

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

DUKE POWER COMPANY OCONEE NUCLEAR STATION Units 1, 2, and 3

2005

TABLE OF CONTENTS

1.0 Execu	utive Summary	٠		•	•		1-1
2.0 Intro	duction						2-1
2.1							2-1
2.2							2-1
2.3	Statistical and Calculational Methodology						2-2
2.3	2.3.1 Estimation of the Mean Value						2-2
	2.3.2 Lower Level of Detection and Minimum De						2-3
	2.3.3 Trend Identification						2-3
	2.3.3 Helia identification	•	•	•	•	•	2-3
3.0 Inter	rpretation of Results						3-1
3.1	Airborne Radioiodine and Particulates						3-2
3.2	Drinking Water						3-5
3.3	Surface Water						3-7
3.4	Milk						3-10
3.5	Broadleaf Vegetation						3-12
3.6	Fish						3-14
3.7	Shoreline Sediment	•	•	•	•	•	3-17
3.8	Direct Gamma Radiation	•	•	•	•	•	3-20
3.9	Land Use Census					•	3-20
3.9	Land Use Census	•	•	•	•	•	3-22
4.0 Eval	uation of Dose						4-1
4.1	Dose from Environmental Measurements						4-1
4.2	Estimated Dose from Releases						4-1
4.3	Comparison of Doses						4-2
	-						
5.0 Qua	lity Assurance						5-1
5.1	Sample Collection						5-1
5.2	Sample Analysis						5-1
5.3	Dosimetry Analysis						5-1
5.4	Laboratory Equipment Quality Assurance						5-1
3.1	5.4.1 Daily Quality Control						5-1
	5.4.2 Calibration Verification	•	•	•	•	•	5-1
	5.4.2 Patch Processing	•	•	•	•	•	5-1 5-1
5 5	5.4.3 Batch Processing	•	•	•	•	٠	5-1 5-2
5.5	Duke Power Intercomparison Program	•	•	•		•	
5.6	Duke Power Audits	•	•	•	•	•	5-2
5.7	U.S. Nuclear Regulatory Commission Inspections	•	•	•	•	•	5-2
5.8	State of South Carolina Intercomparison Program			•	•	•	5-2
5.9	TLD Intercomparison Program			•	•		5-2
	5.9.1 Nuclear Technology Services Intercomparis						5-2
	5.9.2 State of North Carolina Intercomparison Pro						5-3
	5.9.3 Internal Crosscheck (Duke Power)		•			•	5-3
6.0 Refe	erences						6-1
old Reit		•	•	•	•	•	0-1
Append	ices						
Appendi	x A: Environmental Sampling and Analysis Proced	ures					A-1
I.	Change of Sampling Procedures						A-2

II.	Description of Analysis Procedures		•			A-2
III	Change of Analysis Procedures		•			A-3
IV	. Sampling and Analysis Procedures					A-3
	A.1 Airborne Particulate and Radioiodine .					A-3
	A.2 Drinking Water					A-3
						A-4
	A.4 Milk					A-4
	A.5 Broadleaf Vegetation					A-4
	A.6 Fish					A-4
	~ ~					A-5
	A.8 Direct Gamma Radiation (TLD)					A-5
	A.9 Annual Land Use Census					A-5
V						A-6
Append	ix B: Radiological Env. Monitoring Program - Summary					B-1
11	Air Particulate					B-2
	Air Radioiodine					B-3
	Drinking Water					B-4
	Surface Water					B-5
	N.C.11.					B-6
	Broadleaf Vegetation			·	·	B-7
	Fish					B-8
	Shoreline Sediment			·	·	B-9
	Broadleaf Vegetation			·	·	B-10
Append	ix C: Sampling Deviations and Unavailable Analyses		•	•	•	C-1
Прропо	C.1 Sampling Deviations				·	C-2
	C.2 Unavailable Analyses		•	•	•	C-3
Append	ix D: Analytical Deviations					D-1
	ix E: Radiological Environmental Monitoring Program I					E-1
rr.						
LIST OF F	ICURES					
LIST OF F	IGURES					
2.1-1	Sampling Lagations Man (One Mile Padius)					2-4
2.1-1	Sampling Locations Map (One Mile Radius) . Sampling Locations Map (Ten Mile Radius) .		•	•	•	2-4
3.1	Sampling Locations Map (Ten Mile Radius) . Concentration of Gross Beta in Air Particulate .		•	•	•	2-3 3-4
3.1	Concentration of Tritium in Drinking Water .		•	•	•	3-4
3.3			•	•	•	3-3 3-8
3.5			•	•	•	3-8 3-12
	Concentration of Cs-137 in Broadleaf Vegetation		•	•	•	
3.6-1	Concentration of Cs-137 in Fish		•	•	•	3-15
3.6-2	Concentration of Cs-134 in Fish		•	•	•	3-15 3-18
3.7-1	Concentration of Cs-137 in Shoreline Sediment.			٠	•	
3.7-2	Concentration of Co-60 in Shoreline Sediment .			•	•	3-18
3.8	` /		•	•	•	3-20
3.9	2005 Land Use Census Map		•	•	•	3-23
	A DZ 770					
LIST OF T	ABLES					
2.1-A	Radiological Monitoring Program Sampling Location		•			2-6
2.1-B	Radiological Monitoring Program Sampling Location	s (TLE	Sites)			2-7
2.2-A	Reporting Levels for Radioactivity Concentrations in					
	Environmental Samples					2-8
2.2-B	REMP Analysis Frequency					2-8
2.2-C	Maximum Values for the Lower Limits of Detection		•			2-9
3.1-A	Mean Concentration of Air Radioiodine (I-131) .		•			3-3
3.1-B	Mean Concentration of Gross Beta in Air Particulate					3-4

3.2	Mean Concentrations of Radionuclides in Drinking Water.		3-6
3.3	Mean Concentrations of Radionuclides in Surface Water .		3-9
3.4	Mean Concentrations of Radionuclides in Milk		3-11
3.5	Mean Concentrations of Radionuclides in Vegetation .		3-13
3.6	Mean Concentrations of Radionuclides in Fish		3-16
3.7	Mean Concentrations of Radionuclides in Shoreline Sediment		3-19
3.8	Direct Gamma Radiation (TLD) Results		3-21
3.9	Oconee 2005 Land Use Census Results		3-22
4.1-A	2005 Environmental and Effluent Dose Comparison		4-3
4.1-B	Maximum Individual Dose for 2005 based on Environmental		
	Measurements for Oconee Nuclear Station		4-6
5.0-A	2005 Cross-Check Results for EnRad Laboratories		5-4
5.0-B	2005 Environmental Dosimeter Cross-Check Results		5-13

$\textbf{LIST OF ACRONYMS USED IN THIS TEXT} \ (in \ alphabetical \ order)$

BW	BiWeekly
C	Control
DEHNR	Department of Environmental Health and Natural Resources
DHEC	Department of Health and Environmental Control
EPA	Environmental Protection Agency
GI-LLI	Gastrointestinal – Lower Large Intestine
GPS	Global Positioning System
LLD	Lower Limit of Detection
M	Monthly
MDA	Minimum Detectable Activity
mrem	Millirem
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
ONS	Oconee Nuclear Station
pCi/kg	picocurie per kilogram
pCi/l	picocurie per liter
pCi/m3	picocurie per cubic meter
PIP	Problem Investigation Process
Q	Quarterly
REMP	Radiological Environmental Monitoring Program
SA	Semiannually
SLCs	Selected Licensee Commitments
SM	Semimonthly
TECH SPECs	Technical Specifications
TLD	Thermoluminescent Dosimeter
μCi/ml	microcurie per milliliter
UFSAR	Updated Final Safety Analysis Report
W	Weekly

1.0 EXECUTIVE SUMMARY

This Annual Radiological Environmental Operating Report describes the Oconee Nuclear Station Radiological Environmental Monitoring Program (REMP), and the program results for the calendar year 2005.

Included are the identification of sampling locations, descriptions of environmental sampling and analysis procedures, comparisons of present environmental radioactivity levels and preoperational environmental data, comparisons of doses calculated from environmental measurements and effluent data, analysis of trends in environmental radiological data as potentially affected by station operations, and a summary of environmental radiological sampling results. Quality assurance practices and program changes are also discussed.

Sampling activities were conducted as prescribed by Selected Licensee Commitments (SLC's). Required analyses were performed and detection capabilities were met for all collected samples as required by SLC's. One-thousand seventeen samples were analyzed comprising 1,439 test results in order to compile data for the 2005 report. Based on the annual land use census, the current number of sampling sites for Oconee Nuclear Station is sufficient.

Concentrations observed in the environment in 2005 for station related radionuclides were within the ranges of concentrations observed in the past. Inspection of data showed that radioactivity concentrations in surface water, shoreline sediment, and fish are higher than the activities reported for samples collected prior to the operation of the station. All positively identified measurements were within limits as specified in SLC's.

Additionally, environmental radiological monitoring data is consistent with effluents introduced into the environment by plant operations. The total body dose estimated to the maximum exposed member of the public as calculated by environmental sampling data, excluding TLD results, was 1.06E-01 mrem for 2005. It is therefore concluded that station operations has had no significant radiological impact on the health and safety of the public or the environment.

Air Sampling at Oconee Nuclear Station

2.0 INTRODUCTION

2.1 <u>SITE DESCRIPTION AND SAMPLE LOCATIONS</u>

Oconee Nuclear Station (ONS) is located in Oconee County, South Carolina, approximately 8 miles northeast of Seneca, South Carolina, on the shore of Lake Keowee. This lake was formed by damming the Keowee and Little Rivers in that location. Immediately to the south is the U.S. Government Hartwell Project. The Keowee Hydroelectric Plant near the station joins Lake Keowee and the upper reaches of Lake Hartwell. To the north, the Jocassee Hydroelectric Plant joins Lake Jocassee and Lake Keowee. Jocassee is a pumped storage plant.

ONS consists of three pressurized water reactors. Each unit has an output of 866 megawatts net. Unit 1 began commercial operation 7/15/1973. Unit 2 began commercial operation 9/09/1974, and Unit 3 on 12/16/1974. An independent spent fuel storage installation is also located at the site.

Figures 2.1-1 and 2.1-2 are maps depicting the Thermoluminescent Dosimeter (TLD) monitoring locations and the sampling locations. The location numbers shown on these maps correspond to those listed in Tables 2.1-A and 2.1-B. Figure 2.1-1 comprises all sample locations within a one mile radius of ONS. Figure 2.1-2 comprises all sample locations within a ten mile radius of ONS.

2.2 SCOPE AND REQUIREMENTS OF THE REMP

An environmental monitoring program has been in effect at Oconee Nuclear Station since 1969, four years prior to operation of Unit 1 in 1973. The preoperational program provides data on the existing environmental radioactivity levels for the site and vicinity which may be used to determine whether increases in environmental levels are attributable to the station. The operational program provides surveillance and backup support of detailed effluent monitoring which is necessary to evaluate the significance, if any, of the contributions to the existing environmental radioactivity levels that result from station operation.

This monitoring program is based on NRC guidance as reflected in the Selected Licensee Commitments Manual, with regard to sample media, sampling locations, sampling frequency, and analytical sensitivity requirements. Indicator and control locations were established for comparison purposes to distinguish radioactivity of station origin from natural or other "manmade" environmental radioactivity. The environmental monitoring program also verifies projected and anticipated radionuclide concentrations in the environment and related exposures from releases of radionuclides from Oconee Nuclear Station. This program satisfies the requirements of Section IV.B.2 of Appendix I to 10CFR50 and 10CFR72.44(d)(2) and provides surveillance of all appropriate critical exposure pathways to man and protects vital interests of the company, public, and state and federal agencies concerned with the

environment. Reporting levels for radioactivity found in environmental samples are listed in Table 2.2-A. Table 2.2-B lists the REMP analysis and frequency schedule.

The Annual Land Use Census, required by Selected Licensee Commitments, is performed to ensure that changes in the use of areas at or beyond the site boundary are identified and that modifications to the Radiological Environmental Monitoring Program are made if required by changes in land use. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10CFR50. Results are shown in Table 3.9.

Participation in an interlaboratory comparison program as required by Selected Licensee Commitments provides for independent checks on the precision and accuracy of measurements of radioactive material in REMP sample matrices. Such checks are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10CFR50. A summary of the results obtained as part of this comparison program are in Section 5 of this annual report.

2.3 STATISTICAL AND CALCULATIONAL METHODOLOGY

2.3.1 ESTIMATION OF THE MEAN VALUE

There was one (1) basic statistical calculation performed on the raw data resulting from the environmental sample analysis program. The calculation involved the determination of the mean value for the indicator and the control samples for each sample medium. The mean is a widely used statistic. This value was used in the reduction of the data generated by the sampling and analysis of the various media in the Radiological Environmental Monitoring Program. The following equation was used to estimate the mean (reference 6.8):

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Where:

x =estimate of the mean,

i = individual sample,

N = total number of samples with a net activity (or concentration),

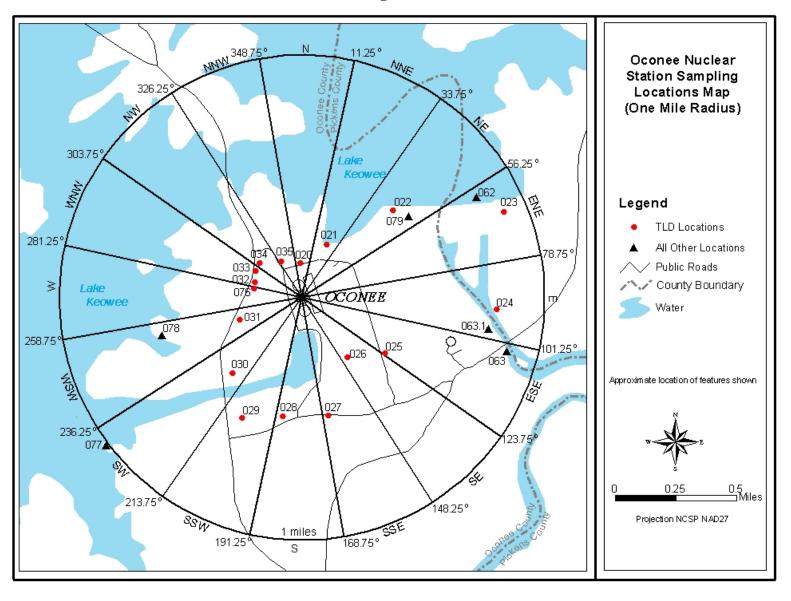
 χ_i = net activity (or concentration) for sample i.

NOTE: "Net activity (or concentration)" is the activity (or concentration) determined to be present in the sample. No "Minimum Detectable Activity", "Lower Limit of Detection", "Less Than Level", or negative activities or concentrations are included in the calculation of the mean.

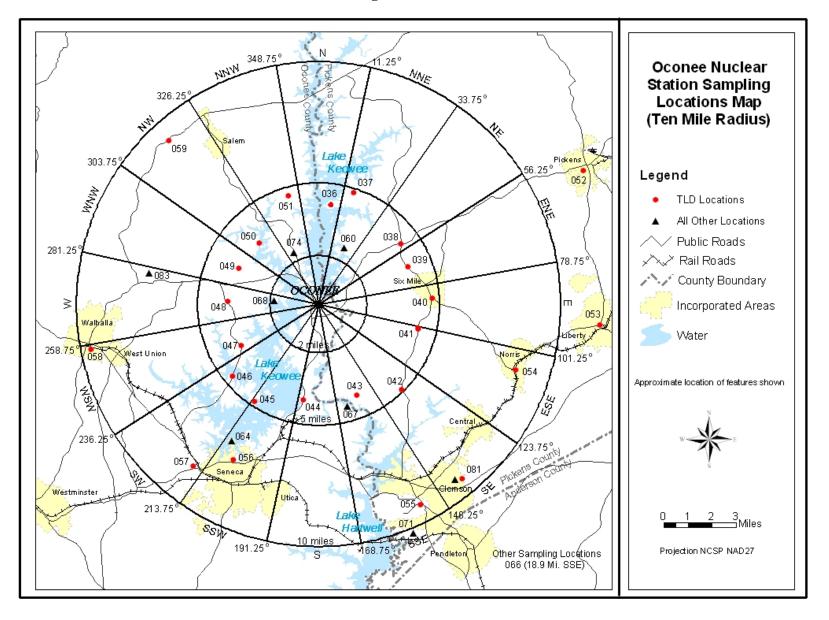
2.3.2 LOWER LEVEL OF DETECTION AND MINIMUM DETECTABLE ACTIVITY

The Lower Level of Detection (LLD) and Minimum Detectable Activity (MDA) are used throughout the Environmental Monitoring Program.

LLD - The LLD, as defined in the Selected Licensee Commitments Manual is the smallest concentration of radioactive material in a sample that will yield a net count, above the system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is an *a priori* lower limit of detection. The actual LLD is dependent upon the standard deviation of the background counting rate, the counting efficiency, the sample size (mass or volume), the radiochemical yield, and the radioactive decay of the sample between sample collection and counting. The "required" LLD's for each sample medium and selected radionuclides are given in the Selected Licensee Commitments and are listed in Table 2.2-C.


MDA - The MDA may be thought of as an "actual" LLD for a particular sample measurement remembering that the MDA is calculated using a sample background instead of a system background.

2.3.3 TREND IDENTIFICATION


One of the purposes of an environmental monitoring program is to determine if there is a buildup of radionuclides in the environment due to the operation of the nuclear station. Visual inspection of tabular or graphical presentations of data (including preoperational) is used to determine if a trend exists. A decrease in a particular radionuclide's concentration in an environmental medium does not indicate that reactor operations are removing radioactivity from the environment but that reactor operations are not adding that radionuclide to the environment in quantities exceeding the preoperational level and that the normal removal processes (radioactive decay, deposition, resuspension, etc.) are influencing the concentration.

Substantial increases or decreases in the amount of a particular radionuclide's release from the nuclear plant will greatly affect the resulting environmental levels; therefore, a knowledge of the release of a radionuclide from the nuclear plant is necessary to completely interpret the trends, or lack of trends, determined from the environmental data. Some factors that may affect environmental levels of radionuclides include prevailing weather conditions (periods of drought, solar cycles or heavier than normal precipitation), construction in or around either the nuclear plant or the sampling location, and addition or deletion of other sources of radioactive materials (such as the Chernobyl accident). Some of these factors may be obvious while others are sometimes unknown. Therefore, how trends are identified will include some judgment by plant personnel.

