

A subsidiary of Pinnacle West Capital Corporation

Scott A. Bauer Department Leader Regulatory Affairs Palo Verde Nuclear Generating Station

Tel. 623-393-5978 Fax 623-393-5442 e-mail: Scott.Bauer@aps.com

Mail Station 7636 PO Box 52034 Phoenix, Arizona 85072-2034

102-05469-SAB/TNW/CJJ April 25, 2006

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Dear Sir:

Palo Verde Nuclear Generating Station (PVNGS) Subject: Units 1, 2 and 3 Docket Nos. STN 50-528/529/530 **Annual Radiological Environmental Operating Report 2005**

In accordance with PVNGS Technical Specification (TS) 5.6.2, enclosed please find the Annual Radiological Environmental Operating Report for 2005.

No commitments are being made to the NRC in this letter. If you have any questions, please contact Thomas N. Weber at (623) 393-5764.

Sincerely

hadle Sam

SAB/TNW/CJJ/ca

Enclosure

B. S. Mallett CC: M. B. Fields G. G. Warnick A. V. Godwin

A member of the STARS (Strategic Tearning and Resource Sharing) Alliance

Callaway D Comanche Peak D Diablo Canyon D Palo Verde D South Texas Project D Wolf Creek

E25

ENCLOSURE

Annual Radiological Environmental Operating Report 2005

NUCLEAR GENERATING STATION

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT 2005

(Referenc	e: RCTSAI 1643, Legacy Item No. 036843.01)
	Digitally signed by: Drinovsky, Louis J(233699) Date: 03/30/2006 06:35:34 Reason: I am the author of this document Location: PVNGS
Prepared by:_	
	Digitally signed by: Bungard, James P(Z18012) Date: 03/30/2006 12:21:18 Reason: I have reviewed this document Location: PVNGS
Reviewed by:	
	Digitally signed by: Gaffney, John P(Z36459) Date: 04/14/2006 18:16:00 Reason: I am approving this document Location: PVNGS
Approved by:	

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	DESCRIPTION OF THE MONITORING PROGRAM	3
2.1. 2.2. 2.3.	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM CHANGES FOR 2005	3
3.	SAMPLE COLLECTION PROGRAM	. 10
3.1. 3.2. 3.3. 3.4. 3.5.	VEGETATION MILK AIR	10 10 10
4.	ANALYTICAL PROCEDURES	11
4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	Airborne Radioiodine Milk Vegetation Sludge/Sediment Water	11 11 12 12 12
5.	NUCLEAR INSTRUMENTATION	-
5.1. 5.2. 5.3.	LIQUID SCINTILLATION SPECTROMETER	13
6.	ISOTOPIC DETECTION LIMITS AND REPORTING CRITERIA	14
6.1. 6.2. 6.3.	DATA REPORTING CRITERIA	14
7.	INTERLABORATORY COMPARISON PROGRAM	20
7.1. 7.2.		
8.	DATA INTERPRETATIONS AND CONCLUSIONS	23
8.1. 8.2. 8.3. 8.4. 8.5. 8.6.	Airborne Radioiodine Vegetation Milk Drinking Water	24 24 24 24

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005

TABLE OF CONTENTS

8.7	7. SURFACE WATER	
8.8	3. Sludge and Sediment	25
8.9	P. DATA TRENDS	
9.	THERMOLUMINESCENT DOSIMETER (TLD) RESULTS AND DATA	
10.	LAND USE CENSUS	53
10.	.1. INTRODUCTION	
10.	2. CENSUS RESULTS	
11.	SUMMARY AND CONCLUSIONS	55
12.	REFERENCES	60

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005 iii

1

6

LIST OF TABLES

.

TABLE 2.1 SAMPLE COLLECTION LOCATIONS			5
TABLE 2.2 SAMPLE COLLECTION SCHEDULE			6
TABLE 2.3 SUMMARIES OF REMP DEVIATIONS/ABNORMAL EV	ENTS		7
TABLE 6.1 ODCM REQUIRED LOWER LIMITS OF DETECTION (A	PRIORI)		17
TABLE 6.2 ODCM REQUIRED REPORTING LEVELS			18
TABLE 6.3 TYPICAL MDA VALUES			19
TABLE 7.1 INTERLABORATORY COMPARISON RESULTS			21
TABLE 8.1 PARTICULATE GROSS BETA IN AIR 1ST - 2ND QUAR	TER		27
TABLE 8.2 PARTICULATE GROSS BETA IN AIR 3RD - 4TH QUAR	TER	•••••	
TABLE 8.3 GAMMA IN AIR FILTER COMPOSITES			29
TABLE 8.4 RADIOIODINE IN AIR 1ST - 2ND QUARTER			30
TABLE 8.5 RADIOIODINE IN AIR 3RD - 4TH QUARTER			31
TABLE 8.6 VEGETATION	•••••		32
TABLE 8.7 MILK	•••••		33
TABLE 8.8 DRINKING WATER			34
TABLE 8.9 GROUNDWATER		••••••	36
TABLE 8.10 SURFACE WATER	••••••		37
TABLE 8.11 SLUDGE/SEDIMENT	b • • • • • • • • • • • • • • • • • • •	•	40
TABLE 9.1 TLD SITE LOCATIONS		• • • • • • • • • • • • • • • • • • •	48
TABLE 9.2 2005 ENVIRONMENTAL TLD RESULTS		•	50
TABLE 10.1 2005 LAND USE CENSUS			54
TABLE 11.1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGE		L SUMMAR	ε Υ 56
		· · · · · · · · · · · · · · · · · · ·	
		Contraction of the	

LIST OF FIGURES

FIGURE 2.1	REMP SAMPLE SITES - MAP (0-10 miles)	. 8
FIGURE 2.2	REMP SAMPLE SITES - MAP (10-35 miles)	.9
FIGURE 8.1	HISTORICAL GROSS BETA IN AIR (WEEKLY SYSTEM AVERAGES)	42
FIGURE 8.2	HISTORICAL GROSS BETA IN AIR (ANNUAL SITE TO SITE COMPARISONS)	
COMPARED	TO PRE-OP	43
FIGURE 8.3	GROSS BETA IN DRINKING WATER	44
FIGURE 8.4	EVAPORATION POND TRITIUM ACTIVITY	45
FIGURE 8.5	SEDIMENTATION BASIN #2 Cs-137	46
FIGURE 9.1	NETWORK ENVIRONMENTAL TLD EXPOSURE RATES	51
FIGURE 9.2	ENVIRONMENTAL TLD COMPARISON - PRE-OPERATIONAL VS 2005	52

ABSTRACT

The Radiological Environmental Monitoring Program (REMP) is an ongoing program conducted by Arizona Public Service Company (APS) for the Palo Verde Nuclear Generating Station (PVNGS). Various types of environmental samples are collected near PVNGS and analyzed for plant related radionuclide concentrations.

During 2005, the following categories of samples were collected by APS:

- Broad leaf vegetation
- Groundwater
- Drinking water
- Surface water
- Airborne particulate and radioiodine
- Goat milk
- Sludge and sediment

Thermoluminescent dosimeters (TLDs) were used to measure environmental gamma radiation. The Environmental TLD program is also conducted by APS.

The Arizona Radiation Regulatory Agency (ARRA) performs radiochemistry analyses on various duplicate samples provided to them by APS. Samples analyzed by ARRA include onsite samples from the Reservoir, two (2) Evaporation Ponds, and two (2) deep wells. Offsite samples analyzed by ARRA include two (2) local resident wells. ARRA also performs air sampling at seven (7) offsite locations identical to APS and maintains approximately fifty (50) environmental TLD monitoring locations, eighteen (18) of which are duplicates of APS locations.

A comparison of pre-operational and operational data indicates no changes to environmental radiation levels. There were no measurable radiological impacts on the environment due to PVNGS operations in 2005.

(NOTE: Reference to APS throughout this report refers to PVNGS personnel)

1

OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

1. Introduction

This report presents the results of the operational radiological environmental monitoring program conducted by Arizona Public Service Company (APS). The Radiological Environmental Monitoring Program (REMP) was established for the Palo Verde Nuclear Generating Station (PVNGS) by APS in 1979. The REMP is performed in accordance with the federal requirements to provide a complete environmental monitoring program for nuclear reactors, and with concern for maintaining the quality of the local environment. The program complies with the requirements of 10 CFR 50, Appendix I, PVNGS Technical Specifications, and with the guidance provided by the US Nuclear Regulatory Commission (USNRC) in their Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979.

This report contains the measurements and findings for 2005. All references are specifically identified in Section 12.

