1.3	**
	<u>.</u> .			-C://	
		, ×	1999	pCi/L	
Bay Water-Wa2	2/25/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
`					

**The nature of these samples precluded splitting them with an independent laboratory.

TABLE C-2 - Continued

Results of Quality Assurance Program

Sample Type	Sample	Туре		Replicate	Split
And Location	Date	Analy	sis Analysis	Analysis	Analysis
				10 ⁻² pCi/m ³	
same and the second					
Air Filter-A1	3/07/05	Beta	a 1.3±0.2	1.4±0.2	**,
Air Filter-A2	3/07/05	Beta	a 1.5±0.2	1.8±0.2	**:
Air Filter-A3	3/07/05	Beta	a 1.6±0.2	1.6±0.2	**
Air Filter-A4	3/07/05	Beta	a 1.6±0.2	1.6±0.2	** 2
Air Filter-A5	3/07/05	Beta	a 1.5±0.2	1.7±0.2	**
Air Filter-SFA1	3/07/05	Beta	a 1.6±0.2	1.6±0.2	**
Air Filter-SFA2	3/07/05	Beta	a 1.5±0.2	1.8±0.2	**
Air Filter-SFA3	3/07/05	Beta	a 1.7±0.2	1.9±0.2	**,
Air Filter-SFA4	3/07/05	Beta	a 1.8±0.2	1.8±0.2	★★ State 1 - 1
			i di		
Air Iodine-A3	3/07/05	l-13	1 <1.5	<1.6	**
Air Iodine-A4	3/07/05	Checkler i-13 *	1 <1.3	<1.5	**
				pCi/Kg	
•					
Soil-SFS2	3/21/05	Cs-13	37 82±24	165±56	116±14
Soil-SFS3	3/21/05	Cs-13	37	531±92	379±22
	· ·		e de la composición d		
Vegetation-SFb2	3/21/05	Cs-13		<mda< td=""><td>20±10</td></mda<>	20±10
Vegetation-SFb3	3/21/05	Cs-13	37 <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Oysters-la3	3/30/05	Gamn	na <md< b="">A</md<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
		* .	· · · · ·	pCi/L	
Bay Water-Wa2	3/31/05	Gamn	na <md< b="">A</md<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
•	¥	· .		10 ⁻² pCi/m ³	
Air Filter-A1	4/04/05	Beta		0.6±0.2	★★ .
Air Filter-A2	4/04/05	Beta		0.6±0.2	**
Air Filter-A3	4/04/05	Beta		0.5±0.2	. ## . /
Air Filter-A4	4/04/05	Beta		0.8±0.2	**
Air Filter-A5	4/04/05	Beta		0.8±0.1	**
Air Filter-SFA1	4/04/05	Beta		0.7±0.2	**.
Air Filter-SFA2	4/04/05	Beta		0.6±0.2	**
Air Filter-SFA3	4/04/05	Beta		1.0±0.2	**
Air Filter-SFA4	4/04/05	Beta	a 0.7±0.2	1.0±0.2	**

**The nature of these samples precluded splitting them with an independent laboratory.

TABLE C-2 - Continued

Sample Type	Sample	Type of	Original	Replicate	Split
And Location	Date	Analysis	Analysis	Analysis	Analysis
		• •		10 ⁻² pCi/m ³	
Air lodine-A1	4/04/05	I-131	<1.5	<1.5	**
Air Iodine-A2	4/04/05	I-131	<1.4	<1.3	**
· .			and a state of the state of th	10 ⁻² pCi/m ³	
Air Iodine-A3	5/16/05	I-131	<1.5	<1.3	**
Air Iodine-A4	5/16/05	I-131	<1.5	<1.5	**
Air Filter-A1	5/16/05	Beta	0.9±0.2	1.1±0.2	**
Air Filter-A2	5/16/05	Beta	0.8±0.2	0.8±0.2	**
Air Filter-A3	5/16/05	Beta	0.9±0.1	0.7±0.2	**
Air Filter-A4	5/16/05	Beta	1.1±0.2	1.2±0.2	**
Air Filter-A5	5/16/05	Beta	1.1±0.2	1.1±0.1	**
Air Filter-SFA1	5/16/05	Beta	0.8±0.2	0.9±0.1	**
Air Filter-SFA2	5/16/05	Beta	0.9±0.2	1.0±0.2	**
Air Filter-SFA3	5/16/05	Beta	1.2±0.2	1.3±0.2	**
Air Filter-SFA4	5/16/05	Beta	0.9±0.2	1.0±0.2	**
		м.*	:	pCi/Kg	
Shoreline-Wb1	5/09/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
· ·	an a	· · ·		10 ⁻² pCi/m ³	
Air Filter-A1	6/6/05	Beta	0.8±0.2	1.0±0.2	**
Air Filter-A2	6/6/05	Beta	0.9±0.2	0.5±0.2	**
Air Filter-A3	6/6/05	Beta	0.5±0.2	0.6±0.2	**
Air Filter-A4	6/6/05	Beta	0.9±0.2	1.1±0.2	**
Air Filter-A5	6/6/05	Beta	1.0±0.2	1.0±0.2	**
Air Filter-SFA1	6/6/05	Beta	0.8±0.2	0.8±0.2	**
Air Filter-SFA2	6/6/05	Beta	0.9±0.2	1.1±0.2	**
Air Filter-SFA3	6/6/05	Beta	1.1±0.2	1.1±0.2	**
Air Filter-SFA4	6/6/05	Beta	0.7±0.2	0.8±0.2	**
		1404	<1.2	<1.4	**
Air Iodine-A1	6/6/05	I-131	NI.2	NI.4	