Figure 2.1-1

Figure 2.1-2

TABLE 2.1-A

OCONEE RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

Table 2.1-A Codes						
W	Weekly	SM	Semimonthly			
BW	BiWeekly	Q	Quarterly			
M	Monthly	SA	Semiannually			
С	Control					

Site #	Location Description*	Air Rad. & Particulate	Surface Water	Drinking Water	Shoreline Sediment	Fish	Milk	Broadleaf Vegetation
060	Greenville Water Intake Road (2.58 mi NNE)	W						M
060	Greenville Water Intake Road (3.23 NE)			M				
060 C **	Greenville Water Intake Road (2.28 NE)					SA		
062 C	Lake Keowee Hydro Intake (0.85 mi ENE)		M					
0.40	Lake Hartwell Hwy 183 Bridge					a .		
063	(0.80 mi ESE) [000.7]				SA	SA		
063.1	Lake Hartwell Hwy 183 (0.79 mi E)		M					
064 C	Seneca (6.67 mi SSW) [004.1]			M				
066	Anderson (18.9 mi SSE) [012]			M				
	Lawrence Ramsey Bridge Hwy 27							
067	(4.34 mi SSE) [005.2]				SA	SA		
068 C	High Falls County Park (1.82 mi W)				SA			
071	Clemson Dairy (10.2 mi SSE) [006.3]						SM	
074	Keowee Key Resort (2.36 mi NNW)	W						
077	Skimmer Wall (1.00 mi SW)	W						M
078	Recreation Site (0.58 mi WSW)	W						
079	Keowee Dam (0.56 mi NE)	W						M
080 C	Martin's Dairy (17.2 mi SE)						SM	
081 C	Clemson Operations Center (9.33 mi SE)	W						M
082	Oakway Dairy (17.8 mi SSW)						SM	
083	Oconee Belle Farm Dairy (7.10 mi W)		_			_	SM	

^{*} GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

^{**} Control for Fish Only

^[] Location Numbers prior to 1984

TABLE 2.1-B

OCONEE RADIOLOCICAL MONITORING PROGRAM SAMPLING LOCATIONS

(TLD SITES)

Site #	Location*	Distance	Sector	Site #	Location*	Distance	Sector
020	SITE BOUNDARY	0.16 miles	N	040	MICROWAVE TOWER, SIX MILE	4.74 miles	Е
021	SITE BOUNDARY	0.25 miles	NNE	041	JCT HWY 101 & 133	4.25 miles	ESE
022	SITE BOUNDARY	0.53 miles	NE	042	LAWRENCE CHAPEL CHURCH, HWY 133	4.93 miles	SE
023	SITE BOUNDARY	0.93 miles	ENE	043	HWY 291 AT ISSAQUEENA PARK	4.09 miles	SSE
024	SITE BOUNDARY	0.81 miles	Е	044	HWY 130 AT LITTLE RIVER DAM TERMINUS OF HWY 588	3.96 miles	S
025	SITE BOUNDARY	0.42 miles	ESE	045	AT CROOKED CREEK HWY 188 AT	4.78 miles	SSW
026	SITE BOUNDARY	0.34 miles	SE	046	CROOKED CREEK	4.61 miles	SW
027	SITE BOUNDARY	0.49 miles	SSE	047	NEW HOPE CHURCH, HWY 188	3.58 miles	WSW
028	SITE BOUNDARY	0.46 miles	S	048	JCT HWY 175 & 188	3.64 miles	W
029	SITE BOUNDARY	0.56 miles	SSW	049	JCT HWY 201 & 92	3.60 miles	WNW
030	SITE BOUNDARY	0.42 miles	SW	050	STAMP CREEK LANDING, END OF HWY 92	3.53 miles	NW
031	SITE BOUNDARY	0.27 miles	WSW	051	HWY 128, 1 MILE N OF HWY 130	4.64 miles	NNW
076	SITE BOUNDARY	0.19 miles	W	052	DPC BRANCH OFFICE SITE - PICKENS	12.4 miles	ENE
032	SITE BOUNDARY	0.19 miles	WNW	053	DPC BRANCH OFFICE SITE - LIBERTY	11.7 miles	Е
033	SITE BOUNDARY	0.21 miles	WNW	054	POST OFFICE - HWY 93 NORRIS	8.60 miles	ESE
034	SITE BOUNDARY	0.22 miles	NW	055	CLEMSON METEOROLOGY PLOT	9.27 miles	SSE
035	SITE BOUNDARY	0.17 miles	NNW	056	WATER TOWER - SENECA	7.30 miles	SSW
036	MILE CREEK LANDING	4.32 miles	N	057	OCONEE MEMORIAL HOSPITAL	8.42 miles	SW
037	KEOWEE CHURCH, HWY 327	4.85 miles	NNE	058 C	BRANCH RD SUBSTATION, WALHALLA	9.39 miles	WSW
038	CONVENIENCE MART, JCT HWY 183 & 133	4.24 miles	NE	059	TAMASSEE DAR SCHOOL	9.20 miles	NW
039	HWY 133, 1 MILE EAST OF JCT HWY 183 & 133	4.02 miles	ENE	081 C	CLEMSON OPERATIONS CENTER	9.33 miles	SE

C = Control

SI = Special Interest

^{*} GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

TABLE 2.2-A

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

Analysis	Water (pCi/liter)	Air Particulates or Gases (pCi/m³)	Fish (pCi/kg-wet)	Milk (pCi/liter)	Broadleaf Vegetation (pCi/kg-wet)
H-3	20,000 ^(a)	4 - 1			(1 - 8)
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
I-131	2 ^(b)	0.9		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	_

- (a) For drinking water samples only. This is 40CFR Part 141 value.
- (b) If low-level I-131 analyses are performed.

TABLE 2.2-B

REMP ANALYSIS FREQUENCY

Sample	Analysis	Gamma	Tritium	Low Level	Gross	TLD
Medium	Schedule	Isotopic		I-131	Beta	
Air Radioiodine	Weekly	X				
Air Particulate	Weekly	X			X	
Direct Radiation	Quarterly					X
Surface	Monthly	X				
Water	Quarterly Composite		X			
Drinking	Monthly	X		(a)	X	
Water	Quarterly Composite		X			
Shoreline Sediment	Semiannually	X				
Milk	Semimonthly	X		X		
Fish	Semiannually	X				
Broadleaf Vegetation	Monthly	X				

(a) Low level I-131 analysis will be performed if abnormal releases occur which could reasonably result in > 1 pCi/liter of I-131 in drinking water. An LLD of 1 pCi/liter will be required for this analysis.

MAXIMUM VALUES FOR THE LOWER LIMITS OF DETECTION

TABLE 2.2-C

Analysis	Water (pCi/liter)	Air Particulates or Gases (pCi/m³)	Fish (pCi/kg-wet)	Milk (pCi/liter)	Broadleaf Vegetation (pCi/kg-wet)	Sediment (pCi/kg-dry)
Gross Beta	4	0.01				
H-3	2000					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			
Zr-95	15					
Nb-95	15					
I-131	15 ^(a)	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-La-140	15			15		

⁽a) LLD for low-level I-131 analyses is 1 pCi/liter if performed

3.0 INTERPRETATION OF RESULTS

Review of 2005 REMP analysis results was performed to identify changes in environmental levels as a result of station operations. The review is summarized in this section. Data from 2005 was compared to preoperational and historical data. Sample data for some media is not directly comparable to preoperational and earlier operational sample results because of either significant changes in the analysis methods or changes in the reporting of the results.

Evaluation for significant trends was performed for the radionuclides that have required LLDs listed in Selected Licensee Commitment 16.11.6. These radionuclides are collectively referred to as "Selected Licensee Commitments radionuclides" and include H-3, Mn-54, Fe-59, Co-58, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140. Drinking water gross beta results are routinely trended. Trending of air particulate gross beta results was initiated in 1996 when the analysis was resumed. Trending is also performed for other radionuclides that are detected and could have been the result of station effluents. Only Selected Licensee Commitment radionuclides were detected in 2005.

Trending was performed by comparing annual mean concentrations of any effluent related detected radionuclide to historical results. Factors evaluated include the frequency of detection and the concentration in terms of the percent of the radionuclide's SLC reporting level (Table 2.2-A). All maximum percent of reporting level values were well below the 100% action level. The highest value reached during 2005 was 3.25% for Cs-137 in a fish sample collected at Location 063.

Changes in sample location, analytical technique, and presentation of results must be considered when reviewing for trends. Calculation of the annual mean concentrations has been performed differently over the history of the REMP. During 1979-1986, all net results (sample minus background), positive and negative, were included in the calculation of the mean. Only positive net activity results were used to calculate the mean for the other years. A change in gamma spectroscopy analysis systems in 1987 ended a period when many measurements yielded detectable low-level activity for both indicator and control location samples. It is thought that the method the previous system used to estimate net activity may have been vulnerable to false-positive results.

Data presented in Sections 3.1 - 3.8 support the conclusion that there were no significant increases in radionuclides in the environment around ONS due to station operations in 2005. Similarly, there was no significant increase in ambient background radiation levels in the surrounding areas.

3.1 <u>AIRBORNE RADIOIODINE AND PARTICULATES</u>

In 2005, 318 radioiodine and particulate samples were analyzed, 265 from five indicator locations and 53 from the control location. Particulate samples were analyzed weekly for gamma and gross beta. Radioiodine samples received a weekly gamma analysis.

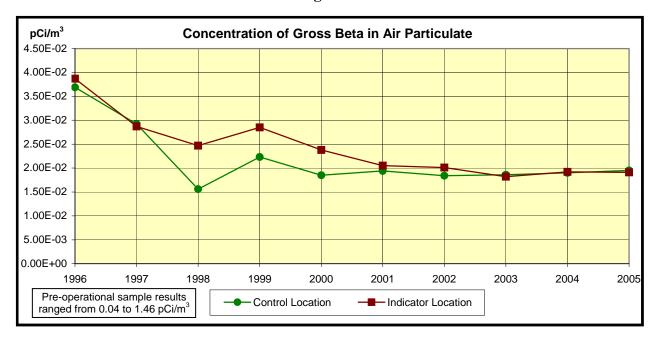
There was no detectable I-131 in air samples in 2005. Table 3.1-A gives the highest indicator location annual mean and control location annual mean for I-131 since the preoperational period. The table shows similar concentrations for both the indicator and control locations and the activities decreasing from early in the operational history of the plant. No I-131 has been detected since 1994.

Cs-137 was not detected in air radioiodine samples in 2005. Cs-137 has been detected in cartridges in previous years. A study performed in 1990 determined Cs-137 to be an active constituent of the charcoal. A similar study was performed in 2001 again yielding this conclusion.

There were no detectable gamma emitting radionuclides detected in air particulate samples in 2005. No gamma emitting particulates have been detected in indicator location samples since the change in gamma spectroscopy analysis systems in 1987.

Beta analysis of particulate filters was initiated in March of 1996 and became required by Selected Licensee Commitments in 1998. Gross beta analysis was performed on particulate filters during the preoperational and early operational history of the plant but had not been required since 1984. Figure 3.1 summarizes gross beta results for the indicator location with the highest annual mean and the control location samples. Both the indicator and control location results are similar in concentration and are near the lower range of preoperational gross beta results.

K-40 and Be-7 are the naturally occurring radionuclides that were observed in air samples.


Table 3.1-A Mean Concentration of Air Radioiodine (I-131)

Year	Indicator Location (pCi/m³)	Control Location (pCi/m³)
Preoperational 1969-1972	0.00E0	0.00E0
Feb. 1973 - June 1973	0.00E0	0.00E0
July 1973 - Dec. 1973	0.00E0	0.00E0
Jan. 1974 - June 1974	0.00E0	0.00E0
July 1974 - Dec. 1974	2.60E-2	8.00E-3
Jan. 1975 - June 1975	8.65E-2	3.12E-2
July 1975 - Dec. 1975	1.13E-2	9.52E-3
1976	2.76E-2	2.18E-2
1977	3.60E-2	3.60E-2
1978	2.19E-1	1.15E-1
1979	7.54E-3	4.75E-4
1980	3.07E-3	9.67E-4
1981	6.31E-3	5.39E-4
1982	2.87E-3	8.10E-4
1983	1.48E-3	3.05E-4
1984	8.11E-4	-2.30E-5
1985	7.71E-4	4.54E-4
1986	5.02E-3	7.86E-3
1987	4.29E-3	5.19E-3
1988	0.00E0	0.00E0
1989	4.99E-4	0.00E0
1990	0.00E0	0.00E0
1991	0.00E0	0.00E0
1992	0.00E0	0.00E0
1993	0.00E0	0.00E0
1994	1.03E-2	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0
2005	0.00E0	0.00E0
0.00E0 = no detectable measurements		

0.00E0 = no detectable measurements

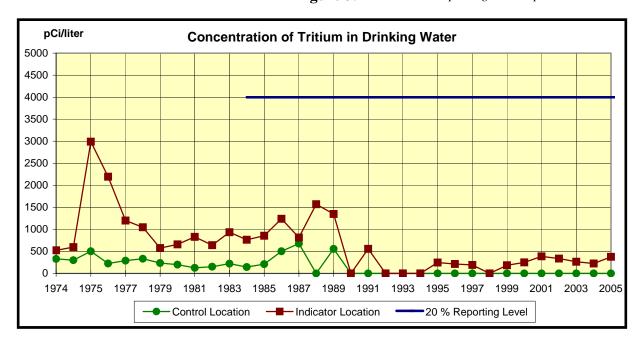
1979 - 1986 mean based on all net activity results

Figure 3.1

There is no reporting level for gross beta in air particulate

Table 3.1-B Mean Concentration of Gross Beta in Air Particulate

Monitoring Period	Indicator Location (pCi/m³)	Control Location (pCi/m³)
1996	3.87E-2	3.69E-2
1997	2.87E-2	2.92E-2
1998	2.47E-2	1.56E-2
1999	2.85E-2	2.23E-2
2000	2.38E-2	1.85E-2
2001	2.05E-2	1.94E-2
2002	2.01E-2	1.84E-2
2003	1.86E-2	1.82E-2
2004	1.92E-2	1.90E-2
Average (1996 - 2004)	2.48E-2	2.19E-2
2005	1.95E-2	1.91E-2


3.2 **DRINKING WATER**

Gross beta analysis and gamma spectroscopy were performed on 39 monthly drinking water samples. These samples were composited to form 12 quarterly period samples for Tritium analysis. Two indicator locations and a control location were sampled; however, only one of the indicator locations is downstream of the effluent release point.

Table 3.2 lists the highest indicator location annual mean and control location annual mean for gross beta results since the preoperational period. The indicator location had an average concentration of 1.28 pCi/liter in 2005, and the control location had a concentration of 1.37 pCi/liter. The 2004 indicator mean was 1.58 pCi/liter. The table shows that 2005 gross beta levels in drinking water are slightly lower than preopreational concentrations. The dose for consumption of water was less than one mrem per year, historically and for 2005; therefore low-level iodine analysis is not required.

Tritium was detected in two of the twelve composite samples during 2005. The 2005 mean indicator location 066 concentration was 377 pCi/liter, which is 1.89% of the reporting level. Table 3.2 and Figure 3.2 show the highest indicator and control location annual means for Tritium since analysis was initiated early in the operational period. Tritium concentrations have decreased at both the indicator and control locations. The closure of the Clemson water plant in 1989 is one reason for the decrease shown in the table and graph. The Clemson site was typically the high mean location when the plant was in operation.

There were no gamma emitting radionuclides identified in drinking water samples in 2005. Gamma spectroscopy analysis has not detected any activity in the water supplies since 1988. K-40 is the naturally occurring radionuclide that was observed in drinking water samples.

Figure 3.2 Current reporting level implemented 1984

Table 3.2 Mean Concentrations of Radionuclides in Drinking Water

	Gross Re	eta (pCi/l)	Tritium (pCi/l)	
Year	Indicator	Control	Indicator	Control
	Location	Location	Location	Location
Preoperational ending Jan. 1971	3.03	5.90	Analysis not required	
Preoperational ending Jan. 1973	3.58	4.94	Analysis n	ot required
Feb. 1973 - June 1973	Qualitative re	sults reported	Analysis n	ot required
June 1973 - Dec. 1973	7.15	21.78	Analysis n	ot required
Jan. 1974 - June 1974	3.13	6.98	Analysis n	ot required
July 1974 - Dec. 1974	2.24	2.02	525	330
Jan. 1975 - June 1975	1.98	1.59	600	300
July 1975 - Dec. 1975	2.01	1.22	2990	505
1976	2.38	2.00	2196	224
1977	2.70	2.30	1200	290
1978	2.56	2.17	1050	333
1979	1.83	1.36	576	235
1980	1.86	1.63	660	200
1981	1.98	1.88	830	127
1982	2.04	1.45	643	153
1983	1.85	1.54	937	220
1984	1.87	1.08	765	145
1985	2.14	1.16	856	210
1986	1.91	1.04	1240	503
1987	2.00	1.20	815	680
1988	2.00	1.40	1570	0.00
1989	2.30	1.80	1350	559
1990	3.00	2.70	0.00	0.00
1991	1.80	1.40	558	0.00
1992	3.20	1.60	0.00	0.00
1993	2.10	1.90	0.00	0.00
1994	1.90	2.10	0.00	0.00
1995	5.10	2.90	248	0.00
1996	2.07	1.77	214	0.00
1997	2.52	2.23	194	0.00
1998	2.48	1.70	0.00	0.00
1999	1.73	1.49	185	0.00
2000	2.07	1.68	251	0.00
2001	1.75	1.29	390	0.00
2002	1.61	1.21	338	0.00
2003	1.51	1.05	266	0.00
2004	1.58	1.25	225	0.00
2005	1.28	1.37	377	0.00
0.00 = no detectable measurements				

0.00 = no detectable measurements

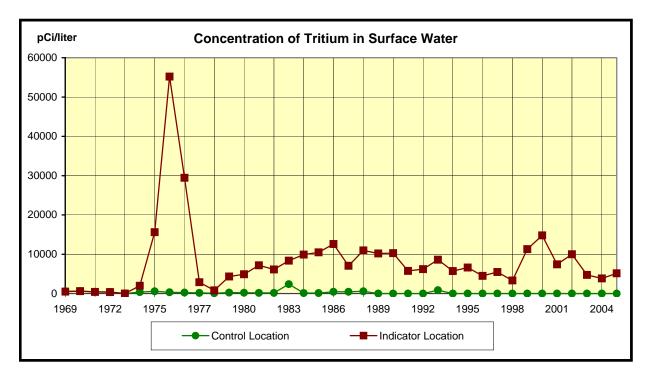
^{1989 -} Clemson water plant closes; nearest downstream plant is Anderson. 1979 - 1986 mean based on all net activity results

3.3 SURFACE WATER

Gamma spectroscopy was performed on 26 monthly surface water samples. These samples were composited to form eight quarterly samples for Tritium analysis. One indicator and one control location were sampled. The indicator location is near the liquid effluent release point.

Tritium was detected in the four indicator location samples. The 2005 average concentration was 5,153 pCi/liter. The individual samples ranged from 2,260 pCi/liter to 7,930 pCi/liter. The 2004 mean concentration was 3,858 pCi/liter. Tritium was not detected in any control surface water samples.




Figure 3.3 shows the indicator and control annual means for Tritium since the preoperational period. Table 3.3 lists the indicator annual means. Tritium in the indicator location was elevated during an extended drought from 1998 through 2002. The average tritium concentration decreased in 2003 with increased rainfall.

Gamma spectroscopy analysis did not detect any station related activity during 2005. In 1999, gamma spectroscopy analysis detected Co-58 in one indicator sample at 27.3 pCi/liter. Gamma spectroscopy analysis has not detected any other activity in surface water samples

since 1992. Table 3.3 summarizes the indicator annual means of radionuclides detected since the change in the gamma spectroscopy analysis system in 1987. Visual inspection of the gamma spectroscopy tabular data covering the early operational period through 2005 did not reveal any increasing trends.

K-40 is the naturally occurring radionuclide observed in surface water samples in 2005.