The objectives of the REMP are as follows: 1) to determine baseline radiation levels in the environs prior to plant operation and to compare the findings with measurements obtained during reactor operations; 2) to monitor potential critical pathways of radio-effluent to the public; and 3) to determine radiological impacts on the environment caused by the operation of PVNGS.

Results from the REMP help to evaluate sources of elevated levels of radioactivity in the environment (e.g., atmospheric nuclear detonations or abnormal plant releases).

Results of the PVNGS pre-operational environmental monitoring program are presented in Reference 1.

The initial criticality of Unit 1 occurred May 25, 1985. Initial criticality for Units 2 and 3 were April 18, 1986, and October 25, 1987, respectively. PVNGS operational findings (historical) are presented in Reference 2.

2. Description of the Monitoring Program

APS and vendor organizations performed the pre-operational radiological environmental monitoring program, which began in 1979. APS and vendors continued the program into the operational phase.

2.1. 2005 PVNGS Radiological Environmental Monitoring Program

The assessment program consists of routine measurements of background gamma radiation and of radionuclide concentrations in media such as air, groundwater, drinking water, surface water, vegetation, milk, sludge, and sediment.

Samples were collected by APS at the monitoring sites shown in Figures 2.1 and 2.2. The specific sample types, sampling locations, and sampling frequencies, as set forth in the PVNGS Offsite Dose Calculation Manual (ODCM), Reference 4, are presented in Tables 2.1, 2.2 and 9.1. Additional onsite sampling (outside the scope of the ODCM) is performed to supplement the REMP. All results are included in this report. Sample analyses were performed by APS at the PVNGS Central Chemistry Laboratory.

Background gamma radiation measurements were performed by APS using TLDs at forty-nine (49) locations near PVNGS.

In addition to monitoring environmental media, a land use census is performed annually to identify the nearest milk animals, residents, and gardens. This information is used to evaluate the potential dose to members of the public for those exposure pathways that are indicated.

2.2. Radiological Environmental Monitoring Program Changes for 2005

- * One (1) new air sample station was placed at a new school in May
- ★ The control (goat) milk location changed in July due to unavailability of samples at the previous location.
- * One (goat) milk indicator location changed in July due to unavailability of samples at the previous location.

Refer to Table 2.1 for a description of all current sample locations (except TLDs).

2.3. REMP Deviations/Abnormal Events Summary

During calendar year 2005, there were three (3) deviations/abnormal events with regard to the monitoring program. Refer to Table 2.3 for more detail and any corrective actions taken.

- Air samples were invalidated from Sites #29 and #35 for gross beta the week of 1/4-1/11.
- Air samples were invalidated from Site #17A for gross beta and radioiodine the week of 10/4-10/11.
- The WRF Influent I-131 concentration exceeded 100 pCi/liter on one (1) occasion.

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005

Table 2.1 SAMPLE COLLECTION LOCATIONS

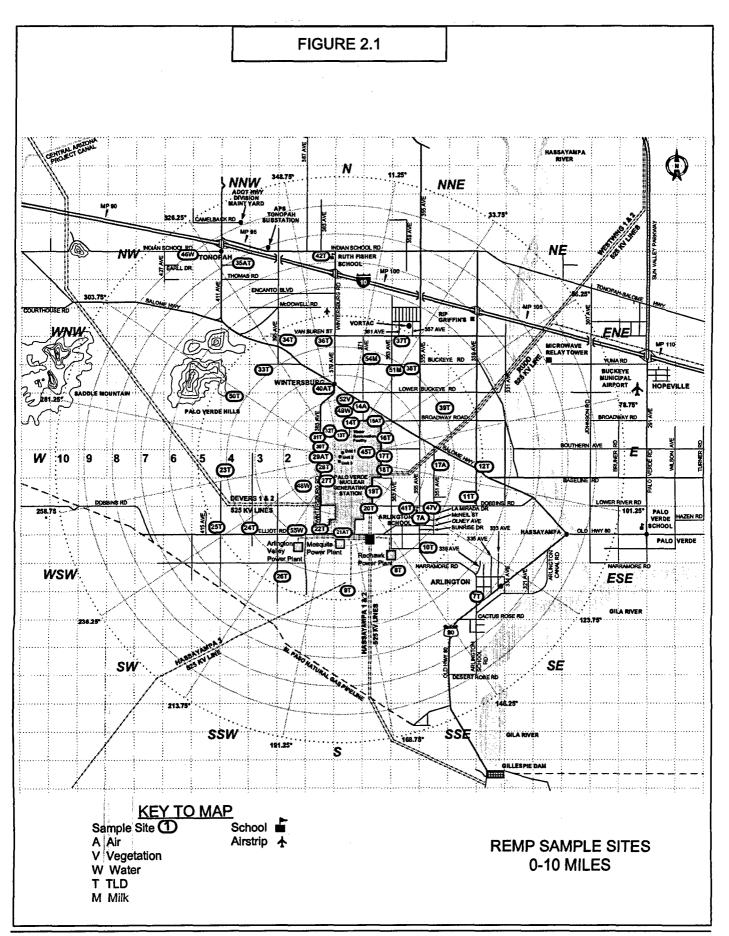
SAMPLE <u>SITE #</u>	<u>SAMPLE TYPE</u>	LOCATION (a)	LOCATION DESCRIPTION
4	air	E16	APS Office
6A*	air	SSE13	Old US 80
7A	air	ESE3 (b)	Arlington School
14A	air	NNE2	371 st Ave. and Buckeye-Salome Rd.
15	air	NE2	NE Site Boundary
17A	air	E3	351 st Ave.
21	air	S3	S Site Boundary
29	air	W1	W Site Boundary
35	air	NNW8	Tonopah
40	air	N2	Transmission Rd
46	drinking water	NW9	McArthur residence
47	vegetation	ESE4	McCoy residence
48	drinking water	SW1	Berryman residence
49	drinking water	N2	Chowanec residence
51	milk	NE4	Painter residence-goats
52	vegetation	NNE2	Branch residence
53*	milk	ENE24 (b)	Barber residence-goats (until July), replaced by
			Adams residence (NE36)
54	milk	NNE2 (b)	Branch residence-goats (until July), replaced by
			Hernandez residence (NNE4)
55	drinking water	SW3	Gavette residence
	(supplemental)		
57	groundwater	ONSITE	Well 27ddc
58	groundwater	ONSITE	Well 34abb
59	surface water	ONSITE	Evaporation Pond #1
60	surface water	ONSITE	Reservoir
62*	vegetation	ENE26	Duncan Family Farms
63	surface water	ONSITE	Evaporation Pond #2

NOTES:

- * Designates a control site
- (a) Distances and direction are from the center-line of Unit 2 containment and rounded to the nearest mile
- (b) Denotes a change in location or a new sample location

Air sample sites designated with the letter 'A' are sites that have the same site number as a TLD location, but are not in the same location (e.g. site #6 TLD location is different from site #6A air sample location; site #4 TLD location is the same as site #4 air sample location)

5


Table 2.2 SAMPLE COLLECTION SCHEDULE

SAMPLE	AIR DADTICUU ATT		AIRBORNE	VECTUATION	GROUND	DRINKING	SURFACE
<i>SITE #</i> 4	PARTICULATE W	MILK	<i>RADIOIODINE</i> W	VEGETATION	WATER	WATER	WATER
6A	W		w				
7A	W		W				
14A	W		W				
15	W		W				
17A	W		W				
21	W		W				
29	W		W				
35	W		W				
40	W		W				
46	999 ₉₉₉₉₉₉ - 110000000000000000000000000000000000		nanana ani ⁿ k∎ Tananana a anin'na ina ana ana an			W	
47				M/AA			
48						W	
49						W	
51		M/AA					
52	• •			M/AA			
53		M/AA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
54		M/AA					
55						W	
57			. <u></u>		Q		
58			· · · · · · · · · · · · · · · · · · ·		Q		[
59							w
60							w
62				M/AA			
63							w

