

Entergy Nuclear Northeast Entergy Nuclear Operations, Inc. Vermont Yankee P.O. Box 0500 185 Old Ferry Road Brattleboro, VT 05302-0500 Tel 802 257 5271

May 15, 2006 BVY 06-046

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Subject: Vermont Yankee Nuclear Power Station License No. DPR-28 (Docket No. 50-271) Annual 2005 Radioactive Effluent Release Report

In accordance with Vermont Yankee (VY) Technical Specification (TS) 6.6.D, attached is a copy of the annual 2005 Radioactive Effluent Release Report.

In addition, VY TS 6.7.B requires reporting of changes to the Off-site Dose Calculation Manual (ODCM). There were no changes made to the ODCM during 2005 as provided in Appendix H of the subject report.

There are no new regulatory commitments contained in this submittal.

We trust that the information provided is adequate; however, should you have questions or require additional information, please contact me at (802) 258-4236.

Sincerely,

my & Weyn for

James M. DeVincentis Manager, Licensing Vermont Yankee Nuclear Power Station

Attachment (1)

cc: USNRC Region 1 Administrator USNRC Resident Inspector – VYNPS USNRC Project Manager – VYNPS Vermont Department of Public Service Vermont Division of Occupational and Radiological Health Massachusetts Metropolitan District Commission Massachusetts Department of Public Health

Docket No. 50-271 BVY 06-046

Attachment 1

Vermont Yankee Nuclear Power Station

2005 Radioactive Effluent Release Report

RADIOACTIVE EFFLUENT RELEASE REPORT FOR 2005 INCLUDING ANNUAL RADIOLOGICAL IMPACT ON MAN

Vermont Yankee Nuclear Power Station Docket No. 50-271 License No. DPR-28

Prepared by Mark Strum, Lead Rad. Eng., AREVA NP	<u>5-9-06</u> Date
Preparation coordinated by fight Automotion	<u>5-10-06</u>
Stephen P. Skibniowsky, Env. Specialist (1900)	Date
Reviewed by:	<u>1 5/10/06</u> Date
Approved for Distribution: <u>Sulende</u> /	5/10/86
Samuel A.Wender IV, Chem. Supt.	Date

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	METEOROLOGICAL DATA	2
3.0	DOSE ASSESSMENT	3
3.1	Doses From Liquid Effluents	3
3.2	Doses From Noble Gases	3
3.3	DOSES FROM IODINE-131, IODINE-133, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM	
	WITH HALF-LIVES GREATER THAN 8 DAYS	
3.4	WHOLE-BODY DOSES IN UNRESTRICTED AREAS FROM DIRECT RADIATION	
3.5	DOSES FROM ON-SITE DISPOSAL OF SEPTIC WASTE AND COOLING TOWER SILT	
3.6	ON-SITE RECREATIONAL ACTIVITIES	
REFER	ENCES	7
APPEN	IDIX A -SUPPLEMENTAL INFORMATION	A-1
APPEN	IDIX B - LIQUID HOLDUP TANKS	B-1
APPEN	IDIX C - RADIOACTIVE LIQUID EFFLUENT MONITORING	
	INSTRUMENTATION	C-1
APPEN	IDIX D - RADIOACTIVE GASEOUS EFFLUENT MONITORING	
	INSTRUMENTATION	D-1
APPEN	DIX E - RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	E-1
APPEN	DIX F - LAND USE CENSUS	F-1
APPEN	DIX G -PROCESS CONTROL PROGRAM	G-1
APPEN	DIX H -OFF-SITE DOSE CALCULATION MANUAL	H-1
APPEN	DIX I - RADIOACTIVE LIQUID, GASEOUS AND SOLID WASTE TREATMENT SYSTEMS	. I- 1
APPEN	DIX J - ON-SITE DISPOSAL OF SEPTIC/SILT/SOIL WASTE	J-1

LIST OF TABLES

<u>Number</u>	<u>Title</u> .	Page
1A	2005 Gaseous Effluents - Summation of All Releases	8
1B	2005 Gaseous Effluents - Elevated Releases	10
1C	2005 Gaseous Effluents - Ground Level Releases	12
1D	Gaseous Effluents – Non-routine Releases	14
2A	Liquid Effluents - Summation of All Releases	15
2B	Liquid Effluents – Non-routine Releases	16
3	Quarters, 2005 Solid Waste and Irradiated Fuel Shipments	17
4A	Maximum Off-Site Doses/Dose Commitments to Members of the Public from Liquid and Gaseous Effluents for 2005 (10CFR50, Appendix I)	. 22
4B	Maximum Annual Dose Commitments from Direct External Radiation, Plus Liquid and Gaseous Effluents for 2005 (40CFR190)	23
4C	Receptor Locations	24
4D	Usage Factors for Gaseous Pathways	25
4E	Environmental Parameters for Gaseous Effluents	26
5A to 5H	Annual (2005) Summary of Lower Level Joint Frequency Distribution	28-35
6A to 6H	Annual (2005) Summary of Upper Level Joint Frequency Distribution	36-43

z:

Radiological Effluent Release Report for 2005

[Including Annual Radiological Impact on Man] Vermont Yankee Nuclear Power Station

1.0 INTRODUCTION

Tables 1 through 3 lists the recorded radioactive liquid and gaseous effluents and solid waste shipments for the year, with data summarized on a quarterly basis for both liquids and gases. Table 4A summarizes the estimated radiological dose commitments from all radioactive liquid and gaseous effluents released during the year 2005 in response to the ALARA objectives of 10CFR50, Appendix I. Also included in Table 4A is the estimate of direct dose from fixed station sources along the limiting west site boundary line. Tables 5A through 6H report the cumulative joint frequency distributions of wind speed, wind direction, and atmospheric stability for the 12-month period, January to December 2005. Radioactive effluents reported in Tables 1 and 2 were used to determine the resulting doses for 2005.

As required by ODCM Section 10.1, (Reference 1) dose commitments resulting from the release of radioactive materials in liquids and gases during the reporting period were estimated in accordance with the plant's "Off-Site Dose Calculation Manual" (ODCM). These dose estimates were made using a "Method II" analysis as described in the ODCM. A "Method II" analysis incorporates the methodology of Regulatory Guide 1.109 (Reference 2) and actual measured meteorological data recorded concurrently with the quarterly reporting period.

As required by ODCM Section 10.1, this report shall also include an assessment of the radiation doses from radioactive effluents to member(s) of the public due to allowed recreational activities inside the site boundary during the year. During this reporting period, no recreational activity was permitted and, therefore, there is no associated dose assessment as stated in Section 3.6.

Assessment of radiation doses (including direct radiation) to the likely most exposed real member(s) of the public for the calendar year for the purposes of demonstrating conformance with 40CFR190, "Environmental Radiation Protection Standards for Nuclear Power Operations," are also required to be included in this report if the conditions indicated in ODCM 3/4.6, "Total Dose," have been exceeded during the year. Since the conditions indicated in the action statement under ODCM 3/4.6 were not entered into during the year, no additional radiation dose assessments are required. However, Table 4B does provide the combination of doses and dose commitments from plant effluents and direct radiation sources for the limiting member of the public off-site as a demonstration of compliance with the dose standards of 40CFR190.

-

All calculated dose estimates for members of the public at the site boundary or beyond for the 2005 annual reporting period are below the dose criteria of 10CFR Part 50, Appendix I, and 40CFR190.

Appendices B through H indicate the status of reportable items per the requirements of ODCM Section 10.1.

2.0 METEOROLOGICAL DATA

Meteorological data were collected during this reporting period from the site's 300-foot meteorological tower located approximately 2,200 feet northwest of the reactor building, and about 1,400 feet from the plant stack. The 300-foot tower is approximately the same height as the primary plant stack (94 meters) and is designed to meet the requirements of Regulatory Guide 1.23 for meteorological monitoring.

X/Q (annual or long-term average undepleted atmospheric dispersion factors) and D/Q (deposition factors for dry deposition of elemental radioiodines and other particulates) values were derived for all receptor points from the site meteorological record for each quarter using a straight-line airflow model. All dispersion factors have been calculated employing appropriate source configuration considerations, as described in Regulatory Guide 1.111 (Reference 3). A source depletion model as described in "Meteorology and Atomic Energy - 1968" (Reference 4) was used to generate deposition factors, assuming a constant deposition velocity of 0.01 m/sec for all stack (elevated) releases. Changes in terrain elevations in the site environment were also factored into the meteorological models as appropriate.

Table 4C lists the distances from the plant stack to the nearest site boundary, resident, and milk animal in each of the 16 principle compass directions as determined during the 2005 land use census. These locations were used in the calculation of atmospheric dispersion factors. The meteorological model was also executed for each calendar quarter to determine the location of the predicted maximum ground level air concentration. These locations were included in the assessment of effluent doses along with identified points of interest from the annual land use census.

100

3.0 DOSE ASSESSMENT

3.1 Doses From Liquid Effluents

ODCM 3/4.2.2 limits total body (1.5 mrem per quarter, and 3 mrem per year) and organ doses (5 mrem per quarter, and 10 mrem per year) from liquid effluents to a member of the public to those specified in 10CFR Part 50, Appendix I. By implementing the requirements of 10CFR Part 50, Appendix I, ODCM 3/4.2.2 assures that the release of radioactive material in liquid effluents will be kept "as low as is reasonably achievable."

For periods in which liquid waste discharges actually occur, the exposure pathways that could exist are fish, direct exposure from river shoreline sedimentation, milk and meat via animal ingestion of the Connecticut River water, and meat, milk and vegetable pathways via crop irrigation with water withdrawn from the Connecticut River. Ingestion pathways of drinking water and aquatic invertebrate do not exist down river of the Vermont Yankee plant.

There were no recorded liquid radwaste discharges during the report period, and therefore, no dose impact.

3.2 Doses From Noble Gases

ODCM 3/4.3.2 limits the gamma air dose (5 mrad per quarter, and 10 mrad per year) and beta air (10 mrad per quarter, and 20 mrad per year) dose from noble gases released in gaseous effluents from the site to areas at and beyond the site boundary to those specified in 10CFR Part 50, Appendix I. By implementing the requirements of 10CFR Part 50, Appendix I, ODCM 3/4.3.2 assures that the releases of radioactive noble gases in gaseous effluents will be kept "as low as is reasonably achievable."

Dose estimates due to the release of noble gases to the atmosphere are typically calculated at the site boundary, nearest resident in each of the sixteen principal compass directions, the point of highest off-site ground level air concentration of radioactive materials, and for each of the milk animal locations located within five miles of the plant. For 2005, noble gases were detected in effluents released from the plant stack in the first and third quarters.

The maximum estimated quarterly and annual air doses due to noble gases at any of the offsite locations are reported in Table 4A. These estimated air doses are well below the 10CFR Part 50, Appendix I dose criteria of ODCM 3/4.3.2. Table 4B list the annual dose impact from gaseous effluents (including noble gases) at the overall highest impacted resident location after consideration of all exposure categories (i.e., liquid, gas and fixed radiation sources). Table 4B provides an estimation of the total annual dose impact associated with the highest exposed member of the public for demonstration of compliance to the dose standard contained in 40CFR Part 190 for the uranium fuel cycle.

.....

3.3 <u>Doses From Iodine-131, Iodine-133, Tritium, and Radionuclides in Particulate Form With</u> <u>Half-Lives Greater Than 8 Days</u>

ODCM 3/4.3.3 limits the organ dose to a member of the public from iodine-131, iodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days (hereafter called iodines and particulates) in gaseous effluents released from the site to areas at and beyond the site boundary to those specified in 10CFR Part 50, Appendix I (7.5 mrem per quarter, and 15 mrem per year). By implementing the requirements of 10CFR Part 50, Appendix I, ODCM 3/4.3.3 assures that the releases of iodines and particulates in gaseous effluents will be kept "as low as is reasonably achievable."

Exposure pathways that could exist as a result of the release of iodines and particulates to the atmosphere include external irradiation from activity deposited onto the ground surface, inhalation, and ingestion of vegetables, meat and milk. Dose estimates were made at the site boundary and nearest resident in each of the sixteen principal compass directions, as well as all milk animal locations within five miles of the plant. The nearest resident and milk animals in each sector were identified by the most recent Annual Land Use Census as required by ODCM 3/4.5.2 (see Table 4C). Conservatively, a vegetable garden was assumed to exist at each milk animal and nearest resident location. Furthermore, the meat pathway was assumed to exist at each milk cow location since this data category is not part of the annual land use census. Doses were also calculated at the point of maximum ground level air concentration of radioactive materials in gaseous effluents and included the assumption that the inhalation, vegetable garden, and ground plane exposure pathways exist for an individual with a 100 percent occupancy factor.

