ENCLOSURE (1)

NINE MILE POINT NUCLEAR STATION, UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

January 1, 2005 – December 31, 2005

Facility Operating License NPF-69 Docket No. 50-410

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2005

Page 1 of 2

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY – DECEMBER 2005

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit #2 Licensee: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION/ODCM LIMITS

- A) FISSION AND ACTIVATION GASES
 - 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
 - 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of lodine-131, lodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from lodine-131, lodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ and, during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

 Improved Technical Specifications (ITS) limits the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity. 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by on-line gamma spectroscopic monitoring (intrinsic germanium crystal) of an isokinetic sample stream.

B) IODINES

lodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

Summary Data

Page 1 of 2

Unit 1	_	Unit 2	<u>x</u>		Repo	rting Period	l <u>Januar</u> y	- December 2005
Liquid E	Effluents:							
ODCM F	DCM Required MEC = 10 x 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2							
There w	ere no disch	arges of liqu	d radwaste requiring us	se of MEC to dete	mine allowat	ole release r	rate.	
		IEC - µCi/mi IEC - µCi/mi			Average ME Average ME	• •	•	NO RELEASES NO RELEASES
Average	e Energy (Fi	ssion and A	ctivation gases - MeV):				
	Qrtr. <u>1</u> : Qrtr. <u>2</u> : Qrtr. <u>3</u> : Qrtr. <u>4</u> :	Ēγ = Ēγ = Ēγ = Ēγ =	6.46E-01 6.24E-01 8.97E-01 7.68E-01	Ēβ = Ēβ = Ēβ = Ēβ =	2.37E-01 2.36E-01 3.03E-01 2.63E-01			ł
Liquid:				· ·				
	Number of F	Poteb Balaas			1			
		Batch Releas	es atch Releases (hrs)	0 N/A	-			
			for a Batch Release (hr		1			
			r a Batch Release (hrs)		4			
			or a Batch Release	N/A	1			
	Total volum	ne of water u	sed to dilute the liquid	1**	2 nd	3 rd	4 th	
			se period (L)	N/A	N/A	N/A	N/A	
	Total volum	ne of water a	vailable to dilute the lig	uid 1 st	2 nd	3 rd	∡ th	
			se period (L)	N/A	 	N/A	N/A	
Gaseou	s (Emergen	cy Condens	er Vent): "Not applicab	le for Unit 2"			······	
	Numbr of E	Batch Releas	es	N/A	1			
			atch Releases (hrs)	N/A	1			
			for a Batch Release (hn		1			
	Average Ti	me Period fo	r a Batch Release (hrs)]			
	Minimum T	ime Period f	or a Batch Release	N/A	j			
Gaseou	s (Primary C	Containment	Purge):					
	Numbr of E	Batch Releas	es	10	1			
			atch Releases (hrs)	4.33E+02	1			
	Maximum 1	Time Period (or a Batch Release (hr	s) 9.17E+01]			
			r a Batch Release (hrs)]			
	Minimum T	ime Period f	or a Batch Release	7.48E+00]			

Page 2 of 2

Summary Data

Unit 1	_	Unit 2	x			Reporting Period January - December 2005
Abnormal Re	leases:					
A. Liquid:				-		
		Number of R Total Activity		0 N/A	Ci	
B. Gaseous:						
		Number of R Total Activity		0 N/A	Ci	

_

Page 1 of 1

Unit 1 Unit 2	<u>×</u>		Reporting Po	eriod <u>Janua</u>	ry - Decembe	r 2005
GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES, ELEVATED AND GROUND LEVEL						
		<u>1st</u> Quarter	<u>2nd</u> Quarter	<u>3rd</u> Quarter	<u>4th</u> Quarter	<u>Est. Tota</u> Error, %
A. Fission & Activation Gases						
1. Total release	Ci	3.56E+01	4.12E+01	5.20E+01	4.59E+01	5.00E+0
2. Average release rate	µCi/sec	4.60E+00	5.23E+00	6.55E+00	5.76E+00	
B. <u>Iodines</u>						
1. Total lodine - 131	Ci	2.02E-05	4.74E-05	2.63E-04	1.08E-04	3.00E+0
2. Average release rate for period	µCi/sec	2.57E-06	6.02E-06	3.35E-05	1.38E-05	
C. <u>Particulates</u> 1. Particulates with half-lives >8 days	Ci	1.50E-04	7.05E-05	9.53E-05	8.85E-05	3.00E+0
2. Average release rate for period	µCi/sec	1.90E-05	8.96E-06	1.21E-05	1.13E-05	J.VUL . U
3. Gross alpha radioactivity	Ci	1.16E-05	2.37E-05	3.18E-05	1.91E-05	2.50E+0
D. <u>Tritium</u>	0:		0.005.04	4.005.04	4.665.04	
 Total release Average release rate for period 	Ci µCi/sec	2.33E+01 2.96E+00	2.26E+01 2.87E+00	4.26E+01 5.41E+00	4.55E+01 5.78E+00	5.00E+0
Fission and Activation Gases Percent of Quarterly Gamma Air Dose Limit (5 mR)	%	5.27E-02	5.88E-02	1.08E-01	8.12E-02	
Percent of Quarterly Beta Air Dose Limit	%	9.38E-04	1.08E-03	1.74E-03	1.34E-03	
(10 mrad) Percent of Annual Gamma Air Dose						
Limit to Date (10 mR)	%	2.64E-02	5.58E-02	1.10E-01	1.50E-01	
Percent of Annual Beta Air Dose Limit to Date (20 mRad)	%	4.69E-04	1.01E-03	1.88E-03	2.56E-03	
Percent of Whole Body Dose Rate Limit (500 mrem/yr)	%	2.07E-03	2.29E-03	4.15E-03	3.13E-03	
Percent of Skin Dose Rate Limit (3000 mrem/yr)	%	4.04E-04	4.46E-04	8.08E-04	6.09E-04	
<u>Tritium, Iodines, and Particulates (with half-lives greater than 8 days)</u> Percent of Quarterly Dose Limit (7.5	%	1.29E-02	1.89E-02	7.96E-02	3.92E-02	
mrem) Percent of Annual Dose Limit to Date (15		· · · · · · · · · · · · · · · · · · ·				
mrem)	%	6.52E-03	1.60E-02	5.61E-02	7.61E-02	
Percent of Organ Dose Limit (1500 mrem/yr	%	2.63E-04	3.79E-04	1.58E-03	7.79E-04	

