www.exeloncorp.com

Exelon Generation Dresden Generating Station 6500 North Dresden Road Morris, IL 60450-9765 Tel 815-942-2920

۲

Exelon Nuclear

May 5, 2006

SVPLTR # 06-0026

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

> Dresden Nuclear Power Station Units 1, 2, and 3 Facility Operating License No. DPR-2 Renewed Facility Operating License Nos. DPR-19 and DPR-25 NRC Docket Nos. 50-010, 50-237, and 50-249

Subject: Dresden Nuclear Power Station Annual Radiological Environmental Operating Report for 2005

The attached "Annual Radiological Environmental Operating Report" is submitted in accordance with Section 6.9.A.3 of the Unit 1 Dresden Nuclear Power Station Technical Specifications and Section 5.6.2, "Annual Radiological Environmental Operating Report," of the Units 2 and 3 Technical Specifications. This report provides the results of the radiological environmental and meteorological monitoring programs for the 2005 calendar year.

Should you have any questions concerning this letter, please contact Mr. Pedro Salas, Regulatory Assurance Manager, at (815) 416-2800.

Respectfully,

Bust

Danny G. Bost Site Vice President Dresden Nuclear Power Station

Enclosure

cc: Regional Administrator - NRC Region III NRC Senior Resident - Dresden Nuclear Power Station

Docket No: 50-010 50-237 50-249
DRESDEN NUCLEAR POWER STATION UNITS 1, 2 and 3
Annual Radiological Environmental Operating Report
1 January Through 31 December 2005
Prepared By
Teledyne Brown Engineering Environmental Services
Exe l (1) n _{sm}
Nuclear
Dresden Nuclear Power Station Morris, IL 60450
May 2006

Table	Of	Contents

Ι.	Summa	ary and Conclusions1	ł
II.	Introdu	uction	}
	A.	Objectives of the REMP	3
	Β.	Implementation of the Objectives	ļ
		···· F	
HI.	Progra	am Description3	}
	Α.	Sample Collection	\$
	В.	Sample Analysis5	;
	C.	Data Interpretation6)
	D.	Program Exceptions	,
	E.	Program Changes	\$
IV	. Resu	Its and Discussion	•
	A.	Aquatic Environment)
		1. Surface Water)
		2. Ground Water 10)
		3. Fish)
		4. Sediment 10)
		5. Dredging Spoils 11	
	В.	Atmospheric Environment	ļ
		1. Airborne 11	ļ
		a. Air Particulates11	l
		b. Airborne lodine 12	•
		2. Terrestrial	1
		a. Milk	}
	•	b. Food Products	
	C.	Ambient Gamma Radiation)
	D.	Land Use Survey	ł
	E.	Errata Data	è
	r.	Summary of Results - Inter-laboratory Comparison Program)

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program Report Summary for the Dresden Nuclear Power Station, 2005
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Dresden Nuclear Power Station, 2005
Table B-2:	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Dresden Nuclear Power Station, 2005
Figures	
Figure B-1:	Dresden Station Inner Ring TLD Locations, Fish, Water, and Sediment Locations, 2005
Figure B-2:	Dresden Station Fixed Air Sampling and TLD Sites, Outer Ring TLD Locations and Milk Location, 2005
Appendix C	Data Tables and Figures - Primary Laboratory
<u>Tables</u>	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-II.1	Concentrations of Tritium in Ground Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.

Table C-II.2	Concentrations of Gamma Emitters in Ground Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-III.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-VIII.1	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Table C-IX.1	Quarterly TLD Results for Dresden Nuclear Power Station, 2005.
Table C-IX.2	Mean Quarterly TLD Results for the Inner Ring, Outer Ring, Other and Control Locations for Dresden Nuclear Power Station, 2005.
Table C-IX.3	Summary of the Ambient Dosimetry Program for Dresden Nuclear Power Station, 2005.
Table C-X.1	Summary of Collection Dates for Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2005.
Figures_	
Figure C-1	Surface Water - Gross Beta – Stations D-51 and D-52 (C) Collected in the Vicinity of DNPS, 2000 - 2005.
Figure C-2	Surface Water - Gross Beta – Station D-54 (C) Collected in the Vicinity of DNPS, 2002 - 2005.
Figure C-3	Surface Water - Tritium – Stations D-51 and D-52 (C) Collected in the Vicinity of DNPS, 2000 - 2005.
Figure C-4	Surface Water - Tritium – Station D-54 (C) Collected in the Vicinity of DNPS, 2002 - 2005.

- Figure C-5 Ground Water Tritium Stations D-23 and D-35 Collected in the Vicinity of DNPS, 2000 2005.
- Figure C-6 Air Particulate Gross Beta Stations D-01 and D-02 Collected in the Vicinity of DNPS, 2000 2005.
- Figure C-7 Air Particulate Gross Beta Stations D-03 and D-04 Collected in the Vicinity of DNPS, 2000 2005.
- Figure C-8 Air Particulate Gross Beta Stations D-07 and D-12 (C) Collected in the Vicinity of DNPS, 2000 2005.
- Figure C-9 Air Particulate Gross Beta Stations D-45 and D-53 Collected in the Vicinity of DNPS, 2000 2005.
- Figure C-10 Air Particulate Gross Beta Stations D-08 and D-10 Collected in the Vicinity of DNPS, 2005.
- Figure C-11 Air Particulate Gross Beta Stations D-13 and D-14 Collected in the Vicinity of DNPS, 2005.

Appendix D Inter-Laboratory Comparison Program

Tables

Table D-1	Analytics Environmental Radioactivity Cross Check Program
	Teledyne Brown Engineering, 2005

- Table D-2ERA Environmental Radioactivity Cross Check ProgramTeledyne Brown Engineering, 2005
- Table D-3DOE's Mixed Analyte Performance Evaluation Program (MAPEP)Teledyne Brown Engineering, 2005
- Table D-4ERA Statistical Summary Proficiency Testing Program
Environmental, Inc., 2005
- Table D-5DOE's Mixed Analyte Performance Evaluation Program (MAPEP)Environmental, Inc., 2005

Appendix E Errata Data

Appendix F Effluent Data

Appendix G Meteorological Data

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the Dresden Nuclear Power Station (DNPS) by Exelon covers the period 1 January 2005 through 31 December 2005. During that time period, 1,317 analyses were performed on 1,205 samples. In assessing all the data gathered for this report it was concluded that the operation of DNPS had no adverse radiological impact on the environment.

Surface water samples were analyzed for concentrations of gross beta, tritium and gamma emitting nuclides. Ground water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No gamma emitting nuclides were detected. Gross beta and tritium activities detected were consistent with those detected in previous years.

Fish (commercially and recreationally important species) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish. Sediment samples had Cesium-137 concentrations consistent with levels observed in previous years. No plant-produced fission or activation products were found in sediment.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. All I-131 results were below the minimum detectable activity. Concentrations of naturally occurring K-40 were found. No fission or activation products were found.

Food product samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

Intentionally left blank

II. Introduction

The Dresden Nuclear Power Station (DNPS), consisting of two 912 MWe boiling water reactors owned and operated by Exelon Corporation, is located in Grundy County, Illinois. Unit No. 1 went critical in 1960 and was retired in 1978. Unit No. 2 went critical on 16 June 1970. Unit No. 3 went critical on 02 November 1971. The site is located in northern Illinois, approximately 12 miles southwest of Joliet, Illinois at the confluence of the Des Plaines and Kankakee Rivers where they form the Illinois River.

This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. Midwest Laboratory (EIML) on samples collected during the period 1 January 2005 through 31 December 2005.

A. Objective of the Radiological Environmental Monitoring Program (REMP)

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.

III. Program Description

A. Sample Collection

Samples for the DNPS REMP were collected for Exelon Nuclear by EIML.

This section describes the general collection methods used by EIML to obtain environmental samples for the DNPS REMP in 2005. Sample locations and descriptions can be found in Table B–1 and Figures B–1 and B-2, Appendix B. The collection methods used by EIML are listed in Table B-2.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, ground water, fish, and sediment. Samples were collected weekly from three surface water locations (D-51, D-52 and D-54) and composited for analysis. Control locations were D-52 and D-54. Samples were collected quarterly from two well water locations (D-23 and D-35). All samples were collected in new unused plastic bottles, which were rinsed at least twice with source water prior to collection. Fish samples comprising the flesh of largemouth bass, channel catfish, and carp were collected semiannually at two locations, D-28 and D-46 (Control). Sediment samples composed of recently deposited substrate were collected at one location semiannually, D-27.

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Airborne iodine and particulate samples were collected at twelve locations (D-01, D-02, D-03, D-04, D-07, D-08, D-10, D-12, D-13, D-14, D-45 and D-53). The control location was D-12. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis. Through October 2005, the air iodine samples were replaced biweekly and sent to the lab for analysis. Starting in November 2005, the air iodine samples were replaced weekly and sent to the lab for analysis.

Milk samples were collected biweekly at one control location (D-25) from May through October, and monthly from November through April. There are no milking animals within 10 km of the site. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food products were collected annually in September at five locations (D-Control, D-Quad 1, D-Quad 2, D-Quad 3, and D-Quad 4). The control

location was D-Control. Various types of samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Direct radiation measurements were made using CaF_2 and LiF thermoluminescent dosimeters (TLD). Each location consisted of 2 TLD sets. The TLD locations were placed on and around the DNPS site as follows:

An <u>inner ring</u> consisting of 16 locations (D-101, D-102, D-103, D-104, D-105, D-106, D-107, D-108, D-109, D-110, D-111, D-112A, D-113, D-114, D-115 and D-116) at or near the site boundary.

An <u>outer ring</u> consisting of 16 locations (D-201, D-202, D-203, D-204, D-205, D-206, D-207, D-208, D-209, D-210, D-211, D-212, D-213, D-214, D-215 and D-216) approximately 5 to 10 km from the site.

An <u>other</u> set consisting of TLDs at the 11 air sampler locations (D-01, D-02, D-03, D-04, D-07, D-08, D-10, D-13, D-14, D-45 and D-53).

The balance of one location (D-12) representing the control area.

Two TLDs – each comprised of two CaF_2 and two LiF thermoluminescent phosphors enclosed in plastic – were placed at each location. The TLDs were exchanged quarterly and sent to Global Dosimetry for analysis.

B. Sample Analysis

This section describes the general analytical methodologies used by TBE and EIML to analyze the environmental samples for radioactivity for the DNPS REMP in 2005. The analytical procedures used by the laboratories are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in surface water and air particulates.
- 2. Concentrations of gamma emitters in ground and surface water, air particulates, milk, fish, sediment and vegetation.
- 3. Concentrations of tritium in ground and surface water.

- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

For the purpose of this report, Dresden Nuclear Power Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required DNPS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For ground and surface water 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For fish nine nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, Cs-134, Cs-137 and Ba/La-140 were reported. For sediment nine nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-95, Nb/Zr-95, Cs-134, Cs-137 and Ba/La-140 were reported.

For air particulate nine nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, Cs-134, Cs-137 and Ba/La-140 were reported.

For milk 10 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For vegetation 10 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, I-131, Cs-134, Cs-137 and Ba/La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2005 the DNPS REMP had a sample recovery rate in excess of 99%. Sample anomalies and missed samples are listed in the tables below:

Sample Type	Location Code	Collection Date	Reason
AP	D-04	01/07/05 – 01/14/05	Low reading of 98.3 hours due to pump malfunction; collector removed pump for service
AI	D-07	06/10/05 – 06/24/05	Due to pump malfunction, air iodine sample was analyzed with 1 week plus 51.2 hours run time
AP/I	D-01	09/09/05 — 09/16/05	Low timer reading of 163.3 hours; cause was unknown
AP/I	D-03	09/09/05 – 09/16/05	Low timer reading of 163.3 hours; cause was unknown
AP/I	D-04	09/09/05 – 09/16/05	Low timer reading of 163.3 hours; cause was unknown

Table D-1 LISTING OF SAMPLE ANOMALIES

Table D-2 LISTING OF MISSED SAMPL	ES
-----------------------------------	----

Sample Type	Location Code	Collection Date	Reason
AP	D-02	12/31/04 – 09/16/05	Power was not available to the sampling station
AP	D-07	06/10/05 – 06/17/05	Inadequate air flow due to pump malfunction
AP	D-02	07/01/05 — 09/30/05	Due to power outage, only two samples were available for the 3 rd quarter 2005 composite.
TLD	D-103-1	12/31/04 04/01/05	TLD was discovered missing. TLD was attached to a tree that was removed.

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

Beginning in the third quarter 2005, Teledyne Brown Engineering Environmental Services became the primary laboratory and EIML became the QC laboratory. Due to the change, the data tables and summary table presented in this report will appear different from previously submitted reports. This year, only the detected and non-detected results will be presented in the data tables. As a result of this change, the first half of the year data tables will display LLD (Lower Limit of Detection) values for nondetected nuclides and the second half of the year data tables will display MDC (Minimum Detectable Concentration) values for non-detected nuclides. The summary table will include a longer list of gamma nuclides. The data points for non-detects in the figures will consist of LLD values for the first half of the year and MDC values for the second half of the year. A new air sampling station (D-55 on Ridge Road in Minooka) was placed in service on 08/26/05 for gathering of comparison data. This monitor will replace D-13.

Starting with the third quarter of 2005, all far-field air particulate samples were analyzed.

Starting on November 4, 2005, air iodine samples were submitted and analyzed weekly.

- IV. Results and Discussion
 - A. Aquatic Environment
 - 1. Surface Water

Samples were taken weekly and composited for analysis at three locations (D-51, D-52 and D-54). Of these locations only D-51 located downstream, could be affected by Dresden's effluent releases. The following analyses were performed:

Gross Beta

Monthly composites from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). The values ranged from <4.0 to 11.3 pCi/l. Concentrations detected were consistent with those detected in previous years (Figures C–1 and C–2, Appendix C).

<u>Tritium</u>

Quarterly composites from all locations were analyzed for tritium activity (Table C–I.2, Appendix C). Indicator values ranged from <200 to 479 pCi/L. Control values ranged from <169 to 720 pCi/L. Concentrations detected were consistent with those detected in previous years (Figures C–3 and C–4, Appendix C).

Gamma Spectrometry

Monthly composites from all locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Ground Water

Quarterly grab samples were collected at two locations (D-23 and D-35). These locations could be affected by Dresden's effluent releases and by sources upstream on the Kankakee River. The following analyses were performed:

Tritium

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–II.1, Appendix C). D-35 values ranged from <158 to <200 pCi/L. D-23 values ranged from 548 to 830 pCi/L. Concentrations detected were consistent with those detected in previous years (Figure C–5, Appendix C).

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.2, Appendix C). No nuclides were detected, and all required LLDs were met.

3. Fish

Fish samples comprised of largemouth bass, channel catfish, and carp were collected at two locations (D-28 and D-46) semiannually. Location D-28 could be affected by Dresden's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C–III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,920 to 3,590 pCi/kg wet. No fission or activation products were detected.

4. Sediment

Aquatic sediment samples were collected at one location (D-27) semiannually. This downstream location could be affected by Dresden's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from the location were analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). Nuclides detected were naturally occurring K-40, Ra-226, Th-232 and the fission product Cs-137.

K-40, Ra-226 and Th-232 were found at the station at concentrations of 12,200, 1,660, and 478 pCi/kg dry, respectively. Concentrations of the fission product Cs-137 was found in one of two samples at a concentration of 68 pCi/kg dry. The activity detected was consistent with those detected in previous years and is likely due to fallout from above-ground nuclear weapons testing. No other fission or activation products were detected.

5. Dredging Spoils

According to the Army Corps of Engineers in September 2005, no dredging was performed within one mile of Dresden Station in the past year. Therefore, no sampling of dredging spoils was performed.

- B. Atmospheric Environment
 - 1. Airborne
 - a. Air Particulates

Continuous air particulate samples were collected from 12 locations on a weekly basis. The 12 locations were separated into four groups: On-site samplers (D-01, D-02, D-03), Near-field samplers within 4 km of the site (D-04, D-07, D-45, and D-53), Far-field samplers between 4 and 10 km from the site (D-08, D-10, D-13, D-14) and the Control sampler between 10 and 30 km from the site (D-12). Far field samples are not required to be analyzed unless the respective near field sample results are inconsistent with previous measurements and radioactivity is confirmed as having its origin in airborne effluents from the station, or at the discretion of the Radiation Protection Director. Starting with the third quarter of 2005, all far-field samples were analyzed. The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C–V.1 and C–V.2, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the four groups aid in determining the effects, if any, resulting from the operation of DNPS. The results from the On-Site locations ranged from <6 to 46 E–3 pCi/m³ with a mean of 21 E–3 pCi/m³. The results from the Near-Field locations ranged from 4 to 54 E– 3 pCi/m³ with a mean of 22 E–3 pCi/m³. The results from the Far-Field locations ranged from 7 to 48 E–3 pCi/m³ with a mean of 22 E–3 pCi/m³. The results from the Control location ranged from 8 to 48 E–3 pCi/m³ with a mean of 22 E–3 pCi/m³. Comparison of the 2005 air particulate data with previous years data indicate no effects from the operation of DNPS. In addition a comparison of the weekly mean values for 2005 indicate no notable differences among the four groups (Figures C–6 through C-11, Appendix C).

Gamma Spectrometry

Samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in 22 of 23 samples and naturally occurring K-40 was detected in one sample. The Be-7 values ranged from 34 to 94 E–3 pCi/m³. K-40 was found at a concentration of 64 E-3 pCi/m³. No other nuclides were detected, and all required LLDs were met.

b. Airborne lodine

Continuous air samples were collected from 12 locations (D-01, D-02, D-03, D-04, D-07, D-08, D-10, D-12, D-13, D-14, D-45 and D-53) and analyzed bi-weekly or weekly for I-131 (Table C--VI.1, Appendix C). No nuclides were detected, and all required LLDs were met. Weekly analysis began on November 4, 2005.

- 2. Terrestrial
 - a. Milk

Samples were collected from one location (D-25) biweekly May through October and monthly November through April. The following analyses were performed:

lodine-131

Milk samples from the location were analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C–VII.2, Appendix C).

Naturally occurring K-40 activity was quantified in the last half of 2005 and was found in all nine samples. The activities ranged from 1,220 to 1,680 pCi/l. No other nuclides were detected, and all required LLDs were met.

b. Food Products

Food product samples were collected at five locations (D-Control, D-Quad 1, D-Quad 2, D-Quad 3 and D-Quad 4) when available. Four locations, (D-Quad 1, D-Quad 2, D-Quad 3 and D-Quad 4) could be affected by Dresden's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–VIII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Global Dosimetry 110 Environmental (CaF₂ and LiF) thermoluminescent dosimeters. Forty-four TLD locations were established around the site. Results of TLD measurements are listed in Tables C–IX.1 to C–IX.3, Appendix C. Most TLD measurements were below 30 mR/quarter, with a range of 17 to

31 mR/quarter. A comparison of the Inner Ring, Outer Ring, and Other locations' data to the Control Location data, indicate that the ambient gamma radiation levels from the Control location (D-12-01, D-12-02) were comparable.

D. Land Use Survey

A Land Use Survey conducted on 29 August 2005 around the Dresden Nuclear Power Station (DNPS) was performed by EIML for Exelon Nuclear to comply with Section 12.5.2 of the Dresden Offsite Dose Calculation Manual (ODCM). The purpose of the survey was to document the nearest resident or industrial facility, milk producing animal, and livestock in each of the sixteen 22 ½ degree sectors within 10 km around the site. There were no changes required to the DNPS REMP as a result of this survey. The results of this survey are summarized below.

Distan	Distance in Miles from the DNPS Reactor Buildings							
Sector	Residence Miles	Livestock Miles	Milk Farm Miles					
AN	1.5	1.4	•					
B NNE	0.8	6.0	-					
C NE	0.8	2.5	-					
D ENE	0.7	4.7	-					
EE	1.1	-	-					
F ESE	1.0	-	-					
G SE	0.6	-	-					
H SSE	0.5	-	-					
JS	0.5	-	16.0					
K SSW	3.3	-	-					
L SW	3.6	-	11.4					
M WSW	5.8	-	-					
NW	3.5	0.5	-					
P WNW	3.7	0.5	-					
Q NW	2.6	0.5	-					
R NNW	0.8	1.0	-					

E. Errata Data

During an Exelon Nuclear Oversight audit, it was discovered that the 2003 AREOR did not contain I-131 data for surface water or ground water. The analyses were performed and included in the EIML 2003 Final Progress Report, but were not included in the 2003 AREOR.

Pages containing the surface water and ground water I-131 results for 2003 are attached in Appendix E.

F. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is \pm 20% of the reference value. Performance is acceptable with warning when a mean result falls in the range from \pm 20% to \pm 30% of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 18 out of 19 analytes met the specified acceptance criteria. One sample did not meet the specified acceptance criteria for the following reason:

1. Teledyne Brown Engineering's Analytics' September 2005 air particulate Fe-59 ratio of 1.35 exceeded the upper control limit of 1.30 due to a new technician not counting the air particulate in a petri dish.

For the secondary laboratory, 19 out of 23 analytes met the specified acceptance criteria. Four samples did not meet the specified acceptance criteria for the following reasons:

- 1. EIML's ERA's November 2005 water Gross Alpha result of 41.1 pCi/l exceeded the upper control limit of 33.4 pCi/l. This was due to using an Am-241 efficiency instead of a Th-232 efficiency when counting the sample. Using the correct efficiency gave a result of 27.0 pCi/l.
- 2. EIML's ERA's November 2005 water Ra-228 result of 5.5 pCi/l exceeded the upper control limit of 5.0 pCi/l due to presence of radium daughters. Delay in counting 100 minutes gave a result of 4.01 pCi/l.
- 3. EIML's MAPEP's January 2005 air particulate Sr-90 result of 2.2 exceeded the upper control limit of 1.76 Bq/kg. Reanalysis result was 1.56 Bq/kg.
- 4. EIML's MAPEP's July 2005 soil Am-241 result of 48.4 exceeded the lower control limit of 56.77 Bq/kg due to incorrect sample weight being used in the calculation. When recalculated with the correct sample weight, the result was 97.0 Bq/kg.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NI REPORTING	UMBER: G PERIOD:	50-010, 50-237 & 50-249 1ST QUARTER 2005 VITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATIONS ILOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	9	4	4.5 (3/3) (4.0/5.5)	6.2 (2/6) (6.1/6.4)	6.2 (2/3) (6.1/6.4)	D-52 CONTROL DESPLAINES RIVER - UPSTREAM 0.9 MILES ESE OF SITE	0
	Н-3	3	200	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	GAMMA MN-54	9	15	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	CO-58		15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NI REPORTINO CONTROL	JMBER: 5 PERIOD: LOCATION WI	50-010, 50-237 & 50-249 1ST QUARTER 2005 TH HIGHEST ANNUAL MEAN	· <u> </u>
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		I-131		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		CS-137		18	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
A-2		BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GROUND WATER (PCI/LITER)	Н-3	2	200	737 (1/2)	N/A	737 (1/1)	D-23 INDICATOR THORSEN WELL 0.7 MILES S OF SITE	0
		GAMMA MN-54	2	15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	MBER: PERIOD: LOCATION W	50-010, 50-237 & 50-249 1ST QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	FE-59		30	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	CO-60		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	ZN-65		30	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	NB-95		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZR-95		30	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	I-131		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	CS-134		15	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

A-3

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	IMBER: S PERIOD: LOCATION W	50-010, 50-237 & 50-249 IST QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		CS-137		18	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		BA-140		60	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
		LA-140		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	84	10	26 (72/72) (13/48)	26 (12/12) (14/38)	29 (12/12) (15/48)	D-04 INDICATOR COLLINS ROAD 0.9 MILES W OF SITE	0
A-4		GAMMA MN-54	7	N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		CO-58		N/A	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
		FE-59		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		CO-60		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 1ST QUARTER 2005 /ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZN-65		N/A	<lu>LLD</lu>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-134		50	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-137		60	<lld< td=""><td><ltd< td=""><td></td><td></td><td>0</td></ltd<></td></lld<>	<ltd< td=""><td></td><td></td><td>0</td></ltd<>			0
A-5		BALA140		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	AIR IODINE (E-3 PCI/CU.METER)	I-131	42	70	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	MILK (PCI/LITER)	I-131	3	1	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		GAMMA MN-54	3	N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NU REPORTING	MBER: FPERIOD:	50-010, 50-237 & 50-249 1ST QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION WI MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		N/A	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		N/A	N/A	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	ZRNB-95		N/A	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CS-134		15	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CS-137		18	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140		60	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL		INDICATOR LOCATIONS REQUIRED MEAN LOWER LIMIT (F) OF DETECTION RANGE (LLD)		DOCKET NI REPORTING	JMBER: G PERIOD:	50-010, 50-237 & 50-249 1ST QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED		INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION MEAN (F) RANGE	WITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	LA-140		15	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
DIRECT RADIATION (MILLI-ROENTGEN/QUARTER)	TLD-QUARTERLY	87	N/A	22.9 (85/85) (18/28)	22.0 (2/2) (21/23)	28.0 (1/1)	D-110-3* INDICATOR 0.8 MILES SSW OF SITE	0

* Location D-110-3, D-214-2 and D-215-1 had identical results of 28.0 mR. Only D-110-3 is detailed in this summary.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING	MBER: FERIOD:	50-010, 50-237 & 50-249 2ND QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	9	4	6.3 (1/3)	5.9 (3/6) (4.1/8.7)	6.9 (2/3) (5.1/8.7)	D-52 CONTROL DESPLAINES RIVER - UPSTREAM 0.9 MILES ESE OF SITE	0
	H-3	3	200	262 (1/1)	<lld< td=""><td>262 (1/1)</td><td>D-51 INDICATOR DRESDEN LOCK AND DAM - DOWN 0.5 MILES NW OF SITE</td><td>0 ISTREAM</td></lld<>	262 (1/1)	D-51 INDICATOR DRESDEN LOCK AND DAM - DOWN 0.5 MILES NW OF SITE	0 ISTREAM
	GAMMA MN-54	9	15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-58		15	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	FE-59		30	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

A-8

	NAME OF FACILITY: LOCATION OF FACILITY: MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	DRESDEN MORRIS, IL		REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 2ND QUARTER 2005 TTH HIGHEST ANNUAL MEAN		
		TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED			LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS	
		ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
		I-131		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
		CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
		CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
A-9		BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
		LA-140		15	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0	
	GROUND WATER (PCI/LITER)	Н-3	2	200	653 (1/2)	N/A	653 (1/1)	D-23 INDICATOR THORSEN WELL 0.7 MILES S OF SITE	0	
		GAMMA MN-54	2	15	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0	

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			NINIO (TOD	DOCKET NU REPORTING	MBER: PERIOD:	50-010, 50-237 & 50-249 2ND QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	FE-59		30	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	CO-60		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZN-65		30	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	NB-95		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	ZR-95		30	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	I-131		15	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0
	CS-134		15	<lu>LLD</lu>	N/A	-		0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 2ND QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	TYPES OFNUMBER OFREQUIREDANALYSESANALYSESLOWER LIMITPERFORMEDPERFORMEDOF DETECTION(LLD)Contraction	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		CS-137		18	LLD	N/A	-	-	0
		BA-140		60	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		LA-140		15	⊲LLD	N/A			0
A	FISH (PCI/KG WET)	GAMMA MN-54	4	130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
-11		CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CO-60		130	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0
		ZN-65		260	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	MBER: PERIOD: LOCATION WI	50-010, 50-237 & 50-249 2ND QUARTER 2005 TH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
		CS-134		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-137		150	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
A-12	SEDIMENT (PCI/KG)	GAMMA MN-54	1	N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		CO-58		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		FE-59		N/A	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
		CO-60		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
NAME OF FACILITY: LOCATION OF FACILITY:		DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION V		50-010, 50-237 & 50-249 2ND QUARTER 2005 /ITH HIGHEST ANNUAL MEAN	
--	--	-----------------------------------	------------------------------------	--	---	---	--------------------------	---	---
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZN-65		N/A	LLD	N/A	-	-	0
		ZRNB-95		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		CS-134		150	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		CS-137		180	<lld< td=""><td>N/A</td><td>•</td><td>-</td><td>0</td></lld<>	N/A	•	-	0
A-13		BALA140		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	97	10	20 (82/83) (10/54)	20 (14/14) (13/41)	23 (12/13) (14/54)	D-07 INDICATOR CLAY PRODUCTS 2.0 MILES S OF SITE	0
		GAMMA MN-54	7	N/A	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
		CO-58		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

NAME OF FACILITY: LOCATION OF FACILITY:		DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 2ND QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		FE-59		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CO-60		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		ZN-65		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
A-14		CS-134		50	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-137		60	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
		BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	AIR IODINE (E-3 PCI/CU.METER)	1-131	49	70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 2ND QUARTER 2005 TH HIGHEST ANNUAL MEAN		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS	
MILK (PCI/LITER)	I-131	5	1	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	GAMMA MN-54	5	N/A	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	CO-58		N/A	N/A	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0	
	FE-59		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	CO-60		N/A	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	ZN-65		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	ZRNB-95		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	CS-134		15	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0	

Mean and range based on detectable measurements only. Fractions indicated in parentheses.

A-15

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NUMBER: REPORTING PERIOD:		50-010, 50-237 & 50-249 2ND QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	TTH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CS-137		18	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		60	N/A	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	LA-140		15	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
DIRECT RADIATION (MILLI-ROENTGEN/QUARTER)	TLD-QUARTERLY	88	N/A	23.3 (86/86) (17/30)	20.5 (2/2) (20/21)	30.0 (1/1)	D-201-1 INDICATOR 4.5 MILES N OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING	JMBER: G PERIOD:	50-010, 50-237 & 50-249 3RD QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	9	4	8.9 (3/3) (8.4/9.2)	7.9 (6/6) (4.6/11.3)	9.9 (3/3) (9.1/11.3)	D-52 CONTROL DESPLAINES RIVER - UPSTREAM 0.9 MILES ESE OF SITE	0
	H-3	3	200	<lld< td=""><td>720 (1/2)</td><td>720 (1/1)</td><td>D-54 CONTROL KANKAKEE RIVER - UPSTREAM 8.5 MILES SE OF SITE</td><td>0</td></lld<>	720 (1/2)	720 (1/1)	D-54 CONTROL KANKAKEE RIVER - UPSTREAM 8.5 MILES SE OF SITE	0
	GAMMA MN-54	9	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	JMBER: G PERIOD: LOCATION W	50-010, 50-237 & 50-249 3RD QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	ZR-95		30	<lld< td=""><td><lld< td=""><td>_</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>_</td><td>-</td><td>0</td></lld<>	_	-	0
	1-131		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
GROUND WATER (PCI/LITER)	H-3	2	200	830 (1/2)	N/A	830 (1/1)	D-23 INDICATOR THORSEN WELL 0.7 MILES S OF SITE	0
	GAMMA MN-54	2	15	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL		OF REQUIRED LOWER LIMIT D OF DETECTION (LLD)		DOCKET NUMBER: REPORTING PERIOD:		50-010, 50-237 & 50-249 3RD QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED		INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	TTH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	FE-59		30	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	CO-60		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZN-65		30	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	NB-95		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZR-95		30	<lld< td=""><td>N/A</td><td>•</td><td></td><td>0</td></lld<>	N/A	•		0
	I-131		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	CS-134		15	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0

A-19

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN : MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 3RD QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CS-137		18	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	BA-140		60	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	LA-140		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	145	10	20 (130/132) (7/43)	19 (13/13) (8/39)	21 (13/13) (8/42)	D-14 INDICATOR CHANNAHON 3.5 MILES NE OF SITE	0
	GAMMA MN-54	12	N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 3RD QUARTER 2005 ITH HIGHEST ANNUAL MEAN		
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS	
		ZN-65		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0	
		CS-134		50	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
		CS-137		60	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0	
A-21		BALA140		N/A	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0	
	AIR IODINE (E-3 PCI/CU.METER)	I-131	79	70	<lu>LLD</lu>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	MILK (PCI/LITER)	I-131	6	1	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
		GAMMA MN-54	6	N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	

.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION WI		50-010, 50-237 & 50-249 3RD QUARTER 2005 TH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		N/A	N/A	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	CO-60		N/A	N/A	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	ZN-65		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZRNB-95		N/A	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CS-134		15	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		18	N/A	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	BA-140		60	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 3RD QUARTER 2005 TTH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		LA-140		15	N/A	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0
	FOOD PRODUCTS (PCI/KG WET)	GAMMA MN-54	10	N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		CO-58		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
+		FE-59		N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
A-23		CO-60		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		ZN-65		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		I-131		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NUMBER: REPORTING PERIOD:		50-010, 50-237 & 50-249 3RD QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		80	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
DIRECT RADIATION (MILLI-ROENTGEN/QUARTER)	TLD-QUARTERLY	88	N/A	21.5 (86/86) (17/26)	19.0 (2/2) (19/19)	26.0 (1/1)	D-110-3* INDICATOR	0

A-24

* Location D-110-3, D-201-2 and D-214-2 had identical results of 26.0 mR. Only D-110-3 is detailed in this summary.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	JMBER: G PERIOD: LOCATION W	50-010, 50-237 & 50-249 4TH QUARTER 2005 VITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF NUMBER OF ANALYSES ANALYSES PERFORMED PERFORMEI	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	9	4	8.0 (3/3) (5.9/9.1)	6.8 (6/6) (4.9/10.2)	8.0 (3/3) (5.9/9.1)	D-51 INDICATOR DRESDEN LOCK AND DAM - DOW 0.5 MILES NW OF SITE	0 /NSTREAM
	Н-3	3	200	479 (1/1)	<lld< td=""><td>479 (1/1)</td><td>D-51 INDICATOR DRESDEN LOCK AND DAM - DOW 0.5 MILES NW OF SITE</td><td>0 /NSTREAM</td></lld<>	479 (1/1)	D-51 INDICATOR DRESDEN LOCK AND DAM - DOW 0.5 MILES NW OF SITE	0 /NSTREAM
	GAMMA MN-54	9	15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-58		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	JMBER: G PERIOD: LOCATION W	50-010, 50-237 & 50-249 4TH QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		1-131		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
A-26		BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GROUND WATER (PCI/LITER)	Н-3	2	200	548 (1/2)	N/A	548 (1/1)	D-23 INDICATOR THORSEN WELL 0.7 MILES S OF SITE	0
		GAMMA MN-54	2	15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	JMBER: S PERIOD: LOCATION W	50-010, 50-237 & 50-249 4TH QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	FE-59		30	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	CO-60		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZN-65		30	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
1	NB-95		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZR-95		30	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	I-131		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	CS-134		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0

A-27

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	JMBER: 5 PERIOD: LOCATION W	50-010, 50-237 & 50-249 4TH QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		CS-137		18	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		BA-140		60	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
		LA-140		15	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0
A	FISH (PCI/KG WET)	GAMMA MN-54	4	130	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
-28		CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		CO-60		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION W		50-010, 50-237 & 50-249 4TH QUARTER 2005 TH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		150	<lu>LLD</lu>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
A SEDIMENT (PCI/KG DRY)	GAMMA MN-54	1	N/A	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	CO-58		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	FE-59		N/A	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	CO-60		N/A	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	UMBER: G PERIOD: LOCATION WI	50-010, 50-237 & 50-249 4TH QUARTER 2005 ITH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZN-65		N/A	<lld< td=""><td>N/A</td><td>-</td><td>•</td><td>0</td></lld<>	N/A	-	•	0
		ZRNB-95		N/A	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
		CS-134		150	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
		CS-137		180	68 (1/1)	N/A	68 (1/1)	D-27 INDICATOR DRESDEN LOCK AND DAM - DOWNS 0.5 MILES NW OF SITE	0 TREAM
A-30		BALA140		N/A	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	156	10	23 (143/143) (10/48)	24 (13/13) (12/48)	24 (13/13) (14/46)	D-13 INDICATOR MINOOKA 4.5 MILES N OF SITE	0
		GAMMA MN-54	12	N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		CO-58		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL		REQUIRED LOWER LIMIT O OF DETECTION (LLD)		DOCKET NU REPORTING	JMBER: G PERIOD:	50-010, 50-237 & 50-249 4TH QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED		INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	TTH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	FE-59		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		N/A	<lld< td=""><td>LLD</td><td>-</td><td>-</td><td>0</td></lld<>	LLD	-	-	0
	ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		50	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
AIR IODINE (E-3 PCI/CU.METER)	I-131	120	70	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION WI		50-010, 50-237 & 50-249 4TH QUARTER 2005 TH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
MILK (PCI/LITER)	I-131	4	1	N/A	<lld< td=""><td><u>-</u></td><td>-</td><td>0</td></lld<>	<u>-</u>	-	0
	GAMMA MN-54	4	N/A	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CO-58		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZRNB-95		N/A	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CS-134		15	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NUMBER: REPORTING PERIOD:		50-010, 50-237 & 50-249 4TH QUARTER 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	TTH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CS-137		18	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140		60	N/A	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	LA-140		15	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
DIRECT RADIATION (MILLI-ROENTGEN/QUARTER)	TLD-QUARTERLY	88	N/A	26.2 (86/86) (21/31)	25.0 (2/2) (25/25)	31.0 (1/1)	D-110-4* INDICATOR 0.8 MILES SSW OF SITE	0

A-33

* Location D-110-4, D-201-1 and D-201-2 had identical results of 31.0 mR. Only D-110-4 is detailed in this summary.