Figure 3.3

There is no reporting level for Tritium in surface water

Table 3.3 Mean Concentrations of Radionuclides in Surface Water

Year	Co-58 (pCi/l)	Co-60 (pCi/l)	Nb-95 (pCi/l)	Cs-137 (pCi/l)	H-3 pCi/l)	
Preoperational 1969		Qualitative re	4.86E2			
Preoperational 1970		•	"			
Preoperational 1971		•	••	4.01E2		
Preoperational 1972			"			
1973		•	:4		0.00E0	
1974	0.00E0	1.32E1	0.00E0	1.60E1	1.99E3	
Jan. 1975 – June 1975	0.00E0	0.00E0	0.00E0	0.00E0	1.56E4	
July 1975 – Dec. 1975	0.00E0	1.34E1	0.00E0	0.00E0	5.52E4	
1976	1.08E2	3.30E1	0.00E0	3.50E1	2.95E4	
1977	2.60E1	1.80E1	0.00E0	3.10E1	2.90E3	
1978	2.96E2	0.00E0	0.00E0	2.22E1	8.00E2	
1979	1.33E0	2.60E0	1.78E0	2.82E0	4.37E3	
1980	1.56E0	2.30E0	1.22E0	5.40E0	4.93E3	
1981	1.10E0	6.10E-1	1.70E0	3.90E0	7.21E3	
1982	6.14E-1	1.99E0	2.29E0	4.85E0	6.13E3	
1983	6.99E-1	3.02E0	3.91E-1	6.83E-1	8.40E3	
1984	9.40E-1	6.30E-1	7.90E-1	4.83E-1	9.90E3	
1985	2.15E-1	6.27E-1	4.95E-1	9.90E-1	1.05E4	
1986	3.28E0	1.23E0	1.14E0	3.07E-1	1.26E4	
1987	5.10E1	3.40E0	4.00E0	0.00E0	7.08E3	
1988	6.20E0	5.00E0	2.50E0	3.50E0	1.10E4	
1989	5.30E0	3.00E0	0.00E0	3.40E0	1.02E4	
1990	1.70E0	1.60E0	0.00E0	0.00E0	1.03E4	
1991	5.40E0	0.00E0	0.00E0	0.00E0	5.76E3	
1992	2.50E0	0.00E0	0.00E0	0.00E0	6.22E3	
1993	0.00E0	0.00E0	0.00E0	0.00E0	8.62E3	
1994	0.00E0	0.00E0	0.00E0	0.00E0	5.75E3	
1995	0.00E0	0.00E0	0.00E0	0.00E0	6.65E3	
1996	0.00E0	0.00E0	0.00E0	0.00E0	4.54E3	
1997	0.00E0	0.00E0	0.00E0	0.00E0	5.50E3	
1998	0.00E0	0.00E0	0.00E0	0.00E0	3.35E3	
1999	2.73E1	0.00E0	0.00E0	0.00E0	1.13E4	
2000	0.00E0	0.00E0	0.00E0	0.00E0	1.48E4	
2001	0.00E0	0.00E0	0.00E0	0.00E0	7.43E3	
2002	0.00E0	0.00E0	0.00E0	0.00E0	1.00E4	
2003	0.00E0	0.00E0	0.00E0	0.00E0	4.77E3	
2004	0.00E0	0.00E0	0.00E0	0.00E0	3.86E3	
2005	0.00E0	0.00E0	0.00E0	0.00E0	5.15E3	
0.00E0 - no detectable measures						

0.00E0 = no detectable measurements

1979-1986 mean based on all net activity results

3.4 **MILK**

Gamma spectroscopy and low level iodine analysis was performed on 65 milk samples collected in 2005. Three indicator locations and one control location were sampled. The milk program was updated to align with NUREG-1301 during 2005 and is documented in PIP O-04-01179.

Location 071 was designated as the new control site effective with the 7/12/2005 sampling and was the sole dairy sampled the remainder of the monitoring period.

There were no gamma emitting radionuclides identified in indicator or control location samples in 2005. Cs-137 is the only radionuclide, other than naturally occurring, reported in milk samples since 1988. Cs-137 in milk is not unusual. It is a constituent of nuclear weapons test fallout and has been observed in samples from indicator and control locations in previous years.

Table 3.4 lists the highest indicator location annual mean and control location annual mean for Cs-137 since the preoperational period. The table shows similar concentrations for both indicator and control locations.

K-40 is a naturally occurring radionuclide observed in milk samples in 2005.

Table 3.4 Mean Concentration of Radionuclides in Milk

Year	Cs-137 Indicator (pCi/l)	Cs-137 Control (pCi/l)
Preoperational	1.57E1	1.46E1
Feb. 1973 – June 1973	Qualitative results reported	Qualitative results reported
July 1973 – Dec. 1973	5.80E0	٠٠
Jan. 1974 – June 1974	5.30E0	0.00E0
July 1974 – Dec. 1974	1.11E1	0.00E0
Jan. 1975 – June 1975	1.51E1	9.45E0
July 1975 – Dec. 1975	0.00E0	0.00E0
1976	1.80E1	7.47E0
1977	0.00E0	0.00E0
1978	1.33E1	1.33E1
1979	7.25E0	2.52E0
1980	3.58E0	2.63E0
1981	5.52E0	5.51E0
1982	2.71E0	3.25E0
1983	5.04E0	-4.27E-1
1984	2.30E0	2.58E0
1985	2.38E0	1.31E0
1986	2.92E0	2.97E0
1987	4.90E0	4.90E0
1988	3.90E0	3.20E0
1989	4.70E0	2.90E0
1990	6.40E0	0.00E0
1991	5.00E0	0.00E0
1992	6.60E0	0.00E0
1993	0.00E0	0.00E0
1994	0.00E0	1.80E0
1995	2.30E0	2.00E0
1996	0.00E0	4.10E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0
2005	0.00E0	0.00E0

0.00E0 = no detectable measurements 1979 - 1986 mean based on all net activity results

3.5 **BROADLEAF VEGETATION**

Gamma spectroscopy was performed on 48 broadleaf vegetation samples during 2005. Three indicator locations and one control location were sampled. Cs-137 was reported in one indicator sample at a concentration of 45.1 pCi/kg. Cs-137 was reported in one control sample at a concentration of 41.1 pCi/kg.

Sampling of control location 073 (which has historically had measurable Cs-137 concentrations greater than any indicator location) was discontinued early in 1999 due to construction. The new control location, 081, was added to the program in 1998.

Cs-137 is the only radionuclide, other than naturally occurring, reported in indicator location vegetation samples since the change in gamma spectroscopy analysis systems in 1987.

It is not unusual for Cs-137 to be present in vegetation. It is a constituent of nuclear weapons test fallout and has been observed in samples from indicator and control locations in previous years. Table 3.5 lists the highest indicator location annual mean and control location annual mean for Cs-137 since early in the station's operational history. Visual inspection of the tabular data did not reveal any increasing trends. There is no indication that the Cs-137 is due to ONS operations based on the low concentration observed and the absence of other radionuclides.

K-40 and Be-7 are naturally occurring radionuclides that were observed in broadleaf vegetation samples in 2005.

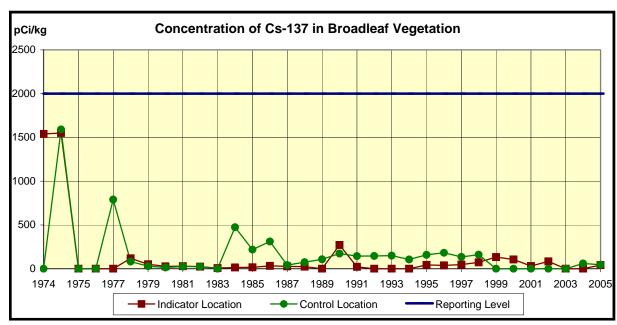


Figure 3.5

Table 3.5 Mean Concentration of Radionuclides in Vegetation

Year	Cs-137 Indicator (pCi/kg)	Cs-137 Control (pCi/kg)
July 1974 - Dec. 1974	1.54E3	0.00E0
Jan. 1975 - June 1975	1.55E3	1.59E3
July 1975 - Dec. 1975	0.00E0	0.00E0
1976	0.00E0	0.00E0
1977	0.00E0	7.90E2
1978	1.19E2	8.19E1
1979	5.04E1	2.96E1
1980	2.80E1	1.55E1
1981	2.99E1	2.60E1
1982	2.42E1	2.62E1
1983	7.44E0	5.35E-1
1984	1.37E1	4.74E2
1985	1.62E1	2.20E2
1986	3.28E1	3.12E2
1987	2.70E1	4.20E1
1988	2.40E1	7.50E1
1989	0.00E0	1.08E2
1990	2.73E2	1.74E2
1991	2.20E1	1.45E2
1992	0.00E0	1.46E2
1993	0.00E0	1.49E2
1994	0.00E0	1.06E2
1995	4.30E1	1.58E2
1996	3.79E1	1.83E2
1997	4.73E1	1.35E2
1998	7.28E1	1.61E2
1999	1.34E2	0.00E0
2000	1.06E2	0.00E0
2001	3.19E1	0.00E0
2002	8.44E1	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	5.96E1
2005	4.51E1	4.11E1

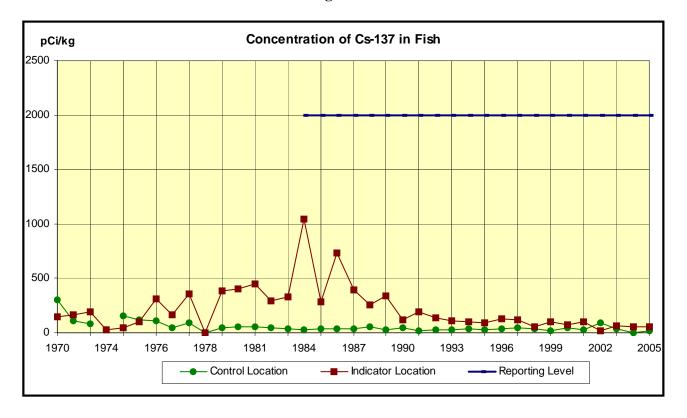
0.00E0 = no detectable measurements
Only qualitative results reported prior to 1974
Control location changed to 073 in 1984
Control location 081 added in 1998
Control location 073 was removed in 1999
1979 - 1986 mean based on all net activity results

3.6 FISH

In 2005, gamma spectroscopy was performed on 12 fish samples. Two downstream indicator and one control location were sampled. Cs-137 was identified in all eight of the indicator location samples. Cs-137 was detected in one of the four control location samples at a concentration of 18.9 pCi/kg.

The highest average concentration for Cs-137 was 51.4 pCi/kg (2.57% of reporting level). The highest individual sample concentration for Cs-137 was 65.0 pCi/kg (3.25% of reporting level).

Figures 3.6-1 and 3.6-2 are graphs displaying the annual means for Cs-137 and Cs-134. Historically, both are contributors to the calculated dose from liquid effluents from ingestion of fish. Radioactivity concentrations in downstream fish samples are higher than those reported in preoperational fish samples, however, concentrations in fish have decreased over time with decreases in radioactive material releases from the plant.


One factor affecting the trend analysis is a change in sampling locations. In 1984, a second downstream fish location was added. Location 063 is closer to the liquid effluent discharge point and has been the highest mean indicator since it was added.

K-40 was observed in fish samples in addition to the radionuclides discussed above.

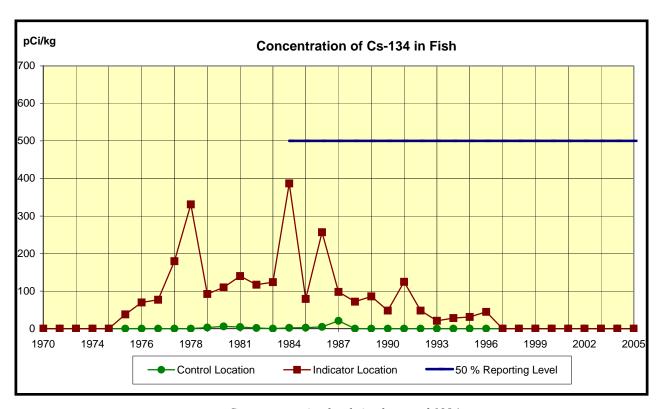


Table 3.6 lists the highest annual indicator location means since the preoperational period for radionuclides detected in 2005. Also included in the table are radionuclides that have been identified in this media since the change in analysis systems in 1987. Comparison of data to previous years does not indicate any increases in concentrations.

Figure 3.6-1

Figure 3.6-2

Current reporting levels implemented 1984

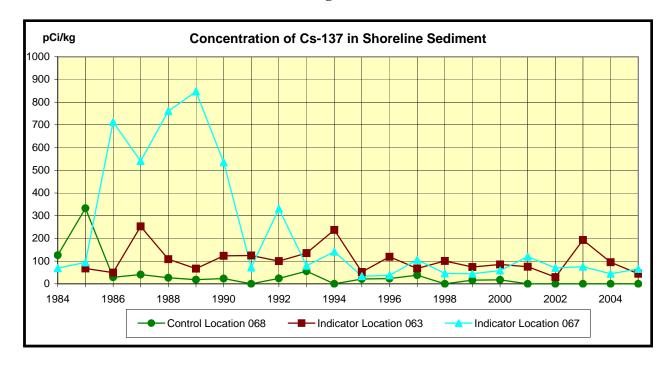
Table 3.6 Mean Concentrations of Radionuclides in Fish

Preop ending Jan.1971 0.00E0	Year	Co-58 (pCi/kg)	Co-60 (pCi/kg)	Cs-134 (pCi/kg)	Cs-137 (pCi/kg)			
Feb. 1973 - June 1973 Qualitative results reported-no significant measurements above background July 1973 - Dec. 1973 0.00E0 0.00E0 0.00E0 1.89E2 Jan. 1974 - June 1974 0.00E0 0.00E0 0.00E0 2.47E1 July 1974 - Dec. 1974 0.00E0 0.00E0 0.00E0 4.85E1 July 1975 - Dec. 1975 0.00E0 0.00E0 3.81E1 1.05E2 July 1975 - Dec. 1975 8.50E1 0.00E0 7.00E1 3.13E2 July 1975 - Dec. 1976 5.70E1 1.14E2 7.73E1 1.66E2 1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2	Preop ending Jan.1971	0.00E0	0.00E0	0.00E0	1.46E2			
July 1973 - Dec. 1973 0.00E0 0.00E0 0.00E0 1.89E2 Jan. 1974 - June 1974 0.00E0 0.00E0 0.00E0 2.47E1 July 1974 - Dec. 1974 0.00E0 0.00E0 0.00E0 4.85E1 July 1975 - June 1975 0.00E0 0.00E0 3.81E1 1.05E2 July 1975 - Dec. 1975 8.50E1 0.00E0 7.00E1 3.13E2 1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.7E2 1.04E3 1985 <t< td=""><td>Preop ending Jan.1973</td><td>0.00E0</td><td>0.00E0</td><td>0.00E0</td><td>1.66E2</td></t<>	Preop ending Jan.1973	0.00E0	0.00E0	0.00E0	1.66E2			
Jan. 1974 - June 1974 0.00E0 0.00E0 0.00E0 2.47E1 July 1974 - Dec. 1974 0.00E0 0.00E0 0.00E0 4.88E1 Jan. 1975 - June 1975 0.00E0 0.00E0 3.81E1 1.05E2 July 1975 - Dec. 1975 8.50E1 0.00E0 7.00E1 3.13E2 1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1	Feb. 1973 - June 1973	June 1973 Qualitative results reported-no significant measurements above background						
July 1974 - Dec. 1974 0.00E0 0.00E0 3.81E1 1.05E2 Jan. 1975 - June 1975 0.00E0 0.00E0 3.81E1 1.05E2 July 1975 - Dec. 1975 8.50E1 0.00E0 7.00E1 3.13E2 1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1<	July 1973 - Dec. 1973	0.00E0	0.00E0	0.00E0	1.89E2			
Jan. 1975 - June 1975 0.00E0 0.00E0 3.81E1 1.05E2 July 1975 - Dec. 1975 8.50E1 0.00E0 7.00E1 3.13E2 1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0	Jan. 1974 - June 1974	0.00E0	0.00E0	0.00E0	2.47E1			
July 1975 - Dec. 1975 8.50E1 0.00E0 7.00E1 3.13E2 1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1	July 1974 - Dec. 1974	0.00E0	0.00E0	0.00E0	4.85E1			
1976 5.70E1 1.14E2 7.73E1 1.66E2 1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 <td></td> <td>0.00E0</td> <td>0.00E0</td> <td>3.81E1</td> <td>1.05E2</td>		0.00E0	0.00E0	3.81E1	1.05E2			
1977 0.00E0 0.00E0 1.80E2 3.60E2 1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 4.80E1 1.36E2 <td>July 1975 - Dec. 1975</td> <td>8.50E1</td> <td>0.00E0</td> <td>7.00E1</td> <td>3.13E2</td>	July 1975 - Dec. 1975	8.50E1	0.00E0	7.00E1	3.13E2			
1978 3.27E2 0.00E0 3.31E2 0.00E0 1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 4.80E1 1.36E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1.992 6.10E1 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.36E2 1995 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1.99E2 1.99E 0.00E0 0.00E0 3.10E1 9.20E1 1.99E2 1.99E 0.00E0 0.00E0 0.00E0 1.25E2 1.99E2 1.99E2 1.99E3 0.00E0 0.00E0 3.10E1 9.20E1 1.99E2 1.99E3 0.00E0 0.00E0 0.00E0 3.10E1 9.20E1 1.99E3 0.00E0 0.00E0 0.00E0 0.00E0 1.18E2 1.99F3 0.00E0 0.00E0 0.00E0 0.00E0 1.18E2 1.99F3 0.00E0 0.00E0 0.00E0 0.00E0 1.18E2 1.00E0 0.00E0 0.00E0 1.04E2 1.00E0 0.00E0 0.00E0 0.00E0 1.04E2 1.00E0 0.00E0 0.0	1976	5.70E1	1.14E2	7.73E1	1.66E2			
1979 1.91E0 1.56E1 9.26E1 3.88E2 1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 4.80E1 1.0E2 1994 0.00E0 0.00E0 2.80E1 1.0E2	1977	0.00E0	0.00E0	1.80E2	3.60E2			
1980 1.45E1 1.90E1 1.10E2 3.99E2 1981 2.25E1 1.49E1 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 4.80E1 1.36E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 <td>1978</td> <td>3.27E2</td> <td>0.00E0</td> <td>3.31E2</td> <td>0.00E0</td>	1978	3.27E2	0.00E0	3.31E2	0.00E0			
1981 2.25EI 1.49EI 1.40E2 4.51E2 1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35EI 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23EI 3.87E2 1.04E3 1985 1.62EI 1.10EI 7.93EI 2.85E2 1986 9.56EI 2.59EI 2.57E2 7.36E2 1987 1.63E2 6.30EI 9.80EI 3.93E2 1988 9.60EI 0.00E0 7.20EI 2.60E2 1989 4.30EI 1.50EI 8.60EI 3.36E2 1990 1.50EI 0.00E0 4.80EI 1.19E2 1991 4.59EI 0.00E0 4.80EI 1.19E2 1992 6.10EI 0.00E0 4.80EI 1.36E2 1993 0.00E0 0.00E0 2.80EI 1.05E2 1994 0.00E0 0.00E0 2.80EI 1.05E2 1995 0.00E0 0.00E0 3.10EI 9.20EI <td>1979</td> <td>1.91E0</td> <td>1.56E1</td> <td>9.26E1</td> <td>3.88E2</td>	1979	1.91E0	1.56E1	9.26E1	3.88E2			
1982 9.83E-1 8.03E0 1.17E2 2.94E2 1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 4.80E1 1.36E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 0.00E0 1.18E2 <td>1980</td> <td>1.45E1</td> <td>1.90E1</td> <td>1.10E2</td> <td>3.99E2</td>	1980	1.45E1	1.90E1	1.10E2	3.99E2			
1983 3.35E1 4.53E0 1.24E2 3.32E2 1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 5.79E1	1981	2.25E1	1.49E1	1.40E2	4.51E2			
1984 1.21E2 6.23E1 3.87E2 1.04E3 1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1	1982	9.83E-1	8.03E0	1.17E2	2.94E2			
1985 1.62E1 1.10E1 7.93E1 2.85E2 1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1	1983	3.35E1	4.53E0	1.24E2	3.32E2			
1986 9.56E1 2.59E1 2.57E2 7.36E2 1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 5.79E1 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1 2000 0.00E0 0.00E0 0.00E0 9.92E1	1984	1.21E2	6.23E1	3.87E2	1.04E3			
1987 1.63E2 6.30E1 9.80E1 3.93E2 1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1 2000 0.00E0 0.00E0 0.00E0 9.92E1 2001 1.72E1 0.00E0 0.00E0 9.37E1	1985	1.62E1	1.10E1	7.93E1	2.85E2			
1988 9.60E1 0.00E0 7.20E1 2.60E2 1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1 2000 0.00E0 0.00E0 0.00E0 9.92E1 2001 1.72E1 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 5.29E1	1986	9.56E1	2.59E1	2.57E2	7.36E2			
1989 4.30E1 1.50E1 8.60E1 3.36E2 1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1 2000 0.00E0 0.00E0 0.00E0 9.92E1 2001 1.72E1 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 5.29E1	1987	1.63E2	6.30E1	9.80E1	3.93E2			
1990 1.50E1 0.00E0 4.80E1 1.19E2 1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 7.54E1 2000 0.00E0 0.00E0 0.00E0 9.92E1 2001 1.72E1 0.00E0 0.00E0 9.37E1 2002 0.00E0 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1988	9.60E1	0.00E0	7.20E1	2.60E2			
1991 4.59E1 0.00E0 1.25E2 1.94E2 1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 5.29E1	1989	4.30E1	1.50E1	8.60E1	3.36E2			
1992 6.10E1 0.00E0 4.80E1 1.36E2 1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 5.29E1	1990	1.50E1	0.00E0	4.80E1	1.19E2			
1993 0.00E0 0.00E0 2.10E1 1.10E2 1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.37E1 2002 0.00E0 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1991	4.59E1	0.00E0	1.25E2	1.94E2			
1994 0.00E0 0.00E0 2.80E1 1.05E2 1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 5.29E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1992	6.10E1	0.00E0	4.80E1	1.36E2			
1995 0.00E0 0.00E0 3.10E1 9.20E1 1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1993	0.00E0	0.00E0	2.10E1	1.10E2			
1996 0.00E0 0.00E0 4.49E1 1.25E2 1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.37E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1994	0.00E0	0.00E0	2.80E1	1.05E2			
1997 0.00E0 0.00E0 0.00E0 1.18E2 1998 0.00E0 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1995	0.00E0	0.00E0	3.10E1	9.20E1			
1998 0.00E0 0.00E0 5.79E1 1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1996	0.00E0	0.00E0	4.49E1	1.25E2			
1999 0.00E0 0.00E0 0.00E0 1.04E2 2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 5.29E1	1997	0.00E0	0.00E0	0.00E0	1.18E2			
2000 0.00E0 0.00E0 0.00E0 7.54E1 2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 5.29E1	1998	0.00E0	0.00E0	0.00E0	5.79E1			
2001 1.72E1 0.00E0 0.00E0 9.92E1 2002 0.00E0 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	1999	0.00E0	0.00E0	0.00E0	1.04E2			
2002 0.00E0 0.00E0 9.37E1 2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	2000	0.00E0	0.00E0	0.00E0	7.54E1			
2003 5.02E1 0.00E0 0.00E0 6.04E1 2004 0.00E0 0.00E0 0.00E0 5.29E1	2001	1.72E1	0.00E0	0.00E0	9.92E1			
2004 0.00E0 0.00E0 0.00E0 5.29E1	2002	0.00E0	0.0 <mark>0E0</mark>	0.00E0	9.37E1			
	2003	5.02E1	0.00E0	0.00E0	6.04E1			
2005 0.00E0 0.00E0 0.00E0 5.14E1	2004	0.00E0	0.00E0	0.00E0	5.29E1			
	2005	0.00E0	0.00E0	0.00E0	5.14E1			

