

Crystal River Nuclear Plant Docket No. 50-302 Operating License No. DPR-72

Ref: ITS 5.7.1.1(b)

May 8, 2006 3F0506-02

U.S. Nuclear Regulatory Commission

Attn: Document Control Desk Washington, DC 20555-0001

Subject: Crystal River Unit 3 – 2005 Annual Radiological Environmental Operating

Report

Dear Sir:

Florida Power Corporation, doing business as Progress Energy Florida, Inc., hereby submits the 2005 Annual Radiological Environmental Operating Report for Crystal River Unit 3 (CR-3) in accordance with the CR-3 Improved Technical Specifications, Section 5.7.1.1(b) and Section 6.6 of the Offsite Dose Calculation Manual (ODCM). The data provided in the attached report is consistent with the objectives outlined in the ODCM, and includes all radiological environmental samples taken during the report period from January 1, 2005 through December 31, 2005.

If you have any questions regarding this submittal, please contact Mr. Paul Infanger, Supervisor, Licensing and Regulatory Programs at (352) 563-4796.

Sincerely

A. Franke

Plant General Manager

JAF/ff

Attachment

xc: NRR Project Manager

Regional Administrator, Region II

Senior Resident Inspector

Progress Energy Florida, Inc. Crystal River Nuclear Plant 15760 W. Power Line Street Crystal River, FL 34428

Itas A009

# PROGRESS ENERGY FLORIDA, INC. CRYSTAL RIVER UNIT 3 DOCKET NUMBER 50-302 / LICENSE NUMBER DPR-72

## **ATTACHMENT**

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT 2005

# PROGRESS ENERGY FLORIDA, INC.

## **CRYSTAL RIVER UNIT 3**

## ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

2005

# TABLE OF CONTENTS

|      | Int | rodu         | ction                                            | 1            |
|------|-----|--------------|--------------------------------------------------|--------------|
| I.   | Su  | mma<br>onito | ry Description of the Radiological Environmental | 1            |
| II.  | La  | nd-U         | Jse Census                                       | 10           |
| III. | Int | erlab        | ooratory Comparison Program                      | 11           |
| IV.  | An  | alyti        | cal Results                                      | 13           |
|      | A.  |              | rborne Pathwaytistical Summary                   |              |
|      | В.  |              | rect Radiationtistical Summary                   |              |
|      | C.  | Wa           | tterborne Pathway                                | 27           |
|      |     | 1.           | Seawater                                         |              |
|      |     | 2.           | Ground Water                                     |              |
|      |     | 3.           | Drinking Water                                   | . 27<br>. 35 |
|      |     | 4.           | Shoreline Sediment                               |              |
|      | D.  | Ing          | estion Pathway.                                  | . 41         |
|      |     | 1.           | Carnivorous Fish                                 |              |
|      |     | 2.           | Oysters                                          |              |
|      |     | 3.           | Broad Leaf Vegetation. Statistical Summary       |              |
|      |     | 4.           | Watermelon and Citrus                            |              |

#### **INTRODUCTION**

This report is submitted as required by Technical Specification 5.7.1.1(b) to the Crystal River Facility Operating License No. DPR-72, and Section 6.6 of the Offsite Dose Calculation Manual.

The following information is required to be included in this report:

- Data Summaries
- Interpretations
- Unachievable LLDs
- An analysis of trends
- An assessment of any observed impact of plant operation on the environment
  - NOTE: If harmful effects or evidence of irreversible damage are detected by the monitoring, the report shall provide an analysis of the problem and a planned course of action to correct it.
- Summarized and tabulated results of all radiological environmental samples taken during the report period, in the format of Radiological Assessment Branch Technical Position, Revision 1, November, 1979
  - NOTE: If some results are not available for inclusion, the report shall note and explain the reason for the missing results. The missing results shall be submitted as soon as possible in a supplementary report.
- A summary description of the Radiological Environmental Monitoring Program
- A map of all sampling locations keyed to a table giving distances and directions from the reactor
- Land-use census results
- Interlaboratory Comparison Program results

#### I. SUMMARY DESCRIPTION OF THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

The analytical results of the Crystal River Unit 3 (CR-3) operational Radiological Environmental Monitoring Program (REMP) for 2005 are contained in this report. The operational program began on January 1, 1977 just prior to initial criticality, which was achieved on January 14, 1977.

Sampling of the facility environs is performed by the Florida Department of Health, Bureau of Radiation Control. The State also performs the required analyses, participates in the Interlaboratory Comparison Program, and performs the annual land-use census. Prior to 1990, the program was split between the Department of Health and the University of Florida. The transition to the State performing all of the programs sampling and analysis in 1990 is evident in several of the trend graphs, most notably oysters and carnivorous fish, and is due to the State using less sensitive measurement techniques for several of the pathways which were formerly evaluated by the University of Florida.

Sample station locations are given in Table I-1 and Figures I-2, -3, and -4. Sample frequency and analysis type may be determined from Table I-2. Figure I-1 illustrates the relevant exposure pathways.

Except for air sample gross beta results and direct radiation measurements, most of the analytical results are below the lower limit of detection (LLD) of the sample. Sample LLDs are generally much lower than the required "a priori" LLD. When measurable results are reported, the values are also usually less than the required "a priori" LLD.

The results of the 2005 REMP have been compared to previous years' results. This comparison, in part illustrated by the trend graphs of Section IV, shows no evidence of consistent long-term increasing trends in any of the sample media. However, radioactive material is routinely quantified in sediment samples which are taken in the discharge canal near the liquid release discharge point. In general, these results verify the effectiveness of in-plant measures for controlling radioactive releases.

Trend graphs illustrate the mean measured concentration of a particular radionuclide for the year. When measurable results are not obtained, the highest sample LLD is plotted. LLD and measured values are plotted on the same line to best illustrate any trend. As shown on each graph's key, shaded boxes indicate LLD values, while open boxes indicate measured values.

Statistical summary pages are provided for each medium or pathway. Measured values are reported in terms of a mean and range. In addition, the number of measured values versus samples obtained is reported. For example, the following entry

15 (249/256) (4 - 35)

in the "All Indicator Locations" column would be interpreted as indicating a mean measured value of 15, with measured values ranging from 4 to 35. (249/256) means that out of 256 samples 249 were measured values.

TABLE I-1
PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

## SAMPLE STATION LOCATIONS

| SAMPLE MEDIA | STATION ID  | DIRECTION | APPROX. DISTANCE |
|--------------|-------------|-----------|------------------|
|              |             |           | (Miles)          |
| TLD          | C60         | N         | 0.88             |
|              | C61         | NNE       | 0.92             |
|              | C62         | NE        | 1.17             |
|              | C63         | ENE       | 0.87             |
|              | C64         | E         | 0.80             |
|              | C65         | ESE       | 0.33             |
|              | C66         | SE        | 0.36             |
|              | C67         | SSE       | 0.33             |
|              | C68         | S         | 0.27             |
|              | C69         | ssw       | 0.31             |
|              | C41         | sw        | 0.43             |
|              | C70         | wsw       | 0.74             |
|              | C71         | WNW       | 0.58             |
|              | C72         | NW        | 0.30             |
|              | C73         | NNW       | 0.74             |
|              | C27         | W         | 0.41             |
|              |             |           |                  |
|              | C18         | N         | 5.3              |
|              | C03         | NNE       | 4.89             |
|              | C04         | NE        | 5.95             |
|              | C74         | ENE       | 5.13             |
|              | C75         | Е         | 3.99             |
|              | C76         | ESE       | 5.61             |
|              | C08         | SE        | 5.66             |
|              | C77         | SSE       | 3.39             |
|              | C09         | S         | 3.23             |
|              | C78         | wsw       | 4.59             |
| ,            | C14G        | w         | 2.53             |
|              | C01         | NW        | 4.8              |
|              | C79         | NNW       | 4.97             |
|              | C47-Control | ESE       | 78               |
|              | C07*        | ESE       | 7.67             |
|              | C40*        | E         | 3.48             |
|              | C46*        | N         | 0.37             |

<sup>\*</sup>TLDs not required by ODCM. Deployed at air sample locations.

## TABLE I-1 (CONT'D)

## PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

## SAMPLE STATION LOCATIONS

| MPLE MEDIA            | STATION ID  | DIRECTION | DISTANCE (Miles) |
|-----------------------|-------------|-----------|------------------|
| AIR                   | C07         | ESE       | 7.7              |
|                       | C18         | N         | 5.3              |
|                       | C40         | E         | 3.5              |
|                       | C41         | sw        | 0.4              |
|                       | C46         | N         | 0.4              |
|                       | C47-Control | ESE       | 78               |
| SEAWATER              | С14Н        | NW        | 0.1              |
|                       | C14G        | W         | 2.5              |
|                       | C13-Control | wsw       | 4.6              |
| GROUND WATER          | C40-Control | Е         | 3.6              |
| DRINKING WATER        | C07-Control | ESE       | 7.4              |
|                       | C10-Control | ESE       | 6.0              |
|                       | C18-Control | N         | 5.3              |
| SHORELINE SEDIMENT    | C09-Control | S         | 3.2              |
|                       | C14H        | NW        | 0.1              |
|                       | C14M        | W         | 1.2              |
|                       | C14G        | W         | 2.5              |
| FISH & OYSTERS        | C29         | w         | 2.5              |
|                       | C30-Control | wsw       | 3.4              |
| BROAD LEAF VEGETATION | C48A        | N         | 0.4              |
|                       | C48B        | NNE       | 0.9              |
|                       | C47-Control | ESE       | 78               |
| WATERMELON            | C04         | NE        | 13               |
| CITRUS                | C19         | ENE       | 9.6              |

# TABLE I-2 PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

## SAMPLING AND ANALYSIS PROGRAM

| SAMPLE MEDIA      | # OF STATIONS | FREQUENCY  | ANALYSIS | ···       | LLD <sup>1</sup>        |
|-------------------|---------------|------------|----------|-----------|-------------------------|
| TLD               | 33*           | Quarterly  | γ Dose   |           |                         |
| Air Iodine        | 6             | Weekly     | I-131    |           | 0.07 pCi/m <sup>3</sup> |
| Air Particulate   | 6             | Weekly     | Gross B  |           | 0.01                    |
|                   |               | Quarterly  | γ Spec:  | Cs-134    | 0.05                    |
|                   |               |            |          | Cs-137    | 0.06                    |
| eawater           | 3             | Monthly    | Tritium  |           | 3000 pCi/L              |
|                   |               | Monthly    | γ Spec:  | Mn-54     | 15                      |
|                   |               |            |          | Fe-59     | 30                      |
|                   |               |            |          | Co-58     | 15                      |
|                   |               |            |          | Co-60     | 15                      |
|                   |               |            |          | Zn-65     | 30                      |
|                   |               |            |          | Zr-Nb-95  | 15                      |
|                   |               |            |          | I-131     | 1                       |
|                   |               |            |          | Cs-134    | 15                      |
|                   |               |            |          | Cs-137    | 18                      |
|                   |               |            |          | Ba-La-140 | 15                      |
| Fround Water      | 1             | Semiannual | Tritium  |           | 2000 pCi/L              |
|                   |               | Semiannual | γ Spec : | 2         | 2                       |
| rinking Water     | 3             | Quarterly  | Tritium  |           | 2000 pCi/L              |
|                   |               | Quarterly  | γ Spec : | 2         | 2                       |
| horeline Sediment | 4             | Semiannual | γ Spec : | Cs-134    | 150 pCi/kg              |
|                   |               |            |          | Cs-137    | 180                     |