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING	MBER: PERIOD:	50-010, 50-237 & 50-249 ANNUAL 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	LOCA HON W MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	36	4	7.1 (10/12) (4/9.2)	6.9 (17/24) (4.1/11.3)	7.8 (10/12) (5.1/11.3)	D-52 CONTROL DESPLAINES RIVER - UPSTREAM 0.9 MILES ESE OF SITE	0
	H-3	12	200	370 (2/4) (262/479)	720 (1/8)	720 (1/4)	D-54 CONTROL KANKAKEE RIVER - UPSTREAM 8.5 MILES SE OF SITE	0
	GAMMA MN-54	36	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		15	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	FE-59		30	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	NB-95		15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL		· · · · · · · · · · · · · · · · · · ·		DOCKET NUMBER: REPORTING PERIOD:		50-010, 50-237 & 50-249 ANNUAL 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	I-131		15	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140		60	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
GROUND WATER (PCI/LITER)	Н-3	8	200	692 (4/8) (548/830)	N/A	692 (4/4) (548/830)	D-23 INDICATOR THORSEN WELL 0.7 MILES S OF SITE	0
	GAMMA MN-54	8	15	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR DRESDEN NUCLEAR POWER STATION, 2005

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NU	MBER: PERIOD:	50-010, 50-237 & 50-249 ANNUAL 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION WI MEAN (F) RANGE	TH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CO-58		15	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	FE-59		30	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	CO-60		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0
	ZN-65		30	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0
	NB-95		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	ZR-95		30	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	I-131		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	CS-134		15	<lld< td=""><td>N/A</td><td></td><td>-</td><td>0</td></lld<>	N/A		-	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR DRESDEN NUCLEAR POWER STATION, 2005

NAME OF FACILITY: LOCATION OF FACILITY	DRESDEN Y: MORRIS, IL				DOCKET NU REPORTING	MBER: PERIOD:	50-010, 50-237 & 50-249 ANNUAL 2005	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	CS-137		18	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0
	BA-140		60	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
	LA-140		15	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
FISH (PCI/KG WET) ➤	GAMMA MN-54	8	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
-37	CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

	NAME OF FACILITY:	DRESDEN MOPPIS II				DOCKET NU	MBER:	50-010, 50-237 & 50-249	
	LOCATION OF FACILITY.	MORMS, IL			INDICATOR	CONTROL	LOCATION WI	TH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-134		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CS-137		150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
A-38	SEDIMENT (PCI/KG DRY)	GAMMA MN-54	2	N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		CO-58		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		FE-59		N/A	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0
		CO-60		N/A	<lld< td=""><td>N/A</td><td>-</td><td></td><td>0</td></lld<>	N/A	-		0

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL				DOCKET NU REPORTING	MBER: PERIOD:	50-010, 50-237 & 50-249 ANNUAL 2005	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION WI MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		ZN-65		N/A	<lu>LLD</lu>	N/A	-		0
		ZRNB-95		N/A	<lld< td=""><td>N/A</td><td>-</td><td>-</td><td>0</td></lld<>	N/A	-	-	0
		CS-134		150	<lld< td=""><td>N/A</td><td>•</td><td>-</td><td>0</td></lld<>	N/A	•	-	0
		CS-137		180	68 (1/2)	N/A	68 (1/2)	D-27 INDICATOR DRESDEN LOCK AND DAM - DOWN 0.5 MILES NW OF SITE	0 ISTREAM
A-39		BALA140		N/A	<lld< td=""><td>N/A</td><td></td><td></td><td>0</td></lld<>	N/A			0
	AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	482	10	22 (427/430) (7/54)	22 (52/52) (8/48)	23 (50/51) (8/54)	D-07 INDICATOR CLAY PRODUCTS 2.0 MILES S OF SITE	0
		GAMMA MN-54	38	N/A	<lld< td=""><td><lld< td=""><td>-</td><td>•</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>•</td><td>0</td></lld<>	-	•	0
		CO-58		N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

	NAME OF FACILITY:	DRESDEN MORRIS II				DOCKET NU	MBER: PFRIOD	50-010, 50-237 & 50-249	
	LOCATION OF FACILITY.	MORID, IL			INDICATOR	CONTROL	LOCATION WI	TH HIGHEST ANNUAL MEAN	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		FE-59		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		CO-60		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		ZN-65		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		ZRNB-95		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
A-40		CS-134		50	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		CS-137		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		BALA140		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	AIR IODINE (E-3 PCI/CU.METER)	I-131	290	70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR DRESDEN NUCLEAR POWER STATION, 2005

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	MBER: PERIOD: LOCATION WI	50-010, 50-237 & 50-249 ANNUAL 2005 TH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
MILK (PCI/LITER)	[-13]	18	1	N/A	<lld< td=""><td>-</td><td>•</td><td>0</td></lld<>	-	•	0
	GAMMA MN-54	18	N/A	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		N/A	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		N/A	N/A	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
	ZRNB-95		N/A	N/A	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		15	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

A-41

	NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS, IL			INDICATOR	DOCKET NU REPORTING CONTROL	MBER: PERIOD: LOCATION W	50-010, 50-237 & 50-249 Annual 2005 Ith highest annual mean	
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
		CS-137		18	N/A	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		BA-140		60	N/A	<lu>LLD</lu>	-	•	0
		LA-140		15	N/A	<lld< td=""><td></td><td>•</td><td>0</td></lld<>		•	0
A	FOOD PRODUCT (PCI/KG WET)	GAMMA MN-54	10	N/A	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
42		CO-58		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		FE-59		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		CO-60		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		ZN-65		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR
DRESDEN NUCLEAR POWER STATION, 2005

NAME OF FACILITY: LOCATION OF FACILI	DRESDEN ITY: MORRIS, IL	DRESDEN DOCKET NUMBER: Y: MORRIS, IL REPORTING PERIOD:		MBER: PERIOD:	50-010, 50-237 & 50-249 ANNUAL 2005			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	ITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTIME REPORTED MEASUREMENTS
	ZRNB-95		N/A	<lld< td=""><td><lu>LLD</lu></td><td>-</td><td>-</td><td>0</td></lld<>	<lu>LLD</lu>	-	-	0
	I-131		60	<lld< td=""><td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		80	<lld< td=""><td><lld< td=""><td></td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>-</td><td>0</td></lld<>		-	0
A-43	BALA140		N/A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
DIRECT RADIATION (MILLI-ROENTGEN/QUAR	TLD-QUARTERLY TER)	351	N/A	23.5 (343/343) (17/31)	21.6 (8/8) (19/25)	28.3 (4/4) (26/30)	D-110-3 INDICATOR	0

Intentionally Left Blank

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

	· · · · · · · · · · · · · · · · · · ·	
Location	Location Description	Distance & Direction From Site
	o Wotor	
a ounau		
D-51	Dresden Lock and Dam, Downstream (indicator)	0.5 miles NW
D-52	DesPlaines River, Upstream (control)	0.9 miles ESE
D-54	Kankakee River, Upstream (control)	8.5 miles SE
B. Ground	d/Well Water	
D-23	Thorsen Well (indicator)	0.7 miles S
D-35	Dresden Lock and Dam (indicator)	0.5 miles NW
<u>C. Milk - I</u>	pi-weekly / montbly	
D-25	Biros Farm (control)	11.5 miles SW
D. Air Par	ticulates / Air Iodine	
D-01	Onsite 1 (indicator)	0.6 miles NW
D-02	Onsite 2 (indicator)	0.3 miles NE
D-03	Onsite 3 (indicator)	0.4 miles S
D-04	Collins Road (indicator)	0.9 miles W
D-07	Clay Products (indicator)	2.0 miles S
D-08	Prairie Park (indicator)	4.0 miles SW
D-10	Goose Lake Village (indicator)	3.8 miles SSW
D-12	Lisbon (control)	10.0 miles NW
D-13	Minooka (indicator)	4.5 miles N
D-14	Channahon (indicator)	3.5 miles NE
D-45	McKinley Woods Road (indicator)	1.5 miles ENE
D-53	Grundy County Road (indicator)	2.1 miles SSE
E Fish		
D-28	Dresden Pool of Illinois River, Downstream (indicator)	0.5 miles NW
D-46	DesPlaines River, Upstream (control)	0.9 miles E
F. Sedim	ent	
D-27	Dresden Lock and Dam, Downstream (indicator)	0.5 miles NW
G. Vegeta	tion	
Quadrant 1	Chris Locknar	2.8 miles NE
Quadrant 2	Robert Pagliano	3.2 miles SSE
Quadrant 3	Jim Bloom	3.9 miles SSW
Quadrant 4	J.D. Carmichael	1.6 miles NNW
Control	Glasscock Farm	12.8 miles ENE
H. Enviror	amental Dosimetry - TLD	
Inner Ring		
D-101-1 and -2		1.0 miles N
D-102-1 and -2		1.3 miles NNE
D-103-1 and -2		1.2 miles NF
D-104-1 and -2		1.5 miles ENF
D-105-1 and -2		1.4 miles E
D-106-1 and -2		0.9 miles ESE
D-107-1 and -2		1.3 miles SF
D-108-1 and -2		1.9 miles SSE
D-109-1 and -2		0.8 miles S

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Dresden Nuclear Power Station, 2005

Location	Location Description	Distance & Direction From Site
D-110-3 and -4	<u></u>	0.8 miles SSW
D-111-1 and -2		0.6 miles SW
D-112a-1 and -2		0.8 miles WSW
D-113-1 and -2		0.9 miles W
D-114-1 and -2		1.0 miles WNW
D-115-1 and -2		0.8 miles NW
D-116-1 and -2		1.0 miles NNW
Outer Ring		
D-201-1 and -2		4.5 miles N
D-202-1 and -2		5.0 miles NNE
D-203-1 and -2		4.5 miles NE
D-204-1 and -2		5.0 miles ENE
D-205-1 and -2		4.2 miles E
D-206 -1 and -2		3.5 miles ESE
D-207-1 and -2		4.5 miles SE
D-208-1 and -2		5.0 miles SSE
D-209-1 and -2		5.0 miles S
D-210-1 and -2		4.8 miles SSW
D-211-1 and -2		5.0 miles SW
D-212-3 and -4		6.0 miles WSW
D-213-1 and -2		4.5 miles W
D-214-1 and -2		4.5 miles WNW
D-215-1 and -2		5.1 miles NW
D-216-1 and -2		4.8 miles NNW
Other		
D-01-1 and -2	Onsite 1	0.6 miles NW
D-02-1 and -2	Onsite 2	0.3 miles NE
D-03-1 and -2	Onsite 3	0.4 miles S
D-04-1 and -2	Collins Road	0.9 miles W
D-07-1 and -2	Clay Products	2.0 miles S
D-08-1 and -2	Prairie Park	4.0 miles SW
D-10-1 and -2	Goose Lake Village	3.8 miles SSW
D-13-1 and -2	Minooka	4.5 miles N
D-14-1 and -2	Channahon	3.5 miles NE
D-45-1 and -2	McKinley Woods Road	1.5 miles ENE
D-53-1 and -2	Grundy County Road	2.1 miles SSE
Control		
D-12-1 and -2	Lisbon	10.0 miles NW

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Dresden Nuclear Power Station, 2005

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Dresden Nuclear Power Station, 2005

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from weekly grab samples.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual TBE, TBE-2023 Compositing of samples EIML-COMP-01 procedure for compositing water and milk samples	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Surface Water	Gross Beta	Monthly composite from weekly grab samples.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual TBE, TBE-2023 Compositing of samples EIML-COMP-01 procedure for compositing water and milk samples	2 gallon	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)
Surface Water	Tritium	Quarterly composite from weekly grab samples.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual TBE, TBE-2023 Compositing of samples EIML-COMP-01 procedure for compositing water and milk samples	500 ml	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation Env. Inc., T-02 Determination of tritium in water (direct method)
Ground Water	Gamma Spectroscopy	Quarterly grab samples.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Ground Water	Tritium	Quarterly grab samples.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	500 ml	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation Env. Inc., T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Samples collected twice annually via electroshocking or other techniques	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1000 grams (wet)	TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Sediment	Gamma Spectroscopy	Semi-annual grab samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	500 grams (dry)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Dresden Nuclear Power Station, 2005

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Dredging Spoils	Gamma Spectroscopy	Annual grab samples if dredging occurred within 1 mile of Dresden Station during the year.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	500 grams (dry)	TBE, TBE-2007 Gamma emitting radioisotope analysis
Air Particulates	Gross Beta	One-week of continuous air sampling through glass fiber filter paper	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2023 Compositing of samples Env. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Iodine	Gamma Spectroscopy	One- or two-week composite of continuous air sampling through charcoal filter	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
Milk	I-131	Bi-weekly grab sample May through October. Monthly all other times	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	2 gallon	TBE, TBE-2012 Radioiodine in various matrices Env. Inc., I-131-01 Determination of I-131 in milk by anion exchange
Milk	Gamma Spectroscopy	Bi-weekly grab sample May through October. Monthiy all other times	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Food Products	Gamma Spectroscopy	Annual grab samples.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1000 grams	TBE, TBE-2007 Gamma emitting radioisotope analysis
TLD	Thermoluminescence Dosimetry	Quarterly TLDs comprised of two Global Dosimetry TLDs, with two CaF ₂ elements and two LiF elements in each TLD.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	2 dosimeters	Global Dosimetry

•

DRESDEN

Figure B-1 Dresden Station Inner Ring TLD Locations, Fish, Water, and Sediment Locations, 2005

Figure B-2 Dresden Station Fixed Air Sampling and TLD Sites, Outer Ring TLD Locations and Milk Location, 2005

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

TABLE C-I.1CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

COLLECTION PERIOD	D-51	D-52	D-54
JAN	4.0 ± 1.2	6.4 ± 1.3	< 4.0
FEB	5.5 ± 1.4	6.1 ± 1.1	< 4.0
MAR	4.0 ± 0.8	< 4.0	< 4.0
APR	< 4.0	< 4.0	< 4.0
MAY	< 4.0	5.1 ± 0.8	< 4.0
JUN	6.3 ± 1.3	8.7 ± 1.5	4.1 ± 1.3
JUL	9.2 ± 2.2	11 ± 2.4	4.6 ± 1.9
AUG	9.2 ± 2.3	9.2 ± 2.3	6.5 ± 2.1
SEP	8.4 ± 2.1	9.1 ± 2.0	6.6 ± 2.0
OCT	5.9 ± 1.9	5.8 ± 1.9	6.1 ± 1.9
NOV	8.9 ± 2.3	5.9 ± 2.0	7.8 ± 2.2
DEC	9.1 ± 2.5	10 ± 2.8	4.9 ± 2.1

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-I.2CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	D-51	D-52	D-54
JAN-MAR	< 200	< 200	< 200
APR-JUN	262 ± 104	< 200	< 200
JUL-SEP	< 190	< 188	720 ± 133
OCT-DEC	479 ± 116	< 169	< 169

TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
D-51	JAN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	FEB	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	MAR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	APR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	MAY	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUL	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 3	< 2	< 2	< 34	< 11
	AUG	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 8	< 2	< 2	< 16	< 5
	SEP	< 6	< 7	< 12	< 6	< 12	< 6	< 9	< 15	< 4	< 6	< 34	< 11
	OCT	< 2	< 3	< 6	< 3	< 6	< 2	< 5	< 12	< 2	< 3	< 20	< 8
	NOV	< 4	< 5	< 10	< 3	< 6	< 4	< 7	< 11	< 3	< 4	< 26	< 7
	DEC	< 2	< 3	< 5	< 3	< 5	< 3	< 4	< 7	< 2	< 2	< 17	< 5
-		. 45											
D-52	JAN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	FEB	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	MAR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	APR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	MAY	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUL	< 3	< 3	< 6	< 3	< 6	< 3	< 6	< 4	< 2	< 2	< 46	< 14
	AUG	< 2	< 2	< 5	< 2	< 4	< 3	< 4	< 10	< 2	< 2	< 19	< 7
	SEP	< 5	< 5	< 10	< 5	< 10	< 5	< 9	< 14	< 4	< 5	< 28	< 11
	OCT	< 4	< 5	< 8	< 5	< 9	< 5	< 8	< 15	< 4	< 3	< 27	< 9
	NOV	< 6	< 5	< 9	< 6	< 9	< 7	< 12	< 13	< 6	< 5	< 32	< 12
	DEC	< 5	< 5	< 11	< 5	< 13	< 5	< 9	< 14	< 6	< 5	< 33	< 11

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

ငုပ္ပ

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
D-54	JAN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	FEB	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	MAR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	APR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	MAY	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUL	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 12	< 1	< 1	< 18	< 6
	AUG	< 4	< 5	< 7	< 5	< 8	< 4	< 8	< 13	< 4	< 5	< 34	< 10
	SEP	< 3	< 4	< 7	< 3	< 9	< 5	< 9	< 11	< 3	< 4	< 24	< 10
	OCT	< 5	< 5	< 11	< 3	< 7	< 4	< 7	< 13	< 4	< 5	< 31	< 8
	NOV	< 3	< 4	< 7	< 5	< 6	< 3	< 8	< 8	< 3	< 4	< 21	< 7
	DEC	< 1	< 1	< 3	< 2	< 3	< 1	< 3	< 4	< 1	< 1	< 10	< 3

TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

ဂု မ

TABLE C-II.1CONCENTRATIONS OF TRITIUM IN GROUND WATER SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION

PERIOD	D-23	D-35				
JAN-MAR	737 ± 103	< 200				
APR-JUN	653 ± 102	< 200				
JUL-SEP	830 ± 130	< 176				
OCT-DEC	548 ± 116	< 158				

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
D-23	JAN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	APR	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
	JUL	< 6	< 5	< 10	< 5	< 14	< 5	< 10	< 9	< 5	< 5	< 32	< 11
	OCT	< 4	< 4	< 7	< 3	< 6	< 4	< 7	< 10	< 3	< 4	< 24	< 8
D-35	JAN	< 15	< 15	< 30	< 15	< 30	< 15	< 30	< 15	< 15	< 18	< 60	< 15
0.00	ADD	~ 15	< 15	< 30	< 15	< 20	< 15	< 20	< 15	< 15	< 10	< 60	< 15
		< 15 	< 15 	< 30	× 15	< 30	< 15 	< 30 -	< 15	× 15	< 10 -	< 00	< 15 •
	JUL	< 4	< 5	< 14	< 6	< 9	< 5	< 5	< 8	< 4	< 5	< 21	< 8
	OCT	< 5	< 5	< 12	< 5	< 10	< 5	< 8	< 13	< 4	< 6	< 29	< 6

TABLE C-II.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUND WATER SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

ဂို

TABLE C-III.1CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA-140
D-28										
Largemouth Bass	05/12/05	< 130	< 130	< 260	< 130	< 260	< 200	< 130	< 150	< 300
Largemouth Bass	10/28/05	< 67	< 66	< 132	< 51	< 166	< 70	< 55	< 66	< 108
D-28	05/10/05	. 100	- 400	1 000	- 100	- <u>060</u>	< 200	< 120	~ 150	< 200
Channel Cattish	05/12/05	< 130	< 130	< 260	< 130	< 200	< 200	< 130	< 150	< 300
Carp	10/28/05	< 59	< 66	< 153	< 62	< 116	< 90	< 03	< 60	< 145
D-46										
Largemouth Bass	05/12/05	< 130	< 130	< 260	< 130	< 260	< 200	< 130	< 150	< 300
Largemouth Bass	10/28/05	< 36	< 37	< 87	< 49	< 65	< 36	< 31	< 28	< 62
D-46										
Channel Catfish	05/12/05	< 130	< 130	< 260	< 130	< 260	< 200	< 130	< 150	< 300
Com	10/28/05	< 40	< 15	< 88	< 40	< 84	< 52	< 39	< 40	< 62
Udip	10/20/03	> +v	~ +0	~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 04	~ ~~			

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

с-С-

TABLE CIV.1CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59 CO-6		ZN-65	ZRNB-95	CS-134	CS-137	BALA-140
D-27	05/20/05	< 150	< 100	< 600	< 100	< 600	< 200	< 150	< 180	< 600
	10/07/05	< 49	< 45	< 114	< 49	< 112	< 55	< 39	68 ± 42	< 87

RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

		GROUP I		GROUP II							
WEEK	D-01	D-02	D-03	D-04	D-07	D-45	D-53				
1	28 + 4	(1)	33 + 4	35 + 4	32 + 4	32 + 4	36 + 4				
2	29 + 4	(1)	20 ± 4	38 + 6	28 ± 4		22 + 3				
2	23 1 4		29 1 4	49 5	20 1 4	23 1 4	22 1 3				
3	41 ± 4		30 ± 4	40 ± 5	30 ± 4	40 ± 4	30 ± 4				
4	23 ± 4		21 ± 4	32 ± 4	21 ± 4	22 ± 4	22 ± 4				
5	33 ± 4		26 ± 4	29 ± 4	31 ± 4	25 ± 4	29 ± 4				
6	23 ± 4		20 ± 4	22 ± 4	24 ± 4	28 ± 4	25 ± 4				
7	22 ± 3		24 ± 3	26 ± 3	25 ± 3	27 ± 4	26 ± 4				
8	34 ± 4		29 ± 4	33 ± 4	32 ± 4	31 ± 4	33 ± 4				
9	24 ± 4		22 ± 4	23 ± 4	20 ± 4	23 ± 4	22 ± 4				
10	22 + 4		24 + 4	25 + 4	25 + 4	21 + 4	23 + 4				
11	18 + 3		18 + 3	16 + 3	18 + 3	19 + 3	20 ± 3				
12	16 + 3		13 + 3	15 + 3	14 + 2	17 + 2	14 + 3				
12	10 1 3		20 2	10 1 0	14 1 3	17 ± 3	14 1 3				
13	19 ± 3		20 ± 3	20 ± 3	22 ± 3	21 ± 3	21 ± 3				
14	13 ± 3		19 ± 4	17 ± 3	20 ± 4	20 ± 4	20 ± 4				
15	16 ± 4		15 ± 3	15 ± 3	23 ± 4	18 ± 4	18 ± 4				
16	24 ± 3		23 ± 3	23 ± 3	25 ± 3	26 ± 3	21 ± 3				
17	16 ± 3		15 ± 3	20 ± 3	17 ± 3	16 ± 3	16 ± 3				
18	20 ± 3		20 ± 3	22 ± 4	23 ± 4	24 ± 4	22 ± 4				
1 9	18 ± 4		20 ± 4	20 ± 4	25 ± 4	25 ± 4	19 ± 4				
20	12 ± 3		10 ± 3	15 ± 3	14 ± 3	13 ± 3	15 ± 3				
21	11 ± 3		13 ± 3	16 ± 3	15 ± 3	14 ± 3	19 ± 3				
22	15 + 4		17 + 4	14 + 3	20 + 4	15 + 3	18 + 4				
23	22 + 3		21 + 3	19 + 3	< 4	21 + 3	22 + 3				
20	12 + 2		12 + 3	13 1 3	(1)	21 1 3	22 ± 3 16 ± 3				
24	12 1 3		12 1 3	12 ± 3	22 (1)	11 ± 3	10 1 3				
25	21 ± 3		23 ± 3	20 ± 3	23 ± 3	21 ± 3	24 ± 3				
20	31 ± 4		37 ± 4	35 ± 4	54 ± 5	44 ± 5	40 ± 4				
27	< 6		8 ± 4	8 ± 4	15 ± 5	12 ± 5	13 ± 5				
28	19 ± 5		21 ± 5	21 ± 5	22 ± 5	28 ± 6	18 ± 5				
29	15 ± 5		15 ± 5	17 ± 5	12 ± 5	18 ± 5	17 ± 5				
30	8 ± 5		7 ± 4	11 ± 5	14 ± 5	< 7	11 ± 5				
31	22 ± 5		18 ± 5	20 ± 5	23 ± 5	23 ± 5	28 ± 6				
32	16 ± 5		19 ± 5	20 ± 5	24 ± 5	24 ± 5	23 ± 5				
33	16 ± 5		18 ± 5	13 ± 5	20 ± 5	16 ± 5	15 ± 5				
34	10 ± 5		11 ± 5	9 ± 5	8 ± 5	12 ± 5	15 ± 5				
35	26 ± 5		22 ± 5	21 ± 5	28 ± 5	27 ± 5	25 ± 5				
36	20 + 5		19 + 5	21 + 5	18 + 5	15 + 5	16 + 5				
37	38 + 6		35 + 5	35 + 5	39 + 6	34 + 5	37 + 5				
38	20 + 5	25 + 6	19 + 5	19 + 5	24 + 5	18 + 5	22 + 5				
20	16 + 4	16 + 1	19 ± 4	16 ± 4	27 ± 0	20 + 4	22 1 0				
39	10 ± 4	10 1 4	10 ± 4	10 ± 4	21 . 5	20 1 4	22 1 4				
40	17 ± 4	22 1 5	24 ± 3	10 ± 4	21 ± 5	24 ± 0	10 ± 4				
41	10 ± 4	14 ± 4	13 ± 4	13 ± 4	10 ± 4	13 ± 4	23 ± 5				
42	15 ± 5	12 ± 4	15 ± 5	12 ± 4	13 ± 4	17 ± 5	16 ± 5				
43	14 ± 4	11 ± 3	12 ± 3	10 ± 3	12 ± 3	14 ± 4	13 ± 4				
44	24 ± 5	28 ± 5	27 ± 5	25 ± 5	29 ± 5	27 ± 5	27 ± 5				
45	31 ± 5	31 ± 5	32 ± 5	23 ± 5	33 ± 5	36 ± 6	30 ± 5				
46	14 ± 3	13 ± 3	16 ± 3	14 ± 3	14 ± 3	16 ± 3	15 ± 3				
47	18 ± 5	18 ± 5	16 ± 4	18 ± 5	21 ± 5	21 ± 5	16 ± 4				
48	20 ± 4	15 ± 4	18 ± 4	18 ± 4	17 ± 4	16 ± 4	19 ± 4				
49	29 + 5	23 + 5	31 + 5	27 + 5	33 + 5	30 + 5	29 + 5				
50	24 + 5	25 + 5	26 + 5	25 + 5	32 + 5	29 + 5	26 + 5				
50 E1	<u>7</u> 7 7 7 7	40 + 6	16 + 6	13 ± 6	17 ± 6	10 + 6	20 1 6				
57			40 I V 10 ± 4		77 1 0	+0 I U 22 ± E	JJ I U 22 ± E				
52	21 1 3	24 I J	13 I 4	13 1 4	20 ± 0	22 Î J	2J I J				
MEAN	21 ± 16	21 ± 16	21 ± 16	21 ± 17	23 ± 18	22 ± 16	22 ± 14				

RESULTS IN UNITS OF E-3 PCI/CU METER ± SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDA AND POSITIVE VALUES

TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

			GROUP IV				
WEEK	D-08	D-10	D-13	D-14	D-12		
1	(1)	(1)	(1)	(1)	33 ± 4		
2					28 ± 4		
3					38 ± 4		
4					23 ± 4		
5					30 ± 4		
6					27 ± 4		
7					27 ± 4		
8					31 ± 4		
9					21 ± 4		
10					22 ± 4		
11					21 ± 3		
12					14 ± 3		
13					19 ± 3		
14					13 ± 3		
15					20 ± 4		
16					26 ± 3		
17					16 ± 3		
18					19 ± 3		
19					21 ± 4		
20					15 ± 3		
21					17 ± 3		
22					18 ± 4		
23					17 ± 3		
24					13 ± 3		
25					21 ± 3		
26					41 ± 4		
27	9 ± 4	7 ± 4	11 ± 5	11 ± 4	8 ± 4		
28	18 ± 5	20 ± 5	22 ± 5	26 ± 5	22 ± 5		
29	16 ± 5	15 ± 5	15 ± 5	17 ± 5	14 ± 5		
30	12 ± 5	9 ± 5	13 ± 5	12 ± 5	12 ± 5		
31	24 ± 5	26 ± 6	24 ± 5	26 ± 6	19 ± 5		
32	27 ± 5	25 ± 5	25 ± 5	20 ± 5	18 ± 5		
33	20 ± 5	17 ± 5	16 ± 5	18 ± 5	20 ± 5		
34	10 ± 5	9±5	13 ± 5	8 ± 5	9±5		
35	27 ± 5	22 ± 5	30 ± 5	24 ± 5	24 ± 5		
36	15 ± 5	17 ± 5	19 ± 5	22 ± 5	23 ± 5		
37	39 ± 6	43 ± 6	39 ± 6	42 ± 6	39 ± 6		
38	23 ± 5	19 ± 5	20 ± 5	20 ± 5	21 ± 5		
39	18 ± 4	19 ± 4	18 ± 4	24 ± 4	18 ± 4		
40	23 ± 5	25 ± 5	21 ± 5	23 ± 5	23 ± 5		
41	17 ± 4	20 ± 4	18 ± 4	20 ± 4	18 ± 4		
42	18 ± 5	16 ± 5	24 ± 5	16 ± 5	21 ± 5		
43	15 ± 4	12 ± 3	14 ± 4	12 ± 3	12 ± 3		
44	28 ± 5	25 ± 5	26 ± 5	26 ± 5	26 ± 5		
45	32 ± 5	29 ± 5	35 ± 5	33 ± 5	34 ± 5		
46	17 ± 3	14 ± 3	17 ± 3	15 ± 3	15 ± 3		
47	17 ± 5	23 ± 5	17 ± 5	15 ± 4	18 ± 5		
48	14 ± 4	17 ± 4	17 ± 4	17 ± 4	15 ± 4		
49	30 ± 5	29 ± 5	35 ± 5	33 ± 5	30 ± 5		
50	28 ± 5	28 ± 5	24 ± 4	23 ± 4	22 ± 4		
51	41 ± 6	46 ± 6	46 ± 6	48 ± 6	48 ± 6		
52	24 ± 5	19 ± 4	22 ± 5	22 ± 5	24 ± 5		
MEAN	22 ± 16	21 ± 18	22 ± 17	22 ± 18	22 ± 16		

RESULTS IN UNITS OF E-3 PCI/CU METER + SIGMA

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION * THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDA AND POSITIVE VALUES