Page 1 of 1

÷

Fission Gases (1) Argon-41 Ci $\frac{*}{*}$ $\frac{*}{5.83E-02}$ 1.2 Krypton-85 Ci $\frac{*}{**}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Krypton-85m Ci $\frac{8.93E+00}{1.09E+01}$ $1.36E+01$ 1.44 Krypton-87 Ci $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Xenon-137 Ci $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Xenon-133 Ci $1.60E+01$ $1.84E+01$ $1.50E+01$ 1.44 Xenon-133 Ci $\frac{1.60E+01}{1.84E+01}$ $1.50E+01$ 1.44 Xenon-133 Ci $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Xenon-135 Ci $\frac{*}{*}$ $\frac{*}{*$					_	
Ist Quarter 2nd Quarter 3rd Quarter 4th Q Fission Gases (1) Argon-41 Ci $\frac{**}{*}$ $5.83E-02$ 1.2 Krypton-85 Ci $\frac{**}{*}$ $\frac{*}{*}$ $\frac{1}{2}$ Krypton-85 Ci $\frac{**}{*}$ $\frac{*}{*}$ $1.66E+00$ $1.00E+01$ Krypton-87 Ci $\frac{**}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Xenon-137 Ci $\frac{**}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Xenon-137 Ci $\frac{**}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Xenon-138 Ci $\frac{2.02E-05}{*}$ $4.74E-05$ $2.52E-04$ 1.00 Vanon-138 Ci $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ $\frac{*}{*}$ Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.00 Iodine-133 Ci $\frac{2.02E-05}{*}$ $4.74E-03$ 4.6 $\frac{*}{*}$		GASEOUS	SEFFLUENTS			
Fission Gases (1) Argon-41 Ci $\frac{**}{*}$				Continue	ous Mode (2)	
Argon-41 Ci $\frac{**}{*}$ $\frac{**}{*}$ $\frac{**}{*}$ $\frac{**}{*}$ $\frac{**}{*}$ $\frac{**}{*}$ $\frac{**}{*}$ $\frac{1}{2}$ Krypton-85 Ci $\frac{8.93E+00}{*}$ $1.09E+01$ $1.36E+01$ 1.44 Krypton-87 Ci $\frac{**}{*}$ <td< th=""><th>Released</th><th></th><th><u>1st Quarter</u></th><th>2nd Quarter</th><th>3rd Quarter</th><th>4th Quarte</th></td<>	Released		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarte
Argunal Ci $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Krypton-85 Ci $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Krypton-85 Ci $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Krypton-85 Ci $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Krypton-87 Ci $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Kenon-137 Ci $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Xenon-133 Ci $\frac{1}{2}$ <	Fission Gases (1)					
Argunal Ci Image:		•				
Krypton-85m Ci 8.93E+00 1.09E+01 1.36E+00 1.0 Krypton-87 Ci ** ** 1.56E+00 1.0 Krypton-87 Ci **		-				1.20E-01
Krypton-87 Ci ** ** 1.56E+00 1.0 Krypton-88 Ci 1.07E+01 1.19E+01 2.18E+01 1.6 Xenon-137 Ci ** ** ** ** ** Xenon-133 Ci 1.60E+01 1.84E+01 1.50E+01 1.4 Xenon-133 Ci ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** ** Xenon-133 Ci ** <td><i>,</i>,</td> <td>_</td> <td>J</td> <td></td> <td></td> <td></td>	<i>,</i> ,	_	J			
Krypton-88 Ci 1.07E+01 1.19E+01 2.18E+01 1.6 Xenon-137 Ci **						1.48E+01
Xenon-127 Ci $**$ $**$ $**$ Xenon-131 Ci $**$ $**$ $**$ $**$ Xenon-133 Ci $1.60E+01$ $1.84E+01$ $1.50E+01$ 1.44 Xenon-133 Ci $**$ $**$ $**$ $**$ Xenon-135 Ci $**$ $**$ $**$ $**$ Xenon-137 Ci $**$ $**$ $**$ $**$ Xenon-138 Ci $**$ $**$ $**$ $**$ Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci $**$ $**$ $**$ $**$ $**$ Particulates (1) Strontium-89 Ci $**$ $**$						1.09E-01
Xenon-131 Ci ** * ** ** Xenon-133 Ci $1.60E+01$ $1.84E+01$ $1.50E+01$ 1.44 Xenon-133 Ci **						1.64E+01
Xenon-133 Ci 1.60E+01 1.84E+01 1.50E+01 1.44 Xenon-133m Ci $\frac{\pi}{\pi}$						**
Xenon-133m Ci ** ** ** Xenon-135 Ci ** ** ** ** Xenon-137 Ci ** ** ** ** Xenon-138 Ci ** ** ** ** Venon-138 Ci ** ** ** ** Iodines (1) Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** Strontium-90 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cobalt-60 Ci $3.12E-06$ $1.32E-05$ $4.33E-05$ Cobalt-58 Manganese-54 Ci ** ** ** ** ** ** Barium-140 Ci ** ** ** ** <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Xenon-135 Ci ** ** ** Xenon-135 Ci ** ** ** Xenon-136 Ci ** ** ** Xenon-137 Ci ** ** ** Xenon-138 Ci ** ** ** Venon-138 Ci ** ** ** Venon-133 Ci 5.21E-05 2.52E-04 1.0 Iodine-133 Ci 5.21E-05 2.50E-04 2.44E-03 4.6 Venoine-135 Ci ** ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** ** ** Strontium-90 Ci ** ** ** ** <						1.44E+01
Xenon-135m Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ Xenon-137 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ Xenon-138 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ Iodines (1) Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ Particulates (1) Strontium-89 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ Strontium-90 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ Cesium-134 Ci $\frac{1}{24}$ $\frac{1}{22E-05}$ $4.33E-05$ $\frac{1}{24}$ $\frac{1}{22E-05}$ $4.33E-05$ Cobalt-58 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{22E-05}$ $4.33E-05$ Manganese-54 Ci $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$ \frac		-				