<sup>\*</sup>Includes 3 stations which are not required by the ODCM

¹The maximum "a priori" LLD

²Same as Seawater γ Spec

³When available

⁴During harvest

⁵Same as broad leaf vegetation

## TABLE I-2 (Cont'd)

## PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

## SAMPLING AND ANALYSIS PROGRAM

| SAMPLE MEDIA          | # OF STATIONS | FREQUENCY            | ANALYSIS |        | LLD¹       |
|-----------------------|---------------|----------------------|----------|--------|------------|
|                       |               |                      |          |        |            |
| Carnivorous Fish      | 2             | Quarterly            | γ Spec : | Mn-54  | 130 pCi/kg |
| and Oysters           |               |                      |          | Fe-59  | 260        |
|                       |               |                      |          | Co-58  | 130        |
|                       |               |                      |          | Co-60  | 130        |
|                       |               |                      |          | Zn-65  | 260        |
|                       |               |                      |          | Cs-134 | 130        |
|                       |               |                      |          | Cs-137 | 150        |
|                       |               |                      |          |        |            |
| Broad Leaf Vegetation | 3             | Monthly <sup>3</sup> | γ Spec:  | I-131  | 60 pCi/kg  |
|                       |               |                      |          | Cs-134 | 60         |
|                       |               |                      |          | Cs-137 | 80         |
| Watermelon            | 1             | Annual <sup>4</sup>  | γ Spec : | 5      | 5          |
| Citrus                | 1             | Annual <sup>4</sup>  | γ Spec : | 5      | 5          |

<sup>&</sup>lt;sup>1</sup>The maximum "a priori" LLD
<sup>2</sup>Same as Seawater γ Spec
<sup>3</sup>When available
<sup>4</sup>During harvest
<sup>5</sup>Same as broad leaf vegetation

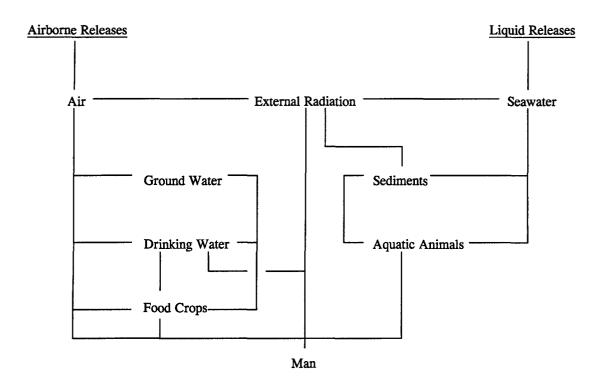



FIGURE I-1: Environmental Media and Exposure Pathways

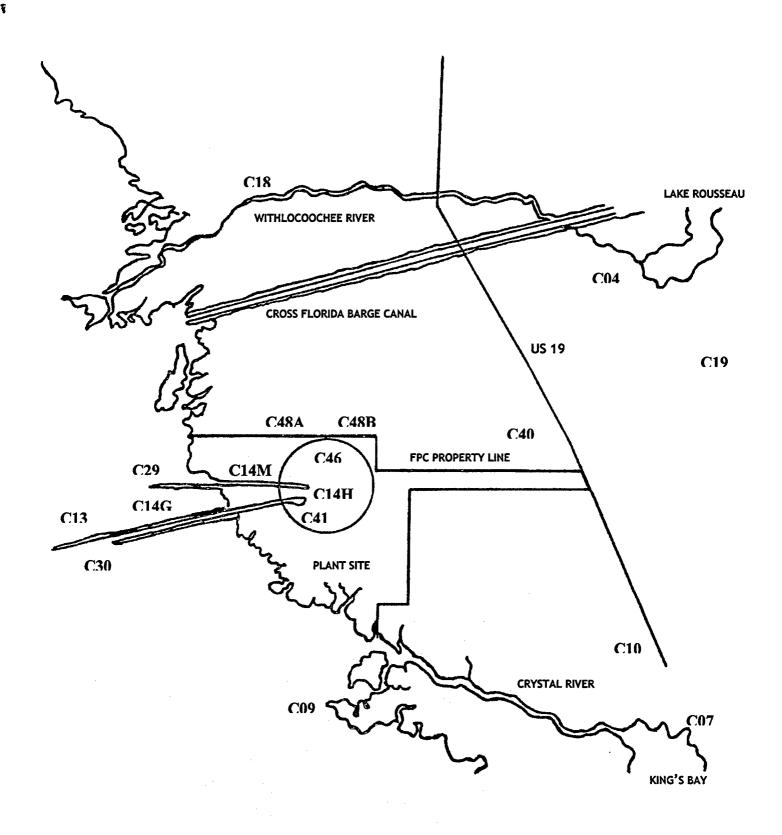



FIGURE I-2: Environmental Monitoring Sample Stations (non-TLDs)

C60

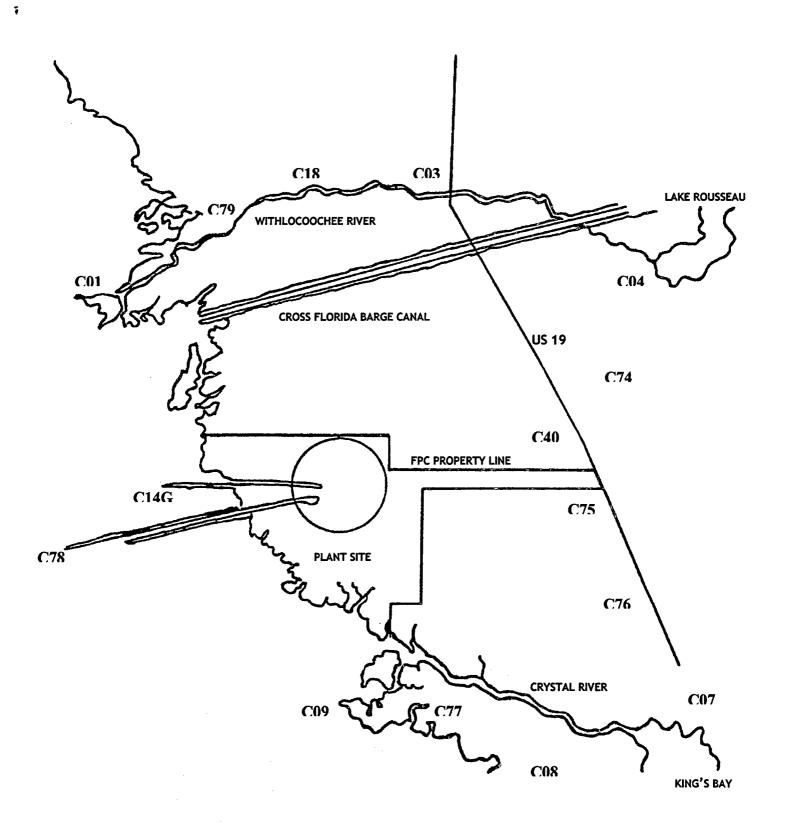



FIGURE I-4: Environmental Monitoring TLD Locations (off site)

#### II. LAND-USE CENSUS

A land-use census was conducted during July. The purpose of this census is to identify the nearest residences, vegetable gardens, and potential milk-producing animals within a five mile radius of the nuclear plant. The distance in miles and bearing in degrees for each receptor type in each of the sixteen sectors is summarized below.

|        | <b>,</b>             |                   |                        |
|--------|----------------------|-------------------|------------------------|
| SECTOR | NEAREST<br>RESIDENCE | NEAREST<br>GARDEN | NEAREST<br>MILK ANIMAL |
| N      | 4.46 @ 2°            | 4.77 @ 2°         | *                      |
| NNE    | 3.95 @ 15°           | 4.88 @ 17°        | *                      |
| NE     | 3.84 @ 54°           | *                 | *                      |
| ENE    | 3.43 @ 60°           | *                 | *                      |
| Е      | 2.40 @ 92°           | *                 | *                      |
| ESE    | 4.24 @ 102°          |                   | *                      |
| SE     | 4.90 @ 133°          | *                 | *                      |
| SSE    | 3.53 @ 149°          | *                 | *                      |
| s      | *                    | *                 | *                      |
| ssw    | *                    | *                 | *                      |
| sw     | *                    | *                 | *                      |
| wsw    | *                    | *                 | *                      |
| w      | *                    | * .               | *                      |
| WNW    | *                    | *                 | *                      |
| NW     | 4.77 @ 323°          | *                 | *                      |
| NNW    | 4.60 @ 339°          | *                 | *                      |

<sup>\*</sup> No suitable sites were located within 5 miles.

#### FLORIDA DEPARTMENT OF HEALTH - INTERLABORATORY COMPARISON PROGRAM DATA

The EPA crosscheck program ceased operation at the end of 1998. To meet the requirements for a crosscheck program, the Florida Department of Health participates in the Department of Energy's Mixed-Analyte Performance Evaluation Program (MAPEP).

The following units are used for each of the four media:

Air Filters:

Bq/sample

Soil:

Bq/Kg Bq/sample

Vegetation: Water:

Bq/L

Analytical performance is based on historical analytical capabilities for individual analyte/matrix pairs.

Acceptable performance is designated by an "A".

Acceptable with warning is designated by a "W".

Performance which is not acceptable is designated by an "N".

#### **Results for February 2005:**

| Media      | Nuclide    | Result | % Bias | Acceptance Range | Flag |
|------------|------------|--------|--------|------------------|------|
| Air        | Cs-134     | 2.94   | -16.2  | 2.6 - 4.56       | Α    |
| Air        | Cs-137     | 2.44   | 8.0    | 1.58 - 2.94      | Α    |
| Air        | Gross Beta | 0.35   | 17.8   | 0.15 - 0.45      | Α    |
| Soil       | Cs-134     | 763    | 0.5    | 531.30 - 986.70  | Α    |
| Soil       | Cs-137     | 368    | 16.8   | 220.50 - 409.50  | Α    |
| Vegetation | Cs-134     | 3.39   | -32.2  | 3.50 - 6.50      | Α    |
| Vegetation | Cs-137     | 4.00   | -27.0  | 2.88 - 5.34      | Α    |
| Water      | H-3        | 302.8  | 8.1    | 196.00 - 364.00  | Α    |
| Water      | Mn-54      | 334.2  | 1.0    | 231.70 - 430.30  | Α    |
| Water      | Co-60      | 251.9  | 0.4    | 175.70 - 326.30  | Α    |
| Water      | Zn-65      | 533.0  | 7.5    | 347.20 - 644.80  | Α    |
| Water      | Cs-134     | 114.7  | -9.7   | 88.90 - 165.10   | Α    |
| Water      | Cs-137     | 325.6  | -1.9   | 232.40 - 431.60  | Α    |

## Results for August 2005:

| Media      | Nuclide    | Result | % Bias | Acceptance Range | Flag |
|------------|------------|--------|--------|------------------|------|
| Air        | Cs-134     | 4.04   | 4.9    | 2.70 - 5.01      | A    |
| Air        | Cs-137     | 3.55   | 9.9    | 2.26 - 4.20      | Α    |
| Air        | Gross Beta | 0.95   | 14.9   | 0.55 - 1.22      | A    |
| Soil       | Cs-134     | 570    | 0.4    | 397.60 - 738.40  | A    |
| Soil       | Cs-137     | 499    | 13.7   | 307.30 - 570.70  | A    |
| Vegetation | Cs-134     | 3.75   | -8.31  | 2.86 - 5.32      | Α    |
| Vegetation | Cs-137     | 4.74   | -12.71 | 3.80 - 7.06      | A    |
| Water      | H-3        | 556.4  | 5.6    | 368.90 - 685.10  | A    |
| Water      | Mn-54      | 420.7  | 0.6    | 292.60 - 543.40  | Α    |
| Water      | Co-60      | 261.0  | 0.0    | 182.70 - 339.30  | Α    |
| Water      | Zn-65      | 351.5  | 6.5    | 231.00 - 429.00  | Α    |
| Water      | Cs-134     | 166.9  | -0.1   | 116.90 - 217.10  | Α    |
| Water      | Cs-137     | 326.4  | -2.0   | 233.10 - 432.90  | Α    |

#### IV-A. AIRBORNE PATHWAY

Air samples are taken at five locations in the vicinity of the plant. The control location is 78 miles ESE of the plant, at the State Bureau of Radiation Control in Orlando.