Results of Quality Assurance Program

**The nature of these samples precluded splitting them with an independent laboratory.

76 -

TABLE C-2 - Continued

Results of Quality Assurance Program

Sample Type	Sample		Original	Replicate	Split
And Location	Date	Analysis	Analysis	Analysis	Analysis
······································		-		10 ⁻² pCi/m ³	
unda Rei an A	· · · · · · · · · · · · · · · · · · ·			б. с.	
Air Filters-A1	6/15/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A2	6/15/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A3	6/15/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A4	6/15/05	Gamma	- MDA	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A5	6/15/05	. Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA1	6/15/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA2	6/15/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA3	6/15/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA4	6/15/05	Gamma	<mbody> MDA</mbody>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
	•.				
			<u></u>	mR/90 Days	۱. ۱
DDOG	0.000.005		40.00.0.40	44.07.0.07	**
DR05	6/30/05	TLD	12.28±0.43	11.37±0.87	
DR06	6/30/05	TLD	9.94±1.01	9.62±0.35	**
DR07	6/30/05	TLD	10.16±0.58	10.02±1.08	÷ •
DR08	6/30/05	TLD	14.58±1.33	14.38±1.61	**
DR09	6/30/05	TLD	11.14±1.62	10.52±0.91	**
DR10	6/30/05	TLD	10.59±1.08	10.32±0.89	**
DR11	6/30/05	TLD	10.41±0.66	10.81±1.14	
DR29	6/30/05	TLD	14.23±0.99	14.22±1.42	**
DR31	6/30/05	TLD	14.56±1.71	15.46±1.13	**
SFDR14	6/30/05	TLD	16.21±2.75	16.60±2.32	**
SFDR15	6/30/05	TLD	20.56±2.83	18.75±3.25	**
				10 ⁻² pCi/m ³	
Air Filter-A1	7/11/05	Beta	1.4±0.2	1.5±0.2	**
Air Filter-A2	7/11/05	Beta	0.5±0.2	0.4±0.2	**
Air Filter-A3	7/11/05	Beta	0.6±0.2	0.6±0.2	**
Air Filter-A4	7/11/05	Beta	1.1±0.2	1.0±0.2	**
Air Filter-A5	7/11/05	Beta	1.6±0.3	1.2±0.2	**
Air Filter-SFA1	7/11/05	Beta	1.5±0.2	1.4±0.2	**
Air Filter-SFA2	7/11/05	Beta	1.6±0.2	1.5±0.2	
Air Filter-SFA3	7/11/05	Beta	1.2±0.2	1.5±0.2	**
Air Filter-SFA3	7/11/05	Beta	1.3±0.2	1.1±0.2	*
AII FINCI-OFA4	111105	UCIA	I.JLU.Z	1.110.2	
Air Iodine-A3	7/11/05	I-131	<1.7	<1.7	*
Air Iodine-A4	7/11/05	I-131	<1.9	<1.4	**

**The nature of these samples precluded splitting them with an independent laboratory.

77

r î

TABLE C-2 - Continued

Results of Quality Assurance Program

Sample Type	Sample	Type of	Original	Replicate	Split
And Location	Date	Analysis	Analysis	Analysis	Analysis
`				pCi/L	
Bay Water-Wa2	8/1/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
х. 		• • •		10 ⁻² pCi/m ³	
Air Filter-A1	8/8/05	Beta	2.9±0.3	2.8±0.3	* **
Air Filter-A2	8/8/05	Beta	0.8±0.3	0.8±0.3	**
Air Filter-A3	8/8/05	Beta	0.8±0.2	0.9±0.2	**
Air Filter-A4	8/8/05	Beta	2.4±0.3	2.6±0.3	**
Air Filter-A5	8/8/05	Beta	2.6±0.2	2.7±0.3	**
Air Filter-SFA1	8/8/05	Beta	4.2±0.7	4.2±0.7	**
Air Filter-SFA2	8/8/05	Beta	1.1±0.2	1.1±0.2	**
Air Filter-SFA3	8/8/05	Beta	3.3±0.3	3.6±0.3	**
Air Filter-SFA4	8/8/05	Beta	1.9±0.2	1.8±0.2	**
Air Iodine-A1	8/8/05	I-131	<1.3	<1.5	**
Air Iodine-A2	8/8/05	I-131	<2.0	<2.3	**
	. · · ·	· .	-	pCi/kg	
Fish-la1	8/23/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Oysters-la3	8/23/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
				pCi /kg	.==
Vegetation-Ib1	8/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
Vegetation-Ib3	8/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
Vegetation-Ib4	8/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
Vegetation-Ib6	8/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
Vegetation-Ib7	8/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
Vegetation-Ib9	8/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
				pCi/kg	
•					
Soil-SFS1	9/5/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
Soil-SFS2	9/5/05	Gamma	135±8	76±4	107±21
Soil-SFS4	9/5/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
egetation-SFb1	9/5/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
egetation-SFb2	9/5/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>

**The nature of these samples precluded splitting them with an independent laboratory.

[]

TABLE C-2 - Continued

Results of Quality Assurance Program

Sample Type	Sample		Type of	Original	Replicate	Split
And Location	Date	••••••••••••••••••••••••••••••••••••••	Analysis	Analysis	Analysis	Analysis
	· · · · · · ·				10 ⁻² pCi/m ³	
	· · · · · · · · ·	1.5			- 10 pemir -	<u> </u>
Air Iodine-A3	9/5/05		I-131	<1.7	<1.6	**
Air Iodine-A4	9/5/05	· · · · ·	I-131	<1.7	<1.4	**
Air Filter-A1	9/5/05	102 B	Beta	2.0±0.2	1. 5 ±0.2	• • • •
Air Filter-A2	9/5/05		Beta	0.5±0.2	0.5±0.2	** 1, 10 - 10 - 10
Air Filter-A3	9/5/05		Beta	0.6±0.2	0.7±0.2	🔹 🖈 🐨 🖓 🖓
Air Filter-A4	9/5/05	2 12 A Co	Beta	1.7±0.2	1.5±0.2	★★ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
Air Filter-A5	9/5/05	2.541.538	Beta	1.6±0.2	1.4±0.2	**
ir Filter-SFA1	9/5/05		Beta	1.3±0.2	1.5±0.2	ta na n Antonia Ma
Air Filter-SFA2	9/5/05	1 - 1 4	Beta	1.5±0.2	1.7±0.2	** 1000 (2016)
Air Filter-SFA3	9/5/05		Beta	1.6±0.2	1.7±0.2	**
Air Filter-SFA4	9/5/05	<u>.</u>	Beta	1.4±0.2	1.4±0.2	**
		. **		6. j		
					pCi/kg	
egetation-lb4	9/26/05		Gamma	<mda< td=""><td>. **</td><td><mda< td=""></mda<></td></mda<>	. **	<mda< td=""></mda<>
egetation-lb5	9/26/05		Gamma	<mda< td=""><td>**</td><td><mda< td=""></mda<></td></mda<>	**	<mda< td=""></mda<>
egetation-lb6	9/26/05		Gamma	<mda< td=""><td>**</td><td><mda< td=""></mda<></td></mda<>	**	<mda< td=""></mda<>
/egetation-lb7	9/26/05		Gamma	<mda< td=""><td>**</td><td><mda< td=""></mda<></td></mda<>	**	<mda< td=""></mda<>
/egetation-lb8	9/26/05		Gamma	<mda< td=""><td>**</td><td><mda< td=""></mda<></td></mda<>	**	<mda< td=""></mda<>
egetation-lb9	9/26/05	-	Gamma	<mda< td=""><td>**</td><td><mda< td=""></mda<></td></mda<>	**	<mda< td=""></mda<>
·					10 ⁻² pCi/m ³	
				·		
Air Iodine-A1	10/3/05		I-131	<1.2	<1.4	**
Air Iodine-A2	10/3/05	* 	I-131	<1.4	<1.5	**
Air Filter-A1	10/3/05		Beta	1.7±0.2	1.6±0.2	*** , , , , , , , , , , , , , , , , , ,
Air Filter-A2	10/3/05		Beta	1.7±0.2	1.6±0.2	
Air Filter-A2 Air Filter-A3			Beta	1.1±0.2	1.0±0.3 1.1±0.2	**
Air Filter-A3 Air Filter-A4	10/3/05		•			**
	10/3/05	·	Beta	1.8±0.2	1.8±0.2	. **
Air Filter-A5	10/3/05		Beta	1.7±0.2	1.5±0.2	***
Air Filter-SFA1	10/3/05	• • • •	Beta	1.7±0.2	1.5±0.2	** ··· [*] **
Air Filter-SFA2	10/3/05	19 1	Beta	1.6±0.2	1.4±0.2	**
Air Filter-SFA3	10/3/05		Beta	1.8±0.2	1.8±0.2	**
ir Filter-SFA4	10/3/05		Beta	1.5±0.2	1.4±0.2	