GROUP I - ON-SITE LOCATIONS				GROUP II - NEAR-FIELD	<u>s</u>	GROUP III - FAR-FIELD LOCATIONS				GROUP IV - CONTROL LOCATION						
	MIN.	MAX.	MEAN ±	COLLECTION MI	IN.	MAX.	MEAN ± 2 SD		MIN.	MAX.	MEAN ± 2 SD		MIN.	MAX	. M	EAN ± 2 SD
12/31/04 - 01/28/05	21	41	30 ± 14	12/31/04 - 01/28/05 2	21	48	32 ± 15	12/31/04 - 01/28/05	(1)	(1)	(1)	12/31/04 - 01/28/05	23	38	31	± 13
01/28/05 - 02/25/05	20	34	26 ± 10	01/28/05 • 02/25/05 2	2	33	28 ± 7	01/28/05 - 02/25/05				01/28/05 - 02/25/05	27	31	29	± 4
02/25/05 - 04/01/05	13	24	20 ± 7	02/25/05 - 04/01/05 1	4	25	20 ± 7	02/25/05 - 04/01/05				02/25/05 - 04/01/05	14	22	19	± 6
04/07/05 - 04/29/05	15	24	18 ± 8	04/07/05 - 04/29/05 1	5	26	20 ± 7	04/07/05 - 04/29/05				04/07/05 - 04/29/05	16	26	21	± 10
04/29/05 - 06/03/05	10	20	16 ± 8	04/29/05 - 06/03/05 1	3	25	18 ± 8	04/29/05 - 06/03/05				04/29/05 - 06/03/05	15	21	18	± 4
06/03/05 - 07/01/05	12	37	23 ± 19	06/03/05 - 07/01/05 4	4	54	24 ± 27	06/03/05 - 07/01/05				06/03/05 - 07/01/05	13	41	23	± 25
07/01/05 - 07/29/05	< 6	21	12 ± 11	07/01/05 - 07/29/05 < 7	7	28	15 ± 11	07/01/05 - 07/29/05	7	26	15 ± 10	07/01/05 - 07/29/05	8	22	14	± 12
07/29/05 - 09/02/05	10	26	18 ± 10	07/29/05 - 09/02/05 8	8	28	20 ± 12	07/29/05 - 09/02/05	8	30	20 ± 13	07/29/05 - 09/02/05	9	24	18	± 11
09/02/05 - 09/30/05	16	38	22 ± 15	09/02/05 - 09/30/05 1	5	39	23 ± 16	09/02/05 - 09/30/05	15	43	25 ± 20	09/02/05 - 09/30/05	18	39	26	± 19
09/30/05 - 10/28/05	11	24	15 ± 8	09/30/05 - 10/28/05 1	0	24	16 ± 8	09/30/05 - 10/28/05	12	25	18 ± 8	09/30/05 - 10/28/05	12	23	18	± 10
10/28/05 - 12/02/05	13	32	21 ± 13	10/28/05 - 12/02/05 1	4	36	22 ± 13	10/28/05 - 12/02/05	14	35	22 ± 14	10/28/05 - 12/02/05	15	34	22	± 17
12/02/05 - 12/30/05	19	46	29 ± 19	12/02/05 • 12/30/05 1	9	47	30 ± 16	12/02/05 - 12/30/05	19	48	31 ± 19	12/02/05 - 12/30/05	22	48	31	± 24
01/28/05 - 12/28/05 ·	< 6	46	21 ± 11	01/28/05 - 12/28/05	4	54	22 ± 11	01/28/05 - 12/28/05	7	48	22 ± 11	01/28/05 - 12/28/05	8	48	22	± 11

TABLE C-V.2MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (E-3 PCI/CU METER) IN AIR
PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

TABLE C-V.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLE PEF		MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA140
D-01	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 2.8	< 2.7	< 12	< 3.4	< 6.6	< 6.0	< 2.7	< 2.3	< 67
	09/30/05	12/30/05	< 2.7	< 3.0	< 6.1	< 2.8	< 6.4	< 2.9	< 2.9	< 2.1	< 4.7
D_02	12/31/04	03/25/05	(1)								
0-02	04/01/05	07/01/05	(1)								
(1)	09/16/05	09/30/05	< 37	< 33	< 112	< 22	< 80	< 44	< 30	< 27	< 675
(.,	09/30/05	12/30/05	< 26	< 2.8	< 57	< 3.1	< 6.5	< 28	< 27	< 24	< 6.9
D-03	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 2.1	< 5.8	< 10	< 2.0	< 5.5	< 3. 9	< 1.7	< 3.3	< 62
	09/30/05	12/30/05	< 2.1	< 2.2	< 5.4	< 1.7	< 5.8	< 2.2	< 2.8	< 2.3	< 8.9
D-04	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 0.9	< 1.6	< 4.5	< 1.1	< 2.9	< 1.7	< 0.9	< 1.1	< 24
	09/30/05	12/30/05	< 2.4	< 3.1	< 7.3	< 3.8	< 8.0	< 3.3	< 3.0	< 1.9	< 7.8

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

(2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY

THROUGH DECEMBER

TABLE C-V.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLE PEF	ECTION RIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA140
D-07	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 2.0	< 1.7	< 7.0	< 1.3	< 3.4	< 2.4	< 1.4	< 1.2	< 47
	09/30/05	12/30/05	< 3.6	< 2.9	< 6.7	< 3.3	< 7.5	< 3.6	< 3.4	< 3.0	< 10
D-08	12/31/04	03/25/05	(2)								
	04/01/05	07/01/05	(2)								
	07/01/05	09/30/05	< 1.2	< 1.6	< 3.4	< 1.1	< 3.5	< 1.6	< 0.9	< 1.0	< 44
	09/30/05	12/30/05	< 3.5	< 3.9	< 7.5	< 1.3	< 6.5	< 2.6	< 3.1	< 3.0	< 8.8
D-10	12/31/04	03/25/05	(2)								
	04/01/05	07/01/05	(2)								
	07/01/05	09/30/05	< 1.1	< 2.0	< 6.0	< 1.0	< 3.7	< 2.4	< 1.2	< 1.5	< 42
	09/30/05	12/30/05	< 2.2	< 1.7	< 4.7	< 2.4	< 5.9	< 2.8	< 2.0	< 2.1	< 10
D-12	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 1.6	< 2.6	< 7.4	< 1.6	< 3.8	< 2.8	< 1.2	< 1.6	< 38
	09/30/05	12/30/05	< 2.8	< 2.2	< 6.0	< 2.3	< 7.5	< 2.8	< 2.3	< 1.9	< 9.4

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION
(2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION
DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

TABLE C-V.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC			MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA140
D-13	12/31/04	03/25/05	(2)								
	04/01/05	07/01/05	(2)								
	07/01/05	09/30/05	< 1.5	< 2.0	< 4.8	< 0.8	< 3.2	< 2.0	< 0.9	< 1.2	< 39
	09/30/05	12/30/05	< 2.1	< 1.9	< 5.8	< 2.0	< 4.7	< 2.1	< 2.0	< 1.8	< 8.6
D-14	12/31/04	03/25/05	(2)								
D-14	04/01/05	03/23/03	(2)								
	07/01/05	09/30/05	< 16	< 26	< 8.0	< 21	< 4 4	< 3.1	< 14	< 13	< 53
	09/30/05	12/30/05	< 23	< 25	< 5.6	< 24	< 7.7	< 3.0	< 26	< 22	< 9.8
D-45	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 1.5	< 1.5	< 3.4	< 1.2	< 1.8	< 2.7	< 1.0	< 1.2	< 30
	09/30/05	12/30/05	< 2.5	< 2.3	< 6.4	< 2.3	< 4.8	< 2.1	< 2.6	< 2.4	< 10
D-53	12/31/04	03/25/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	04/01/05	07/01/05	< 10	< 10	< 15	< 10	< 40	< 10	< 50	< 60	< 25
	07/01/05	09/30/05	< 1.4	< 1.8	< 5.4	< 1.4	< 3.7	< 1.8	< 1.2	< 1.3	< 39
	09/30/05	12/30/05	< 2.5	< 28	< 4.9	< 2.0	< 67	< 2.6	< 2.6	< 2.4	< 9.4

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

(2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

TABLE C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

		GROUP I		GROUP II				
WEEK	D-01	D-02	D-03	D-04	D-07	D-45	D-53	
1	< 70	(1)	< 70	< 70	< 70	< 70	< 70	
2								
3	< 70		< 70	< 70	< 70	< 70	< 70	
4								
5	< 70		< 70	< 70	< 70	< 70	< 70	
6								
7	< 70		< 70	< 70	< 70	< 70	< 70	
8			. 70		. 70	. 70	. =0	
9	< 70		< 70	< 70	< 70	< 70	< /0	
10	< 70		< 70	< 70	< 70	< 70	< 70	
12	- 10		< 70	~ 10	< 70	< 70	< 70	
13	< 70		< 70	< 70	< 70	< 70	< 70	
14	. 10							
15	< 70		< 70	< 70	< 70	< 70	< 70	
16								
17	< 70		< 70	< 70	< 70	< 70	< 70	
18								
19	< 70		< 70	< 70	< 70	< 70	< 70	
20								
21	< 70		< 70	< 70	< 70	< 70	< 70	
22	. 70		. 70	. 70	. 70	. 70	. 70	
23	< 70		< 70	< 70	< 70	< 70	< 70	
24	< 70		< 70	< 70	< 70 (1)	< 70	< 70	
25	< 10			< 10	< 70 (I)	< 10	< 70	
20	< 16		< 16	< 16	< 16	< 17	< 17	
28						••		
29	< 13		< 13	< 13	< 13	< 14	< 14	
30								
31	< 11		< 11	< 11	< 11	< 13	< 12	
32								
33	< 13		< 13	< 13	< 17	< 15	< 15	
34								
35	< 15		< 15	< 15	< 16	< 10	< 10	
30	< 9	< 9	~ 0	< 9	~ 0	< 12	- 19	
38	N 0	< 0	< o	< 0	× 0	< 13	< 15	
39	< 14	< 14	< 14	< 14	< 12	< 9	< 9	
40	. 14	• • •		- 14		•••		
41	< 13	< 13	< 13	< 13	< 16	< 13	< 13	
42								
43	< 14	< 14	< 14	< 14	< 12	< 9	< 9	
44								
45	< 34	< 34	< 34	< 34	< 22	< 34	< 33	
46	< 53	< 53	< 53	< 53	< 35	< 32	< 31	
47	< 27	< 27	< 27	< 27	< 38	< 24	< 23	
48	< 47	< 35	< 35	< 35	< 23	< 26	< 26	
49	< 32	< J2	< 32	< 32	< 27	< 18	< 17	
5U E1	< 18 < 40	5 Ið 2 50	< 10 < 60	< 18 < 40	< 24 < 29	< 10 < 25	< 10	
51	 49 20 	< 10 < 10	< 00 < 40	< 49	< 30 < 26	< 20 < 25	< <u>2</u> 4 < 23	
52	~ 29	~ 40	~ 40	~ +0	~ 20	► 2 0	~ 23	

RESULTS IN UNITS OF E-3 PCI/CU METER + SIGMA

-

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION
 (2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION
 DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY
 THROUGH DECEMBER

TABLE C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

		GR	OUP III		GROUP IIV
WEEK	D-08	D-10	D-13	D-14	D-12
1	(2)	(2)	(2)	(2)	< 70
2					
3					< 70
4					
5					< 70
6					
1					< 70
8					< 70
9 10					< 10
10					< 70
12					
13					< 70
14					
15					< 70
16					
17					< 70
18					
19					< 70
20					. 70
21					< 70
22					< 70
23					< 70
25					< 70
26					
27	< 11	< 11	< 11	< 17	< 11
28					
29	< 15	< 15	< 15	< 14	< 14
30					
31	< 12	< 12	< 12	< 13	< 12
32					
33	< 1/	< 17	< 15	< 15	< 17
34	~ 10	~ 10	~ 12	~ 10	~ 10
35	× 12	× 12	× 13		< 13
37	< 15	< 16	< 15	< 13	< 15
38				10	
39	< 9	< 12	< 13	< 10	< 12
40					
41	< 13	< 11	< 17	< 17	< 17
42					
43	< 12	< 12	< 9	< 9	< 12
44				••	
45	< 33	< 33	< 33	< 34	< 22
40 47	< 42	< 42	< 42	< 32	< 42
47 48	< 30	< 30	< 30	~ 24 < 26	< 30
49	< 27	< 27	< 18	< 18	< 27
50	< 25	< 24	< 15	< 10	< 24
51	< 28	< 28	< 28	< 25	< 28
52	< 20	< 19	< 19	< 25	< 19

RESULTS IN UNITS OF E-3 PCI/CU METER + SIGMA

 (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION
 (2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION
 DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

TABLE C-VII.1CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN
THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

COLLECTION	CONTROL FARM
PERIOD	D-25
01/06/05	< 1.0
02/03/05	< 1.0
03/03/05	< 1.0
04/06/05	< 1.0
05/05/05	< 1.0
05/19/05	< 1.0
06/02/05	< 1.0
06/16/05	< 1.0
07/01/05	< 1.0
07/29/05	< 1.0
08/10/05	< 0.3
08/26/05	< 0.4
09/09/05	< 0.8
09/23/05	< 0.6
10/07/05	< 0.5
10/21/05	< 0.2
11/04/05	< 0.5
12/01/05	< 0.6

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES
COLLECTED THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BA-140	LA-140
D-25	01/06/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	02/03/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	03/03/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	04/06/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	05/05/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	05/19/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	06/02/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	06/16/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	07/01/05	< 10	< 10	< 15	< 10	< 15	< 10	< 15	< 18	< 60	< 15
	07/29/05	< 4	< 3	< 8	< 4	< 8	< 4	< 3	< 4	< 20	< 6
	08/10/05	< 5	< 3	< 9	< 4	< 10	< 4	< 4	< 4	< 19	< 6
	08/26/05	< 4	< 6	< 13	< 4	< 12	< 5	< 4	< 5	< 33	< 2
	09/09/05	< 6	< 6	< 13	< 6	< 13	< 6	< 5	< 5	< 33	< 10
	09/23/05	< 5	< 7	< 14	< 7	< 15	< 7	< 5	< 7	< 38	< 10
	10/07/05	< 4	< 5	< 13	< 4	< 13	< 5	< 4	< 5	< 25	< 8
	10/21/05	< 7	< 7	< 12	< 7	< 15	< 6	< 7	< 8	< 31	< 11
	11/04/05	< 6	< 6	< 11	< 8	< 15	< 6	< 6	< 7	< 33	< 10
	12/01/05	< 4	< 4	< 11	< 4	< 8	< 4	< 4	< 4	< 23	< 6

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VIII.1 CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	I-131	CS-134	CS-137	BALA140
D-QUAD 1 Cabbage	09/10/05	< 9	< 9	< 23	< 8	< 20	< 8	< 19	< 8	< 10	< 13
D-QUAD 1 Onions	09/10/05	< 10	< 10	< 25	< 10	< 21	< 11	< 23	< 8	< 9	< 17
	MEAN	9 ± 2	10 ± 1	24 ± 2	9 ± 2	21 ± 1	9 ± 3	21 ± 7	8 ± 0	10 ± 1	15 ± 7
D-QUAD 2 Cabbage	09/10/05	< 11	< 11	< 25	< 12	< 24	< 11	< 28	< 10	< 10	< 18
D-QUAD 2 Carrots	09/10/05	< 12	< 14	< 30	< 15	< 31	< 14	< 32	< 10	< 14	< 23
	MEAN	11 ± 2	12 ± 4	28 ± 7	14 ± 4	28 ± 10	13 ± 4	30 ± 6	10 ± 0	12 ± 5	21 ± 6
D-QUAD 3 Beets	09/10/05	< 9	< 9	< 19	< 9	< 20	< 9	< 23	< 8	< 9	< 19
D-QUAD 3 Cabbage	09/10/05	< 6	< 6	< 15	< 6	< 15	< 6	< 14	< 5	< 6	< 9
	MEAN	7 ± 4	8 ± 5	17 ± 7	7 ± 4	17 ± 7	8 ± 4	18 ± 13	6 ± 4	7 ± 4	14 ± 14
D-QUAD 4 Broccoli	09/10/05	< 6	< 6	< 16	< 7	< 15	< 7	< 16	< 5	< 6	< 10
D-QUAD 4 Potatoes	09/10/05	< 9	< 10	< 24	< 11	< 24	< 10	< 23	< 8	< 10	< 17
	MEAN	7 ± 4	8 ± 5	20 ± 12	9 ± 5	19 ± 13	8 ± 5	19 ± 9	7 ± 4	8 ± 5	13 ± 9
QUAD-C Beets	09/10/05	< 7	< 8	< 19	< 10	< 21	< 10	< 15	< 7	< 9	< 17
QUAD-C Cabbage	09/10/05	< 13	< 13	< 29	< 12	< 30	< 15	< 30	< 12	< 12	< 21
	MEAN	10 ± 7	10 ± 7	24 ± 14	11 ± 3	25 ± 12	12 ± 7	22 ± 21	9 ± 6	11 ± 4	19 ± 5

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR DRESDEN NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS

STATION CODE	MEAN ± 2 S. D.	JAN - MAR	APR-JUN	JUL-SEP	OCT-DEC
D-01-1	25.5 ± 5.3	25	27	22	28
D-01-2	24.0 ± 5.7	24	22	22	28
D-02-1	24.0 ± 7.5	23	24	20	29
D-02-2	23.0 ± 7.1	23	21	20	28
D-03-1	20.8 + 5.7	19	20	19	25
D_03_2	20.5 ± 7.7	10	20	17	26
D-04-1	24.0 ± 5.7	22	24	22	28
D-04-1	24.0 ± 3.1	22	24	22	20
D-04-2	20.0 ± 4.4	20	20	22	27
D-07-1	22.6 1 0.2	21	23	20	21
D-07-2	22.3 ± 0.4	21	21	20	21
D-08-1	24.8 ± 5.0	25	24	22	28
D-08-2	23.8 ± 5.7	22	23	22	28
D-10-1	25.3 ± 6.6	22	27	23	29
D-10-2	24.5 ± 5.3	23	25	22	28
D-12-1	22.0 ± 5.2	23	21	19	25
D-12-2	21.3 ± 5.3	21	20	19	25
D-13-1	22.3 ± 7.7	21	20	20	28
D-13-2	21.5 ± 4.2	22	21	19	24
D-14-1	21.5 ± 4.8	19	24	20	23
D-14-2	22.3 ± 3.4	23	22	20	24
D-45-1	25.3 ± 4.1	25	25	23	28
D-45-2	26.0 ± 3.7	27	25	24	28
D-53-1	20.8 ± 4.7	19	19	21	24
D-53-2	19.0 + 2.8	18	19	18	21
D-101-1	250 + 43	25	24	23	28
D-101-2	238 + 34	23	26	22	24
D-102-1	26.3 ± 3.4	26	27	24	28
D-102-1	20.0 ± 0.7	26	28	23	28
D-102-2	20.3 ± 4.7	20	20	23	20
D-103-1		(1)	20	21	29
D-103-2	24.0 I J.J 26.2 . 2.4	20	23	22	20
D-104-1	20.3 I 3.4	20	20	24	21
D-104-2	23.0 ± 3.4	24	23	22	20
D-105-1	24.5 ± 5.3	23	20	22	20
D-105-2	24.0 ± 2.8	24	25	22	20
D-106-1	23.0 ± 3.7	22	25	21	24
D-106-2	20.3 ± 2.5	19	20	20	22
D-107-1	20.0 ± 4.3	18	19	20	23
D-107-2	20.0 ± 4.3	19	20	18	23
D-108-1	25.8 ± 3.0	25	27	24	27
D-108-2	23.0 ± 5.2	22	24	20	26
D-109-1	25.3 ± 3.4	25	26	23	27
D-109-2	26.0 ± 7.3	22	28	24	30
D-110-3	28.3 ± 3.4	28	29	26	30
D-110-4	27.0 ± 6.3	24	28	25	31
D-111-1	25.0 ± 3.3	25	25	23	27
D-111-2	24.3 ± 4.4	22	27	23	25
D-112A-1	21.8 ± 4.7	20	22	20	25
D-112A-2	23.5 ± 4.8	22	26	21	25
D-113-1	21.5 ± 5.3	21	23	18	24
D-113-2	22.5 ± 6.2	20	22	21	27
D-114-1	21.5 ± 5.3	19	22	20	25
D-114-2	23.3 + 4.4	22	24	21	26
D-115-1	240 + 37	25	23	22	26
D-115-2	243 + 47	24	26	21	26
D-116-1	260 + 43	26	28	23	27
D-116-2	248 + 47	25	23	23	28
	E-114 T -111				

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR DRESDEN NUCLEAR POWER STATION, 2005

STATION CODE	MEAN ± 2 S. D.	JAN - MAR	APR-JUN	JUL-SEP	OCT-DEC
D-201-1	28.0 ± 6.3	27	30	24	31
D-201-2	27.5 ± 4.8	26	27	26	31
D-202-1	24.8 ± 4.1	25	25	22	27
D-202-2	25.3 ± 4.4	27	26	22	26
D-203-1	22.8 ± 3.4	23	22	21	25
D-203-2	21.5 ± 3.5	21	20	21	24
D-204-1	22.8 ± 3.0	22	22	22	25
D-204-2	22.0 ± 3.7	23	21	20	24
D-205-1	24.3 ± 6.0	25	21	23	28
D-205-2	22.5 ± 6.2	21	20	22	27
D-206-1	22.8 ± 3.0	22	22	22	25
D-206-2	23.8 ± 1.9	24	23	23	25
D-207-1	21.8 ± 5.0	22	19	21	25
D-207-2	22.0 ± 2.8	21	22	21	24
D-208-1	20.0 ± 5.2	21	17	19	23
D-208-2	19.8 ± 4.4	19	18	19	23
D-209-1	19.3 ± 3.8	19	18	18	22
D-209-2	20.0 ± 3.3	20	18	20	22
D-210-1	23.0 ± 5.2	24	22	20	26
D-210-2	23.5 ± 2.6	24	23	22	25
D-211-1	24.5 ± 2.0	25	25	23	25
D-211-2	24.5 ± 2.0	25	25	23	25
D-212-3	19.8 ± 4.4	19	18	19	23
D-212-4	20.8 ± 4.7	21	19	19	24
D-213-1	19.5 ± 4.8	19	18	18	23
D-213-2	19.3 ± 4.1	19	17	19	22
D-214-1	26.8 ± 5.0	27	26	24	30
D-214-2	26.8 ± 4.4	28	24	26	29
D-215-1	27.0 ± 5.2	28	26	24	30
D-215-2	25.3 ± 2.5	25	25	24	27
D-216-1	22.3 ± 3.8	22	21	21	25
D-216-2	26.5 ± 3.8	26	28	24	28

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS

•

.

TABLE C-IX.2MEAN QUARTERLY TLD RESULTS FOR THE INNER RING, OUTER RING, OTHER
AND CONTROL LOCATIONS FOR DRESDEN NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS OF THE STATION DATA

STATION CODE	INNER RING		OTHER	CONTROL
JAN-MAR	23.2 ± 5.1	23.1 ± 5.7	22.2 ± 5.2	23.0 ± 0.0
APR-JUN	24.7 ± 5.2	22.1 ± 6.9	22.9 ± 5.1	22.5 ± 4.2
JUL-SEP	21.9 ± 3.7	21.6 ± 4.3	20.9 ± 3.6	20.0 ± 0.0
OCT-DEC	26.4 ± 4.3	25.6 ± 5.2	26.5 ± 4.4	28.5 ± 1.4

TABLE C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR DRESDEN
NUCLEAR POWER STATION, 2005

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER

LOCATION	SAMPLES ANALYZED	PERIOD MINIMUM	PERIOD MAXIMUM	PERIOD MEAN ± 2 S. D.
INNER RING	127	18.0	31.0	24.1 ± 5.7
OUTER RING	128	17.0	31.0	23.1 ± 6.3
OTHER	80	17.0	29.0	23.1 ± 6.1
CONTROL	8	20.0	29.0	23.5 ± 1.4

INNER RING STATIONS - D-101-1, D-101-2, D-102-1, D-102-2, D-103-1, D-103-2, D-104-1, D-104-2 D-105-1, D-105-2, D-106-1, D-106-2, D-107-1, D-107-2, D-108-1, D-108-2, D-109-1, D-109-2, D-110-3, D-110-4, D-111-1, D-111-2, D-112A-1, D-112A-2, D-113-1, D-113-2, D-114-1, D-114-2, D-115-1, D-115-2 D-116-1, D-116-2

INNER RING STATIONS - D-201-1, D-201-2, D-202-1, D-202-2, D-203-1, D-203-2, D-204-1, D-204-2 D-205-1, D-205-2, D-206-1, D-206-2, D-207-1, D-207-2, D-208-1, D-208-2, D-209-1, D-209-2, D-210-1, D-210-2, D-211-1, D-211-2, D-212-3, D-212-4, D-213-1, D-213-2, D-214-1, D-214-2, D-215-1, D-215-2 D-216-1, D-216-2

OTHER STATIONS - D-01-1, D-01-2, D-02-1, D-02-2, D-03-1, D-03-2, D-04-1, D-04-2, D-07-1, D-07-2 D-08-1, D-08-2, D-10-1, D-10-2, D-13-1, D-13-2, D-14-1, D-14-2, D-45-1, D-45-2, D-53-1, D-53-2

CONTROL STATIONS - D-12-1, D-12-2

TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

SURFACE WATER (TRITIUM LIQUID SCINTILLATION)

PERIOD	D-51	D-52	D-54
JAN-MAR	01/07/05 - 03/25/05	01/07/05 - 03/25/05	01/06/05 - 03/31/05
APR-JUN	04/01/05 - 07/01/05	04/01/05 - 07/01/05	04/07/05 - 06/30/05
JUL-SEP	07/08/05 - 09/30/05	07/08/05 - 09/30/05	07/07/05 - 09/29/05
OCT-DEC	10/07/05 - 12/30/05	10/07/05 - 12/30/05	10/06/05 - 12/29/05

SURFACE WATER (GROSS BETA & GAMMA SPECTROSCOPY)

COLLECTION PERIOD	<u>D-51</u>	D-52	D-54
JAN	01/07/05 - 01/28/05	01/07/05 - 01/28/05	01/06/05 - 01/27/05
FEB	02/04/05 - 02/25/05	02/04/05 - 02/25/05	02/03/05 - 02/24/05
MAR	03/04/05 - 03/25/05	03/04/05 - 03/25/05	03/03/05 - 03/31/05
APR	04/01/05 - 04/29/05	04/01/05 - 04/29/05	04/07/05 - 04/28/05
MAY	05/06/05 ~ 05/27/05	05/06/05 - 05/27/05	05/05/05 - 05/26/05
JUN	06/03/05 ~ 07/01/05	06/03/05 - 07/01/05	06/02/05 - 06/30/05
JUL	07/08/05 ~ 07/29/05	07/08/05 - 07/29/05	07/07/05 - 07/28/05
AUG	08/05/05 - 08/26/05	08/05/05 - 08/26/05	08/04/05 - 08/25/05
SEP	09/02/05 - 09/30/05	09/02/05 - 09/30/05	09/01/05 - 09/29/05
OCT	10/07/05 - 10/28/05	10/07/05 - 10/28/05	10/06/05 - 10/27/05
NOV	11/04/05 - 11/25/05	11/04/05 - 11/25/05	11/03/05 - 11/25/05
DEC	12/02/05 - 12/30/05	12/02/05 - 12/30/05	12/01/05 - 12/29/05

GROUND WATER (TRITIUM & GAMMA SPECTROSCOPY)

COLLECTION			
PERIOD	D-23	D-35	
JAN-MAR	01/14/05	01/14/05	
APR-JUN	04/14/05	04/14/05	
JUL-SEP	07/15/05	07/15/05	
OCT-DEC	10/14/05	10/14/05	

TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	D-01	D-02	D-03	D-04	D-07
JAN-MAR	12/31/04 - 03/25/05	(1)	12/31/04 - 03/25/05	12/31/04 - 03/25/05	12/31/04 - 03/25/05
APR-JUN	03/25/05 - 07/01/05		03/25/05 - 07/01/05	03/25/05 - 07/01/05	03/25/05 - 07/01/05
JUL-SEP	07/01/05 - 09/30/05	09/16/05 - 09/30/05	07/01/05 - 09/30/05	07/01/05 - 09/30/05	07/01/05 - 09/30/05
OCT-DEC	09/30/05 - 12/30/05	09/30/05 - 12/30/05	09/30/05 - 12/30/05	09/30/05 - 12/30/05	09/30/05 - 12/30/05

AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	D-08	D-10	D-12	D-13	D-14
JAN-MAR	(2)	(2)	12/31/04 - 03/25/05	(2)	(2)
APR-JUN			03/25/05 - 07/01/05		
JUL-SEP	07/01/05 - 09/30/05	07/01/05 - 09/30/05	07/01/05 - 09/30/05	07/01/05 - 09/30/05	07/01/05 - 09/30/05
OCT-DEC	09/30/05 - 12/30/05	09/30/05 - 12/30/05	09/30/05 - 12/30/05	09/30/05 - 12/30/05	09/30/05 - 12/30/05

AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	D-45	D-53	
JAN-MAR	12/31/04 - 03/25/05	12/31/04 - 03/25/05	
APR-JUN	03/25/05 - 07/01/05	03/25/05 - 07/01/05	
JUL-SEP	07/01/05 - 09/30/05	07/01/05 - 09/30/05	
OCT-DEC	09/30/05 - 12/30/05	09/30/05 - 12/30/05	

TABLE C-X.1

SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

AIR PARTICULATE (GROSS BETA & I-131)

COLLECTION		D-01	D-02	D-03	D-04	D-07
PERIOD						
		12/31/04 - 01/07/05	(1)	12/31/04 - 01/07/05	12/31/04 - 01/07/05	12/31/04 - 01/07/05
2	٠	01/07/05 - 01/14/05	()	01/07/05 - 01/14/05	01/07/05 - 01/14/05	01/07/05 - 01/14/05
3		01/14/05 - 01/21/05		01/14/05 - 01/21/05	01/14/05 - 01/21/05	01/14/05 - 01/21/05
4	٠	01/21/05 - 01/28/05		01/21/05 - 01/28/05	01/21/05 - 01/28/05	01/21/05 - 01/28/05
5		01/28/05 - 02/04/05		01/28/05 - 02/04/05	01/28/05 - 02/04/05	01/28/05 - 02/04/05
6	*	02/04/05 - 02/10/05		02/04/05 - 02/10/05	02/04/05 - 02/10/05	02/04/05 - 02/10/05
7		02/10/05 - 02/18/05		02/10/05 - 02/18/05	02/10/05 - 02/18/05	02/10/05 - 02/18/05
8	*	02/18/05 - 02/25/05		02/18/05 - 02/25/05	02/18/05 - 02/25/05	02/18/05 - 02/25/05
9		02/25/05 - 03/04/05		02/25/05 - 03/04/05	02/25/05 - 03/04/05	02/25/05 - 03/04/05
10	٠	03/04/05 - 03/10/05		03/04/05 - 03/10/05	03/04/05 - 03/10/05	03/04/05 - 03/10/05
11		03/10/05 - 03/18/05		03/10/05 - 03/18/05	03/10/05 - 03/18/05	03/10/05 - 03/18/05
12	*	03/18/05 - 03/25/05		03/18/05 - 03/25/05	03/18/05 - 03/25/05	03/18/05 - 03/25/05
13		03/25/05 - 04/01/05		03/25/05 - 04/01/05	03/25/05 - 04/01/05	03/25/05 - 04/01/05
14	*	04/01/05 - 04/07/05		04/01/05 - 04/07/05	04/01/05 - 04/07/05	04/01/05 - 04/07/05
15		04/07/05 - 04/14/05		04/07/05 - 04/14/05	04/07/05 - 04/14/05	04/07/05 - 04/14/05
16	*	04/14/05 - 04/22/05		04/14/05 - 04/22/05	04/14/05 - 04/22/05	04/14/05 - 04/22/05
17		04/22/05 - 04/29/05		04/22/05 - 04/29/05	04/22/05 - 04/29/05	04/22/05 - 04/29/05
18	*	04/29/05 - 05/06/05		04/29/05 - 05/06/05	04/29/05 - 05/06/05	04/29/05 - 05/06/05
19		05/06/05 - 05/13/05		05/06/05 - 05/13/05	05/06/05 - 05/13/05	05/06/05 - 05/13/05
20	*	05/13/05 - 05/20/05		05/13/05 - 05/20/05	05/13/05 - 05/20/05	05/13/05 - 05/20/05
21		05/20/05 - 05/27/05		05/20/05 - 05/27/05	05/20/05 - 05/27/05	05/20/05 - 05/27/05
22	*	05/27/05 - 06/03/05		05/27/05 - 06/03/05	05/27/05 - 06/03/05	05/27/05 - 06/03/05
23		06/03/05 - 06/10/05		06/03/05 - 06/10/05	06/03/05 - 06/10/05	06/03/05 - 06/10/05
24	*	06/10/05 - 06/17/05		06/10/05 - 06/17/05	06/10/05 - 06/17/05	(1)
25		06/17/05 - 06/24/05		06/17/05 - 06/24/05	06/17/05 - 06/24/05	06/17/05 - 06/24/05
26	*	06/24/05 - 07/01/05		06/24/05 - 07/01/05	06/24/05 - 07/01/05	06/24/05 - 07/01/05
27		07/01/05 - 07/08/05		07/01/05 - 07/08/05	07/01/05 - 07/08/05	07/01/05 - 07/08/05
28	+	07/08/05 - 07/15/05		07/08/05 - 07/15/05	07/08/05 - 07/15/05	07/08/05 - 07/15/05
29		07/15/05 - 07/22/05		07/15/05 - 07/22/05	07/15/05 - 07/22/05	07/15/05 - 07/22/05
30	*	07/22/05 - 07/29/05		07/22/05 - 07/29/05	07/22/05 - 07/29/05	07/22/05 - 07/29/05
31		07/29/05 - 08/05/05		07/29/05 - 08/05/05	07/29/05 - 08/05/05	07/29/05 - 08/05/05
32	*	08/05/05 - 08/12/05		08/05/05 - 08/12/05	08/05/05 - 08/12/05	08/05/05 - 08/12/05
33		08/12/05 - 08/19/05		08/12/05 - 08/19/05	08/12/05 - 08/19/05	08/12/05 - 08/19/05
34	*	08/19/05 - 08/26/05		08/19/05 - 08/26/05	08/19/05 - 08/26/05	08/19/05 - 08/26/05
35		08/26/05 - 09/02/05		08/26/05 - 09/02/05	08/26/05 - 09/02/05	08/26/05 - 09/02/05
36	*	09/02/05 - 09/09/05	•	09/02/05 - 09/09/05	09/02/05 - 09/09/05	09/02/05 - 09/09/05
37		09/09/05 - 09/16/05		09/09/05 - 09/16/05	09/09/05 - 09/16/05	09/09/05 - 09/16/05
38	*	09/16/05 - 09/23/05	09/16/05 - 09/23/05	09/16/05 - 09/23/05	09/16/05 - 09/23/05	09/16/05 - 09/23/05
39		09/23/05 - 09/30/05	09/23/05 - 09/30/05	09/23/05 - 09/30/05	09/23/05 - 09/30/05	09/23/05 - 09/30/05
40	*	09/30/05 - 10/07/05	09/30/05 - 10/07/05	09/30/05 - 10/07/05	09/30/05 - 10/07/05	09/30/05 - 10/07/05
41		10/07/05 - 10/14/05	10/07/05 - 10/14/05	10/07/05 - 10/14/05	10/07/05 - 10/14/05	10/07/05 - 10/14/05
42	•	10/14/05 - 10/21/05	10/14/05 - 10/21/05	10/14/05 - 10/21/05	10/14/05 - 10/21/05	10/14/05 - 10/21/05
43		10/21/05 - 10/28/05	10/21/05 - 10/28/05	10/21/05 - 10/28/05	10/21/05 - 10/28/05	10/21/05 - 10/28/05
44	*	10/28/05 - 11/04/05	10/28/05 - 11/04/05	10/28/05 - 11/04/05	10/28/05 - 11/04/05	10/28/05 - 11/04/05
45		11/04/05 - 11/11/05	11/04/05 - 11/11/05	11/04/05 - 11/11/05	11/04/05 - 11/11/05	11/04/05 - 11/11/05
46		11/11/05 - 11/18/05	11/11/05 - 11/18/05	11/11/05 - 11/18/05	11/11/05 - 11/18/05	11/11/05 - 11/18/05
47		11/18/05 - 11/25/05	11/18/05 - 11/25/05	11/18/05 - 11/25/05	11/18/05 - 11/25/05	11/18/05 - 11/25/05
48		11/25/05 - 12/02/05	11/25/05 - 12/02/05	11/25/05 - 12/02/05	11/25/05 - 12/02/05	11/25/05 - 12/02/05
49		12/02/05 - 12/09/05	12/02/05 - 12/09/05	12/02/05 - 12/09/05	12/02/05 - 12/09/05	12/02/05 - 12/09/05
50		12/09/05 - 12/16/05	12/09/05 - 12/16/05	12/09/05 - 12/16/05	12/09/05 - 12/16/05	12/09/05 - 12/16/05
51		12/16/05 - 12/23/05	12/16/05 - 12/23/05	12/16/05 - 12/23/05	12/16/05 - 12/23/05	12/16/05 - 12/23/05
52		12/23/05 - 12/30/05	12/23/05 - 12/30/05	12/23/05 - 12/30/05	12/23/05 - 12/30/05	12/23/05 - 12/30/05