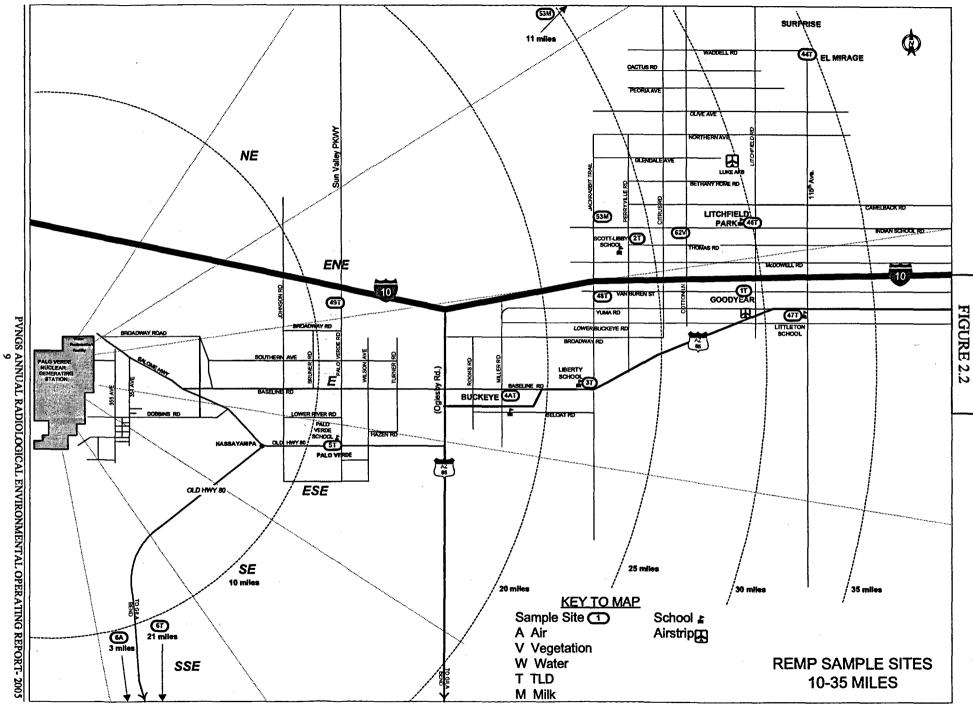

W = WEEKLY M/AA = MONTHLY AS AVAILABLE Q = QUARTERLY

TABLE 2.3 SUMMARIES OF REMP DEVIATIONS/ABNORMAL EVENTS

	Deviation/Abnormal Event	<u>Actions taken</u>
fc o w	Air sample results from Sites #29 and #35 or gross beta were invalidated the week f 1-11-05. Results were abnormally low when compared to other samples ollected during the same period.	1. The technician who obtained the samples stated that the samples had become wet from rain, which could have affected the results. The samples were invalidated due to the high RSD% (24%). Subsequent sample results were normal. No additional actions are necessary.
gı in	ir sample results from Site #17A for ross beta and radioiodine were avalidated due to pump inoperability the veek of 10-11-05.	2. The air sample pump was not running when the technician arrived at the sample location, although the ETM had power. The actual sample volume could not be determined. Equipment was replaced and subsequent samples were valid. No additional actions are necessary.
ez 1:	the WRF Influent I-131 concentration xceeded 100 pCi/liter (actual value was 58 pCi/liter the week of May 31) on one ccasion.	3. Phoenix sewage effluent is the supply for this water and is known to contain radiopharmaceutical I-131. The Arizona Radiation Regulatory Agency is notified when this source of water exceeds an I-131 concentration of 100 pCi/liter (the threshold is exceeded on an infrequent basis). This is considered a courtesy notification (not regulatory) and no further action is required.

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005

۰,

3. Sample Collection Program

APS personnel using PVNGS procedures collected all samples.

3.1. Water

Weekly samples were collected from the Reservoir, Evaporation Pond #1, Evaporation Pond #2, and four (4) residence wells. Samples were collected in one-gallon containers and 500 ml glass bottles. One liter from each weekly one-gallon sample was added to a monthly composite, which is preserved with nitric acid (HNO₃). The composite samples were then analyzed for gamma emitting radionuclides. Residence wells were also analyzed for gross beta activity. Weekly grab samples in glass bottles were composited quarterly and analyzed for tritium.

Quarterly grab samples were collected from onsite wells 34abb and 27ddc. Samples were collected in one-gallon containers and 500 ml glass bottles. Samples were analyzed for gamma emitting radionuclides and tritium.

Treated sewage effluent from the City of Phoenix was sampled as a weekly composite at the onsite Water Reclamation Facility (WRF), and analyzed for gamma emitting radionuclides. A monthly composite was analyzed for tritium.

3.2. Vegetation

Vegetation samples were collected monthly, as available, and were analyzed for gamma emitting radionuclides.

3.3. Milk

Goat milk samples were collected monthly, as available, and were analyzed for gamma emitting radionuclides, including low level I-131.

3.4. Air

Air particulate filters and charcoal cartridges were collected at nine (9) sites on a weekly basis. In May, a tenth air sample station was installed at a new school. Particulate filters were analyzed for gross beta. Charcoal cartridges were analyzed for I-131. Particulate filters were composited quarterly, by location, and analyzed for gamma emitting radionuclides.

3.5. **Sludge and Sediment**

Sludge samples were obtained weekly from the WRF waste centrifuge (whenever the plant was operational) and analyzed for gamma emitting radionuclides. Samples were collected using 1 liter containers.

Scale/sludge was removed from cooling tower louvers and circulating water/plant cooling water piping and analyzed for gamma emitting radionuclides.

Cooling tower sludge was analyzed for gamma emitting radionuclides.

Bottom sediment/sludge samples were obtained from Evaporation Pond #1, Evaporation Pond #2, and Sedimentation Basin #2 and analyzed for gamma emitting radionuclides.

Sediment samples were collected from Sedimentation Basin #2 and analyzed for gamma emitting radionuclides.

Analytical Procedures 4.

The procedures described in this report are those used by APS to routinely analyze samples.

4.1. Air Particulate

Gross Beta 4.1.1.

A glass fiber filter sample is placed in a stainless steel planchet and counted for gross beta activity utilizing a low background gas flow proportional counter.

4.1.2. **Gamma Spectroscopy**

The glass fiber filters are counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

Airborne Radioiodine 4.2.

The charcoal cartridge is counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for I-131.

4.3. Milk

4.3.1. **Gamma Spectroscopy**

The sample is placed in a plastic marinelli beaker and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.4. Vegetation

4.4.1. Gamma Spectroscopy

The sample is pureed in a food processor, placed in a one liter plastic marinelli beaker, weighed, and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.5. Sludge/Sediment

4.5.1. Gamma Spectroscopy

The wet/dry sample is placed in a one-liter plastic marinelli beaker, weighed, and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.6. Water

4.6.1. Gamma Spectroscopy

The sample is placed in a one-liter plastic marinelli beaker and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.6.2. Tritium

The sample is evaluated to determine the appropriate method of preparation prior to counting. If the sample contains suspended solids or is turbid, it may be filtered, distilled, and/or de-ionized, as appropriate. Eight (8) milliliters of sample are mixed with fifteen (15) milliliters of liquid scintillation cocktail. The mixture is dark adapted and counted for tritium activity using a liquid scintillation counting system.

4.6.3. Gross Beta

A 200-250 milliliter sample is placed in a beaker. Five (5) milliliters of concentrated nitric (HNO₃) acid is added and the sample is evaporated down to about twenty (20) milliliters. The remaining sample is transferred to a stainless steel planchet. The sample is heated to dryness and counted for gross beta in a gas flow proportional counter.

4.7. Soil

4.7.1. Gamma Spectroscopy

The samples are sieved, placed in a one-liter plastic marinelli beaker, and weighed. The samples are then counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

5. Nuclear Instrumentation

5.1. Gamma Spectrometer

The Canberra Gamma Spectrometer consists of a Canberra System equipped with HPGe detectors having resolutions of 1.73 keV and 1.88 keV (as determined by full width half max with an energy of 0.5 keV per channel) and respective efficiencies of 21.5% and 38.4% (as determined by the manufacturer with Co-60). The Canberra System is used for all gamma counting. The system uses Canberra developed software to search, identify, and quantify the peaks of interest.

5.2. Liquid Scintillation Spectrometer

A Beckman LS-6500 Liquid Scintillation Counter is used for tritium determinations. The system background averages approximately 15-17 cpm with a counting efficiency of approximately 40% using a quenched standard.

5.3. Gas Flow Proportional Counter

The Tennelec S5E is a low background gas flow proportional counter for gross beta analysis. The system contains an automatic sample changer capable of counting 50 samples in succession. Average beta background count rate is about 1-2 cpm with a beta efficiency of approximately 30% for Cs-137.

6. Isotopic Detection Limits and Reporting Criteria

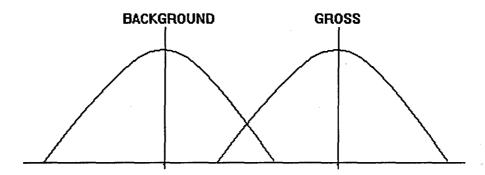
6.1. Lower Limits of Detection

The lower limits of detection (LLD) and the method for calculation are specified in the PVNGS ODCM, Reference 4. The ODCM required *a priori* LLDs are presented in Table 6.1. For reference, *a priori* LLDs are indicated at the top of data tables for samples having required LLD values.