**The nature of these samples precluded splitting them with an independent laboratory.

79 (

TABLE C-2 - Continued

Results of Quality Assurance Program

Sample Type	Sample	Type of	Original	Replicate	Split
And Location	Date	Analysis	Analysis	Analysis	Analysis
				pCi/kg	
Oyster-la3	10/27/05	Gamma	<mda< td=""><td> - MDA</td><td><mda< td=""></mda<></td></mda<>	 - MDA	<mda< td=""></mda<>
Ч. М.				pCi/L	· · · ·
Bay Water-Wa2	10/28/05	Gamma	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
	11/29/05	Gamma	<mda< td=""><td><mda< td=""><td>**</td></mda<></td></mda<>	<mda< td=""><td>**</td></mda<>	**
•				10 ⁻² pCi/m ³	
Air Filter-A1	11/7/05	Beta	3.0±0.2	3.0±0.2	**
Air Filter-A2	11/7/05	Beta	1.3±0.2	2.2±0.2	**
Air Filter-A3	11/7/05	Beta	2.0±0.2	2.1±0.2	**
Air Filter-A4	11/7/05	Beta	1.2±0.1	1.3±0.1	**
Air Filter-A5	11/7/05	Beta	2.7±0.2	3.0±0.2	. **
Air Filter-SFA1	11/7/05	Beta	3.0±0.3	3.4±0.3	**
Air Filter-SFA2	11/7/05	Beta	2.4±0.2	2.3±0.2	**
Air Filter-SFA3	11/7/05	Beta	2.8±0.2	3.1±0.2	**
Air Filter-SFA4	11/7/05	Beta	2.6±0.2	2.5±0.2	**
Air Iodine-A3	11/7/05	I-131	<1.2	<1.3	**
Air Iodine-A5	11/7/05	I-131	<1.3	<1.3	**
				10 ⁻² pCi/m ³	
Air Filter-A1	12/5/05	Beta	2.0±0.3	2.3±0.2	**
Air Filter-A2	12/5/05	Beta	1.6±0.2	1.8±0.2	**
Air Filter-A3	12/5/05	Beta	1.3±0.2	1.6±0.2	**
Air Filter-A4	12/5/05	Beta	2.4±0.3	2.6±0.1	**
Air Filter-A5	12/5/05	Beta	3.1±0.2	3.1±0.3	**
Air Filter-SFA1	12/5/05	Beta	2.1±0.2	2.4±0.2	**
Air Filter-SFA2	12/5/05	Beta	1.8±0.2	1.9±0.2	**
Air Filter-SFA3	12/5/05	Beta	1.8±0.2	1.8±0.2	**
Air Filter-SFA4	12/5/05	Beta	1.9±0.2	2.0±0.2	**
Air Iodine-A1	12/5/05	I-131	<1.8	<1.6	**
Air Iodine-A2	12/5/05	I-131	<1.1	<1.1	**

**The nature of these samples precluded splitting them with an independent laboratory

TABLE C-2 – Continued

Results of Quality Assurance Program

Sample Type And Location	Sample Date		Type of Analysis	in an	Original Analysis	Replicate Analysis	Split Analysis
					The second s	10 ⁻³ pCi/m ³	
Air Filters-A1	12/15/05		Gamma		<mda< td=""><td></td><td><mda< td=""></mda<></td></mda<>		<mda< td=""></mda<>
Air Filters-A2	12/15/05		Gamma		<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A2	12/15/05				<mda <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></mda 	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A3			Gamma Gamma		<mda <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></mda 	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-A4	12/15/05				<mda< td=""><td></td><td></td></mda<>		
	12/15/05	na sa tan	Gamma	· · · · ·	<mda se<="" td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA1	12/15/05		Gamma		· · ·		
Air Filters-SFA2	12/15/05		Gamma		<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA3	12/15/05		Gamma		<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Air Filters-SFA4	12/15/05		Gamma		<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
					. r ¥	- <u>-</u>	
· · · · ·				1990 - Series	· ·		
DR05	12/31/05		TLD		11.67±0.90	12.10±1.02	**
DR06	12/31/05	1	TLD		10.01±0.68	10.92±1.12	3 🗰 11
DR07	12/31/05		TLD		10.13±0.54	11.14±1.59	**
DR08	12/31/05	1.1	TLD	11 s.	14.93±1.53	14.89±1.10	**
DR09	12/31/05		TLD		11.38±0.69	11.57±2.64	**
DR10	12/31/05		TLD		10.48±1.01	10.85±1.99	**
DR11	12/31/05		TLD		10.77±0.69	11.55±1.86	**
SFDR14	12/31/05		TLD		16.37±2.64	18.61±3.05	**
SFDR15	12/31/05		TLD	· · ·	19.88±3.12	24.52±2.63	**