* AIR IODINE SAMPLES COLLECTED BIWEEKLY

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION (2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

TABLE C-X.1

SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

AIR PARTICULATE (GROSS BETA & I-131)

COLLECTION		D-08	D-10	D-12	D-13	D-14
PERIOD						
1		(2)	(2)	12/31/04 - 01/07/05	(2)	(2)
2	*	X -7	(-)	01/07/05 - 01/14/05	()	(=)
3				01/14/05 - 01/21/05		
4	*			01/21/05 - 01/28/05		
5				01/28/05 - 02/04/05		
6	٠			02/04/05 - 02/10/05		
7				02/10/05 - 02/18/05		
8	*			02/18/05 - 02/25/05		
9				02/25/05 - 03/04/05		
10	*			03/04/05 - 03/10/05		
11				03/10/05 - 03/18/05		
12				03/18/05 - 03/25/05		
13				03/25/05 - 04/01/05		
14	*			04/01/05 - 04/07/05		
15				04/07/05 - 04/14/05		
16	*			04/14/05 - 04/22/05		
17				04/22/05 - 04/29/05		
18	*			04/29/05 - 05/06/05		
19				05/06/05 - 05/13/05		
20	*			05/13/05 - 05/20/05		
21				05/20/05 - 05/27/05		
22	*			05/27/05 - 06/03/05		
23				06/03/05 - 06/10/05		
24	٠			06/10/05 - 06/17/05		
25				06/17/05 - 06/24/05		
26	+			06/24/05 - 07/01/05		
27		07/01/05 - 07/08/05	07/01/05 - 07/08/05	07/01/05 - 07/08/05	07/01/05 - 07/08/05	07/01/05 - 07/08/05
28		07/08/05 - 07/15/05	07/08/05 - 07/15/05	07/08/05 - 07/15/05	07/08/05 - 07/15/05	07/08/05 - 07/15/05
29		07/15/05 - 07/22/05	07/15/05 - 07/22/05	07/15/05 - 07/22/05	07/15/05 - 07/22/05	07/15/05 - 07/22/05
30	*	07/22/05 - 07/29/05	07/22/05 - 07/29/05	07/22/05 - 07/29/05	07/22/05 - 07/29/05	07/22/05 - 07/29/05
31		07/29/05 - 08/05/05	07/29/05 - 08/05/05	07/29/05 - 08/05/05	07/29/05 - 08/05/05	07/29/05 - 08/05/05
32	*	08/05/05 - 08/12/05	08/05/05 - 08/12/05	08/05/05 - 08/12/05	08/05/05 - 08/12/05	08/05/05 - 08/12/05
33		08/12/05 - 08/19/05	08/12/05 - 08/19/05	08/12/05 - 08/19/05	08/12/05 - 08/19/05	08/12/05 - 08/19/05
34		08/19/05 - 08/26/05	08/19/05 - 08/26/05	08/19/05 - 08/26/05	08/19/05 - 08/26/05	08/19/05 - 08/26/05
35		08/26/05 - 09/02/05	08/26/05 - 09/02/05	08/26/05 - 09/02/05	08/26/05 - 09/02/05	08/26/05 - 09/02/05
36	*	09/02/05 - 09/09/05	09/02/05 - 09/09/05	09/02/05 - 09/09/05	09/02/05 - 09/09/05	09/02/05 - 09/09/05
37		09/09/05 - 09/16/05	09/09/05 - 09/16/05	09/09/05 - 09/16/05	09/09/05 - 09/16/05	09/09/05 - 09/16/05
38	٠	09/16/05 - 09/23/05	09/16/05 - 09/23/05	09/16/05 - 09/23/05	09/16/05 - 09/23/05	09/16/05 - 09/23/05
39		09/23/05 - 09/30/05	09/23/05 - 09/30/05	09/23/05 - 09/30/05	09/23/05 - 09/30/05	09/23/05 - 09/30/05
40	*	09/30/05 - 10/07/05	09/30/05 - 10/07/05	09/30/05 - 10/07/05	09/30/05 - 10/07/05	09/30/05 - 10/07/05
41		10/07/05 - 10/14/05	10/07/05 - 10/14/05	10/07/05 - 10/14/05	10/07/05 - 10/14/05	10/07/05 - 10/14/05
42	*	10/14/05 - 10/21/05	10/14/05 - 10/21/05	10/14/05 - 10/21/05	10/14/05 - 10/21/05	10/14/05 - 10/21/05
43		10/21/05 - 10/28/05	10/21/05 - 10/28/05	10/21/05 - 10/28/05	10/21/05 - 10/28/05	10/21/05 - 10/28/05
44	*	10/28/05 - 11/04/05	10/28/05 - 11/04/05	10/28/05 - 11/04/05	10/28/05 - 11/04/05	10/28/05 - 11/04/05
45		11/04/05 - 11/11/05	11/04/05 - 11/11/05	11/04/05 - 11/11/05	11/04/05 - 11/11/05	11/04/05 - 11/11/05
46		11/11/05 - 11/18/05	11/11/05 - 11/18/05	11/04/05 - 11/11/05	11/11/05 - 11/18/05	11/11/05 - 11/18/05
47		11/18/05 - 11/25/05	11/18/05 - 11/25/05	11/11/05 - 11/18/05	11/18/05 - 11/25/05	11/18/05 - 11/25/05
48		11/25/05 - 12/02/05	11/25/05 - 12/02/05	11/18/05 - 11/25/05	11/18/05 - 11/25/05	11/25/05 - 12/02/05
49		12/02/05 - 12/09/05	12/02/05 - 12/09/05	11/25/05 - 12/02/05	11/25/05 - 12/02/05	12/02/05 - 12/09/05
50		12/09/05 - 12/16/05	12/09/05 - 12/16/05	12/02/05 - 12/09/05	12/02/05 - 12/09/05	12/09/05 - 12/16/05
51		12/16/05 - 12/23/05	12/16/05 - 12/23/05	12/09/05 - 12/16/05	12/09/05 - 12/16/05	12/16/05 - 12/23/05
52		12/23/05 - 12/30/05	12/23/05 - 12/30/05	12/16/05 - 12/23/05	12/16/05 - 12/23/05	12/23/05 - 12/30/05

* AIR IODINE SAMPLES COLLECTED BIWEEKLY

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

(2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

TABLE C-X.1

SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

AIR PARTICULATE (GROSS BETA & I-131)

COLLECTION		D-45	D-53	
PERIOD				
	_	12/31/04 - 01/07/05	12/31/04 - 01/07/05	
2	*	01/07/05 - 01/14/05	01/07/05 - 01/14/05	
3		01/14/05 - 01/21/05	01/14/05 - 01/21/05	
4	*	01/21/05 - 01/28/05	01/21/05 - 01/28/05	
5		01/28/05 - 02/04/05	01/28/05 - 02/04/05	
6	٠	02/04/05 - 02/10/05	02/04/05 - 02/10/05	
7		02/10/05 - 02/18/05	02/10/05 - 02/18/05	
8		02/18/05 - 02/25/05	02/18/05 - 02/25/05	
9		02/25/05 - 03/04/05	02/25/05 - 03/04/05	
10	+	03/04/05 - 03/10/05	03/04/05 - 03/10/05	
11		03/10/05 - 03/18/05	03/10/05 - 03/18/05	
12	*	03/18/05 - 03/25/05	03/18/05 - 03/25/05	
13		03/25/05 - 04/01/05	03/25/05 - 04/01/05	
14	*	04/01/05 - 04/07/05	04/01/05 - 04/07/05	
15		04/07/05 - 04/14/05	04/07/05 - 04/14/05	
16		04/14/05 - 04/22/05	04/14/05 - 04/22/05	
17		04/22/05 - 04/29/05	04/22/05 - 04/29/05	
18	*	04/29/05 - 05/06/05	04/29/05 - 05/06/05	
19		05/06/05 - 05/13/05	05/06/05 - 05/13/05	
20	٠	05/13/05 - 05/20/05	05/13/05 - 05/20/05	
21		05/20/05 - 05/27/05	05/20/05 - 05/27/05	
22	*	05/27/05 - 06/03/05	05/27/05 - 06/03/05	
23		06/03/05 - 06/10/05	06/03/05 - 06/10/05	
24	*	06/10/05 - 06/17/05	06/10/05 - 06/17/05	
25		06/17/05 - 06/24/05	06/17/05 - 06/24/05	
26	*	06/24/05 - 07/01/05	06/24/05 - 07/01/05	
27		07/01/05 - 07/08/05	07/01/05 - 07/08/05	
28	*	07/08/05 - 07/15/05	07/08/05 - 07/15/05	
29		07/15/05 - 07/22/05	07/15/05 - 07/22/05	
30	*	07/22/05 - 07/29/05	07/22/05 - 07/29/05	
31		07/29/05 - 08/05/05	07/29/05 - 08/05/05	
32		08/05/05 - 08/12/05	08/05/05 - 08/12/05	
33		08/12/05 - 08/19/05	08/12/05 - 08/19/05	
34	-	08/19/05 - 08/26/05	08/19/05 - 08/26/05	
35		08/26/05 - 09/02/05	08/26/05 - 09/02/05	
36	-	09/02/05 - 09/09/05	09/02/05 - 09/09/05	
31		09/09/05 - 09/16/05	09/09/05 - 09/16/05	
30		09/16/05 - 09/23/05	09/16/05 - 09/23/05	
39		09/23/05 - 09/30/05	09/23/05 - 09/30/05	
40	-	09/30/05 - 10/07/05	09/30/05 - 10/07/05	
41		10/07/05 - 10/14/05	09/30/05 - 12/30/05	
42		10/14/05 - 10/21/05	10/14/05 - 10/21/05	
43			10/21/05 - 10/26/05	
44			10/28/05 - 11/04/05	
40 A2		11/04/00 - 11/11/05	11/04/05 - 11/11/05	
40		11/11/00 - 11/10/00	11/11/00 - 11/18/00	
41 AD		11/10/03 - 11/20/03	11/10/00 - 11/20/05	
40		10/00/05 10/00/05	11/20/00 - 12/02/00	
43 60		12/02/03 - 12/03/03	12/02/03 - 12/09/05	
51		12/16/05 - 12/10/03	12/18/05 + 12/10/00	
52		12/23/05 - 12/23/05	12/23/05 - 12/23/03	
J2		12/20/00 = 12/00/00	12/20/00 12/00/00	

* AIR IODINE SAMPLES COLLECTED BIWEEKLY

TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

TLD

STATION	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE				
D-01-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-01-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-02-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-02-7	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 00/30/05	09/30/05 - 12/30/05
D-02-2 D 02-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-03-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-03-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-04-1	12/31/04 - 04/01/05	04/01/05 - 0//01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
U-04-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
U-07-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-07-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-08-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-08-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-10-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-10-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-12-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-12-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-13-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-13-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-14-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-14-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-45-1	12/31/04 - 04/01/05	04/01/05 + 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-45-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-53-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-00-1 D-53-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 00/20/05	00/20/05 12/20/05
D-101-1	12/31/04 - 04/01/05	04/01/05 07/01/05	07/01/05 - 09/30/05	00/20/05 12/20/05
D 101-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-101-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-102-1		04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-102-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-103-1	(1)	04/01/05 - 0//01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-103-2	12/31/04 - 04/01/05	04/01/05 - 0//01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-104-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-104-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-105-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-105-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-106-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-106-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-107-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-107-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-108-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-108-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-109-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-109-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-110-3	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-110-4	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-111-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-111-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-112A-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-112A-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-113-1	12/31/04 . 04/01/05	04/01/05 . 07/01/05	07/01/05 - 00/20/05	00/30/05 - 12/30/05
D-113-2	12/31/04 _ 04/01/05	04/01/05 . 07/01/05	07/01/05 - 00/20/05	00/30/05 - 12/30/05
D-114-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	00/20/05 - 12/30/05
D-114-2	12/31/04 - 04/01/03	04/01/05 - 07/01/05 04/01/05 - 07/04/05	07/01/05 - 09/30/05	00/30/03 - 12/30/03
D_115_1	12/31/04 - 04/01/03	04/01/05 - 07/01/05	07/01/05 - 08/30/05	00/20/05 - 12/30/05
D-115-2	12/31/04 - 04/01/03	04/01/05 - 07/01/05	07/01/05 - 09/30/05	00/20/05 42/30/05
D-116-1	12/31/04 - 04/01/03	04/01/05 - 07/01/05	07/01/05 00/20/05	00/20/05 42/20/05
D-116-2	12/31/04 - 04/01/03	04/01/05 - 07/01/05	07/01/05 - 09/30/05	00/20/05 42/20/05
0-110-2	12/31/04 - 04/01/03	0-101103 - 01101/03	01101100 - 09/30/03	valaviva - 1230/03

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-X.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2005

<u>TLD</u>

STATION	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE				
D-201-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-201-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-202-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-202-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-203-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-203-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-204-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-204-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-205-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-205-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-206-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-206-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-207-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-207-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-208-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-208-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-209-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-209-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-210-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-210-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-211-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-211-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-212-3	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-212-4	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-213-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-213-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-214-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-214-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-215-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-215-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-216-1	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05
D-216-2	12/31/04 - 04/01/05	04/01/05 - 07/01/05	07/01/05 - 09/30/05	09/30/05 - 12/30/05

FIGURE C-1 SURFACE WATER - GROSS BETA - STATIONS D-51 and D-52 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-51 Dresden Lock & Dam

FIGURE C-1 (cont.) SURFACE WATER - GROSS BETA - STATIONS D-51 and D-52 (C) COLLECTED IN THE VICINITY OF DNPS, 2005

D-51 Dresden Lock & Dam

FIGURE C-2 SURFACE WATER - GROSS BETA - STATION D-54 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-54 (C) Kankakee River

FIGURE C-2 (cont.) SURFACE WATER - GROSS BETA - STATION D-54 (C) COLLECTED IN THE VICINITY OF DNPS, 2005

D-54 (C) Kankakee River
FIGURE C-3 SURFACE WATER - TRITIUM - STATIONS D-51 and D-52 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-51 Dresden Lock & Dam

FIGURE C-3 (cont.) SURFACE WATER - TRITIUM - STATIONS D-51 and D-52 (C) COLLECTED IN THE VICINITY OF DNPS, 2005

D-51 Dresden Lock & Dam

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

FIGURE C-4 SURFACE WATER - TRITIUM - STATION D-54 (C) COLLECTED IN THE VICINITY OF DNPS, 2002 - 2004

FIGURE C-4 (cont.) SURFACE WATER - TRITIUM - STATION D-54 (C) COLLECTED IN THE VICINITY OF DNPS, 2005

D-54 (C) Kankakee River

800 700 600 500 pCIL 400 300 200 100 0 03/31/05 05/15/05 06/29/05 08/13/05 09/27/05 11/11/05 12/26/05

Location shared with Braidwood Station (BD-10).

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

FIGURE C-5 GROUND WATER - TRITIUM - STATIONS D-23 and D-35 COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-23 Thorsen

FIGURE C-5 (cont.) GROUND WATER - TRITIUM - STATIONS D-23 and D-35 COLLECTED IN THE VICINITY OF DNPS, 2005

D-23 Thorsen

D-35 Dresden Lock and Dam

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

FIGURE C-6 AIR PARTICULATES - GROSS BETA - STATIONS D-01 and D-02 COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-01 Onsite Station 1

FIGURE C-6 (cont.) AIR PARTICULATES - GROSS BETA - STATIONS D-01 and D-02 COLLECTED IN THE VICINITY OF DNPS, 2005

D-01 Onsite Station 1

D-02 Onsite Station 2

D-02 No samples; power was restored on 09-16-05.

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-7 AIR PARTICULATES - GROSS BETA - STATIONS D-03 and D-04 COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-03 Onsite Station 3

FIGURE C-7 (cont.) AIR PARTICULATES - GROSS BETA - STATIONS D-03 and D-04 COLLECTED IN THE VICINITY OF DNPS, 2005

D-03 Onsite Station 3

D-04 Collins Road

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-8 AIR PARTICULATES - GROSS BETA - STATIONS D-07 and D-12 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-07 Clay Products

FIGURE C-8 (cont.) AIR PARTICULATES - GROSS BETA - STATIONS D-07 and D-12 (C) COLLECTED IN THE VICINITY OF DNPS, 2005

D-07 Clay Products

06/10/05 - 06/17/05 no sample due to pump malfunction

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-9 AIR PARTICULATES - GROSS BETA - STATIONS D-45 and D-53 COLLECTED IN THE VICINITY OF DNPS, 2000 - 2004

D-45 McKinley Woods Road

FIGURE C-9 (cont.) AIR PARTICULATES - GROSS BETA - STATIONS D-45 and D-53 COLLECTED IN THE VICINITY OF DNPS, 2005

D-45 McKinley Woods Road

D-53 Grundy County Road

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-10 AIR PARTICULATES - GROSS BETA - STATIONS D-08 and D-10 COLLECTED IN THE VICINITY OF DNPS, 2005

D-08 Prairie Park

D-10 Goose Lake Village

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3 AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005

FIGURE C-11 AIR PARTICULATES - GROSS BETA - STATIONS D-13 and D-14 COLLECTED IN THE VICINITY OF DNPS, 2005

D-13 Minooka

D-14 Channahon

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3 AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005 **APPENDIX D**

INTER-LABORATORY COMPARISON PROGRAM

,

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2005

(PAGE 1 OF 3)

	Identification)			Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
March 2005	E4522-396	Milk	Sr-89	pCi/L	96.9	107	0.91	Α
			Sr-90	pCi/L	16.9	17.9	0.94	Α
	E4522 206	Milk	1 121	-Ci/l	93 7	02.2	0.00	•
	E4020-090		Co 141		02.1	92.3	0.90	A _
			Cr 51		217	229	0.95	Å
			Co 124		400	420	0.94	A .
			Co 127	pCI/L	125	139	0.69	A
			Co 59	pCi/L	125	130	0.90	A .
			CO-56		160	115	0.90	A .
			WIII-34		100	100	0.99	A
			7- 65		110	111	1.00	A
			2n-65		191	198	0.96	A
			C0-60	pCI/L	140	144	0.97	A
	E4525-396	AP	Ce-141	pCi	150	172	0.87	Α
			Cr-51	pCi	278	250	1.11	Α
			Cs-134	pCi	105	104	1.01	Α
			Cs-137	pCi	95.6	97.1	0.98	Α
			Co-58	pCi	84.4	86.3	0.98	A
			Mn-54	pCi	112	120	0.93	A
			Fe-59	pCi	92.8	83.2	1.12	A
			Zn-65	pCi	162	148	1.09	A
			Co-60	pCi	102	108	0.94	A
	E4524-396	Charcoal	I-131	pCi	67.4	60.7	1.11	Α
lune 2005	E4630-306	Mile	Sr.80	oCi/l	80.4	99.4	1 01	^
June 2000	L+030-390		Sr-09		05.4 11.6	11 /	1.01	~
			01-30	porc	11.0	11.4	1.02	~
	E4631-396	Milk	I-131	pCi/L	82.3	86.9	0.95	Α
			Ce-141	pCi/L	91.6	92.4	0.99	A
			Cr-51	pCi/L	278	303	0.92	A
			Cs-134	pCi/L	81.1	95.0	0.85	Α
			Cs-137	pCi/L	180	189	0.95	Α
			Mn-54	pCi/L	124	125	0.99	Α
			Fe-59	pCi/L	61.1	63.9	0.96	Α
			Zn-65	pCi/L	156	155	1.01	Α
			Co-60	pCi/L	136	145	0.94	A
	E4622 206	40	0- 141	-01	70.0	64.0	4.02	
	E4033-390	AP	Ce-141	pCi	79.2	64.2	1.23	VV
			Cr-51	pCI	263	210	1.25	w
			US-134	pCi	09.7	00.1	1.05	A
			US-13/	pCi	135	131	1.03	A
			Mn-54	pCi	94.9	87.0	1.09	A
			Fe-59	pCi	48	44.4	1.09	A
			∠n-65	pCi	120	108	1.11	A
			Co-60	pCi	104	101	1.03	A
	E4632-396	Charcoal	I-131	pCi	88.9	92.5	0.96	A

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2005 (PAGE 2 OF 3)

Identification Reported Known Ratio (c) Evaluation (d) Value (a) Value (b) Month/Year Number Matrix Nuclide Units TBE/Analytics September 2005 E4766-396 Milk Sr-89 DCi/L 135.0 146.0 0.92 Α Sr-90 0.84 pCi/L 9.7 11.5 Α E4767-396 Milk 1-131 pCi/L 87.5 94.3 0.93 Α Ce-141 pCi/L 203 233 0.87 Α Cr-51 pCi/L 279 338 0.83 Α Cs-134 122.0 pCi/L 102 0.84 Α Cs-137 pCi/L 178 195 0.91 Α Co-58 pCi/L 55.3 63.4 0.87 Α Mn-54 pCi/L 81.8 92.0 0.89 Α Fe-59 59.9 61.0 0.98 Α pCi/L Zn-65 pCi/L 120 123 0.98 A Co-60 pCi/L 146 167 0.87 Α E4769-396 AP Ce-141 pCi 193 169 1.14 Α Cr-51 267 246 1.09 pCi Α Cs-134 pCi 78.4 88.8 0.88 Α Cs-137 DCi 166 142 1.17 Α Co-58 pCi 53.7 46.0 Α 1.17 66.8 W Mn-54 pCi 81.6 1.22 Fe-59 44.3 pCi 59.6 1.35 N (1) Zn-65 89.6 pCi 107 1.19 A Co-60 pCi 133 122 1.09 A 1-131 pCi 64.2 1.00 E4768-396 Charcoal 63.9 Α Milk pCi/L 114 128 0.89 December 2005 E4766-396 Sr-89 Α Sr-90 pCi/L 11.6 10.3 1.13 Α E4767-396 Milk pCi/L 79.6 74.6 1-131 1.07 Α Ce-141 pCi/L 202 224 0.90 Α Cr-51 pCi/L 185 193 0.96 Α Cs-134 pCi/L 74.9 87.3 0.86 А Cs-137 pCi/L 177 189 0.94 Α Co-58 pCi/L 73.9 77.5 0.95 Α pCi/L 152 Mn-54 152 1.00 Α 82.4 Fe-59 pCi/L 97.5 1.18 Α Zn-65 pCi/L 161 154 1.05 Α Co-60 pCi/L 102 111 0.92 Α E4633-396 AP рСі 221 201 Ce-141 1.10 Α Cr-51 pCi 195 173 1.13 Α Cs-134 pCi 68.4 78.3 0.87 Α Cs-137 pCi 194 170 1.14 Α Co-58 69.4 pCi 77.4 1.12 Α Mn-54 pCi 137 1.25 W 171 Fo-59 pCi 94.2 73.9 1.27 W Zn-65 pCi 173 138 1.25 W Co-60 109 99.1 1.10 pCi А

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING, 2005** 3)

(PAGE 3	OF
---------	----

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2005	E4632-396	Charcoal	I-131	pCi	73.3	73.3	1.00	A

(a) Teledyne Brown Engineering reported result.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

⁽¹⁾ New technician - AP not counted in petri dish resulted in high Fe-59 activity. Counting in petri dish, the Fe-59 would have been acceptable as evidenced by the 4Q05 AP recount data. NCR 06-01

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2005 (PAGE 1 OF 1)

	Identification	1			Reported	Known		
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Control Limits	Evaluation (c)
	-							•
May 2005	Rad 61	Water	Sr-89	pCI/L	37.5	41.3	32.6 - 50.0	A
			Sr-90	pCi/L	5.37	5.92	0.00 - 14.6	A
			Ba-133	pCi/L	88.6	88.4	73.1 - 104	A
			Cs-134	pCi/L	70.5	78.6	69.9 - 87.3	A
			Cs-137	pCi/L	201	201	184 - 218	A
			Co-60	pCi/L	37.5	37.0	28.3 - 45.7	Α
			Zn-65	pCi/L	122	118	97.6 - 138	Α
			Gr-A	pCi/L	35.5	37.0	21.0 - 53.0	Α
			Gr-B	pCi/L	35.6	34.2	25.5 - 42.9	Α
			H-3	pCi/L	24600	24400	20200 - 28600	Α
	Rad 61	Water	I-131	pCi/L	13.6	15.5	10.3 - 20.7	Α
November 2005	Rad 63	Water	Sr-89	pCi/L	18.0	19.0	10.3 - 27.7	Α
			Sr-90	pCi/L	16.6	16.0	7.37 - 24.7	Α
			Ba-133	pCi/L	31.7	31.2	22.5 - 39.9	Α
			Cs-134	pCi/L	30.8	33. 9	25.2 - 42.6	Α
			Cs-137	pCi/L	26.8	28.3	19.6 - 37.0	Α
			Co-60	pCi/L	83.9	84.1	75.4 - 92.8	Α
			Zn-65	pCi/L	109	105	86.8 - 123	Α
			Gr-A	pCi/L	19.5	23.3	13.2 - 33.4	Α
			Gr-B	pCi/L	34.0	39.1	30.4 - 47.8	Α
			H-3	pCi/L	12400	12200	10100 - 14300	Α
	Rad 63	Water	I-131	pCi/L	17.8	17.4	12.2 - 22.6	Α

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2005

(PAGE 1 OF 2)

	Identification				Reported	Known	Accentance	
Month/Vear	Number	Media	Nuclide	Units	Value (a)	Value (b)	Ranne	Evaluation (c)
NOTION TOAL	Number	Media	Nuclide	Onits			Trange	
April 2005	05-MaW13	Water	Ce-134	Ba/l	108	127	88.90 - 165.10	Δ
April 2005	00-14124413	Walci	Ce-137	Bq/L	305	332	232 40 - 461 60	Δ
			Co 57	Bq/L	215	227	158 00 - 205 10	
			Co-57	Βq/L	215	221	175 70 226 20	
				Bq/L	241	221	106.00 364.00	~
			п-3 Ма 54	Bq/L Bg/l	203	200	190.00 - 304.00	
			IVII1-04	BQ/L D=/l	0.002	331	231.70 - 430.30	~
			51-90	Bq/L	0.093	400		~
			20-00	Bd/L	509	490	347.20 - 044.00	~
	MaS13	Soil	Cs-134	Bo/L	655	759	531.30 - 986.70	Α
			Cs-137	Bo/L	310	315	220.50 - 409.50	A
			Co-57	Ba/l	234	242	169.40 - 314.60	A
			Co-60	Ba/L	219	212	148 40 - 275 60	A
			Mn-54	Ba/l	512	485	339 50 - 630 50	A
			K_40	Bq/L Bq/l	642	604	422 80 - 785 20	Δ
			7n-65	Ba/l	800	810	567 00 - 1053	Δ
			211-00	Бфг	030	010	307.00 - 1000	~
	GrW13	Water	Gr-A	Bq/L	0.601	0.525	>0.0 - 1.05	Α
			Gr-B	Bq/L	1.54	1.67	0.84 - 2.51	Α
			a 1 a 1					
	RdF13	AP	Cs-134	Bq/sample	3.26	3.51	2.46 - 4.56	A
			Cs-137	Bq/sample	2.05	2.26	1.58 - 2.94	A
			Co-57	Bq/sample	4.78	4.92	3.44 - 6.40	Α
			Co-60	Bq/sample	3.02	3.03	2.12 - 3.94	Α
			Mn-54	Bq/sample	3.31	3.33	2.33 - 4.33	Α
			Sr-90	Bq/sample	1.15	1.35	0.95 - 1.76	A
			Zn-65	Bq/sample	3.14	3.14	2.20 - 4.08	A
	GrE13	ΔP	Gr-A	Ba/sample	0 0764	0 232	>0.0 - 0.46	Δ
			Gr-B	Ba/sample	0.305	0.297	0 15 - 0 45	A
			01-0	oqsampic	0.000	0.207	0.10-0.40	A
April 2005	RdV13	Vegetation	Cs-134	Bq/kg	5.45	5	3.50 - 6.50	Α
			Cs-137	Bq/kg	4.80	4.1	2.88 - 5.34	Α
			Co-57	Bq/kg	13.4	9.88	6.92 - 12.84	A*
			Co-60	Bq/kg	3.67	3.15	2.21 - 4.10	Α
			Mn-54	Bq/kg	6.45	5.18	3.63 - 6.73	Α
			Sr-90	Bq/kg	1.49	1.65	1.16 - 2.15	Α
			Zn-65	Bq/kg	7.71	6.29	4.40 - 8.18	Α
Ortober 0005	05 14-14/4 4	Moto-	0. 104	D-4	4.40	467	446.00 047.40	
Uctober 2005	05-Maw14	water	US-134	Bq/L	142	10/	110.90 - 217.10	A .
			CS-13/	Bd/L	302	333	233.10 - 432.90	A
			0-5/	вd/Г	251	2/2	190.40 - 353.60	A
			CO-60	Rd/L	243	261	182.70 - 339.30	A
			H-3	Rd/L	547	527	368.90 - 685.10	A
			MN-54	Bd/L	383	418	292.60 - 543.40	A
			Sr-90	Bd/L	8.75	8.98	6.29 - 11.67	A
			∠n-65	Bq/L	324	330	231.00 - 429.00	A

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2005 (PAGE 2 OF 2)

	Identification				Reported	Known	Acceptance	
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c)
October 2005	MaS14	Soil	Cs-134	Bo/L	494	568	397.60 - 738.40	А
	indo i i	001	Cs-137	Ba/l	446	439	307 30 - 570 70	A
			Co-57	Ba/l	506	524	366 80 - 681 20	A
			Co-60	Ba/l	289	287	200.90 - 373.10	A
			Mn-54	Ba/L	460	439	307.30 - 570.70	A
			K-40	Ba/L	626	604	422.80 - 785.20	Â
			Zn-65	Bq/L	889	823	576.10 - 1070	Â
	GrW14	Water	Gr-A	Ba/L	0.858	0.79	0.21 - 1.38	А
			Gr-B	Bq/L	1.22	1.35	0.85 - 1.92	Α
October 2005	RdF14	AP	Cs-134	Bq/sample	4.11	3.85	2.70 - 5.01	А
			Cs-137	Bq/sample	3.16	3.23	2.26 - 4.20	Α
			Co-57	Bq/sample	6.14	6.2	4.34 - 8.06	Α
			Co-60	Bq/sample	2.86	2.85	2.00 - 3.71	Α
			Mn-54	Bq/sample	4.54	4.37	3.06 - 5.68	Α
			Sr-90	Bq/sample	2.12	2.25	1.58 - 2.93	Α
			Zn-65	Bq/sample	4.28	4.33	3.03 - 5.63	Α
	GrF14	AP	Gr-A	Bq/sample	0.304	0.482	>0.0 - 0.80	Α
			Gr-B	Bq/sample	0.858	0.827	0.55 - 1.22	Α
	RdV13	Vegetation	Cs-134	Bq/kg	4.35	4.09	2.86 - 5.32	Α
			Cs-137	Bq/kg	5.99	5.4	3.80 - 7.06	Α
			Co-57	Bq/kg	17.0	13.30	9.31 - 17.29	w
			Co-60	Bq/kg	4.87	4.43	3.10 - 5.76	Α
			Mn-54	Bq/kg	7.40	6.57	4.60 - 8.54	Α
			Sr-90	Bq/kg	2.03	2.42	1.69 - 3.15	А
			Zn-65	Bq/kg	11.8	10.2	7.14 - 13.26	Α

* MAPEP reported the result as acceptable although the reported value of 13.4 is higher than the acceptance range upper limit of 12.84. The acceptance range was expanded to +- 40% bias due to confusion regarding preparation process. MAPEP did not corrected the acceptance range on the report.