6.2. Data Reporting Criteria

All results that are greater than the Minimum Detectable Activity (MDA) (a posteriori LLD) are reported as positive activity with its associated 2σ counting error. All results that are less than the MDA are reported as less than values at the associated MDA. For example, if the MDA is 12 pCi/liter, the value is reported as <12.

Typical MDA values are presented in Table 6.3.


Occasionally, the PVNGS ODCM *a priori* LLDs may not be achieved as a result of:

- Background fluctuations
- Unavoidably small sample sizes
- The presence of interfering radionuclides
- Self absorption corrections
- Decay corrections for short half-life radionuclides
- Other uncontrollable circumstances

In these instances, the contributing factors will be noted in the table where the data are presented. A summary of deviations/abnormal events is presented in Table 2.3 and includes a description of any sample results that did not meet *a priori* LLD requirements.

6.3. LLD and Reporting Criteria Overview

Making a reasonable estimate of the limits of detection for a counting procedure or a radiochemical method is usually complicated by the presence of significant background. It must be considered that the background or blank is not a fixed value but that a series of replicates would be normally distributed. The desired net activity is the difference between the gross and background activity distributions. The interpretation of this difference becomes a problem if the two distributions intersect as indicated in the diagram.

If a sufficient number of replicate analyses are run, it is expected that the results would fall in a normal Gaussian distribution. Standard statistics allow an estimate of the probability of any particular deviation from the mean value. It is common practice to report the mean \pm one or two standard deviations as the result. In routine analysis, such replication is not carried out, and it is not possible to report a Gaussian standard deviation. With counting procedures, however, it is possible to estimate a Poisson standard deviation directly from the count. Data are commonly reported as the measured value \pm one or two Poisson standard deviations. The reported values are then considered to give some indication of the range in which the true value might be expected to occur.

A LLD is the smallest amount of sample activity that will yield a net count for which there is confidence at a predetermined level that activity is present. LLDs are calculated values for individual radionuclides based on a number of different factors including sample size, counting efficiency and background count rate of the instrument, the background and sample counting time, the decay time, and the chemical recovery of the analytical procedures. A minimum detectable activity value (MDA) is the smallest amount of activity that can be detected in an actual sample and uses the values obtained from the instrument and outcome of the analytical process. Therefore, the MDA values may differ from the calculated LLD values if the sample size and chemical recovery, decay values, or the instrument efficiency, background, or count time differed from those used in the LLD calculation. The factors governing the calculation of the LLD and MDA values are discussed below:

1. Sample Size

2. Counting Efficiency

The fundamental quantity in the measurement of a radioactive substance is the number of disintegrations per unit time. As with most physical measurements in analytical chemistry, an absolute measurement of the disintegration rate is seldom possible, rather it is necessary to compare the sample with one or more standards. The standards determine the counter efficiency that may then be used to convert sample counts per minute (cpm) to disintegrations per minute (dpm).

3. Background Count Rate

Any counter will show a certain counting rate without a sample in position. This background counting rate comes from several sources: 1) natural environmental radiation from the surrounding materials, 2) cosmic radiation, and 3) the natural radioactivity in the counter material itself. The background counting rate will depend on the amounts of these types of radiation and the sensitivity of the counter to the radiation.

4. Background and Sample Counting Time

The amount of time devoted to the counting of the background depends on the level of activity being measured. In general, with low level samples, this time should be about equal to that devoted to counting a sample.

5. Time Interval between Sample Collection and Counting

Decay measurements are useful in identifying certain short-lived nuclides. The disintegration constant is one of the basic characteristics of a specific radionuclide and is readily determined, if the half-life is sufficiently short. To ensure the required LLDs are achieved, appropriate decay correction values are used to account for radioactive decay during transit time and sample processing.

Table 6.1 ODCM REQUIRED LOWER LIMITS OF DETECTION (a priori)

ANALYSIS/ NUCLIDE	WATER (pCi/liter)	AIRBORNE PARTICULATE or GAS (pCi/m ³)	MILK (pCi/liter)	VEGETATION (pCi/kg, wet)
Gross Beta	4	0.01		
H-3	2000*			
Mn-54	15			
Fe-59	30			
Co-58, 60	15			
Zn-65	30			
Zr-95	30			
Nb-95	15			
I-131	1**	0.07	1	60
Cs-134	15	0.05	. 15	60
Cs-137	18	0.06	18	80
Ba-140	60		60	
La-140	15		15	

NOTES:

- * If no drinking water pathway exists, a value of 3000 pCi/liter may be used.
- ** If no drinking water pathway exists, a value of 15 pCi/liter may be used.

This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

Table 6.2 ODCM REQUIRED REPORTING LEVELS

ANALYSIS/ NUCLIDE	WATER (pCi/liter)	AIRBORNE PARTICULATE or GAS (pCi/m ³)	MILK (pCi/liter)	VEGETATION (pCi/kg, wet)
H-3	20,000*			
Mn-54	1,000	· · · · · · · · · · · · · · · · · · ·		
Fe-59	400			<u> </u>
Co-58	1,000			
Co-60	300			
Zn-65	300			<u> </u>
Zr/Nb-95	400		· · · · · · · · · · · · · · · · · · ·	
I-131	2**	0.9	3	100
Cs-134	30	10	60	1,000
Cs-137	50	20	70	2,000
Ba/La-140	200		300	

NOTES:

- * For drinking water samples. This is a 40CFR141 value. If no drinking water pathway exists, a value of 30,000 pCi/liter may be used.
- ** If no drinking water pathway exists, a reporting level of 20 pCi/liter may be used.

The values in this table are (calendar) quarterly average values, as stated in the ODCM.

Table 6.3 TYPICAL MDA VALUES

ANALYSIS/ NUCLIDE	WATER (pCi/liter)	MILK (pCi/liter)	AIRBORNE PARTICULATE or GAS (pCi/m ³)	VEGETATION (pCi/kg, wet)
Gross Beta	3		0.004	
H-3	250			
Mn-54	13			
Fe-59	25		•	
Co-58	11			
Co-60	13			
Zn-65	28			
Zr-95	20			
Nb-95	12			
I-131	10 ^a	1	0.05 b	45
Cs-134	10	1	0.02 ^b	50
Cs-137	11	1	0.02 ^b	70
Ba-140	40	3		
La-140	14	1		

NOTES:

a - low level I-131 is not required since there is no drinking water pathway b - Based on 433 m^3 volume

7. Interlaboratory Comparison Program

7.1. Quality Control Program

APS maintains an extensive QA/QC Program to provide assurance that samples are collected, handled, tracked, and analyzed to specified requirements. This program includes appropriate elements of USNRC Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment, Rev. 1. Included in the program are procedures for sample collection, preparation and tracking, sample analysis, equipment calibration and checks, and ongoing participation in an interlaboratory comparison program. Duplicate/replicate samples are analyzed to verify analytical precision and sample methodology. Comprehensive data reviews are performed including trending of data where appropriate.

During 2005, APS analyzed the following sample types under the interlaboratory comparison program;

- Beta/Gamma/ in Air Filter
- I-131 in Air
- Beta in Water
- Gamma in Water
- Tritium in Water
- Gamma in milk

7.2. Intercomparison Results

APS participates in a crosscheck program using vendor supplied blind radionuclide samples. Results for the interlaboratory comparison program are presented in Table 7.1.

All crosscheck results reported in 2005 were within the established acceptance criteria.