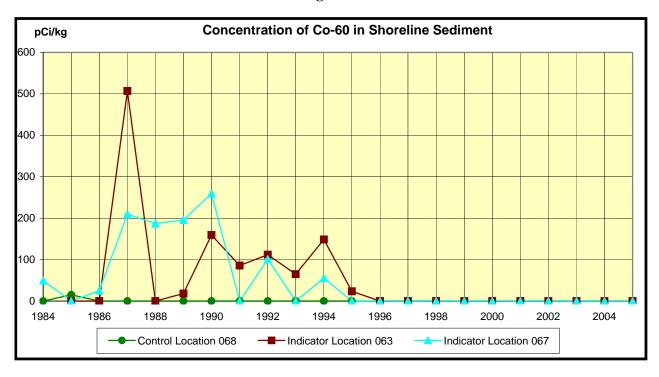
0.00E0 = no detectable measurements 1979 - 1986 mean based on all net activity results

3.7 **SHORELINE SEDIMENT**

Gamma spectroscopy was performed on six sediment samples. Two downstream indicator locations and one control location were sampled. Six samples were taken from indicator locations and two from the control location.


Mn-54 was identified in one of the four indicator location samples at a concentration of 200 pCi/kg. The highest 2004 indicator location annual mean for Mn-54 was 85.4 pCi/kg. Prior to 2004, Mn-54 was last detected in shoreline sediment in 1999.

Cs-137 was identified in two of the four indicator location samples. Cs-137 was not observed in any control location samples. The highest 2005 indicator location annual mean was 65.3 pCi/kg. Table 3.7 lists the highest indicator location annual means since shoreline sediment was initiated in 1984. Included in the table are radionuclides that have been identified in this media since the change in analysis systems in 1987.


Visual inspection of the tabular data did not reveal any trends. Figure 3.7-1 is a graph of the Cs-137 annual means. Figure 3.7-2 is a graph of the Co-60 annual means. Historically, both are contributors to the calculated dose from liquid effluents from shoreline sediment. No trends are apparent.

K-40 and Be-7 are naturally occurring radionuclides observed in shoreline sediment samples in 2005.

Figure 3.7-1

Figure 3.7-2

There are no reporting levels for shoreline sediment

Table 3.7 Mean Concentrations of Radionuclides in Shoreline Sediment (pCi/kg)

Year	Mn-54	Co-58	Co-60	Zn-65	Cs-134	Cs-137	Ag-110m	Sb-125
1984	1.10E1	1.09E1	1.19E1	0.00E0	7.77E1	5.16E1	0.00E0	0.00E0
1985	9.39E0	1.27E0	4.79E0	0.00E0	7.63E1	9.47E1	0.00E0	0.00E0
1986	2.24E1	1.62E1	2.50E1	0.00E0	1.41E2	7.12E2	0.00E0	0.00E0
1987	5.40E1	4.70E2	5.07E2	0.00E0	1.01E2	6.22E2	3.46E2	0.00E0
1988	3.30E1	1.20E2	1.87E2	6.70E1	6.60E1	7.59E2	1.62E2	3.67E2
1989	2.30E1	1.24E2	1.96E2	0.00E0	5.40E1	8.48E2	5.50E1	1.86E2
1990	3.40E1	8.00E1	2.59E2	0.00E0	4.50E1	5.36E2	1.71E2	9.00E1
1991	3.26E1	5.60E1	8.57E1	0.00E0	6.91E1	1.24E2	1.10E2	1.78E2
1992	8.79E1	1.79E2	1.12E2	0.00E0	5.60E1	3.31E2	1.69E2	2.08E2
1993	8.20E1	8.20E1	6.50E1	0.00E0	3.20E1	1.36E2	5.63E1	1.11E2
1994	5.30E1	7.00E1	1.49E2	0.00E0	6.70E1	2.38E2	1.04E2	1.29E2
1995	1.43E2	3.90E1	2.40E1	0.00E0	1.10E1	5.20E1	0.00E0	0.00E0
1996	0.00E0	5.10E1	0.00E0	0.00E0	1.98E1	1.19E2	0.00E0	0.00E0
1997	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	1.06E2	0.00E0	0.00E0
1998	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	1.01E2	0.00E0	0.00E0
1999	6.96E1	0.00E0	0.00E0	0.00E0	0.00E0	7.38E1	0.00E0	0.00E0
2000	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	8.54E1	0.00E0	0.00E0
2001	0.00E0	2.10E1	0.00E0	0.00E0	0.00E0	1.20E2	0.00E0	0.00E0
2002	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	6.96E1	0.00E0	0.00E0
2003	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0	1.93E2	0.00E0	0.00E0
2004	8.54E1	0.00E0	0.00E0	0.00E0	0.00E0	9.56E1	0.00E0	0.00E0
2005	2.00E2	0.00E0	0.00E0	0.00E0	0.00E0	6.53E1	0.00E0	0.00E0

0.00E0 = no detectable measurements

1984-1986 mean based on all net activity results

3.8 **DIRECT GAMMA RADIATION**

In 2005, 165 Thermoluminescent Dosimeters (TLD) were analyzed, 157 at indicator locations, 8 at the two control locations. TLDs are collected and analyzed quarterly. The highest annual mean exposure for an indicator location was 114 milliroentgen. This TLD is located at indicator location 036, 4.32 miles from the station. The annual mean exposure for the control locations was 105 milliroentgen.

Figure 3.8 and Table 3.8 show TLD inner ring (site boundary), outer ring (4-5 miles), and control location annual averages in milliroentgen per year. Data is provided from 1984 when TLD locations were added and arranged in an inner ring and outer ring configuration. Preoperational data is also provided in the table. As shown in the graph, inner and outer ring averages historically compare closely, with control data somewhat higher. Inner and outer ring averages comprise a number of data points with control averages representing only two locations.

The calculated total body dose (from gaseous effluents) for 2005 was 2.69E-2 mrem, which is 0.03% of the average inner ring TLD values. Therefore, it can be concluded that discharges from the plant had very little impact upon the measured TLD values.

The maximum measurement from TLDs at the Independent Spent Fuel Storage Installation (ISFSI) was 883 milliroentgen per standard quarter. This is consistent with previous measurements. TLD measurements in the inner ring (site boundary) have remained relatively constant.

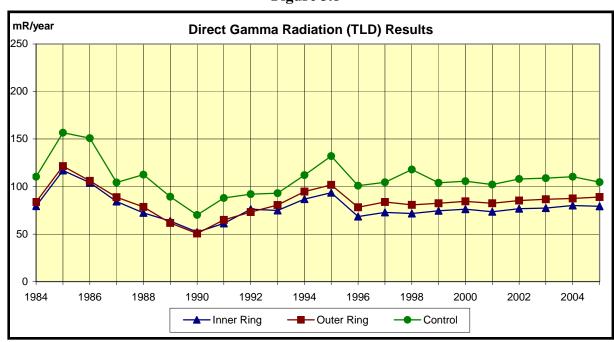


Figure 3.8

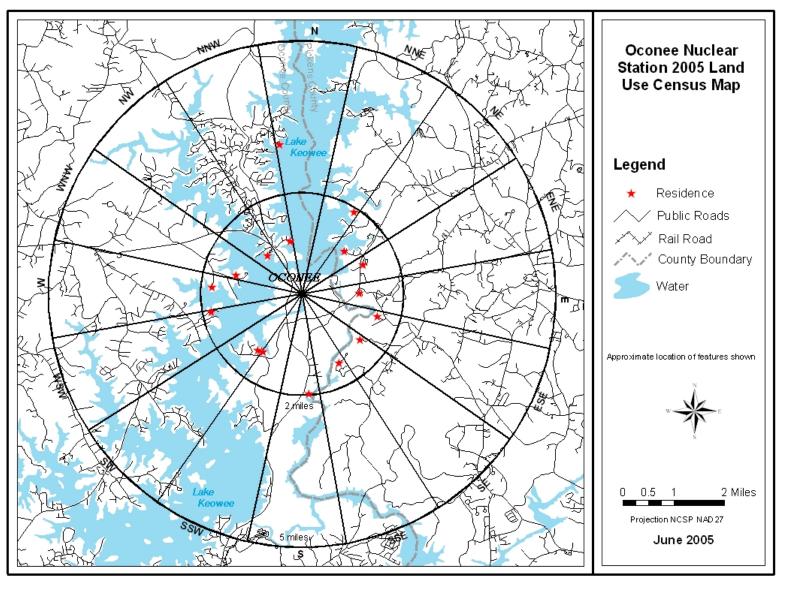
There is no reporting level for Direct Radiation (TLD)

Table 3.8 Direct Gamma Radiation (TLD) Results

Year	Inner Ring Average (mR/yr)	Outer Ring Average (mR/yr)	Control (mR/yr)
Preoperational	113.1	123.9	148.9
1984	79.4	83.8	110.3
1985	116.9	121.5	156.6
1986	104.2	106.0	150.9
1987	84.3	88.8	104.3
1988	72.3	78.6	112.6
1989	63.7	61.7	89.4
1990	52.2	50.7	70.1
1991	61.2	65.0	88.0
1992	76.2	73.2	92.0
1993	74.8	80.6	93.0
1994	86.8	94.7	112.0
1995	93.6	101.7	132.0
1996	68.5	78.3	101.0
1997	72.8	83.8	104.5
1998	71.7	80.8	118.0
1999	74.5	82.5	104
2000	76.2	84.5	105.6
2001	73.6	82.4	102.2
2002	76.6	85.3	108.0
2003	77.4	86.6	108.8
2004	80.1	87.5	110.4
Average (1995 - 2004)	76.5	85.3	110
2005	79.3	89.0	104.7

3.9 LAND USE CENSUS

The Land Use Census was conducted during the growing season (6/20 - 6/21/2005) as required by SLC 16.11.6. Table 3.9 summarizes census results. A map indicating identified locations is shown in Figure 3.9. The nearest residence is located in the NW sector at 1.00 miles. No program changes were required based on the results of the census.


Table 3.9 Oconee 2005 Land Use Census Results

Sector		Distance (Miles)	Sector		Distance (Miles)
N	Nearest Residence Nearest Milk Animal	2.98	S	Nearest Residence Nearest Milk Animal	1.96 -
NNE	Nearest Residence Nearest Milk Animal	1.85	SSW	Nearest Residence Nearest Milk Animal	1.36
NE	Nearest Residence Nearest Milk Animal	1.20	SW	Nearest Residence Nearest Milk Animal	1.39
ENE	Nearest Residence Nearest Milk Animal	1.34	wsw	Nearest Residence Nearest Milk Animal	1.81
E	Nearest Residence Nearest Milk Animal	1.14 -	W	Nearest Residence Nearest Milk Animal	1.76 -
ESE	Nearest Residence Nearest Milk Animal	1.57	WNW	Nearest Residence Nearest Milk Animal	1.35
SE	Nearest Residence Nearest Milk Animal	1.46	NW	Nearest Residence Nearest Milk Animal	1.00
SSE	Nearest Residence Nearest Milk Animal	1.54	NNW	Nearest Residence Nearest Milk Animal	1.06

[&]quot;-" indicates no occurrences within the 5 mile radius

^{*} GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

Figure 3.9

4.0 EVALUATION OF DOSE

4.1 DOSE FROM ENVIRONMENTAL MEASUREMENTS

Annual doses to maximum exposed individuals were estimated based on measured concentrations of radionuclides in 2005 ONS REMP samples. The primary purpose of estimating doses based on sample results is to allow comparison to effluent program dose estimates. Doses based on sample results were conservatively calculated in a manner as equivalent as possible to effluent-based dose estimates.

Doses based on REMP sample results were calculated using the methodology and data presented in NRC Regulatory Guide 1.109. Measured radionuclide concentrations, averaged over the entire year for a specific radionuclide, indicator location, and sample type, were used to calculate REMP-based doses, after subtracting the applicable average background concentration (as measured at the corresponding control location). Regulatory Guide 1.109 consumption rates for the maximum exposed individual were used in the calculations. A dose factor of zero was assumed when the guide listed "NO DATA" as the dose factor for a given radionuclide and organ.

Maximum dose estimates calculated using drinking water, broadleaf vegetation, fish and shoreline sediment results are reported in Table 4.1-A. The individual critical population and pathway dose calculations are contained in Table 4.1-B.

No radionuclides were detected in milk, airborne radioiodine or airborne particulate samples other than naturally-occurring K-40 and Be-7. Dose estimates were not calculated for surface water samples because surface water is not considered a potable drinking water source. REMP TLD exposure results are discussed in Section 3.8.

The maximum environmental organ dose estimate for any single sample type (other than direct radiation from gaseous effluents) collected during 2005 was 8.53E-2 mrem to the teen's liver from consuming fish.

4.2 ESTIMATED DOSE FROM RELEASES

Throughout the year, dose estimates were calculated based on actual 2005 liquid and gaseous effluent release data. Effluent-based dose estimates were calculated using the RETDAS computer program which employs methodology and data presented in NRC Regulatory Guide 1.109. These doses are shown in Table 4.1-A along with the corresponding REMP-based dose estimates. Summaries of RETDAS dose calculations are reported in the Annual Radioactive Effluent Release Report (reference 6.6).

The effluent-based liquid release doses are summations of the dose contributions of the drinking water, fish and shoreline pathways. The effluent-based gaseous release doses report noble gas exposure separately from iodine, particulate, and tritium exposure. For noble gas exposure there is no critical age group; as the maximum exposed individuals are assumed to receive the same doses, regardless of their age group. For iodine, particulate, and tritium exposure the effluent-based gaseous release doses are summations of the dose contributors from ground/plane, milk, inhalation and vegetation pathways.

4.3 COMPARISON OF DOSES

The environmental and release data doses given in Table 4.1-A agree reasonably well. The similarity of the doses indicate that the radioactivity levels in the environment do not differ significantly from those expected based on effluent measurements and modeling of the environmental exposure pathways. This indicates that effluent program dose estimates are both valid and reasonably conservative.

There are some differences in how effluent and environmental doses are calculated that affect the comparison. Doses calculated from environmental data are conservative because they are based on a mean that includes only samples with a net positive activity versus a mean that includes all sample results (i.e. zero results are not included in the mean). Also, airborne tritium is not measured in environmental samples but is used to calculate effluent doses.

In calculations based on liquid release effluent pathways, fish and drinking water were the predominant dose pathways based on environmental and effluent samples. The maximum total organ dose based on 2005 environmental sample results was 1.16E-1 mrem to the child liver. The maximum total organ dose of 4.46E-1 mrem for liquid effluent-based estimates was to the teen liver.

In calculations based on gaseous release pathways, vegetation was the predominant dose pathway for effluent samples. The gaseous effluent dose is due to tritium on broadleaf vegetation. The maximum total organ dose for gaseous effluent estimates was 3.43E-2 mrem to the child thyroid. Vegetation was the only gaseous release pathway media that contained detectable activity (See Section 3.5). The maximum total organ dose for gaseous environmental estimates was 3.40E-2 mrem to the child bone.

Noble gas samples are not collected as part of the REMP, preventing an analogous comparison of effluent-based noble gas exposure estimates.

The doses calculated do not exceed the 40CFR190 dose commitment limits for members of the public. Doses to members of the public attributable to the operation of ONS are being maintained well within regulatory limits.

OCONEE NUCLEAR STATION 2005 ENVIRONMENTAL AND EFFLUENT DOSE COMPARISON

LIQUID RELEASE PATHWAY

Organ	Environmental or Effluent Data	Critical Age (1)	Critical Pathway ⁽²⁾	Location	Maximum Dose (3) (mrem)
Skin	Environmental	Teen	Shoreline Sediment	067 (4.34 mi SSE)	9.00E-04
Skin	Effluent	Teen	Shoreline Sediment	1.0 mi SW	8.24E-03
Bone	Environmental	Child	Fish	067 (4.34 mi SSE)	7.33E-02
Bone	Effluent	Child	Fish	1.0 mi SW	3.52E-01
Liver	Environmental	Child Fish		067 (4.34 mi SSE)	1.16E-01
Liver	Effluent	Teen Fish		1.0 mi SW	4.46E-01
T. Body	Environmental	Adult	Fish	067 (4.34 mi SSE)	8.80E-02
T. Body	Effluent	Adult	Fish	1.0 mi SW	3.19E-01
Thyroid	Environmental	Child	Drinking Water	066 (18.9 mi SSE)	4.55E-02
Thyroid	Effluent	Child	Drinking Water	1.0 mi SW	6.56E-02
Kidney	Environmental	Child	Drinking Water	066 (18.9 mi SSE)	6.84E-02
Kidney	Effluent	Adult	Fish	1.0 mi SW	1.89E-01
Lung	Environmental	Child	Drinking Water	066 (18.9 mi SSE)	5.37E-02
Lung	Effluent	Child	Fish	1.0 mi SW	1.04E-01
GI-LLI	Environmental	Child	Drinking Water	066 (18.9 mi SSE)	4.59E-02
GI-LLI	Effluent	Adult	Fish	1.0 mi SW	1.45E-01

⁽¹⁾ Critical Age is the highest total dose (all pathways) to an age group.

⁽²⁾ Critial Pathway is the highest individual dose within the identified Critical Age group.

⁽³⁾ Maximum dose is a summation of the fish, drinking water and shoreline sediment pathways.