It is assumed that milk and meat animals are free to graze on open pasture during the second and third quarters with no supplemental feeding. This assumption is conservative since most of the milk animals inventoried in the site vicinity are fed stored feed throughout the entire year with only limited grazing allowed during the growing season. It has also been assumed that only 50 percent of the iodine deposited from gaseous effluent is in elemental form (I_2) and is available for uptake (see p. 6, Reference 2). During the non-growing season (first and fourth quarters), the milk animals are assumed to receive only stored feed. During the growing season (second and third quarters), all animal feed is assumed to be derived from fresh pasture. Usage factors for gaseous effluents are listed by age group and pathway in Table 4D. Table 4E provides other dose model parameter assumptions used in the dose assessments.

The resultant organ doses were determined after adding the contributions from all pathways at each location. Doses were calculated for the whole body, GI-tract, bone, liver, kidney, thyroid, lung and skin for adults, teenagers, children and infants. The maximum estimated quarterly and annual organ doses to any age group due to iodines and particulates at any of the off-site receptor locations are reported in Table 4A. These estimated organ doses are well below the 10CFR Part 50, Appendix I dose criteria of ODCM 3/4.3.3. Table 4B provides an estimation of the total annual dose impact (including contributions from iodine and particulates) associated with the highest exposed member of the public for demonstration of compliance to the dose standard contained in 40CFR Part 190 for the uranium fuel cycle.

=

3.4 Whole Body Doses in Unrestricted Areas From Direct Radiation

The major source of dose in unrestricted areas occurs at the west site boundary, and mainly consisting of direct and skyshine radiation from N-16 decay in the Turbine Building steam cycle during power operations. Because of the orientation of the Turbine Building on the site, and the shielding effects of the adjacent Reactor Building, only the seven westerly sectors (SSW to NNW) see any significant direct radiation.

A correlation method was derived, based directly on site boundary exposure rate and inplant Main Steam Line Radiation Monitor measurements, that allows changes in the N-16 carryover in the main steam flow to be directly related to changes in the site boundary dose. This correlation is documented in section 6.11.1 (Equation 6-27a) of the ODCM. This method was used to calculate direct dose at the maximum site boundary location from radiation sources in the steam cycle.

The other fixed sources of direct and scatter radiation to the site boundary are from low level radioactive waste stored in the North Warehouse, the Low Level Waste Storage Pad Facility, and old turbine rotors and casings in the Turbine Storage Facility. The annual dose is based on dose rate measurements in these three storage facilities and determined at the same most restrictive site boundary dose location as that for N-16 shine from the Turbine Building.

The estimated direct radiation dose from all major sources combined for the most limiting site boundary location is listed in Table 4A. These site boundary doses assume a 100 percent occupancy factor, and take no credit for the shielding effect of any residential structure.

Table 4B lists the combination of direct radiation and effluent release doses at the limiting nearest residence for the purpose of demonstrating compliance with the dose standards contained in 40CFR Part 190. For direct radiation, no credit for actual occupancy time is taken (i.e., occupancy is equal to 100%).

For 2005, the annual dose limit for the nearest real resident from all station sources (effluents plus fixed radiation sources) was below the 25 mrem total body and organ limit (75 mrem thyroid) of 40 CFR 190.

3.5 Doses From On-Site Disposal of Septic Waste, Cooling Tower Silt and Soil

Off-Site Dose Calculation Manual, Appendices B, F and I, require that all applications of septage, cooling tower silt and sand/soil within the approved designated disposal areas be limited to ensure the dose to a maximally exposed individual during the period of Vermont Yankee site control be maintained at less than 1 mrem/year to the whole body and any organ. After the period associated with Entergy-Vermont Yankee operational control, the dose to the inadvertent intruder is to be maintained at less than 5 mrem/year. The projected dose from on-site disposals of septic waste, cooling tower silt and sand/soil mixes is given in Appendix J of this report.

Ξ.

The dose limits applicable for the on-site spreading of materials were met for the single disposal (septic waste) in 2005 and in combination with all past spreadings.

3.6 **On-Site Recreational Activities**

During 2005, no access for employees, their families and guests to the boat launching ramp located on-site just north of the intake structure was permitted. As such, no recreational activities were permitted on-site during the report period and, therefore, no associated dose impact to members of the public.

<u>REFERENCES</u>

- 1. Off-site Dose Calculation Manual (ODCM), Revision 30, Vermont Yankee Nuclear Power Station, dated 10/30/02.
- Regulatory Guide 1.109, "Calculation of Annual Doses to Man From Routine Release of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I", U. S. Nuclear Regulatory Commission, Office of Standards Development, Revision 1, October 1977.
- 3. Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors", U.S. Nuclear Regulatory Commission, Office of Standards Development, March 1976.
- 4. Meteorology and Atomic Energy, 1968, Section 5-3.2.2, "Cloud Depletion", pg. 204. U. S. Atomic Energy Commission, July 1968.

<u>TABLE 1A</u> <u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>First and Second Quarters, 2005</u> <u>Gaseous Effluents - Summation of All Releases</u>

		Unit	Quarter 1	Quarter 2	Est. Total Error, %
A.	Fission and Activation Gases				
1.	Total release	Ci	6.83E+01	ND	±2.30E+01
2.	Average release rate for period	μCi/sec	8.68E+00	ND	
3.	Percent of ODCM limit (1)	%	4.40E-02	ND	
B.	Iodines				
1.	Total Iodine	Ci	1.02E-04	1.47E-04	±1.80E+01
2.	Average release rate for period	μCi/sec	1.29E-05	1.87E-05	
3.	Percent of ODCM limit (2)	%	6.68E-01	7.32E-02	
C.	Particulates				
1.	Particulates with T-1/2>8 days	Ci	1.14E-05	6.28E-06	±1.80E+01
2.	Average release rate for period	µCi/sec	1.45E-06	7.97E-07	
3.	Percent of ODCM limit (3)	%	(3)	(3)	
4.	Gross alpha radioactivity	Ci	ND	ND	
D.	Tritium				
1.	Total release	Ci	1.68E+00	1.10E+00	±1.80E+01
2.	Average release rate for period	µCi/sec	2.14E-01	1.40E-01	
3.	Percent of ODCM limit (3)	%	(3)	(3)	

ND = Not Detected

(1) ODCM Control 3.3.2. for the most limiting of beta air or gamma air dose. Percentage of ODCM limit calculated using Method I dose results.

(2) ODCM Control 3.3.3. for dose from 1-131, 1-133, Tritium, and radionuclides in particulate form. Percentage of ODCM limit calculated using Method I dose results.

(3) Per ODCM Control 3.3.3, dose contribution from Tritium and particulates are included with Iodine above in Part B.

TABLE IA

(Continued)

<u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>Third and Fourth Quarters, 2005</u> <u>Gaseous Effluents - Summation of All Releases</u>

		·Unit	Quarter 3	Quarter 4	Est. Total Error, %
A.	Fission and Activation Gases				
1.	Total release	Ci	1.53E+00	ND	±2.30E+0 1
2.	Average release rate for period	µCi/sec	1.94E-01	ND	
3.	Percent of ODCM limit (1)	%	1.24E-03	ND	
B.	Iodines				
1.	Total Iodine	Ci	2.57E-04	3.00E-05	±1.80E+01
2.	Average release rate for period	µCi/sec	3.26E-05	3.81E-06	
3.	Percent of ODCM limit (2)	%	8.79E-02	3.91E-02	
C.	Particulates				
1.	Particulates with T-1/2>8 days	Ci	6.28E-06	1.88E-05	±1.80E+01
2.	Average release rate for period	μCi/sec	7.97E-07	2.39E-06	
3.	Percent of ODCM limit (3)	%	(3)	(3)	
4.	Gross alpha radioactivity	Ci	1.97E-07	ND	
D.	Tritium				
1.	Total release	Ci	8.48E-01	1.69E+00	±1.80E+01
2.	Average release rate for period	µCi/sec	1.07E-01	2.14E-01	
3.	Percent of ODCM limit (3)	%	(3)	(3)	

_

ND = Not Detected

- (1) ODCM Control 3.3.2. for the most limiting of beta air or gamma air dose. Percentage of ODCM limit calculated using Method I dose results.
- (2) ODCM Control 3.3.3. for dose from 1-131, 1-133, Tritium, and radionuclides in particulate form. Percentage of ODCM limit calculated using Method I dose results.
- (3) Per ODCM Control 3.3.3, dose contribution from Tritium and particulates are included with Iodine above in Part B.

TABLE IB <u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>First and Second Quarters, 2005</u> <u>Gaseous Effluents - Elevated Releases</u>

		Continuous Mode			Batch N	Aode (1)
			Qua	rter	Qu	arter
Nuclid	les Released	Units	1	2	1	2
1.	Fission Gases					
	Argon-41	Ci	ND	ND		
	Krypton-85	Ci	ND	ND		
	Krypton-85m	Ci	6.83E+01	ND		
	Krypton-87	Ci	ND	ND		
	Krypton-88	Ci	ND	ND		
	Xenon-133	Ci	ND	ND		
	Xenon-133m	Ci	ND	ND		
	Xenon-135	Ci	ND	ND		1
	Xenon-135m	Ci	ND	ND		
	Xenon-138	Ci	ND	ND		
	Unidentified	Ci	ND	ND		
Total f	or Period	Ci	6.83E+01	ND		
2.	Iodines					
	Iodine-131	Ci	2.75E-05	6.48E-05		
	Iodine-133	Ci	7.46E-05	8.20E-05		
	Iodine-135	Ci	ND	ND		
Total	for Period	Ci	1.02E-04	1.47E-04		
3.	Particulates					
	Strontium-89	Ci	ND	6.28E-06		
	Strontium-90	Ci	ND	ND	T	
	Cesium-134	Ci	ND	ND		
	Cesium-137	Ci	ND	ND		
	Barium-Lanthanum-140	Ci	ND	ND		
	Manganese-54	Ci	ND	ND		
	Chromium-51	Ci	ND	ND	1	
	Cobalt-58	Ci	ND	ND		
	Cobalt-60	Ci	ND	ND		
	Cerium-141	Ci	ND	ND		
	Zinc-65	Ci	ND	ND		
Total f	for Period	Ci	ND	6.28E-06	0.00E+00	0.00E+00

ND

(1)

Not Detected at the plant stack There were no batch mode gaseous releases for this reporting period.

<u>~</u>

<u>TABLE IB</u> (Continued)

<u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>Third and Fourth Quarters, 2005</u> <u>Gaseous Effluents - Elevated Releases</u>

			Continuous Mode	;	Batch M	1ode (1)
			Quarter		Qu	arter
Nucli	des Released	Units	3	4	3	4
1.	Fission Gases					
	Krypton-85	Ci	ND	ND		
	Krypton-85m	Ci	ND	ND		
	Krypton-87	Ci	ND	ND		
	Krypton-88	Ci	ND	ND		
	Xenon-133	Ci	ND	ND		
	Xenon-133m	Ci	ND	ND		
	Xenon-135	Ci	1.53E+00	ND		
	Xenon-135m	Ci	ND	ND		
	Xenon-138	Ci	ND	ND		
	Unidentified	Ci	ND	ND		
Total	for Period	Ci	1.53E+00	ND		
2.	Iodines					
	Iodine-131	Ci	7.93E-05	3.00E-05		
	Iodine-133	Ci	1.78E-05	ND		
	Iodine-135	Ci	ND	ND		
Total	for Period	Ci	9.71E-05	3.00E-05		
3.	Particulates					
	Strontium-89	Ci	6.48E-06	ND		
	Strontium-90	Ci	ND	ND		
	Cesium-134	Ci	ND	ND		
	Cesium-137	Ci	ND	3.29E-06		
	Barium-Lanthanum-140	Ci	ND	ND		•
	Manganese-54	Ci	ND	4.23E-06		
	Chromium-51	Ci	ND	ND		
	Cobalt-58	Ci	ND	ND	-	
	Cobalt-60	Ci	ND	1.13E-05		······································
	Cerium-141	Ci	ND	ND		
	Cerium-144	Ci	ND	ND		
	Zinc-65	Ci	ND	ND		
Total	for Period	Ci	6.48E-06	1.88E-05		

ND Not Detected at the Plant Stack

(1) There were no batch mode gaseous releases for this reporting period.