**The nature of these samples precluded splitting them with an independent laboratory

11

TABLE C-3

	-	•			-	•
Selected Nuclides	Bay Water pCi/l	Fish pCi/kg	Shellfish pCi/kg	Sediment pCi/kg	Vegetation pCi/kg	Particulates 10 ⁻³ pCi/m ³
H-3	175					••
Na-22	1	8	3	12	6	5
Cr-51	12	105	4	104	50	63
Mn-54	1	9	3	12	5	4
Co-58	1	9	4	9	4	5
Fe-59	3	28	9	24	10	12
Co-60	1	9	4	12	5	6
Zn-65	2	20	8	25	10	9
Nb-95	1	12	7	14	6	9
Zr-95	2	18	8	20	9	9
Ru-106	9	75	30	90	41	40
Ag-110m	1	10	10	10	5	4
Te-129m	16	131	60	162	• 79	95
I-131	4	65	30	35	22	74
Cs-134	1	8	4	10	5	4
Cs-137	1	9	4	10	5	4
BaLa-140	3	32	15	25	14	36
Ce-144	7	40	16	54	26	18

Teledyne Brown Engineering's Typical MDAs for Gamma Spectrometry

APPENDIX D Land Use Survey

Appendix D contains the results of a Land Use Survey conducted around Calvert Cliffs Nuclear Power Plant during this operating period. A table

listing the raw data of this survey and a discussion of the results are included in this appendix.

	Ta	ıble	D-1	
L	and	Use	Sur	vey

Discussion

A Land Use Survey was conducted to identify, within a distance of 5 miles, the location of the nearest milk animal, the nearest residence, and the nearest garden greater than 50 m^2 in each of the nine sectors over land. A detailed description of the Land Use Survey is given in a separate document (Ref. 9). The position of the nearest residence and garden in each sector out to 5 miles is given in the adjacent table. There are no animals producing milk for human consumption within the 5 mile radius. There were no new residences within the 5-mile radius.

· · · · · · · · · · · · · · · · · · ·	Distance From Plant (miles)				
Sector	Residence	Garden			
SE	1.7	1.7			
SSE	1.3	1.3			
S	1.8	1.8			
SSW	1.5	1.7			
SW	1.1	1.11 3.3			
WSW	1.2	1.5			
W	1.3	1.5			
WNW	2.5	2.5			
NW	2.1	2.1			

The closest residence is situated in the SW sector and the nearest garden is also in the SW sector, which is one of the least prevalent wind directions. In the S, SSE, and SE sectors, there is the highest probability of wind blowing from the direction of the plant. The two gardens used for vegetable samples by the REMP have been placed in the sectors with the highest X/Q. One sampling garden is located in the S sector at a distance of 0.4 miles, and another is situated near the site boundary in the SSE sector at a distance of 1.6 miles from the plant. These two sampling sites are considered good indicator locations for radioactive depositions around the plant.

The dose assessment using this operating period meteorological data was performed, and no significant impact from the plant was found.

.

(LEFT BLANK)

j

. . . . '

į

January 1 - December 31, 2005 Docket Nos. 50-317/50-318/72-8

. 1

<u>APPENDIX E</u>

Additional Samples and Analysis Results

Appendix E is a presentation of the analytical results for additional samples collected in the environs of CCNPP. These extra samples are not required by the ODCM (Ref. 6). Table E-1 lists the locations of all the additional samples and the remaining tables in this appendix provide the results. Some of these samples were collected and analyzed to maintain the historical continuity for samples and sampling pathways discontinued when the Environmental Technical Specifications were changed in March, 1985. Additionally, they include the PICs added for the ISFSI.

Table E-9 shows the average monthly direct radiation as measured by the pressurized ion chamber at five locations. The dose rate at the Met Station, PIC3, during the month of April was high. This result was due to anomalous data affecting the dose rate. These anomalous data were probably caused by unstable electronic components in the PIC, which subsequently resolved themselves.

Table E-11 shows the direct radiation readings from TLDs placed at the perimeter of the Resin Storage Area which is a temporary waste resin storage and cask transfer area located to the west of the ISFSI facility. The TLD values are somewhat higher than those in the REMP program due to their proximity to this source of the radiation. However, when the direct radiation readings for the Resin Storage Area are compared with those from the ISFSI and Site Boundary TLDs, it is apparent that temporary storage of spent resin and cask transfers are having no significant, measurable effect on the environs surrounding CCNPP.

(LEFT BLANK)

l

1

Ì

TABLE OF CONTENTS - ANALYTICAL RESULTS

Table	Title	Page
E-1	Locations of Non-Tech Spec Environmental Sampling Stations for Calvert Cliffs New Power Plant	
E-2	Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Non-Tech Spec Radiological Environmental Monitoring Program	
E-3	Annual Summary for Calvert Cliffs Nuclear Power Plant Units 1 & 2 Non-Tech Spe Radiological Environmental Monitoring Program	
E-4	Concentration of Gamma Emitters in Bottom Sediment	91
E-5	Concentration of Iodine-131 in Filtered Air	92
E-6	Concentration of Beta Emitters in Air Particulates	94
E-7	Concentration of Gamma Emitters in Air Particulates	
E-8	Concentration of Tritium and Gamma Emitters in Taylors Island Well Water	97
E-9	Direct Radiation as Measured in Pressurized Ion Chamber	
E-10	Direct Radiation	99
E-11	Direct Radiation from Resin Storage Area	

TABLE E-1

Locations of Non-ODCM Environmental Sampling Stations for Calvert Cliffs Nuclear Power Plant