Xenon-137 Ci $**$ $**$ $**$ Xenon-138 Ci $**$ $**$ $**$ Iodines (1) Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci $**$ $**$ $**$ $**$ Particulates (1) Strontium-89 Ci $**$ $**$ $**$ Strontium-90 Ci $**$ $**$ $**$ $**$ Cesium-134 Ci $**$ $**$ $**$ $**$ Cobalt-60 Ci $3.12E-06$ $1.32E-05$ $4.33E-05$ Ci Cobalt-68 Ci $**$ $**$ $**$ $**$ $**$ Manganese-54 Ci $**$ $**$ $**$ $**$ $**$ Manganese-54 Ci $**$ $**$ $**$ $**$ $**$ $**$ <						**
Xenon-138 Ci $**$ $**$ Iodines (1) Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci $**$ $**$ $**$ $**$ $**$ Particulates (1) Strontium-89 Ci $**$ $**$ $**$ $**$ Strontium-90 Ci $**$ $**$ $**$ $**$ $**$ $**$ Cesium-134 Ci $**$ $**$ $**$ $**$ $**$ Cobalt-60 Ci $3.12E-05$ $4.33E-05$ 5 5 Cobalt-68 Ci $**$ $**$ $**$ $**$ $**$ Manganese-54 Ci $**$ $**$ $**$ $**$ $**$ $**$ Mobium-95 Ci $**$ $**$ $**$ $**$ $**$ $**$ Niobium-95 Ci $**$ $**$ $**$ $**$ $**$ $**$ $**$						**
Iodines (1) Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** ** Cobalt-60 Ci $3.12E-06$ $1.32E-05$ $4.33E-05$ Cobalt-58 Ci **	,					**
Iodine-131 Ci $2.02E-05$ $4.74E-05$ $2.52E-04$ 1.0 Iodine-133 Ci $5.21E-05$ $2.50E-04$ $2.44E-03$ 4.6 Iodine-135 Ci ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Cobalt-60 Ci $3.12E-06$ $1.32E-05$ $4.33E-05$ Cobalt-58 Ci ** ** ** Manganese-54 Ci ** ** ** Barium-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-1411 Ci ** ** ** Cerium-144 Ci ** ** ** Cerium-136 Ci ** ** ** Cerium-136 Ci ** ** ** Ci *	Xenon-138	Ci	L **	**	l**	**
Iodine-133 Ci 5.21E-05 2.50E-04 2.44E-03 4.6 Derticulates (1) ** ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** ** ** Cesium-134 Ci ** ** ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-55 Cobalt-58 Ci ** ** ** Manganese-54 Ci ** ** ** ** ** ** Barium-140 Ci ** ** ** ** ** ** ** ** Niobium-95 Ci ** ** ** ** ** ** ** Cerium-141 Ci ** ** ** ** ** ** Cerium-144 Ci ** ** ** ** ** ** ** ** Cesi	<u>łodines (1)</u>					
Iodine-133 Ci 5.21E-05 2.50E-04 2.44E-03 4.6 Iodine-135 Ci ** ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** ** Cesium-134 Ci ** ** ** ** ** ** Cesium-137 Ci ** ** ** ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci ** *	lodine-131	Ci	2.02E-05	4.74E-05	2.52E-04	1.02E-04
Iodine-135 Ci ** ** ** ** Particulates (1) Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci **						4.67E-04
Strontium-89 Ci ** ** ** Strontium-90 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci ** ** ** Manganese-54 Ci ** ** ** Barium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **						**
Strontum-90 Ci ** ** ** Cesium-134 Ci ** ** ** Cesium-137 Ci ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci ** ** ** Manganese-54 Ci ** ** ** Barium-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Cerium-136 Ci ** ** **	Particulates (1)					
Strontium-90 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** ** Cesium-137 Ci ** ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci ** ** ** Manganese-54 Ci ** <td< td=""><td>Strontium-89</td><td>Ci</td><td>**</td><td>**</td><td>**</td><td>**</td></td<>	Strontium-89	Ci	**	**	**	**
Cesium-134 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci ** ** ** Manganese-54 Ci ** ** ** Barium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **			**	**	**	**
Cesium-137 Ci ** ** ** ** Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05	••••		**	**	**	**
Cobalt-60 Ci 3.12E-06 1.32E-05 4.33E-05 Cobalt-58 Ci ** ** ** ** Manganese-54 Ci ** ** ** ** Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** ** Iron-59 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Chromium-51 Ci ** ** ** **			**	**	**	**
Cobalt-58 Ci ** ** ** Manganese-54 Ci ** ** ** Barium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **			3 12E-06	1.32F-05	4 33F-05	**
Manganese-54 Ci ** ** ** Barium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **						**
Barium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **			**	**	**	**
Lanthanum-140 Ci ** ** ** Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **	•		**	**	**	**
Niobium-95 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **			**	**	**	**
Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **			**	±*	**	**
Cerium-144 Ci ** ** ** Iron-59 Ci ** ** ** Cesium-136 Ci ** ** ** Chromium-51 Ci ** ** **			**	**	**	**
Iron-59 Ci ** ** Cesium-136 Ci ** ** Chromium-51 Ci ** **			**	**	**	**
Cesium-136 Ci ** ** Chromium-51 Ci ** ** **			**	**	**	**
Chromium-51 Ci ** ** **			**	**	**	**
						**
	Zinc-65	Ci	**	**	**	**
Iron-55 Ci ** ** **						**
						**
Molybdendin-99 Ct						**
Zirconium-95 Ci ** ** **	Zirconium-95	Ci	**	**	## 	**
Tritium (1) Ci 1.46E+01 1.15E+01 1.95E+01 1.87	<u>Tritium (1)</u>	Ci	1.46E+01	1.15E+01	1.95E+01	1.87E+01