5

TABLE 1C

<u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>First and Second Quarters, 2005</u> <u>Gaseous Effluents Ground Level Releases</u>⁽²⁾⁽³⁾

	Continuous Mode		Batch	Mode	
	Quarter		Qu	arter	
Nuclides Released	Units	1(2)	2(1)	1(1)	2(1)
1. Fission Gases					
Krypton-85	Ci	ND			
Krypton-85m	Ci	ND			
Krypton-87	Ci	ND			
Krypton-88	Ci	ND			
Xenon-133	Ci	ND			
Xenon-135	Ci	ND			
Xenon-135m	Ci	ND			
Xenon-138	Ci	ND			
Unidentified	Ci	ND			
Total for Period	Ci	0.00E+00			
2. Iodines				· · · ·	
Iodine-131	Ci	ND	•		
Iodine-133	Ci	ND			
Iodine-I 35	Ci	ND			
Total for Period	Ci	ND			
3. Particulates					
Strontium-89	Ci	1.02E-08			
Strontium-90	Ci	1.13E-08			
Cesium-134	Ci	ND			······································
Cesium- 137	Ci	1.04E-06			
Barium-Lanthanum-140	Ci	ND	-		
Manganese-54	Ci	3.90E-07			<u></u>
Chromium-51	Ci	ND			
Cobalt-58	Ci	ND			
Cobalt-60	Ci	8.10E-06			
Cerium-141	Ci	ND		-	
Zinc-65	Ci	2.14E-07			
Iron-55	Cl	1.71E-06			
Total for Period	Ci	1.14E-05			

5

ND Not detected in the used oil sample.

(1) There were no ground level gaseous releases for this reporting period.

(2) Burning of used oil was treated as a continuous release for the first quarter. Used oil was burned only in the first quarter.

(3) The North Warehouse stack was used as a ground level release point for burning of used oil.

TABLE IC

(Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2005 Gaseous Effluents - Ground Level Releases

		Continuous Mode		Batch Mode		
		Quarter		Qua	rter	
	Nuclides Released	Units	3(1)	4(1)	3 (1)	4(1)
1.	Fission Gases					
	Krypton-85	Ci				
	Krypton-85m	Ci				
	Krypton-87	Ci		· · ·		
	Krypton-88	Ci				
	Xenon-133	Ci				
	Xenon-135	Ci	· ·			
	Xenon-135m	Ci				
	Xenon-138	Ci				
	Unidentified	Ci				
	Total for Period	Ci				
2.	Iodines					
	Iodine-131	Ci				
	Iodine-133	Ci				
	Iodine-135	Ci				
	Total for Period	Ci				
3.	Particulates					<u> </u>
	Strontium-89	Ci				
	Strontium-90	Ci				
	Cesium- 134	Ci	<u></u>			
	Cesium-137	Ci	· · · · · · · · · · · · · · · · · · ·			
_	Barium-Lanthanum- 140	Ci				
	Manganese-54	Ci				
	Chromium-51	Ci				
	Cobalt-58	Ci				
	Cobalt-60	Ci				
	Cerium-141	Ci				
	Zinc-65	Ci				
	Iron-55	CI				
	Total for Period	Ci				

(1) There were no ground level gaseous releases for this reporting period.

<u>TABLE 1D</u> <u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>for 2005</u> <u>Gaseous Effluents -Nonroutine Releases</u>

There were no non-routine or accidental gaseous releases during this reporting period.

=

TABLE 2AVermont YankeeEffluent and Waste Disposal Annual Reportfor 2005Liquid Effluents Summation of All Releases

There were no liquid releases during this reporting period.

<u>TABLE 2B</u> <u>Vermont Yankee</u> <u>Effluent and Waste Disposal Annual Report</u> <u>for 2005</u> <u>Liquid Effluents Nonroutine Releases</u>

There were no non-routine or accidental liquid releases during this reporting period.

=

TABLE 3

Entergy Nuclear Northeast Vermont Yankee Effluent and Waste Disposal Annual Report First and Second Quarters, 2005 Solid Waste and Irradiated Fuel Shipments

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (not irradiated fuel) 1. Type of Waste

Shipped from VY for Burial or Disposal	Unit	1 ST and 2 ND Quarters 2005	Est. Total Error, %
a. Spent resins, filter sludge, evaporator bottoms, etc.	m ³ Ci	None	N/A
b. Dry compressible waste, contaminated equipment, etc.	m ³ Ci	None	N/A
c. Irradiated components, control rods, etc.:	m ³ Ci	None	N/A

Shipped from Processor(s) for Burial or Disposal	Unit	1 ST and 2 ND Quarters 2005	Est. Total Error, %
a. Spent resins, filter sludge, evaporator bottoms, etc.	m ³ Ci	3.50 E+00 9.31 E+01	<u>+</u> 2.5 E+01
b. Dry compressible waste, contaminated equipment, etc.	m ³ Ci	0.0 0.0	<u>+</u> 2.5 E+01
c. Irradiated components, control rods, etc.:	m ³ Ci	None	N/A

2. Estimate of Major Nuclide Composition (By Type of Waste)

Spent resins, filter sludge	, evaporator bottoms, etc.	b. Dry compressible waste, contaminated equipment etc.			
Isotope	Percent (1)	Isotope	Percent (1)		
Zinc-65	3.38 E+01 %	Iron-55	6.51 E+01 %		
Cobalt-60	2.11 E+01 %	Cobalt-60	1.75 E+01 %		
Cesium-137	1.36 E+01 %	Zinc-65	4.94 E+00 %		
Iron-55	1.09 E+01 %	Manganese-54	4.16 E+00 %		
Nickel-63	9.72 E+00 %	Cerium-144 -	3.27 E+00 %		
Manganese-54	4.60 E+00 %	Cesium-137	2.18 E+00 %		
Cesium-134	1.43 E+00 %				
	, <u>, , , , , , , , , , , , , , , , , , </u>				

(1) Includes only those nuclides that are greater than 1% of the total activity.

Note: Sections A.1 and A.2 above do not include the data for the waste shipments from VY to the processors. The data for this waste will be included in the report that covers the year that this waste is shipped from the processor for burial or disposal.

TABLE 3

(Continued)

Entergy Nuclear Northeast Vermont Yankee Effluent and Waste Disposal Annual Report First and Second Quarters, 2005 Solid Waste and Irradiated Fuel Shipments

3. Disposition of solid waste shipments (1st and 2nd Quarters)

Number of Shipments	From	From	Mode of]	Destination
	VY	Processor	Transportation	Processor	Burial or Disposal
1	x		Truck	Duratek Oak Ridge, TN	
4	х		Truck	Studsvik, Erwin, TN	
1		x	Truck	Duratek Oak Ridge, TN	Envirocare Clive, UT
8		х	Truck	Studvik Erwin, TN	Duratek Barnwell, SC

- B. Irradiated Fuel Shipments (Disposition): None
- C. Additional Data (1st and 2nd Quarters)

Supplemental Information	Shipments from VY to Processors	Shipments from VY for Burial or Disposal	Shipments from Processors for Burial or Disposal
Class of solid waste shipped	AU, B	None	AU, B, C
Type of containers used	Strong Tight, Type A	None	Strong Tight (quantity of containers not required), Type B
Solidification agent or absorbent	None	None	None

3

TABLE 3 (Continued)

Entergy Nuclear Northeast Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2005 Solid Waste and Irradiated Fuel Shipments

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (not irradiated fuel)

1. Type of Waste

Shipped from VY for Burial or Disposal	Unit	3 rd and 4 th Quarters 2005	Est. Total Error, %
a. Spent resins, filter sludge, evaporator bottoms, etc.	m ³ Ci	None	<u>+</u> 2.50 E+01
b. Dry compressible waste, contaminated equipment, etc.	m ³ Ci	None	N/A
c. Irradiated components, control rods, etc.	m ³ Ci	None	N/A

Shipped from VY to Processor	Unit	3 rd and 4 th Quarters 2005	Est. Total Error, %
a. Spent resins, filter sludge, evaporator bottoms, etc.	m ³ Ci	2.29 E+01 1.35 E+02	<u>+</u> 2.50 E+01
b. Dry compressible waste, contaminated equipment, etc.	m ³ Ci	5.51 E+02 8.00 E-01	<u>+</u> 2.50 E+01
c. Irradiated components, control rods, etc.	m ³ Ci	None	N/A

Shipped from Processor(s) for Burial or Disposal	Unit	3 rd and 4 th Quarters 2005	Est. Total Error, %
a. Spent resins, filter sludge, evaporator bottoms, etc.	m ³	4.80 E+00	+2.50 E+01
a. opent results, inter studge, evaporator bottoms, etc.	Ci	1.09 E+02	<u>-</u> 2.50 E · 01
b. Dry compressible waste, contaminated equipment, etc.	m ³	5.27 E+01	+2.50 E+01
b. Dry compressione waste, containinated equipment, etc.	Ci	5.20 E+00	<u>1</u> 2.30 E+01
c. Irradiated components, control rods, etc.	m ³ Ci	None	N/A

TABLE 3 (Continued)

Entergy Nuclear Northeast Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2005 Solid Waste and Irradiated Fuel Shipments

2. Estimate of Major Nuclide Composition (By Type of Waste)

a. Spent resins, filter sludge, evaporator bottoms, etc.		b. Dry compressible waste, contaminated equipment, etc.		c. Irradiated components, control rods etc.	
Isotope	Percent (1)	Isotope	Percent (1)	Isotope	Percent (1)
Cobalt-60	2.34 E+01 %	Iron-55	6.12 E+01 %	N/A	N/A
Zinc-65	2.18 E+01 %	Cobalt-60	1.95 E+01 %		
Iron-55	2.11 E+01 %	Zinc-65	8.85 E+00 %		
Cesium-137	1.18 E+01 %	Manganese-54	5.45 E+00 %		·····
Nickel-63	7.74 E+00 %	Cesium-137	1.28 E+00 %		
Manganese-54	6.55 E+00 %	Cerium-144	3.01 E+00 %		
Chromium-51	3.27 E+00 %	Chromium-51	1.38 E+00 %		
Cesium-134	1.11 E+00 %				
Cobalt-58	1.09 E+00 %				

(1) Includes only those nuclides that are greater than 1% of the total activity.

3. Disposition of Solid Waste Shipments (3rd and 4th Quarters)

Number of	From	From	Mode of	De	estination
Shipments	VY	Processor	Transportation	Processor	Burial or Disposal
6	x		Truck	Duratek Oak Ridge, TN	
6	x		Truck	Studsvik Erwin, TN	
5	x		Truck	RACE Memphis, TN	
13		x	Truck	Duratek Oak Ridge, TN and RACE Memphis, TN	Envirocare Clive, UT
10		x	Truck	Studsvik Erwin, TN	Duratek Barnwell, SC
1		x	Truck	Studsvik Erwin, TN	Envirocare Clive, UT

B. Irradiated Fuel Shipments (Disposition): None

TABLE 3 (Continued)

Entergy Nuclear Northeast Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2005 Solid Waste and Irradiated Fuel Shipments

C. Additional Data (3rd and 4th Quarters)

Supplemental InformationShipments from VY to Processors		Shipments from VY for Burial or Disposal	Shipments from Processors for Burial or Disposal
Class of solid waste shipped	AU, B	None	AU,B, C (quantity of containers not required)
Type of containers used	Strong Tight Type A	None	Strong Tight, Type B (quantity of containers not required)
Solidification agent or absorbent	None	None	None

TABLE 4A

Entergy Nuclear Northeast Vermont Yankee Maximum^{*} Off-Site Doses/Dose Commitments to Members of the Public from Liquid and Gaseous Effluents for 2005 (10CFR50, Appendix I)

		Γ	Dose (mrem)	(a)		
Source	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Year ^(b)	
	L	iquid Efflue	ents	· · · · · · · · · · · · · · · · · · ·		
Total Body Dose						
Footnotes	(c)	(c)	(c)	(c)	(c)	
Organ Dose						
Footnotes	(c)	(c)	(c)	(c)	(c)	
	Airborne Effluents					
Iodines and Particulates	4.08E-04	4.56E-03	4.89E-03	8.16E-04	1.07E-02	
Footnotes	(1)	(2)	(2)	(1)		
	<u> Alta</u> ra	Noble Gases	5			
Beta Air (mrad)	3.04E-03		1.42E-04		3.18E-03	
Footnotes	(4)	(d)	(4)	(d)		
Gamma Air (mrad)	3.18E-03		8.01E-05	-	3.26E-03	
Footnotes	(3)	(d)	(3)	(d)		
	1	Direct Radiati	on			
	3.62	3.58	3.54	2.74	13.48 (e)	

 "Maximum" means the largest fraction of the corresponding 10CFR50, Appendix I dose design objective.