GASEOUS RELEASE PATHWAY

IODINE, PARTICULATE, and TRITIUM

Organ	Environmental or Effluent Data	Critical Age ⁽¹⁾	Critical Pathway ⁽²⁾	Location	Maximum Dose (3) (mrem)
Skin	Environmental	-	-	-	0.00E+00
Skin	Effluent	All	Ground Plane	1.0 mi. SW	4.65E-06
Bone	Environmental	Child	Vegetation	077 (1.0 mi SW)	3.40E-02
Bone	Effluent	Child	Vegetation	1.0 mi. SW	2.62E-05
Liver	Environmental	Child	Vegetation	077 (1.0 mi SW)	3.26E-02
Liver	Effluent	Child	Vegetation	1.0 mi. SW	2.69E-02
T. Body	Environmental	Adult	Vegetation	077 (1.0 mi SW)	1.83E-02
T. Body	Effluent	Child	Vegetation	1.0 mi. SW	2.69E-02
Thyroid	Environmental	-	-	-	0.00E+00
Thyroid	Effluent	Child	Vegetation	1.0 mi. SW	3.43E-02
Kidney	Environmental	Child	Vegetation	077 (1.0 mi SW)	1.06E-02
Kidney	Effluent	Child	Vegetation	1.0 mi. SW	2.69E-02
_					
Lung	Environmental	Child	Vegetation	077 (1.0 mi SW)	3.82E-03
Lung	Effluent	Child	Vegetation	1.0 mi. SW	2.69E-02
CLIL	T	4.1.1.	**	055 (1.0. : 677)	7 40T 04
GI-LLI	Environmental	Adult	Vegetation	077 (1.0 mi SW)	5.40E-04
GI-LLI	Effluent	Child	Vegetation	1.0 mi. SW	2.69E-02

⁽¹⁾ Critical Age is the highest total dose (all pathways) to an age group.

⁽²⁾ Critial Pathway is the highest individual dose within the identified Critical Age group.

⁽³⁾ Maximum dose is a summation of the ground/plane, inhalation, milk and vegetation pathways.

NOBLE GAS

Air Dose	Environmental or Effluent Data	Critical Age	Critical Pathway	Location	Maximum Dose (mrad)
Beta	Environmental	-	-	-	Not Sampled
Beta	Effluent	N/A	Noble Gas	1.0 mi. SW	2.79E-03
Gamma	Environmental	-	-	-	Not Sampled
Gamma	Effluent	N/A	Noble Gas	1.0 mi. SW	8.66E-04

TABLE 4.1-B

Maximum Individual Dose for 2005 based on Environmental Measurements (mrem) for Oconee Nuclear Station

Age	Sample Medium	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Skin
Infant	Airborne	0.00E+00							
	Drinking Water	0.00E+00	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	0.00E+00
	Milk	0.00E+00							
	TOTAL	0.00E+00	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	0.00E+00
Child	Airborne	0.00E+00							
	Drinking Water	0.00E+00	3.90E-02	3.90E-02	3.90E-02	3.90E-02	3.90E-02	3.90E-02	0.00E+00
	Milk	0.00E+00							
	Broadleaf Vegetation	3.40E-02	3.26E-02	4.80E-03	0.00E+00	1.06E-02	3.82E-03	2.04E-04	0.00E+00
	Fish	7.33E-02	7.67E-02	1.69E-02	6.50E-03	2.94E-02	1.47E-02	6.94E-03	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	1.61E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.88E-04
	TOTAL	1.07E-01	1.48E-01	6.09E-02	4.55E-02	7.90E-02	5.75E-02	4.61E-02	1.88E-04
Teen	Airborne	0.00E+00							
	Drinking Water	0.00E+00	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	0.00E+00
	Milk	0.00E+00							
	Broadleaf Vegetation	1.88E-02	2.50E-02	8.72E-03	0.00E+00	8.52E-03	3.31E-03	3.56E-04	0.00E+00
	Fish	5.82E-02	8.53E-02	3.49E-02	7.87E-03	3.42E-02	1.81E-02	8.97E-03	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	7.69E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.00E-04
	TOTAL	7.70E-02	1.31E-01	6.48E-02	2.83E-02	6.31E-02	4.18E-02	2.97E-02	9.00E-04
Adult	Airborne	0.00E+00							
	Drinking Water	0.00E+00	2.89E-02	2.89E-02	2.89E-02	2.89E-02	2.89E-02	2.89E-02	0.00E+00
	Milk	0.00E+00							
	Broadleaf Vegetation	2.04E-02	2.79E-02	1.83E-02	0.00E+00	9.47E-03	3.15E-03	5.40E-04	0.00E+00
	Fish	5.44E-02	8.46E-02	5.90E-02	1.02E-02	3.55E-02	1.86E-02	1.17E-02	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	1.38E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.61E-04
	TOTAL	7.48E-02	1.41E-01	1.06E-01	3.91E-02	7.39E-02	5.07E-02	4.11E-02	1.61E-04

Note: Dose tables are provided for sample media displaying positive nuclide occurrence.

Section 4 - Page 6

Oconee Nuclear Station Dose from Drinking Water Pathway for 2005 Data Maximum Exposed Infant

Infant Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 330 1

0	, ,		-														
S	-							Highest A									
				Ingestion	n Dose F	<u>actor</u>		Concent					Dose (m	<u>rem)</u>			
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	
Mn-54	NO DATA	1.99E-05	4.51E-06	NO DATA	4.41E-06	NO DATA	7.31E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Co-58	NO DATA	3.60E-06	8.98E-06	NO DATA	NO DATA	NO DATA	8.97E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Fe-59	3.08E-05	5.38E-05	2.12E-05	NO DATA	NO DATA	1.59E-05	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Co-60	NO DATA	1.08E-05	2.55E-05	NO DATA	NO DATA	NO DATA	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Zn-65	1.84E-05	6.31E-05	2.91E-05	NO DATA	3.06E-05	NO DATA	5.33E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Nb-95	4.20E-08	1.73E-08	1.00E-08	NO DATA	1.24E-08	NO DATA	1.46E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Zr-95	2.06E-07	5.02E-08	3.56E-08	NO DATA	5.41E-08	NO DATA	2.50E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
I-131	3.59E-05	4.23E-05	1.86E-05	1.39E-02	4.94E-05	NO DATA	1.51E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cs-134	3.77E-04	7.03E-04	7.10E-05	NO DATA	1.81E-04	7.42E-05	1.91E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cs-137	5.22E-04	6.11E-04	4.33E-05	NO DATA	1.64E-04	6.64E-05	1.91E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
BaLa-140	1.71E-04	1.71E-07	8.81E-06	NO DATA	4.06E-08	1.05E-07	4.20E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Н-3	NO DATA	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	066	377	0.00E+00	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	
						Dose Comm	itment (mre	em) =		0.00E+00	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	3.83E-02	

Oconee Nuclear Station Dose from Drinking Water Pathway for 2005 Data Maximum Exposed Child

Child Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year)= 510 1

	Highest Annual															
								Net N	Iean							
				Ingestion	n Dose Fa	actor		Concent	tration				Dose (mi	rem)		
								Indicator	Water							
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00						
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	ALL	0.00	0.00E+00						
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00	0.00E+00						
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DATA	2.93E-05	ALL	0.00	0.00E+00						
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00						
Nb-95	2.25E-08	8.76E-09	6.26E-09	NO DATA	8.23E-09	NO DATA	1.62E-05	ALL	0.00	0.00E+00						
Zr-95	1.16E-07	2.55E-08	2.27E-08	NO DATA	3.65E-08	NO DATA	2.66E-05	ALL	0.00	0.00E+00						
I-131	1.72E-05	1.73E-05	9.83E-06	5.72E-03	2.84E-05	NO DATA	1.54E-06	ALL	0.00	0.00E+00						
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00						
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	ALL	0.00	0.00E+00						
BaLa-140	8.31E-05	7.28E-08	4.85E-06	NO DATA	2.37E-08	4.34E-08	4.21E-05	ALL	0.00	0.00E+00						
Н-3	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	066	377	0.00E+00	3.90E-02	3.90E-02	3.90E-02	3.90E-02	3.90E-02	3.90E-02
	Dose Commitment (mrem) =									0.00E+00	3.90E-02	3.90E-02	3.90E-02	3.90E-02	3.90E-02	3.90E-02

Oconee Nuclear Station Dose from Broadleaf Vegetation Pathway for 2005 Data Maximum Exposed Child

Child Dose from Vegetation Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

Usage (intake in one year)= 26 kg

			Highest Annual													
								Net N	Aean							
				Ingestion	n Dose F	<u>actor</u>		Concen	tration				Dose (m	rem)		
								Indicator	Food							
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
I-131	1.72E-05	1.73E-05	9.83E-06	5.72E-03	2.84E-05	NO DATA	1.54E-06	ALL	0.00	0.00E+00						
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00						
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	077	4.00	3.40E-02	3.26E-02	4.80E-03	0.00E+00	1.06E-02	3.82E-03	2.04E-04
						Dose Comm	nitment (mr	em) =		3.40E-02	3.26E-02	4.80E-03	0.00E+00	1.06E-02	3.82E-03	2.04E-04

Oconee Nuclear Station Dose from Fish Pathway for 2005 Data Maximum Exposed Child

Child Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 5153 pCi/l x 0.9 = 4638 pCi/kg

Usage (intake in one year) = 6.9 kg

Highest Annual Net Mean **Ingestion Dose Factor** Dose (mrem) Concentration Fish Indicator Radionuclide Bone Liver T. Body Thyroid Kidney Lung GI-LLI Location (pCi/kg) Bone Liver T. Body Thyroid Kidney Lung **GI-LLI** Mn-54 NO DATA 1.07E-05 2.85E-06 NO DATA 3.00E-06 NO DATA 8.98E-06 ALL 0.00 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00Co-58 NO DATA 1.80E-06 5.51E-06 NO DATA NO DATA NO DATA 1.05E-05 ALL 0.00E+000.00E+00 0.00E+00 0.00E+000.00E+000.00E+00 0.00E+00 0.00 1.65E-05 2.67E-05 1.33E-05 NO DATA NO DATA 7.74E-06 ALL 0.00E+000.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Fe-59 0.00 C0-60 NO DATA 5.29E-06 1.56E-05 NO DATA NO DATA NO DATA 2.93E-05 ALL 0.00 0.00E+00 0.00E+00 0.00E+00 0.00E+000.00E+000.00E+00 0.00E+00 1.37E-05 3.65E-05 2.27E-05 NO DATA 2.30E-05 NO DATA 6.41E-06 ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Zn-65 0.00 Cs-134 2.34E-04 3.84E-04 8.10E-05 NO DATA 1.19E-04 4.27E-05 2.07E-06 ALL 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 0.00 Cs-137 3.27E-04 3.13E-04 4.62E-05 NO DATA 1.02E-04 3.67E-05 1.96E-06 067 32.5 7.33E-02 7.02E-02 1.04E-02 0.00E+002.29E-02 8.23E-03 4.40E-04 H-3 NO DATA 2.03E-07 2.03E-07 2.03E-07 2.03E-07 2.03E-07 2.03E-07 063.1 4638 0.00E+006.50E-03 6.50E-03 6.50E-03 6.50E-03 6.50E-03 6.50E-03

7.33E-02

7.67E-02

1.69E-02

6.50E-03

2.94E-02

6.94E-03

Dose Commitment (mrem) =

Oconee Nuclear Station Dose from Shoreline Sediment Pathway for 2005 Data Maximum Exposed Child

Shoreline Recreation = 14 hr (in one year)

Shore Width Factor = 0.2

Sediment Surface Mass = 40 kg/m²

Child Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/ m^2) x Shore Width Factor x Sediment Surface Mass (kg/ m^2) x Sediment Concentration (pCi/kg)

	l Dose Fac taminated	ctor Standing I Ground	0	annual Net ncentration	<u>Dose</u>				
Radionuclide	(mrem/hr T. Body	per pCi/m²) Skin	Indicator Location	Sediment (pCi/kg)	(mı T. Body	rem) Skin			
Mn-54	5.80E-09	6.80E-09	067	200.0	1.30E-04	1.52E-04			
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00			
Cs-137	4.20E-09	4.90E-09	067	65.3	3.07E-05	3.58E-05			
		Dose Commitme	ent (mrem) =		1.61E-04	1.88E-04			

Oconee Nuclear Station Dose from Drinking Water Pathway for 2005 Data Maximum Exposed Teen

Teen Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year)= 510 l

0 2008 (20000000000000000000000000000000	0))		-													
- '							Highest Annual Net Mean									
				Ingestio	n Dose I	actor		Concent					Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DATA	1.34E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	5.87E-06	1.37E-05	5.29E-06	NO DATA	NO DATA	4.32E-06	3.24E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	8.22E-09	4.56E-09	2.51E-09	NO DATA	4.42E-09	NO DATA	1.95E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	4.12E-08	1.30E-08	8.94E-09	NO DATA	1.91E-08	NO DATA	3.00E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	5.85E-06	8.19E-06	4.40E-06	2.39E-03	1.41E-05	NO DATA	1.62E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.84E-05	3.48E-08	1.83E-06	NO DATA	1.18E-08	2.34E-08	4.38E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	066	377	0.00E+00	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02
						Dose Comn	nitment (mı	rem)=		0.00E+00	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02	2.04E-02

Oconee Nuclear Station Dose from Broadleaf Vegetation Pathway for 2005 Data Maximum Exposed Teen

Teen Dose from Vegetation Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

Usage (intake in one year) = 42 kg

- 21. 8 - (
								Highest Net I	Annual Mean							
				Ingestio	n Dose I	Factor		Concer	tration				Dose (m	<u>rem)</u>		
								Indicator	Food							
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
I-131	5.85E-06	8.19E-06	4.40E-06	2.39E-03	1.41E-05	NO DATA	1.62E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	077	4.00	1.88E-02	2.50E-02	8.72E-03	0.00E+00	8.52E-03	3.31E-03	3.56E-04
						Dose Comm	nitment (mr	em) =		1.88E-02	2.50E-02	8.72E-03	0.00E+00	8.52E-03	3.31E-03	3.56E-04

Oconee Nuclear Station Dose from Fish Pathway for 2005 Data Maximum Exposed Teen

Teen Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 5153 pCi/l x 0.9 = 4638 pCi/kg

Usage (intake in one year) = 16 kg

Highest Annual Ingestion Dose Factor Net Mean Dose (mrem) Concentration Thyroid (pCi/kg) Radionuclide Bone Liver T. Body Kidney Lung GI-LLI Location Bone Liver T. Body Thyroid Kidney Lung **GI-LLI** Mn-54 NO DATA 5.90E-06 1.17E-06 NO DATA 1.76E-06 NO DATA 1.21E-05 ALL 0.000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00NO DATA NO DATA NO DATA 1.34E-05 Co-58 NO DATA 2.24E-06 ALL 0.000.00E+000.00E+000.00E+000.00E+000.00E+00 0.00E+000.00E+009.72E-07 Fe-59 5.87E-06 NO DATA NO DATA 4.32E-06 3.24E-05 1.37E-05 5.29E-06 ALL 0.00 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00Co-60 NO DATA 2.81E-06 6.33E-06 NO DATA NO DATA NO DATA 3.66E-05 ALL 0.00 0.00E+00 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00Zn-65 5.76E-06 2.00E-05 9.33E-06 NO DATA 1.28E-05 NO DATA 8.47E-06 ALL 0.00E+00 0.00E+000.00E+000.00E+00 0.00E+000.00E+00 0.00 Cs-134 8.37E-05 1.97E-04 9.14E-05 NO DATA 6.26E-05 2.39E-05 ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.45E-06 0.00 Cs-137 1.12E-04 1.49E-04 5.19E-05 NO DATA 5.07E-05 1.97E-05 2.12E-06 067 32.5 5.82E-02 7.75E-02 2.70E-02 0.00E+002.64E-02 1.02E-02 1.10E-03 H-3 NO DATA 1.06E-07 1.06E-07 1.06E-07 1.06E-07 063.1 0.00E+00 7.87E-03 7.87E-03 7.87E-03 7.87E-03 7.87E-03 1.06E-07 1.06E-07 4638 7.87E-03 5.82E-02 8.53E-02 3.49E-02 7.87E-03 3.42E-02 1.81E-02 8.97E-03 Dose Commitment (mrem) =

Oconee Nuclear Station Dose from Shoreline Sediment Pathway for 2005 Data Maximum Exposed Teen

Shoreline Recreation = 67 hr (in one year)

Shore Width Factor = 0.2

Sediment Surface Mass = 40 kg/m^2

Teen Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m^2) x Shore Width Factor x Sediment Surface Mass (kg/m^2) x Sediment Concentration (pCi/kg)

	Dose Factor aminated G	8	Highest A <u>Mean Con</u>		<u>Dose</u>			
(mre	m/hr per pC T. Body	Ci/m²) Skin	Indicator Location	Sediment (pCi/kg)	(mı T. Body	rem) Skin		
Mn-54	5.80E-09	6.80E-09	067	200.0	6.22E-04	7.29E-04		
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00		
Cs-137	4.20E-09	4.90E-09	067	65.3	1.47E-04	1.72E-04		
	Dose Comn	nitment (mre	m) =		7.69E-04	9.00E-04		

Oconee Nuclear Station Dose from Drinking Water Pathway for 2005 Data Maximum Exposed Adult

Adult Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 730 1

	,			Highest Annual Net Mean Ingestion Dose Factor Concentration Indicator Water				Dose (mrem)								
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00						
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00						
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00						
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00						
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00						
Nb-95	6.22E-09	3.46E-09	1.86E-09	NO DATA	3.42E-09	NO DATA	2.10E-05	ALL	0.00	0.00E+00						
Zr-95	3.04E-08	9.75E-09	6.60E-09	NO DATA	1.53E-08	NO DATA	3.09E-05	ALL	0.00	0.00E+00						
I-131	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	NO DATA	1.57E-06	ALL	0.00	0.00E+00						
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00						
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	ALL	0.00	0.00E+00						
BaLa-140	2.03E-05	2.55E-08	1.33E-06	NO DATA	8.67E-09	1.46E-08	4.18E-05	ALL	0.00	0.00E+00						
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	066	377	0.00E+00	2.89E-02	2.89E-02	2.89E-02	2.89E-02	2.89E-02	2.89E-02
						Dose Comm	itment (mre	e m) =		0.00E+00	2.89E-02	2.89E-02	2.89E-02	2.89E-02	2.89E-02	2.89E-02

Oconee Nuclear Station Dose from Broadleaf Vegetation Pathway for 2005 Data Maximum Exposed Adult

Adult Dose from Vegetation (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

Usage (intake in one year) = 64 kg

Highest Annual Net Mean Ingestion Dose Factor Dose (mrem) Concentration Indicator Radionuclide Bone Liver T. Body Thyroid Kidney GI-LLI Location (pCi/kg) Bone Liver T. Body Thyroid Kidney Lung **GI-LLI** Lung I-131 1.95E-03 1.02E-05 NO DATA 1.57E-06 0.00E+004.16E-06 5.95E-06 3.41E-06 ALL 0.00 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00Cs-134 6.22E-05 1.48E-04 1.21E-04 NO DATA 4.79E-05 1.59E-05 2.59E-06 ALL 0.00 0.00E+00 0.00E+000.00E+00 0.00E+000.00E+000.00E+000.00E+00Cs-137 7.14E-05 NO DATA 3.70E-05 1.23E-05 2.11E-06 077 3.15E-03 7.97E-05 1.09E-04 4.00 2.04E-02 2.79E-02 1.83E-02 0.00E+00 9.47E-03 5.40E-04 Dose Commitment (mrem) = 2.04E-02 2.79E-02 1.83E-02 0.00E+00 9.47E-03 3.15E-03 5.40E-04

Oconee Nuclear Station Dose from Fish Pathway for 2005 Data Maximum Exposed Adult

Adult Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 5153 pCi/l x 0.9 = 4638 pCi/kg

Usage (intake in one year) = 21 kg

Highest Annual Net Mean

								Net N	iean							
			Ingestio	n Dose Fa	<u>actor</u>			Concen	<u>tration</u>				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	067	32.5	5.44E-02	7.44E-02	4.87E-02	0.00E+00	2.53E-02	8.39E-03	1.44E-03
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	063.1	4638	0.00E+00	1.02E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02
						Dose Comm	itment (mre	em) =		5.44E-02	8.46E-02	5.90E-02	1.02E-02	3.55E-02	1.86E-02	1.17E-02

Oconee Nuclear Station Dose from Shoreline Sediment Pathway for 2005 Data Maximum Exposed Adult

Shoreline Recreation = 12 hr (in one year)

Shore Width Factor = 0.2

Sediment Surface Mass = 40 kg/m^2

Adult Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/ m^2) x Shore Width Factor x Sediment Surface Mass (kg/ m^2) x Sediment Concentration (pCi/kg)

External Do	se Factor S	Standing	Highest A	nnual Net	<u>Dose</u>		
on Cont	aminated (<u>Fround</u>	Mean Con	<u>centration</u>			
	(mrem/hr p	er pCi/m²)	Indicator	Sediment	(mrem)		
Radionuclide	T. Body	Skin	Location	(pCi/kg)	T. Body	Skin	
Mn-54	5.80E-09	6.80E-09	067	200.0	1.11E-04	1.31E-04	
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00	
Cs-137	4.20E-09	4.90E-09	067	65.3	2.63E-05	3.07E-05	
	Dose Comn	nitment (mren	n) =		1.38E-04	1.61E-04	

5.0 QUALITY ASSURANCE

5.1 SAMPLE COLLECTION

EnRad Laboratories, Fisheries, and Aquatic Ecology performed the environmental sample collections as specified by approved sample collection procedures.