(1) The Sr-90 in water was a MAPEP false positive test. The TBE reported result of 0.093 \pm 0.0908 Bq/L was the forced Sr-90 activity and uncertainty, as required by MAPEP. The MDC for the sample was 0.145 pCi/L.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2005

(Page 1 of 2)

Concentration (pCi/L)						
Lab Code	Date	Analysis	Laboratory	ERA	Control	
			Result ^o	Result	Limits	Acceptance
STW-1051	02/15/05	Sr-89	28.0 ± 1.2	29.4	20.7 - 38.1	Pass
STW-1051	02/15/05	Sr-90	25.1 ± 0.7	24.4	15.7 - 33.1	Pass
STW-1052	02/15/05	Ba-133	52.9 ± 2.8	53.4	44.2 - 62.6	Pass
STW-1052	02/15/05	Co-60	54.4 ± 0.4	56.6	47.9 - 65.3	Pass
STW-1052	02/15/05	Cs-134	67.7 ± 1.8	64.9	56.2 - 73.6	Pass
STW-1052	02/15/05	Cs-137	39.6 ± 1.8	40.2	31.5 - 48. 9	Pass
STW-1052	02/15/05	Zn-65	159.7 ± 3.0	161.0	133.0 - 189.0	Pass
STW-1053	02/15/05	Gr. Alpha	55.1 ± 1.8	67.9	38.5 - 97.3	Pass
STW-1053	02/15/05	Gr. Beta	46.8 ± 1.3	51.1	38.5 - 97.3	Pass
STW-1054	02/15/05	Ra-226	13.7 ± 1.5	14.1	10.4 - 17.8	Pass
STW-1054	02/15/05	Ra-228	13.3 ± 0.6	13.7	7.8 - 19.6	Pass
STW-1054	02/15/05	Uranium	5.1 ± 0.2	5.0	0.0 - 10.2	Pass
STW-1055	05/17/05	Sr-89	45.1 ± 4.1	41.3	32.6 - 50.0	Pass
STW-1055	05/17/05	Sr-90	7.5 ± 0.9	5.9	0.0 - 14.6	Pass
STW-1056	05/17/05	Ba-133	87.1 ± 2.0	88.4	73.1 - 104.0	Pass
STW-1056	05/17/05	Co-60	38.4 ± 0.8	37.0	28.3 - 45.7	Pass
STW-1056	05/17/05	Cs-134	75.3 ± 0.7	78.6	69.9 - 87.3	Pass
STW-1056	05/17/05	Cs-137	201.0 ± 8.4	194.0	184.0 - 218.0	Pass
STW-1056	05/17/05	Zn-65	130.0 ± 6.7	118.0	97.6 - 138.0	Pass
STW-1057	05/17/05	Gr. Alpha	42.7 ± 2.9	37.0	21.0 - 53.0	Pass
STW-1057	05/17/05	Gr. Beta	34.0 ± 0.4	34.2	25.5 - 42.9	Pass
STW-1058	05/17/05	I-131	14.7 ± 0.5	15.5	10.3 - 20.7	Pass
STW-1059	05/17/05	Ra-226	6.6 ± 0.1	7.6	5.6 - 9.5	Pass
STW-1059	05/17/05	Ra-228	19.3 ± 0.7	18.9	10.7 - 27.1	Pass
STW-1059	05/17/05	Uranium	9.6 ± 0.1	10.1	4.9 - 15.3	Pass
STW-1060	05/17/05	H-3	24100.0 ± 109.0	24400.0	20200.0 - 28600.0	Pass
STW-1067	08/16/05	Sr-89	29.1 ± 3.0	28.0	19.3 - 36.7	Pass
STW-1067	08/16/05	Sr-90	36.0 ± 0.6	33.8	25.1 - 42.5	Pass
STW-1068	08/16/05	Ba-133	107.0 ± 1.7	106.0	87.7 - 124.0	Pass
STW-1068	08/16/05	Co-60	15.2 ± 0.2	13.5	4.8 - 22.2	Pass
STW-1068	08/16/05	Cs-134	89.1 ± 0.3	92.1	83.4 - 101.0	Pass
STW-1068	08/16/05	Cs-137	72.1 ± 1.0	72.7	64.0 - 81.4	Pass
STW-1068	08/16/05	Zn-65	67.4 ± 1.4	65.7	54.3 - 77.1	Pass
STW-1069	08/16/05	Gr. Alpha	44.3 ± 1.5	55.7	31.6 - 79.8	Pass
STW-1069	08/16/05	Gr. Beta	58.4 ± 2.1	61.3	44.0 - 78.6	Pass
STW-1070	08/16/05	Ra-226	166+15	16.6	12.3 - 20.9	Pass
STW-1070	08/16/05	Ra-228	62+03	62	35-89	Pase
STW-1070	08/16/05	Uranium	4.5 ± 0.1	4.5	0.0 - 9.7	Pass

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2005

(Page 1 of 2)

· · · · ·		Concentration (pCi/L)						
Lab Code	Date	Analysis	Laboratory Result ^o	ERA Result [~]	Control Limits	Acceptance		
STW-1072	11/15/05	Sr-89	20.6 ± 0.4	19.0	10.3 - 27.7	Pass		
STW-1072	11/15/05	Sr-90	15.0 ± 0.3	16.0	7.3 - 24.7	Pass		
STW-1073	11/15/05	Ba-133	31.8 ± 1.8	31.2	22.5 - 39.9	Pass		
STW-1073	11/15/05	Co-60	85.0 ± 1.4	84.1	75.4 - 92.8	Pass		
STW-1073	11/15/05	Cs-134	37.2 ± 2.1	33.9	25.2 - 42.6	Pass		
STW-1073	11/15/05	Cs-137	27.8 ± 0.7	28.3	19.6 - 37.0	Pass		
STW-1073	11/15/05	Zn-65	109.0 ± 1.0	105.0	86.8 - 123.0	Pass		
STW-1074 ^d	11/15/05	Gr. Alpha	41.1 ± 1.2	23.3	13.2 - 33.4	Fail		
STW-1074	11/15/05	Gr. Beta	42.7 ± 0.5	39.1	30.4 - 47.8	Pass		
STW-1075	11/15/05	I-131	20.5 ± 0.6	17.4	12.2 - 22.6	Pass		
STW-1076	11/15/05	Ra-226	7.8 ± 0.6	8.3	6.2 - 10.5	Pass		
STW-1076 °	11/15/05	Ra-228	5.5 ± 0.6	3.5	2.0 - 5.0	Fail		
STW-1076	11/15/05	Uranium	15.5 ± 0.3	16.1	10.9 - 21.3	Pass		
STW-1077	11/15/05	H-3	12500.0 ± 238.0	12200.0	10100.0 - 14300.0	Pass		

* Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

- ^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.
- ^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d The original samples were calculated using an Am-241 efficiency. The samples were spiked with Th-232. Samples were recounted and calculated using the Th-232 efficiency. Results of the recount: 27.01 ± 2.35 pCi/L.

• Decay of short-lived radium daughters contributed to a higher counting rate. Delay of counting for 100 minutes provided better results. The reported result was the average of the first cycle of 100 minutes, the average of the second cycle counts was 4.01 pCi/L

· _ _ - -

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)* **ENVIRONMENTAL, INC., 2005**

(Page	1	of	3)
-------	---	----	---	---

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^a	Acceptance	
		• • • •				_	
STW-1045	01/01/05	Gr. Alpha	0.45 ± 0.10	0.53	0.00 - 1.05	Pass	
STW-1045	01/01/05	Gr. Beta	1.90 ± 0.10	1.67	0.84 - 2.51	Pass	
OTIN/ 4040	04/04/05	A 044	4 60 1 0 40	4 70	4 00 0 04	Dees	
STW-1040	01/01/05	Am-241	1.02 ± 0.12	1.72	1.20 - 2.24	Pass	
STW-1040	01/01/05	Co-57	239.40 I 1.20	227.00	108.90 - 290.10	Pass	
STW-1040	01/01/05		240.70 I 1.00	201.00	175.70 - 320.30	Pass	
STW-1040	01/01/05	Co 127	115.50 ± 1.60	222.00	222 40 421 60	Pass	
STW-1040	01/01/05	CS-13/	526.50 ± 1.70	332.00	232.40 - 431.00	Pass	
STM-1040	01/01/05	ге-35 ца	04.90 ± 7.00	75.90	55.15 - 90.07 106.00 - 264.00	Pass	
STW-1040	01/01/05	H-J	304.00 I 9.70	200.00	190.00 - 304.00	Pass	
STW-1040	01/01/05	IVIN-04	334.00 I 1.90	331.00	231.70 - 430.30	Pass	
STW-1040	01/01/05	D. 220	7.10 ± 1.00	9.00	0.00 - 20.00	Pass	
STW-1040	01/01/05	Fu-230	0.01 ± 0.02	0.02	0.00 - 1.00	Pass	
STN 1040	01/01/05	Fu-239/40	2.30 ± 0.14	2.40	1.00 - 3.12	Pass	
STW-1040	01/01/05	31-90 To 00	0.70 ± 0.00	42.00	0.00 - 5.00	Pass	
STW-1040	01/01/05	10-99	43.20 I 1.40	42.90	30.03 - 33.77	Pass	
STW-1040	01/01/05	0-233/4	3.31 ± 0.20	3.24 2.22	2.21 - 4.21	Pass	
STW-1040	01/01/05	0-230 7n 65	5.30 I U.20	3.33	2.33 - 4.33	Pass	
3144-1040	01/01/05	211-05	556.40 I 5.60	490.00	347.20 - 044.00	F855	
STVE-1047	01/01/05	Co-57	10.60 ± 0.20	9.88	6.92 - 12.84	Pass	
STVE-1047	01/01/05	Co-60	3.00 ± 0.20	3.15	2.21 - 4.10	Pass	
STVE-1047	01/01/05	Cs-134	4.80 ± 0.40	5.00	3.50 - 6.50	Pass	
STVE-1047	01/01/05	Cs-137	4.10 ± 0.30	4.11	2.88 - 5.34	Pass	
STVE-1047	01/01/05	Mn-54	5.10 ± 0.30	5.18	3.63 - 6.73	Pass	
STVE-1047	01/01/05	Zn-65	6.20 ± 0.50	6.29	4.40 - 8.18	Pass	
STSO-1048	01/01/05	Am-241	96.60 ± 10.00	109.00	76.30 - 141.70	Pass	
STSO-1048	01/01/05	Co-57	264.00 ± 2.00	242.00	169.40 - 314.60	Pass	
STSO-1048	01/01/05	Co-60	226.50 ± 2.20	212.00	148.40 - 275.60	Pass	
STSO-1048	01/01/05	Cs-134	760.60 ± 3.70	759.00	531.30 - 986.70	Pass	
STSO-1048	01/01/05	Cs-137	336.20 ± 3.60	315.00	220.50 - 409.50	Pass	
STSO-1048	01/01/05	K-40	663.70 ± 18.00	604.00	422.80 - 785.20	Pass	
STSO-1048	01/01/05	Mn-54	541.30 ± 3.90	485.00	339.50 - 630.50	Pass	
STSO-1048	01/01/05	Ni-63	924.30 ± 17.20	1220.00	854.00 - 1586.00	Pass	
STSO-1048	01/01/05	Pu-238	0.60 ± 0.80	0.48	0.00 - 1.00	Pass	
STSO-1048	01/01/05	Pu-239/40	78.00 ± 4.80	89.50	62.65 - 116.35	Pass	
STSO-1048	01/01/05	Sr-90	514.60 ± 18.70	640.00	448.00 - 832.00	Pass	
STSO-1048	01/01/05	U-233/4	47.90 ± 4.00	62.50	43.75 - 81.25	Pass	
STSO-1048	01/01/05	U-238	226.30 ± 8.60	249.00	174.30 - 323.70	Pass	
STSO-1048	01/01/05	Zn-65	851.30 ± 7.30	810.00	567.00 - 1053.00	Pass	
STAP-1050	01/01/05	Gr. Alpha	0.11 ± 0.03	0.23	0.00 - 0.46	Pass	
STAP-1050	01/01/05	Gr. Beta	0.38 ± 0.05	0.30	0.15 - 0.45	Pass	

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)* **ENVIRONMENTAL, INC., 2005**

(Page 2 of 3)

			Conc	entration ^b		
		<u> </u>		Known	Control	
Lab Code ^v	Date	Analysis 1	Laboratory result	Activity	Limits ^a	Acceptance
STAP-1049	01/01/05	Am-241	0.10 ± 0.04	0.10	0.07 - 0.13	Pass
STAP-1049	01/01/05	Co-57	4.76 ± 0.64	4.92	3.44 - 6.40	Pass
STAP-1049	01/01/05	Co-60	2.84 ± 0.22	3.03	2.12 - 3.94	Pass
STAP-1049	01/01/05	Cs-134	3.54 ± 0.37	3.51	2.46 - 4.56	Pass
STAP-1049	01/01/05	Cs-137	2.20 ± 0.27	2.26	1.58 - 2.94	Pass
STAP-1049	01/01/05	Mn-54	3.15 ± 0.21	3.33	2.33 - 4.33	Pass
STAP-1049	01/01/05	Pu-238	0.16 ± 0.04	0.20	0.14 - 0.25	Pass
STAP-1049	01/01/05	Pu-239/40	0.17 ± 0.02	0.17	0.14 - 0.25	Pass
STAP-1049*	01/01/05	Sr-90	2.24 ± 0.34	1.35	0.95 - 1.76	Fail
STAP-1049	01/01/05	U-233/4	0.34 ± 0.02	0.34	0.24 - 0.44	Pass
STAP-1049	01/01/05	U-238	0.35 ± 0.02	0.35	0.25 - 0.46	Pass
STAP-1049	01/01/05	Zn-65	3.12 ± 0.15	3.14	2.20 - 4.08	Pass
07714 4004	07/04/05		0.04 + 0.40	0.00	4 50 0.00	
STW-1061	07/01/05	Am-241	2.21 ± 0.13	2.23	1.56 - 2.90	Pass
STW-1061	07/01/05	Co-57	293.20 ± 7.30	272.00	190.40 - 353.60	Pass
STW-1061	07/01/05	Co-60	275.70 ± 1.30	261.00	182.70 - 339.30	Pass
STW-1061	07/01/05	CS-134	$1/1.80 \pm 4.00$	167.00	116.90 - 217.10	Pass
STW-1061	07/01/05	Cs-13/	342.10 ± 2.20	333.00	233.10 - 432.90	Pass
STW-1061	07/01/05	Fe-55	167.80 ± 9.30	196.00	137.20 - 254.80	Pass
STW-1061	07/01/05	H-3	514.20 ± 12.60	527.00	368.90 - 685.10	Pass
STW-1061	07/01/05	Mn-54	437.00 ± 2.50	418.00	292.60 - 543.40	Pass
STW-1061	07/01/05	NI-63	105.10 ± 3.60	100.00	70.00 - 130.00	Pass
STW-1061	07/01/05	Pu-238	1.64 ± 0.12	1.91	1.34 - 2.48	Pass
STW-1061	07/01/05	Pu-239/40	2.32 ± 0.13	2.75	1.93 - 3.58	Pass
STW-1061	07/01/05	Sr-90	9.20 ± 1.30	8.98	6.29 - 11.67	Pass
STW-1061	07/01/05	IC-99	72.30 ± 2.30	66.50	46.55 - 86.45	Pass
STW-1061	07/01/05	U-233/4	4.11 ± 0.18	4.10	2.87 - 5.33	Pass
STW-1061	07/01/05	U-238	4.14 ± 0.18	4.26	2.98 - 5.54	Pass
STW-1061	07/01/05	Zn-65	364.60 ± 4.90	330.00	231.00 - 429.00	Pass
STW-1062	07/01/05	Gr. Alpha	0.57 ± 0.05	0.79	0.21 - 1.38	Pass
STW-1062	07/01/05	Gr. Beta	1.36 ± 0.05	1.35	0.85 - 1.92	Pass
STSO-1063 '	07/01/05	Am-241	48.40 ± 3.90	81.10	56.77 - 105.43	Fail
STSO-1063	07/01/05	Co-57	608.30 ± 2.80	524.00	366.80 - 681.20	Pass
STSO-1063	07/01/05	Co-60	322.70 ± 2.40	287.00	200.90 - 373.10	Pass
STSO-1063	07/01/05	Cs-134	632.10 ± 5.20	568.00	397.60 - 738.40	Pass
STSO-1063	07/01/05	Cs-137	512.40 ± 4.20	439.00	307.30 - 570.70	Pass
STSO-1063	07/01/05	K-40	720.50 ± 19.00	604.00	422.80 - 785.20	Pass
STSO-1063	07/01/05	Mn-54	516.80 ± 5.10	439.00	307.30 - 570.70	Pass
STSO-1063	07/01/05	Ni-63	366.50 ± 13.30	445.00	311.50 - 578.50	Pass
STSO-1063	07/01/05	Pu-238	68.80 ± 15.00	60.80	42.56 - 79.04	Pass
STSO-1063	07/01/05	Pu-239/40	0.00 ± 0.00	0.00	0.00 - 0.00	
STSO-1063	07/01/05	Sr-90	602.90 ± 17.20	757.00	529.90 - 984.10	Pass
STSO-1063	07/01/05	U-233/4	61.50 ± 1.00	52.50	36.75 - 68.25	Pass
STSO-1063	07/01/05	U-238	164.50 ± 16.70	168.00	117.60 - 218.40	Pass
STSO-1063	07/01/05	Zn-65	874.70 ± 8.40	823.00	576.10 - 1070.00	Pass

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)* ENVIRONMENTAL, INC., 2005

		Concentration ^b				
				Known	Control	
Lab Code	Date	Analysis	Laboratory result	Activity	Limits ^a	Acceptance
STVE-1064	07/01/05	Am-241	0.18 ± 0.03	0.23	0.16 - 0.30	Pass
STVE-1064	07/01/05	Co-57	15.90 ± 0.20	13.30	9.31 - 17.29	Pass
STVE-1064	07/01/05	Co-60	4.80 ± 0.10	4.43	3.10 - 5.76	Pass
STVE-1064	07/01/05	Cs-134	4.60 ± 0.20	4.09	2.86 - 5.32	Pass
STVE-1064	07/01/05	Cs-137	5.90 ± 0.30	5.43	3.80 - 7.06	Pass
STVE-1064	07/01/05	Mn-54	7.20 ± 0.20	6.57	4.60 - 8.54	Pass
STVE-1064	07/01/05	Pu-238	0.04 ± 0.02	0.00	0.00 - 1.00	Pass
STVE-1064	07/01/05	Pu-239/40	0.13 ± 0.02	0.16	0.11 - 0.21	Pass
STVE-1064	07/01/05	Sr-90	2.80 ± 0.30	2.42	1.69 - 3.15	Pass
STVE-1064	07/01/05	U-233/4	0.28 ± 0.03	0.33	0.23 - 0.43	Pass
STVE-1064	07/01/05	U-238	0.33 ± 0.04	0.35	0.24 - 0.45	Pass
STVE-1064	07/01/05	Zn-65	11.00 ± 0.50	10.20	7.14 - 13.26	Pass
STAP-1065	07/01/05	Gr. Alpha	0.30 ± 0.04	0.48	0.00 - 0.80	Pass
STAP-1065	07/01/05	Gr. Beta	0.97 ± 0.06	0.83	0.55 - 1.22	Pass
STAP-1066	07/01/05	Am-241	0.14 ± 0.03	0.16	0.11 - 0.21	Pass
STAP-1066	07/01/05	Co-57	5.81 ± 0.17	6.20	4.34 - 8.06	Pass
STAP-1066	07/01/05	Co-60	2.79 ± 0.14	2.85	2.00 - 3.71	Pass
STAP-1066	07/01/05	Cs-134	3.67 ± 0.12	3.85	2.70 - 5.01	Pass
STAP-1066	07/01/05	Cs-137	2.93 ± 0.23	3.23	2.26 - 4.20	Pass
STAP-1066	07/01/05	Mn-54	4.11 ± 0.26	4.37	3.06 - 5.68	Pass
STAP-1066	07/01/05	Pu-238	0.11 ± 0.02	0.10	0.07 - 0.13	Pass
STAP-1066	07/01/05	Pu-239/40	0.10 ± 0.01	0.09	0.06 - 0.12	Pass
STAP-1066	07/01/05	Sr-90	2.25 ± 0.29	2.25	1.58 - 2.93	Pass
STAP-1066	07/01/05	U-233/4	0.28 ± 0.02	0.27	0.19 - 0.35	Pass
STAP-1066	07/01/05	U-238	0.28 ± 0.02	0.28	0.20 - 0.37	Pass
STAP-1066	07/01/05	Zn-65	4.11 ± 0.26	4.33	3.06 - 5.68	Pass

* Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation) as requested by the Department of Energy.

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

* The strontium carbonate precipitates were redissolved and processed. The average of the three analyses was 1.34 pCi/L,

although the recovery was only 30%. The result of a new analysis was 1.56 pCi/L.

^f Incorrect sample weight used in calculation. Result of recalculation: 97.0 ± 7.8 Bq/kg.

Intentionally Left Blank

APPENDIX E

ERRATA DATA

 $\left(\right)$

(

÷

Table 7.	Surface Water Collection:	Monthly composit	es of weekly collections	
	Required LLDs:	Gross Beta = 4, M Nb-95 = 15, I-131	in-54 = 15, Fe-59 = 30, Co-58 = 1 = 15, Cs-134 = 15, Cs-137 = 18,	5, Co-60 = 15, Zn-65 = 30, Zr-95 = Ba-140 = 60, La-140 = 15 pCi/L
	Units:	pCi/L		
		Sample Descr	iption and Concentration	****
		D-51	Dresden Lock & Dam	<u></u>
2003 Collection Period	January		February	March
Lab Code	CI	DSW-505	CDSW-987	CDSW-1482
Gross Beta	6.2	± 1.4 ; 1.7	6.0 ± 1.2 ; 1.5	6.9 ± 1.5 ; 1.8
Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-95 Nb-95 I-131 Cs-134	-2.1 4.1 1.5 -1.9 1.2 -2.6 -1.1 3.3 1.7	+ 3.2 ; 3.2 + 5.2 ; 5.3 = 2.8 ; 2.9 + 2.4 ; 2.4 + 5.7 ; 5.7 = 5.4 ; 5.4 + 3.0 ; 3.0 = 2.7 ; 2.8 + 2.8 ; 2.8	$0.9 \pm 3.3 ; 3.3$ $3.4 \pm 4.7 ; 4.7$ $4.8 \pm 3.8 ; 3.9$ $-0.9 \pm 3.8 ; 3.8$ $-5.6 \pm 8.0 ; 8.1$ $5.5 \pm 8.0 ; 8.0$ $-0.8 \pm 3.5 ; 3.5$ $-3.7 \pm 3.3 ; 3.4$ $-0.8 \pm 3.9 ; 3.9$	$-0.9 \pm 1.8 ; 1.8$ $1.2 \pm 3.2 ; 3.2$ $1.1 \pm 1.6 ; 1.6$ $0.2 \pm 1.6 ; 1.6$ $-1.0 \pm 3.8 ; 3.8$ $-3.7 \pm 4.0 ; 4.0$ $0.8 \pm 1.7 ; 1.7$ $2.6 \pm 1.9 ; 1.9$ $1.0 \pm 2.1 ; 2.1$
Cs-137 Ba-140 La-140 2003	1.1 6.9 -2.2	± 3.4 ; 3.4)± 9.7 ; 9.8 !± 4.0 ; 4.0	-3.4 ± 3.8 ; 3.9 7.9 ± 11.7 ; 11.8 -4.1 ± 3.4 ; 3.4	0.9±1.9;1.9 -4.6±6.3;6.3 -1.7±1.8;1.8
Collection Period		April	May	June
Lab Code	CI	DSW-2495	CDSW-3030	CDSW-3513
Gross Beta	5.7	± 1.2 ; 1.4	4.0 ± 1.0 ; 1.2	5.9 ± 1.1 ; 1.4
Mn-34 Fe-59 Co-58 Co-60 Zn-65 Zr-95 Nb-95 I-131 Cs-134 Cs-137	-0.2 1.3 1.2 1.2 -1.5 3.5 -0.9 -6.1 -1.1	± 2.3 ; 2.3 ± 4.6 ; 4.6 ± 2.6 ; 2.6 ± 2.6 ; 2.6 ± 4.9 ; 4.9 ± 4.5 ; 4.6 ± 2.1 ; 2.1 ± 2.1 ; 2.3 ± 2.7 ; 2.7	$1.0 \pm 2.1 ; 2.1$ -0.7 ± 4.5 ; 4.5 -1.8 ± 2.2 ; 2.2 -3.2 ± 2.4 ; 2.4 -0.7 ± 5.0 ; 5.0 2.6 ± 5.5 ; 5.5 1.1 ± 2.2 ; 2.2 2.7 ± 2.4 ; 2.5 -0.2 ± 3.1 ; 3.1	-1.4 ± 1.2 ; 1.2 1.1 ± 3.4 ; 3.4 -0.1 ± 1.9 ; 1.9 -0.3 ± 1.6 ; 1.6 -0.4 ± 4.0 ; 4.0 0.6 ± 4.3 ; 4.3 -2.7 ± 1.9 ; 1.9 1.0 ± 2.4 ; 2.4 -1.5 ± 2.2 ; 2.2
Cs-137 -0.8: Ba-140 -1.6: La-140 -3.7		± 3.0 ; 3.0 ± 7.5 ; 7.5 ± 2.7 ; 2.7	0.0±3.0;3.0 -9.8±7.7;7.8 -6.1±2.7;2.8	2.0±2.2;2.2 -0.9±7.3;7.3 -1.1±2.2;2.2

 $\left(\begin{array}{c} \\ \end{array} \right)$

(

•••

Table 7.	Surface Water Collection:	Monthly composit	tes of weekly collections		
	Required LLDs:	Gross Beta = 4, Mn-54 = 15, Fe-59 = 30, Co-58 = 15, Co-60 = 15, Zn-65 = 30, Zr-95 =			
		Nb-95 = 15, I-131	= 15, Cs-134 = 15, Cs-137 = 18	, Ba-140 = 60, La-140 = 15 pCi/L	
	Units:	pCi/L			
		Sample Descr	iption and Concentration		
	·····	D-51	Dresden Lock & Dam		
2003 Collection Period	July		August	September	
Lab Code	CI	DSW-4353	CDSW-5076	CDSW-5764	
Gross Beta	4.8	± 1.5 ; 1.6	4.5 ± 1.1 ; 1.3	5.6 ± 1.2 ; 1.5	
Mn-54 Fe-59	1.3	3±1.9;1.9 ±32:32	1.2± 1.4 ; 1.4 0.8± 33 · 33	1.9± 2.7; 2.7	
Co-58	-0.4	± 1.7 ; 1.7	-0.8± 1.2 ; 1.2	0.5 ± 1.7 ; 1.7	
Co-60	0.6	5±1.7;1.7	-1.9 ± 1.6 ; 1.6	-0.4 ± 3.0 ; 3.0	
Zn-65	-2.2	2±4.3;4.3	2.2± 3.2; 3.2	-2.0 ± 6.6 ; 6.6	
Zr-95	-1.2	?± 4.5; 4.5	0.2± 3.3; 3.3	-3.7± 6.4; 6.4	
Nb-95	-1.1 ± 1.8 ; 1.8		0.5±1.6;1.6	-1.2 ± 3.0 ; 3.0	
I-131	-4.2± 1.8; 1.9		6.3 ± 2.1 ; 2.3	-3.7 ± 2.4 ; 2.5	
Cs-134	-0.3±1.7;1.7		1.0±1.7;1.7	0.7±3.7;3.7	
Cs-137	-0.3±2.2;2.2		0.7±1.6;1.6	-2.0 ± 2.5 ; 2.5	
Ba-140	-1.5±7.2;7.2		9.0±6.3;6.4	3.8±8.6;8.7	
La-140	-3.8 ± 2.3 ; 2.4		0.3 ± 1.8 ; 1.8	-1.6 ± 3.1 ; 3.1	
2003 Collection Period	(Dctober	November	December	
Lab Code	CI	DSW-6694	CDSW-7355	CDSW-7786	
Gross Beta	6.2	± 1.4 ; 1.7	5.0 ± 1.1 ; 1.3	2.6±1.3;1.4	
Mn-54	2.3	3± 2.7 ; 2.7	0.7±1.8;1.8	1.1±1.7;1.7	
Fe-59	-3.8± 6.0; 6.0		1.8 ± 3.1 ; 3.1	-1.2± 3.5 ; 3.5	
Co-58	2.0)± 2.7 ; 2.7	1.9± 1.7 ; 1.7	-0.9± 1.6 ; 1.6	
Co-60	-0.9± 2.9 ; 2.9		1.1±1.8;1.8	-0.3 ± 2.1 ; 2.1	
Zn-65	-2.1 ± 4.0 ; 4.0		-2.2± 3.7; 3.7	-2.6 ± 4.8 ; 4.8	
Zr-95	-0.1± 5.1; 5.1		-0.3± 4.6; 4.6	-1.8 ± 4.5 ; 4.5	
Nb-95	0.3 ± 2.4 ; 2.4		-0.8 ± 1.8 ; 1.8	2.8±2.0;2.1	
1-131	5.8± 2.8 ; 2.9		0.6 ± 2.7 ; 2.7	3.0± 2.6 ; 2.7	
Cs-134	3.5 ± 2.4 ; 2.5		1.1±2.2;2.2	-0.1 ± 2.2 ; 2.2	
Cs-137	2.6	5±3.1;3.1	1.1±2.2;2.2	1.2 ± 2.1 ; 2.1	
Ba-140	1.5	±9.2;9.2	6.8 ± 6.8 ; 6.8	5.1±7.4;7.5	
La-140	-7.6	5 ± 3.4 ; 3.6	-3.1 ± 2.3 ; 2.4	3.1 ± 2.2 ; 2.3	

į.

 $\left(\begin{array}{c} \end{array} \right)$

Ć.

~

ŧ

Table 7.	Surface Water Collection:	Monthly composites of weekly collections	
		Required LLDs:	Gross Beta = 4, Mn-54 = 15, Fe-59 = 30, Co-58 = 15, Co-60 = 15, Zn-65 = 30, Zr-95 = 30, Nb-95 = 15, I-131 = 15, Cs-134 = 15, Cs-137 = 18, Ba-140 = 60, La-140 = 15 pCi/L
		Units:	pCi/L

Sample Description and Concentration							
<u> </u>	D-52 (C) DesPlaines River						
2003 Collection Period	January	February	March				
Lab Code	CDSW-506	CDSW-988	CDSW-1483				
Gross Beta	13.6±1.6;2.7*	9.0±1.3;1.9	9.6±1.4;2.0				
Mn-54	-0.1 ± 2.1 ; 2.1	-1.9± 2.4 ; 2.4	1.0± 3.1 ; 3.1				
Fe-59	1.2± 3.8; 3.8	-1.1± 2.8; 2.8	0.8 ± 5.1 ; 5.1				
Co-58	0.1 ± 2.1 ; 2.1	1.1± 2.3 ; 2.3	-0.5±2.7;2.7				
Co-60	1.2± 1.9 ; 1.9	1.6± 2.5 ; 2.5	-0.2 ± 1.9 ; 1.9				
Zn-65	1.8± 2.8 ; 2.8	1.8± 3.6 ; 3.6	3.4± 5.6 ; 5.6				
Zr-95	-4.1 ± 4.0 ; 4.0	-3.5± 4.7; 4.7	-1.9± 5.8; 5.8				
Nb-95	0.2 ± 1.8 ; 1.8	0.4 ± 2.5 ; 2.5	-0.6 ± 2.8 ; 2.8				
I-131	0.7± 2.0 ; 2.0	1.2 ± 2.4 ; 2.4	1.9± 2.4 ; 2.4				
Cs-134	3.4 ± 2.1 ; 2.1	1.9±3.2;3.2	2.4 ± 3.1 ; 3.1				
Cs-137	-0.5 ± 2.2 ; 2.2	0.1 ± 2.4 ; 2.4	-1.5 ± 2.1 ; 2.1				
Ba-140	-3.3±7.3;7.3	-13.2±9.7;9.9	-9.9±7.8;8.0				
La-140	0.3 ± 2.1 ; 2.1	4.9 ± 2.8 ; 2.9	4.1 ± 2.5 ; 2.5				
2003 Collection Period	April	Мау	June				
Lab Code	CDSW-2496	CDSW-3031	CDSW-3514				
Gross Beta	8.1 ± 1.3 ; 1.8	5.2 ± 1.1 ; 1.4	7.4 ± 1.2 ; 1.7				
Mn-54	-0.1± 1.0 ; 1.0	-0.4± 1.9 ; 1.9	-1.0± 1.7 ; 1.7				
Fe-59	1.7±1.8;1.8	1.3±3.7;3.7	1.8± 2.7 ; 2.8				
Co-58	-0.1±0.8;0.8	0.6± 1.5 ; 1.5	0.3 ± 1.3 ; 1.3				
Co-60	0.4 ± 1.0 ; 1.0	0.8± 1.6 ; 1.6	-0.4±1.8;1.8				
Zn-65	0.8 ± 2.2 ; 2.2	-1.2 ± 4.1 ; 4.1	1.0 ± 4.1 ; 4.1				
Zr-95	1.4 ± 2.1 ; 2.1	0.6± 4.0; 4.0	-0.8± 4.3; 4.3				
Nb-95	0.3 ± 1.0 ; 1.0	0.6 ± 1.7 ; 1.7	-2.3 ± 1.7 ; 1.7				
I-131	4.4± 1.3 ; 1.5	-1.8± 1.9 ; 1.9	1.0± 1.9 ; 1.9				
Cs-134	-0.1±1.1;1.1	1.9 ± 2.1 ; 2.2	0.7±1.9;1.9				
Cs-137	-0.4 ± 1.1 ; 1.1	-1.2 ± 2.1 ; 2.1	1.9 ± 1.8 ; 1.8				
Ba-140	-2.1±3.9;3.9	-6.9±6.6 : 6.7	-1.9±5.9 : 5.9				
La-140	1.1 ± 1.1 ; 1.1	0.3 ± 2.2 ; 2.2	-0.3 ± 1.8 ; 1.8				

*Repeat result; original gross beta = 13.6±1.6; recount = 13.5±2.3 pCi/L.