nit 1	Unit 2	<u>x</u>		Reporting Po	eriod <u>Janua</u>	ry - Decemi
······································	GAS	EOUSE	FFLUENTS		EVEL RELEA	
				Continue	ous Mode (2)	
es Released			<u>1st Quarter</u>	2nd Quarter	3rd Quarter	<u>4th Quarte</u>
Fission Gases (1)					
Argon-41		Ci [**	**	**	**
Krypton-85		Ci I	**	**	**	**
Krypton-85m		Ci	**	**	**	**
Kypton-87		Ci	**	**	**	**
Krypton-88		Ci	**	**	**	**
Xenon-127		Ci I	**	**	**	**
Xenon-131m		Ci I	**	**	**	**
Xenon-133		Ci l	**	**	**	**
Xenon-133m		Ci I	**	**	**	**
Xenon-135		Ci	**	**	**	++
Xenon-135m			**	**	**	**
Xenon-137			**	**	**	**
Xenon-138		Ci	**	**	**	**
lodines (1)		_				
Iodine-131		Ci [**	**	1.17E-05	6.77E-06
Iodine-133		Ci 🛛	**	**	2.94E-05	4.00E-06
Iodine-135	(Ci [**	**	**	**
Particulates (1)						
Strontium-89		ci 🖡	**	**	**	**
Strontium-90		Ci I	**	**	**	**
Cesium-134		Ci l	**	**	**	**
Cesium-137		ci l	**	**	**	**
Cobalt-60		ci l	1.17E-04	5.73E-05	5.20E-05	8.85E-05
Cobalt-58		Ci I	**	**	**	0.00L-00
Manganese-54		Ci I	2.91E-05	**	**	**
Barium-140		ci l	**	**	**	**
Lanthanum-140			**	**	**	**
Niobium-95		ci l	**	**	**	**
		ci l	**	**	**	**
1 erum_14 i		Si I	**	**	**	**
Cerium-141 Cerium-144						
Cerium-144			**	**	**	**
Cerium-144 Iron-59	(Ci [**	**	**	**
Cerium-144 Iron-59 Cesium-136		Ci Ci				
Cerium-144 Iron-59 Cesium-136 Chromium-51		Ci Ci Ci	**	**	**	**
Cerium-144 Iron-59 Cesium-136 Chromium-51 Zinc-65		Ci Ci Ci Ci	**	**	**	**
Cerium-144 Iron-59 Cesium-136 Chromium-51 Zinc-65 Iron-55			**	**	**	**
Cerium-144 Iron-59 Cesium-136 Chromium-51 Zinc-65 Iron-55 Molybdenum-99		Ci Ci Ci Ci Ci Ci	** ** **	**	**	**
Cerium-144 Iron-59 Cesium-136 Chromium-51 Zinc-65 Iron-55 Molybdenum-99 Neodymium-147			**	**	**	**
Cerium-144 Iron-59 Cesium-136 Chromium-51 Zinc-65 Iron-55 Molybdenum-99		Ci Ci Ci Ci Ci Ci	**	**	**	**

A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required iodines, and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified. (2) There were no batch releases from this path during the reporting period.