Table IV-A.1 provides a statistical summary of the analytical results for 311 gross beta samples and 312 iodine samples.

Tables IV-A.2 and IV-A.3 provide the results for each weekly air sample.

Three hundred and eleven particulate samples were analyzed for gross beta activity, all of which had measurable activity. The average indicator concentration was 17 pCi/1000 m³ with a range of 5 to 47 pCi/1000 m³. The average indicator concentration since 1996 was in the range of 15 to 17 pCi/1000 m³. The control location concentration for 2005 averaged 17 pCi/1000 m³, with a range of 8 to 43 pCi/1000 m³.

Three hundred and twelve samples were analyzed for iodine activity, with none having measurable activity.

Quarterly composite data are summarized in Table IV-A.4. Measurable quantities of cesium were not identified. The highest cesium LLD was 1.9 pCi/1000 m<sup>3</sup> for cesium 134.

The gross beta LLD of 0.01 pCi/m³ was not attained for air sample station C46 for the sample period ending June 14<sup>th</sup> due to a disconnected hose. Also, at station C46, there was a loss of about 6 hours of sample collection for the sample period ending November 11<sup>th</sup> due to pump failure.

TABLE IV-A.1

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA

JANUARY 1 TO DECEMBER 31, 2005

| MEDIUM OR<br>PATHWAY<br>SAMPLED<br>(UNITS) | ANALYSIS AND<br>TOTAL NUMBER<br>OF ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS MEAN RANGE                                            | LOCATION WITH HIGHE<br>NAME<br>DISTANCE & BEARING | ST MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|--------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|-----------------------------------|-----------------------------------------------------|
| AIRBORNE                                   | γ Spec 312                                               |                                                   |                                                                               |                                                   |                          |                                   |                                                     |
| IODINE                                     |                                                          |                                                   |                                                                               |                                                   |                          |                                   |                                                     |
| (pCi/m³)                                   | I-131                                                    | 0.012                                             | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
| AIRBORNE                                   | Gross 8 311                                              | 6.4                                               | 17 (259/260)                                                                  | C18                                               | 19 (52/52)               | 17 (52/52)                        | 0                                                   |
| PARTICULATES                               |                                                          |                                                   | (5–47)                                                                        | 5.2 @ 0°                                          | (7-44)                   | (8–43)                            |                                                     |
| (pCi/1000m <sup>3</sup> for                | γ Spec 24                                                |                                                   |                                                                               |                                                   |                          |                                   |                                                     |
| Gross B,                                   |                                                          |                                                   |                                                                               |                                                   |                          |                                   |                                                     |
| pCi/1000m3 for                             | Cs-134                                                   | 0.8                                               | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
| γ Spec)                                    |                                                          |                                                   |                                                                               |                                                   |                          |                                   |                                                     |
|                                            | Cs-137                                                   | 0.8                                               | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.

TABLE IV-A.2

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/m<sup>3</sup> IODINE - 131 IN AIR

| COLLECTION DATE | C07  | C18   | C40   | C41   | C46   | C47   |
|-----------------|------|-------|-------|-------|-------|-------|
| 01-04           | <.01 | <.01  | <.01  | <.01  | < .01 | < .01 |
| 01-11           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 01-18           | <.02 | < .02 | < .02 | <.02  | < .02 | <.02  |
| 01-25           | <.02 | <.02  | <.02  | <.02  | < .02 | < .02 |
|                 |      |       |       |       |       |       |
| 02-01           | <.02 | <.02  | <.02  | < .02 | < .02 | <.02  |
| 02-07           | <.02 | <.02  | <.02  | <.02  | < .02 | < .02 |
| 02-14           | <.02 | <.02  | < .02 | <.02  | < .02 | <.02  |
| 02-21           | <.02 | < .02 | < .02 | <.02  | <.02  | < .02 |
|                 |      |       |       |       |       |       |
| 03-01           | <.02 | <.02  | <.02  | <.02  | < .02 | <.02  |
| 03-07           | <.02 | < .02 | <.02  | <.02  | < .02 | < .02 |
| 03-14           | <.02 | < .02 | < .02 | <.02  | <.02  | < .02 |
| 03-21           | <.02 | <.02  | <.02  | < .02 | <.02  | <.02  |
| 03-28           | <.02 | <.02  | <.02  | < .02 | < .02 | <.02  |
|                 |      |       |       |       |       |       |
| 04-05           | <.03 | <.03  | <.03  | <.03  | < .03 | < .03 |
| 04-12           | <.02 | <.01  | <.01  | <.01  | < .02 | <.01  |
| 04-19           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 04-26           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |

TABLE IV-A.2 (Cont'd)
PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/m<sup>3</sup> IODINE - 131 IN AIR

| COLLECTION DATE | C07  | C18   | C40   | C41   | C46   | C47   |
|-----------------|------|-------|-------|-------|-------|-------|
| 05-03           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 05-10           | <.02 | <.02  | < .02 | < .02 | < .02 | <.02  |
| 05-17           | <.02 | < .02 | < .02 | <.02  | < .02 | <.02  |
| 05-23           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
|                 |      |       |       |       |       |       |
| 05-31           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 06-06           | <.03 | <.03  | < .03 | <.03  | < .03 | <.03  |
| 06-14           | <.02 | <.02  | < .02 | <.02  | < .02 | < .02 |
| 06-27           | <.02 | <.02  | <.02  | <.02  | < .02 | < .02 |
|                 |      |       |       |       |       |       |
| 07-05           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 07-12           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 07-19           | <.01 | <.01  | <.01  | <.01  | <.01  | < .01 |
| 07-26           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
|                 |      |       |       |       |       |       |
| 08-02           | <.02 | <.02  | <.02  | <.02  | <.02  | <.02  |
| 08-08           | <.02 | <.02  | <.02  | <.02  | <.02  | <.02  |
| 08-15           | <.02 | < .02 | <.02  | < .02 | < .02 | <.02  |
| 08-23           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 08-31           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
|                 |      |       |       |       |       |       |

TABLE IV-A.2 (Cont'd)

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/m<sup>3</sup> IODINE - 131 IN AIR

| COLLECTION DATE | C07  | C18   | C40   | C41   | C46   | C47   |
|-----------------|------|-------|-------|-------|-------|-------|
| 09-06           | <.02 | <.02  | <.02  | <.02  | <.02  | <.02  |
| 09-12           | <.02 | < .02 | <.02  | < .02 | < .02 | < .02 |
| 09-20           | <.01 | <.01  | <.01  | < .01 | <.01  | <.01  |
| 09-27           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 10-04           | <.01 | <.01  | <.01  | < .01 | <.01  | <.01  |
| 10-11           | <.01 | <.01  | <.01  | < .01 | <.01  | <.01  |
| 10-18           | <.01 | <.01  | <.01  | < .01 | <.01  | <.01  |
| 10-26           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 11-01           | <.01 | <.01  | <.01  | <.01  | < .01 | <.01  |
| 11-08           | <.01 | <.01  | <.01  | <.01  | <.01  | < .01 |
| 11-15           | <.01 | <.01  | <.01  | <.01  | <.01  | < .01 |
| 11-21           | <.02 | < .02 | < .02 | <.01  | < .02 | < .01 |
| 11-29           | <.02 | <.02  | <.02  | <.01  | <.02  | <.01  |
| 12-06           | <.01 | <.01  | <.01  | <.01  | <.01  | < .01 |
| 12-12           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 12-19           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |
| 12-27           | <.01 | <.01  | <.01  | <.01  | <.01  | <.01  |

TABLE IV-A.3

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/1000m³ GROSS ß IN AIR

| COLLECTION DATE | C07 | C18 | C40 | C41 | C46 | C47 |
|-----------------|-----|-----|-----|-----|-----|-----|
| 01-04           | 19  | 21  | 21  | 16  | 19  | 16  |
| 01-11           | 12  | 13  | 10  | 4   | 10  | 15  |
| 01-18           | 15  | 16  | 13  | 13  | 17  | 10  |
| 01-25           | 17  | 28  | 16  | 18  | 26  | 26  |
| 02-01           | 9   | 13  | 15  | 11  | 15  | 12  |
| 02-07           | 15  | 16  | 10  | 10  | 15  | 12  |
| 02-14           | 15  | 24  | 26  | 23  | 26  | 23  |
| 02-21           | 23  | 23  | 16  | 24  | 19  | 25  |
| 03-01           | 10  | 14  | 9   | 9   | 9   | 14  |
| 03-07           | 25  | 18  | 23  | 18  | 21  | 20  |
| 03-14           | 17  | 18  | 9   | 13  | 16  | 19  |
| 03-21           | 15  | 15  | 14  | 17  | 19  | 16  |
| 03-28           | 12  | 17  | 18  | 15  | 19  | 17  |
| 04-04           | 14  | 15  | 18  | 15  | 10  | 17  |
| 04-12           | 12  | 21  | 13  | 15  | 20  | 15  |
| 04-19           | 18  | 19  | 17  | 20  | 22  | 21  |
| 04-26           | 21  | 23  | 20  | 20  | 24  | 23  |
|                 |     |     |     |     |     |     |

TABLE IV-A.3 (Cont'd)