TABLE 7.1 INTERLABORATORY COMPARISON RESULTS

Sample	Analysis	Nuclide	Known	PVNGS	1 sigma	Resolution	Ratio	Accept/Reject
Туре	Туре		Value	Value	Error	*		
	Mixed				_			
Water	Gamma	I-131	93.8	103	7	15	1.10	Accept
	E4645-111	Ce-141	101.2	110	14	8	1.09	Accept
		Cr-51	330	330	31	11	1.00	Accept
		Cs-134	104	90	6	15	0.87	Accept
		Cs-137	206	210	14	15	1.02	Accept
	, ,	Co-58	5.8	<mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>Accept</td></mda<>	NA	NA	NA	Accept
		Mn-54	136	148	13	11	1.09	Accept
		Fe-59	69.7	85	12	7	1.22	Accept
	:	Zn-65	169	173	15	12	1.02	Accept
		Co-60	158	164	8	21	1.04	Accept
	Tritium	H-3	9100	7690	265	29	0.84	Accept
	E4649-111							
	Gross Beta	gbeta	214	219	3	73	1.03	Accept
	E4644-111							
Air	Gross Beta	gbeta	128	158	2.1	75	1.24	Accept
	E4646-111							
	Iodine Cart	I-131	92.2	91	5.3	17	0.99	Accept
	E4647-111							
	Mixed							
	Gamma	Ce-141	81.8	89	4.4	20	1.09	Accept
	E4648-111	Cr-51	268	270	18.5	15	1.01	Accept
]]		Cs-134	84.2	76	4.9	16	0.90	Accept
		Cs-137	167	182	11.5	16	1.09	Accept
		Co-58	4.7	4.0	1.5	3	0.85	Accept
		Mn-54	111	125	8.4	15	1.13	Accept
		Fe-59	56.6	61	5.6	11	1.08	Accept
		Zn-65	137	163	11	15	1.19	Accept
		Co-60	128	139	7	20	1.08	Accept
	Mixed					1 Ng 1		
Milk	Gamma	I-131	81	80	3	27	0.99	Accept
	E4805-111	Ce-141	47.8	51	6	9	1.07	Accept
	1	Cr-51	41.2	36	13	3	0.87	Accept
		Cs-134	18.6	16	2	8	0.86	Accept
		Cs-137	40.4	43		7	1.06	Accept
		Co-58	16.5	16	6 3 5	5	0.97	Accept
t I		Mn-54	32.5	35	5	7	1.08	Accept
	Í	Fe-59	17.6	15	4	4	0.85	Accept
		Zn-65	32.8	30	7	4	0.91	Accept
		Co-60	23.7	25	3	8	1.05	Accept

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005 21

TABLE 7.1 INTERLABORATORY COMPARISON RESULTS

					1	. · · · ·					
Sample	Analysis	Nuclide	Known	PVNGS	sigma	Resolution *	Ratio	Accept/Reject			
Туре	Туре	[]	Value	Value	Error	L*					
	Mixed										
Water	Gamma	I-131	53.1	57	5	11	1.07	Accept			
	E4796-111	Ce-141	165	166	9	18	1.01	Accept			
		Cr-51	142	168	22	8	1.18	Accept			
		Cs-134	64.3	58	4	15	0.90	Accept			
		Cs-137	139	143	9	16	1.03	Accept			
		Co-58	57.1	57	5	11	1.00	Accept			
		Mn-54	112	123	8	15	1.10	Accept			
		Fe-59	60.6	58	. 7	8	0.96	Accept			
		Zn-65	113	124	9	14	1.09	Accept			
		Co-60	81.4	85	5	17	1.04	Accept			
	Tritium	H-3	13200	11600	285	41	0.88	Accept			
	E4800-111										
	Gross Beta	gbeta	175	199	3	66	1.14	Accept			
	E4795-111										
Air	Gross Beta	gbeta	174	211	2.4	88	1.21	Accept			
	E4797-111										
	Iodine Cart	I-131	73.7	79	4.5	18	1.07	Accept			
	E4798-111										
	Mixed										
	Gamma	Ce-141	186	191	9	21	1.09	Accept			
	E4799-111	Cr-51	160	162	20	8	1.08	Accept			
		Cs-134	72.4	68	5	14	0.85	Accept			
		Cs-137	157	166	11	15	1.13	Accept			
		Co-58	64.2	75	6	13	1.10	Accept			
		Mn-54	126	143	10	. 14	1.19	Accept			
		Fe-59	68.3	76	8	10	1.28	Accept			
		Zn-65	128	156	11 .		1.18	Accept			
		Co-60	91.6	99	6	14 17	1.10	Accept			
J								Acch			
÷ •	* colculated from DVNGS value/1 sigms error value										

* calculated from PVNGS value/1 sigma error value

Acceptance Criteria ¹	
Resolution	Ratio
<4	
4-7	0.5-2.0
8-15	0.6-1.66
16-50	0.75-1.33
51-200	0.80-1.25
>200	0.85-1.18

¹ From NRC Inspection Manual, Inspection Procedure 84750, "Radioactive Waste Treatment, And Effluent And Environmental Monitoring"

8. Data Interpretations and Conclusions

Associated with the analytical process are potential random and systematic errors. Systematic errors can be caused by instrument malfunctions, incomplete precipitation, back scattering, and self-absorption. Random errors are beyond the control of the analyst.

Efforts are made to minimize both systematic and random errors in the data reported. Systematic errors are minimized by performing reviews throughout the analysis. For example, instruments are checked routinely with radioactive sources, and recovery and self-absorption factors based on individual sample analyses are incorporated into the calculation equations where necessary. Random errors are reduced by comparing all data to historical data for the same site and performing comparisons between analytical results when available. In addition, when data do not appear to match historical results, analyses may be rerun on a separate aliquot of the sample to verify the presence of the activity. The acceptance of data is dependent upon the results of quality control samples and is part of the data review process for all analytical results.

The "plus or minus value" reported with each analytical result represents the counting error associated with the result and gives the 95% confidence (2σ) interval around the data.

Most samples contain radioactivity associated with natural background/cosmic radioactivity (e.g. K-40, Th-234, and Be-7). Gross beta results for drinking water and air are due to natural background. <u>Gamma emitting radionuclides</u>, which can be attributed to natural background sources, are not indicated in this report.

Results and interpretation of the data for all of the samples analyzed during 2005 are presented in the following sections. Assessment of pre-operational and operational data revealed no changes to environmental radiation levels. There were no measurable radiological impacts on the environment due to PVNGS operations in 2005.

8.1. Air Particulates

Weekly gross beta results, in quarterly format, are presented in Tables 8.1 and 8.2. Gross beta activity at indicator locations ranged from 0.015 to 0.066 pCi/m³. The associated counting error ranged from 0.001 to 0.004 pCi/m³. Mean quarterly activity is calculated using weekly activity over a thirteen (13) week period. Also presented in the tables are the weekly mean values of all the sites as well as the percent relative standard deviation (RSD %) for the data. The findings are consistent with pre-operational baseline and previous operational results. The results are summarized in Table 11.1.

Table 8.3 displays the results of gamma spectroscopy on the quarterly composites. No Cs-134 or Cs-137 was observed.

8.2. **Airborne Radioiodine**

Tables 8.4 and 8.5 present the quarterly radioiodine results. No airborne radioiodine was observed in any of the samples.

8.3. Vegetation

Table 8.6 presents gamma isotopic data for the vegetation samples. No gamma emitting radionuclides were observed in any of the samples.

8.4. Milk

Table 8.7 presents gamma isotopic data for the goat milk samples. No gamma emitting radionuclides were observed in any of the samples.

8.5. **Drinking Water**

Samples were analyzed for gross beta, tritium, and gamma emitting radionuclides. Results of these analyses are presented in Table 8.8. No tritium or gamma emitting radionuclides were detected in any samples. Gross beta activity ranged from less than detectable to a high of 5.0 pCi/liter (Gavette residence, June composite).

8.6. Groundwater

Groundwater samples were analyzed for tritium and gamma emitting radionuclides. Results obtained from the analysis of the samples are presented in Table 8.9.

No tritium or gamma emitting radionuclides were observed in any of the samples.

8.7. **Surface Water**

Surface water samples from the Reservoir and Evaporation Ponds were analyzed for tritium and gamma emitting radionuclides. The Reservoir contains processed sewage water from the City of Phoenix and is approximately 80 acres in size. The two Evaporation Ponds receive mostly circulating water from main turbine condenser cooling and are about 250 acres each. Results are presented in Table 8.10. I-131 was observed in Evaporation Pond # 1 in three (3) monthly composite samples (7-19 pCi/liter) and one (1) of the Reservoir monthly composite samples (13 pCi/liter). I-131 is a result of radiopharmaceutical I-131 in the Phoenix sewage effluent.

Tritium was routinely observed in Evaporation Ponds 1 and 2. The highest concentration in Evaporation Pond #1 was 2038 pCi/liter and the highest concentration in Evaporation Pond #2 was 1763 pCi/liter. Tritium was not identified in the Reservoir. The tritium identified in the Evaporation Ponds has been attributed to plant gaseous effluent releases and secondary plant liquid releases.

WRF influent (Phoenix sewage effluent) samples collected by the WRF were analyzed for gamma emitting radionuclides and tritium. The results, presented in Table 8.10, demonstrate that I-131 was observed routinely. The highest I-131 concentration was 158 pCi/liter (week of May 31st). The Arizona Radiation Regulatory Agency was contacted each week that this concentration exceeded 100 pCi/liter (one time in 2005). None of the samples analyzed indicated the presence of tritium.