Unit 1 Unit 2	X		Reporting Pe	riod <u>Januan</u>	<u>y - December 2</u>	2005
LIQUID E	FFLUENT	S - SUMMATIC	ON OF ALL RE	LEASES		
		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	<u>4th Quarter</u>	<u>Est. Tota</u> Error, %
A. Fission & Activation Products						
1. Total Release (not including Tritium, gases, alpha)	Ci	No Release	No Release	No Release	No Release	5.00E+01
2. Average diluted concentration during reporting period	µCi/ml	No Release	No Release	No Release	No Release	
B. <u>Tritium</u>						ſ
1.Total release	Ci	No Release	No Release	No Release	No Release	5.00E+01
2. Average diluted concentration during the repoorting period	µCi/ml	No Release	No Release	No Release	No Release	
C. Dissolved and Entrained Gases						
1. Total release	Ci	No Release	No Release	No Release	No Release	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Release	No Release	No Release	No Release	
D. Gross Alpha Radioactivity						
1. Total release	Ci	No Release	No Release	No Release	No Release	5.00E+01
E. <u>Volumes</u>				=		
1. Prior to Dilution	Liters	No Release	No Release	No Release	No Release	5.00E+01
2. Volume of dilution water used during release period	Liters	No Release	No Release	No Release	No Release	5.00E+01
3. Volume of dilution water available during reporting period	Liters	1.17E+10	1.27E+10	1.61E+10	1.36E+10	5.00E+01
F. <u>Percent of Tech. Spec. Limits</u> Fission and Activation Gases						
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	No Release	No Release	No Release	No Release	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	No Release	No Release	No Release	No Release	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	No Release	No Release	No Release	No Release	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	No Release	No Release	No Release	No Release	
Percent of 10CFR20 Concentration	%	No Release	No Release	No Release	No Release	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	No Release	No Release	No Release	No Release	

Page 2 of 2

Unit 1	Unit 2	<u>x</u>	Reporting Period <u>January - Decembe</u>
			LIQUID EFFLUENTS RELEASED
			Continuous Mode (1)
clides R	eleased		1st Quarter 2nd Quarter 3rd Quarter 4th Quarte
	Nuclides Released		·····
	Strontium-89	Ci	No Release No Release No Release No Release
	Strontium-90	Ci	No Release No Release No Release No Release
	Cesium-134	Ci	No Release No Release No Release No Release
	Cesium-137	Ci	No Release No Release No Release No Release
	lodine-131	Ci	No Release No Release No Release No Release
	Cobalt-58	Ci	No Release No Release No Release No Release
	Cobalt-60	Ci	No Release No Release No Release No Release
	Iron-59	Ci	No Release No Release No Release No Release
	Zinc-65	Ci	No Release No Release No Release No Release
	Manganese-54	Ci	No Release No Release No Release No Release
	Chromium-51	Ci	No Release No Release No Release No Release
	Zirconium-95	Ci	No Release No Release No Release No Release
	Niobium-95	Ci	No Release No Release No Release No Release
	Molybdenum-99	Ci	No Release No Release No Release No Release
	Technetium-99m	Ci	No Release No Release No Release No Release
	Barium-140	Ci	No Release No Release No Release No Release
	Lanthanum-140	Ci	No Release No Release No Release No Release
	Cerium-141	Ci	No Release No Release No Release No Release
	Tungsten-187	Ci	No Release No Release No Release No Release
	Arsenic-76	Ci	No Release No Release No Release No Release
	lodine-133	Ci	No Release No Release No Release No Release
	Iron-55	Ci	No Release No Release No Release No Release
	Neptunium-239	Ci	No Release No Release No Release No Release
	Silver-110m	Ci	No Release No Release No Release No Release
	Gold-199	Ci	No Release No Release No Release No Release
	Cerium-144	Ci	No Release No Release No Release No Release
	Cesium-136	Ci	No Release No Release No Release No Release
	Copper-64	Ci	No Release No Release No Release No Release
	Manganese-56	Ci	No Release No Release No Release No Release
	Sodium-24	Ci	No Release No Release No Release No Release
	Nickel-65	Ci	No Release No Release No Release No Release
	Antimony-124	Ci	No Release No Release No Release No Release
	Strontium-92	Ci	No Release No Release No Release No Release
	Tellurium-132	Ci	No Release No Release No Release No Release No Release
Dissolve	d or Entrained Gases	Ci	No Release No Release No Release No Release
	Tritium	Ci	No Release No Release No Release No Release

indicated by effluent monitoring.