(a) The numbered footnotes indicate the age group, organ, and location of the dose receptor, where appropriate.

- (b) The yearly dose is the sum of the doses for each quarter, or a full annual assessment.
- (c) There were no liquid releases in this quarter
- (d) There were no noble gas releases in this quarter.
- (e) Maximum direct dose point located on the west site boundary
- (1) CHILD/THYROID WNW/2400 meters from stack
- (2) INFANT/ THYROID/ NW/ 4260 meters from stack
- (3) SSE, 600 meters from stack
- (4) WNW, 2400 meters from stack

TABLE 4B

Entergy Nuclear Northeast Vermont Yankee Maximum Annual Dose Commitments from Direct External Radiation, Plus Liquid and Gaseous Effluents for 2005^(*) (40CFR190)

Pathway	Total Body (mrem)	Maximum Organ (mrem)	Thyroid (mrem)
Direct External (a)	13.5	13.5	13.5
Liquids (b)	N/A	N/A	N/A
Gases (c)	1.31E-03	1.37E-03	1.27E-03
Annual Total (d)	13.5	13.5	13.5

- (*) The location of the projected maximum individual doses from combined direct radiation plus liquid and gaseous effluents correspond to residences at the southwest boundary relative to the Turbine Hall.
- (a) No occupancy time fraction (assumed 100%) or residential shielding credit is assumed which would reduce real doses below the calculated values. Expected direct external radiation doses would be reduced by about 54% with a realistic residential shielding credit and occupancy time (0.7 shielding factor from Regulatory Guide 1.109 and annual occupancy time 6760 hours).
- (b) There were no liquid releases in 2005.
- (c) Maximum dose to any organ over all age groups for each release.
- (d) Annual dose limits contained in the EPA Radiation Protection Standards (40CFR190) equal 25 mrem to the total body and any organ, except 75 mrem to the thyroid of a real member of the public.

TABLE 4C

Receptor Locations Entergy Nuclear Northeast Vermont Yankee

Sector	Site Boundary ⁽¹⁾ (Meters)	Nearest Resident ⁽²⁾ (Meters)	Nearest Milk Animal ⁽²⁾ Within 10 km (Meters)
N	400	1470	
NNE	350	1400	5520 (cows)
NE	350	1250	
ENE	400	970	-
E	500	930	
ESE	700	2830	
SE	750	1970	3600 (cows)
SSE	850	2050	5240* (cows)
S	385	450	2220 (cows)
SSW	300	450	
SW	250	410	8200 (cows)
WSW	250	450	9590 (goats)
W	300	620	820 (cows)
WNW	400	1060	6980*(cows)
NW	550	2600	4260* (cows)
NNW	550	2600	

* Receptor locations were conservatively included although these farms have been classified as "out of business"

=

(1) Vermont Yankee UFSAR Figure 2.2-5.

(2) The location(s) given are based on data from the Vermont Yankee 2005 Land Use Census and are relative to the plant stack. Gardens are assumed to be present at all resident locations.

TABLE 4DUsage Factors for Gaseous PathwaysEntergy Nuclear Northeast Vermont Yankee

Age Group	Veg. (kg/yr)	Leafy Veg. (kg/yr)	Milk (l⁄yr)	Meat (kg/yr)	Inhalation (m ³ /yr)
Adult	520	64	310	110	8,000
Teen	630	42	400	65	8,000
Child	520	26	330	41	3,700
Infant	0	. 0	330	0	1,400

(From Reference 1, Table E-5^{*})

* Regulatory Guide 1.109 (Reference 2).

TABLE 4E
Environmental Parameters for Gaseous Effluents *
Entergy Nuclear Northeast Vermont Yankee

		Vege	Vegetables Cow Milk Goat Milk						Meat		
	Variable	Stored	Leafy	Pasture	Stored	Pasture	Stored	Pasture	Stored		
YV	Agricultural Productivity (kg/m ²)	2	2	0.70	2	0.70	2	0.70	2		
Р	Soil Surface Density (kg/m ²)	240	240	240	240	240	240	240	240		
Т	Transport Time to User (hrs)	-		48	48	48	48	480	480		
TB	Soil Exposure Time ^(a) (hrs)	131,400	131,400	131,400	131,400	131,400	131,400	131,400	131,400		
TE	Crop Exposure Time to Plume (hrs)	1,440	1,440	720	1,440	720	1,440	720	1,440		
ТН	Holdup After Harvest (hrs)	1,440	24	0	2,160	0	2,160	0	2,160		
QF	Animals Daily Feed (kg/day)			50	50	6	6	50	50		
FP	Fraction of Year on Pasture			(b)		(b)		(b)			
FS	Fraction Pasture Feed When on Pasture ^(c)			1		1		1			

Note: Footnotes on following page.

ß

TABLE 4E (Continued)

Environmental Parameters for Gaseous Effluents Entergy Nuclear Northeast Vermont Yankee

1 7		Vege	tables	Cow	Milk	Goat	Milk	Me	at
	Variable	Stored	Leafy	Pasture	Stored	Pasture	Pasture Stored		Stored
FG	Fraction of Stored Vegetables Grown in Garden	0.76							
FL	Fraction of Leafy Vegetables Grown in Garden		1.0						
FI	Fraction Elemental Iodine = 0.5								
Н	Absolute Humidity = $5.6^{(d)}$	ς							

* From VY ODCM, Table 6.9.1 (Reference 1).

Ħ

- (a) For Method II dose/dose rate analyses of identified radioactivity releases of less than one year, the soil exposure time for that release may be set at 8,760 hours (one year) for all pathways.
- (b) For Method II dose/dose rate analyses performed for releases occurring during the first or fourth calendar quarters, the fraction of time animals are assumed to be on pasture is zero (nongrowing season). For the second and third calendar quarters, the fraction of time on pasture (FP) will be set at 1.0. FP may also be adjusted for specific farm locations if this information is so identified and reported as part of the land use census.
- (c) For Method II analyses, the fraction of pasture feed while on pasture may be set to less than 1.0 for specific farm locations if this information is so identified and reported as part of the land use census.
- (d) For all Method II analyses, an absolute humidity value equal to 5.6 (gm/m³) shall be used to reflect conditions in the Northeast (Reference: Health Physics Journal, Volume 39 (August), 1980; Pages 318-320, Pergammon Press).

TABLE 5A

.

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

35.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 1.89 WIND DIRECTION FROM

	Speed Mph	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
	CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	00.	00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00.	00.	.00
	(2)	00.	00.	00.	.00	00.	00.	00.	00.	00	00.	00.	00	00.	00.	00.	.00	00.	.00
	C-3	2	3	2	4	3	6	4.	2	0	0	0	1	0	1	0	0	0	28
	(1)	1.21	1.82	1.21	2.42	1.82	3.64	2.42	1.21	00.	.00.	00.	.61	00.	.61	00.	.00.	.00.	16.97
	(2)	.02	.03	.02	.05	.03	.07	.05	.02	00.	.00	00.	.01	00.	.01	00.	.00	.00	.32
	4-7	11	3	2	0	4	13	10	5	8	0	0	0	0	0	2	16	0	74
	(1)	6.67	1.82	1.21	00.	2.42	7.88	6.06	3.03	4.85	.00.	00.	00.	00.	00.	1.21	9.70	.00.	44.85
	(2)	.13	.03	.02	00.	.05	.15	.11	.06	.09	.00	00.	00.	00.	00.	.02	.18	.00	.85
	8-12 (1) (2)	10 6.06 .11	1 .61 .01	0 00. 00.	0 00. 00.	0 00. 00.	.00 00.	2 1.21 .02	6 3.64 .07	7 4.24 .08	1 .61 .01	1 .61 .01	3 1.82 .03	1 .61 .01	1 .61 .01	1 .61 .01	23 13.94 .26	0 .00. .00	57 34.55 .65
	13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	6
	(1)	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00.	00.	3.64	.00.	3.64
	(2)	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	.07	.00	.07
	19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	.00
	(2)	.00	00.	00.	00.	00.	00.	00	00.	00.	00	00.	00.	00.	00.	.00	00.	00.	.00
	GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00.	00.	00.	00.	00.	.00	.00
	(2)	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	00.	.00	.00
ALL	SPEEDS	23	7	4	4	7	19	16	13	15	1	1	4	1	2	3	45	0	165
	(1)	13.94	4.24	2.42	2.42	4.24	11,52	9.70	7.88	9.09	.61	.61	2.42	.61	1.21	1.82	27.27	00.	100.00
	(2)	.26	.08	.05	.05	.08	.22	.18	.15	.17	.01	.01	.05	.01	.02	.03	.52	00.	1.89

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

f١

28

TABLE 5B

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

35.0 FT WIND DATA	STABILITY CLASS B	CLASS FREQUENCY (PERCENT) = 3.00

.

WIND DIRECTION FROM

	SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
·	CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	00.	00.	00.	00.	00.	00.	.00	.00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
	(2)	00.	00.	00.	00.	00.	00.	.00	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
. ·	C-3	4	0	3	2	2	1	1	1	1	0	3	1	0	0	0	1	0	20
	(1)	1.53	00.	1.15	.76	.76	.38	.38	.38	.38	.00.	1.15	.38	00.	.00.	.00.	.38	00.	7.63
	(2)	.05	00.	.03	.02	.02	.01	.01	.01	.01	.00	.03	.01	00.	.00	.00	.01	00.	.23
	4-7	27	12	1	2	7	22	17	22	10	3	0	0	1	2	12	21	0	159
	(1)	10.31	4.58	.38	.76	2.67	8.40	6.49	8.40	3.82	1.15	.00	.00.	.38	.76	4.58	8.02	00.	60.69
	(2)	.31	.14	.01	.02	.08	.25	.19	.25	.11	.03	.00	.00	.01	.02	.14	.24	00.	1.82
	8-12	15	6	1	0	0	1	2	7	19	3	3	0	5	4	3	9	0	78
	(1)	5.73	2.29	.38	00.	00.	.38	.76	2.67	7.25	1.15	1.15	00.	1.91	1.53	1.15	3.44	.00.	29.77
	(2)	.17	.07	.01	00.	00.	.01	.02	.08	.22	.03	.03	00.	.06	.05	.03	.10	.00	.89
-	13-18	2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	5
	(1)	.76	.38	00.	.00	00.	.00.	00.	00.	.38	00.	.00.	00.	.00.	.00.	.00.	.38	.00	1.91
	(2)	.02	.01	00.	.00	00.	.00	00.	00.	.01	00.	.00	00.	.00	.00	.00	.01	.00	.06
	19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00.	00.	00.	00.	.00	00.	.00.	.00
	(2)	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00	.00	00.	.00	.00
	GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	.00	00.	00.	00.	00.	.00	.00	00.	00.	00.	.00.	00.	00.	00.	00.	00.	00.	.00
	(2)	.00	00.	00.	00.	00.	.00	.00	00.	00.	00.	.00	00.	00.	00.	00.	00.	00.	.00
ALL	SPEEDS	48	19	5	4	9	24	20	30	31	6	6	1	6	6	15	32	0	262
	(1)	18.32	7.25	1.91	1.53	3.44	9.16	7.63	11.45	11.83	2.29	2.29	.38	2.29	2.29	5.73	12.21	00.	100.00
	(2)	.55	.22	.06	.05	.10	.28	.23	.34	.36	.07	.07	.01	.07	.07	.17	.37	00.	3.00