5.2 <u>SAMPLE ANALYSIS</u>

EnRad Laboratories performed the environmental sample analyses as specified by approved analysis procedures. **EnRad** Laboratories is located in Huntersville, North Carolina. Duke Power Company's at Environmental Center.

5.3 **DOSIMETRY ANALYSIS**

Duke Power Company's Environmental Center

The Radiation Dosimetry and Records group performed environmental dosimetry measurements as specified by approved dosimetry analysis procedures.

5.4 LABORATORY EQUIPMENT QUALITY ASSURANCE

5.4.1 DAILY QUALITY CONTROL

EnRad Laboratories has an internal quality assurance program which monitors each type of instrumentation for reliability and accuracy. Daily quality control checks ensure that instruments are in proper working order and these checks are used to monitor instrument performance.

5.4.2 CALIBRATION VERIFICATION

National Institute of Standards and Technology (NIST) standards that represent counting geometries are analyzed as unknowns at various frequencies ranging from weekly to annually to verify that efficiency calibrations are valid. The frequency is dependent upon instrument use and performance. Investigations are performed and documented should calibration verification data fall out of limits.

5.4.3 BATCH PROCESSING

Method quality control samples are analyzed with sample analyses that are processed in batches. These include gross beta in drinking water and all tritium analyses.

5.5 DUKE POWER INTERCOMPARISON PROGRAM

EnRad Laboratories participated in the Duke Power Nuclear Generation Department Intercomparison Program during 2005. Interlaboratory cross-check standards, including, Marinelli beakers, air filters, air cartridges, gross beta on smears, and tritium in water samples were analyzed at various times of the year by the four counting laboratories in Duke Power Company for this program. A summary of these Intercomparison Reports for 2005 is documented in Table 5.0-A.

5.6 DUKE POWER AUDITS

The Oconee Radiation Protection Section was not audited by the Quality Assurance Group in 2005. The program was audited in 2004.

EnRad Laboratories was not audited by the Quality Assurance Group in 2005. The laboratory was audited in 2004.

5.7 U.S. NUCLEAR REGULATORY COMMISSION INSPECTIONS

The Oconee Nuclear Station Radiological Environmental Monitoring Program was not audited by the NRC in 2005. The program was audited by the NRC in September, 2004 (reference 6.12). The 2003 AREOR was reviewed. No findings were noted in the report.

5.8 STATE OF SOUTH CAROLINA INTERCOMPARISON PROGRAM

Oconee Nuclear Station routinely participates with the Bureau of Radiological Health of the State's Department of Health and Environmental Control (DHEC) in an intercomparison program. Water, milk, vegetation, sediment, and fish samples collected by EnRad Laboratories are routinely split with DHEC for intercomparison analysis. DHEC collects air samples near two of the locations sampled for air by ONS. Results of the analyses performed on split and duplicate samples are sent to DHEC.

5.9 TLD INTERCOMPARISON PROGRAM

5.9.1 <u>NUCLEAR TECHNOLOGY SERVICES INTERCOMPARISON PR</u>OGRAM

Radiation Dosimetry and Records participates in a quarterly TLD intercomparison program administered by Nuclear Technology Services, Inc. of Roswell, GA. Nuclear Technology Services irradiates environmental dosimeters quarterly and sends them to the Radiation Dosimetry and Records group for analysis of the

unknown estimated delivered exposure. A summary of the Nuclear Technology Services Intercomparison Report is documented in Table 5.0-B.

5.9.2 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records routinely participates in a TLD intercomparison program. The State of North Carolina Radiation Protection Section irradiates environmental dosimeters and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the State of North Carolina Environmental Dosimetry Intercomparison Report for 2005 is documented in Table 5.0-B.

5.9.3 INTERNAL CROSSCHECK (DUKE POWER)

Radiation Dosimetry and Records participates in a quarterly TLD intracomparison program administered internally by the Dosimetry Lab. The Dosimetry Lab Staff irradiates environmental dosimeters quarterly and submits them for analysis of the unknown estimated delivered exposure. A summary of the Internal Cross Check (Duke Power) Result is documented in Table 5.0-B.

TABLE 5.0-A

DUKE POWER COMPANY INTERLABORATORY COMPARISON PROGRAM

2005 CROSS-CHECK RESULTS FOR ENRAD LABORATORIES

Cross-Check samples are normally analyzed a minimum of three times. A status of "3 Pass" indicates that all three analyses yielded results within the designated acceptance range. A status of "1 Pass" indicates that one analysis of the cross-check was performed.

Footnote explanations are included following this data table.

Gamma in Water 3.5 liters

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
3/29/2005	Q051GWSL	Cr-51	6.44 - 11.41 E5	8.58 E5	8.39 E5	3 Pass
		Mn-54	2.26 - 4.01 E4	3.02 E4	3.04 E4	3 Pass
		Co-57	1.36 - 2.42 E4	1.82 E4	1.85 E4	3 Pass
		Co-60	2.82 - 5.00 E4	3.76 E4	3.62 E4	3 Pass
		Sr-85	5.11 - 9.07 E4	6.82 E4	6.52 E4	3 Pass
		Y-88	5.42 - 9.60 E4	7.22 E4	7.05 E4	3 Pass
		Cd-109	1.97 - 3.50 E5	2.63 E5	2.66 E5	3 Pass
		Cs-137	1.64 - 2.91 E4	2.19 E4	2.05 E4	3 Pass
		Ce-139	1.86 - 3.30 E4	2.48 E4	2.49 E4	3 Pass
5/12/2005	Q052GWR	Cr-51	3.91 - 6.94 E3	5.22 E3	5.40 E3	3 Pass
		Co-57	2.14 - 3.80 E2	2.86 E2	2.98 E2	3 Pass
		Co-60	1.22 - 2.16 E3	1.63 E3	1.62 E3	3 Pass
		Sr-85	1.08 - 1.91 E3	1.43 E3	1.39 E3	3 Pass
		Y-88	1.93 - 3.43 E3	2.58 E3	2.53 E3	3 Pass
		Cd-109	6.15 - 10.91 E3	8.20 E3	8.81 E3	3 Pass
		Sn-113	0.98 - 1.74 E3	1.31 E3	1.27 E3	3 Pass
		Te-123M	2.50 - 4.43 E2	3.33 E2	3.26 E2	3 Pass
		Cs-137	0.99 - 1.75 E3	1.32 E3	1.27 E3	3 Pass
8/10/2005	Q053GWS	Co-57	1.55 - 2.75 E4	2.06 E4	2.16 E4	3 Pass
		Co-60	0.88 - 1.55 E5	1.17 E5	1.16 E5	3 Pass
		Sr-85	0.80 - 1.41 E5	1.06 E5	1.04 E5	3 Pass
		Y-88	1.42 - 2.52 E5	1.90 E5	1.89 E5	3 Pass
		Cd-109	4.45 - 7.90 E5	5.94 E5	5.82 E5	3 Pass
		Sn-113	6.93 - 12.28 E4	9.24 E4	9.27 E4	3 Pass
		Cs-137	7.18 - 12.72 E4	9.57 E4	9.25 E4	3 Pass
		Ce-139	1.88 - 3.34 E4	2.51 E4	2.60 E4	3 Pass
		Hg-203	4.02 - 7.13 E4	5.36 E4	0.00E+00	3 Low (1)
		Hg-203	4.02 - 7.13 E4	5.36 E4	5.41 E4	3 Pass (1)

Gamma in Water 3.5 liters, continued

Reference Date	Sample I.D.	Nuclide	Acceptance Range	Reference Value	Mean Reported Value	Cross Check Status
			pCi/l	pCi/l	pCi/l	
11/21/2005	Q054GWR	Co-57	4.68 - 8.30 E2	6.24 E2	6.35 E2	3 Pass
		Co-60	2.64 - 4.68 E3	3.52 E3	3.47 E3	3 Pass
		Sr-85	2.54 - 4.50 E3	3.38 E3	3.20 E3	3 Pass
		Y-88	4.73 - 8.38 E3	6.30 E3	6.24 E3	3 Pass
		Cd-109	1.38 - 2.46 E4	1.85 E4	1.77 E4	3 Pass
		Sn-113	2.32 - 4.11 E3	3.09 E3	3.04 E3	3 Pass
		Cs-137	2.17 - 3.85 E3	2.90 E3	2.75 E3	3 Pass
		Ce-139	5.89 - 10.44 E2	7.85 E2	7.77 E2	3 Pass
		Hg-203	N/A	N/A	N/A	N/A (2)

Gamma in Water 1.0 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
3/29/2005	Q051GWSL	Cr-51	6.44 - 11.41 E5	8.58 E5	8.25 E5	3 Pass
		Mn-54	2.26 - 4.01 E4	3.02 E4	3.03 E4	3 Pass
		Co-57	1.36 - 2.42 E4	1.82 E4	1.85 E4	3 Pass
		Co-60	2.82 - 5.00 E4	3.76 E4	3.55 E4	3 Pass
		Sr-85	5.11 - 9.07 E4	6.82 E4	6.48 E4	3 Pass
		Y-88	5.42 - 9.60 E4	7.22 E4	6.94 E4	3 Pass
		Cd-109	1.97 - 3.50 E5	2.63 E5	2.64 E5	3 Pass
		Cs-137	1.64 - 2.91 E4	2.19 E4	2.04 E4	3 Pass
		Ce-139	1.86 - 3.30 E4	2.48 E4	2.43 E4	3 Pass
5/12/2005	Q052GWR	Cr-51	3.91 - 6.94 E3	5.22 E3	5.31 E3	3 Pass
		Co-57	2.14 - 3.80 E2	2.86 E2	3.09 E2	3 Pass
		Co-60	1.22 - 2.16 E3	1.63 E3	1.61 E3	3 Pass
		Sr-85	1.08 - 1.91 E3	1.43 E3	1.35 E3	3 Pass
		Y-88	1.93 - 3.43 E3	2.58 E3	2.50 E3	3 Pass
		Cd-109	6.15 - 10.91 E3	8.20 E3	8.12 E3	3 Pass
		Sn-113	0.98 - 1.74 E3	1.31 E3	1.28 E3	3 Pass
		Te-123M	2.50 - 4.43 E2	3.33 E2	3.29 E2	3 Pass
		Cs-137	0.99 - 1.75 E3	1.32 E3	1.26 E3	3 Pass
8/10/2005	Q053GWS	Co-57	1.55 - 2.75 E4	2.06 E4	2.12 E4	3 Pass
		Co-60	0.88 - 1.55 E5	1.17 E5	1.15 E5	3 Pass
		Sr-85	0.80 - 1.41 E5	1.06 E5	1.01 E5	3 Pass
		Y-88	1.42 - 2.52 E5	1.90 E5	1.88 E5	3 Pass
		Cd-109	4.45 - 7.90 E5	5.94 E5	5.86 E5	3 Pass
		Sn-113	6.93 - 12.28 E4	9.24 E4	9.05 E4	3 Pass
		Cs-137	7.18 - 12.72 E4	9.57 E4	9.05 E4	3 Pass
		Ce-139	1.88 - 3.34 E4	2.51 E4	2.54 E4	3 Pass
		Hg-203	4.02 - 7.13 E4	5.36 E4	0.00E+00	3 Low (1)
		Hg-203	4.02 - 7.13 E4	5.36 E4	5.32 E4	3 Pass (1)

Gamma in Water 1.0 liter, continued

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
11/21/2005	Q054GWR	Co-57	4.68 - 8.30 E2	6.24 E2	6.29 E2	3 Pass
		Co-60	2.64 - 4.68 E3	3.52 E3	3.47 E3	3 Pass
		Sr-85	2.54 - 4.50 E3	3.38 E3	3.17 E3	3 Pass
		Y-88	4.73 - 8.38 E3	6.30 E3	6.15 E3	3 Pass
		Cd-109	1.38 - 2.46 E4	1.85 E4	1.84 E4	3 Pass
		Sn-113	2.32 - 4.11 E3	3.09 E3	3.02 E3	3 Pass
		Cs-137	2.17 - 3.85 E3	2.90 E3	2.71 E3	3 Pass
		Ce-139	5.89 - 10.44 E2	7.85 E2	8.04 E2	3 Pass
		Hg-203	N/A	N/A	N/A	N/A (2)

Gamma in Water 0.5 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
3/29/2005	Q051GWSL	Cr-51	6.44 - 11.41 E5	8.58 E5	8.54 E5	3 Pass
		Mn-54	2.26 - 4.01 E4	3.02 E4	3.04 E4	3 Pass
		Co-57	1.36 - 2.42 E4	1.82 E4	1.81 E4	3 Pass
		Co-60	2.82 - 5.00 E4	3.76 E4	3.70 E4	3 Pass
		Sr-85	5.11 - 9.07 E4	6.82 E4	6.51 E4	3 Pass
		Y-88	5.42 - 9.60 E4	7.22 E4	6.96 E4	3 Pass
		Cd-109	1.97 - 3.50 E5	2.63 E5	2.59 E5	3 Pass
		Cs-137	1.64 - 2.91 E4	2.19 E4	2.03 E4	3 Pass
		Ce-139	1.86 - 3.30 E4	2.48 E4	2.46 E4	3 Pass
5/12/2005	Q052GWR	Cr-51	3.91 - 6.94 E3	5.22 E3	5.44 E3	3 Pass
		Co-57	2.14 - 3.80 E2	2.86 E2	2.89 E2	3 Pass
		Co-60	1.22 - 2.16 E3	1.63 E3	1.62 E3	3 Pass
		Sr-85	1.08 - 1.91 E3	1.43 E3	1.35 E3	3 Pass
		Y-88	1.93 - 3.43 E3	2.58 E3	2.60 E3	3 Pass
		Cd-109	6.15 - 10.91 E3	8.20 E3	8.24 E3	3 Pass
		Sn-113	0.98 - 1.74 E3	1.31 E3	1.34 E3	3 Pass
		Te-123M	2.50 - 4.43 E2	3.33 E2	3.63 E2	3 Pass
		Cs-137	0.99 - 1.75 E3	1.32 E3	1.28 E3	3 Pass
8/10/2005	Q053GWS	Co-57	1.55 - 2.75 E4	2.06 E4	2.09 E4	3 Pass
		Co-60	0.88 - 1.55 E5	1.17 E5	1.16 E5	3 Pass
		Sr-85	0.80 - 1.41 E5	1.06 E5	1.00 E5	3 Pass
		Y-88	1.42 - 2.52 E5	1.90 E5	1.87 E5	3 Pass
		Cd-109	4.45 - 7.90 E5	5.94 E5	5.87 E5	3 Pass
		Sn-113	6.93 - 12.28 E4	9.24 E4	9.00 E4	3 Pass
		Cs-137	7.18 - 12.72 E4	9.57 E4	9.10 E4	3 Pass
		Ce-139	1.88 - 3.34 E4	2.51 E4	2.53 E4	3 Pass
		Hg-203	4.02 - 7.13 E4	5.36 E4	0.00E+00	3 Low (1)
		Hg-203	4.02 - 7.13 E4	5.36 E4	5.32 E4	3 Pass (1)

Gamma in Water 0.5 liter, continued

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
11/21/2005	Q054GWR	Co-57	4.68 - 8.30 E2	6.24 E2	6.38 E2	3 Pass
		Co-60	2.64 - 4.68 E3	3.52 E3	3.55 E3	3 Pass
		Sr-85	2.54 - 4.50 E3	3.38 E3	3.22 E3	3 Pass
		Y-88	4.73 - 8.38 E3	6.30 E3	6.10 E3	3 Pass
		Cd-109	1.38 - 2.46 E4	1.85 E4	1.75 E4	3 Pass
		Sn-113	2.32 - 4.11 E3	3.09 E3	2.94 E3	3 Pass
		Cs-137	2.17 - 3.85 E3	2.90 E3	2.77 E3	3 Pass
		Ce-139	5.89 - 10.44 E2	7.85 E2	8.03 E2	3 Pass
		Hg-203	N/A	N/A	N/A	N/A (2)

Gamma in Water 0.25 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
3/29/2005	Q051GWSL	Cr-51	6.44 - 11.41 E5	8.58 E5	8.45 E5	3 Pass
		Mn-54	2.26 - 4.01 E4	3.02 E4	3.12 E4	3 Pass
		Co-57	1.36 - 2.42 E4	1.82 E4	1.86 E4	3 Pass
		Co-60	2.82 - 5.00 E4	3.76 E4	3.69 E4	3 Pass
		Sr-85	5.11 - 9.07 E4	6.82 E4	6.57 E4	3 Pass
		Y-88	5.42 - 9.60 E4	7.22 E4	7.05 E4	3 Pass
		Cd-109	1.97 - 3.50 E5	2.63 E5	2.72 E5	3 Pass
		Cs-137	1.64 - 2.91 E4	2.19 E4	2.08 E4	3 Pass
		Ce-139	1.86 - 3.30 E4	2.48 E4	2.51 E4	3 Pass
5/12/2005	Q052GWR	Cr-51	3.91 - 6.94 E3	5.22 E3	5.34 E3	3 Pass
		Co-57	2.14 - 3.80 E2	2.86 E2	2.95 E2	3 Pass
		Co-60	1.22 - 2.16 E3	1.63 E3	1.58 E3	3 Pass
		Sr-85	1.08 - 1.91 E3	1.43 E3	1.34 E3	3 Pass
		Y-88	1.93 - 3.43 E3	2.58 E3	2.61 E3	3 Pass
		Cd-109	6.15 - 10.91 E3	8.20 E3	8.74 E3	3 Pass
		Sn-113	0.98 - 1.74 E3	1.31 E3	1.28 E3	3 Pass
		Te-123M	2.50 - 4.43 E2	3.33 E2	3.43 E2	3 Pass
		Cs-137	0.99 - 1.75 E3	1.32 E3	1.23 E3	3 Pass
8/10/2005	Q053GWS	Co-57	1.55 - 2.75 E4	2.06 E4	2.16 E4	3 Pass
		Co-60	0.88 - 1.55 E5	1.17 E5	1.17 E5	3 Pass
		Sr-85	0.80 - 1.41 E5	1.06 E5	1.03 E5	3 Pass
		Y-88	1.42 - 2.52 E5	1.90 E5	1.88 E5	3 Pass
		Cd-109	4.45 - 7.90 E5	5.94 E5	6.19 E5	3 Pass
		Sn-113	6.93 - 12.28 E4	9.24 E4	9.16 E4	3 Pass
		Cs-137	7.18 - 12.72 E4	9.57 E4	9.23 E4	3 Pass
		Ce-139	1.88 - 3.34 E4	2.51 E4	2.54 E4	3 Pass
		Hg-203	4.02 - 7.13 E4	5.36 E4	0.00E+00	3 Low (1)
		Hg-203	4.02 - 7.13 E4	5.36 E4	5.50 E4	3 Pass (1)