Page 1 of 4

Unit 1	Unit 2	X	Reportin	g Period <u>Janu</u>	ary - December	2005		
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS								
A1. TYPE	<u>Volume</u> (m³)			<u>Activity (1)</u> (Ci)				
	A	Class B	С	A	<u>Class</u> B	с		
a.1 Spent Resins (Dewatered)	1.72E+02	3.41E+00	0.00E+00	2.49E+03	4.59E+02	0.00E+00		
a.2 Filter Sludge	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Totals	1.72E+02	3.41E+00	0.00E+00	2.49E+03	4.59E+02	0.00E+00		
b.1 Dry, compactible waste	1.42E+02	0.00E+00	0.00E+00	3.35E+00	0.00E+00	0.00E+00		
b.2 Dry, non-compactible waste (contaminated equipment)	3.56E+01	0.00E+00	0.00E+00	2.37E-02	0.00E+00	0.00E+00		
Totals	1.78E+02	0.00E+00	0.00E+00	3.37E+00	0.00E+00	0.00E+00		
c. Irradiated Components, Control Rods	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
d. Other (to Vendor for Processing or Consolidation)								
d.1 Cooling Tower Silt	6.74E+01	0.00E+00	0.00E+00	9.75E-07	0.00E+00	0.00E+00		
d.2 Tank Sediment	3.80E+00	0.00E+00	0.00E+00	9.68E+00	0.00E+00	0.00E+00		
1) The estimated total error is 5.0E+01%								

r

Unit 1	Unit 2 <u>X</u>	Reporting Period Januar	y - December 2005			
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS						
A1. TYPE	<u>Container</u>	Package	Solidification Agent			
a.1 Spent Resin (Dewatered)	Poly Liner	General Design Type A/Type B	None			
a.2 Filter Sludge	N/A	N/A	N/A			
a.3 Concentrated Waste	N/A	N/A	N/A			
b.1 Dry, Compressible waste	Metal Box	General Design	None			
b.2 Dry, non-compressible waste	Metal Box	General Design	None			
c. Irradiated Components, Control Rods	N/A	N/A	N/A			
d. Other (To vendor for processing	3)					
d.1 Cooling Tower Silt	Metal Box	General Design	None			
d.2 Tank Sediment	Poly Liner	Туре А	None			

Unit 1 Unit 2 <u>X</u>	Reporting Period January - December 2005						
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS							
A2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (BY TYPE OF WASTE)							
a. Spent Resins, Filter Sludges, Concentrated Waste							
<u>Nuclide</u> Fe-55 Co-60 Mn-54 Zn-65 Ni-63 Ce-144 Other	Percent 43.1 39.1 6.6 6.2 1.2 3.0 0.8						
b. Dry Compressible Waste, Dry Non-Compressible Waste (C	Contaminated Equipment)						
<u>Nuclide</u> Fe-55 Co-60 Mn-54 Other	<u>Percent</u> 79.9 16.3 3.1 0.7						
c. Irradiated Components, Control Rods							
<u>Nuclide</u> N/A	Percent N/A						
d. Other (To vendor for processing)							
1. Cooling Tower Silt <u>Nuclide</u> Co-60 Mn-54 Cs-137	<u>Percent</u> 67.7 25.2 7.1						
2. Tank Sediment <u>Nuclide</u> Fe-55 Co-60 Mn-54 Zn-65 Other	Percent 68.6 24.5 4.1 2 0.8						

Page 4 of 4

. SOLID WASTE DISPOSITIO	N	
Number of Shipments	Mode of Transportation	Destination
33	Hittman Transport	Studsvik Processing Facility
2	Hittman Transport	GTS Duratek
2	Hittman Transport	Race, LLC
2	Race Logistics	Race, LLC
1	Tri State Motor Transit	Studsvik Processing Facility
IRRADIATED FUEL SHIPMEN	Mode of Transportation	Destination
N/A	N/A	N/A
	TO A TREATMENT FACILITY FOR PROCE	ESSING AND BURIAL

.

Unit 1 Unit 2

X

Reporting Period January – December 2005

SUMMARY OF CHANGES TO THE OFF-SITE DOSE CALCULATION MANUAL (ODCM)

The Unit 2 Off-Site Dose Calculation Manual (ODCM) was revised during the reporting period to add a new food product sample location and a new milk sample location and to delete two milk sample locations because the samples are no longer available. These changes are in conformance with the ODCM Part I and S-ENVSP-18 procedural requirements. These changes do not affect the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50 Appendix I, and do not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations. A copy of the ODCM, Revision 26 is attached and a summary of the changes presented to and approved by the Station Operations Review Committee on December 20, 2005 is provided below. The summary also includes the justification for the change.

	Revision 26							
Page #	New/Amended Section #	Description of Change	Reason for Change					
II 64 II 107	Table D 5.1 Figure D 5.1-2	Added a new sample location for food product, map location 68/produce location #18 (1.52 miles East (85° E) of Nine Mile Point.	During the 2005 land use census a new food product location was selected. The new food location is at 1.52 miles @ 85° E. The current food location is 1.76 miles @ 97° E. This new location is in the same sector of the current location and has the same site average D/Q.					
II 63 II 107	Table D 5.1 Figure D 5.1-2	Added Milk location #76 and removed milk locations #50 and #60.	Milk locations #50 and #60 are no longer available. These locations are not required by the ODCM. They are not within 5 miles nor do the meet the requirements of a control location (9-20 miles distant and in the least prevailing wind direction). This change is administrative, the new location is consistent the previous location #50, i.e. similar wind direction and within the $5 - 9$ mile distance.					