Table 8.10 also presents gamma spectroscopy and tritium measurements of samples collected from Sedimentation Basin #2. This basin collects rain waters from site runoff and was dry for most of the year. Tritium was detected in nine (9) samples ranging from 387 to 958 pCi/liter. The tritium in this basin has been attributed to plant gaseous effluent releases and secondary plant liquid releases.

Sludge and Sediment 8.8.

8.8.1. WRF Centrifuge waste sludge

Sludge samples were obtained from the WRF centrifuge and analyzed by gamma spectroscopy. I-131 in the WRF waste centrifuge sludge is consistent with historical values and, as previously discussed, is due to radiopharmaceuticals in the WRF influent. I-131 was present in all forty-nine (49) samples ranging from 342 to 2121 pCi/kg.

In-111 was also identified in the sludge in twelve (12) samples. The highest concentration was 86 pCi/kg. It was previously established that In-111 is in use in the Phoenix area as a radiopharmaceutical. Results for WRF centrifuge waste sludge can be found in Table 8.11.

8.8.2. **Evaporation Ponds #1 and #2 sediment**

A set of ten (10) Evaporation Pond sediment samples indicated low levels of Cs-137 in three (3) samples from Evaporation Pond #2. The concentrations were consistent with historical values. Sample results can be found in Table 8.11.

8.8.3. **Cooling Tower sludge/scale**

Sludge/scale originating from the Unit cooling towers, piping, and/or circulating water canals was disposed of in the WRF sludge landfill during 2005. Sample results can be found in Table 8.11.

8.8.4. Sedimentation Basin #2 sediment

Sediment samples were collected from Sedimentation Basin #2, when there was no water present, and analyzed for gamma emitting radionuclides. No gamma emitting radionuclides were detected in any of the samples. Sample results can be found in Table 8.11.

8.9. Data Trends

Figures 8.1-8.5 present data in graphical format. Historical data are displayed for comparison where practical.

TABLE 8.1 PARTICULATE GROSS BETA IN AIR 1st - 2nd QUARTER

	ODCM	required	samples	denoted	by *
--	-------------	----------	---------	---------	------

units are pCi/m³

units are pCi/m ⁻														
		New York Provide Street Provide Stre	a an		a de la companya	lst Ç)uarter			NE CALL				
				(control)										
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*	Mean	RSD (%)
1	27-Dec-04	4-Jan-05	0.027	0.030	N/A	0.024	0.026	0.025	0.026	0.025	0.023	0.024	0.026	8.1
2	4-Jan-05	11-Jan-05	0.024	0.026	N/A	0.020	0.025	0.022	0.021	invalid *	invalid ^a	0.019	0.022	11.8
3	11-Jan-05	18-Jan-05	0.029	0.029	N/A	0.026	0.031	0.027	0.028	0.029	0.027	0.025	0.028	6.6
4	18-Jan-05	25-Jan-05	0.048	0.046	N/A	0.048	0.046	0.037	0.042	0.040	0.046	0.046	0.044	8.6
5	25-Jan-05	1-Feb-05	0.027	0.028	N/A	0.027	0.028	0.028	0.024	0.027	0.026	0.025	0.027	5.3
6	1-Feb-05	8-Feb-05	0.034	0.033	N/A	0.036	0.034	0.033	0.030	0.031	0.035	0.034	0.033	5.6
7	8-Feb-05	14-Feb-05	0.021	0.020	N/A	0.022	0.022	0.019	0.022	0.021	0.020	0.019	0.021	5.9
8	14-Feb-05	22-Feb-05	0.023	0.024	N/A	0.020	0.022	0.021	0.020	0.022	0.021	0.020	0.021	6.6
9	22-Feb-05	1-Mar-05	0.018	0.016	N/A	0.017	0.017	0.015	0.017	0.018	0.016	0.016	0.017	6.0
10	1-Mar-05	8-Mar-05	0.023	0.021	N/A	0.023	0.021	0.021	0.020	0.021	0.022	0.023	0.022	5.2
11	8-Mar-05	15-Mar-05	0.041	0.040	N/A	0.032	0.038	0.040	0.035	0.040	0.040	0.037	0.038	7.8
12	15-Mar-05	22-Mar-05	0.028	0.026	N/A	0.023	0.025	0.025	0.024	0.025	0.025	0.026	0.025	5.5
13	22-Mar-05	29-Mar-05	0.019	0.018	N/A	0.017	<u>0.017</u>	0.018	0.017	0.018	0.017	0.017	0.018	4.1
N	lean		0.028	0.027	N/A	0.026	0.027	0.025	0.025	0.026	0.027	0.025	0.026	3.7
الم المحالية، ترجل المن المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحال المحالية المحالية الم المحالية المحالية الم						2nd (Quarter							
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		
Week #	DATE	DATE	. 4	6A*	7 <u>A</u>	14A*	15*	17A	21	29*	35	40*	Mean	RSD (%)
14	29-Mar-05	5-Apr-05	0.015	0.022	N/A	0.020	0.023	0.023	0.022	0.019	0.021	0.020	0.021	12.2
15	5-Apr-05	11-Apr-05	0.023	0.025	N/A	0.021	0.021	0.025	0.022	0.023	0.021	0.020	0.022	8.1
16	11-Apr-05	18-Apr-05	0.039	0.036	N/A	0.036	0.035	0.039	0.032	0.034	0.034	0.033	0.035	6.9
17	18-Apr-05	26-Apr-05	0.025	0.027	N/A	0.023	0.025	0.020	0.025	0.023	0.025	0.022	0.024	8.7
18	26-Apr-05	3-May-05	0.022	0.019	N/A	0.020	0.021	0.022	0.020	0.018	0.022	0.020	0.020	7.0
19	3-May-05	10-May-05	0.022	0.021	N/A	0.023	0.022	0.019	0.020	0.025	0.022	0.020	0.022	8.4
20	10-May-05	17-May-05	0.029	0.028	N/A	0.023	0.026	0.026	0.025	0.027	0.026	0.026	0.026	6.5
21	17-May-05	24-May-05	0.031	0.035	0.033	0.031	0.030	0.032	0.030	0.034	0.031	0.028	0.032	6.6
22	24-May-05	31-May-05	0.032	0.033	0.031	0.031	0.033	0.031	0.034	0.034	0.031	0.034	0.032	4.2
23	31-May-05	7-Jun-05	0.035	0.036	0.034	0.031	0.034	0.035	0.033	0.035	0.034	0.033	0.034	4.2
24	7-Jun-05	14-Jun-05	0.029	0.024	0.025	0.028	0.027	0.027	0.026	0.025	0.025	0.027	0.026	6.0
25	14-Jun-05	21-Jun-05	0.031	0.034	0.031	0.030	0.030	0.035	0.032	0.031	0.031	0.028	0.031	6.4
26		28-Jun-05	0.025	0.037	0.037	0.026	0.038	0.035	0.035	0.036	0.040	0.036	0.035	14.4
N	lean lean		0.028	0.029	N/A	0.026	0.028	0.028	0.027	0.028	0.028	0.027	0.028	2.9

* sample invalidated due to low value and high system RSD % (24.4)- technician stated the sample was wet from rain