Station	Description	Dist	Distance			
		(KM)	(Miles)	(Sector)		
			·			
<u>A6</u>	Long Beach	4.4	2.7	NW		
A7	Taylors Island, Carpenter's Property	12.6	7.8	ENE		
<u>A8</u>	Cambridge, U of MD Estuarine Center	32.0	19.9	NE		
DR24	Route 4 and Parran Road	3.0	1.9	SW		
DR25	Camp Conoy Guard House	1.0	0.6	S		
DR26	Route 235 & Clarks Landing Rd.	20.5	12.7	SW		
DR27	Route 231 & Route 4	23.0	14.3	NW		
DR28	Taylors Island Emergency Siren #35	12.3	7.6	ENE		
DR29	Taylors Island Emergency Siren #38	12.5	7.8	E		
DR31	Cambridge, U of MD Estuarine Center	32.0	19.9	NE		
DR32	Twining Property, Taylors Island	12.3	7.6	NE		
DR33	P.A. Ransome Property, Taylors Island	14.8	9.2	ESE		
DR34	Shoreline at Barge Road	0.2	0.1	NE		
OSGDR1	North of Old Steam Generator Storage Facility	0.3	0.2	SW		
OSGDR2	West of Old Steam Generator Storage Facility	0.3	0.2	SW		
PIC1	Taylors Island, Carpenter's Property	12.6	7.8	ENE		
PIC2	On Site before Entrance to Camp Conoy	0.7	0.4	S		
PIC3	Meteorological Station	0.8	0.5	WSW		
PIC4	NNW of ISFSI	0.6	0.4	SW		
PIC5	SSE of ISFSI	0.6	0.4	SSW		
PIC8	CCNPP Visitor's Center	0.3	0.2	NW		
RPDR5	Resin Storage Area – North Fence Lower	0.7	0.4	SW		
RPDR6	Resin Storage Area – North Fence Upper	0.7	0.4	SW		
RPDR7	Resin Storage Area – West Fence Right	0.7	0.4	SW		
RPDR8	Resin Storage Area – West Fence Left	0.7	0.4	SW		
RPDR9	Resin Storage Area – South Fence Upper	0.7	0.4	SW		
RPDR10	Resin Storage Area – South Fence Lower	0.7	0.4	SW		
RPDR11	Resin Storage Area – East Fence Left	0.7	0.4	SW		
RPDR12	Resin Storage Area – East Fence Right	0.7	0.4	SW		
Wbs2	Discharge Area	0.3	0.2	, N		
Wbs4	Camp Conoy/Rocky Point	3.0	1.9	SE		
Ww1	Taylors Island, Carpenter's Property	12.6	7.8	ENE		

¹ Distance and direction from the central point between the two containment buildings.

Table E-2

Synopsis of 2005 Calvert Cliffs Nuclear Power Plant Non-Tech Spec Radiological Environmental Monitoring Program

Sample Type	Sampling Frequency ¹	Number of Locations	Number Collected	Analysis	Analysis Frequency	Number Analyzed
Aquatic Environment Bottom Sediment	Q	2	. 4	Gamma	Q	4
Atmospheric Environment						
Air Iodine ²	W	7	359	I-131	W	359
Air Particulates ³	W	3	153	Gross Beta Gamma	Ŵ MC	153 36
Direct Radiation	:	· · · ·				
Pressurized Ion Chamber	Μ	6	72	Gamma	M	72
Ambient Radiation	Q	20	480	TLD	Q	480
Terrestrial Environment						
Ground water	M	1	12	Gamma H-3	M M	12 10

¹ W=weekly, M=monthly, Q=quarterly, SA=semiannual, A=annual, C=composite
 ² The collection device contains silver zeolite
 ³ Beta counting is performed after >=72 hour decay. Gamma spectroscopy performed on monthly composites of weekly samples

E

L

T

1

Γ....

Table E-3

C

ľ

Ľ.

Annual Summary for Calvert Cliffs Nuclear Power Plant Units 1 & 2 Non-Tech Spec Radiological Environmental Monitoring Program

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	Indicator Locations Mean (F)/Range ¹	Location with Highest Annual Mean Name/Distance & Direction ²	Highest Annual Mean (F) / Range	Control Locations Mean (F)/Range
Aquatic Environment			<u> </u>		en e	· · · · · · · · · · · · · · · · · · ·
Bottom Sediment (pCi/kg)	Gamma (4) Cs-137	17	163 (2/2) (151-175)	Discharge Area Wbs2 0.3 km N	163 (2/2) (151-175)	98 (2/2) (98-98.25)
Atmospheric Environment						
Air Particulates (10 ⁻² pCi/m ³)	Gross Beta (153)	0.05	1.4 (101/101) (0.5-2.7)	Taylors Island A7 12.6 km ENE	1.6 (52/52) (0.5-2.7)	1.6 (52/52) (0.5-2.67)
Direct Radiation	•					4 • • • • • • •
Ambient Radiation (mR/90 days)	TLD (480)		21.31 (480/480) (9.33-60.40)	East Fence Right RPDR12 km	49.63 (24/24) (39.27-60.40)	
Pressurized Ion Chamber (mR/30 days)	Ionization Chamber (72)		6.44 (60/60) (4.14-11.60)	NNW of ISFSI PIC4 0.6 km SW	11.27 (12/12) (11.00-11.60)	6.02 (12/12) (5.54-6.52)

¹ Mean and range based upon detectable measurements only. Fraction (F) of detectable measurements at specified location is indicated in parentheses ² From the centerpoint between the two containment buildings

Table E-4

Concentration of Gamma Emitters in Bottom Sediment (Results in units of pCi/kg (dry) +/- 20)

SAMPLE CODE	Sample Date	Cs-137	Gamma Emitters
Wbs2 Discharge Area	6/23/2005 10/27/2005	151 +/- 75 175 +/- 84	•
Wbs4 ¹ Camp Conoy/ Rocky Poir	6/23/2005 nt 10/27/2005	98 +/- 49 98 +/- 48	
•			
· · ·	• • • •		
¹ Control location *All Other Non-Natural Ga	mma Emitters <mda -<="" td=""><td></td><td></td></mda>		

Table E-5

Concentration of Iodine-131 in Filtered Air (Results in units of 10^{-3} pCi/m³ +/- 2σ)