7-3

(

(

-

Ć

Table 7.	Surface Water Collection:	Monthly composit	tes of weekly collections		
	Required LLDs:	Gross Beta = 4, M Nb-95 = 15, I-131	in-54 = 15, Fe-59 = 30, Co-58 = 1 = 15, Cs-134 = 15, Cs-137 = 18,	15, Co-60 = 15, Zn-65 = 30, Zr-95 = , Ba-140 = 60, La-140 = 15 pCi/L	
	Units:	pCi/L			
		Sample Descr	iption and Concentration	484 day tay tay tay tay tay tay tay tay tay t	
	·····	<u>D-52</u>	(C) DesPlaines River		
2003					
Collection Period		July	August	September	
Lab Code	CI	DSW-4354	CDSW-5077	CDSW-5765	
Gross Beta	5.8	± 1.5 ; 1.8	5.9±1.1;1.4	6.7±1.3;1.6	
Mn-54	0.1	± 1.9 : 1.9	-2.1 ± 2.7 ; 2.7	$1.1 \pm 1.5 \pm 1.5$	
Fc-59	-1.8	± 3.5 ; 3.5	3.1 ± 4.8 ; 4.8	-1.1 ± 3.5 ; 3.5	
Co-58	0.7	'± 1.7 ; 1.7	-0.2 ± 3.1 ; 3.1	-0.2 ± 2.1 ; 2.1	
Co-60	-0.2	± 1.8 ; 1.8	-2.8± 2.6 ; 2.6	0.5 ± 1.7 ; 1.7	
Zn-65	0.4	± 4.5 ; 4.5	-6.8± 6.5 ; 6.6	-2.3±4.6;4.6	
Zr-95	-2.1	± 4.4 ; 4.4	4.2± 5.0; 5.0	-0.4 ± 4.2 ; 4.2	
Nb-95	0.4 ± 2.1 ; 2.1		-2.3 ± 2.5 ; 2.5	-1.3 ± 2.1 ; 2.1	
I-131	1.6± 2.5 ; 2.5		6.8± 2.9; 3.1	2.1± 2.0 ; 2.0	
Cs-134	0.8 ± 2.1 ; 2.1		1.6±3.4;3.4	-0.8 ± 2.0 ; 2.0	
Cs-137	0.8 ± 2.1 ; 2.1		-0.8 ± 2.8 ; 2.8	-1.3 ± 2.2 ; 2.2	
Ba-140	-8.3±7.1;7.2		12.2±8.5;8.7	-1.3±7.4 ; 7.4	
La-140	-4.9 ± 2.1 ; 2.2		-1.6 ± 3.2 ; 3.2	1.0 ± 2.5 ; 2.5	
2003					
Collection Period	(Dctober	November	December	
Lab Code	CI	DSW-6696	CDSW-7356	CDSW-7787	
Gross Beta	5.6	± 1.3 ; 1.5	4.8 ± 1.1 ; 1.3	3.3 ± 0.6 ; 0.8	
Mn-54	0.6	i± 1.9 ; 1.9	-0.1±1.8;1.8	0.5±1.6:1.6	
Fe-59	2.0)± 3.3 ; 3.3	1.1±3.3;3.3	-3.7± 3.5; 3.5	
Co-58	1.5	± 1.6 ; 1.6	0.8± 1.7; 1.7	0.7±1.5;1.6	
Co-60	0.7	± 1.3 ; 1.4	0.2±1.4;1.4	0.9±2.0;2.0	
Zn-65	-0.2± 4.4 ; 4.4		5.3± 3.4 ; 3.5	0.2±3.6;3.6	
Zr-95	0.8± 4.1; 4.1		$-1.2 \pm 3.8; 3.8$	-3.1± 4.5 ; 4.5	
Nb-95	1.8±1.9;1.9		0.1±1.6;1.6	0.2 ± 1.9 ; 1.9	
I-131	-2.4	± 2.3 ; 2.3	-0.7± 2.0 ; 2.0	1.5± 1.8; 1.8	
Cs-134	0.2±1.9;1.9		1.3±1.8;1.8	-2.1 ± 2.3 ; 2.3	
Cs-137	1.2	± 2.2 ; 2.2	1.9±1.8;1.8	-1.2 ± 2.0 ; 2.0	
Ba-140	-2.0	± 7.2 ; 7.2	-1.2±6.8;6.8	4.7±5.7;5.7	
La-140	0.7	' = 1.9 ; 1.9	-1.8 ± 2.3 ; 2.3	0.5 ± 2.3 ; 2.3	

.

 $\left(\right)$

(

-

. .

quired LLDs:	Gross Beta = 4, R Nb-95 = 15 L-13	Mn-54 = 15, Fe-59 = 30, Co-58 =	15 Ca.60 = 15 7a 65 = 20 7-05			
	110-22 10,1-10	Gross Beta = 4, Mn-54 = 15, Fe-59 = 30, Co-58 = 15, Co-60 = 15, Zn-65 = 30, Zr-95 = Nb-95 = 15, I-131 = 15, Cs-134 = 15, Cs-137 = 18, Ba-140 = 60, La-140 = 15 pCi/L				
ins:	pCi/L					
Sample Description and Concentration						
	D-54	(C) Kankakee River	******			
January		February	March			
CL	DSW-503	CDSW-908	CDSW-1478			
2.4 :	± 1.0 ; 1.0	4.0±1.1;1.3	4.6 ± 1.3 ; 1.5			
-0.1	± 1.9 ; 1.9	1.8± 1.8; 1.8	-3.4± 3.3 ; 3.3			
0.2	± 3.3 ; 3.3	3.2 ± 4.0 ; 4.0	-2.7± 6.6 ; 6.6			
-0.6	± 2.1 ; 2.1	-0.4± 2.1 ; 2.1	-2.7 ± 3.1 ; 3.1			
-2.6	± 2.6 ; 2.6	-1.5± 2.5 ; 2.5	-0.4± 3.6 ; 3.6			
2.0	± 4.4 ; 4.4	-6.4± 4.4 ; 4.5	2.0± 7.6 ; 7.6			
$-1.5 \pm 4.4; 4.4$		-0.8± 4.7; 4.7	3.0± 5.5; 5.5			
$-1.7 \pm 2.1 + 2.2$		0.8 ± 2.0 ; 2.0	1.5 ± 3.0 ; 3.0			
7.1 ± 2.7 ; 2.9		-0.6± 2.7; 2.7	4.3± 3.5; 3.5			
$-2.1 \pm 2.5 \pm 2.5$		$-1.5 \pm 2.1 : 2.1$	$0.9 \pm 3.8 \pm 3.8$			
-1.8 ± 2.3 ; 2.3		0.6 ± 2.2 ; 2.2	-0.5 ± 3.2 ; 3.2			
17+89.89		$-1.7 \pm 8.0 \pm 8.0$	$-15.7 \pm 11.0 \pm 11.2$			
$2.6 \pm 2.0 \cdot 2.0$		$-2.2 \pm 2.4 \pm 2.4$	$-4.5 \pm 4.4 : 4.4$			
	,		···· ··· · · · · · · · · · · · · · · ·			
	April	May	June			
CDSW-2491		CDSW-2874	CDSW-3860			
3.6±1.0;1.2		2.5 ± 1.1 ; 1.1	2.8 ± 1.1 ; 1.2			
-0.2	± 1.1 ; 1.1	0.1 ± 1.6 ; 1.6	0.4±0.6;0.6			
-0.6	± 2.2 ; 2.2	0.7±2.6;2.6	0.5±1.2;1.2			
0.0	± 1.0 ; 1.0	0.9± 1.6 ; 1.6	0.9± 0.6 ; 0.6			
1.0 ± 1.1 ; 1.2		1.4± 2.0 ; 2.0	0.7±0.7;0.7			
-0.1 ± 2.0 ; 2.0		-0.2 ± 4.1 ; 4.1	-0.9± 1.5 ; 1.5			
-2.7± 2.2; 2.3		-0.6± 3.7; 3.7	-0.8± 1.4; 1.4			
-0.2 ± 1.1 : 1.1		-1.0 ± 1.8 ; 1.8	0.4±0.6;0.6			
-2.1	± 1.4 ; 1.5	1.7± 1.8; 1.8	-0.4± 0.7; 0.7			
-0.6	±1.4;1.4	1.2±1.3 : 1.3	0.3 ± 0.7 : 0.7			
-0.9	± 1.2 ; 1.2	-0.2 ± 2.0 ; 2.0	0.0 ± 0.7 ; 0.7			
-7.4	± 4,2 ; 4.3	$2.0 \pm 7.1 \pm 7.1$	$5.9 \pm 2.5 : 2.6$			
-1.3	* 1.2 : 1.3	$-1.4 \pm 1.9 \pm 1.9$	$-1.8 \pm 0.9 \cdot 0.9$			
	its: J CI 2.4 -0.1 0.2 -0.6 -2.6 2.0 -1.5 -1.7 7.1 -2.1 -1.8 1.7 2.6 CI 3.6 - 0.2 -0.6 0.0 1.0 -0.1 -2.7 -0.2 -0.6 0.0 1.0 -2.7 -0.2 -0.6 -2.7 -0.2 -0.6 -2.7 -0.2 -0.6 -2.7 -0.1 -2.1 -0.1 -2.1 -0.1 -2.1 -0.1 -2.1 -0.1 -2.1 -0.1 -2.1 -0.1 -2.1 -1.5 -1.7 -2.1 -1.8 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6	its: pCi/L Sample Desc D2-52 January CDSW-503 2.4 ± 1.0 ; 1.0 -0.1 ± 1.9 ; 1.9 0.2 ± 3.3 ; 3.3 -0.6 ± 2.1 ; 2.1 -2.6 ± 2.6 ; 2.6 2.0 ± 4.4 ; 4.4 -1.5 ± 4.4 ; 4.4 -1.5 ± 4.4 ; 4.4 -1.7 ± 2.1 ; 2.2 7.1 ± 2.7 ; 2.9 -2.1 ± 2.5 ; 2.5 -1.8 ± 2.3 ; 2.3 1.7 ± 8.9 ; 8.9 2.6 ± 2.0 ; 2.0 April CDSW-2491 3.6 ± 1.0 ; 1.2 -0.2 ± 1.1 ; 1.1 -0.6 ± 2.2 ; 2.2 0.0 ± 1.0 ; 1.0 1.0 ± 1.0 ; 1.0 1.0 ± 1.1 ; 1.2 -0.1 ± 2.0 ; 2.0 -2.7 ± 2.2 ; 2.3 -0.2 ± 1.1 ; 1.1 -2.1 ± 1.4 ; 1.5 -0.6 ± 1.4 ; 1.4 -0.9 ± 1.2 ; 1.2 -2.4 ± 4.2 ; 4.3 -1.3 ± 1.2 ; 1.3	its: pCi/L Sample Description and Concentration D-54 (C) Kankakee River' January February CDSW-503 CDSW-908 2.4 ± 1.0 ; 1.0 4.0 ± 1.1 ; 1.3 -0.1 ± 1.9 ; 1.9 1.8 ± 1.8 ; 1.8 0.2 ± 3.3 ; 3.3 3.2 ± 4.0 ; 4.0 0.6 ± 2.1 ; 2.1 -0.4 ± 2.1 ; 2.1 -2.6 ± 2.6 ; 2.6 -1.5 ± 2.5 ; 2.5 2.0 ± 4.4 ; 4.4 -6.4 ± 4.4 ; 4.5 -1.5 ± 4.4 ; 4.4 -0.6 ± 2.7 ; 2.7 -2.1 ± 2.5 ; 2.5 -1.5 ± 2.6 ; 2.0 7.1 ± 2.7 ; 2.9 -0.6 ± 2.7 ; 2.2 7.1 ± 2.7 ; 2.9 -0.6 ± 2.7 ; 2.2 1.7 ± 8.9 ; 8.9 -1.7 ± 8.0 ; 8.0 2.6 ± 2.0 ; 2.0 -2.2 ± 2.4 ; 2.4 April May CDSW-2491 CDSW-2874 3.6 ± 1.0 ; 1.2 2.5 ± 1.1 ; 1.1 -0.2 ± 1.1 ; 1.1 0.1 ± 1.6 ; 1.6 1.0 ± 1.0 ; 1.0 0.9 ± 1.6 ; 1.6 1.0 ± 1.0 ; 1.0 0.9 ± 1.6 ; 1.6 0.4 ± 1.0 ; 1.2 0.2 ± 1.1 ; 1.1 -1.2 ± 2.2 ; 2.3 -0.6 ± 3.7			

* Location added by station request; data shared with Braidwood Station, location 10.

7-5

 $\left(\begin{array}{c} \\ \end{array} \right)$

(

÷,

Table 7.	Surface Water Collection:	Monthly composite	s of weekly collections				
	Required LLDs:	Gross Beta = 4, Mn-54 = 15, Fe-59 = 30, Co-58 = 15, Co-60 = 15, Zn-65 = 30, Zr-95 = Nb-95 = 15, L-131 = 15, Co-134 = 15, Co-137 = 18, Ba-140 = 60, La-140 = 15, PCi/L					
	Units:	pCi/L					
	Sample Description and Concentration						
		<u>D-54 (</u>	C) Kankakee River	<u></u>			
2003 Collection Period	July		August	September			
Lab Code	CI	DSW-4364	CDSW-5066	CDSW-5566			
Gross Beta	4.0	± 1.4 ; 1.6	2.9 ± 1.1 ; 1.2	4.0±1.2;1.3			
Mn-54 Fe-59	0.6 4.9	5± 3.5 ; 3.5 9± 6.5 ; 6.5	0.3±2.3;2.3 1.9±4.6;4.6	-1.0 ± 1.7 ; 1.7 0.2 ± 3.2 ; 3.2			
Co-58 Co-60	2.5) ± 3.0 ; 3.0 / ± 4.1 ; 4.1	-0.4 ± 2.4 ; 2.4 -1.1 ± 1.9 ; 1.9	-0.1 ± 1.4 ; 1.4 -0.3 ± 1.7 ; 1.7			
Zn-65 Zr-95	-6.7 -2.4	/± 7.5 ; 7.6 ± 7.1 ; 7.1	2.1 ± 4.1 ; 4.1 3.0 ± 6.3 ; 6.3	2.2± 4.0 ; 4.0 -1.9± 4.1 ; 4.1			
Nb-95	3.9±3.1;3.1		1.0 ± 2.4 ; 2.4	-3.5 ± 1.8 ; 1.9			
I-131	-1.9± 3.7; 3.7		0.8 ± 2.2 ; 2.2	1.7 ± 2.1 ; 2.1			
Cs-134	-2.4 ± 3.9 ; 3.9		-1.2 ± 2.9 ; 3.0	-0.6 ± 1.9 ; 1.9			
CS-137	2.7 ± 2.8 ; 2.8		1.0 ± 2.9 ; 3.0	0.4 ± 2.2 ; 2.2			
Ba-140 La-140	-4.u -0.1) = 11.2 ; 11.2 L = 4.7 ; 4.7	-3.8 ± 8.3 ; 8.3 -0.5 ± 3.2 ; 3.2	-1.3 ± 2.4 ; 2.4			
2003				_			
Collection Period	(Dctober	November	December			
Lab Code	CDSW-6707		CDSW-7305	CDSW-7767			
Gross Beta	3.4 ± 1.0 ; 1.1		5.5 ± 1.1 ; 1.4	2.0 ± 0.9 ; 1.0			
Mn-54	-1.6	i± 2.0 ; 2.0	-0.7± 3.4 ; 3.4	-0.5 ± 1.6 ; 1.6			
Fe-59	-6.1	± 3.7 ; 3.8	-0.4± 5.3 ; 5.3	-3.5±3.7;3.7			
Co-58	1.5±1.8;1.9		2.2± 3.6 ; 3.7	0.3±1.8;1.8			
Co-60	0.7±1.8;1.8		-3.0 ± 4.0 ; 4.0	-0.9 ± 2.0 ; 2.0			
Zn-65	-1.6± 4.3 ; 4.3		-3.4± 7.4 ; 7.4	-1.8 ± 4.5 ; 4.5			
Zr-95	2.0± 3.9; 3.9		$-6.0 \pm 8.1; 8.2$	-6.7± 4.7; 4.8			
ND-95	2.1±1.9;1.9		-1.5 ± 3.7 ; 3.7	0.3 ± 1.5 ; 1.5			
I-131	4.2± 2.4 ; 2.5		0.5 ± 3.4 ; 3.4	1.2 ± 2.1 ; 2.1			
Cs-134	-1.3	± 2.1 ; 2.1	-1.5 ± 3.5 ; 3.5	0.4 ± 2.0 ; 2.0			
Cs-137	0.6	5±2.0;2.0	1.1 ± 3.0 ; 3.0	-0.8 ± 2.0 ; 2.0			
Ba-140	1.5±8.2;8.2		1.4 ± 10.6 ; 10.6	-1.8±7.2;7.2			
La-140	1.9	± 2.6 ; 2.6	-5.6 ± 4.7 ; 4.8	-0.3 ± 1.7 ; 1.7			

* Location added by station request; data shared with Braidwood Station, location 10.

7-6
(

(

Table 8.	Well Water Collection:	Quarterly						
	Required LLDs:	H-3 = 200, Mn-54 = 15, Fe-59 = 3 NF 05 = 15 $L_{121} = 15$ Cr 124 =	10, Co-58 = 15, Co-60 = 15, 2	$Z_{n-65} = 30, Z_{r-95} = 30,$				
	I Inita.	ND-95 = 15, 1-151 = 15 Cs-154 =	15, Cs - 157 = 18, Ba - 140 = 00	1, La - 140 = 15 pCVL				
		Sample Description and Conce	entration					
		D-23 Thorsen We	Ш					
Date Collected	01-10-03	04-11-03	07-11-03	10-10-03				
Lab Code	CDWW-159	CDWW-1787	CDWW-3881	CDWW-5896				
H-3	609±93;124	4 729±96;138	839±115;162	711±110;147				
Mn-54	-1.0 ± 3.1 ; 3.	1 -2.4 ±2.0 ; 2.0	1.5 ±1.6 ; 1.6	2.0 ± 3.1 ; 3.1				
Fc-59	-5.6 ± 5.0 ; 5.	-5.8 ± 4.5 ; 4.6	0.7 ±2.9 ; 2.9	-1.8 ± 5.6 ; 5.6				
Co-58	$-0.8 \pm 3.1; 3.1$	5 0.4 ±2.3 ; 3.0	0.2 ± 1.6 ; 1.2	-3.3 ± 2.4 ; 2.6				
Co-60	-1.0 ± 3.5 ; 3.	-0.3 ±3.0 ; 2.3	0.4 ± 1.2 ; 1.6	-2.4 ± 2.6 ; 2.4				
Zn-65	-3.6 ±4.5 ; 4.0	5 1.4 ±4.2 ; 4.2	-0.6 ±3.8 ; 3.8	-0.7 ± 5.6 ; 5.6				
Zr-95	-2.1 ± 6.1 ; 6.1	0.6 ± 5.6 ; 5.6	-2.5 ±3.4 ; 3.4	4.3 ± 6.0 ; 6.0				
Nb-95	-0.5 ±2.9; 2.9	$-1.0 \pm 2.9; 2.9$	$0.6 \pm 1.8; 1.8$	$-1.8 \pm 3.1; 3.1$				
I-131	4.7 ± 3.0; 3.0) $1.3 \pm 2.5; 2.5$	$1.3 \pm 1.6; 1.6$	$4.3 \pm 2.7; 2.8$				
Cs-134	-3.1 ±4.1 ; 4.1	-1.2 ±3.9 ; 3.9	0.1 ±1.7 ; 1.7	-0.5 ±3.1 ; 3.1				
Cs-137	-1.4 ±3.4 ; 3.4	$-0.7 \pm 3.5; 3.5$	0.9 ± 1.8 ; 1.8	$2.8 \pm 3.3; 3.4$				
Ba-140	17.1 ±9.7;10.	0 7.8 ± 8.3 ; 8.4	-3.2 ±6.7 ; 6.7	$1.5 \pm 9.0; 9.0$				
La-140	-1.7 ±3.2 ;3.2	1.2 ± 2.6 ; 2.6	-3.0±2.3 ;2.3	0.9 ± 3.0 ; 3.0				
		D-35 Dresden Lock &	Dam					
Date								
Collected	01-10-03	04-11-03	07-11-03	10-10-03				
Lab Code	CDWW-160	CDWW-1788	CDWW-3882	CDWW-5897				
H-3	-61 ± 62 ; 62	16±64;64	12±74;74	0±81;81				
Mn-54	1.3 ± 1.4 ; 1.4	1.2 ±3.3 ; 3.3	0.7 ± 3.4 ; 3.4	0.5 ± 1.4 ; 1.4				
Fe-59	-2.1 ±3.2 ; 3.2	-2.2 ±4.8 ;4.8	-2.5 ± 6.3 ; 6.3	0.4 ±3.2 ; 3.2				
Co-58	0.6 ± 1.6 ; 1.5	2.6 ±3.0 ; 4.3	1.5 ± 2.7 ; 4.2	1.1 ±1.6 ; 1.7				
Co-60	-0.1 ± 1.5 ; 1.6	0.4 ± 4.3 ; 3.0	-1.3 ±4.2 ; 2.7	-1.1 ± 1.6 ; 1.6				
Zn-65	-2.3 ±4.3 ; 4.3	1.8 ±7.6 ; 7.6	-0.4 ±6.6 ; 6.6	-1.1 ± 3.3 ; 3.3				
Zr-95	-0.8 ±3.8 ; 3.8	-2.9 ± 8.1 ; 8.2	3.0 ± 5.0 ; 5.0	0.8 ± 4.0 ; 4.0				
ND-95	$0.2 \pm 1.4; 1.4$	$2.0 \pm 3.4; 3.4$	-0.6 ± 2.8 ; 2.8	-0.7 ± 1.8 ; 1.8				
[-131	-0.9 ± 1.7; 1.7	$0.3 \pm 3.4; 3.4$	$2.3 \pm 3.8; 3.9$	$1.5 \pm 2.1; 2.1$				
Cs-134	3.0 ±1.8 ; 1.9	-0.1 ± 3.8 ; 3.8	-0.6 ± 3.4 ; 3.4	-0.5 ±1.7 ; 1.7				
Cs-137	-0.5 ±1.6; 1.6	0.6 ± 3.8 ; 3.8	1.0 ± 3.3 ; 3.3	-0.6 ±1.7 ; 1.7				
3a-140	0.3 ±6.6;6.6	2.1 ±9.5 ; 9.5	4.8 ± 11.3 ; 11.3	-1.4 ±7.4 ; 7.4				
.a-140	-1.1 ±2.0 ;2.0	0.3 ± 4.3 ; 4.3	-4.9 ± 4.7 ; 4.8	-0.6 ± 1.8 ; 1.8				

Intentionally Left Blank

APPENDIX F

EFFLUENT DATA

TABLE OF CONTENTS

NTRODUCTION	1
SUMMARY	2
1.0. EFFLUENTS	3
1.1. Gaseous Effluents to the Atmosphere	
1.2. Liquids Released to Illinois River	3
2.0. SOLID RADIOACTIVE WASTE	3
3.0. DOSE TO MAN	4
3.1.1 Noble Gases	4
3.1.1.1. Gamma Air and Total Body Dose	4
3.1.1.2. Beta Air and Skin Dose	4
3.1.2. Radioactive lodine	5
3.1.2.1. Dose to Thyroid	5
3.2. Liquid Effluent Pathways	6
3.3. Assessment of Dose to Member of Public	6
3.4. 40CFR190 Compliance	7
4.0. SITE METEOROLOGY	7

Table of Contents (cont.)	
PPENDIX F-1 DATA TABLES AND FIGURES F-1	.1
Station Releases	
Table 1.1-1 Gaseous Effluents Summation of all Releases F-1	.2
Table 1.2-1 Liquid Effluents Summation of all Releases F-1	.3
Table 3.1-1 Maximum Doses Resulting from Airborne Releases F-1	.4
Table 3.2-1 Maximum Doses Resulting from Liquid Effluents F-1	.6
Table 3.3-1 10CFR20 Compliance Assessment	.7
Table 3.4-1 Maximum Doses Resulting from Airborne Releases Based	
On Concurrent Meteorological Data F-1	.13

INTRODUCTION

The Dresden Station is located approximately twelve miles southwest of Joliet, Illinois at the confluence of the Des Plaines and Illinois Rivers where they form the Illinois River. This stations uses two boiling water reactors (G.E. design) to generate electricity. Unit 1, which began operating in 1960 and had a rated power output of 200 megawatts electrical (MWe), was shut down permanently on August 31, 1984 and is currently being decommissioned. Unit 2 net rated power output was increased to 912 MWe in 2001; Unit 3 net rated power output was increased to 912 MWe in 2002. The station has been designed to keep releases to the environment at levels below those specified in the regulations.

Liquid effluents from Dresden Station are released to the Illinois River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere after delay to permit decay of short-lived (noble) gases. Releases to the atmosphere are calculated on the basis of analyses of weekly grab samples of noble gases as well as continuously collected composite samples of iodine and particulate activity sampled during the course of the year. The results of effluent analyses are summarized on a monthly basis and reported to the Nuclear Regulatory Commission as required per Technical Specifications. Airborne concentrations of noble gases, I-131, and particulate radioactivity in offsite areas are calculated using isotopic composition of effluent and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of the Dresden Station to measure changes in radiation or radioactivity levels that may be attributable to station operations. If significant changes attributable to Dresden Station are measured, these changes are correlated with effluent releases. External gamma radiation exposure from turbine shine and released noble gases and internal dose from I-131 in milk are the critical pathways at this site; however, a comprehensive environmental monitoring program is conducted which includes many other pathways which are less significant in terms of radiation protection.

SUMMARY

Calculations based on gaseous and liquid effluents, Illinois River Flow, meteorological data and hydrogen addition activities indicate that public dose due to radioactive material attributable to Dresden Station during the period does not exceed regulatory or Offsite Dose Calculation Manual (ODCM) limits.

The Total Effective Dose Equivalent (TEDE) for the period due to licensed activities at Dresden Station calculated for the maximally exposed individual is 7.21E+00 mrem. The annual limit on TEDE is 100 mrem. This value is largely dominated by the direct radiation constituent from the Unit 2 and Unit 3 turbines (7.19 mrem). The balance of the calculated maximum dose (0.02 mrem) is due to exposure from radionuclides released from the Station in liquid and gaseous effluents.

The assessment of radiation doses to the public is performed in accordance with the ODCM. The results of these analyses confirm that the station is operating in compliance with 10CFR50 Appendix I, 10CFR20 and 40CFR190.

1.0 EFFLUENTS

1.1 Gaseous Effluents to the Atmosphere

Measured concentrations of noble gases, radioiodine, and particulate radioactivity with half lives greater than eight days released to the atmosphere during the year, are listed in Table 1.1-1. A total of 6.55E+01 curies of noble gases with a maximum quarterly average release rate of 2.71E+00 μ Ci/sec were released from Dresden Units 1, 2 and 3.

A total of 7.05E-04 curies of 1-131 were released during the year with a maximum average quarterly release rate of 2.62E-05 μ Ci/sec.

A total of 2.19E-03 curies of particulate activity with half lives greater than eight days were released as airborne particulate matter with a maximum average release rate of 8.31E-05 μ Ci/sec. Alpha-emitting radionuclides were below LLD for the period. Also, 2.33E+01 curies of tritium were released with a maximum quarterly average release rate of 1.42E+00 μ Ci/sec.

1.2 Liquids Released to Illinois River

Measured concentrations and isotopic composition of radioactivity released in liquid effluents during the year are listed in Table 1.2-1.

A total of 2.67E+06 liters of radioactive liquid wastes containing 5.99E-03 curies of fission and activation products (excluding tritium, noble gases and gross alpha) were discharged from the station. These wastes were released at a maximum quarterly diluted average concentration of 3.38E-08 μ Ci/ml from all units. During the same period, 1.17E+01 curies of tritium were released with a maximum quarterly average diluted concentration of 4.38E-05 μ Ci/ml. Alpha-emitting radionuclides were below LLD.

2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck to the Barnwell disposal facility, the Envirocare disposal facility or to waste processors. For more detail, refer the Dresden Station 2005 Radioactive Effluent Release Report.

3.0 DOSE TO MAN

3.1 Gaseous Effluent Pathways

3.1.1 Noble Gases

To demonstrate compliance with the applicable regulations regarding public radiation dose due to gaseous effluents from Dresden Stations, two methods are reported in the following sections. Both methods employ measured isotopic composition and release rates from the stations.

"Historical meteorological data" are used in ODCM required calculations performed at least every 31 days. These data use a ten-year average (1/1/1978-12/31/1987) for Dresden Station. Actual "concurrent meteorological data" is used to recalculate the quarterly release information using actual meteorological data for the period.

3.1.1.1 Gamma Air and Total Body Dose

Offsite Gamma air and total body dose rates are shown in Table 3.1-1 and were calculated based on measured released rate, isotopic composition of the noble gases, and average meteorological data for the period. Doses based on concurrent meteorological data are shown in Table 3.4-1.

Based on measured effluents and historical meteorological data, the maximum total body dose (from all units) to an individual is calculated to be 1.14E-03 mrem for the year (Table 3.1-1) for the year, with an occupancy or shielding factor of 0.7 included. The maximum total body dose from all units based on measured effluents and concurrent meteorological data would be 2.10E-03 mrem (Table 3.4-1). The maximum gamma air dose was based on measured effluents and historical meteorological data was 1.51E-03 mrad (Table 3.1-1) and 2.87E-03 mrad based on concurrent meteorological date (Table 3.4-1).

3.1.1.2 Beta Air and Skin Dose

The range of beta particles in air is relatively small

(on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is assumed to have a thickness of 7.0 mg/cm² and an occupancy factor of 1.0 is used. The skin dose from beta and gamma radiation based on measured effluents and historical meteorological data for the year was 1.24E-03 mrem (Table 3.1-1) and 2.61E-03 mrem based on concurrent meteorological data (Table 3.4-1).

The maximum offsite beta air dose based on measured effluents and historical meteorological data for the year was 5.82E-05 mrad (Table 3.1-1) and 2.95E-04 mrad based on concurrent meteorological data (Table 3.4-1).

3.1.2 Radioactive lodine

The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine. The radioiodine, I-131, released during routine operation of the station, may be made available to man resulting in a dose to the thyroid. The principal pathway of interest for this radionuclide is ingestion of radioiodine in milk. Calculations made in previous years indicate that contributions to doses from inhalation of I-131 and I-133, and from ingestion of I-133 in milk are negligible.

3.1.2.1 Dose to Thyroid

The hypothetical thyroid dose to the maximum exposed individual living near the station via ingestion of milk was calculated. The radionuclide considered was I-131 and the source of milk was taken to be the nearest dairy farm with the cows pastured from May through October. The maximum thyroid dose did not exceed 1.93E-02 mrem during the year (Table 3.1-1[child]).

3.2 Liquid Effluent Pathways

The three principal pathways for potential dose to man from liquid waste effluents are ingestion of potable water, ingesting aquatic foods, and exposure while on the shoreline. Not all of these pathways are applicable at a given time or station, but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic environment. NRC developed equations* were used to calculate the doses to the whole body, lower GI tracts, thyroid, bone and skin; specific parameters for use in the equations are given in the Dresden Station Offsite Dose Calculation Manual. The maximum whole body and organ dose for the year was 2.30E-04 mrem (child) and 1.37E-03 mrem (child/adult), respectively (Table 3.2-1).

3.3 Assessment of Dose to Member of Public

During the period January to December, 2005, Dresden Station did not exceed the following limits as shown in Table 3.1-1 and Table 3.2-1 (based on historical meteorological data) and as shown in Table 3.4-1 (based on concurrent meteorological data), and

- The RETS limits on dose or dose commitment to a member of the public due to radioactive materials in liquid effluents from each reactor unit (1.5 mrem to the total body or 5 mrem to any organ during any calendar year; 3 mrem to the total body or 10 mrem to any organ during the calendar year).
- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor unit (5 mrad for gamma radiation or 10 mrad for beta radiation during any calendar quarter; 10 mrad for gamma radiation or 20 mrad for beta radiation during a calendar year).
- The RETS limits on dose to a member of the public due to lodine-131, lodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released from each reactor unit (7.5 mrem to any organ during any calendar quarter; 15 mrem to any organ during any calendar year).
- The 10CFR20 limit on Total Effective Dose Equivalent to individual members of the public (100 mrem) during any

calendar year.

3.4 <u>40CFR190 Compliance</u>

Due to the proximity of Dresden Station to General Electric Morris Operations (GEMO), potential dose from that facility to a member of the public is considered when evaluating compliance with 40CFR190 requirements. The maximum calculated potential dose from the GEMO facility in 2005 was 3.19E-01 mrem. Combined with the maximum calculated potential dose from Dresden, the limits of 40CFR190 are not approached or exceeded by any individual in the general environment between the two facilities.

4.0 SITE METEOROLOGY

A summary of the site meteorological measurements taken during each calendar quarter of the year is given in Appendix G. The data are presented as cumulative joint frequency distributions of the wind direction for the 35' and 300' levels and wind speed class by atmospheric stability class determined from the temperature difference between the 150' and 35' and between the 300' and 35' levels, respectively. Data recovery for these measurements was 99.6% during 2005.