TABLE 8.2 PARTICULATE GROSS BETA IN AIR 3rd - 4th QUARTER

ODCM required samples denoted by *

units are pCi/m³

						3rd Qui	arter							
				(control)										
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*	Mean	RSD (%)
27	28-Jun-05	5-Jul-05	0.030	0.029	0.029	0.028	0.030	0.027	0.026	0.030	0.026	0.027	0.028	5.7
28	5-Jul-05	12-Jul-05	0.027	0.032	0.029	0.030	0.028	0.030	0.034	0.026	0.033	0.031	0.030	8.6
29	12-Jul-05	19-Jul-05	0.037	0.034	0.037	0.036	0.039	0.037	0.038	0.042	0.036	0.035	0.037	6.0
30	19-Jul-05	26-Jul-05	0.025	0.026	0.026	0.025	0.027	0.025	0.027	0.025	0.026	0.027	0.026	3.4
31	26-Jul-05	2-Aug-05	0.023	0.020	0.023	0.022	0.023	0.023	0.021	0.022	0.022	0.022	0.022	4.5
32	2-Aug-05	9-Aug-05	0.029	0.029	0.027	0.028	0.029	0.028	0.028	0.028	0.028	0.026	0.028	3.4
33	9-Aug-05	16-Aug-05	0.027	0.026	0.027	0.027	0.030	0.030	0.028	0.028	0.028	0.030	0.028	5.2
34	16-Aug-05	23-Aug-05	0.030	0.031	0.030	0.032	0.033	0.032	0.030	0.034	0.033	0.032	0.032	4.5
35	23-Aug-05	30-Aug-05	0.027	0.025	0.026	0.028	0.029	0.028	0.025	0.027	0.026	0.026	0.027	5.0
36	30-Aug-05	6-Sep-05	0.039	0.038	0.038	0.035	0.036	0.035	0.036	0.039	0.034	0.034	0.036	5.4
37	6-Sep-05	13-Sep-05	0.033	0.032	0.033	0.032	0.038	0.033	0.033	0.034	0.033	0.031	0.033	5.6
38	13-Sep-05	19-Sep-05	0.034	0.033	0.034	0.030	0.034	0.034	0.032	0.035	0.031	0.033	0.033	4.7
39	19-Sep-05	27-Sep-05	0.038	0.040	0.033	0.035	0.037	0.034	0.035	0.036	0.034	0.034	0.036	6.1
]	Mean		0.031	0.030	0.030	0.030	0.032	0.030	0.030	0.031	0.030	0.030	0.030	2.0
		2007 1787 9977				4th Qu	arter							
1 . J. 1988	***** * `*	* w x w***	b.	(control)										
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	<u>29</u> *	35	40*	Mean	<u>RSD (%)</u>
40	27-Sep-05	4-Oct-05	0.038	0.043	0.037	0.037	0.040	0.039	0.038	0.038	0.037	0.038	0.039	4.8
41	4-Oct-05	11-Oct-05	0.033	0.032	0.026	0.032	0.030	invalid ^a	0.031	0.035	0.033	0.032	0.032	7.9
42	11-Oct-05	19-Oct-05	0.041	0.038	0.037	0.038	0.035	0.041	0.034	0.034	0.036	0.034	0.037	7.3
43	19-Oct-05	25-Oct-05	0.035	0.036	0.035	0.034	0.034	0.040	0.040	0.038	0.037	0.034	0.036	6.5
44	25-Oct-05	1-Nov-05	0.046	0.046	0.044	0.044	0.046	0.044	0.044	0.046	0.045	0.043	0.045	2.5
45	1-Nov-05	8-Nov-05	0.054	0.055	0.053	0.053	0.052	0.054	0.049	0.054	0.048	0.051	0.052	4.4
46	8-Nov-05	15-Nov-05	0.037	0.037	0.034	0.034	0.035	0.033	0.036	0.036	0.035	0.035	0.035	3.7
47	15-Nov-05	22-Nov-05	0.031	0.033	0.031	0.030	0.033	0.030	0.032	0.034	0.032	0.029	0.032	5.0
48	22-Nov-05	29-Nov-05	0.042	0.043	0.040	0.039	0.038	0.036	0.041	0.041	0.040	0.040	0.040	5.0
49	29-Nov-05	6-Dec-05	0.029	0.034	0.029	0.028	0.031	0.026	0.029	0.030	0.027	0.028	0.029	7.7
50	6-Dec-05	13-Dec-05	0.056	0.060	0.052	0.050	0.050	0.051	0.051	0.051	0.048	0.048	0.052	7.1
51	13-Dec-05	20-Dec-05	0.066	0.070	0.062	0.057	0.059	0.058	0.060	0.063	0.060	0.060	0.062	6.4
52	20-Dec-05	27-Dec-05	0.051	0.054	0.046	0.043	0.042	0.042	0.043	0. <u>0</u> 47	0.041	0.036	0.045	11.7
	Mean		0.043	0.045	0.040	0.040	0.040	0.041	0.041	0.042	0.040	0.039	0.041	4.1
	Annual Avera		0.032			0.030	0.032	0.031	0.031	0.032	0.031	0.030	0.032	4.2

a Sample invalidated due to equipment malfunction that prevented accurate volume determination (pump not running, ETM running)

TABLE 8.3 GAMMA IN AIR FILTER COMPOSITES

			(control)								
QUARTER		Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
ENDPOINT	NUCLIDE	4	<u>6A*</u>	7A	14A*	15*	17A	21	29*	35	40*
29-Mar-05	Cs-134	< 0.0016	< 0.0013	N/A	<0.0022	< 0.0032	< 0.0011	< 0.0032	< 0.0021	< 0.0033	<0.0018
	Cs-137	<0.0024	< 0.0035	N/A	<0.0026	< 0.0035	<0.0022	<0.0030	<0.0024	<0.0042	<0.0012
28-Jun-05	Cs-134	<0.0017	< 0.0030	N/A	< 0.0023	<0.0019	<0.0038	<0.0022	< 0.0041	< 0.0025	<0.0037
	Cs-137	< 0.0025	< 0.0036	N/A	< 0.0036	<0.0018	<0.0042	< 0.0021	<0.0038	<0.0026	<0.0028
27-Sep-05	Cs-134	< 0.0021	<0.0040	<0.0019	< 0.0034	<0.0021	<0.0049	<0.0017	<0.0029	<0.0021	<0.0033
	Cs-137	<0.0020	<0.0036	<0.0025	<0.0011	<0.0019	< 0.0042	<0.0024	<0.0036	<0.0021	<0.0042
27-Dec-05	Cs-134	<0.0030	< 0.0041	<0.0025	<0.0038	<0.0027	<0.0031	<0.0020	<0.0029	<0.0019	<0.0038
	Cs-137	<0.0053	<0.0039	<0.0031	<0.0036	<0.0020	<0.0033	<0.0015	<0.0036	<0.0025	<0.0030

ODCM required samples denoted by * units are pCi/m³

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005

TABLE 8.4 RADIOIODINE IN AIR 1st - 2nd QUARTER

RADIOIODINE IN AIR 1st - 2nd QUARTER

ODCM required samples denoted by *

units are pCi/m³

					lst One	rter			- Alexandra d			
	and a subsection of the second section of the second second second second second second second second second s		Rejúniu (, in s eleje	(control)	тэк Хии		0.07	ماليقانا فالجاراتها معايشات فيريد	i i ay a su su ini hi su su ini		an a	WFW CONTRACTOR OF B
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*
1	27-Dec-04	4-Jan-05	<0.027	< 0.057	N/A	< 0.032	< 0.025	< 0.038	<0.028	< 0.036	<0.027	< 0.039
2	4-Jan-05	11-Jan-05	< 0.035	<0.042	N/A	<0.044	<0.029	<0.065	<0.045	<0.051	<0.042	<0.034
3	11-Jan-05	18-Jan-05	< 0.035	<0.042	N/A	<0.048	< 0.058	< 0.052	<0.028	<0.051	<0.030	<0.068
4	18-Jan-05	25-Jan-05	< 0.031	<0.036	N/A	<0.039	<0.038	< 0.034	< 0.034	<0.026	<0.047	<0.033
5	25-Jan-05	1-Feb-05	< 0.025	<0.058	N/A	< 0.054	< 0.033	< 0.032	<0.026	< 0.033	<0.026	< 0.033
6	1-Feb-05	8-Feb-05	< 0.044	< 0.050	N/A	<0.015	<0.047	<0.051	<0.044	<0.015	<0.042	<0.053
7	8-Feb-05	14-Feb-05	< 0.057	< 0.035	N/A	<0.039	<0.035	<0.049	<0.052	<0.039	<0.038	<0.049
8	14-Feb-05	22-Feb-05	<0.029	<0.043	N/A	<0.048	<0.052	<0.037	<0.043	<0.057	<0.027	<0.032
9	22-Feb-05	1-Mar-05	<0.041	<0.054	N/A	<0.055	<0.054	<0.042	<0.032	<0.042	<0.054	<0.042
10	1-Mar-05	8-Mar-05	<0.035	<0.052	N/A	<0.035	<0.051	<0.053	<0.069	<0.053	<0.046	<0.059
11	8-Mar-05	15-Mar-05	<0.033	<0.058	N/A	<0.049	<0.031	<0.052	< 0.041	<0.064	<0.031	<0.060
12	15-Mar-05	22-Mar-05	<0.057	<0.034	N/A	<0.056	<0.042	<0.044	<0.032	<0.012	<0.036	<0.012
13	22-Mar-05	29-Mar-05	<0.040	<0.057	N/A	<0.028	<0.048	<0.035	<0.065	<0.037	<0.057	<0.034
			Not the second		2nd Ou	irter						
-2		nage and a set win any any array of the barry stands from the		(control)								
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*
14	29-Mar-05	5-Apr-05	< 0.034	<0.035	N/A	< 0.035	<0.024	<0.037	< 0.036	< 0.033	<0.028	<0.039
	5-Apr-05	11-Apr-05	< 0.041	<0.050	N/A	<0.060	<0.031	<0.068	<0.045	<0.065	< 0.033	<0.050
- 16	11-Apr-05	18-Apr-05	<0.047	<0.055	N/A	<0.028	<0.060	< 0.061	<0.048	<0.049	<0.047	<0.048
·	18-Apr-05	26-Apr-05	< 0.033	<0.037	N/A	<0.038	<0.029	<0.052	<0.020	<0.037	<0.027	<0.044
18	26-Apr-05	3-May-05	< 0.043	<0.060	N/A	<0.037	<0.042	<0.035	<0.049	<0.033	<0.043	<0.041
19	3-May-05	10-May-05	< 0.061	<0.028	N/A	<0.012	<0.035	<0.054	<0.033	<0.045	<0.038	<0.049
20	10-May-05	17-May-05	< 0.031	<0.049	N/A	<0.049	<0.035	<0.012	<0.036	<0.045	<0.031	<0.035
21	17-May-05	24-May-05	< 0.035	<0.052	<0.032	<0.043	<0.012	<0.032	<0.035	<0.035	<0.062	<0.047
22	24-May-05	31-May-05	<0.041	<0.068	<0.034	<0.037	<0.025	<0.055	< 0.035	<0.054	<0.031	<0.041
23	31-May-05	7-Jun-05	<0.037	<0.048	<0.054	<0.031	<0.055	<0.036	<0.055	<0.034	<0.043	<0.029
24	7-Jun-05	14-Jun-05	<0.036	<0.062	<0.056	<0.037	<0.060	<0.035	<0.066	<0.051	<0.035	<0.033
25	14-Jun-05	21-Jun-05	<0.038	<0.056	<0.055	<0.035	<0.051	<0.036	<0.067	<0.045	<0.044	<0.069
					<0.045							