							• •	
Start Date	Stop Date	A6 Long Beach	A7 Taylors Island	CAM Cambridge	SFA1 MET Station	SFA2 Visitors Center	SFA3 NNW of ISFSI	SFA4 SSE of ISFSI
4/0/0005	4/40/2005	•	•	*	•	•	•	
1/3/2005	1/10/2005	-	-	-				-
1/10/2005	1/17/2005					-		
1/17/2005	1/24/2005			*		*		
1/24/2005	1/31/2005	*	*	*	*	*	*	*
1/31/2005	2/7/2005		*	*	*	*	. , *	*
2/7/2005	2/14/2005	*	*	* *	*	*	*	*
2/14/2005	2/21/2005	*	*	*	*	*	*	*
2/21/2005	2/28/2005	*	*	*	*	*	*	•
					_			
2/28/2005	3/7/2005	*	*	*	*	*	* 🔹	*
3/7/2005	3/14/2005	*	*	*	*	*	* .	*
3/14/2005	3/21/2005	*	*	*	*	*	*	*
3/21/2005	3/28/2005	*	*	*	*	*	*	*
3/28/2005	4/4/2005	· •	*	*	*	*	*	*
4/4/2005	4/11/2005	*	•	*	*	*	*	•
4/11/2005		*	•		*	*	*	*
	4/18/2005	•		•		•	•	
4/18/2005	4/25/2005		-		*		.	
4/25/2005	5/2/2005	-	•	-	-	-	-	-
5/2/2005	5/9/2005	*	*	*	*	*	*	*
5/9/2005	5/16/2005	*	*	*	*	*	*	* .
5/16/2005	5/23/2005	*	*	*	*	*	*	*
5/23/2005	5/30/2005	*	*	*	*	*	*	*
E /00/000	0/0/0005							
5/30/2005	6/6/2005			-	-	-	-	-
6/6/2005	6/13/2005	-	*	*	#	*	*	
6/13/2005	6/20/2005	-	*	*	-	*	*	*
6/20/2005	6/27/2005	•	*		*	-		*
6/27/2005	7/4/2005	*	+	*	*	*	*	*
7/4/2005	7/11/2005	*	*	*	* .	*	*	*
7/11/2005	7/18/2005	*	*	*	*	*	. *	*
7/18/2005	7/25/2005	*	*	*	*	*	*	-*
7/25/2005	8/1/2005	+	*	· *	*	*	. *	.*
040000	0/0/0007	•	+	*	1	+	+	•
8/1/2005	8/8/2005	-	-	-	•	-		-
8/8/2005	8/15/2005	# ·	*	*	-		*	*
D11512005	8/22/2005	*	*	-	*	*	*	*
8/15/2005 8/22/2005	8/29/2005				-	_		

¹ Sampler malfunction, loss of data * <MDA

Table E-5 - Continued

(Results in units of 10 perint 17-20)								
Start Date	Stop Date	A6 Long Beach	A7 Taylors Island	CAM Cambridge	SFA1 MET Station	SFA2 Visitors Center	SFA3 NNW of ISFSI	SFA4 SSE of ISFSI
⁻		and a second s			n an			<u>.</u>
8/29/2005	9/5/2005	*	. •	-	*	* .	*	* .
9/5 / 2005	9/12/2005	1	*	*	* .	*	5 *	1. N. 🕈 (N. 1
9/12/2005	9/19/2005	*	*	* 1	*	* 2	1. 1. * 1. S.	a station and a
9/19/2005	9/26/2005	*	*	* .	*	*	*	an s e ga an
9/26/2005	10/3/2005	*	* •	t 6	*	★ 1	*	ant 🕈 Eine
10/3/2005	10/10/2005	*	*	*		*	*	1
10/10/2005	10/17/2005	· . •	* -	*	* -	*	1990 * 1997 - 199	1. A 🕈 🔿
10/17/2005	10/24/2005	· •	*	. 1	*	٠.	1	tinan s kar
10/24/2005	10/31/2005	* •	* .	1	*	۰.	n nga n∰ na na na	i
10/31/2005	11/7/2005	. ¹ ★ .	*	*	* .	*	ge 🔹 e trac	315 * .
11/7/2005	11/14/2005	*	*	*	*	* •	1997 - 19 1	
11/14/2005	11/21/2005	* 5	*	*	*	*	* *	
11/21/2005	11/28/2005	* .	* •	*	*	* <i>r</i>	*	sy n e so an S
11/28/2005	12/5/2005	*	*	* .	*	*	•	an an a r tha an tha an tha an tha
12/5/2005	12/12/2005	* 🔹	*	*	*	* .	• • • • • • • • • • • • • • • • • • •	5 .
12/12/2005	12/19/2005	*	*	*	*	* .	, . ★	*
12/19/2005	12/26/2005	*	· •.	* ·	*	*	• p	1. * 1.4
12/27/2005	1/2/2006	*	*	▲.	*	* ,	*	* *

Concentration of Iodine-131 in Filtered Air (Results in units of 10⁻³ pCi/m³ +/- 2σ)

¹ Sampler malfunction; loss of data * <MDA

Table E-6

Start Date	Stop Date	A6 Long Beach	A7 Taylors Island	CAM Cambridge
1/3/2005	1/10/2005	1.0 +/- 0.2	1.0 +/- 0.1	1.0 +/- 0.2
1/10/2005	1/17/2005	1.9 +/- 0.2	2.0 +/- 0.2	2.2 +/- 0.2
1/17/2005	1/24/2005	2.2 +/- 0.2	2.5 +/- 0.2	2.5 +/- 0.2
1/24/2005	1/31/2005	1.3 +/- 0.2	1.6 +/- 0.2	1.3 +/- 0.2
1/31/2005	2/7/2005	1.8 +/- 0.2	2.5 +/- 0.3	2.1 +/- 0.2
2/7/2005	2/14/2005	1.6 +/- 0.2	1.2 +/- 0.1	1.3 +/- 0.2
2/14/2005	2/21/2005	1.6 +/- 0.2	1.4 +/- 0.2	1.2 +/- 0.2
2/21/2005	2/28/2005	1.6 +/- 0.2	1.4 +/- 0.2	1.0 +/- 0.2
				· ·
2/28/2005	3/7/2005	1.5 +/- 0.2	1.2 +/- 0.2	1.3 +/- 0.2
3/7/2005	3/14/2005	1.4 +/- 0.2	1.4 +/- 0.2	1.6 +/- 0.2
3/14/2005	3/21/2005	1.5 +/- 0.2	1.5 +/- 0.2	1.7 +/- 0.2
3/21/2005	3/28/2005	0.8 +/- 0.2	0.5 +/- 0.1	0.6 +/- 0.2
3/28/2005	4/4/2005	0.9 +/- 0.2	1.0 +/- 0.2	0.8 +/- 0.2
4/4/2005	4/11/2005	2.0 +/- 0.2	1.8 +/- 0.2	1.6 +/- 0.2
4/11/2005	4/18/2005	1.8 +/- 0.2	1.7 +/- 0.2	1.8 +/- 0.2
4/18/2005	4/25/2005	1.5 +/- 0.2	1.5 +/- 0.2	1.1 +/- 0.2
4/25/2005	5/2/2005	1.3 +/- 0.2	1.3 +/- 0.2	1.0 +/- 0.2
5/2/2005	5/9/2005	1.2 +/- 0.2	1.6 +/- 0.2	1.3 +/- 0.2
5/9/2005	5/16/2005	0.8 +/- 0.2	1.1 +/- 0.2	1.0 +/- 0.2
5/16/2005	5/23/2005	1.5 +/- 0.2	1.2 +/- 0.2	0.9 +/- 0.2
5/23/2005	5/30/2005	0.8 +/- 0.2	0.9 +/- 0.2	0.9 +/- 0.2
5/30/2005	6/6/2005	0.8 +/- 0.2	0.7 +/- 0.2	0.6 +/- 0.2
6/6/2005	6/13/2005	1.3 +/- 0.2	1.2 +/- 0.2	1.0 +/- 0.2
6/13/2005	6/20/2005	0.9 +/- 0.2	1.1 +/- 0.2	0.8 +/- 0.2
6/20/2005	6/27/2005	1.4 +/- 0.2	1.3 +/- 0.2	1.0 +/- 0.2
5/27/2005	7/4/2005	0.9 +/- 0.2	1.1 +/- 0.2	0.8 +/- 0.2
7/4/2005	7/11/2005	1.9 +/- 0.2	1.4 +/- 0.2	0.8 +/- 0.2
7/11/2005	7/18/2005	0.8 +/- 0.2	2.0 +/- 0.2	0.7 +/- 0.2
7/18/2005	7/25/2005	1.0 +/- 0.2	1.4 +/- 0.2	1.3 +/- 0.2
7/25/2005	8/1/2005	1.6 +/- 0.2	2.2 +/- 0.2	1.0 +/- 0.2
8/1/2005	8/8/2005	1.2 +/- 0.3	1.5 +/- 0.2	1.8 +/- 0.2
8/8/2005	8/15/2005	1.4 +/- 0.2	1.7 +/- 0.2	1.5 +/- 0.2
3/15/2005	8/22/2005	1.5 +/- 0.2	1.8 +/- 0.2	2.0 +/- 0.2
3/22/2005	8/29/2005	1.7 +/- 0.2	1.1 +/- 0.2	0.6 +/- 0.2
3/29/2005	9/5/2005	1.0 +/- 0.2	1. 9 +/- 0.2	1.3 +/- 0.2
9/5/2005	9/12/2005	1	2.5 +/- 0.2	1.2 +/- 0.2
	9/19/2005	1.1 +/- 0.2	1.7 +/- 0.2	1.5 +/- 0.2
1/12/2005		1.1.1.2	1.1 .1	1.0 7/7 0.2
9/12/2005 9/19/2005	9/26/2005	2.5 +/- 0.2	2.7 +/- 0.2	1.8 +/- 0.2