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/1000m³ GROSS B IN AIR

| COLLECTION DATE | C07 | C18 | C40 | C41 | C46 | C47 |
|-----------------|-----|-----|-----|-----|-----|-----|
| 05-03           | 17  | 19  | 15  | 14  | 18  | 17  |
| 05-10           | 14  | 14  | 13  | 16  | 12  | 17  |
| 05-17           | 17  | 22  | 15  | 18  | 16  | 21  |
| 05-23           | 15  | 15  | 5   | 16  | 18  | 10  |
| 05-31           | 15  | 22  | 15  | 16  | 16  | 17  |
| 06-06           | 11  | 9   | 13  | 10  | 10  | 12  |
| 06-14           | 10  | 9   | 9   | 10  |     | 10  |
| 06-20           | 11  | 14  | 17  | 17  | 18  | 15  |
| 06-27           | 11  | 8   | 10  | 10  | 10  | 9   |
| 07-05           | 11  | 10  | 6   | 7   | 7   | 4   |
| 07-12           | . 9 | 18  | 18  | 16  | 15  | 22  |
| 07-19           | 13  | 8   | 13  | 8   | 9   | 9   |
| 07-26           | 11  | 19  | 16  | 14  | 13  | 9   |
| 08-02           | 16  | 19  | 17  | 20  | 18  | 16  |
| 08-08           | 11  | 7   | 5   | 12  | 8   | 8   |
| 08-15           | 24  | 24  | 24  | 20  | 26  | 13  |
| 08-23           | 14  | 22  | 16  | 22  | 19  | 10  |
| 08-31           | 9   | 7   | 7   | 7   | 12  | 9   |

TABLE IV-A.3 (Cont'd)

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/1000m³ GROSS ß IN AIR

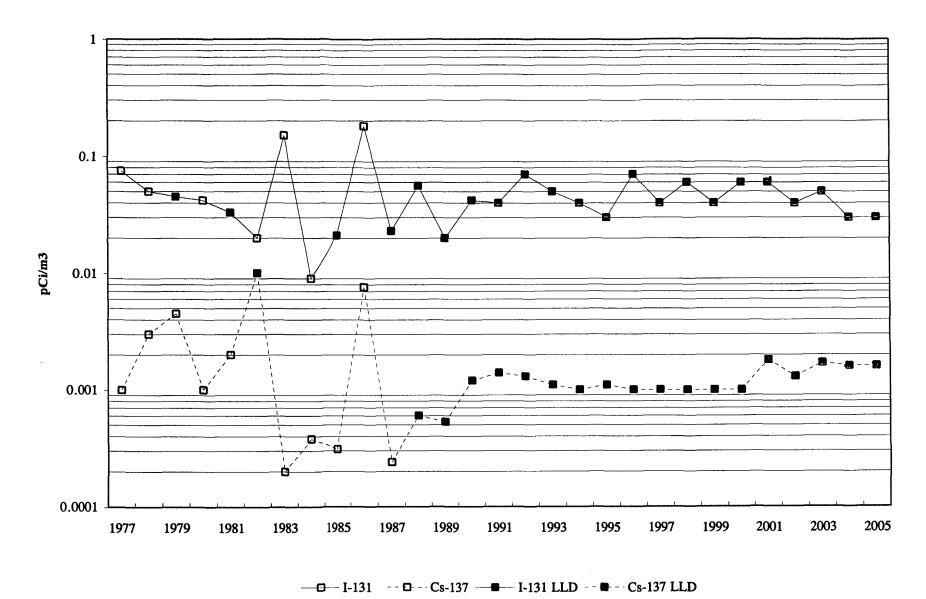

| COLLECTION DATE | C07  | C18 | C40 | C41 | C46 | C47 |
|-----------------|------|-----|-----|-----|-----|-----|
| 09-06           | 27   | 26  | 20  | 25  | 21  | 16  |
| 09-12           | 19   | 18  | 14  | 14  | 13  | 12  |
| 09-20           | 39   | 44  | 47  | 42  | 45  | 43  |
| 09-27           | 12   | 13  | 15  | 15  | 13  | 11  |
| 10-04           | 11   | 15  | 13  | 14  | 11  | 11  |
| 10-11           | 5    | 12  | 8   | 7   | 10  | 8   |
| 10-18           | 26   | 24  | 27  | 22  | 24  | 26  |
| 10-26           | 19   | 23  | 22  | 19  | 20  | 20  |
| 11-01           | 26   | 22  | 16  | 21  | 18  | 21  |
| 11-08           | 21   | 28  | 20  | 18  | 21  | 15  |
| 11-15           | 20   | 22  | 24  | 22  | 24  | 21  |
| 11-21           | 19   | 17  | 12  | 17  | 18  | 18  |
| 11-29           | 24   | 30  | 22  | 25  | 25  | 21  |
| 12-06           | 24   | 21  | 20  | 28  | 25  | 24  |
| 12-12           | 19   | 26  | 15  | 22  | 24  | 14  |
| 12-19           | · 15 | 15  | 21  | 14  | 19  | 12  |
| 12-27           | 30   | 30  | 29  | 28  | 23  | 34  |
|                 |      |     |     |     |     |     |

TABLE IV-A.4

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

pCi/1000m³ γ EMITTERS IN QUARTERLY COMPOSITES OF AIR PARTICULATES

| STATION | NUCLIDE | FIRST QUARTER | SECOND QUARTER | THIRD QUARTER | FOURTH QUARTER |
|---------|---------|---------------|----------------|---------------|----------------|
| C07     | Be-7    | 155           | 129            | 165           | 173            |
|         | K-40    | < 15          | <22            | <26           | <27            |
|         | Cs-134  | < 0.7         | <1.3           | <1.7          | <1.3           |
|         | Cs-137  | <0.7          | <1.2           | <1.5          | <1.0           |
| C18     | Ве-7    | 170           | 151            | 173           | 184            |
|         | K-40    | <22           | <26            | <20           | <33            |
|         | Cs-134  | < 0.9         | <1.2           | <1.1          | <1.9           |
|         | Cs-137  | <1.0          | <1.2           | <0.8          | <1.3           |
| C40     | Ве-7    | 174           | 141            | 144           | 137            |
|         | K-40    | <23           | <23            | < 18          | <20            |
|         | Cs-134  | <1.2          | <1.2           | <1.0          | <1.0           |
|         | Cs-137  | < 0.9         | <1.2           | <1.0          | <0.9           |
| C41     | Be-7    | 151           | 154            | 146           | 149            |
|         | K-40    | <23           | <24            | <31           | <28            |
|         | Cs-134  | <1.3          | < 1.6          | <1.1          | <1.5           |
|         | CS-137  | < 0.9         | <1.1           | <1.4          | <1.3           |
| C46     | Be-7    | 168           | 137            | 151           | 188            |
|         | K-40    | <21           | < 19           | <20           | <24            |
|         | Cs-134  | <1.7          | < 0.7          | < 0.9         | <1.0           |
|         | Cs-137  | < 1.6         | <1.2           | < 0.9         | <0.9           |
| C47     | Be-7    | 184           | 163            | 132           | 182            |
|         | K-40    | <20           | <25            | <5            | <29            |
|         | Cs-134  | <1.4          | <1.2           | < 0.7         | < 0.9          |
|         | Cs-137  | < 0.9         | < 1.0          | < 0.6         | <1.2           |



#### **IV-B. DIRECT RADIATION**

Direct radiation measurements (using TLDs) were taken at seventeen locations (stations C60 through C73 and station C27) within one mile of the plant, at fifteen locations ranging from 2.8 to 6.3 miles from the plant, and at one control location 78 miles from the site. One-hundred and thirty-two TLDS were collected during 2005.

The highest on-site dose was 107 mrem/yr at station C71 (WNW at 3600 feet). Station C71 was relocated in 1992 due to construction of the helper cooling towers on the former site. The new location has a higher background radiation level due to being closer to the storage pond for Units 4 & 5 fly ash, which produces a higher external radiation component than normal levels of natural background. The second highest on-site dose was 67 mrem/yr at station C65 (ESE at 1740 feet).

The highest off-site dose was 64 mrem/yr at station C40 (east at 3.5 miles). The control station (C47) dose was 49 mrem/yr. The average for all stations (except control) was 54 mrem/yr for 2005, 58 mrem/yr for 2004, and 58 mrem/yr for 2003. Direct radiation results are similar to previous years and show no change of significance.

TABLE IV-B

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

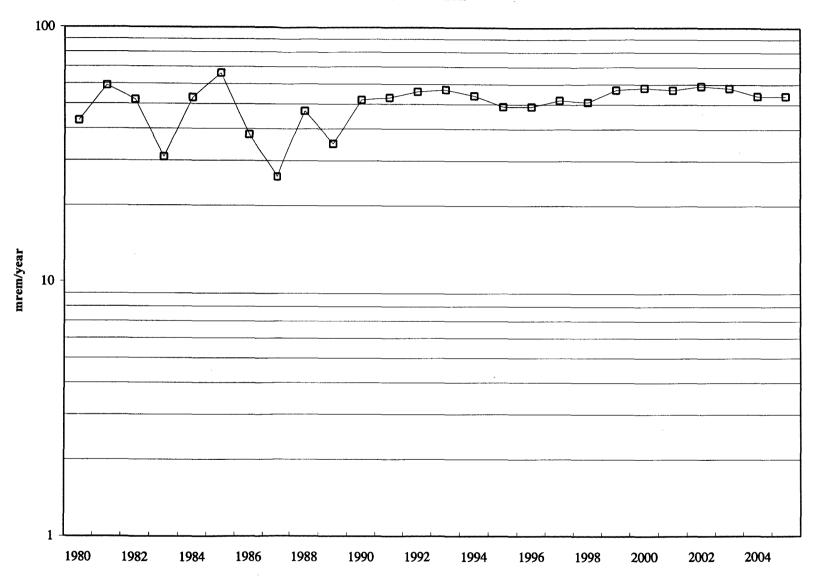
**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA JANUARY 1 TO DECEMBER 31, 2005

| MEDIUM OR<br>PATHWAY<br>SAMPLED<br>(UNITS) | ANALYSIS AND<br>TOTAL NUMBER<br>OF ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) | ALL INDICATOR LOCATIONS<br>MEAN<br>RANGE | MEAN NAME MEAN |            |           |   |  |
|--------------------------------------------|----------------------------------------------------------|--------------------------------------|------------------------------------------|----------------|------------|-----------|---|--|
| DIRECT                                     | γ DOSE 132                                               | . 15                                 | 54 (128/128)                             | C71            | 107 (4/4)  | 49 (4/4)  | 0 |  |
| RADIATION                                  |                                                          |                                      | (33 - 120)                               | 0.6 @ 296°     | (91 - 120) | (45 - 52) |   |  |
| (mrem/yr)                                  |                                                          |                                      |                                          |                |            |           |   |  |

**TABLE IV-B.1** PROGRESS ENERGY FLORIDA, INC. - CR-3 - 2005


mrem/yr γ Dose

| TLD STATION   | Quarter 1 | 2   | 3  | 4   |
|---------------|-----------|-----|----|-----|
| CO1           | 46        | 45  | 39 | 42  |
| CO3           | 46        | 43  | 39 | 45  |
| CO4           | 46        | 43  | 41 | 42  |
| CO7*          | 43        | 42  | 36 | 41  |
| CO8           | 46        | 44  | 38 | 42  |
| C09           | 45        | 45  | 38 | 43  |
| C14G          | 53        | 54  | 48 | 49  |
| C18           | 49        | 49  | 45 | 50  |
| C27           | 70        | 64  | 54 | 66  |
| C40*          | 60        | 59  | 52 | 61  |
| C41           | 57        | 56  | 49 | 54  |
| C46*          | 55        | 56  | 47 | 53  |
| C47 (CONTROL) | 51        | 51  | 45 | 52  |
| C60           | 59        | 55  | 49 | 56  |
| C61           | 60        | 57  | 49 | 57  |
| C62           | 63        | 60  | 57 | 62  |
| C63           | 57        | 56  | 51 | 61  |
| C64           | 59        | 58  | 53 | 54  |
| C65           | 70        | 70  | 62 | 67  |
| C66           | 63        | 64  | 50 | 55  |
| C67           | 56        | 56  | 50 | 57  |
| C68           | 60        | 57  | 53 | 58  |
| C69           | 59        | 65  | 55 | 66  |
| C70           | 63        | 59  | 53 | 60  |
| C71           | 120       | 109 | 91 | 109 |
| C72           | 62        | 62  | 60 | 64  |
| C73           | 52        | 53  | 50 | 54  |
| C74           | 41        | 43  | 41 | 41  |
| C75           | 52        | 53  | 49 | 52  |
| C76           | 49        | 51  | 45 | 49  |
| C77           | 39        | 39  | 33 | 39  |
| C78           | 44        | 46  | 41 | 40  |
| C79           | 49        | 49  | 45 | 48  |

\*TLDs not required by the ODCM.