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ft

TABLE 5C

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

35.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 5.16 WIND DIRECTION FROM SPEED N NNE NE ENE Е ESÉ SE SSE S SSW SW WSW WNW NW NNW VRBL TOTAL W MPH CALM 0 ٥ 0 0 0 0 0 0 0 0 0 0 0 ۵ 0 1 1 0 .22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .22 (1) (2) .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 C-3 6 12 1 5 2 0 2 0 2 1 0 1 4 0 51 5 6 4 (1) 1.33 2.67 1.11 1.33 .89 .22 1.11 . 44 .00 .44 .00 .44 .22 .00 .22 .89 .00 11.33 .01 (2) .07 .14 .06 .07 .05 .06 .02 .00 .02 .00 .02 .01 .00 .01 .05 .00 .58 33 30 0 8 35 0 273 4-7 33 17 7 13 16 39 27 4 2 3 6 7.33 2.89 8.67 6.00 7.33 6.67 .89 .00 .44 . 67 1.33 1.78 7.78 .00 60.67 (1)3.78 1.56 3.56 .00 .02 .03 3.13 .34 .05 .07 .09 .40 .00 .45 .31 .38 (2).38 .19 .08 .15 .18 107 8-12 21 4 0 0 0 1 1 6 31 3 3 2 5 9 8 13 0 2.00 1.78 2.89 .00 23.78 (1) 4.67 .89 .00 .00 .00 .22 .22 1.33 6.89 . 67 .67 .44 1.11 (2) .24 .05 .00 .00 .00 .01 .01 .07 .36 .03 .03 .02 .06 .10 .09 .15 .00 1.23 13-18 0 0 0 0 ٥ 0 2 1 1 1 0 0 4 3 5 0 18 1 . 67 .22 .22 .22 .00 .00 .89 1.11 .00 4.00 .22 .00 .00 .00 .00 .00 .44 (1).00 .05 .00 .21 .00 .00 .00 .00 .02 .01 .01 .01 .00 .00 .03 .06 (2).01 .00 .00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19-24 0 0 0 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 (1).00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 (2).00 .00 .00 Ô 0 0 0 0 0 0 0 0 0 0 0 0 GT 24 0 0 0 0 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 (1).00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 (2).00 .00 .00 .00 19 20 57 0 450 19 41 33 43 62 10 6 9 ALL SPEEDS 52 33 12 20 4 4.44 12.67 100.00 9.56 13.78 1.33 4.22 .00 4.22 9.11 7.33 2.22 .89 2.00 13.78 7.33 2.67 4.44 (1) .22 .65 .00 5.16 .38 .71 .11 .05 .07 .10 .23 (2) .71 .14 .22 .23 .47 .38 .49

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ß

30

TABLE 5D

CLASS FREQUENCY (PERCENT) = 47.01

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

STABILITY CLASS D

	WIND DIRECTION FROM																		
	Speed Mph	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
	CALM	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	6
	(1)	.00	.02	00.	00.	00.	00.	00.	00.	.00.	00.	.00.	.02	.02	.02	.02	.02	.00	.15
	(2)	.00	.01	00.	00.	00.	00.	00.	00.	.00	00.	.00	.01	.01	.01	.01	.01	.00	.07
	C-3	128	86	67	56	64	48	69	79	62	41	41	27	43	48	79	147	0	1085
	(1)	3.12	2.10	1.63	1.37	1.56	1.17	1.68	1.93	1.51	1.00	1.00	.66	1.05	1.17	1.93	3.58	.00.	26.45
	(2)	1.47	.99	.77	.64	.73	.55	.79	.91	.71	.47	.47	.31	.49	.55	.91	1.68	.00	12.43
	4-7	238	92	30	34	40	76	88	211	235	53	41	30	71	113	115	482	0	1949
	(1)	5.80	2.24	.73	.83	.98	1.85	2.15	5.14	5.73	1.29	1.00	.73	1.73	2.75	2.80	11.75	.00.	47.51
	(2)	2.73	1.05	.34	.39	.46	.87	1.01	2.42	2.69	.61	.47	.34	.81	1.29	1.32	5.52	.00	22.34
	8-12	176	21	3	0	1	4	8	25	96	27	12	8	43	164	122	176	0	886
	(1)	4.29	.51	.07	00.	.02	.10	.20	.61	2.34	.66	.29	.20	1.05	4.00	2.97	4.29	00.	21.60
	(2)	2.02	.24	.03	00.	.01	.05	.09	.29	1.10	.31	.14	.09	.49	1.88	1.40	2.02	00.	10.15
	13-18	33	1	0	0	0	0	0	0	22	0	0	1	3	39	33	39	0	171
	(1)	.80	.02	00.	00.	00.	00.	00.	00.	.54	00.	.00.	.02	.07	.95	.80	.95	.00.	4.17
	(2)	.38	.01	00.	00.	00.	00.	00.	00.	.25	00.	.00	.01	.03	.45	.38	.45	.00	1.96
	19-24	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	3
	(1)	.02	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.05	00.	.07
	(2)	.01	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.02	00.	.03
	GT 24	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	(1)	.05	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	.00	00.	00.	.00	00.	.05
	(2)	.02	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	.00	00.	00.	.00	00.	.02
ALL	SPEEDS	578	201	100	90	105	128	165	315	415	121	94	67	161	365	350	847	0	4102
	(1)	14.09	4.90	2.44	2.19	2.56	3.12	4.02	7.68	10.12	2.95	2.29	1.63	3.92	8.90	8.53	20.65	.00	100.00
	(2)	6.62	2.30	1.15	1.03	1.20	1.47	1.89	3.61	4.76	1.39	1.08	.77	1.85	4.18	4.01	9.71	.00	47.01

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ţſ.

35.0 FT WIND DATA

31

TABLE 5E

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

STABILITY CLASS E

35.0 FT WIND DATA

CLASS FREQUENCY (PERCENT) = 26.28

WIND DIRECTION FROM

	Speed Mph	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
· ·	CALM	0	2	0	1	3	0	0	4	0	1	1	3	1	3	2	0	0	21
	(1)	00.	.09	00.	.04	.13	00.	00.	.17	00.	.04	.04	.13	.04	.13	.09	00.	00.	.92
	(2)	00.	.02	00.	.01	.03	00.	00.	.05	00.	.01	.01	.03	.01	.03	.02	00.	00.	.24
	C-3	57	20	14	13	16	23	27	70	97	121	145	182	173	145	202	181	0	1486
	(1)	2.49	.87	.61	.57	.70	1.00	1.18	3.05	4.23	5.28	6.32	7.94	7.54	6.32	8.81	7.89	.00.	64.81
	(2)	.65	.23	.16	.15	.18	.26	.31	.80	1.11	1.39	1.66	2.09	1.98	1.66	2.31	2.07	.00	17.03
	4-7	38	3	2	1	1	8	20	54	67	30	19	23	66	68	94	175	0	669
	(1)	1.66	.13	.09	.04	.04	.35	.87	2.35	2.92	1.31	.83	1.00	2.88	2.97	4.10	7.63	.00.	29.18
	(2)	.44	.03	.02	.01	.01	.09	.23	.62	.77	.34	.22	.26	.76	.78	1.08	2.01	.00	7.67
	8-12	12	1	0	0	0	0	0	12	18	6	1	0	5	19	18	18	0	110
	(1)	.52	.04	00.	.00	00.	00.	00.	.52	.78	.26	.04	00.	.22	.83	.78	.78	.00.	4.80
	(2)	.14	.01	00	.00	00.	00.	00.	.14	.21	.07	.01	00.	.06	.22	.21	.21	.00	1.26
	13-18	0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	0	0	6
	(1)	.00	00.	00.	00.	00.	00.	00.	00.	.22	00.	00.	00.	00.	00.	.04	00.	00.	.26
	(2)	.00	00.	00.	00.	00.	00.	00.	00.	.06	00.	00.	00.	00	00.	.01	00.	00.	.07
	19-24	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
	(1)	.00	00.	00.	00.	00.	.00	00.	00.	.04	00.	00.	00.	00.	00.	00.	00.	00.	.04
	(2)	.00	00.	00.	00.	00.	.00	00.	00.	.01	00.	00.	00.	00.	00.	00.	00.	00.	.01
	GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	.00	.00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
	(2)	.00	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00	00.	00.	00.	.00
ALL	SPEEDS	107	26	16	15	20	31	47	140	188	158	166	208	245	235	317	374	0	2293
	(1)	4.67	1.13	.70	.65	.87	1.35	2.05	6.11	8.20	6.89	7.24	9.07	10.68	10.25	13.82	16.31	.00.	100.00
	(2)	1.23	.30	.18	.17	.23	.36	.54	1.60	2.15	1.81	1.90	2.38	2.81	2.69	3.63	4.29	.00	26.28

(1) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ŧ.

.

TABLE 5F

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

35.0 FT	WIND DA	TA		STABIL	ITY CI	ASS F			CLASS	FREQU	ENCY (PERCEN	T) =	13.31				
							W	IND DI	RECTIO	N FROM	I							
SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAI
CALM	0	0	0	0	0	0	0	0	0	0	0	2	2	0	2	0	0	(
(1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.17	.17	.00	.17	.00	.00	. 52
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.02	.02	.00	.02	.00	.00	.0
C-3	22	9	5	4	3	8	11	23	39	82	168	214	193	102	105	68	0	105
(1)	1.89	.78	.43	.34	.26	.69	.95	1.98	3.36		14.47	18.43		8.79	9.04	5.86	.00	90.9
(2)	.25	.10	.06	.05	.03	.09	.13	.26	.45	.94	1.93	2.45	2.21	1.17	1.20	.78	.00	12.1
4-7	4	0	0	0	1	2	3	4	5	9	15	4	8	7	11	24	0	9
(1)	.34	.00	.00	.00	.09	.17	.26	.34	.43	.78	1.29	.34	.69	.60	.95	2.07	.00	8.3
(2)	.05	.00	.00	.00	.01	.02	.03	.05	.06	.10	.17	.05	.09	.08	.13	.28	.00	1.1
8-12	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	
(1)	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00	.00	.00	.09	.00	.00	.00	.00	.1
(2)	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.01	.00	.00	.00	.00	.0
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(1)	.00	.00	.00	.00	00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.0
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0
GT 24	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	
(1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.0
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0
L SPEEDS	26	9	5	4	4	10	14	28	44	91	183	220	204	109	118	92	0	116
(1)	2.24	.78	.43	.34	.34	.86	1.21	2.41	3.79		15.76				10.16	7.92		100.0
(2)	.30	.10	.06	.05	.05	.11	.16	.32	.50	1.04	2.10	2.52	2.34	1.25	1.35	1.05	.00	13.3

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

33

ß

TABLE 5G

CLASS FREQUENCY (PERCENT) = 3.36

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION STABILITY CLASS G

							W	IND DI	RECTIO	N FROM	1							
SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00.	00.	.00	00.	.00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	.00
(2)	.00	.00	00.	.00	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	.00
C-3	11	3	2	3	1	3	6	13	16	20	38	47	37	37	21	10	0	268
(1)	3.75	1.02	.68	1.02	.34	1.02	2.05	4.44	5.46	6.83	12.97	16.04	12.63	12.63	7.17	3.41	.00.	91.47
(2)	.13	.03	.02	.03	.01	.03	.07	.15	.18	.23	.44	.54	.42	.42	.24	.11	.00	3.07
4-7	0	0	0	0	0	1	1	2	3	4	1	3	1	1	0	8	0	25
(1)	.00	00.	00.	00.	00.	.34	.34	.68	1.02	1.37	.34	1.02	.34	.34	00.	2.73	00.	8.53
(2)	.00	00.	00.	00.	00.	.01	.01	.02	.03	.05	.01	.03	.01	.01	00.	.09	00.	.29
8-12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00.	00.	00.~	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
(2)	.00	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	00.	.00	00.	.00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	.00
(2)	00.	.00	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00	00.	.00	00.	.00
19-24 (1) (2)	0 00. 00.	0 00. 00.	0 .00 .00	0 .00 .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	,00	0 00. 00.	0 00. 00.	.00	0 00. 00.	0 .00 .00	0 00. 00.	0 .00 .00
GT 24 (1) (2)	0 00. 00.	0 00. 00.	0 .00 .00	0 .00. .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00	.00	0 00. 00.	0 00. 00.	.00	0 .00 .00	0 00. 00.	0 00. 00.	0 .00. .00
ALL SPEEDS (1) (2)	11 3.75 .13	3 1.02 .03	2 .68 .02	3 1.02 .03	1 .34 .01	4 1.37 .05	7 2.39 .08	15 5.12 .17	19 6.48 .22	24 8.19 .28	13.31	50 17.06 .57	38 12.97 .44	38 12.97 .44	21 7.17 .24	18 6.14 .21	0 00. 00.	293 100.00 3.36

(1) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C- CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