Unit 1	Un	nit 2	<u>_X</u>	Reporting Period January – December 2005	
SUMMARY OF CHANGES TO THE PROCESS CONTROL PROGRAM (PCP)					
There were	e no changes	to the	NMP2	Process Control Program (PCP) during this report period.	

-

Unit 1 Uni	it 2 <u>X</u>	Reporting Period January – December 2005		
SUMMARY OF INOPERABLE MONITORS				
Monitor	Dates of Inoperability	Cause and Corrective Actions		
1) Main Stack Effluent Noble Gas Activity Monitor, 1a) Flow- Rate Monitor	November 10, 2005 @ 08:10 to December 12, 2005 @ 14:55	The Gaseous Effluent Monitoring System (GEMS) Main Stack Effluent Noble Gas Activity Monitor and Flow-Rate Monitor channels were declared inoperable due to the failure of a communication link between the GEMS computer and both the Stack and Vent Monitors. Additionally, there was a power supply failure associated with the GEMS stack monitor. The necessary computer communication/interface card repair was completed on 12/9/05. Successful restart of the GEMS stack monitor and associated flow-rate monitor occurred after repair was made to the power supply. Repairs were not timely due to the obsolescence of failed components. GEMS is a one-of-a- kind off line real time gamma spectroscopy system. Because of the system age and obsolescence, replacement parts rely on used parts that are refurbished. The station has approved the consideration of a system replacement under the corrective action program.		
2) Radwaste/Reactor Building Vent Effluent Noble Gas Activity Monitor, 2a) Flow-Rate Monitor	November 10, 2005 @ 08:10 to December 12, 2005 @ 10:58	The Gaseous Effluent Monitoring System (GEMS) Radwaste/Reactor Building Vent Effluent Noble Gas Activity Monitor and Flow-Rate Monitor channels were declared inoperable due to the failure of a communication link between the GEMS computer and both the Stack and Vent Monitors. The necessary computer communication/interface card repair was completed on 12/9/05. Successful restart of the GEMS vent monitor occurred on 12/9/05 and operability was restored on 12/12/05 after repairs to the stack monitor power supply were completed. Repairs were not timely due to the obsolescence of failed components. GEMS is a one-of-a-kind off line real time gamma spectroscopy system. Because of the system age and obsolescence, replacement parts rely on used parts that are refurbished. The station has approved the consideration of a system replacement under the corrective action program.		

Page 1 of 4

Unit 1 _	Unit 2	<u>_x</u>	Reporting Period January - December 2005		
DOSES	TO MEMBER	S OF THE PI	UBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY		
Introduction	<u></u>				
An assessme	- nt of the radia n Nine Mile F		otentially received by a Member of the Public due to their activities inside the site (NMP2) liquid and gaseous effluents has been conducted for the period January		
			m exposed individual and the various exposure pathways resulting from liquid and um dose received by a Member of the Public during their activities within the site		
educational d NMP. Fishin dose received has been rest	isplays or for p g near the sho l by a Member ricted and fish	bicnicking and breline adjace r of the Public ing by Memb	had access to the Energy Information Center for purposes of observing the d associated activities. Fishing also occurred near the shoreline adjacent to the ent to the NMP Site was the onsite activity that resulted in the potential maximum c. Following September 11, 2001 public access to the Energy Information Center ers of the Public at locations on site is also prohibited. Although fishing was not to a hypothetical fisherman was still evaluated to provide continuity of data for the		
Dose Pathw	vays				
or soil doses insignificant, addition, only	Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP2 stack and vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the Nine Mile Point Site.				
Dose to a hyp	othetical fishe	rman is recei	ived through the following pathways while standing on the shoreline fishing:		
External g	ground pathwa	iy; this dose i	s received from plant related radionuclides detected in the shoreline sediment.		
Inhalation	pathway; this	dose is recei	ived through inhalation of gaseous effluents released from NMP2 Stack and Vent.		
	iation pathway k (JAF) Faciliti		ing from the operation of NMP2, Nine Mile Point Unit 1 (NMP1) and the James A.		
Methodoloc	<u>ies for Dete</u>	rmining Do	ose for Applicable Pathways		
External Gro	und (Shorelin	e Sediment)	pathway		
Dose from the external ground (shoreline sediment) is based on the methodology in the Unit 2 Offsite Dose Calculation Manual (NMP2 ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.					
	lated using the		whole body and skin of the maximum exposed individual during 2005 was put parameters: Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks		
 Dens 	ity in grams pe	er square met	ter = 40,000		
Shore	e width factor	= 0.3			
 Whol 	e body and sk	in dose factor	r for each radionuclide = Regulatory Guide 1.109, Table E-6.		
 Fract 	ional portion o	f the year = 1	(used average radionuclide concentration over total time period)		
Avera	age Cs-137 co	ncentration =	= 1.75E-01 pCi/g		
			eived by a hypothetical maximum exposed fisherman from the external ground re Pathway Dose.		