Gamma in Water 0.25 liter, continued

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
11/21/2005	Q054GWR	Co-57	4.68 - 8.30 E2	6.24 E2	6.92 E2	3 Pass
		Co-60	2.64 - 4.68 E3	3.52 E3	3.53 E3	3 Pass
		Sr-85	2.54 - 4.50 E3	3.38 E3	3.25 E3	3 Pass
		Y-88	4.73 - 8.38 E3	6.30 E3	6.26 E3	3 Pass
		Cd-109	1.38 - 2.46 E4	1.85 E4	1.93 E4	3 Pass
		Sn-113	2.32 - 4.11 E3	3.09 E3	3.06 E3	3 Pass
		Cs-137	2.17 - 3.85 E3	2.90 E3	2.87 E3	3 Pass
		Ce-139	5.89 - 10.44 E2	7.85 E2	8.11 E2	3 Pass
		Hg-203	N/A	N/A	N/A	N/A (2)

Gamma in Water 0.05 liter

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
8/10/2005	Q053GWS	Co-57	1.55 - 2.75 E4	2.06 E4	2.14 E4	3 Pass
		Co-60	0.88 - 1.55 E5	1.17 E5	1.18 E5	3 Pass
		Sr-85	0.80 - 1.41 E5	1.06 E5	1.03 E5	3 Pass
		Y-88	1.42 - 2.52 E5	1.90 E5	1.86 E5	3 Pass
		Cd-109	4.45 - 7.90 E5	5.94 E5	5.95 E5	3 Pass
		Sn-113	6.93 - 12.28 E4	9.24 E4	9.17 E4	3 Pass
		Cs-137	7.18 - 12.72 E4	9.57 E4	9.05 E4	3 Pass
		Ce-139	1.88 - 3.34 E4	2.51 E4	2.59 E4	3 Pass
		Hg-203	4.02 - 7.13 E4	5.36 E4	0.00E+00	3 Low (1)
		Hg-203	4.02 - 7.13 E4	5.36 E4	5.23 E4	3 Pass (1)

Gamma in Filter

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi	Reference Value pCi	Mean Reported Value pCi	Cross Check Status
7/15/2005	1120-63-1	Co-57	3.48 - 6.17 E3	4.64 E3	4.74 E3	3 Pass
		Co-60	1.86 - 3.30 E4	2.48 E4	2.42 E4	3 Pass
		Sr-85	2.21 - 3.91 E4	2.94 E4	2.82 E4	3 Pass
		Y-88	3.54 - 6.27 E4	4.72 E4	4.69 E4	3 Pass
		Cd-109	0.97 - 1.72 E5	1.30 E5	1.26 E5	3 Pass
		Sn-113	1.70 - 3.02 E4	2.27 E4	2.24 E4	3 Pass
		Cs-137	1.51 - 2.68 E4	2.01 E4	1.91 E4	3 Pass
		Ce-109	4.51 - 8.00 E3	6.01 E3	5.96 E3	3 Pass
		Hg-203	0.99 - 1.76 E4	1.32 E4	1.38 E4	3 Pass
12/8/2005	E4806-37	Cr-51	1.02 - 2.15 E2	1.48 E2	1.49 E2	3 Pass
		Mn-54	0.88 - 1.56 E2	1.17 E2	1.24 E2	3 Pass
		Co-58	4.43 - 7.85 E1	5.90 E1	5.79 E1	3 Pass
		Fe-59	4.73 - 8.38 E1	6.30 E1	6.92 E1	3 Pass
		Co-60	6.38 - 11.31 E1	8.50 E1	8.51 E1	3 Pass
		Zn-65	0.89 - 1.57 E2	1.18 E2	1.16 E2	3 Pass
		Cs-134	5.03 - 8.91 E1	6.70 E1	6.47 E1	3 Pass
		Cs-137	1.09 - 1.93 E2	1.45 E2	1.37 E2	3 Pass
		Ce-141	1.29 - 2.29 E2	1.72 E2	1.70 E2	3 Pass

Iodine in Water

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
3/9/2005	Q051LIW1	I-131	N/A	0.00E+00	0.00E+00	3 Pass
3/9/2005	Q051LIW2	I-131	1.99 - 3.53 E2	2.65 E2	3.20 E2	3 Pass
3/9/2005	Q051LIW3	I-131	1.66 - 2.94 E3	2.21 E3	2.31 E3	3 Pass
8/8/2005	Q053LIW1	I-131	2.87 - 5.09 E2	3.82 E2	3.74 E2	3 Pass
8/8/2005	Q053LIW2	I-131	2.83 - 5.01 E1	3.77 E1	3.36 E1	3 Pass
8/8/2005	Q053LIW3	I-131	N/A	0.00E+00	0.00E+00	3 Pass
			·	·	·	

Iodine in Milk

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
5/4/2005	Q052LIM1	I-131	5.67 - 10.05 E1	7.55 E1	6.95 E1	3 Pass
5/4/2005	Q052LIM2	I-131	6.76 - 11.98 E1	9.01 E1	8.85 E1	3 Pass
5/4/2005	Q052LIM3	I-131	N/A	0.00E+00	0.00E+00	3 Pass
11/21/2005	Q054LIM1	I-131	1.13 - 2.00 E2	1.50 E2	1.50 E2	3 Pass
11/21/2005	Q054LIM2	I-131	2.76 - 4.89 E1	3.68 E1	3.43 E1	3 Pass
11/21/2005	Q054LIM3	I-131	3.94 - 9.07 E0	5.96 E0	5.18 E0	3 Pass
			·	·	·	

Iodine on Cartridge

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi	Reference Value pCi	Mean Reported Value pCi	Cross Check Status
5/1/2005	1103-74-4	I-131	3.16 - 5.60 E5	4.21 E5	3.89 E5	3 Pass
		Cs-137	N/A	N/A	3.45 E1	N/A (3)
8/15/2005	1120-63-2	I-131	2.30 - 4.09 E5	3.07 E5	3.38 E5	3 Pass
12/8/2005	E4807-37	I-131	5.55 - 9.84 E1	7.40 E1	8.23 E1	3 Pass

Beta in Water

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
3/17/2005	E4484-37	Beta	2.01 - 3.56 E2	2.68 E2	2.35 E2	3 Pass
6/23/2005	Q052ABW1	Beta	3.79 - 6.71 E2	5.05 E2	4.88 E2	3 Pass

Beta in Water, continued

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
6/23/2005	Q052ABW2	Beta	2.02 - 3.59 E2	2.70 E2	2.56 E2	3 Pass
6/23/2005	Q052ABW4	Beta	2.08 - 3.69 E2	2.77 E2	2.58 E2	3 Pass
6/23/2005	Q052ABW5	Beta	5.06 - 8.97 E1	6.75 E1	6.19 E1	3 Pass
9/15/2005	E4710-37	Beta	0.92 - 1.64 E2	1.23 E2	1.33 E2	3 Pass
	·	·	·	·	·	

Beta Air Particulate

	Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi	Reference Value pCi	Mean Reported Value pCi	Cross Check Status
Ī	8/19/2005	A19486-37	Cs-137	0.96 - 1.70 E4	1.28 E4	1.21 E4	3 Pass

Beta Smear

Reference Date	Sample I.D.	Nuclide	Acceptance Range dpm	Reference Value dpm	Mean Reported Value dpm	Cross Check Status
2/25/2005	A18848-37	Beta	4.71 - 8.36 E3	6.28 E3	6.44 E3	3 Pass
2/25/2005	A18850-37	Beta	0.98 - 1.74 E4	1.31 E4	1.25 E4	3 Pass
8/19/2005	A19484-37	Cs-137	0.87 - 1.55 E4	1.17 E4	1.21 E4	3 Pass
11/11/2005	A19759-37	Beta	0.96 - 1.70 E4	1.28 E4	1.18 E4	3 Pass
			<u> </u>			

Tritium in Water

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
4/19/2005	Q051TWSL1	H-3	1.44 - 2.55 E5	1.92 E5	1.80 E5	3 Pass
4/19/2005	Q051TWSL2	H-3	N/A	0.00E+00	0.00E+00	3 Pass
5/12/2005	Q052TWR1	H-3	1.86 - 3.30 E3	2.48 E3	2.33 E3	3 Pass
5/12/2005	Q052TWR2	H-3	N/A	0.00E+00	0.00E+00	3 Pass
5/12/2005	Q052TWR3	H-3	2.67 - 6.74 E2	4.24 E2	3.68 E2	3 Pass

Tritium in Water, continued

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
7/20/2005	Q053TWS1	H-3	N/A	0.00E+00	0.00E+00	3 Pass
7/20/2005	Q053TWS2	H-3	4.21 - 7.46 E4	5.61 E4	5.25 E4	3 Pass
7/20/2005	Q053TWS3	H-3	1.54 - 2.73 E5	2.05 E5	1.94 E5	3 Pass
11/21/2005	Q054TWR1	H-3	1.64 - 2.90 E3	2.18 E3	2.12 E3	3 Pass
11/21/2005	Q054TWR2	H-3	2.98 - 8.02 E2	4.89 E2	3.68 E2	3 Pass
11/21/2005	Q054TWR3	H-3	N/A	0.00E+00	0.00E+00	3 Pass

Table 5.0-A Footnote Explanations

(1) Gamma in Water, Sample ID Q053GWS, Reference Date 8/10/2005: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli, 0.05 L bottle

Failure to identify Hg-203 [279.19 keV] during initial cross-check analysis. Gamma spectroscopy library "XENVIRON" updated to include Hg-203 nuclide. Cross-check reanalyzed, yielding acceptable data. PIP G-05-00331 written to record corrective actions taken.

(2) Gamma in Water, Sample ID Q054GWR, Reference Date 11/21/2005: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli

Cross-check analysis yielded low Hg-203 results for all geometries tested. Investigation indicated Hg-203 volatility (plate out) despite cross-check preservation. PIP G-06-00038 written.

(3) Iodine on Cartridge, Sample 1103-74-4, Reference Date 5/1/2005

Cs-137 observed in all cross-check analyses. There was no reference value for Cs-137 in this cross-check. Cs-137 is a known contaminant of charcoal cartridges (Reference 6.13). Iodine-131 data were acceptable.

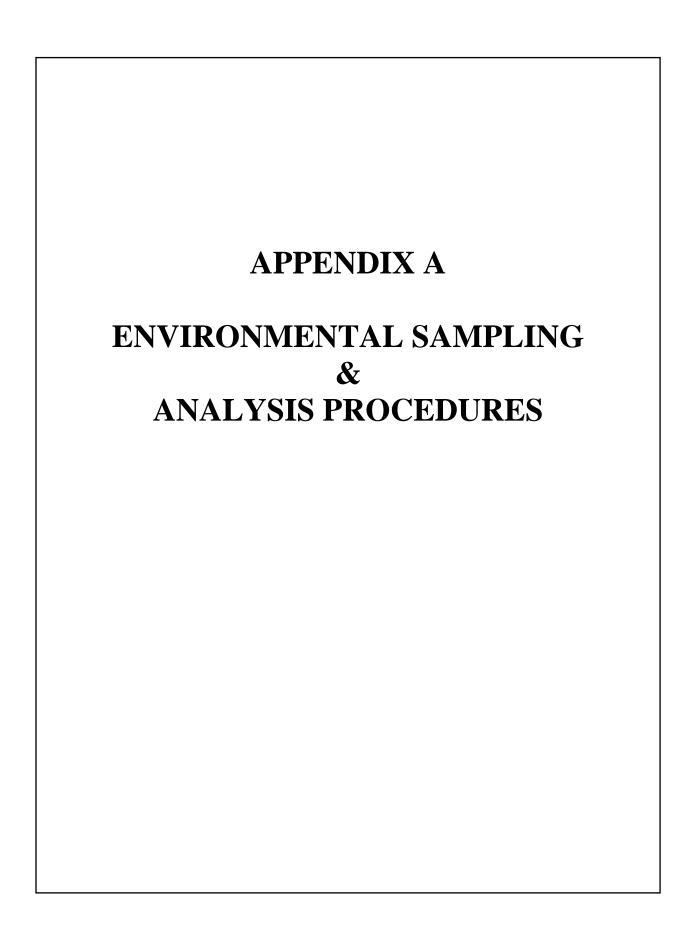
TABLE 5.0-B

2005 ENVIRONMENTAL DOSIMETER CROSS-CHECK RESULTS

Nuclear Technology Services

1st Quarte	er 2005					2nd Quart	ter 2005				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100260	95.4	104.1	9.12	<+/-15%	Pass	100053	76.4	78.4	2.62	<+/-15%	Pass
100225	95.4	96.4	1.05	<+/-15%	Pass	100056	76.4	79.1	3.53	<+/-15%	Pass
100266	95.4	101.9	6.81	<+/-15%	Pass	100762	76.4	71.2	-6.81	<+/-15%	Pass
100147	95.4	96.3	0.94	<+/-15%	Pass	100870	76.4	78.6	2.88	<+/-15%	Pass
100112	95.4	103.5	8.49	<+/-15%	Pass	100873	76.4	76.4	0.00	<+/-15%	Pass
	Averag	e Bias (B)	5.28				Averag	e Bias (B)	0.45		
S	tandard De	viation (S)	4.00			St	andard De	viation (S)	4.27		
Measur	Measure Performance B +S 9.29 <15%				Pass	Measur	e Performa	ince B +S	4.72	<15%	Pass
3rd Quarter 2005					4th Quart	er 2005					
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
101124	92.0	96.8	5.22	<+/-15%	Pass	102037	62.5	63.3	1.28	<+/-15%	Pass
101136	92.0	98.0	6.52	<+/-15%	Pass	102233	62.5	65.5	4.80	<+/-15%	Pass
101249	92.0	94.8	3.04	<+/-15%	Pass	102234	62.5	62.7	0.32	<+/-15%	Pass
101366	92.0	97.5	5.98	<+/-15%	Pass	102454	62.5	63.1	0.96	<+/-15%	Pass
101241	92.0	95.2	3.48	<+/-15%	Pass	102060	62.5	62.6	0.16	<+/-15%	Pass
	Average Bias (B) 4.85					Averag	e Bias (B)	1.50			
S	tandard De	viation (S)	1.53			• , ,			1.90		
Measur	e Performa	nce B +S	6.38	<15%	Pass	Measur	e Performa	nce B +S	3.40	<15%	Pass

State of North Carolina, Division of Radiation Protection


Spring 20	05					Fall 2005					
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100089	60.0	63.0	5.00	<+/-15%	Pass	100076	30	29.6	-1.33	<+/-15%	Pass
100215	60.0	59.8	-0.33	<+/-15%	Pass	101309	30	30.7	2.33	<+/-15%	Pass
100268	60.0	59.0	-1.67	<+/-15%	Pass	101314	30	31.0	3.33	<+/-15%	Pass
100110	60.0	58.9	-1.83	<+/-15%	Pass	101306	30	29.7	-1.00	<+/-15%	Pass
100814	60.0	58.5	-2.50	<+/-15%	Pass	101209	30	29.3	-2.33	<+/-15%	Pass
100411	60.0	61.7	2.83	<+/-15%	Pass	101281	30	30.5	1.67	<+/-15%	Pass
100154	60.0	55.9	-6.83	<+/-15%	Pass	100631	30	28.8	-4.00	<+/-15%	Pass
100174	60.0	59.7	-0.50	<+/-15%	Pass	101188	30	31.4	4.67	<+/-15%	Pass
	Averaç	ge Bias (B)	-0.73				Averag	ge Bias (B)	0.42		
S	Standard Deviation (S)		3.55			St	tandard De	eviation (S)	3.02		
Measur	Measure Performance B +S		4.28	<15%	Pass	Measur	e Performa	ance B +S	3.44	<15%	Pass

Internal Crosscheck (Duke Power)

1st Quart	er 2005					2nd Quart	ter 2005				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
101035	50.0	46.3	-7.33	<+/-15%	Pass	102394	50.0	47.3	-5.49	<+/-15%	Pass
100215	50.0	48.4	-3.29	<+/-15%	Pass	102390	50.0	47.8	-4.45	<+/-15%	Pass
100411	50.0	48.9	-2.13	<+/-15%	Pass	102490	50.0	47.0	-5.94	<+/-15%	Pass
100174	50.0	48.7	-2.52	<+/-15%	Pass	102507	50.0	47.2	-5.66	<+/-15%	Pass
100154	50.0	46.5	-6.92	<+/-15%	Pass	102508	50.0	47.2	-5.53	<+/-15%	Pass
100089	50.0	52.6	5.24	<+/-15%	Pass	102509	50.0	48.3	-3.39	<+/-15%	Pass
100814	50.0	47.8	-4.44	<+/-15%	Pass	102510	50.0	47.5	-5.09	<+/-15%	Pass
100786	50.0	47.9	-4.25	<+/-15%	Pass	102521	50.0	47.5	-5.09	<+/-15%	Pass
100455	50.0	55.0	9.92	<+/-15%	Pass	102391	50.0	47.9	-4.22	<+/-15%	Pass
100354	50.0	48.9	-2.19	<+/-15%	Pass	102389	50.0	48.8	-2.39	<+/-15%	Pass
	Averag	je Bias (B)	-1.79			Average Bias (B)			-4.73		
S	tandard De	viation (S)	5.37			St	tandard De	viation (S)	1.13		
	Measure Performance B +S		7.16	<15%	Pass		e Performa	ance B +S	5.85	<15%	Pass
	3rd Quarter 2005					4th Quart					
TLD	Delivered	•	Bias	Pass/Fail		TLD	Delivered	•	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
102402	50.0	48.8	-2.34	<+/-15%	Pass	100308	62.0	61.1	-1.45	<+/-15%	Pass
102367	50.0	47.9	-4.14	<+/-15%	Pass	100312	62.0	63.5	2.42	<+/-15%	Pass
102369	50.0	48.9	-2.13	<+/-15%	Pass	100313	62.0	62.0	0.01	<+/-15%	Pass
102361	50.0	47.9	-4.26	<+/-15%	Pass	100316	62.0	60.1	-3.01	<+/-15%	Pass
102346	50.0	47.7	-4.67	<+/-15%	Pass	100317	62.0	59.2	-4.59	<+/-15%	Pass
102343	50.0	49.7	-0.66	<+/-15%	Pass	100318	62.0	61.0	-1.60	<+/-15%	Pass
102399	50.0	48.9	-2.14	<+/-15%	Pass	100319	62.0	60.4	-2.57	<+/-15%	Pass
102398	50.0	48.7	-2.52	<+/-15%	Pass	100321	62.0	60.9	-1.75	<+/-15%	Pass
102400	50.0	48.8	-2.48	<+/-15%	Pass	100322	62.0	59.2	-4.56	<+/-15%	Pass
102401	50.0	49.1	-1.77	<+/-15%	Pass	100327	62.0	63.1	1.71	<+/-15%	Pass
		je Bias (B)	-2.71			_	-	je Bias (B)	-1.54		
			1.26 3.97	4=0/		Standard Deviation (S) 2.37			4=0/		
I Measur	Standard Deviation (S) Measure Performance B +S			<15%	Pass	Measur	e Performa	ance B +S	3.90	<15%	Pass

6.0 REFERENCES

6.1	Oconee Selected License Commitments
6.2	Oconee Technical Specifications
6.3	Oconee Updated Final Safety Analysis Report
6.4	Duke Power Company Offsite Dose Calculation Manual
6.5	Oconee Annual Radiological Environmental Operating Report 1969-2004
6.6	Oconee Annual Radioactive Effluent Release Report 2005
6.7	Probability and Statistics in Engineering and Management Science, Hines and Montgomery, 1969, pages 287-293.
6.8	Practical Statistics for the Physical Sciences, Havilcek and Crain, 1988, pages 83-93.
6.9	Nuclear Regulatory Commission Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10CFR50, Appendix I.
6.10	EnRad Laboratories Operating Procedures
6.11	RETDAS, Radiological Effluent Tracking and Dose Assessment Software, Canberra Version 3.5.1, DPC Revision #4.0
6.12	NRC Integrated Inspection Report 50-269/04-04, 50-270/04-04, 50-287/04-04
6.13	Duke Power Company EnRad Laboratory Charcoal Cartridge Study, performed 2001

APPENDIX A

ENVIRONMENTAL SAMPLING AND ANALYSIS PROCEDURES

Adherence to established procedures for sampling and analysis of all environmental media at Oconee Nuclear Station is required to ensure compliance with Station Selected Licensee Commitments. Analytical procedures were employed to ensure that Selected Licensee Commitments detection capabilities were achieved.