Quarterly values are multiplied by 4 to obtain an equivalent yearly dose.

## **Direct Radiation**



#### IV-C. WATERBORNE PATHWAY

To evaluate the waterborne pathway, samples are taken of seawater, ground water, drinking water, and shoreline sediment.

Monthly seawater grab samples are taken at two locations in the discharge canal (C14G and C14H) and at one control location (C13) near the mouth of the intake canal. Of twenty-four indicator samples, eleven had measurable tritium at an average concentration of 1067pCi/L as compared to eight measurable samples with an average of 5294 pCi/L in 2004. The sample with the highest concentration of tritium, 7041 pCi/L, was obtained in October at station C14G near the mouth of the discharge canal. The seawater tritium activity is consistent with the concentration of tritium in the liquid waste stream and the release times of waste tanks. Two control station samples contained tritium at an average concentration of 135 pCi/L. The 2004 control station results averaged 104 pCi/L.

Gamma spectral analysis was performed on thirty-six samples, none of which showed measurable amounts of the gamma emitters of interest.

- 2. Semiannual ground water samples are taken at one location, station C40, located approximately 3.5 miles east of CR-3. Gamma spectral and tritium analyses are performed on both samples. All results were less than the detection limits. Since plant startup, all results, except for the results of one 1985 tritium analysis, have been less than LLD. The required sensitivity for measuring tritium in ground water is 2000 pCi/L. Analysis of ground water in the vicinity of CR-3 is done at a sensitivity of approximately 130 pCi/L for tritium and less than 10 pCi/L for select gamma emitters.
- 3. Quarterly drinking water samples are drawn from three locations: the Crystal River City Hall (C07), the Days Inn Motel (C10), and the Yankeetown City Well (C18). All samples were collected and analyzed for gamma emitters and tritium. None of the samples yielded measurable activities of tritium or the required gamma emitters. The measurement sensitivity for drinking water samples are the same as those for ground water samples.
- 4. Semiannual shoreline sediment samples are taken at three indicator locations in the discharge canal (C14H, C14M, C14G) and one control location (C09) at Fort Island Gulf Beach. Of the six indicator samples, two had measurable amounts of cesium-137. Cobalt-60 was not detected in 2005 samples (The average cobalt-60 concentration at the indicator locations ranged from 30 to 389 pCi/L from 1998 through 2004). The average cesium-137 concentration at the indicator locations was 38 pCi/L. These results are similar to previous years' results. None of the samples taken at Fort Island Gulf Beach, the control location, indicated measurable amounts of cobalt or cesium.

TABLE IV-C.1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

**CRYSTAL RIVER UNIT 3** 

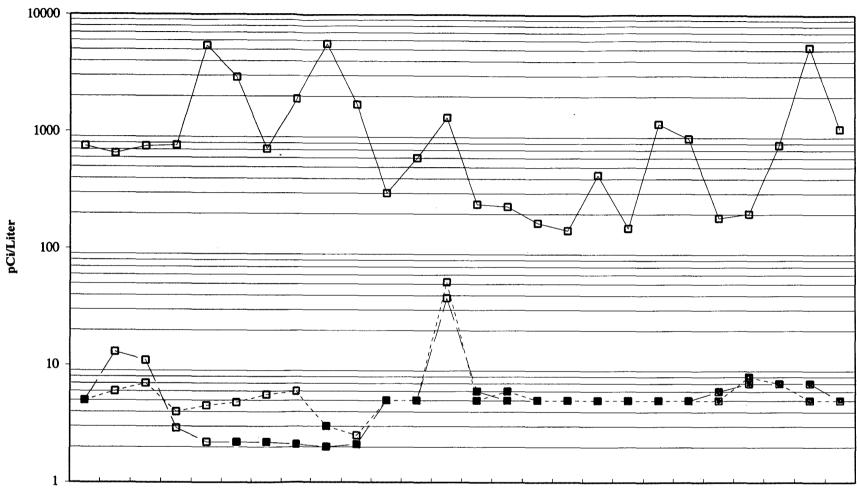
**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA

JANUARY 1 TO DECEMBER 31, 2005

| MEDIUM OR<br>PATHWAY<br>SAMPLED<br>(UNITS) | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS MEAN RANGE                                            | LOCATION WITH H<br>NAME<br>DISTANCE & BEAR | MEAN                      | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |  |
|--------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|---------------------------|-----------------------------------|-----------------------------------------------------|--|
| SEAWATER<br>(pCi/L)                        | Tritium 36<br>γ Spec 36                                  | 131                                               | 1067 (11/24)<br>(79-7041)                                                     | C14G<br>2.5 @ 270°                         | 1617 (7/12)<br>(181-7041) | 135 (2/12)                        | 0                                                   |  |
|                                            | Mn-54                                                    | 3                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Fe-59                                                    | 6                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Co-58                                                    | 3                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Co-60                                                    | 4                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Zn-65                                                    | 7                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Zr-Nb-95                                                 | 6                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | I-131                                                    | 4                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Cs-134                                                   | 4                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Cs-137                                                   | 4                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |
|                                            | Ba-La-140                                                | 9                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                          | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |  |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.


TABLE IV-C.1.a  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/L\ \gamma\ EMITTERS\ AND\ TRITIUM\ IN\ SEAWATER$ 

| STATION | MONTH | Н-3               | K-40            | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Zr-Nb-95 | I-131 | Cs-134 | Cs-137 | Ba-La-140 |
|---------|-------|-------------------|-----------------|-------|-------|-------|-------|-------|----------|-------|--------|--------|-----------|
| C13     | JAN   | < 126             | 207 <u>+</u> 28 | <3    | <3    | <7    | <4    | <7    | <6       | <4    | <4     | <3     | <7        |
|         | FEB   | < 127             | 281 <u>+</u> 30 | <4    | <4    | <9    | <5    | < 10  | <8       | <4    | <4     | <5     | <6        |
|         | MAR   | 159 <u>+</u> 26   | 239 <u>+</u> 33 | <5    | <4    | <8    | <6    | <9    | <7       | <4    | <4     | <4     | <8        |
|         | APR   | <136              | 194 <u>+</u> 32 | <4    | <4    | <8    | <5    | <8    | <7       | <5    | <5     | <5     | < 10      |
|         | MAY   | <136              | 250 <u>+</u> 34 | <4    | <4    | <7    | <4    | <9    | <6       | <4    | <5     | <5     | < 15      |
|         | JUN   | < 145             | 252 <u>+</u> 32 | <3    | <3    | <6    | <4    | <8    | <6       | <4    | <3     | <4     | <9        |
|         | JUL   | < 132             | 255 <u>+</u> 32 | <3    | <3    | <8    | <4    | <7    | <5       | <4    | <3     | <4     | <6        |
|         | AUG   | < 148             | 304 <u>+</u> 29 | <3    | <3    | <7    | <4    | <7    | <5       | <3    | <4     | <4     | <11       |
|         | SEP   | 111 <u>+</u> 7    | 161 <u>+</u> 37 | <3    | <3    | <9    | < 5   | < 10  | <7       | <5    | <5     | <4     | < 10      |
|         | OCT   | < 146             | 282 <u>+</u> 25 | <3    | <2    | < 5   | < 3   | <6    | <4       | <3    | <3     | <3     | <5        |
|         | NOV   | < 157             | 271 <u>+</u> 36 | <4    | < 3   | <8    | <4    | < 10  | <7       | <4    | <5     | <4     | < 10      |
|         | DEC   | <149              | 230 <u>+</u> 27 | <3    | <3    | <7    | <4    | <8    | <6       | <4    | <4     | <4     | <8        |
| C14G    | JAN   | < 126             | 220 <u>+</u> 29 | <3    | <3    | <6    | <4    | <7    | <6       | <3    | <4     | <3     | <6        |
|         | FEB   | <127              | 265 <u>+</u> 31 | <3    | <3    | <7    | <5    | <8    | <6       | <4    | <4     | <4     | <8        |
|         | MAR   | 197 <u>+</u> 27   | 219 <u>+</u> 21 | <3    | <2    | <5    | <3    | <6    | <4       | < 3   | <3     | <3     | <5        |
|         | APR   | <136              | 202 <u>+</u> 30 | <5    | <3    | <8    | <5    | <8    | <7       | < 5   | <4     | <5     | <7        |
|         | MAY   | 2116 <u>+</u> 46  | 215 <u>+</u> 27 | <4    | <3    | <6    | <3    | <7    | <6       | <4    | <4     | <4     | < 10      |
|         | JUN   | 854 <u>+</u> 34   | 215 <u>+</u> 30 | <4    | <3    | <6    | <4    | <8    | <5       | <3    | <4     | <3     | < 13      |
|         | JUL   | < 132             | 269 <u>+</u> 27 | <3    | <4    | <7    | <4    | <7    | <6       | <4    | <3     | <3     | <5        |
|         | AUG   | 520 <u>+</u> 32   | 266 <u>+</u> 30 | <4    | <3    | <6    | <4    | <7    | <5       | <4    | <3     | <3     | <10       |
|         | SEP   | 413 <u>+</u> 32   | 189 <u>+</u> 31 | <3    | <3    | <6    | <4    | <8    | <6       | <4    | <4     | <3     | <8        |
|         | OCT   | 7041 <u>+</u> 132 | 292 <u>+</u> 29 | <3    | <3    | <8    | <4    | <8    | <6       | <6    | <4     | <4     | <4        |
|         | NOV   | 181 <u>+</u> 52   | 380 <u>+</u> 33 | <3    | <3    | <7    | <3    | <8    | <6       | <4    | <4     | <3     | <7        |
|         | DEC   | < 149             | 243 <u>+</u> 30 | <4    | <4    | <7    | <4    | <7    | <6       | <4    | <4     | <3     | <9        |