	Pathway		
legulatory sherman	Guide 1.109. The total whole body dose and o	nhalation equation in the NMP2 ODCM, as adapte rgan dose received by the hypothetical maximum e t parameters for gaseous effluents released from b :	xpos
NMP 2 Sta			
ŀ	Variable	Fisherman *	
ŀ	X/Q (s/m ³)	9.60E-07	
ŀ	Inhalation dose factor	Table E-7 Regulatory Guide 1.109	
Ļ	Annual air intake m ³ /year) (adult)	8000	
Ļ	Fractional portion of the year (hours)	0.0356	
Ļ	H-3 (pCi/sec)	2.11E+06	
	Co-60 (pCi/sec)	2.39E+00	
	I-131 (pCi/sec)	1.70E+01	
	I-133 (pCi/sec)	1.34E+2	
NMP2 Ver	t: Variable	Fisherman *	
	X/Q (s/m ³)	2.80E-06	
	Inhalation dose factor	Table E-7 Regulatory Guide 1.109	
	Annual air intake (m ³ /year) (adult)	8000	
	Fractional portion of the year (hours)	0.0356	
	H-3 (pCi/sec)	2.59E+06	
	Co-60 (pCi/sec)	5.01E+00	
Γ	I-131 (pCi/sec)	7.83E-01	
Γ	I-133 (pCi/sec)	1.42E+00	
rate of	f 8 hours per week for 39 weeks per year equivale 6). Therefore, the Average Stack and Vent flow ra	ent on site during the period of April through Decemb nt to 312 hours for the year (fractional portion of the ites and radionuclide concentrations used to determinate aseous effluent flow and concentration values.	year

Unit 1 ____ Unit 2 _X

Reporting Period January – December 2005

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 – December 31, TLD data for the second, third, and fourth quarters of 2005 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.59E-03
Exposure time (hours)	312

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

Dose Received By A Hypothetical Maximum Exposed Member Of The Public Inside the Site Boundary During 2005

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from Liquid and Gaseous effluents released from NMP2 during 2005:

Exposure Pathway	Dose Type	Fisherman
	· · · · · · · · · · · · · · · · · · ·	(mRem)
External Ground	Whole Body	2.79E-03
	Skin of Whole Body	3.25E-03
Inhalation	Whole Body	4.17E-04
	Maximum Organ	Thyroid: 4.35E-04
Direct Radiation	Whole Body	0.50

Table 1 Exposure Pathway Annual Dose

.____

Unit 1	Unit 2 <u>X</u>	Reporting Period January - December 2005	
DOS	DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY		
based on these values the total annual dose received by a hypothetical maximum exposed member of the public is as pllows:			
F	Table	2 Annual Dose Summary	
	Total Annual Dose for 200	5 Fisherman	
		(mRem)	
┝	Total Whole Body	5.00E-01	
-	Skin of Whole Body	3.25E-03	
L	Maximum Organ	Thyroid: 4.35E-04	

Unit 1 ____ Unit 2 _X__

Reporting Period January - December 2005

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Introduction

An assessment of radiation doses potentially received by the likely most exposed member of the public located beyond the site boundary was conducted for the period January through December 2005 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 2 (NMP2), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP2, Nine Mile Point Unit 1 (NMP1) and the James A. FitzPatrick (JAF) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by members of the public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem wholebody
- < 25 mRem any organ (except thyroid)
- < 75 mRem thyroid

This evaluation compares doses resulting from Liquid and Gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP2, NMP1 and JAF nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point Site.

Dose to the most likely member of the public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a member of the public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides deposited in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAF operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAF facilities.

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP2 Off-site Dose Calculation Manual (NMP2 ODCM) as adapted from Regulatory Guide 1.109. The dose for 2005 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed member of the public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2005; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2005.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP2 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed member of the public spends 67 hours/year along the shoreline for recreational purposes.

Unit 1 ___ Unit 2 _X__

Reporting Period January - December 2005

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Shoreline Sediment Continued:

The total dose received by the whole body and skin of the maximum exposed individual during 2005 is calculated using the following input parameters:

- Usage Factor = 67 hours per year
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6
- Fractional portion of the year = 1
- Average Cs-137 Concentration = 0.076 pCi/g

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed member of the public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP2 ODCM, NMP1 Offsite Dose Calculation Manual, and the JAF Offsite Dose Calculation Manual. These calculations consider deposition, inhalation and ingestion pathways. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAF during 2005 provide a total dose to the whole body and maximum organ dose for this pathway.

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion and from ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2005, the closest residence are at the same location.

Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2005

Exposure Pathway	Dose Type	Dose (mRem)
Fish Consumption	Total Whole Body	No Dose
	Total Maximum Organ	No Dose
Shoreline Sediment	Total Whole Body	2.58E-04
	Total Skin of Whole Body	3.01E-04
Gaseous Effluents	Total Whole Body	1.69-02
	Total Maximum Organ	Thyroid: 1.55E-01
Direct Radiation	Total Whole Body	1.49

Based on these values the maximum total annual dose potentially received by the most likely exposed member of the public during 2005 is as follows:

٠	Total Whole Body:	1.51 mRem
•	Total Skin of Whole Body:	1.31E-02 mRem

Maximum Organ: Thyroid: 1.55E-01 mRem

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAF facilities. The maximum organ dose (Thyroid: 0.155 mRem) and the maximum whole body dose (1.51 mRem) are below the 40 CFR 190 criteria of 25 mRem per calendar year to the maximum exposed organ or the whole body, and below 75 mRem per calendar year to the thyroid.