35.0 FT WIND DATA

ff

TABLE 5H

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

35.0 FT	35.0 FT WIND DATA				LITY C	LASS A	LL		CLASS	FREQU	ENCY (PERCEN	T) = 1	00.00				
			e a				W	IND DI	RECTIO	N FROM								
Speed Mph	N	NNE	NE	ENE	E	ese	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
CALM	1	3	0	1	3	0	0	4	0	1	1	6	4	4	5	1	0	34
(1)	.01	.03	00.	.01	.03	00.	00.	.05	00.	.01	.01	.07	.05	.05	.06	.01	.00	.39
(2)	.01	.03	00.	.01	.03	00.	00.	.05	00.	.01	.01	.07	.05	.05	.06	.01	.00	.39
C-3	230	133	98	88	93	90	123	190	215	266	395	474	447	333	408	411	0	3994
(1)	2.64	1.52	1.12	1.01	1.07	1.03	1.41	2.18	2.46	3.05	4.53	5.43	5.12	3.82	4.68	4.71	.00.	45.77
(2)	2.64	1.52	1.12	1.01	1.07	1.03	1.41	2.18	2.46	3.05	4.53	5.43	5.12	3.82	4.68	4.71	.00	45.77
4-7	351	127	42	50	69	161	166	331	358	103	76	62	150	197	242	761	0	3246
(1)	4.02	1.46	. 48	.57	.79	1.85	1,90	3.79	4.10	1.18	.87	.71	1.72	2.26	2.77	8.72	00.	37.20
(2)	4.02	1.46	. 48	.57	.79	1.85	1,90	3.79	4.10	1.18	.87	.71	1.72	2.26	2.77	8.72	00	37.20
8-12	234	33	4	0	1	6	13	57	171	40	20	13	60	197	152	239	0	1240
(1)	2.68	.38	.05	.00	.01	.07	.15	.65	1.96	.46	.23	.15	.69	2.26	1.74	2.74	.00.	14.21
(2)	2.68	.38	.05	.00	.01	.07	.15	.65	1.96	.46	.23	.15	.69	2.26	1.74	2.74	.00	14.21
13-18	36	2	0	0	0	0	0	2	29	1	1	1	3	43	37	51	0	206
(1)	.41	.02	00.	00.	00.	00.	00.	.02	.33	.01	.01	.01	.03	.49	.42	.58	00.	2.36
(2)	.41	.02	00.	00.	00.	00.	00.	.02	.33	.01	.01	.01	.03	.49	.42	.58	00.	2.36
19-24	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	4
(1)	.01	00.	00.	00.	00.	00.	00.	00.	.01	00.	00.	00.	00.	00.	00.	.02	00.	.05
(2)	.01	00.	00.	00.	00.	00.	00.	00.	.01	00.	00.	00.	00.	00.	00.	.02	00.	.05
GT 24	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	.02	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.02
(2)	.02	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00	.02
ALL SPEEDS	855	298	144	139	166	257	302	584	774	411	493	556	664	774		1465	0	8726
(1)	9.80	3.42	1,65	1.59	1.90	2.95	3.46	6.69	8.87	4.71	5.65	6.37	7.61	8.87		16.79	00.	100.00
(2)	9.80	3.42	1,65	1.59	1.90	2.95	3.46	6.69	8.87	4.71	5.65	6.37	7.61	8.87		16.79	00.	100.00

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

Ħ

TABLE 6A

NNW VRBL TOTAL

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT V	IND D	ATA		STABIL	ТҮ СІ	ASS A		(CLASS	FREQUE	NCY (1	PERCENT)	=	.05	
							WI	ND DIR	ECTION	FROM					
SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW
CD1 11	~	•	~	•	•	•	•	-	•	•	•	-	-	-	-

CALM	Ö	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
C-3	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4-7	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2
(1)	25.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00			.00	.00	.00	50.00
(2)	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.02
8-12	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
(1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00	25.00	.00	25.00
(2)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.01
13-18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
13-18 (1)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	25.00	.00	25.00
														.00				-
(1)	.00	.00. .00	.00 .00	00. 00. 0	00. 00.	00. 00.	00. 00. 0	00. 00.00	.00 .00	00. 00.	00. 00. 0	00. 00.	00. 00. 0	00. 00. 0	00. 00. 0	25.00 .01 0	.00. .00	25.00 .01 0
(1) (2) 19-24 (1)	00. 00 00.00	00. 00. 0	00. 00. 0	00. 00. 0	00. 00 0	00. 00. 00.00	00. 00. 0	00. 00. 00.00	.00 .00 .00	00. 00. 0	00. 00. 0	00. 00. 0	00. 00. 0 .00	00. 00. 00.00	00. 00. 0 .00	25.00 .01 .00	.00 .00 .00	25.00 .01 .00
(1) (2) 19-24	.00 .00	.00. .00	.00 .00	00. 00. 0	00. 00.	00. 00.	00. 00. 0	00. 00.00	.00 .00	00. 00.	00. 00. 0	00. 00.	00. 00. 0	00. 00. 00.00	00. 00. 0	25.00 .01 0	.00. .00	25.00 .01 0
(1) (2) 19-24 (1) (2) GT 24	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	00. 00. 00. 00. 00.	00. 00. 00.00 00.00	00. 00. 00. 00. 00.	25.00 .01 .00 .00 .00	.00 .00 .00 .00	25.00 .01 0 .00 .00
(1) (2) 19-24 (1) (2) GT 24 (1)	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	00. 00. 00. 00. 00. 00.	.00 .00 .00 .00 .00	00. 00 00.00 00.00	25.00 .01 .00 .00 .00	.00 .00 .00 .00 .00	25.00 .01 0 .00 .00 0 .00
(1) (2) 19-24 (1) (2) GT 24	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00	00. 00. 00. 00. 00.	25.00 .01 .00 .00 .00	.00 .00 .00 .00	25.00 .01 0 .00 .00
(1) (2) 19-24 (1) (2) GT 24 (1) (2) ALL SPEEDS	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	00. 00. 00. 00. 00. 00. 00. 00.	.00 .00 .00 .00 .00 .00 .00	00. 00 00.00 00 00 00 00	25.00 .01 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	25.00 .01 0 .00 .00 .00 .00 .00
(1) (2) 19-24 (1) (2) GT 24 (1) (2)	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	00. 00. 00. 00. 00. 00. 00. 00.	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	25.00 .01 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	25.00 .01 0 .00 .00 0 .00

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ţ1

.

TABLE 6B

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

STABILITY CLASS B

297.0 FT WIND DATA

CLASS FREQUENCY (PERCENT) = .36

WIND	DIRECTION	FROM

	Speed Mph	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	
	CALM (1) (2)	0 .00 .00	0 00. 00.	0 .00 .00	0 .00 .00	0 .00. .00	0 00. 00.	0 .00. .00	0 00. 00.	0 00. 00.	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00 .00	0 .00. .00	0 .00 .00	0 00. 00.	0 .00 .00	
	C-3 (1) (2)	0 .00 .00	0 00. 00.	0 00. 00.	0 00. 00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 .00 .00	0 .00 .00	0 00. 00.	0 00. 00.	0 00. 00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 .00. .00	
	4-7 (1) (2)	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	1 3.23 .01	0 00. 00.	0 00. 00.	0 .00 .00	0 .00. .00	0 00. 00.	0 00. 00.	0 00. 00	0 00. 00	0 .00. .00	0 00. 00.	0 00. 00.	1 3.23 .01	
	8-12 (1) (2)	0 .00 .00	2 6.45 .02	1 3.23 .01	0 00. 00.	0 00. 00.	0 00. 00.	1 *3.23 .01	3 9.68 .03	4 12.90 .05	0 00. 00.	0 00. 00.	0 00. 00.	0 .00. .00	0 00. 00.	0 00. 00.	0 00. 00.	0 .00. .00	11 35.48 .13	
	13-18 (1) (2)	3 9.68 .03	1 3.23 .01	0 00. 00.	0 00. 00.	0 00. 00.	0 .00. .00	0 00. 00.	0 00. 00.	0 .00. .00	0 00. 00.	0 .00. .00	0 00. 00.	0 .00. .00	0 00. 00.	0 00. 00.	4 12.90 .05	0 00. 00.	8 25.81 .09	
·	19-24 (1) (2)	1 3.23 .01	0 .00 .00	0 .00. .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 .00 .00	0 00. 00.	0 00. 00.	8 25.81 .09	0 00. 00.	9 29.03 .10	
	GT 24 (1) (2)	0 00. 00.	0 00. 00.	0 00. 00.	0 .00. .00	0 .00 .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 .00. .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	2 6.45 .02	0 00. 00.	2 6.45 .02	
IA	LL SPEEDS (1) (2)	12.90 .05	3 9.68 .03	1 3.23 .01	0 .00. .00	0 00. 00.	1 3.23 .01	1 3.23 .01	3 9.68 .03		0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	14 45.16 .16	0 00. 00.	31 100.00 .36	

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

37

ß

TABLE 6C

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT WIND DATA	STABILITY CLASS C	CLASS FREQUENCY (PERCENT) = 1	. 82

WIND	DIRECTION	FROM
------	-----------	------

SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(1)	.00	00.	.00	00.	00.	00.	00.	.00	00.	.00	00.	00.	00.	00.	00.	00.	.00.	.00.	
(2)	.00	00	.00	00.	00.	00.	00.	.00	00.	.00	00.	00.	00.	00.	00.	00.	.00	.00	
C-3	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0	1	0	5	
(1)	00.	00.	.63	.63	00.	1.26	00.	00.	00.	00.	00.	00.	00.	00.	00.	.63	00.	3.14	
(2)	00.	00.	.01	.01	00.	.02	00.	00.	00.	00	00	00.	00.	00.	00.	.01	00.	.06	
4-7	4	0	0	0	1	4	6	2	1	0	0	0	0	0	4	9	0	31	
(1)	2.52	.00	00.	00.	.63	2.52	3.77	1.26	.63	00.	00.	00.	.00.	00.	2.52	5.66	.00.	19.50	
(2)	.05	.00	00.	00.	.01	.05	.07	.02	.01	00.	00.	00.	.00	00.	.05	.10	.00	.36	
8-12	16	5	2	0	2	2	5	5	10	0	0	3	0	5	0	19	0	74	
(1)	10.06	3.14	1.26	00.	1.26	1.26	3.14	3.14	6.29	00.	00.	1.89	.00.	3.14	00.	11.95	.00.	46.54	
(2)	.18	.06	.02	00.	.02	.02	.06	.06	.11	00	00.	.03	.00	.06	00.	.22	.00	.85	
13-18	6	1	0	0	0	0	0	2	3	0	1	0	2	1	3	12	0	31	
(1)	3.77	.63	.00.	00.	00.	00.	00.	1.26	1.89	00.	.63	00.	1.26	.63	1.89	7.55	.00	19.50	
(2)	.07	.01	.00	00.	00.	00.	00.	.02	.03	00	.01	00.	.02	.01	.03	.14	.00	.36	
19-24	7	0	0	0	0	0	1	1	0	0	0	0	0	0	0	6	0	15	
(1)	4.40	00.	.00	00.	00.	00.	.63	.63	.00	00.	00.	00.	00.	00.	00.	3.77	00.	9.43	
(2)	.08	00.	.00	00.	00.	00.	.01	.01	.00	00.	00.	00.	00.	00.	00.	.07	00.	.17	
GT 24	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	3	
(1)	.63	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.63	.63	00.	1.89	
(2)	.01	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.01	.01	00.	.03	
ALL SPEEDS (1) (2)	34 21.38 .39	6 3.77 .07	3 1.89 .03	1 .63 .01	3 1.89 .03	8 5.03 .09	12 7.55 .14	10 6.29 .11	14 8.81 .16	0 00. 00.	1 .63 .01	3 1.89 .03	2 1.26 .02	6 3.77 .07	8 5.03 .09		0 .00 .00	159 100.00 1.82	

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ß

TABLE 6D

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT WIND DATA	STABILITY CLASS D	CLASS FREQUENCY (PERCENT) = 51.52	
		WIND DIRECTION FROM	

SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	.00	00.	.00
(2)	.00	00.	00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	.00	00.	.00
C-3	66	43	45	32	48	50	72	28	26	9	8	6	11	13	39	68	0	564
(1)	1.47	.96	1.00	.71	1.07	1.11	1.60	.62	.58	.20	.18	.13	.24	.29	.87	1.51	00.	12.54
(2)	.76	.49	.52	.37	.55	.57	.83	.32	.30	.10	.09	.07	.13	.15	.45	.78	00.	6.46
4-7	113	68	41	19	46	99	153	167	149	29	12	14	11	23	34	234	0	1212
(1)	2.51	1.51	.91	.42	1.02	2.20	3.40	3.71	3.31	.65	.27	.31	.24	.51	.76	5.20	00.	26.96
(2)	1.29	.78	.47	.22	.53	1.13	1.75	1.91	1.71	.33	.14	.16	.13	.26	.39	2.68	00.	13.89
8-12	192	51	23	19	11	22	44	148	243	39	36	21	67	132	76	306	0	1430
(1)	4.27	1.13	.51	.42	.24	.49	.98	3.29	5.40	.87	.80	.47	1.49	2.94	1.69	6.81	00.	31.81
(2)	2.20	.58	.26	.22	.13	.25	.50	1.70	2.78	.45	.41	.24	.77	1.51	.87	3.51	00.	16.39
13-18	186	25	2	0	2	3	14	22	93	11	11	10	63	167	101	250	0	960
(1)	4.14	.56	.04	00.	.04	.07	.31	.49	2.07	.24	.24	.22	1.40	3.71	2.25	5.56	00.	21.35
(2)	2.13	.29	.02	00.	.02	.03	.16	.25	1.07	.13	.13	.11	.72	1.91	1.16	2.87	00.	11.00
19-24	55	2	0	0	0	0	0	9	21	2	1	1	12	40	29	99	0	271
(1)	1.22	.04	00.	00.	00.	00.	00.	.20	.47	.04	.02	.02	.27	.89	.65	2.20	00.	6.03
(2)	.63	.02	00.	00.	00.	00.	00.	.10	.24	.02	.01	.01	.14	.46	.33	1.13	00.	3.11
GT 24	9	0	0	0	0	0	0	0	1	0	0	0	1	1	2	45	0	59
(1)	.20	00.	.00	00.	00.	00.	00.	00.	.02	.00.	00.	00.	.02	.02	.04	1.00	00.	1.31
(2)	.10	00.	.00	00.	00.	00.	00.	00.	.01	.00	00.	00.	.01	.01	.02	.52	00.	.68
ALL SPEEDS (1) (2)	621 13.81 7.12	189 4.20 2.17	111 2.47 1.27	70 1.56 .80	107 2.38 1.23	174 3.87 1.99	283 6.29 3.24		533 11.85 6.11	90 2.00 1.03	68 1.51 .78	52 1.16 .60	165 3.67 1.89	376 8.36 4.31		1002 22.29 11.48	0 00. 00.	4496 100.00 51.52

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

8

.