TABLE IV-C.1a (CONT'D)  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/L\ \gamma\ EMITTERS\ AND\ TRITIUM\ IN\ SEAWATER$ 

| STATION  | MONTH | H-3             | K-40            | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Zr-Nb-95 | I-131 | Cs-134 | Cs-137 | Ba-La-140 |
|----------|-------|-----------------|-----------------|-------|-------|-------|-------|-------|----------|-------|--------|--------|-----------|
| C14H JAN | JAN   | 79 <u>+</u> 23  | 243 <u>+</u> 20 | <2    | <2    | <5    | <3    | <6    | <4       | <3    | <3     | <3     | <6        |
|          | FEB   | < 127           | 247 <u>+</u> 35 | < 3   | < 3   | <6    | <4    | <9    | <6       | <4    | <4     | <3     | < 10      |
|          | MAR   | < 135           | 256 <u>+</u> 21 | <2    | <3    | < 5   | <3    | < 5   | <5       | <3    | <3     | <3     | <5        |
|          | APR   | 91 <u>+</u> 26  | 187 <u>+</u> 28 | <2    | <3    | <8    | <4    | <7    | <6       | < 5   | <4     | <4     | <5        |
|          | MAY   | < 136           | 228 <u>+</u> 28 | <3    | <3    | <7    | <4    | < 8   | <5       | <4    | <4     | <3     | < 12      |
|          | JUN   | < 145           | 276 <u>+</u> 30 | <3    | <3    | <7    | <3    | <7    | <6       | <4    | <3     | <3     | <11       |
|          | JUL   | < 137           | 278 <u>+</u> 32 | <3    | <4    | <7    | <4    | <7    | <7       | <4    | <3     | <4     | <9        |
|          | AUG   | < 148           | 262 <u>+</u> 29 | <3    | <3    | <8    | <4    | <6    | <6       | <3    | <3     | <4     | <11       |
|          | SEP   | 153 <u>+</u> 27 | 224 <u>+</u> 27 | <4    | <4    | <6    | <4    | <7    | <5       | <4    | <4     | <3     | <7        |
|          | OCT   | 88 <u>+</u> 46  | 256 <u>+</u> 32 | <3    | <3    | <8    | <4    | <6    | <6       | <6    | < 5    | <3     | <6        |
|          | NOV   | < 157           | 288 <u>+</u> 34 | <3    | <3    | <7    | <4    | <7    | <6       | <4    | <4     | <3     | <7        |
|          | DEC   | < 149           | 262 <u>+</u> 32 | <3    | <4    | <8    | <4    | <9    | <6       | <4    | <3     | <3     | <7        |

#### Seawater



1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

**TABLE IV-C.2** 

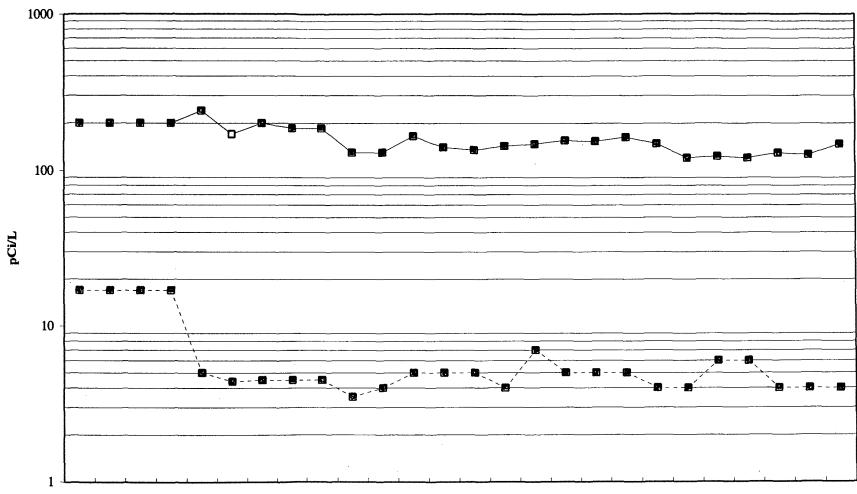
**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA

| MEDIUM OR<br>PATHWAY<br>SAMPLED<br>(UNITS) | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS MEAN RANGE | LOCATION WITH HIGHES<br>NAME<br>DISTANCE & BEARING | T MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|--------------------------------------------|----------------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------------------|-------------------------|-----------------------------------|-----------------------------------------------------|
| GROUND<br>WATER                            | Tritium 2                                                | 131                                               | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
| (pCi/L)                                    | γ Spec 2                                                 |                                                   |                                    |                                                    |                         |                                   |                                                     |
|                                            | Mn-54                                                    | 3                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Fe-59                                                    | 6                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Co-58                                                    | .3                                                | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Co-60                                                    | 4                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Zn-65                                                    | 7                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Zr-Nb-95                                                 | 6                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | I-131                                                    | 4                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Cs-134                                                   | 4                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Cs-137                                                   | 4                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Ba-La-140                                                | 9                                                 | None                               | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.


TABLE IV-C.2.a

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

# pCi/L $\gamma$ EMITTERS AND TRITIUM IN GROUND WATER

| STATION | NUCLIDE   | FIRST HALF     | SECOND HALF |
|---------|-----------|----------------|-------------|
| C40     | Н-3       | < 126          | < 147       |
|         | Mn-54     | <3             | <5          |
|         | Fe-59     | <5             | <8          |
|         | Co-58     | <3             | <5          |
|         | Co-60     | <2             | <5          |
|         | Zn-65     | <7             | <9          |
| *       | Zr-Nb-95  | <4             | <7          |
|         | I-131     | <3             | <5          |
|         | Cs-134    | <3             | <5          |
|         | Cs-137    | <3             | <4          |
|         | Ba-La-140 | < 10           | <15         |
|         | · K-40    | 47 <u>+</u> 18 | <60         |

# **Ground Water**



1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

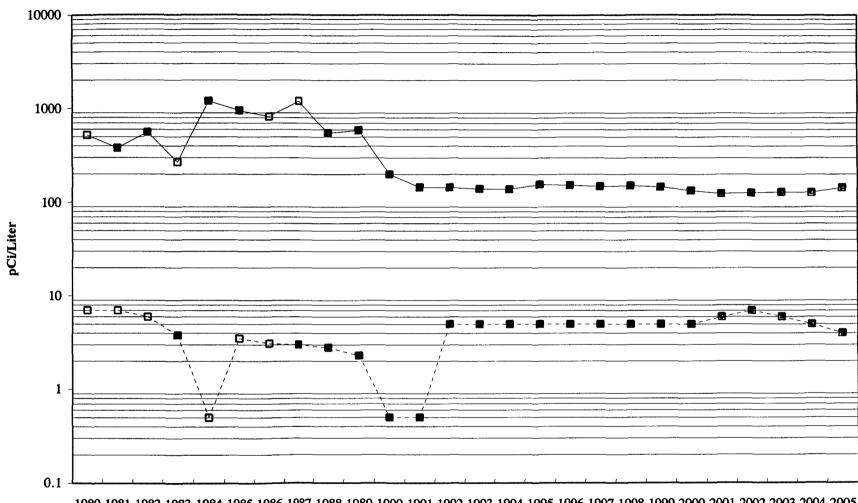
TABLE IV-C.3

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA


| MEDIUM OR<br>PATHWAY<br>SAMPLED<br>(UNITS) | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS<br>MEAN<br>RANGE | LOCATION WITH HIGHE<br>NAME<br>DISTANCE & BEARING | ST MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|--------------------------------------------|----------------------------------------------------------|---------------------------------------------------|------------------------------------------|---------------------------------------------------|--------------------------|-----------------------------------|-----------------------------------------------------|
| DRINKING                                   | Tritium 12                                               | 131                                               | None                                     | _                                                 | _                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
| WATER                                      |                                                          |                                                   | 1.020                                    |                                                   |                          |                                   | · ·                                                 |
| (pCi/L)                                    | γ Spec 12                                                |                                                   |                                          |                                                   |                          |                                   |                                                     |
|                                            | Mn-54                                                    | 3                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Fe-59                                                    | 6                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Co-58                                                    | 3                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Co-60                                                    | 4                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Zn-65                                                    | 7                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Zr-Nb-95                                                 | 6                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | I-131                                                    | 4                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Cs-134                                                   | 4                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Cs-137                                                   | 4                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Ba-La-140                                                | 9                                                 | None                                     | -                                                 | -                        | <lld< td=""><td>0</td></lld<>     | 0                                                   |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.

TABLE IV-C.3.a  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/L\ \gamma\ EMITTERS\ AND\ TRITIUM\ IN\ DRINKING\ WATER$ 

| STATION | DATE  | Н-3   | K-40 | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Zn-Nb-95 | I-131 | Cs-134 | Cs-137 | Ba-La-140 |
|---------|-------|-------|------|-------|-------|-------|-------|-------|----------|-------|--------|--------|-----------|
| C07     | 01-05 | < 124 | <57  | <4    | <4    | <7    | <4    | <8    | <7       | <4    | <4     | <4     | <11       |
|         | 04-12 | < 136 | <37  | < 3   | <2    | < 5   | <2    | < 5   | <4       | <2    | <3     | <3     | <6        |
|         | 07-05 | < 132 | <62  | <4    | <4    | <7    | <4    | <6    | <6       | <4    | <4     | <4     | <8        |
|         | 10-11 | < 144 | < 56 | <4    | <3    | <7    | <4    | <8    | <5       | <3    | <4     | <4     | <13       |
| C10     | 01-05 | < 124 | <40  | <2    | <2    | <5    | <3    | <5    | <5       | <3    | <3     | <3     | <7        |
|         | 04-12 | < 136 | <60  | <3    | <3    | <8    | <4    | <7    | <5       | <3    | <4     | <4     | < 13      |
|         | 07-05 | < 132 | <76  | <5    | <3    | <9    | <4    | <9    | <7       | <4    | <5     | <4     | <9        |
|         | 10-11 | < 144 | <46  | <3    | <2    | <7    | <4    | <7    | <5       | <3    | <3     | <3     | <10       |
| C18     | 01-05 | < 124 | <36  | <2    | <2    | <5    | <2    | <5    | <4       | <3    | <3     | <2     | <6        |
|         | 04-12 | < 136 | < 56 | <4    | <4    | <7    | <5    | <8    | <7       | <4    | <4     | <4     | <12       |
|         | 07-05 | < 132 | <24  | <1    | <1    | <3    | <2    | <3    | <2       | <2    | <2     | <2     | <3        |
|         | 10-11 | < 144 | <38  | <2    | <2    | <4    | <3    | <5    | <4       | <2    | <2     | <3     | <7        |

# **Drinking Water**



1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005



**TABLE IV-C.4** 

# **CRYSTAL RIVER UNIT 3**

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA

| MEDIUM OR PATHWAY SAMPLED (UNITS) | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS  MEAN RANGE                                          | LOCATION WITH HIGHE<br>NAME<br>DISTANCE & BEARING | ST MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|-----------------------------------|----------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|-----------------------------------|-----------------------------------------------------|
| SHORELINE<br>SEDIMENT             | γ Spec 8                                                 |                                                   |                                                                              |                                                   |                          |                                   |                                                     |
| (pCi/kg)                          | Cs-134                                                   | 7                                                 | <lld< td=""><td>_</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<> | _                                                 |                          | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Cs-137                                                   | 7                                                 | 38 (2/6)                                                                     | C14M                                              | 38 (2/2)                 | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   |                                                          |                                                   | (33-43)                                                                      | 1.2 @ 276°                                        |                          |                                   |                                                     |

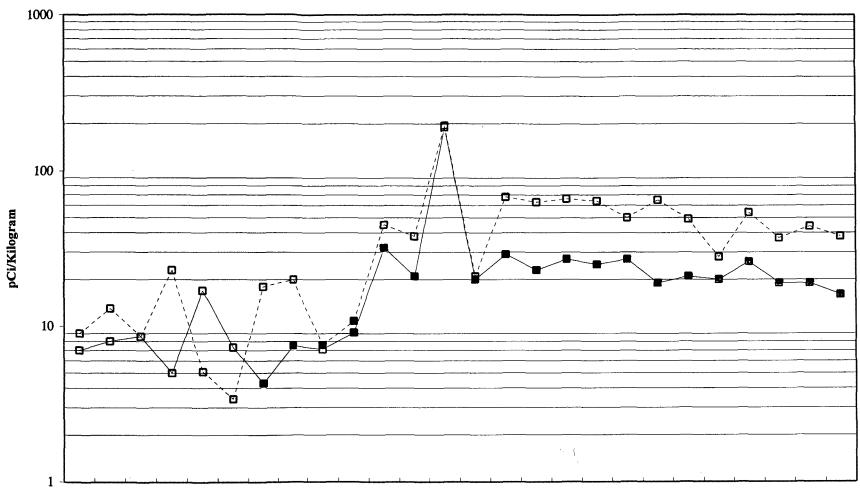

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.