Environmental sampling and analyses were performed by EnRad Laboratories, Dosimetry and Records, and Fisheries and Aquatic Ecology.

Section IV of this appendix describes the environmental sampling frequencies and analysis procedures by media type.

I. CHANGE OF SAMPLING PROCEDURES

The Oconee REMP milk program was updated to align with NUREG-1301 during 2005 and is documented in PIP O-04-01179. Locations 080 [Control], 082 [Routine], and 083 [Routine] were removed from the program, with the 6/27/2005 sampling being the final scheduled sample from these dairies. Location 071 was designated as the new control site effective with the 7/12/2005 sampling and was the sole dairy sampled the remainder of the monitoring period.

II. <u>DESCRIPTION OF ANALYSIS PROCEDURES</u>

Gamma spectroscopy analyses are performed using high purity germanium gamma detectors and Canberra analytical software. Designated sample volumes are transferred to appropriate counting geometries and analyzed by gamma spectroscopy. Perishable samples such as fish and broadleaf vegetation are ground to achieve a homogeneous mixture. Soils and sediments are dried, sifted to remove foreign objects (rocks, clams, glass, etc.) then transferred to appropriate counting geometry.

Low-level iodine analyses are performed by passing a designated sample aliquot through a pre-weighed amount of ion exchange resin to remove and concentrate any iodine in the aqueous sample (milk). The resin is then dried, mixed thoroughly, and a net resin weight determined before being transferred to appropriate counting geometry and analyzed by gamma spectroscopy.

Tritium analyses are performed quarterly by using low-level environmental liquid scintillation analysis technique on a Packard 2550 liquid scintillation system or Perkin-Elmer 2900TR liquid scintillation system. Tritium samples are batch processed with a

tritium spike to verify instrument performance and sample preparation technique are acceptable.

Gross beta analysis is performed by concentrating a designated aliquot of sample precipitate and analyzing by Tennelec XLB Series 5 gas-flow proportional counters. Samples are batch processed with a blank to ensure sample contamination has not occurred.

III. CHANGE OF ANALYSIS PROCEDURES

No analysis procedures were changed during 2005.

IV. SAMPLING AND ANALYSIS PROCEDURES

A.1 <u>AIRBORNE PARTICULATE AND RADIOIODINE</u>

Airborne particulate and radioiodine samples at each of six locations were composited continuously by means of continuous air samplers. Air particulates were collected on a particulate filter and radioiodines were collected in a charcoal cartridge positioned behind the filter in the sampler. The samplers are designed to operate at a constant flow rate (in order to compensate for any filter loading) and are set to sample approximately 2 cubic feet per minute. Filters and cartridges were collected weekly. A separate weekly gamma analysis was performed on each charcoal cartridge and air particulate. A weekly gross beta analysis was performed on each filter. The continuous composite samples were collected from the locations listed below.

Location 060 = Greenville Water Intake Rd. (2.58 mi. NNE)

Location 074 = Keowee Key Resort (2.36 mi. NNW)

Location 077 = Skimmer Wall (1.00 mi. SW) Location 078 = Recreation Site (0.58 mi. WSW) Location 079 = Keowee Dam (0.56 mi. NE)

Location 081 = Clemson Operations Center (9.33 mi. SE)

A.2 **DRINKING WATER**

Monthly composite samplers were operated to collect an aliquot at least every two hours. Gross beta and gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites. The composites were collected monthly from the locations listed below.

Location 060 = Greenville Water Intake Rd. (3.23 mi. NE)

Location 064 = Seneca (6.67 mi. SSW) Location 066 = Anderson (18.9 mi SSE)

A.3 SURFACE WATER

Monthly composite samplers were operated to collect an aliquot at least every two hours. Gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites sample. The composites were collected monthly from the locations listed below.

Location 062 = Lake Keowee Hydro Intake (0.85 mi. ENE) Location 063.1 = Lake Hartwell Hwy 183 Bridge (0.79 mi. E)

A.4 MILK

Semimonthly grab samples were collected at each dairy. A gamma and low-level Iodine-131 analysis was performed on each sample. The semimonthly grab samples were collected from the locations listed below.

Location 071 = Clemson Dairy (10.2 mi. SSE) Location 080 = Martin's Dairy (17.2 mi. SE) Location 082 = Oakway Dairy (17.8 mi. SSW)

Location 083 = Oconee Belle Farm Dairy (7.10 mi. W)

A.5 BROADLEAF VEGETATION

Monthly samples were collected and a gamma analysis was performed on each sample. The samples were collected from the locations listed below.

Location 060 = Greenville Water Intake Rd. (2.58 mi. NNE)

Location 077 = Skimmer Wall (1.00 mi. SW) Location 079 = Keowee Dam (0.56 mi. NE)

Location 081 = Clemson Operations Center (9.33 mi. SE)

A.6 FISH

Semiannual samples were collected and a gamma analysis was performed on the edible portions of each sample. The samples were collected from the locations listed below.

Location 060 = Greenville Water Intake Rd. (2.28 mi. NE)

Location 063 = Lake Hartwell Hwy 183 Bridge (0.80 mi. ESE)

Location 067 = Lawrence Ramsey Bridge Hwy 27 (4.34 mi. SSE)

A.7 SHORELINE SEDIMENT

Semiannual samples were collected and a gamma analysis was performed on each sample following the drying and removal of rocks and clams. The samples were collected from the locations listed below.

Location 063 = Lake Hartwell Hwy 183 Bridge (0.80 mi. ESE) Location 067 = Lawrence Ramsey Bridge Hwy 27 (4.34 mi. SSE)

Location 068 = High Falls County Park (1.82 mi. W)

A.8 DIRECT GAMMA RADIATION (TLD)

Thermoluminescent dosimeters (TLD) were collected quarterly at forty-two locations. A gamma exposure rate was determined for each TLD. The TLDs were placed as indicated below.

- * An inner ring of 17 TLDs, one in each meteorological sector in the general area of the site boundary.
- * An outer ring of 16 TLDs, one in each meteorological sector in the 6 to 8 kilometer range.
- * The remaining TLDs were placed in special interest areas such as population centers, residential areas, schools, and control locations.

TLD Locations are listed in Table 2.1-B.

A.9 <u>ANNUAL LAND USE CENSUS</u>

An annual Land Use Census was conducted to identify within a distance of 8 kilometers (5.0 miles) from the station, the following locations in each of the sixteen meteorological sectors:

- * The Nearest Residence
- * The Nearest Milk-giving Animal (cow, goat, etc.) where milk is used for human consumption

The census was conducted during the growing season from 6/20 to 6/21/2005. Results are shown in Table 3.9. No changes were made to the sampling procedures during 2005 as a result of the 2005 census.

V. GLOBAL POSITIONING SYSTEM (GPS) ANALYSIS

The Oconee site centerline used for GPS measurements was referenced from the Oconee Nuclear Station Updated Final Safety Analysis Report (UFSAR), section 2.1.1.1, Specification of Location. Waypoint coordinates used for ONS GPS measurements were latitude 34°-47'-38.2"N and longitude 82°-53'-55.4"W. Maps and tables were generated using North American Datum (NAD) 27. Data normally reflect accuracy to within 2 to 5 meters from point of measurement. GPS field measurements were taken as close as possible to the item of interest. Distances for the locations are displayed using three significant figures.

APPENDIX B RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY OF RESULTS 2005

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Unit of Measurement Perfor Air Particulate (pCi/m3) BETA	-	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
(pCi/m3)		•				•	
(pCi/m3)							•
BETA						081 (9.33 mi SE)	
	318	1.00E-02	1.92E-2 (265/265)	077	1.95E-2 (53/53)	1.91E-2 (53/53)	0
			5.18E-3 - 3.92E-2	(1.00 mi SW)	7.64E-3 - 3.77E-2	9.03E-3 - 3.73E-2	
CS-134	318	5.00E-02	0.00 (0/265)		0.00 (0/53)	0.00 (0/53)	0
passadanaan kanadanaan kanadanaan kanadan kana			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	AAAAAAAAAAAAAAAAAAAAAAA
CS-137	318	6.00E-02	0.00 (0/265)		0.00 (0/53)	0.00 (0/53)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
I-131	318	7.00E-02	0.00 (0/265)		0.00 (0/53)	0.00 (0/53)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and Tota Number of	Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Air Radioiodine (pCi/m3)						081 (9.33 mi SE)	
	CS-134 318	5.00E-02	0.00 (0/265)		0.00 (0/53)	0.00 (0/53)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 318	6.00E-02	0.00 (0/265)		0.00 (0/53)	0.00 (0/53)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 318	7.00E-02	0.00 (0/265)		0.00 (0/53)	0.00 (0/53)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and T Number of		Lower Limit of Detection	All Indicator Locations	Annu	with Highest nal Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyse Performe		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Drinking Water (pCi/liter)							064 (6.67 mi SSW)	
	BALA-140	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	BETA	39	4	1.19 (17/26)	066	1.28 (12/13)	1.37 (5/13)	0
				0.68 - 1.90	(18.9 mi SSE)	0.77 - 1.90	1.00 - 1.89	
	CO-58	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	39	18	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	FE-59	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	H-3	12	2000	377 (2/8)	066	377 (2/4)	0.00 (0/4)	0
				303 - 450	(18.9 mi SSE)	303 - 450	0.00 - 0.00	
	I-131	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	NB-95	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZR-95	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and T Numbe of		Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyse Performe		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Surface Water (pCi/liter)							062 (0.85 mi ENE)	
	BALA-140	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-58	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	26	18	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	FE-59	26	30	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	H-3	8	2000	5153 (4/4)	063.1	5153 (4/4)	0.00 (0/4)	0
				2260 - 7930	(0.79 mi E)	2260 - 7930	0.00 - 0.00	
	I-131	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	NB-95	26	15	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	26	30	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZR-95	26	30	0.00 (0/13)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269, 270, 287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and T Number of		Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean tance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performe		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Milk (pCi/liter)							* 080 (17.2 mi SE) * 071 (10.2 mi SSE)	
	BALA-140	65	15	0.00 (0/39)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	65	15	0.00 (0/39)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	65	18	0.00 (0/39)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131	65	15	0.00 (0/39)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	LLI-131	65	1	0.00 (0/39)		0.00 (0/26)	0.00 (0/26)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

^{*} The Oconee REMP milk program was updated to align with NUREG-1301 during 2005 and is documented in PIP O-04-01179. Locations 080 [Control], 082 [Indicator], and 083 [Indicator] were removed from the program, with the 6/27/2005 sampling being the final scheduled sample from these dairies. Location 071 was designated as the new control site effective with the 7/12/2005 sampling and was the sole dairy sampled the remainder of the monitoring period.

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

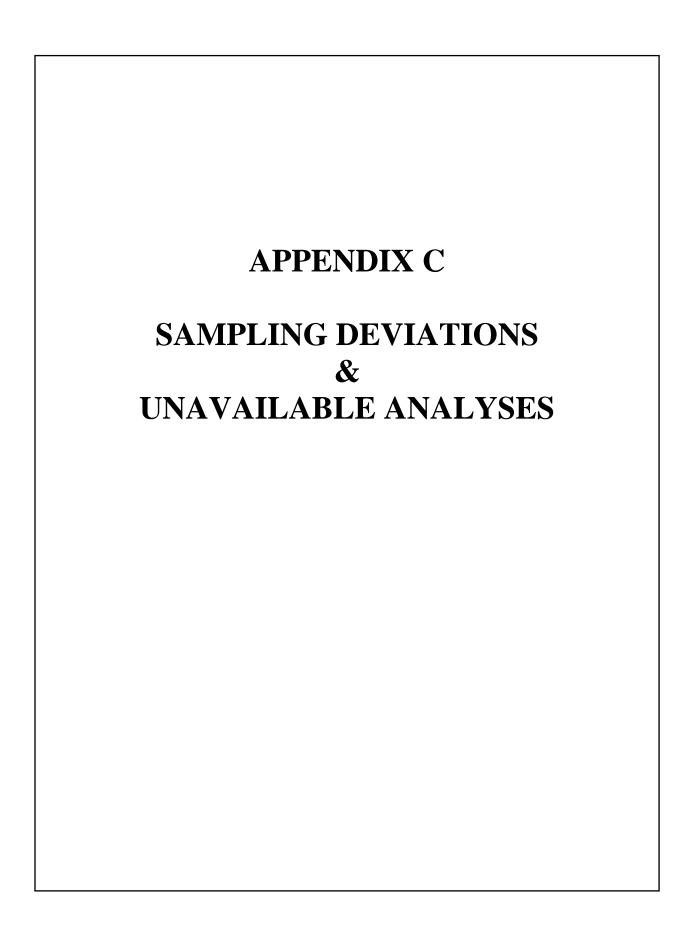
Medium or Pathway Sampled	Type and To Number of	otal	Lower Limit of Detection	All Indicator Locations	Annı	with Highest ual Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Broadleaf Vegetation (pCi/kg-wet)							081 (9.33 mi SE)	
	CS-134	48	60	0.00 (0/36)		0.00 (0/12)	0.00 (0/12)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	48	80	45.1 (1/36)	077	45.1 (1/12)	41.1 (1/12)	0
				45.1 - 45.1	(1.00 mi SW)	45.1 - 45.1	41.1 - 41.1	
	I-131	48	60	0.00 (0/36)	·	0.00 (0/12)	0.00 (0/12)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and Tot Number of		Lower Limit of Detection	All Indicator Locations	Annu	with Highest nal Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Fish (pCi/kg-wet)							060 (2.28mi NE)	
	CO-58	12	130	0.00 (0/8)		0.00 (0/4)	0.00 (0/4)	0
	CO-60	12	130	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	-
	CS-134	12	130	0.00 (0/8)		0.00 (0/4)	0.00 (0/4)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	12	150	46.9 (8/8)	067	51.4 (4/4)	18.9 (1/4)	0
				29.2 - 65.0	(4.34 mi SSE)	30.3 - 62.9	18.9 - 18.9	
	FE-59	12	260	0.00 (0/8)		0.00 (0/4)	0.00 (0/4)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54	12	130	0.00 (0/8)		0.00 (0/4)	0.00 (0/4)	0
	ZN-65	12	260	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	0
	ZIN-03	12	200	0.00 (0/8)		0.00 (0/4)	0.00 (0/4)	U
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269,270,287


Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and T Numbe of		Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyse Perform		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Shoreline							068	
Sediment							(1.82 mi W)	
(pCi/kg-dry)								
	MN-54	6	-	200 (1/4)	067	200 (1/2)	0.00 (0/2)	0
				200 - 200	(4.34 SSE)	200 - 200	0.00 - 0.00	
	CS-134	6	150	0.00 (0/6)		0.00 (0/3)	0.00 (0/2)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	6	180	54.8 (2/4)	067	65.3 (1/2)	0.00 (0/2)	0
				44.3 - 65.3	(4.34 SSE)	65.3 - 65.3	0.00 - 0.00	

Facility: Oconee Nuclear Station Docket No. 50-269,270,287

Location: Oconee County, South Carolina Report Period: 01-JAN-2005 to 31-DEC-2005

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Direct Radiation TLD (mR/standard quarter)						058 (9.39 mi WSW) 081 (9.33 mi SE)	
	165	0.00E+00	21.2 (157/157)	036	28.6 (3/3)	26.2 (8/8)	0
			12.9 - 33.5	(4.32 mi N)	24.2 - 32.6	19.3 - 32.4	

APPENDIX C

OCONEE NUCLEAR STATION SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

	DEVIATION & UNAVAI	LABLE R	EASON CODES
BF	Blown Fuse	PO	Power Outage
FZ	Sample Frozen	PS	Pump out of service / Undergoing Repair
IW	Inclement Weather	SL	Sample Loss/Lost due to Lab Accident
LC	Line Clog to Sampler	SM	Motor / Rotor Seized
OT	Other	TF	Torn Filter
PI	Power Interrupt	VN	Vandalism
PM	Preventive Maintenance	CN	Construction

C.1 SAMPLING DEVIATIONS

Air Particulate and Air Radioiodines

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
081	2/21–2/28/2005	2/21-2/28/2005	PI	Power to sampling equipment was interrupted during composite period. Both samplers were operative at time of collection. During equipment change out due to calibration expiration, it is suspected electronic components may have become damp due to heavy rains during the day. Power was off to both air samplers for about 4 hours. Sample collector returned to site and reset breaker which restored power to both air samplers. Normal sampling was resumed 2/21/2005 15:17.
078	2/28-3/7/2005	2/28-3/5/2005	ΡΊ	A large pine tree fell on the site and interrupted power to sampling equipment. The cage fencing and the power box support structure was damaged; sample house and equipment were not damaged. Power was interrupted 3/5/2005 13:20 according to sampler run clock. Work request 20773 was written. The breaker was reset and power was restored on 3/7/2005.

Drinking Water

27 1 11111111	0			-
Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
066	1/17 2/14/2005	2/14/2/14/2005	OT	Water supply to sampling equipment was turned off during the composite period. A sign requesting the water supply not be tampered with was in place near the water supply valve prior to this composite period. Water flow restored,
066	1/17-2/14/2005	2/14-2/14/2005	OT	grab sample collected, and normal sampling resumed 2/14/2005.

Surface Water

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
Location	Conection Dates	Collection Dates	Code	
				Pump supplying sample reservoir not
				working. A grab sample was taken on
0.62.1	0/14 4/11/2007	4/11 4/11/2007	D.C.	4/11/2005. Work request 22795 was
063.1	3/14-4/11/2005	4/11-4/11/2005	PS	written.
				Completion of work request 22795 from
				previous composite period affected
				scheduled monitoring period. Pump was
				repaired and returned to operation.
063.1	4/11-5/9/2005	4/13-5/9/2005	PS	Normal sampling resumed 4/13/2005.
				Loss of prime to reservoir pump due to
				worn intake line. Work request 24173
062	5/9-6/6/2005	5/9-6/6/2005	PS	written.
				Completion of work request 24173 from
				previous composite period affected
				scheduled monitoring period. Line was
				replaced and water flow restored.
062	6/6-7/5/2005	6/8-7/5/2005	PS	Normal sampling resumed 6/8/2005.
				Reservoir pump inoperative at time of
				collection. A grab sample was taken.
				Work request 26502 written. Pump was
				replaced. Normal sampling resumed
062	8/1-8/29/2005	8/29-8/29/2005	PS	8/29/2005.
				Inoperative reservoir pump discovered
				by maintenance personnel. Pump
				replaced on 11/29/2005 and normal
063.1	11/21-12/19/2005	11/21-12/19/2005	PS	sampling resumed.

C.2 <u>UNAVAILABLE ANALYSES</u>

TLD

Location	Scheduled Collection Dates	Reason Code	Corrective Action
036	3/14-6/13/2005	VN	TLD missing. 3 rd quarter 2005 TLD placed in field.
027	6/13-9/12/2005	VN	TLD missing. 4 th quarter 2005 TLD placed in field.
027	9/12-12/12/2005	VN	TLD missing. 1 st quarter 2006 TLD placed. A secondary TLD was placed near the primary since this site has become problematic with TLD theft.

APPENDIX D ANALYTICAL DEVIATIONS No Analytical deviations were incurred for the 2005 Radiological Environmental Monitoring Program

APPENDIX E RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM RESULTS This appendix includes all of the sample analysis reports generated from each sample medium for 2005. Appendix E is located separately from this report and is permanently archived at Duke Power Company's Environmental Center radiological environmental master file, located at the McGuire Nuclear Station Site in Huntersville, North Carolina.