*Nuclear Regulatory Commission, Regulatory Guide 1.109 (Rev. 1)

Intentionally Left Blank

APPENDIX F-1

DATA TABLES AND FIGURES

Table 1.1-1

GASEOUS EFFLUENTS SUMMATION OF ALL GASEOUS RELEASES

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 AND 3 RADIOACTIVE EFFLUENT RELEASE REPORT January Through December 2005

DOCKET NUMBERS: 50-010/50-237/50-249

	<u>Units</u>	l st <u>Quarter</u>	2 nd <u>Ouarter</u>	3 rd Quarter	4 th <u>Quarter</u>	Est. Total <u>Error, %</u>
A. FISSION & ACTIVATION GASES						
1. Total Release	Ci	2.10E+01	1.94E+01	1.55E+01	9.57E+00	24.5%
2. Average Release Rate for the Period	µCi/sec	2.71E+00	2.46E+00	1.95E+00	1.20E+00	
3. Percent of Technical Specification Limit	%	*	*	*	*	1
1. Total Iodine-131 2. Average Release Rate of L131 for the Period	Ci	1.27E-04	2.06E-04	2.06E-04	1.66E-04	26.0%
2 Average Release Rate of I-131 for the Period		1.63E-05	2.00E-04	2.00E-04	2.09E-04	20.076
3. Percent of Technical Specification Limit	%	*	*	*	*	1
4. Total Iodine-131, Iodine-133 and Iodine-135	Ci	5.14E-04	8.77E-04	9.29E-04	5.82E-04	1
C. PARTICULATES		6 105-04	531F-04	3 87E-04	661F-04	29.0%
2 Augus Dalaras Dala Cardha Dariad		7.950.05	6755.05	4 975 05	0.01E-04	27.070

4.87E-05 Average Release Rate for the Period µCi/sec 85E-05 <u>6.75E-05</u> 8.31E-05 * 3. Percent of Technical Specification Limit % * * * <LLD <LLD Ci <LLD <LLD 4. Gross Alpha Radioactivity

D. TRITIUM

1	1.	Total Release	Ci	2.29E+00	1.12E+01	4.87E+00	4.94E+00	7.62%
2	2.	Average Release Rate for the Period	µCi/sec	2.95E-01	1.42E+00	6.13E-01	6.22E-01	
. 3	3.	Percent of Technical Specification Limit	%	+	*	*	*	

*The information is contained in the Radiological Impact on Man section of the report. Total airborne release data are provided which include fission and activation gases, iodines, particulates, and tritium.

Table 1.2-1

---- -- -----

LIQUID EFFLUENTS SUMMATION OF ALL LIQUID RELEASES

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 AND 3 RADIOACTIVE EFFLUENT RELEASE REPORT January Through December 2005

DOCKET NUMBERS: 50-010/50-237/50-249

				l st	2 nd	3 rd	4 th	Est. Total
			Units	<u>Quarter</u>	<u>Quarter</u>	Quarter	<u>Quarter</u>	<u>Error, %</u>
A.	FISSION &	& ACTIVATION PRODUCTS						
	1. Total	Release (not including H-3, gases, alpha)	Ci	5.80E-04	<lld< td=""><td>1.35E-06</td><td>5.41E-03</td><td>17.4%</td></lld<>	1.35E-06	5.41E-03	17.4%
	2. Avera	age Diluted Conc. During Period	µCi/ml	4.55E-09	<lld< td=""><td>7.75E-10</td><td>3.38E-08</td><td></td></lld<>	7.75E-10	3.38E-08	
	3. Perce	nt of Technical Specification Limit	%	*	+	*	*	
В.	TRITIUM							
	1. Total	Release	Ci	4.67E+00	<lld< td=""><td><lld< td=""><td>7.01E+00</td><td>1.75%</td></lld<></td></lld<>	<lld< td=""><td>7.01E+00</td><td>1.75%</td></lld<>	7.01E+00	1.75%
	2. Avera	age Diluted Conc. During Release	µCi/ml	3.67E-05	<lld< td=""><td><lld< td=""><td>4.38E-05</td><td></td></lld<></td></lld<>	<lld< td=""><td>4.38E-05</td><td></td></lld<>	4.38E-05	
	3. Perce	nt of Technical Specification Limit	%	*	•	*	•	
<u>C.</u>	DISSOLVI 1. Total 2. Avera 3. Perce	ED AND ENTRAINED GASES Release age Diluted Conc. During Period int of Technical Specification Limit	Ci µCi/ml %	<lld <lld ♥</lld </lld 	<lld <lld *</lld </lld 	<lld <lld *</lld </lld 	<lld <lld ▼</lld </lld 	20.3%
D.	GROSS A	LPHA ACTIVITY						
	1. Total	Release	<u> </u>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>20.1%</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>20.1%</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>20.1%</td></lld<></td></lld<>	<lld< td=""><td>20.1%</td></lld<>	20.1%
	·•	······································						
Е. ——	VOLUME (prior to di	OF WASTE RELEASED lution)	Liters	1.03E+06	2.63E+05	2.14E+05	1.16E+06	1.00%
F.	VOLUME	OF DILUTION WATER USED	Liters	1.26E+08	1.88E+06	1.53E+06	1.59E+08	5.00%
	DURING		L	L	l		l	

*The information is contained in the Radiological Impact on Man section of the report.

Table 3.1-1

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 AND 3 RADIOACTIVE EFFLUENT RELEASE REPORT January Through December 2005

DOCKET NUMBER: 50-010

RADIOLOGICAL IMPACT ON MAN*

UNIT 1

1. Airborne Releases

	[Maximum I	Doses from Airt	orne Releases			Annual
	Quarterly Obj.	1 st QTR	2 nd QTR	3 rd QTR	4 th QTR	Yearly Obj.	· Dose
Gamma Air (mrad)	5.0 mrad	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	10.0 mrad	0.00E+00 (e)
Beta Air (mrad)	10.0 mrad	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	20.0 mrad	0.00E+00 (e)
Total Body (mrem)	2.5 mrem	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	5.0 mrem	0.00E+00 (e)
Skin (mrem)	7.5 mrem	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	0.00E+00 (e)	15.0 mrem	0.00E+00 (e)
Organ (mrem)	7.5 mrem	3.77E-06 (t)	1.83E-06 (c)	9.08E-06 (c)	7.90E-04 (i,c)	15.0 mrem	8.00E-04 (c)
Critical Organ		Lung	Liver	Liver	Liver (i) Bone (c)		Liver

UNIT 2

1. Airborne Releases

		Maximum I	Doses from Airt	orne Releases			Annual
	Quarterly Obj.	1 st QTR	2 nd QTR	3 rd QTR	4 th QTR	Yearly Obj.	· Dose
Gamma Air (mrad)	5.0 mrad	1.67E-04 (e)	1.41E-04 (e)	1.10e-04 (e)	7.24E-05 (e)	10.0 mrad	4.91E-04 (e)
Beta Air (mrad)	10.0 mrad	1.01E-05 (e)	8.96E-06 (e)	6.74E-06 (e)	4.64E-06 (e)	20.0 mrad	3.05E-05 (e)
Total Body (mrem)	2.5 mrem	1.26E-04 (e)	1.06e-04 (e)	8.33E-05 (e)	5.47E-05 (e)	5.0 mrem	3.70E-04 (e)
Skin (mrem)	7.5 mrem	1.38E-04 (e)	1.17e-04 (e)	9.11E-05 (e)	5.99E-05 (e)	15.0 mrem	4.05E-04 (e)
Organ (mrem)	7.5 mrem	3.48E-04 (c)	2.23E-03 (c)	4.86E-03 (c)	2.50E-03 (c)	15.0 mrem	9.94E-03 (c)
Critical Organ		Lung	Thyroid	Thyroid	Thyroid		Thyroid

The doses reported include abnormal and unmonitored releases. These doses are the highest among the four analyzed receptors as described in parentheses [(i)=infant, (c)=child, (t)=teenager, (a)=adult, (e)=every receptor has the same value].

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 AND 3 RADIOACTIVE EFFLUENT RELEASE REPORT January Through December 2005

DOCKET NUMBER: 50-010

RADIOLOGICAL IMPACT ON MAN*

UNIT 3

1. Airborne Releases

		Maximum I	Doses from Airb	orne Releases			Annual
	Quarterly Obj.	1 st QTR	2 nd QTR	3 rd QTR	4 th QTR	Yearly Obj.	j. Dose
Gamma Air (mrad)	5.0 mrad	3.21E-04 (e)	2.96E-04 (e)	2.67E-04 (e)	1.37E-04 (e)	10.0 mrad	1.02E-03 (e)
Beta Air (mrad)	10.0 mrad	1.82E-05 (e)	1.68E-05 (e)	1.45E-05 (e)	8.24E-06 (e)	20.0 mrad	5.77E-05 (e)
Total Body (mrem)	2.5 mrem	2.42E-04 (e)	2.23E-04 (e)	2.01E-04 (e)	1.03E-04 (e)	5.0 mrem	7.70E-04 (e)
Skin (mrem)	7.5 mrem	2.64E-04 (e)	2.43E-04 (e)	2.19E-04 (e)	1.13E-04 (e)	15.0 mrem	8.38E-04 (e)
Organ (mrem)	7.5 mrem	2.86E-04 (c)	3.26E-03 (c)	3.53E-03 (c)	1.49E-03 (c)	15.0 mrem	8.56E-03 (c)
Critical Organ		Lung	Thyroid	Thyroid	Thyroid		Thyroid

^{*} The doses reported include abnormal and unmonitored releases. These doses are the highest among the four analyzed receptors as described in parentheses [(i)=infant, (c)=child, (t)=teenager, (a)=adult, (e)=every receptor has the same value].

Table 3.2-1

MAXIMUM DOSES RESULTING FROM LIQUID EFFLUENTS

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 AND 3 RADIOACTIVE EFFLUENT RELEASE REPORT January Through December 2005

RADIOLOGICAL IMPACT ON MAN*

UNIT 1

1. Liquid Releases

		Maximum			Annual		
	Quarterly Obj.	1 st QTR	2 nd QTR	3 rd QTR	4 th QTR	Yearly Obj.	Dose
Total Body (mrem)	1.5 mrem	None	None	None	None	3.0 mrem	None
Organ (mrem)	5.0 mrem	None	None	None	None	10.0 mrem	None
Critical Organ		None	None	None	None		None

UNIT 2

2. Liquid Releases

		Maximum			Annual		
	Quarterly Obj.	1 st QTR	2 nd QTR	3 rd QTR	4 th QTR	Yearly Obj.	Dose
Total Body (mrem)	1.5 mrem	5.98E-05 (c)	0.00E+00 (e)	1.30E-09 (c)	3.04E-05 (c)	3.0 mrem	9.01E-05 (c)
Organ (mrem)	5.0 mrem	4.67E-04 (a)	0.00E+00 (e)	1.39E-08 (a)	4.63E-05 (a)	10.0 mrem	5.14E-04 (a)
Critical Organ	l	GI_LLI	None	GI_LLI	GI_LLI		GI_LLI

UNIT 3

3. Liquid Releases

		Maximum			Annual		
	Quarterly Obj.	1 [#] QTR	2 nd QTR	3 rd QTR	4 th QTR	Yearly Obj.	Dose
Total Body (mrem)	1.5 mrem	9.66E-05 (c)	0.00E+00 (e)	0.00E+00 (e)	4.32E-05 (c)	3.0 mrem	1.40E-04 (c)
Organ (mrem)	5.0 mrem	7.99E-04 (a)	0.00E+00 (e)	0.00E+00 (e)	5.61E-05 (a)	10.0 mrem	8.55E-04 (a)
Critical Organ		GI_LLI	None	None	GI_LLI		GI_LLI

* The doses reported include abnormal and unmonitored releases. These doses are the highest among the four analyzed receptors as described in parentheses [(i)=infant, (c)=child, (t)=teenager, (a)=adult, (e)=every receptor has the same value].

Table 3.3-1

10 CFR 20 COMPLIANCE ASSESSMENT

DRESDEN STATION UNIT ONE

PERIOD OF ASSESSMENT 01/01/05 TO 12/31/05

CALCULATED 03/20/06

1. 10 CFR 20.1301 (a) (1) Compliance

Total Effective Dose Equivalent, mrem/yr	7.93E-04
10 CFR 20.1301 (a)(1) limit mrem/yr	100.0
% of limit	0.00

Compliance Summary - 10CFR20

	lst	2nd	3rd	4th	% of
	Qtr	Qtr	Qtr	Qtr	Limit
TEDE	3.70E-06	1.15E-06	8.00E-06	7.83E-04	0.00

RESULTS BASED UPON: ODCM ANNEX REVISION 1.1 JULY 1994 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

F-1.7

10 CFR 20 COMPLIANCE ASSESSMENT

DRESDEN STATION UNIT ONE

PERIOD OF ASSESSMENT 01/01/05 TO 12/31/05

CALCULATED 03/20/06

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

		Dose (mrem)	Limit (mrem)	% of Limit
Whole Body	Plume	0.00E+00		
(DDE)	Skyshine	0.00E+00		
	Ground	7.82E-04		
	Total	7.82E-04	25.0	0.00
Organ Dose	Thyroid	9.52E-06	75.0	0.00
(CDE)	Gonads	1.07E-05	25.0	0.00
	Breast	9.46E-06	25.0	0.00
	Lung	1.01E-05	25.0	0.00
	Marrow	1.00E-05	25.0	0.00
	Bone	9.56E-06	25.0	0.00
	Remainder	1.16E-05	25.0	0.00
	CEDE	1.06E-05		
	TEDE	7.93E-04	100.0	0.00

RESULTS BASED UPON: ODCM ANNEX REVISION 1.1 JULY 1994 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

.

10 CFR 20 COMPLIANCE ASSESSMENT

DRESDEN STATION UNIT TWO

PERIOD OF ASSESSMENT 01/01/05 TO 12/31/05

CALCULATED 03/20/06

1. 10 CFR 20.1301 (a) (1) Compliance

Total Effective Dose Equivalen	t, mrem/yr	3.50E+00
10 CFR 20.1301 (a)(1) limit	mrem/yr	100.0
ફ	of limit	3.50

Compliance Summary - 10CFR20

1st	2nd	3rd	4th	% of
Qtr	Qtr	Qtr	Qtr	Limit

TEDE 1.01E+00 7.72E-01 8.96E-01 8.19E-01 3.50

RESULTS BASED UPON: ODCM ANNEX REVISION 1.1 JULY 1994 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

.

10 CFR 20 COMPLIANCE ASSESSMENT

DRESDEN STATION UNIT TWO

PERIOD OF ASSESSMENT 01/01/05 TO 12/31/05

CALCULATED 03/20/06

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

	Dose (mrem)	Limit (mrem)	% of Limit
Plume	3.70E-04		
Skyshine	3.49E+00		
Ground	8.48E-04		
Total	3.49E+00	25.0	13.96
	<u> </u>		
Thyroid	4.05E-03	75.0	0.01
Gonads	3.91E-03	25.0	0.02
Breast	3.81E-03	25.0	0.02
Lung	3.83E-03	25.0	0.02
Marrow	3.85E-03	25.0	0.02
Bone	3.84E-03	25.0	0.02
Remainder	4.01E-03	25.0	0.02
	<u> </u>	<u> </u>	
CEDE	3.91E-03		
TEDE	3.50E+00	100.0	3.50
	Plume Skyshine Ground Total Thyroid Gonads Breast Lung Marrow Bone Remainder CEDE	Dose (mrem)Plume3.70E-04Skyshine3.49E+00Ground8.48E-04Total3.49E+00Total3.49E+00Thyroid4.05E-03Gonads3.91E-03Breast3.81E-03Lung3.83E-03Marrow3.85E-03Bone3.84E-03Remainder4.01E-03CEDE3.91E-03TEDE3.50E+00	Dose (mrem) Limit (mrem) Plume 3.70E-04 1 Skyshine 3.49E+00 1 Ground 8.48E-04 1 Total 3.49E+00 25.0 Thyroid 4.05E-03 75.0 Gonads 3.91E-03 25.0 Breast 3.83E-03 25.0 Lung 3.83E-03 25.0 Marrow 3.83E-03 25.0 Bone 3.84E-03 25.0 CEDE 3.91E-03 25.0 TEDE 3.50E+00 100.0

RESULTS BASED UPON: ODCM ANNEX REVISION 1.1 JULY 1994 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

10 CFR 20 COMPLIANCE ASSESSMENT

DRESDEN STATION UNIT THREE

PERIOD OF ASSESSMENT 01/01/05 TO 12/31/05

CALCULATED 03/20/06

1. 10 CFR 20.1301 (a) (1) Compliance

Total Effective Dose	Equivalent, mrem/yr	3.71E+00
10 CFR 20.1301 (a)(1)	limit mrem/yr	100.0
	% of limit	3.71

Compliance Summary - 10CFR20

1st	2nd	3rd	4th	% of
Qtr	Qtr	Qtr	Qtr	Limit

.

TEDE 1.07E+00 7.18E-01 1.07E+00 8.49E-01 3.71

RESULTS BASED UPON: ODCM ANNEX REVISION 1.1 JULY 1994 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

10 CFR 20 COMPLIANCE ASSESSMENT

DRESDEN STATION UNIT THREE

PERIOD OF ASSESSMENT 01/01/05 TO 12/31/05

CALCULATED 03/20/06

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

		Dose (mrem)	Limit (mrem)	% of Limit
Whole Body	Plume	7.70E-04		
(DDE)	Skyshine	3.70E+00		
	Ground	8.33E-04		
	Total	3.71E+00	25.0	14.82
			·	
Organ Dose	Thyroid	3.65E-03	75.0	0.00
(CDE)	Gonads	3.58E-03	25.0	0.01
	Breast	3.42E-03	25.0	0.01
	Lung	3.43E-03	25.0	0.01
	Marrow	3.47E-03	25.0	0.01
	Bone	3.46E-03	25.0	0.01
	Remainder	3.73E-03	25.0	0.01
	CEDE	3.57E-03		
	TEDE	3.71E+00	100.0	3.71

RESULTS	BASED	UPON:	ODCM	ANNEX	RE\	/ISION	1.1	JULY 199	94
			ODCM	SOFTWA	RE	VERSION	1.1	January	1995
			ODCM	DATABA	SE	VERSION	1.1	January	1995

Table 3.4-1

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES BASED ON CONCURRENT METEOROLOGICAL DATA

Dresden Station - Unit 1

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2005

TYPE OF DOSE	FIRST QUARTER	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	ANNUAL
GAMMA AIR (mrad)	0.000E+00(N)	0.000E+00(N)	0.000E+00(N)	0.000E+00(N)	0.000E+00(N)
BETA AIR (mrad)	0.000E+00(N)	0.000E+00(N)	0.000E+00(N)	0.000E+00(N)	0.000E+00(N)
WHOLE BODY (mrem)	3.375E-06(SE)	4.067E-07(ENE)	2.448E-06(NNE)	2.872E-04(SSE)	2.916E-04 (SSE)
SKIN (mrem)	3.974E-06(SE)	4.772E-07(ENE)	2.873E-06(NNE)	3.356E-04(SSE)	3.408E-04 (SSE)
ORGAN (mrem)	1.517E-07(SSE)	1.950E-08(N)	2.052E-07(N)	6.330E-06(N)	6.331E-06(N)
CRITICAL PERSON	Teenager	Teenager	Teenager	Child	Child
CRITICAL ORGAN	Lung	Lung	Lung	Bone	Bone

COMPLIANCE STATUS

	10 CFR 50 APP. I		10 CFR 50 APP.I	
TYPE OF DOSE	QUARTERLY OBJECTIVE	% OF APP. I	YEARLY OBJECTIVE	% OF APP. I
GAMMA AIR (mrad)	5.0	0.00	10.0	0.00
BETA AIR (mrad)	10.0	0.00	20.0	0.00
WHOLE BODY (mrem)	2.5	0.01	5.0	0.01
SKIN (mrem)	7.5	0.00	15.0	0.00
ORGAN (mrem)	7.5	0.00	15.0	0.00
CRITICAL PERSON		Child		Child
CRITICAL ORGAN		Bone		Bone

Calculation used release data from the following: Unit 1 - Ground Unit 1 - Vent Unit 1 - Chimney

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES BASED ON CONCURRENT METEOROLOGICAL DATA

Dresden Station - Unit 2

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2005

TYPE OF DOCE		SECOND OUNDERD			B MINITIN T
TIPE OF DOSE	FIRST QUARTER	SECOND QUARTER	INIKU QUARTER	FOORTH QUARTER	ANNUAL
GAMMA AIR (mrad)	3.380E-04(SE)	2.630E-04(N)	2.750E-04(N)	1.310E-04(E)	9.340E-04(N)
BETA AIR (mrad)	5.260E-05(SE)	3.910E-05(W)	3.000E-05(WSW)	1.970E-05(E)	1.047E-04(WSW)
WHOLE BODY (mrem)	3.537E-04(SE)	1.182E-04(ENE)	1.447E-04(NNE)	1.196E-04(SSE)	6.801E-04(SE)
SKIN (mrem)	4.397E-04(SE)	1.588E-04(ENE)	1.875E-04 (NNE)	1.454E-04(SSE)	8.533E-04(SE)
ORGAN (mrem)	1.809E-05(SSE)	2.425E-05(N)	3.002E-05(N)	4.820E-05(N)	1.154E-04(N)
CRITICAL PERSON	Teenager	Teenager	Teenager	Teenager	Teenager
CRITICAL ORGAN	Lung	Lung	Lung	Lung	Lung

COMPLIANCE STATUS

	10 CFR 50 APP. I		10 CFR 50 APP.I		
TYPE OF DOSE	QUARTERLY OBJECTIVE	% OF APP. I	YEARLY OBJECTIVE	% OF APP. I	
GAMMA AIR (mrad)	5.0	0.01	10.0	0.01	
BETA AIR (mrad)	10.0	0.00	20.0	0.00	
WHOLE BODY (mrem)	2.5	0.01	5.0	0.01	
SKIN (mrem)	7.5	0.01	15.0	0.01	
ORGAN (mrem)	7.5	0.00	15.0	0.00	
CRITICAL PERSON		Teenager		Teenager	
CRITICAL ORGAN		Lung		Lung	

Calculation used release data from the following: Unit 2 - Ground Unit 2 - Vent Unit 2 - Chimney

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES BASED ON CONCURRENT METEOROLOGICAL DATA

Dresden Station - Unit 3

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2005

TYPE OF DOSE	FIRST QUARTER S	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	ANNUAL
GAMMA AIR (mrad)	6.450E-04(SE)	5.390E-04 (N)	6.450E-04(N)	2.450E-04(E)	1.936E-03(N)
BETA AIR (mrad)	9.340E-05(SE)	6.970E-05 (W)	5.870E-05(WSW)	3.380E-05(E)	1.903E-04(WSW)
WHOLE BODY (mrem)	5.252E-04(SE)	2.286E-04 (ENE)	2.764E-04(NNE)	2.238E-04(SSE)	1.132E-03(SE)
SKIN (mrem)	6.569E-04(SE)	3.028E-04 (ENE)	3.579E-04(NNE)	2.710E-04(SSE)	1.420E-03(SE)
ORGAN (mrem)	1.269E-05(SSE)	2.348E-05 (N)	2.189E-05(N)	6.629E-05(N)	1.208E-04(N)
CRITICAL PERSON	Teenager	Teenager	Teenager	Teenager	Teenager
CRITICAL ORGAN	Lung	Lung	Lung	Lung	Lung

COMPLIANCE STATUS

TYPE OF DOSE	10 CFR 50 APP. I QUARTERLY OBJECTIVE	% OF APP. I	10 CFR 50 APP.I YEARLY OBJECTIVE	% OF APP. I
GAMMA AIR (mrad)	5.0	0.01	10.0	0.02
BETA AIR (mrad)	10.0	0.00	20.0	0.00
WHOLE BODY (mrem)	2.5	0.02	5.0	0.02
SKIN (mrem)	7.5	0.01	15.0	0.01
ORGAN (mrem)	7.5	0.00	15.0	0.00
CRITICAL PERSON		Teenager		Teenager
CRITICAL ORGAN		Lung		Lung

Calculation	used release data	from the f	following:
Unit 3	- Ground		
Unit 3	- Vent		
Unit 3	- Chimney		

Data Recovery 99.6% (priority parameters)

APPENDIX G

METEOROLOGICAL DATA

Period of Record: January - March 2005 Stability Class - Extremely Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	5	0	0	0	8
NNE	0	5	2	0	0	0	7
NE	0	5	8	0	0	0	13
ENE	0	7	7	0	0	0	14
E	0	0	6	2	0	0	8
ESE	0	0	2	1	0	0	3
SE	0	0	1	0	0	0	1
SSE	0	0	0	1	0	0	1
S	0	0	0	0	1	0	1
SSW	0	0	0	1	0	0	1
SW	0	0	0	0	0	0	0
WSW	0	0	5	5	0	0	10
W	0	2	5	5	0	0	12
WNW	0	6	14	7	0	0	27
NW	0	8	27	7	0	0	42
NNW	0	3	23	1	0	0	27
Variable	0	0	0	0	0	0	0
Total	0	39	105	30	1	0	175

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Moderately Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind	1_3	4-7	9-12	12-19	10-24	> 24	Total
N	0	3	1	0	0	0	4
NNE	0	3	0	0	0	0	3
NE	0	1	1	0	0	0	2
ENE	0	2	1	0	0	0	3
Е	0	3	1	0	0	0	4
ESE	0	0	3	2	0	0	5
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	1	0	0	4	0	5
SSW	0	1	1	0	0	0	2
SW	0	0	1	0	0	0	1
WSW	0	1	3	0	0	0	4
W	0	0	3	2	0	0	5
WNW	0	2	1	0	0	0	3
NW	0	2	8	1	0	0	11
NNW	0	5	1	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	0	24	25	5	4	0	58

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Slightly Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

*** · · · · · · · · · · · · · · · · · ·	aria ppeea (ra apa)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	2	1	0	0	3		
NNE	0	1	0	0	0	0	1		
NE	0	3	0	0	0	0	3		
ENE	1	3	1	0	0	0	5		
E	0	2	2	0	0	0	4		
ESE	0	1	5	0	0	0	6		
SE	0	0	1	0	0	0	1		
SSE	0	1	0	2	1	0	4		
S	0	0	1	1	1	0	3		
SSW	0	2	1	1	0	0	4		
SW	0	0	1	0	0	0	1		
WSW	0	4	1	1	0	0	6		
W	1	3	4	1	0	0	9		
WNW	0	2	2	2	0	0	6		
NW	0	5	4	4	0	0	13		
NNW	0	6	6	0	0	0	12		
Variable	0	0	0	0	0	0	0		
Total	2	33	31	13	2	0	81		

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Neutral - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	7	26	18	5	0	0	56		
NNE	4	49	9	0	0	0	62		
NE	3	36	46	15	0	0	100		
ENE	2	33	29	0	0	0	64		
Е	4	31	30	0	0	0	65		
ESE	3	14	46	23	0	0	86		
SE	2	2	8	8	0	0	20		
SSE	0	5	13	8	1	0	27		
S	0	20	30	11	9	2	72		
SSW	8	10	23	6	2	0	49		
SW	2	8	7	9	1	0	27		
WSW	2	13	8	6	2	0	31		
W	3	18	18	13	2	0	54		
WNW	6	19	26	11	0	0	62		
NW	1	57	62	14	0	0	134		
NNW	2	32	50	8	0	0	92		
Variable	0	0	0	0	0	0	0		
Total	49	373	423	137	17	2	1001		

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Slightly Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind			-	•			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	13	17	4	0	0	0	34
NNE	7	18	0	0	0	0	25
NE	8	15	4	0	0	0	27
ENE	6	16	5	0	0	0	27
E	8	23	3	0	0	0	34
ESE	5	12	10	0	0	0	27
SE	5	6	4	5	0	0	20
SSE	4	26	19	12	0	0	61
S	8	14	14	7	7	0	50
SSW	5	11	7	8	2	1	34
SW	3	18	7	9	1	0	38
WSW	1	9	5	7	0	0	22
W	6	14	6	2	0	0	28
WNW	5	20	12	2	0	0	39
NW	6	38	9	1	0	0	54
NNW	12	38	18	4	0	0	72
Variable	0	0	0	0	0	0	0
			4.0.5			_	
Total	102	295	127	57	10	1	592

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Moderately Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	4	1	0	0	0	0	5
NE	0	0	0	0	0	0	0
ENE	2	0	0	0	0	0	2
Е	2	1	0	0	0	0	3
ESE	1	8	0	0	0	0	9
SE	2	4	0	0	0	0	6
SSE	3	2	0	0	0	0	5
S	3	7	1	0	0	0	11
SSW	4	9	0	0	0	0	13
SW	1	12	9	0	0	0	22
WSW	7	8	1	0	0	0	16
W	2	4	0	0	0	0	6
WNW	5	2	0	0	0	0	7
NW	4	0	0	0	0	0	4
NNW	9	5	0	0	0	0	14
Variable	0	0	0	0	0	0	0
Total	49	63	11	0	0	0	123

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Extremely Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	2	0	0	0	0	0	2	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
Е	1	1	0	0	0	0	2	
ESE	1	3	0	0	0	0	4	
SE	2	0	0	0	0	0	2	
SSE	2	0	0	0	0	0	2	
S	0	0	0	0	0	0	0	
SSW	2	0	0	0	0	0	2	
SW	1	4	0	0	0	0	5	
WSW	4	1	0	0	0	0	5	
W	2	0	0	0	0	0	2	
WNW	3	0	0	0	0	0	3	
NW	2	0	0	0	0	0	2	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	22	9	0	0	0	0	31	

Wind Speed (in mph)
Period of Record: January - March 2005 Stability Class - Extremely Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	1	0	0	0	1
NNE	0	0	0	1	0	0	1
NE	0	0	2	0	0	0	2
ENE	0	0	1	0	0	0	1
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	1	1
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	2	0	0	2
WNW	0	0	1	2	1	2	6
NW	0	0	0	7	0	0	7
NNW	0	0	0	5	0	0	5
Variable	0	0	0	0	0	0	0
Total	0	0	5	17	1	3	26

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Moderately Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			-	•			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	1	0	0	1
NNE	0	1	1	0	0	0	2
NE	0	0	3	1	0	0	4
ENE	0	1	1	1	0	0	3
E	0	0	0	2	1	0	3
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	1	0	1
S	0	0	0	0	1	3	4
SSW	0	0	0	1	0	0	1
SW	0	0	0	0	0	0	0
WSW	0	1	0	2	1	0	4
W	0	0	2	1	0	0	3
WNW	0	0	1	1	0	2	4
NW	0	1	3	3	0	3	10
NNW	0	0	2	5	1	0	8
Variable	0	0	0	0	0	0	0
Total	0	4	13	18	5	8	48

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Slightly Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	0	2	1	0	4
NNE	0	2	0	0	0	0	2
NE	0	3	1	2	0	0	6
ENE	0	4	3	1	0	0	8
E	0	0	5	1	1	0	7
ESE	0	0	1	2	1	0	4
SE	0	0	1	0	0	0	1
SSE	0	1	0	0	1	0	2
S	0	0	0	0	0	1	1
SSW	0	0	1	0	0	0	1
SW	0	0	0	2	0	0	2
WSW	0	1	2	5	1	0	9
W	0	1	6	4	1	1	13
WNW	0	1	6	1	3	0	11
NW	0	0	12	8	1	3	24
NNW	0	1	3	4	1	0	9
Variable	0	0	0	0	0	0	0
Total	0	15	41	32	11	5	104

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Neutral - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	2	9	19	17	13	5	65			
NNE	0	7	39	31	1	0	78			
NE	2	9	25	37	10	0	83			
ENE	2	17	28	20	0	0	67			
E	1	13	33	29	2	0	78			
ESE	1	10	15	43	20	2	91			
SE	0	4	1	13	8	0	26			
SSE	0	1	11	10	5	6	33			
S	1	9	24	26	10	10	80			
SSW	0	11	18	19	6	3	57			
SW	2	6	7	8	6	4	33			
WSW	1	9	10	9	5	4	38			
W	0	10	18	22	14	11	75			
WNW	3	11	27	29	18	4	92			
NW	1	7	64	66	42	4	184			
NNW	0	11	41	51	18	4	125			
Variable	0	0	0	0	0	0	0			
Total	16	144	380	430	178	57	1205			

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Slightly Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

	aria opeca (rit mpir)								
Wind Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total		
N	1	1	17	10	2	0	31		
NNE	1	2	15	10	0	0	28		
NE	0	8	15	6	0	0	29		
ENE	3	20	9	2	0	0	34		
Е	2	12	6	2	0	0	22		
ESE	1	6	10	5	6	0	28		
SE	0	3	14	4	5	0	26		
SSE	3	5	11	16	17	3	55		
S	2	6	9	21	10	14	62		
SSW	1	4	2	9	10	6	32		
SW	0	3	10	13	9	7	42		
WSW	1	1	6	9	13	5	35		
W	2	2	7	11	3	0	25		
WNW	0	1	6	3	3	0	13		
NW	0	3	18	26	0	0	47		
NNW	0	3	13	17	5	5	43		
Variable	0	0	0	0	0	0	0		
Total	17	80	168	164	83	40	552		

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Moderately Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	2	0	3	1	0	6			
NNE	0	2	7	1	0	0	10			
NE	1	1	0	1	0	0	3			
ENE	2	2	0	0	0	0	4			
E	1	4	0	0	0	0	5			
ESE	2	0	0	1	0	0	3			
SE	1	4	1	1	0	0	7			
SSE	0	4	3	5	0	0	12			
S	2	3	4	4	0	0	13			
SSW	0	1	2	8	0	0	11			
SW	0	0	1	8	3	0	12			
WSW	0	0	3	9	2	0	14			
W	0	0	3	3	0	0	6			
WNW	0	2	7	1	0	0	10			
NW	0	4	4	1	0	0	9			
NNW	1	1	1	6	0	0	9			
Variable	0	0	0	0	0	0	0			
Total	10	30	36	52	6	0	134			

Wind Speed (in mph)

Period of Record: January - March 2005 Stability Class - Extremely Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	1	1	2	0	0	4
SSW	0	2	0	0	0	0	2
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	1	1	0	0	2
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	3	2	3	0	0	8

Wind Speed (in mph)

.