TABLE IV-C.4.a  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/kg\ \gamma\ EMITTERS\ IN\ SHORELINE\ SEDIMENT$ 

| STATION | PERIOD      | Co-58 | Co-60 | Cs-134 | Cs-137        | K-40             | Ra-226           |
|---------|-------------|-------|-------|--------|---------------|------------------|------------------|
| C09     | First Half  | <13   | <11   | < 18   | <16           | 1074 <u>+</u> 81 | 667 <u>+</u> 20  |
|         | Second Half | <11   | <13   | <15    | <11           | 590 <u>+</u> 98  | 416 <u>+</u> 13  |
| C14H    | First Half  | <8    | <9    | <11    | <11           | 1472 <u>+</u> 63 | 1489 <u>+</u> 29 |
|         | Second Half | <10   | <15   | <12    | <16           | 1550 <u>+</u> 91 | 909 <u>+</u> 30  |
| C14M    | First Half  | <13   | <19   | <15    | 43 <u>+</u> 6 | 1303 <u>+</u> 94 | 901 <u>+</u> 23  |
|         | Second Half | < 12  | <20   | <16    | 33 <u>+</u> 8 | 935 <u>+</u> 101 | 1060 <u>+</u> 20 |
| C14G    | First Half  | <7    | <7    | <8     | <7            | 156 <u>+</u> 54  | 985 <u>+</u> 10  |
|         | Second Half | <11   | <11   | < 12   | <13           | 391 <u>+</u> 59  | 1036 <u>+</u> 30 |

C09 is the control station at Ft. Island Beach. C14H, C14M, & C14G are discharge canal stations.

# **Shoreline Sediment**



1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

#### IV-D. INGESTION PATHWAY

To evaluate the ingestion pathway, samples are taken of fish, oysters, broad leaf vegetation, citrus, and watermelon.

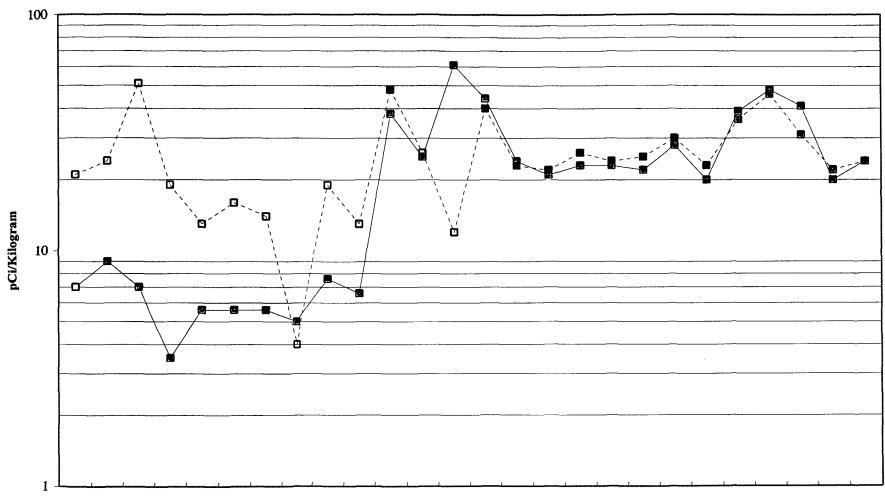
- 1. Quarterly carnivorous fish samples were taken at two locations: C29 at the end of the discharge canal, and C30, the control location near the mouth of the intake canal. None of the required radionuclides were found in measurable quantities. The highest cesium-137 LLD for station C29 was 31 pCi/kg. Naturally occurring potassium-40 was quantified in all eight samples at concentrations near 3000 pCi/kg.
- 2. Quarterly oyster samples were taken at the same locations as fish samples, C29 and C30. Of the isotopes required to be evaluated, none indicated measurable amounts of radioactivity. However, silver-110m was quantified in one sample at C29, with a concentration of 758 pCi/kg.
- 3. Monthly broad leaf vegetation samples were taken at two indicator locations, C48A and C48B, and one control location, C47. Three of twenty-four indicator samples had measurable amounts of cesium-137 with an average concentration of 22 pCi/kg and a range of 13 to 30 pCi/kg. This is similar to recent years results. Eight of twelve control station samples had measurable amounts of cesium-137 with an average of 72 pCi/kg and a range of 21 to 177 pCi/kg.
- 4. Citrus samples are taken at station C19 and watermelon samples were obtained at station C04. None of the required radionuclides were found in measurable quantities in watermelon, but Cs-137 was quantified at 51 pCi/kg in the citrus sample.

TABLE IV-D.1

**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA


| MEDIUM OR<br>PATHWAY<br>SAMPLED<br>(UNITS) | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS MEAN RANGE                                            | LOCATION WITH HIGHES NAME DISTANCE & BEARING | T MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|--------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|-------------------------|-----------------------------------|-----------------------------------------------------|
| CARNIVOROUS                                | γ Spec 8                                                 |                                                   |                                                                               |                                              |                         |                                   |                                                     |
| FISH                                       |                                                          |                                                   |                                                                               |                                              |                         |                                   |                                                     |
| (pCi/kg)                                   | Mn-54                                                    | 16                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Fe-59                                                    | 28                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Co-58                                                    | 15                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Co-60                                                    | 16                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Zn-65                                                    | 32                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Cs-134                                                   | 16                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                            | Cs-137                                                   | 18                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                            | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.

TABLE IV-D.1.a  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/kg\ \gamma\ EMITTERS\ IN\ CARNIVOROUS\ FISH$ 

| STATION | QUARTER | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Cs-134 | Cs-137 | K-40              |
|---------|---------|-------|-------|-------|-------|-------|--------|--------|-------------------|
| C29     | . 1     | <20   | < 19  | <53   | <25   | <30   | <24    | <20    | 2552 <u>+</u> 201 |
| 4       | 2       | <13   | < 14  | <23   | < 16  | <33   | < 15   | < 13   | 2634 <u>+</u> 144 |
|         | 3       | < 12  | < 10  | <23   | <14   | <26   | < 12   | < 12   | 2534 <u>+</u> 132 |
|         | 4       | <14   | <15   | <41   | <26   | <38   | <22    | <24    | 2591 <u>+</u> 193 |
| C30     | 1       | <40   | <33   | <74   | <42   | <61   | <34    | < 38   | 2336 <u>+</u> 294 |
|         | 2       | <20   | < 19  | <38   | <23   | < 52  | <22    | <21    | 2784 <u>+</u> 199 |
|         | 3       | <26   | <22   | <41   | <29   | < 50  | < 26   | <28    | 2725 <u>+</u> 209 |
|         | 4       | < 19  | < 19  | <37   | <25   | <41   | <22    | < 18   | 2510 <u>+</u> 215 |

# Carnivorous Fish



1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

**TABLE IV-D.2** 

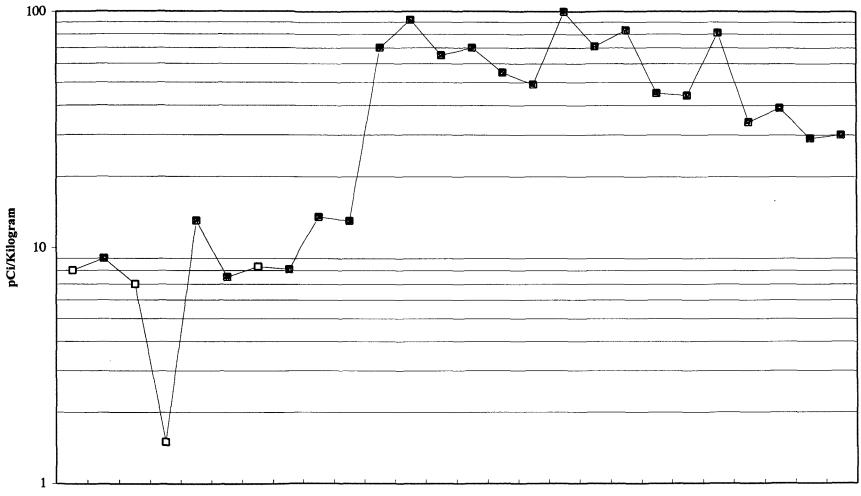
**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA

| MEDIUM OR PATHWAY SAMPLED (UNITS) | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS MEAN RANGE                                            | LOCATION WITH HIGHES<br>NAME<br>DISTANCE & BEARING | T MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|-----------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|-----------------------------------|-----------------------------------------------------|
| OYSTERS                           | γ Spec 8                                                 |                                                   |                                                                               |                                                    |                         |                                   |                                                     |
| (pCi/kg)                          |                                                          |                                                   |                                                                               |                                                    |                         |                                   |                                                     |
|                                   | Mn-54                                                    | 16                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Fe-59                                                    | 28                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Co-58                                                    | 15                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Co-60                                                    | 16                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Zn-65                                                    | 32                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Cs-134                                                   | 16                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                   | Cs-137                                                   | 18                                                | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                  | -                       | <lld< td=""><td>0</td></lld<>     | 0                                                   |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.