Concentration of Beta Emitters in Air Particulates (Results in units of 10^{-2} pCi/m³ +/- 2σ)

¹ Sampler malfunction; Loss of data

Table E-6 - Continued

Start Date Stop Date	A6 Long Beach	A7 Taylors Island	CAM Cambridge
10/3/200510/10/200510/10/200510/17/200510/17/200510/24/200510/24/200510/31/2005	0.9 +/- 0.2 0.5 +/- 0.2 1.5 +/- 0.2 1.0 +/- 0.2	0.8 +/- 0.2 1.1 +/- 0.2 1.0 +/- 0.2 1.4 +/- 0.2	0.5 +/- 0.1 0.8 +/- 0.2 1 1
10/31/200511/7/200511/7/200511/14/200511/14/200511/21/200511/21/200511/28/2005	2.4 +/- 0.2 2.2 +/- 0.2 2.0 +/- 0.2 1.2 +/- 0.2	2.6 +/- 0.2 2.3 +/- 0.2 1.4 +/- 0.2 1.5 +/- 0.2	2.4 +/- 0.2 2.1 +/- 0.2 2.2 +/- 0.3 1.4 +/- 0.2
11/28/200512/5/200512/5/200512/12/200512/12/200512/19/200512/19/200512/27/200512/27/20051/2/2006	2.0 +/- 0.2 2.5 +/- 0.2 2.1 +/- 0.2 2.5 +/- 0.2 1.6 +/- 0.2	1.5 +/- 0.2 2.5 +/- 0.2 2.1 +/- 0.2 2.3 +/- 0.2 1.5 +/- 0.2	1.8 +/- 0.2 2.7 +/- 0.2 2.2 +/- 0.2 2.3 +/- 0.2 1.1 +/- 0.3
	je stanova V stanova		
			an a
¹ Sampler Malfunction; Loss of data		4	
	S	95	

Concentration of Beta Emitters in Air Particulates (Results in units of 10⁻² pCi/m³ +/- 2σ)

.

Table E-7

Sample Date	A6 Long Beach	A7 ¹ Taylors Island	CAM Cambridge
		· · · · · · · · · · · · · · · · · · ·	
1/15/2005	*	*	*
2/15/2005	· *	★ 10 10 10 10 10 10 10 10 10 10 10 10 10	*
3/15/2005	* *	*	*
4/15/2005	*	*	* .
5/15/2005	*	*	*
6/15/2005	*	*	*
7/15/2005	*	*	*
8/15/2005	*	*	*
9/15/2005	* · ·	*	*
10/15/2005	★	. *	*
11/15/2005	*	*	*
12/15/2005	*	*	*

Concentration of Gamma Emitters in Air Particulates (Results in units of 10^{-3} pCi/m³ +/- 2σ)

¹ Control location

* Non-Natural Gamma Emitters < MDA

Table E-8

Concentration of Tritium and Gamma Emitters in Taylors Island Well Water (Results in units of $10^{-3} \text{ pCi/m}^3 \text{ +/- } 2\sigma$)

Sample		H-3		Gamma Emitters	
Date	4., A	y and a second sec	an a		
1/25/2005		1		*	
3/1/2005		<244		•	
3/29/2005	i.	<229		*	
4/26/2005		<229		*	
5/31/2005		<229		*	
6/28/2005		<229		*	
7/26/2005		<229		*	
8/30/2005		<229		*	n de la composición d La composición de la c
9/27/2005		<229		*	
10/25/2005	•	<231		*	
11/29/2005		1		*	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
12/29/2005		<231		*	