TABLE 6E

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT WIND DATA	STABILITY CLASS E	CLASS	FREQUENCY	(PERCENT)	-	31.78
	· ·	WIND DIRECTION	N FROM			

	SPEED MPH	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	
	CALM (1) (2)	1 .04 .01	1 .04 .01	1 .04 .01	1 .04 .01	0 00. 00.	0 00. 00.	1 .04 .01	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	1 .04 .01	0 .00. .00	0 00. 00.	0 00. 00.	6 .22 .07	
	C-3 (1) (2)	95 3.43 1.09	67 2.42 .77	60 2.16 .69	62 2.24 .71	71 2.56 .81	102 3.68 1.17	89 3.21 1.02	57 2.06 .65	18 .65 .21	18 .65 .21	18 .65 .21	11 .40 .13	10 .36 .11	18 .65 .21	35 1.26 .40	82 2.96 .94	0 .00. .00	813 29.32 9.32	
	4-7 (1) (2)	125 4.51 1.43	19 .69 .22	6 .22 .07	8 .29 .09	8 .29 .09	30 1.08 .34	107 3.86 1.23	163 5.88 1.87	90 3.25 1.03	36 1.30 .41	14 .50 .16	15 .54 .17	26 .94 .30	27 .97 .31	56 2.02 .64	309 11.14 3.54	0 .00. .00	1039 37.47 11.91	
	8-12 (1) (2)	73 2.63 .84	7 .25 .08	1 .04 .01	1 .04 .01	2 .07 .02	2 .07 .02	26 .94 .30	59 2.13 .68	79 2.85 .91	26 .94 .30	10 .36 .11	14 .50 .16	53 1.91 .61	70 2.52 .80	49 1.77 .56	178 6.42 2.04	0 .00. .00	650 23.44 7.45	
	13-18 (1) (2)	38 1.37 .44	4 .14 .05	0 00. 00.	0 00. 00	0 00. 00.	0 00. 00.	0 00. 00.	7 .25 .08	25 .90 .29	10 .36 .11	2 .07 .02	3 .11 .03	19 .69 .22	42 1.51 .48	18 .65 .21	73 2.63 .84	0 00. 00.	241 8.69 2.76	
	19-24 (1) (2)	2 .07 .02	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	2 .07 .02	4 .14 .05	0 .00. .00	0 .00. .00	0 00. 00.	0 .00. .00	3 .11 .03	4 .14 .05	6 .22 .07	0 00. 00.	21 .76 .24	
	GT 24 (1) (2)	0 00. 00.	0 00. 00.	0 00. 00.	0 .00 .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	3 .11 .03	0 .00. .00	0 .00. .00	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00.	0 00. 00	0 .00 .00	3 .11 .03	
ALL	SPEEDS (1) (2)	334 12.04 3.83	98 3.53 1.12	68 2.45 .78	72 2.60 .83	81 2.92 .93	134 4.83 1.54	223 8.04 2.56	288 10.39 3.30	219 7.90 2.51	90 3.25 1.03	44 1.59 .50	43 1.55 .49	108 3.89 1.24	161 5.81 1.85	162 5.84 1.86	648 23.37 7.43	0 .00 .00	2773 100.00 31.78	

(1) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C- CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ţ٢

40

÷۵,

TABLE 6F

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 12.43

WIND DIRECTION FROM	WIND	DI	RECTION	FROM
---------------------	------	----	---------	------

Speed Mph	N	NNE	NE	ene	E	ese	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
CALM	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2
(1)	.09	00.	00.	00.	00.	00.	00.	00.	00.	.09	00.	00.	00.	00.	00.	00.	00.	.18
(2)	.01	00.	00.	00.	00.	00.	00.	00.	00.	.01	00.	00.	00.	00.	00.	00.	00.	.02
C-3	56	41	30	18	19	44	43	38	20	15	13	15	12	12	21	35	0	432
(1)	5.16	3.78	2.76	1.66	1.75	4.06	3.96	3.50	1.84	1.38	1.20	1.38	1.11	1.11	1.94	3.23	00.	39.82
(2)	.64	.47	.34	,21	.22	.50	.49	.44	.23	.17	.15	.17	.14	.14	.24	.40	00.	4.95
4-7	64	9	1	3	1	13	59	65	25	16	13	16	21	16	28	122	0	472
(1)	5.90	.83	.09	.28	.09	1.20	5.44	5.99	2.30	1.47	1.20	1.47	1.94	1.47	2.58	11.24	.00.	43.50
(2)	.73	.10	.01	.03	.01	.15	.68	.74	.29	.18	.15	.18	.24	.18	.32	1.40	.00	5.41
8-12	14	3	1	0	0	1	5	12	10	1	4	3	9	13	6	79	0	161
(1)	1.29	.28	.09	.00.	00.	.09	.46	1.11	.92	.09	.37	.28	.83	1.20	.55	7.28	.00.	14.84
(2)	.16	.03	.01	.00	00.	.01	.06	.14	.11	.01	.05	.03	.10	.15	.07	.91	.00	1.85
13-18	2	0	0	0	0	0	0	0	1	2	0	0	1	3	0	9	0	18
(1)	.18	00.	00.	.00	00.	00.	00.	00.	.09	.18	00.	00.	.09	.28	00.	.83	00.	1.66
(2)	.02	00.	00.	.00	00.	00.	00.	00.	.01	.02	00.	00.	.01	.03	00.	.10	00.	.21
19-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00.
(2)	.00	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
GT 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	.00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
(2)	.00	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
ALL SPEEDS	137	53	32	21	20	58	107	115	56	35	30	34	43	44	55		0	1085
(1)	12.63	4.88	2.95	1.94	1.84	5.35	9.86	10.60	5.16	3.23	2.76	3.13	3.96	4.06	5.07		00.	100.00
(2)	1.57	.61	.37	.24	.23	.66	1.23	1.32	.64	.40	.34	.39	.49	.50	.63		00.	12.43

(1) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C- CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

fi.

TABLE 6G

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 2.04

WIND D	IRECTION	FROM
--------	----------	------

	Peed IPh	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
C	CALM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	00.	00.	00:	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00.	00.	.00.	00.	.00
	(2)	00	00	00:	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	.00	00.	.00
	C-3	4	3	0	2	2	3	4	7	3	4	3	3	4	0	2	4	0	48
	(1)	2.25	1.69	00.	1.12	1.12	1.69	2.25	3.93	1.69	2.25	1.69	1.69	2.25	00.	1.12	2.25	.00	26.97
	(2)	.05	.03	00.	.02	.02	.03	.05	.08	.03	.05	.03	.03	.05	00.	.02	.05	.00	.55
	4-7	4	0	0	0	1	4	8	17	5	6	6	5	8	6	5	12	0	87
	(1)	2.25	00.	00.	00.	.56	2.25	4.49	9.55	2.81	3.37	3.37	2.81	4.49	3.37	2.81	6.74	00.	48.88
	(2)	.05	00.	00.	00.	.01	.05	.09	.19	.06	.07	.07	.06	.09	.07	.06	.14	00.	1.00
٤	8-12	3	0	0	0	0	1	2	1	3	0	1	1	8	1	2	18	0	41
	(1)	1.69	00.	00.	.00	00.	.56	1.12	.56	1.69	00.	.56	.56	4.49	.56	1.12	10.11	00.	23.03
	(2)	.03	00	00	.00	00.	.01	.02	.01	.03	00.	.01	.01	.09	.01	.02	.21	00.	.47
13	3-18	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2
	(1)	00.	.00	.00	00.	00.	00.	00.	.00	.56	00.	.56	00.	00.	00.	00.	00.	00.	1.12
	(2)	00.	.00	.00	00.	00.	00.	00.	.00	.01	00.	.01	00.	00.	00.	00.	00.	00.	.02
19	9-24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	.00
	(2)	00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	.00
G	T 24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(1)	00.	.00.	00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
	(2)	00.	.00	00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00
ALL SP	EEDS	11	3	0	2	3	8	14	25	12	10	11	9	20	7	9	34	0	178
	(1)	6.18	1.69	00.	1.12	1.69	4.49	7.87	14.04	6.74	5.62	6.18	5.06	11.24	3.93	5.06	19.10	00.	100.00
	(2)	.13	.03	00.	.02	.03	.09	.16	.29	.14	.11	.13	.10	.23	.08	.10	.39	00.	2.04

(1) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
 (2) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 C- CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ţ٢

TABLE 6H

VERMONT YANKEE JAN 05 - DEC 05 METEOROLOGICAL DATA JOINT FREQUENCY DISTRIBUTION

297.0 FT WIND DATA STABILITY CLASS ALL

-

CLASS FREQUENCY (PERCENT) = 100.00

WIND DIRECTION FROM

SPEED MPH	N	NNE	NĒ	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
CALM	2	1	1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	8
(1)	.02	.01	.01	.01	00.	00.	.01	00.	00.	.01	00.	00.	.00	.01	00.	00.	00.	.09
(2)	.02	.01	.01	.01	00.	00.	.01	00.	00.	.01	00.	00.	.00	.01	00.	00.	00.	.09
C-3	221	154	136	115	140	201	208	130	67	46	42	35	37	43	97	190	0	1862
(1)	2.53	1.76	1.56	1.32	1.60	2.30	2.38	1.49	.77	.53	.48	.40	.42	.49	1.11	2.18	00.	21.34
(2)	2.53	1.76	1.56	1.32	1.60	2.30	2.38	1.49	.77	.53	.48	.40	.42	.49	1.11	2.18	00.	21.34
4 -7	311	96	48	30	57	151	333	414	270	87	45	50	66	73	127	686	0	2844
(1)	3.56	1.10	.55	.34	.65	1.73	3.82	4.74	3.09	1.00	.52	.57	.76	.84	1.46	7.86	00.	32.59
(2)	3.56	1.10	.55	.34	.65	1.73	3.82	4.74	3.09	1.00	.52	.57	.76	.84	1.46	7.86	00.	32.59
8-12	298	68	28	20	15	28	83	228	349	66	51	42	137	221	133	601	0	2368
(1)	3.42	.78	. 32	.23	.17	.32	.95	2.61	4.00	.76	.58	.48	1.57	2.53	1.52	6.89	00.	27.14
(2)	3.42	.78	. 32	.23	.17	.32	.95	2.61	4.00	.76	.58	.48	1.57	2.53	1.52	6.89	00.	27.14
13-18	235	31	2	0	2	3	14	31	123	23	15	13	85	213	122	349	0	1261
(1)	2.69	.36	.02	00.	.02	.03	.16	.36	1.41	.26	.17	.15	.97	2.44	1.40	4.00	00.	14.45
(2)	2.69	.36	.02	00.	.02	.03	.16	.36	1.41	.26	.17	.15	.97	2.44	1.40	4.00	00.	14.45
19-24	65	2	0	0	0	0	1	12	25	2	1	1	12	43	33	119	0	316
(1)	.74	.02	00.	00.	00.	00.	.01	.14	.29	.02	.01	.01	.14	.49	.38	1.36	00.	3.62
(2)	.74	.02	00.	00.	00.	00.	.01	.14	.29	.02	.01	.01	.14	.49	.38	1.36	00.	3.62
GT 24	10	0	0	0	0	0	0	0	4	0	0	0	1	1	3	48	0	67
(1)	.11	00.	00.	00.	00.	00.	00.	00.	.05	00.	.00.	00.	.01	.01	.03	.55	00.	.77
(2)	.11	00.	00.	00.	00.	00.	00.	00.	.05	00.	.00	00.	.01	.01	.03	.55	00.	.77
ALL SPEEDS	1142	352	215	166	214	383	640	815	838	225	154	141	338	595		1993	0	8726
(1)	13.09	4.03	2.46	1.90	2.45	4.39	7.33	9.34	9.60	2.58	1.76	1.62	3.87	6.82		22.84	00.	100.00
(2)	13.09	4.03	2.46	1.90	2.45	4.39	7.33	9.34	9.60	2.58	1.76	1.62	3.87	6.82		22.84	00.	100.00