TABLE IV-D.2.a

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

| STATION | QUARTER | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Cs-134 | Cs-137 | K-40              |
|---------|---------|-------|-------|-------|-------|-------|--------|--------|-------------------|
| C29     | . 1     | <6    | <6    | <13   | <7    | <14   | <6     | <6     | 1052 <u>+</u> 57  |
|         | 2       | <11   | <11   | <25   | < 13  | <24   | <13    | < 14   | 816 <u>+</u> 97   |
|         | 3       | < 12  | < 12  | <24   | < 14  | <30   | < 14   | < 13   | 662 <u>+</u> 97   |
|         | 4       | <23   | <20   | <39   | <25   | <46   | <26    | < 30   | 1421 <u>+</u> 121 |
| C30     | 1       | <6    | <6    | <14   | <7    | <14   | <7     | <6     | 1612 <u>+</u> 70  |
|         | 2       | <9    | <9    | <22   | <10   | <23   | < 10   | < 10   | 1024 <u>+</u> 90  |
|         | 3       | <16   | < 19  | <40   | < 17  | <43   | < 19   | < 16   | 982 <u>+</u> 131  |
|         | 4       | <21   | <21   | <44   | <22   | <47   | <19    | <21    | 1356 <u>+</u> 134 |

Ag-110m was quantified in one sample taken at station C29, near the end of the discharge canal. The concentration was 758 pCi/Kg (November 2<sup>nd</sup>)





1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

—□— Cs-137 —— Cs-137 LLD

TABLE IV-D.3

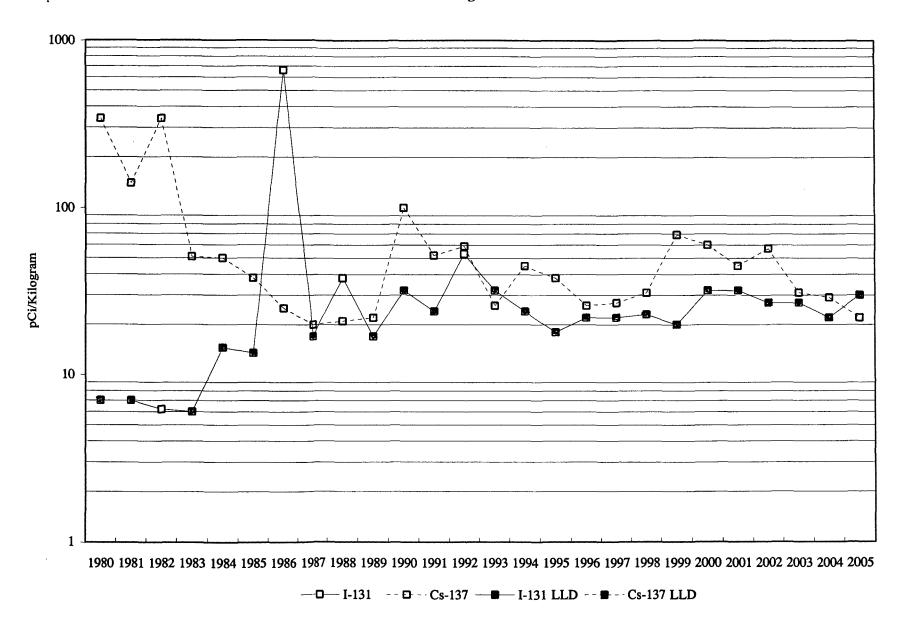
**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA JANUARY 1 TO DECEMBER 31, 2005

| MEDIUM OR<br>PATHWAY<br>SAMPLED (UNITS) | ANALYSIS AND<br>TOTAL NUMBER<br>OF ANALYSES<br>PERFORMED | LOWER LIMIT<br>OF DETECTION<br>(LLD) <sup>1</sup> | ALL INDICATOR LOCATIONS MEAN RANGE                                            | LOCATION WITH HIGHE<br>NAME<br>DISTANCE & BEARING | EST MEAN<br>MEAN<br>RANGE | CONTROL LOCATION<br>MEAN<br>RANGE | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
|-----------------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|-----------------------------------|-----------------------------------------------------|
| BROAD LEAF                              |                                                          |                                                   |                                                                               |                                                   |                           |                                   |                                                     |
| VEGETATION                              | γ Spec 36                                                |                                                   |                                                                               |                                                   |                           |                                   |                                                     |
| (pCi/kg)                                |                                                          |                                                   |                                                                               |                                                   |                           |                                   |                                                     |
|                                         | I-131                                                    | 8                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                 | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                         | Cs-134                                                   | 8                                                 | <lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<> | -                                                 | -                         | <lld< td=""><td>0</td></lld<>     | 0                                                   |
|                                         | Cs-137                                                   | 8                                                 | 22 (3/24)<br>(13- 30)                                                         | C48A<br>0.4 @ 0°                                  | 24 (2/12)                 | 77 (8/12)<br>(21-177)             | 0                                                   |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.


TABLE IV-D.3.a  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/kg\ OF\ \gamma\ EMITTERS\ IN\ BROAD\ LEAF\ VEGETATION$ 

| STATION  | MONTH | I-131 | Cs-134 | Cs-137          | K-40              |
|----------|-------|-------|--------|-----------------|-------------------|
| C47      | JAN   | < 12  | <12    | <17             | 2766 <u>+</u> 149 |
|          | FEB   | < 14  | < 19   | 96 <u>+</u> 8   | 2560 <u>+</u> 171 |
|          | MAR   | < 14  | < 14   | 131 <u>+</u> 13 | 3172 <u>+</u> 150 |
|          | APR   | < 10  | <6     | 21 <u>+</u> 3   | 3746 <u>+</u> 78  |
| <b>,</b> | MAY   | < 10  | < 10   | 177 <u>+</u> 10 | 3132 <u>+</u> 142 |
|          | JUN   | < 14  | < 20   | <21             | 2953 <u>+</u> 200 |
|          | JUL   | <11   | < 14   | < 14            | 5323 <u>+</u> 17  |
|          | AUG   | < 14  | < 16   | <20             | 3290 <u>+</u> 200 |
|          | SEP   | < 15  | <16    | 46 <u>+</u> 8   | 4240 <u>+</u> 22  |
|          | OCT   | < 24  | <17    | 29 <u>+</u> 8   | 4242 <u>+</u> 21  |
|          | NOV   | <8    | <9     | 71 <u>+</u> 5   | 3444 <u>+</u> 10  |
|          | DEC   | <20   | < 19   | 45 <u>+</u> 8   | 3226 <u>+</u> 19  |
| C48A     | JAN   | < 14  | < 19   | <20             | 6580 <u>+</u> 23  |
|          | FEB   | < 19  | <21    | <26             | 6287 <u>+</u> 28  |
|          | MAR   | <11   | < 16   | < 15            | 7245 <u>+</u> 20  |
|          | APR   | <20   | <26    | <21             | 6579 <u>+</u> 27  |
|          | MAY   | < 12  | <17    | 30 <u>+</u> 6   | 5956 <u>+</u> 21  |
|          | JUN   | < 16  | <24    | < 19            | 8232 <u>+</u> 29  |
|          | JUL   | < 15  | <17    | < 18            | 7461 <u>+</u> 22  |
|          | AUG   | < 13  | < 14   | < 17            | 7281 <u>+</u> 22  |
|          | SEP   | < 16  | <22    | 18 <u>+</u> 8   | 6469 <u>+</u> 27  |
|          | OCT   | < 30  | <22    | <25             | 7019 <u>+</u> 29  |
|          | NOV   | < 19  | < 19   | <19             | 5796 <u>+</u> 24  |
|          | DEC   | < 19  | <22    | <22             | 6923 <u>+</u> 27  |

TABLE IV-D.3.a (CONT'D)  $PROGRESS\ ENERGY\ FLORIDA,\ INC.\ -\ CR3\ -\ 2005$   $pCi/kg\ OF\ \gamma\ EMITTERS\ IN\ BROAD\ LEAF\ VEGETATION$ 

| STATION | MONTH | I-131 | Cs-134 | Cs-137        | K-40              |
|---------|-------|-------|--------|---------------|-------------------|
| C48B    | JAN   | < 14  | < 13   | < 19          | 3720 <u>+</u> 192 |
|         | FEB   | < 14  | < 14   | < 18          | 2403 <u>+</u> 189 |
|         | MAR   | < 14  | < 15   | <13           | 2770 <u>+</u> 163 |
|         | APR   | <8    | <9     | 13 <u>+</u> 4 | 4009 <u>+</u> 108 |
|         | MAY   | <7    | <9     | <8            | 3123 <u>+</u> 108 |
|         | JUN   | <15   | < 15   | <13           | 2957 <u>+</u> 179 |
|         | JUL   | < 14  | < 17   | < 14          | 3054 <u>+</u> 178 |
|         | AUG   | < 14  | < 19   | < 14          | 2373 <u>+</u> 167 |
|         | SEP   | < 12  | <11    | < 12          | 2478 <u>+</u> 138 |
|         | OCT   | <20   | < 19   | <19           | 2646 <u>+</u> 196 |
|         | NOV   | <5    | <5     | <5            | 2905 <u>+</u> 71  |
|         | DEC   | < 13  | <11    | <13           | 2654 <u>+</u> 140 |

# **Broad Leaf Vegetation**



**TABLE IV-D.4** 

**CRYSTAL RIVER UNIT 3** 

**DOCKET NO. 50-302** 

CITRUS COUNTY, FLORIDA

| MEDIUM OR<br>PATHWAY<br>SAMPLED | ANALYSIS AND<br>TOTAL NUMBER OF<br>ANALYSES | LOWER LIMIT<br>OF DETECTION | ALL INDICATOR LOCATIONS<br>MEAN                                | LOCATION WITH HIGHEST MEAN NAME MEAN |          | CONTROL LOCATION<br>MEAN | NUMBER OF<br>NONROUTINE<br>REPORTED |  |
|---------------------------------|---------------------------------------------|-----------------------------|----------------------------------------------------------------|--------------------------------------|----------|--------------------------|-------------------------------------|--|
| (UNITS)                         | PERFORMED                                   | (LLD) <sup>1</sup>          | RANGE                                                          | DISTANCE & BEARING                   | RANGE    | RANGE                    | MEASUREMENTS                        |  |
| WATERMELON                      | γ Spec 1                                    |                             |                                                                |                                      |          |                          |                                     |  |
| (pCi/kg)                        | •                                           |                             |                                                                |                                      |          |                          |                                     |  |
|                                 | I-131                                       | 8                           | <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<> | -                                    | -        | None                     | 0                                   |  |
|                                 | Cs-134                                      | 8                           | <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<> | -                                    | -        | None                     | 0                                   |  |
|                                 | Cs-137                                      | 8                           | <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<> | -                                    | -        | None                     | 0                                   |  |
| CITRUS                          | γ Spec 1                                    |                             |                                                                |                                      |          |                          |                                     |  |
| (pCi/kg)                        |                                             |                             |                                                                |                                      |          |                          |                                     |  |
|                                 | I-131                                       | 8                           | <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<> | -                                    | -        | None                     | 0                                   |  |
|                                 | Cs-134                                      | 8                           | <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<> | -                                    | -        | None                     | 0                                   |  |
|                                 | Cs-137                                      | 8                           | 51 (1/1)                                                       | C19                                  | 51 (1/1) | None                     | 0                                   |  |
|                                 |                                             |                             |                                                                | 9.6 @ 57°                            |          |                          |                                     |  |

<sup>&</sup>lt;sup>1</sup>The "a priori" LLD which meets or exceeds the requirements of Table 2-9 of the CR-3 ODCM.

TABLE IV-D.4.a

PROGRESS ENERGY FLORIDA, INC. - CR3 - 2005

# pCi/kg OF $\gamma$ EMITTERS IN WATERMELON AND CITRUS

| STATION          | MONTH   | I-131 | Cs-134 | Cs-137        | K-40             |
|------------------|---------|-------|--------|---------------|------------------|
| C04 - Watermelon | June    | <4    | <4     | <6            | 1320 <u>+</u> 57 |
| C19 - Citrus     | January | <6    | <5     | 51 <u>+</u> 4 | 1537 <u>+</u> 63 |