بر ب

¹ Sample Lost
* Non-Natural Gamma Emitters <MDA

Table E-9

		· · ·		·		
	Sample Code	Month		Month		
•.	PIC1 ¹	JAN	.5.54 +/- 0.55	FEB	5.76 +/- 0.58	•
	Taylor's Island	MAR	5.74 +/- 0.57	APR	5.82 +/- 0.58	
		MAY	5.91 +/- 0.59	JUN	5.91 +/- 0.59	
		JUL	6.34 +/- 0.63	AUG	6.25 +/- 0.62	
		SEP	6.52 +/- 0.65	OCT	6.40 +/- 0.64	
		NOV	6.14 +/- 0.61	DEC	5.91 +/- 0.59	
	PIC2	JAN	4.14 +/- 0.41	FEB	4.20 +/- 0.42	
	Entrance to Camp	MAR	4.31 +/- 0.43	APR	4.28 +/- 0.43	
	Conoy	MAY	4.28 +/- 0.43	JUN	4.22 +/- 0.42	
	•	JUL	4.27 +/- 0.43	AUG	4.22 +/- 0.42	
		SEP	4.20 +/- 0.42	OCT	4.28 +/- 0.43	
		NOV	4.30 +/- 0.43	DEC	4.32 +/- 0.43	
	PIC3	JAN	5.01 +/- 0.50	FEB	5.27 +/- 0.53	
	MET Station	MAR	5.37 +/- 0.54	APR	9.30 +/- 0.93	
		MAY	5. 9 6 +/- 0.60	JUN	5.22 +/- 0.52	
		JUL	5.25 +/- 0.52	AUG	5.02 +/- 0.50	
		SEP	4.85 +/- 0.48	OCT	4.99 +/- 0.50	
	· .	NOV	5.02 +/- 0.50	DEC	5.06 +/- 0.51	
	PIC4	JAN	11.20 +/- 1.12	FEB	11.42 +/- 1.14	
	NNW of ISFSI	MAR	11.49 +/- 1.15	APR	11.60 +/- 1.16	
		MAY	11.40 +/- 1.14	JUN	11.27 +/- 1.13	
	۴. ۱	JUL	11.36 +/- 1.14	AUG	11.15 +/- 1.15	
		SEP	11.00 +/- 1.10	OCT	11.07 +/- 1.11	
		NOV	- 11.11 +/- 1.11	DEC	11.18 +/- 1.12	
	PIC5	JAN	6.04 +/- 0.60	FEB	6.11 +/- 0.61	
	SSE of ISFSI	MAR	6.20 +/- 0.62	APR	6.20 +/- 0.60	
		MAY	6.22 +/- 0.62	JUN	6.36 +/- 0.64	
		JUL	6.52 +/- 0.65	AUG	6.40 +/- 0.64	
		SEP	6.42 +/- 0.64	OCT	6.50 +/- 0.65	
		NOV	6.63 +/- 0.66	DEC	6.61 +/- 0.66	
	PIC8	JAN	4.70 +/- 0.47	FEB	4.83 +/- 0.48	
	Visitor's Center	MAR	4.90 +/- 0.49	APR	4.75 +/- 0.50	
		MAY	4.75 +/- 0.50	JUN	4.74 +/- 0.47	
		JUL	4.84 +/- 0.48	AUG	4.82 +/- 0.48	
		SEP	4.84 +/- 0.48	OCT	4.86 +/- 0.86	
		NOV	4.89 +/- 0.49	DEC	4.92 +/- 0.49 ·	
	· .			1	1 · · · · · · · · · · · · · · · · · · ·	

Direct Radiation as Measured in Pressurized Ion Chamber (Results in units of mR/30 days +/- 10%)

¹ Control location

Ľ

)

Table E-10

Direct Radiation (Results in units of mR/90 days +/- 2σ)

Site Code	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
DR24	Rt. 4 and Parran Rd.	11.67 +/- 0.88	11.35 +/- 0.45	11.24 +/- 0.93	11.60 +/- 0.74
DR25	Camp Conoy Guard House	12.56 +/- 1.01	12.25 +/- 1.48	12.37 +/- 1.14	12.51 +/- 1.42
DR26	Rt. 235 and Clark's Landing Road	10.52 +/- 0.74	10.64 +/- 0.92	11.26 +/- 0.73	10.42 +/- 0.47
DR27	Rt. 231 and Rt. 4	11.31 +/- 0.37	10.72 +/- 0.50	10.62 +/- 0.59	10.99 +/- 0.76
DR28	Taylors Is. Siren #35	12.85 +/- 1.43	13.02 +/- 1.15	13.84 +/- 1.28	14.12 +/- 1.13
DR29	Taylors Is. Siren #38	14.31 +/- 1.33	14.23 +/- 0.99	14.37 +/- 2.51	14.86 +/- 1.23
DR31	Cambridge	15.47 +/- 1.72	14.56 +/- 1.71	14.63 +/- 0.68	14.85 +/- 1.39
DR32	Twining Property, Taylors Island	13.14 +/- 1.71	13.19 +/- 0.51	14.09 +/- 1.49	13.91 +/- 1.03
DR33	P. A. Ransome Property	14.37 +/- 1.21	14.38 +/- 0.07	14.40 +/- 1.09	15.06 +/- 1.01
DR34	Shoreline at Barge Rd.	10.08 +/- 0.97	9.37 +/- 0.59	9.33 +/- 0.46	9.54 +/- 0.72
OSG1	North of Old Steam Generator Storage Facility	19.14 +/- 1.57	19.01 +/- 1.86	19.43 +/- 1.55	18.98 +/- 1.27
OSG2	West of Old Steam Generator Storage Facility	16.52 +/- 1.79	16.16 +/- 1.66	16.73 +/- 1.82	16.49 +/- 1.20
		• •	•	•	

99

E

1

Ľ

Table E-11

.

Direct Radiation from Resin Storage Area (Results in units of mR/90 days +/- 2σ)

Site Code	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
RPDR05	North Fence Lower	33.37 +/- 0.49	57.76 +/- 2.76	30.16 +/- 1.81	17.97 +/- 0.99
RPDR06	North Fence Upper	42.40 +/- 5.19	53.64 +/- 4.51	33.09 +/- 3.46	16.71 +/- 1.82
RPDR07	West Fence Right	34.46 +/- 2.12	35.03 +/- 2.69	23.84 +/- 1.40	20.91 +/- 2.20
RPDR08	West Fence Left	37.28 +/- 2.50	44.53 +/- 3.09	42.11 +/- 3.36	38.71 +/- 2.86
RPDR09	South Fence Upper	31.26 +/- 2.59	45.42 +/- 6.24	25.38 +/- 3.08	20.81 +/- 1.14
RPDR10	South Fence Lower	33.52 +/- 4.66	33.16 +/- 3.57	24.47 +/- 1.88	18.56 +/- 1.77
RPDR11	East Fence Left	17.03 +/- 1.85	18.67 +/- 1.91	15.03 +/- 1.02	14.62 +/- 1.53
RPDR12	East Fence Right	52.83 +/- 5.56	60.40 +/- 5.27	46.03 +/- 3.32	39.27 +/- 3.20