(1) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2) -PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD C= CALM (WIND SPEED LESS THAN OR EQUAL TO .95 MPH)

ß

APPENDIX A

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT Supplemental Information for 2005

Facility: Vermont Yankee Nuclear Power Station

Licensee: Entergy Nuclear Northeast Vermont Yankee

1A. ODCM DOSE AND DOSE RATE LIMITS -

ODCM Controls

Dose Limit

- a. <u>Noble Gases</u>
 - 3/4.3.1 Total body dose rate
 - 3/4.3.1 Skin dose rate
 - 3/4.3.2 Gamma air dose
 - 3/4.3.2 Gamma air dose
 - 3/4.3.2 Beta air dose
 - 3/4.3.2 Beta air dose

500 mrem/yr 3000 mrem/yr 5 mrad in a quarter 10 mrad in a year 10 mrad in a quarter 20 mrad in a year

b. <u>Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form With</u> <u>Half-Lives Greater Than 8 Days</u>

3/4.3.1 Organ dose rate 3/4.3.3 Organ dose 3/4.3.3 Organ dose

c. <u>Liquids</u>

3/4.2.2 Total body dose 3/4.2.2 Total body dose 3/4.2.2 Organ dose 3/4.2.2 Organ dose

1500 mrem/yr 7.5 mrem in a quarter 15 mrem in a year

1.5 mrem in a quarter3 mrem in a year5 mrem in a quarter10 mrem in a year

2A. <u>ODCM LIMITS - CONCENTRATION</u>

ODCM Control

- a. <u>Noble Gases</u>
- b. <u>Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form With</u> <u>Half-Lives</u>

Greater Than 8 Days

No ECL Limits

No ECL Limits

<u>Limit</u>

A-1

c. <u>Liquids</u>

3/4.2.1 Sum of the fractions of ECL excluding noble gases	
(10CFR20, Appendix B,	
Table 2, Column 2):	≤ 1.0E+01

3/4.2.1 Total noble gas concentration: $\leq 2E-04 \ \mu Ci/cc$

3. <u>AVERAGE ENERGY</u>

Provided below are the average energy (E) of the radionuclide mixture in releases of fission and activation gases, if applicable.

- a. Average gamma energy: Not Applicable
- b. Average beta energy: Not Applicable

4. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Provided below are the methods used to measure or approximate the total radioactivity in effluents and the methods used to determine radionuclide composition.

a. <u>Fission and Activation Gases</u>

Continuous stack monitors monitor the gross Noble Gas radioactivity released from the plant stack. Because release rates are normally below the detection limit of these monitors, periodic grab samples are taken and analyzed for the gaseous isotopes present. These are used to calculate the individual isotopic releases indicated in Table 1B and the totals of Table 1A. The error involved in these steps may be approximately ± 23 percent.

b. <u>Iodines</u>

Continuous isokinetic samples are drawn from the plant stack through a particulate filter and charcoal cartridge. The filters and cartridges are normally removed weekly and are analyzed for Iodine-131, 132, 133, 134, and 135. The error involved in these steps may be approximately ± 18 percent.

×.

c. <u>Particulates</u>

The particulate filters described in b. above are also counted for particulate radioactivity. The error involved in this sample is also approximately ± 18 percent.

d. <u>Tritium</u>

ODCM Table 4.3.1 requires as a minimum that grab samples from the plant stack be taken monthly and analyzed for tritium. The stack tritium collection has been upgraded with silica gel columns and continuous sampling of stack effluents. The error involved in this sample is approximately ± 10 percent.

e. <u>Waste Oil</u>

Prior to issuing the permit to burn a drum of radioactively contaminated waste oil, one liter of the oil is analyzed by gamma spectroscopy to determine concentrations of radionuclides that meet or exceed the LLD for all of the liquid phase radionuclides listed in ODCM Table 4.2.1.

Monthly, samples from drums that were issued burn permits are sent to the contracted laboratory for compositing and analysis. The lab analyzes for tritium, alpha, Fe-55, Sr-89, and Sr-90 on the composite sample.

The error involved in this sample is approximately ± 15 percent.

f. Liquid Effluents

If radioactive liquid effluents are to be released from the facility, they are continuously monitored. Measurements are also required on a representative sample of each batch of radioactive liquid effluents released. For each batch, station records are retained of the total activity (mCi) released, concentration (μ Ci/ml) of gross radioactivity, volume (liters), and approximate total quantity of water (liters) used to dilute the liquid effluent prior to release to the Connecticut River.

Each batch of radioactive liquid effluents to be released is analyzed for gross gamma and gamma isotopic radioactivity. A monthly proportional composite sample, comprising an aliquot of each batch released during a month, is analyzed for tritium and gross alpha radioactivity. A quarterly proportional composite sample, comprising an aliquot of each batch released during a quarter, is analyzed for Sr-89, Sr-90, and Fe-55.

5. <u>BATCH RELEASES</u>

a. <u>Liquid</u>

There were no routine liquid batch releases during the reporting period.

b. Gaseous

Waste oil was burned during the first quarter and was considered to be a continuous release.

The gaseous releases from burning waste oil are treated as either batch or continuous releases based on the total hours of burning in a calendar quarter.

All other atmospheric discharges were recorded as continuous elevated releases from the main plant stack.

6. <u>ABNORMAL RELEASES</u>

a. Liquid

There were no non-routine liquid releases during the reporting period.

b. <u>Gaseous</u>

There were no non-routine gaseous releases (measured) during the reporting period.

APPENDIX B

LIQUID HOLDUP TANKS

<u>Requirement</u> Technical Specification 3.8.D.1 limits the quantity of radioactive material contained in any outside tank. With the quantity of radioactive material in any outside tank exceeding the limits of Technical Specification 3.8.D.1, a description of the events leading to this condition is required in the next annual Radioactive Effluent Release Report per ODCM Section 10.1.

.

<u>Response</u>: The limits of Technical Specification 3.8.D.1 were not exceeded during this reporting period.

.....

APPENDIX C

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

- <u>Requirement</u>: Radioactive liquid effluent monitoring instrumentation channels are required to be operable in accordance with ODCM Table 3.1.1. If an inoperable radioactive liquid effluent monitoring instrument is not returned to operable status prior to a release pursuant to Note 4 of Table 3.1.1, an explanation in the next annual Radioactive Effluent Release Report of the reason(s) for delay in correcting the inoperability are required per ODCM Section 10.1.
- <u>Response</u>: Since the requirements of ODCM Table 3.1.1 governing the operability of radioactive liquid effluent monitoring instrumentation were met for this reporting period, no response is required.

APPENDIX D

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

Requirement: Radioactive gaseous effluent monitoring instrumentation channels are required to be operable in accordance with ODCM Table 3.1.2. If inoperable gaseous effluent monitoring instrumentation is not returned to operable status within 30 days pursuant to Note 5 of Table 3.1.2, an explanation in the next annual Radioactive Effluent Release Report of the reason(s) for the delay in correcting the inoperability is required per ODCM Section 10.1.

<u>Response</u>: Since the requirements of ODCM Table 3.1.2 governing the operability of radioactive gaseous effluent monitoring instrumentation were met for this reporting period, no response is required.

APPENDIX E

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

- <u>Requirement</u>: The radiological environmental monitoring program is conducted in accordance with ODCM Control 3/4.5.1. With milk samples no longer available from one or more of the sample locations required by ODCM Table 3.5.1, ODCM 10.1 requires the following to be included in the next annual Radioactive Effluent Release Report: (1) identify the cause(s) of the sample(s) no longer being available, (2) identify the new location(s) for obtaining available replacement samples and (3) include revised ODCM figure(s) and table(s) reflecting the new location(s).
- <u>Response</u>: No changes were needed in the milk sampling locations as specified in ODCM Table 3.5.1 and implemented in ODCM Table 7.1 during the reporting year.

APPENDIX F

LAND USE CENSUS

<u>Requirement</u>: A land use census is conducted in accordance with ODCM Control 3/4.5.2. With a land use census identifying a location(s) that yields at least a 20 percent greater dose or dose commitment than the values currently being calculated pursuant to ODCM Control 4.3.3, the new location(s) must be identified in the next Annual Radioactive Effluent Release Report.

Response: The Land Use Census was completed during the third quarter of 2005. No significant land use changes from the previous year's census were identified. As a result, no locations were identified which yielded a 20 percent greater dose or dose commitment than the values currently being calculated pursuant to ODCM Control 4.3.3.

APPENDIX G

PROCESS CONTROL PROGRAM

- Requirement:ODCM Section 10.1 requires that licensee initiated changes to the Process
Control Program (PCP) be submitted to the Commission in the annual
Radioactive Effluent Release Report for the period in which the change(s) was
made.
- <u>Response</u>: There were no changes made to the Process Control Program during this reporting period.

APPENDIX H

OFF-SITE DOSE CALCULATION MANUAL

<u>Requirement</u>: Technical Specification 6.7.B.1 requires that licensee initiated changes to the Off-Site Dose Calculation Manual (ODCM) be submitted to the Commission in the annual Radioactive Effluent Release Report for the period in which the change(s) was made effective.

<u>Response</u>: There were no changes made to the ODCM during this reporting period.

÷

APPENDIX I

RADIOACTIVE LIQUID, GASEOUS, AND SOLID WASTE TREATMENT SYSTEMS

- <u>Requirement:</u> ODCM Section 10.4 requires that licensee initiated major changes to the radioactive waste systems (liquid, gaseous, and solid) be reported to the Commission in the annual Radioactive Effluent Release Report for the period in which the evaluation was reviewed by the Plant Operation Review Committee.
- <u>Response</u>: There were no licensee-initiated major changes to the radioactive waste systems during this reporting period.

-

APPENDIX J

ON-SITE DISPOSAL OF SEPTIC/SILT/SOIL WASTE

Requirement: Off-Site Dose Calculation Manual, Appendices B, F and I require that the dose impact due to on-site disposal of septic waste, cooling tower silt and sand/soil type materials during the reporting year and from previous years be reported to the Nuclear Regulatory Commission in the annual Radioactive Effluent Report if disposals occur during the reporting year. Entergy - Vermont Yankee will report in the Annual Radioactive Effluent Release Report a list of the radionuclides present and the total radioactivity associated with the on-site disposal activities on the Vermont Yankee site.

<u>Response</u>: There was one on-site disposal of septic waste during the reporting year. The total volume of the septic waste spread in 2005 was 11,000 gallons. The total activity spread on the 1.9 acres (southern) on-site disposal field from 2005 spreading and from previous years was as follows:

	Activity Spread in 2005	Activity from 2005, plus Activity from All Past Disposals Decayed to 07/26/2005
Nuclide	<u>(Ci)</u>	<u>(Ci)</u>
Mn-54	1.33E-07	2.46E-07
Co-60	3.80E-08	2.44E-05
Zn-65	3.80E-08	5.05E-07
Cs-134	1.90E-08	1.97E-08
Cs-137	3.80E-08	7.23E-05
Ce-141	0.00E+00	2.45E-21

The maximum organ (including whole body) incremental dose from material spread in 2005 was estimated to be 4.54E-04 mrem/yr. The maximum organ dose from all past spreading operations, including the material spread in 2005, totaled 1.15E-01 mrem/yr. These calculated values are within the 1 mrem/yr limit applied during the period of operational control of the site. The projected hypothetical dose for the period following the loss of operational control of the site area due to all spreading operations to-date is 3.78E-01 mrem/yr versus a 5 mrem/yr dose limit.