Period of Record: April - June 2005 Stability Class - Extremely Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	6	12	2	0	0	21
NNE	0	11	1	4	0	0	16
NE	0	28	11	5	0	0	44
ENE	0	18	10	0	0	0	28
E	0	24	12	4	0	0	40
ESE	1	2	2	2	0	0	7
SE	0	3	1	2	0	0	6
SSE	0	8	3	2	0	0	13
S	1	10	20	6	6	0	43
SSW	0	13	6	2	0	0	21
SW	0	11	5	2	2	0	20
WSW	0	9	33	11	0	0	53
W	0	11	14	14	0	0	39
WNW	2	3	24	5	1	0	35
NW	0	7	13	7	0	0	27
NNW	1	9	9	7	0	0	26
Variable	0	0	0	0	0	0	0
Total	6	173	176	75	9	0	439

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Moderately Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	1	0	0	0	1
NNE	0	0	1	1	0	0	2
NE	1	7	0	0	0	0	8
ENE	2	3	0	0	0	0	5
Е	1	5	2	0	0	0	8
ESE	1	2	0	1	0	0	4
SE	0	0	2	1	0	0	3
SSE	0	1	2	1	0	0	4
S	1	4	2	1	0	0	8
SSW	1	4	1	4	0	0	10
SW	0	4	0	2	0	0	6
WSW	0	2	5	1	0	0	8
W	0	1	3	4	0	0	8
WNW	0	1	5	0	0	0	6
NW	0	0	0	0	0	0	0
NNW	0	2	0	2	0	0	4
Variable	0	0	0	0	0	0	0
Total	7	36	24	18	0	0	85

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Slightly Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

4-7 1 0 3 3	8-12 1 2 3	13-18 0 2 0	19-24 0 0	> 24 0 0	Total 2
1 0 3 3	1 2 3	0 2 0	0 0	0 0	2
0 3 3	2 3	2 0	0	0	F
3 3	3	0			5
3	_		0	0	7
	0	0	0	0	4
6	2	2	0	0	11
6	3	4	0	0	14
1	3	0	0	0	4
4	5	0	0	0	9
2	5	1	0	0	9
1	1	2	1	0	5
2	3	4	0	0	9
4	2	1	0	0	7
0	2	2	0	0	4
0	2	2	0	0	4
1	1	1	0	0	4
0	1	0	0	0	1
0	0	0	0	0	0
34	36	21	1	0	99
	3 6 1 4 2 1 2 4 0 0 1 0 0 1 0 0 34	3062631345251123420202110101003436	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3300300062206340130045002510112123404210022011100220110000003436211	330003000062200634001300045000251001121023400110002200110000100034362110

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Neutral - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind	Speed	(in	mph)
------	-------	-----	------

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	3	4	5	2	0	0	14			
NNE	1	9	15	7	0	0	32			
NE	4	21	26	2	0	0	53			
ENE	2	32	6	0	0	0	40			
Е	5	22	26	10	0	0	63			
ESE	3	14	9	11	0	0	37			
SE	5	10	22	0	0	0	37			
SSE	2	19	15	3	0	0	39			
S	3	11	13	6	2	0	35			
SSW	4	12	20	8	0	0	44			
SW	3	10	13	2	0	0	28			
WSW	1	9	12	7	0	0	29			
W	3	7	27	6	0	0	43			
WNW	0	7	27	8	0	0	42			
NW	1	6	9	0	0	0	16			
NNW	2	3	8	1	0	0	14			
Variable	0	0	0	0	0	0	0			
Total	42	196	253	73	2	0	566			

Period of Record: April - June 2005 Stability Class - Slightly Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Mi a d				· · · · · · · · · · · · · · · · · · ·	-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	9	4	4	0	0	0	17
NNE	14	15	10	0	0	0	39
NE	5	33	7	0	0	0	45
ENE	7	37	0	0	0	0	44
E	9	42	9	5	0	0	65
ESE	1	38	16	12	0	0	67
SE	4	18	15	1	0	0	38
SSE	6	31	15	8	0	0	60
S	6	35	29	8	0	0	78
SSW	6	17	7	8	0	0	38
SW	6	17	7	2	0	0	32
WSW	2	7	15	1	0	0	25
W	4	18	21	0	0	0	43
WNW	5	25	10	2	0	0	42
NW	9	11	6	0	0	0	26
NNW	6	3	4	0	0	0	13
Variable	0	0	0	0	0	0	0
Total	99	351	175	47	0	0	672

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Moderately Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

57 J			ma opee.	- (1b.	•)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	9	3	0	0	0	0	12
NNE	4	5	0	0	0	0	
NE	3	1	0	0	0	0	4
ENE	1	2	0	0	0	0	3
Е	4	12	1	0	0	0	17
ESE	4	15	2	0	0	0	21
SE	5	9	1	0	0	0	15
SSE	5	6	0	0	0	0	11
S	6	11	0	0	0	0	17
SSW	4	10	2	0	0	0	16
SW	8	16	0	0	0	0	24
WSW	10	6	0	0	0	0	16
W	8	8	0	0	0	0	16
WNW	5	0	0	0	0	0	5
NW	11	0	0	0	0	0	11
NNW	11	0	0	0	0	0	11
Variable	0	0	0	0	0	0	0
Total	98	104	6	0	0	0	208

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Extremely Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind		• • • •								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	2	0	0	0	0	0	2			
NNE	1	0	0	0	0	0	1			
NE	0	0	0	0	0	0	0			
ENE	1	0	0	0	0	0	1			
E	2	1	0	0	0	0	3			
ESE	0	6	0	0	0	0	6			
SE	3	0	1	0	0	0	4			
SSE	1	0	0	0	0	0	1			
S	6	1	0	0	0	0	7			
SSW	8	5	0	0	0	0	13			
SW	4	13	0	0	0	0	17			
WSW	3	1	0	0	0	0	4			
W	0	1	0	0	0	0	1			
WNW	2	0	0	0	0	0	2			
NW	6	0	0	0	0	0	6			
NNW	3	0	0	0	0	0	3			
Variable	0	0	0	0	0	0	0			
Total	42	28	1	0	0	0	71			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

.

Period of Record: April - June 2005 Stability Class - Extremely Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	1	2	3	0	6
NNE	0	0	1	5	4	1	11
NE	0	2	6	2	3	0	13
ENE	0	2	5	0	0	0	7
E	0	0	4	3	1	0	8
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	. 1	0	0	0	0	1
S	0	0	1	0	0	0	1
SSW	0	1	0	2	0	0	3
SW	0	0	0	2	0	0	2
WSW	0	0	1	4	4	0	9
W	0	0	0	2	0	2	4
WNW	0	0	0	1	0	0	1
NW	0	0	1	4	4	2	11
NNW	0	0	2	0	1	0	3
Variable	0	0	0	0	0	0	0
Total	0	6	22	27	20	5	80

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 1

•

Period of Record: April - June 2005 Stability Class - Moderately Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			·····	•••••			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	1	0	0	1
NNE	0	0	1	3	2	1	7
NE	0	0	4	3	0	0	7
ENE	0	5	5	0	0	0	10
E	0	3	7	1	1	0	12
ESE	0	1	0	0	1	0	2
SE	0	0	0	3	0	0	3
SSE	0	1	1	1	0	0	3
S	0	1	6	3	2	0	12
SSW	0	2	3	0	0	0	5
SW	0	2	4	0	0	0	6
WSW	0	5	0	9	1	1	16
W	1	0	1	3	2	0	7
WNW	0	0	2	7	3	1	13
NW	0	0	1	3	1	0	5
NNW	0	0	4	1	4	1	10
Variable	0	0	0	0	0	0	0
Total	1	20	39	38	17	4	119

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Slightly Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind											
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	0	0	3	0	0	3				
NNE	0	0	2	0	3	2	7				
NE	0	6	5	1	2	0	14				
ENE	0	6	7	0	0	0	13				
Е	0	4	9	2	3	0	18				
ESE	1	2	3	2	0	0	8				
SE	0	2	2	2	0	0	6				
SSE	0	1	3	6	0	0	10				
S	0	3	6	4	2	2	17				
SSW	0	1	0	1	3	0	5				
SW	0	4	1	0	2	2	9				
WSW	0	2	4	6	1	0	13				
W	0	0	1	8	2	0	11				
WNW	0	1	1	10	2	1	15				
NW	0	1	2	4	3	0	10				
NNW	0	0	1	0	4	0	5				
Variable	0	0	0	0	0	0	0				
Total	1	33	47	49	27	7	164				

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Neutral - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			-				
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	8	18	4	30
NNE	3	5	6	13	15	6	48
NE	1	6	22	22	15	0	66
ENE	3	27	27	8	0	0	65
Е	5	16	37	20	9	11	98
ESE	2	9	14	10	11	7	53
SE	5	11	26	7	0	0	49
SSE	1	12	17	16	4	0	50
S	0	10	23	19	7	4	63
SSW	2	12	15	21	10	2	62
SW	0	11	8	12	6	0	37
WSW	1	8	13	19	9	6	56
W	0	7	9	27	24	3	70
WNW	0	3	4	31	16	8	62
NW	1	1	5	18	2	1	28
NNW	0	0	1	3	17	1	22
Variable	0	0	0	0	0	0	0
Total	24	138	227	254	163	53	859

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Slightly Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind					-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	4	2	2	0	0	10
NNE	1	6	11	12	10	0	40
NE	2	8	16	19	2	0	47
ENE	4	11	23	4	0	0	42
Е	2	4	17	20	2	1	46
ESE	0	1	5	20	10	0	36
SE	0	6	18	36	3	0	63
SSE	0	3	19	15	6	2	45
S	1	1	12	45	25	3	87
SSW	1	7	8	31	9	4	60
SW	0	7	7	19	8	1	42
WSW	0	3	7	15	7	1	33
W	1	6	8	25	6	0	46
WNW	1	1	11	15	6	0	34
NW	1	1	9	8	8	0	27
NNW	0	5	5	2	1	0	13
Variable	0	0	0	0	0	0	0
Total	16	74	178	288	103	12	671

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Moderately Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind	· -···································									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	2	1	2	0	0	5			
NNE	2	2	1	6	1	0	12			
NE	0	4	5	5	1	0	15			
ENE	2	1	2	1	0	0	6			
Е	0	5	3	0	2	0	10			
ESE	0	0	3	7	4	0	14			
SE	1	2	4	19	2	0	28			
SSE	2	1	13	7	1	0	24			
S	1	2	6	3	0	0	12			
SSW	1	5	6	7	4	0	23			
SW	0	4	4	13	0	0	21			
WSW	1	3	8	13	0	0	25			
W	2	1	3	2	1	0	9			
WNW	1	1	5	11	2	0	20			
NW	2	3	8	0	1	0	14			
NNW	0	1	3	0	0	0	4			
Variable	0	0	0	0	0	0	0			
Total	15	37	75	96	19	0	242			

Wind Speed (in mph)

Period of Record: April - June 2005 Stability Class - Extremely Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	2	0	0	0	0	2			
NE	0	0	2	0	0	0	2			
ENE	0	1	0	0	0	0	1			
E	0	1	0	0	0	0	1			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	1	2	0	3			
SSE	0	1	0	4	1	0	6			
S	1	1	1	0	0	0	3			
SSW	0	1	1	1	0	0	3			
SW	0	1	3	3	1	0	8			
WSW	0	2	5	4	0	0	11			
W	0	1	0	0	0	0	1			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	0	0			
NNW	0	0	1	0	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	1	11	13	13	4	0	42			

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Extremely Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind	1 2	4 7	0 10	12 10	10.24	> 24	metel
Direction		4-/	8-12	13-18	19-24		
N	1	15	0	0	0	0	16
NNE	1	12	5	0	0	0	18
NE	1	18	14	0	0	0	33
ENE	6	19	4	0	0	0	29
E	2	6	8	0	0	0	16
ESE	0	5	2	1	0	0	8
SE	0	7	4	0	0	0	11
SSE	0	7	5	0	0	0	12
S	1	6	9	1	0	0	17
SSW	0	11	21	7	0	0	39
SW	0	11	6	5	0	0	22
WSW	0	12	2	0	0	0	14
W	0	12	9	1	0	0	22
WNW	0	14	11	1	0	0	26
NW	1	21	5	0	0	0	27
NNW	2	24	1	0	0	0	27
Variable	0	0	0	0	0	0	0
Total	15	200	106	16	0	0	337

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Moderately Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind			ina spool	- (-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	3	0	0	0	0	5
NNE	0	1	1	0	0	0	2
NE	1	0	2	0	0	0	3
ENE	1	5	0	0	0	0	6
E	1	5	2	0	0	0	8
ESE	0	1	1	0	0	0	2
SE	0	3	2	0	0	0	5
SSE	0	3	0	0	0	0	3
S	0	4	3	0	0	0	7
SSW	0	0	7	1	0	0	8
SW	0	6	2	1	0	0	9
WSW	1	8	2	0	0	0	11
W	0	4	1	0	0	0	5
WNW	0	7	2	0	0	0	9
NW	1	5	1	0	0	0	7
NNW	2	3	1	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	9	58	27	2	0	0	96

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Slightly Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	2	U	0	0	U	U	2			
NNE	2	1	0	0	0	0	3			
NE	0	6	2	0	0	0	8			
ENE	1	3	1	0	0	0	5			
E	0	4	1	0	0	0	5			
ESE	0	2	0	0	0	0	2			
SE	0	3	0	0	0	0	3			
SSE	0	5	0	0	0	0	5			
S	0	1	4	0	0	0	5			
SSW	1	4	4	1	0	0	10			
SW	0	3	2	0	0	0	5			
WSW	0	7	2	0	0	0	9			
W	0	4	3	0	0	0	7			
WNW	1	5	0	0	0	0	6			
NW	1	2	0	0	0	0	3			
NNW	0	4	0	0	0	0	4			
Variable	0	0	0	0	0	0	0			
Total	8	54	19	1	0	0	82			

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Neutral - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

ra (and phone (In what									
Direction	1-3 	4-7 	8-12	13-18	19-24	> 24	Total			
N	9	4	1	0	0	0	14			
NNE	4	14	2	0	0	0	20			
NE	4	33	11	0	0	0	48			
ENE	0	19	2	0	0	0	21			
E	4	20	6	0	0	0	30			
ESE	5	10	6	0	0	0	21			
SE	11	9	4	0	0	0	24			
SSE	5	18	13	0	0	0	36			
S	7	18	18	1	0	0	44			
SSW	3	18	18	5	0	0	44			
SW	5	10	5	2	0	0	22			
WSW	6	15	4	1	0	0	26			
W	1	13	3	0	0	0	17			
WNW	7	14	6	0	0	0	27			
NW	8	13	6	0	0	0	27			
NNW	8	9	0	0	0	0	17			
Variable	0	0	0	0	0	0	0			
Total	87	237	105	9	0	0	438			

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Slightly Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind	1 3	4 7	0.10	12.10	10-24	> 24	motel
JITECTION	1-3 	4-/ 	8-12 	13-18	19-24	> 24	Total
N	24	11	1	0	0	0	36
NNE	25	36	0	0	0	0	61
NE	15	34	6	0	0	0	55
ENE	14	38	2	0	0	0	54
E	9	53	4	0	0	0	66
ESE	12	27	4	0	0	0	43
SE	6	27	11	0	0	0	44
SSE	14	36	20	0	0	0	70
S	12	38	25	1	0	0	76
SSW	9	20	18	2	0	0	49
SW	9	9	6	1	0	0	25
WSW	10	11	2	0	0	0	23
W	17	16	4	0	0	0	37
WNW	14	26	0	0	0	0	40
NW	15	18	5	2	0	0	40
NNW	25	15	1	0	0	0	41
Variable	0	0	0	0	0	0	0
Total	230	415	109	6	0	0	760
				-	-	-	

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Moderately Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

	utua obeea (tu mbu)								
Wind Direction	1-3	4-7	8-12	13-18	19-24 	> 24	Total		
N	17	0	0	0	0	0	17		
NNE	13	0	0	0	0	0	13		
NE	3	1	0	0	0	0	4		
ENE	2	0	0	0	0	0	2		
Е	3	9	0	0	0	0	12		
ESE	11	12	0	0	0	0	23		
SE	8	13	3	0	0	0	24		
SSE	7	27	1	0	0	0	35		
S	18	16	1	0	0	0	35		
SSW	14	11	0	0	0	0	25		
SW	14	9	1	0	0	0	24		
WSW	11	4	0	0	0	0	15		
W	6	6	0	0	0	0	12		
WNW	13	4	0	0	0	0	17		
NW	28	0	0	0	0	0	28		
NNW	30	0	0	0	0	0	30		
Variable	0	0	0	0	0	0	0		
Total	198	112	6	0	0	0	316		

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Extremely Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind	······································								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	1	0	0	0	0	0	Ŧ		
NNE	4	0	0	0	0	0	4		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	7	1	0	0	0	0	8		
SE	1	4	0	0	0	0	5		
SSE	2	2	0	0	0	0	4		
S	7	4	0	0	0	0	11		
SSW	8	2	0	0	0	0	10		
SW	16	3	0	0	0	0	19		
WSW	7	1	0	0	0	0	8		
W	3	0	0	0	0	0	3		
WNW	8	0	0	0	0	0	8		
NW	19	2	0	0	0	0	21		
NNW	9	0	0	0	0	0	9		
Variable	0	0	0	0	0	0	0		
Total	92	19	0	0	0	0	111		

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Extremely Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			1	· · · · · · · · · · · · · · · · · · ·	-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	4	0	0	0	5
NNE	0	2	5	7	0	0	14
NE	0	2	2	5	0	0	9
ENE	0	2	0	0	0	0	2
Е	0	0	1	2	0	0	3
ESE	0	0	0	0	0	0	0
SE	0	0	1	0	0	0	1
SSE	0	1	1	0	0	0	2
S	0	0	3	0	0	0	3
SSW	0	1	4	3	0	0	8
SW	0	1	0	3	0	0	4
WSW	0	0	2	1	0	0	3
W	0	2	3	4	0	0	9
WNW	0	1	0	3	0	0	4
NW	0	1	1	4	0	0	6
NNW	0	1	1	5	0	0	7
Variable	0	0	0	0	0	0	0
Total	0	15	28	37	0	0	80

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Moderately Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

`		wind opeca (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	3	6	0	0	0	9			
NNE	0	1	2	1	0	0	4			
NE	0	2	2	3	0	0	7			
ENE	1	7	7	0	0	0	15			
E	0	2	3	1	0	0	6			
ESE	0	1	0	0	0	0	1			
SE	0	1	3	0	0	0	4			
SSE	0	1	2	0	0	0	3			
S	0	3	3	0	0	0	6			
SSW	0	3	0	6	2	0	11			
SW	0	5	2	4	0	0	11			
WSW	0	4	4	1	0	0	9			
W	0	1	2	2	0	0	5			
WNW	0	0	3	3	1	0	7			
NW	0	2	6	1	0	0	9			
NNW	0	3	5	2	0	0	10			
Variable	0	0	0	0	0	0	0			
Total	1	39	50	24	3	0	117			

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Slightly Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

**!1		and alloca (an infert)									
Wind Direction	1-3	4-7 	8-12	13-18	19-24 	> 24	Total				
N	0	2	4	0	0	0	6				
NNE	0	1	3	0	1	0	5				
NE	1	3	3	1	0	0	8				
ENE	1	5	5	1	0	0	12				
E	0	4	6	1	0	0	11				
ESE	0	5	2	0	1	0	8				
SE	0	4	5	0	0	0	9				
SSE	0	4	4	0	0	0	8				
S	0	1	5	3	0	0	9				
SSW	0	4	6	8	0	0	18				
SW	0	0	2	2	2	0	6				
WSW	0	6	2	1	1	0	10				
W	0	6	3	2	0	0	11				
WNW	0	8	7	5	0	0	20				
NW	0	4	9	3	0	0	16				
NNW	0	8	2	1	0	0	11				
Variable	0	0	0	0	0	0	0				
Total	2	65	68	28	5	0	168				

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Neutral - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			-	_			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	6	8	9	2	0	27
NNE	1	7	5	23	7	0	43
NE	0	10	31	29	2	0	72
ENE	0	23	32	2	0	0	57
E	0	12	19	12	0	0	43
ESE	7	15	9	2	0	0	33
SE	2	13	7	5	0	0	27
SSE	3	21	17	11	0	0	52
S	3	10	21	25	0	0	59
SSW	3	16	28	16	4	0	67
SW	3	15	10	8	4	0	40
WSW	6	16	6	4	1	0	33
W	2	7	10	8	1	0	28
WNW	1	9	16	10	1	0	37
NW	3	18	14	10	2	3	50
NNW	1	13	10	10	0	1	35
Variable	0	0	0	0	0	0	0
Total	37	211	243	184	24	4	703

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Slightly Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			F		-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	4	14	18	0	0	37
NNE	0	6	18	34	1	0	59
NE	0	5	21	10	0	0	36
ENE	1	29	17	2	0	0	49
Е	1	7	28	16	6	0	58
ESE	0	7	19	16	2	0	44
SE	0	8	21	23	0	0	52
SSE	0	11	23	35	3	0	72
S	1	10	29	37	17	0	94
SSW	0	8	23	25	11	0	67
SW	1	4	7	7	6	1	26
WSW	0	4	9	9	1	0	23
W	2	10	13	10	0	0	35
WNW	0	7	9	14	0	0	30
NW	0	5	11	11	0	0	27
NNW	2	5	9	9	1	0	26
Variable	0	0	0	0	0	0	0
Total	9	130	271	276	48	1	735

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Moderately Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			-	-			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	4	9	2	1	0	17
NNE	2	3	10	10	0	0	25
NE	0	10	7	2	0	0	19
ENE	0	5	2	0	0	0	7
E	2	6	8	1	3	0	20
ESE	0	1	5	4	1	0	11
SE	0	5	6	8	1	0	20
SSE	1	4	17	13	2	0	37
S	2	6	19	17	4	0	48
SSW	2	2	10	10	4	0	28
SW	0	5	14	9	0	0	28
WSW	3	3	7	5	0	0	18
W	1	3	6	6	0	0	16
WNW	0	1	6	4	0	0	11
NW	2	0	7	9	0	0	18
NNW	2	1	1	2	2	0	8
Variable	0	0	0	0	0	0	0
Total	18	59	134	102	18	0	331

Wind Speed (in mph)

Period of Record: July - September 2005 Stability Class - Extremely Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

tat 3	wind speed (in mpn)						
Direction	1-3	4-7	8-12	13-18 	19-24	> 24	Total
N	0	1	0	3	1	0	5
NNE	0	3	1	2	0	0	6
NE	0	0	0	1	0	0	1
ENE	0	0	0	0	0	0	0
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	1	0	0	0	1
SSE	0	0	2	0	0	0	2
S	0	2	1	2	2	0	7
SSW	0	2	0	3	2	0	7
SW	0	0	1	10	0	0	11
WSW	0	0	1	0	0	0	1
W	0	0	1	5	0	0	6
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	2	0	2
NNW	0	0	0	3	2	0	5
Variable	0	0	0	0	0	0	0
Total	0	8	8	29	9	0	54

Wind Speed (in mph)

•

Period of Record: October - December2005 Stability Class - Extremely Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	7	5	0	0	0	12
NNE	1	2	3	0	0	0	6
NE	1	11	10	0	0	0	22
ENE	1	4	4	0	0	0	9
E	0	1	5	0	0	0	6
ESE	0	0	0	3	0	0	3
SE	0	0	1	1	0	0	2
SSE	0	0	1	0	0	0	1
S	0	0	1	2	0	0	3
SSW	0	2	5	10	0	0	17
SW	0	3	4	4	1	0	12
WSW	1	5	7	2	2	0	17
W	0	6	15	2	2	0	25
WNW	0	3	23	1	0	0	27
NW	0	6	15	3	1	0	25
NNW	1	12	7	0	1	0	21
Variable	0	0	0	0	0	0	0
Total	5	62	106	28	7	0	208

Wind Speed (in mph)
Period of Record: October - December2005 Stability Class - Moderately Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind				· · · · · · · · · · · · · · · · · · ·									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total						
N	0	1	2	0	0	0	3						
NNE	0	1	0	0	0	0	1						
NE	0	1	1	0	0	0	2						
ENE	0	3	0	0	0	0	3						
Е	0	0	1	0	0	0	1						
ESE	0	0	1	0	0	0	1						
SE	0	0	0	0	0	0	0						
SSE	0	1	2	0	0	0	3						
S	0	3	2	0	0	0	5						
SSW	0	2	4	4	0	0	10						
SW	0	1	2	0	0	0	3						
WSW	0	0	4	0	0	0	4						
W	1	1	3	0	1	0	6						
WNW	0	2	2	3	0	0	7						
NW	0	1	2	1	0	0	4						
NNW	0	5	4	0	0	0	9						
Variable	0	0	0	0	0	0	0						
Total	1	22	30	8	1	0	62						

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Slightly Unstable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind		• • •									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	2	0	0	0	0	2				
NNE	0	4	0	0	0	0	4				
NE	0	1	0	0	0	0	1				
ENE	0	0	0	0	0	0	0				
E	1	2	2	0	0	0	5				
ESE	0	0	0	0	0	0	0				
SE	0	0	0	0	0	0	0				
SSE	0	2	2	0	0	0	4				
S	2	1	2	2	0	0	7				
SSW	1	0	2	3	0	0	6				
SW	0	0	4	2	0	0	6				
WSW	0	2	1	2	0	0	5				
ស	0	5	3	3	0	0	11				
WNW	0	4	2	0	0	0	6				
NW	0	2	1	0	0	0	3				
NNW	0	1	0	0	0	0	1				
Variable	0	0	0	0	0	0	0				
Total	4	26	19	12	0	0	61				

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Neutral - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	8	4	0	0	0	14
NNE	2	9	2	0	0	0	13
NE	2	21	5	0	0	0	28
ENE	2	17	7	0	0	0	26
Е	5	25	29	0	0	0	59
ESE	2	14	18	4	0	0	38
SE	1	4	13	8	0	0	26
SSE	1	5	15	3	0	0	24
S	1	10	17	16	5	0	49
SSW	0	7	16	24	2	0	49
SW	2	8	20	17	3	0	50
WSW	4	14	11	11	9	0	49
W	3	21	40	15	13	0	92
WNW	1	25	25	18	0	0	69
NW	3	21	22	7	0	0	53
NNW	5	14	21	4	0	0	44
Variable	0	0	0	0	0	0	0
Total	36	223	265	127	32	0	683

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Slightly Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

*** t1		wind opeca (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	12	16	3	1	0	0	32				
NNE	20	9	1	0	0	0	30				
NE	6	15	3	0	0	0	24				
ENE	4	5	4	0	0	0	13				
E	0	13	5	0	0	0	18				
ESE	9	11	7	3	0	0	30				
SE	6	15	19	7	1	0	48				
SSE	11	32	25	3	0	0	71				
S	7	48	67	16	8	0	146				
SSW	6	14	40	14	4	0	78				
SW	10	15	18	3	0	0	46				
WSW	6	15	11	3	1	0	36				
W	15	50	29	7	0	0	101				
WNW	21	53	16	9	0	0	99				
NW	16	18	5	0	0	0	39				
NNW	11	47	26	1	0	0	85				
Variable	0	0	0	0	0	0	0				
Total	160	376	279	67	14	0	896				

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Moderately Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind				- (<u>-</u>	•,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	9	0	0	0	0	0	9
NNE	3	1	0	0	0	0	4
NE	2	0	0	0	0	0	2
ENE	0	1	0	0	0	0	1
E	0	0	0	0	0	0	0
ESE	1	2	0	0	0	0	3
SE	4	4	0	0	0	0	8
SSE	5	10	0	0	0	0	15
S	12	16	9	0	0	0	37
SSW	11	18	0	0	0	0	29
SW	8	12	2	0	0	0	22
WSW	7	5	0	0	0	0	12
W	6	2	0	0	0	0	8
WNW	5	3	0	0	0	0	8
NW	8	15	0	0	0	0	23
NNW	10	2	0	0	0	0	12
Variable	0	0	0	0	0	0	0
Total	91	91	11	0	0	0	193
10041	21	~ -	**	v	v	Ŭ	175

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Extremely Stable - 150Ft-35Ft Delta-T (F) Winds Measured at 35 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	0	0	0	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	3	0	0	0	0	3
SE	1	0	0	0	0	0	1
SSE	5	0	0	0	0	0	5
S	4	1	0	0	0	0	5
SSW	2	5	0	0	0	0	7
SW	3	23	0	0	0	0	26
WSW	2	2	0	0	0	0	4
W	3	1	0	0	0	0	4
WNW	5	1	0	0	0	0	6
NW	10	0	0	0	0	0	10
NNW	6	1	0	0	0	0	7
Variable	0	0	0	0	0	0	0
Total	42	37	0	0	0	0	79

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Extremely Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	1	1	0	0	2
NNE	0	0	1	0	1	0	2
NE	0	0	4	6	0	0	10
ENE	0	0	1	0	0	0	1
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	1	0	1
WSW	0	0	1	0	0	0	1
W	0	0	0	0	0	1	1
WNW	0	0	1	6	0	0	7
NW	0	0	0	3	0	1	4
NNW	0	0	2	2	0	1	5
Variable	0	0	0	0	0	0	0
Total	0	0	11	18	2	3	34

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Moderately Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

111	wind place (in when)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
 N	0	1	1	3	0	0	5		
NNE	0	0	1	0	0	0	1		
NE	0	0	4	4	0	0	8		
ENE	0	0	1	0	0	0	1		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	6	1	0	7		
SW	0	0	0	2	2	1	5		
WSW	0	2	1	2	0	2	7		
Ŵ	0	0	3	2	0	2	7		
WNW	0	0	4	5	0	1	10		
NW	0	0	1	3	0	2	6		
NNW	0	1	1	4	0	0	6		
Variable	0	0	0	0	0	0	0		
Total	0	4	17	31	3	8	63		

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Slightly Unstable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	2	1	0	0	4
NNE	0	0	0	0	1	0	1
NE	0	1	2	0	0	0	3
ENE	0	0	2	2	0	0	4
Е	0	0	1	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	0	1	0	0	0	1
SSE	0	0	4	1	0	0	5
S	0	0	2	2	1	0	5
SSW	0	0	1	8	5	0	14
SW	0	1	1	1	0	0	3
WSW	0	1	4	1	1	1	8
W	0	0	5	2	0	1	8
WNW	1	1	3	3	1	1	10
NW	0	2	2	2	0	0	6
NNW	0	2	1	4	1	0	8
Variable	0	0	0	0	0	0	0
Total	1	9	31	27	10	3	81

Wind Speed (in mph)

~

Period of Record: October - December2005 Stability Class - Neutral - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			und opeet	_ (p.	-,		
Direction	1-3 	4-7 	8-12	13-18	19-24 	> 24	Total
N	3	4	9	18	6	2	42
NNE	3	5	10	13	3	0	34
NE	0	1	17	6	0	0	24
ENE	0	9	30	13	0	0	52
E	1	9	18	37	0	0	65
ESE	2	1	18	10	3	2	36
SE	1	1	7	18	19	2	48
SSE	0	3	10	18	14	1	46
S	1	6	18	30	19	8	82
SSW	1	4	11	24	26	4	70
SW	2	9	18	11	18	10	68
WSW	1	9	16	14	12	14	66
W	1	17	37	47	32	23	157
WNW	1	8	37	27	27	12	112
NW	0	9	23	32	4	8	76
NNW	0	10	12	50	11	3	86
Variable	0	0	0	0	0	0	0
Total	17	105	291	368	194	89	1064

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Slightly Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			•	•	•		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	5	12	16	6	0	39
NNE	1	7	15	3	0	0	26
NE	0	5	12	7	0	0	24
ENE	2	10	3	0	0	0	15
Е	0	1	11	1	0	0	13
ESE	1	1	13	4	0	0	19
SE	1	2	5	10	0	3	21
SSE	1	3	8	23	9	0	44
S	0	2	11	49	38	11	111
SSW	0	3	12	36	48	10	109
SW	1	4	9	15	11	0	40
WSW	3	5	11	9	2	3	33
W	0	7	17	27	3	0	54
WNW	0	4	28	39	10	1	82
NW	2	3	10	18	6	0	39
NNW	1	9	3	16	16	0	45
Variable	0	0	0	0	0	0	0
Total	13	71	180	273	149	28	714

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 3

.

Period of Record: October - December2005 Stability Class - Moderately Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind											
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
	~										
N	0	1	2	1	0	0	4				
NNE	1	0	6	2	0	0	9				
NE	0	2	0	2	0	0	4				
ENE	0	3	4	0	0	0	7				
Е	0	0	0	0	0	0	0				
ESE	0	1	0	0	0	0	1				
SE	0	2	1	0	0	0	3				
SSE	0	2	6	3	1	0	12				
S	1	2	6	2	5	0	16				
SSW	0	2	0	23	5	0	30				
SW	0	5	1	11	0	0	17				
WSW	0	2	6	18	1	0	27				
W	1	0	9	17	0	0	27				
WNW	0	1	2	0	1	0	4				
NW	0	3	8	7	6	0	24				
NNW	1	4	2	5	0	0	12				
Variable	0	0	0	0	0	0	0				
Total	4	30	53	91	19	0	197				

Wind Speed (in mph)

Period of Record: October - December2005 Stability Class - Extremely Stable - 300Ft-35Ft Delta-T (F) Winds Measured at 300 Feet

Wind			0 10	10.10	10.04		
Direction	1-3	4-/	8-12	13-18	19-24	> 24	Total
N	0	0	0	3	4	0	7
NNE	0	0	1	3	3	0	7
NE	0	1	0	0	0	0	1
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	1	4	1	0	6
SW	0	1	0	3	1	0	5
WSW	0	1	0	2	0	0	3
W	0	1	1	2	2	0	6
WNW	0	0	1	0	0	0	1
NW	0	0	2	1	0	0	3
NNW	0	0	2	4	0	0	6
Variable	0	0	0	0	0	0	0
Total	0	4	8	22	11	0	45

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes:

3