TABLE 8.5 RADIOIODINE IN AIR 3rd - 4th QUARTER

				0-01-11	units are	nCi/m ³						
					3rd Qua	وجريكوسيود للاراي الاختيف ستشره ليعاد ايم						
			an a	(control)	JIUQUA		0.070			av södinde som att som	ala ann an ann an an ann an an an an an an	oo ahaa ahaa ahaa ahaa ahaa ahaa ahaa a
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*
27	28-Jun-05	5-Jul-05	< 0.039	<0.048	<0.058	<0.029	< 0.059	< 0.041	< 0.053	< 0.042	< 0.053	< 0.031
28	5-Jul-05	12-Jul-05	<0.042	<0.055	<0.054	<0.020	<0.060	<0.036	< 0.034	<0.024	<0.057	<0.033
29	12-Jul-05	19-Jul-05	< 0.036	< 0.055	<0.066	<0.040	< 0.035	< 0.033	<0.051	<0.032	<0.068	<0.031
30	19-Jul-05	26-Jul-05	< 0.048	< 0.026	< 0.033	<0.020	< 0.042	<0.026	< 0.054	<0.023	<0.034	<0.034
31	26-Jul-05	2-Aug-05	<0.033	<0.047	<0.048	< 0.042	<0.042	<0.020	<0.033	<0.042	<0.022	<0.028
32	2-Aug-05	9-Aug-05	< 0.032	< 0.036	< 0.033	<0.027	<0.034	<0.032	<0.039	<0.034	<0.030	<0.040
33	9-Aug-05	16-Aug-05	<0.031	<0.049	<0.034	<0.033	<0.049	<0.022	<0.042	<0.031	<0.034	<0.034
34	16-Aug-05	23-Aug-05	<0.026	<0.031	<0.033	<0.036	<0.030	<0.029	<0.031	<0.032	<0.037	<0.032
35	23-Aug-05	30-Aug-05	<0.057	<0.034	<0.055	<0.041	<0.034	<0.035	<0.033	<0.030	<0.034	<0.028
36	30-Aug-05	6-Sep-05	<0.031	<0.050	<0.041	<0.029	<0.033	<0.038	<0.033	<0.043	<0.033	<0.037
37	6-Sep-05	13-Sep-05	<0.043	<0.033	<0.053	<0.037	<0.053	<0.019	<0.059	<0.038	<0.061	<0.036
38	13-Sep-05	19-Sep-05	<0.040	<0.063	<0.049	<0.015	<0.049	<0.063	<0.049	<0.049	<0.040	<0.050
39	19-Sep-05	27-Sep-05	<0.051	<0.043	<0.043	<0.045	<0.053	<0.030	< 0.062	< 0.034	<0.044	<0.054
			and a start of the second s		4th Qua	arter						
1.979.0014 1.1000000 9.9 1 1 1	to a differ days manager, course			(control)			0.070					
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
Week #	DATE	DATE	4	6A*	7A	14 <u>A</u> *	15*	17A	21	29*	35	40*
40	27-Sep-05	4-Oct-05	<0.030	<0.048	<0.046	< 0.035	< 0.032	< 0.052	<0.035	<0.050	<0.033	<0.069
41	4-Oct-05	11-Oct-05	<0.043	<0.041	<0.048	<0.033	<0.037	invalid *	<0.039	<0.037	<0.049	<0.031
42	11-Oct-05	19-Oct-05	< 0.031	<0.037	<0.036	<0.030	<0.037	<0.038	<0.048	<0.032	<0.011	<0.032
43	19-Oct-05	25-Oct-05	<0.049	<0.068	<0.063	<0.040	<0.039	<0.035	<0.064	<0.045	<0.049	<0.040
44	25-Oct-05	1-Nov-05	<0.013	<0.040	<0.032	<0.033	<0.042	<0.026	<0.012	<0.029	<0.033	<0.028
45	1-Nov-05	8-Nov-05	<0.028	<0.042	<0.054	<0.031	<0.044	<0.039	<0.050	<0.040	<0.057	<0.033
46	8-Nov-05	15-Nov-05	<0.044	<0.058	<0.053	<0.030	<0.060	<0.032	<0.034	<0.032	<0.055	<0.030
47	15-Nov-05	22-Nov-05	<0.031	<0.035	<0.052	<0.027	<0.036	<0.030	<0.059	<0.028	<0.055	<0.034
48	22-Nov-05	29-Nov-05	<0.043	<0.056	<0.052	<0.035	<0.043	<0.040	<0.042	<0.031	<0.012	<0.042
49	29-Nov-05	6-Dec-05	<0.027	<0.050	<0.032	<0.035	<0.034	<0.023	<0.058	<0.036	<0.046	<0.029
50	6-Dec-05	13-Dec-05	<0.058	<0.044	<0.044	<0.044	<0.056	<0.044	<0.055	<0.042	<0.045	<0.052
51	13-Dec-05	20-Dec-05	<0.036	<0.037	<0.013	<0.039	<0.058	<0.033	<0.014	<0.036	<0.057	<0.034
52	20-Dec-05	27-Dec-05	<0.070	<0.023	< 0.050	< 0.035	<u><0.0</u> 57	<0.030	< 0.048	<0.055	<0.035	<0.050

ODCM required samples denoted by *

a Sample invalidated due to equipment malfunction that prevented accurate volume determination (pump not running, ETM running)

TABLE 8.6 VEGETATION

ODCM required samples denoted by * units are pCi/kg, wet

LOCATION	ТҮРЕ	DATE COLLECTED	<60 I-131	<60 Cs-134	<80 Cs-137
BRANCH RESIDENCE (Site #52)*		NO SAMPLES AVAILABLE		·	
DUNCAN FAMILY FARMS (Site #62)*	green cabbage red cabbage savoy green cabbage red cabbage green cabbage savoy red cabbage green cabbage	14-Jan-05 14-Jan-05 14-Jan-05 15-Feb-05 15-Feb-05 11-Mar-05 13-Apr-05 13-Apr-05 13-Apr-05 19-May-05 10-Nov-05 10-Nov-05 10-Nov-05 15-Dec-05 15-Dec-05	<39 <50 <38 <35 <41 <52 <46 <53 <48 <40 <36 <49 <39 <41 <49 <51 <39	<49 <58 <33 <38 <50 <54 <38 <38 <47 <45 <25 <55 <40 <44 <50 <43 <53	<60 <54 <78 <12 <76 <57 <63 <49 <51 <58 <42 <80 <37 <42 <72 <57 <58
MCCOY RESIDENCE (Site #47)*		NO SAMPLES AVAILABLI	3		
					·

TABLE 8.7 MILK

ODCM required samples denoted by * units are pCi/liter

SAMPLE LOCATION	DATE COLLECTED	<1 I-131	<15 Cs-134	<18 Cs-137	<60 Ba-140	<15 La-140
PAINTER GOATS (Site #51)*	NO	SAMPL	ES AVAII	ABLE		
	14-Jan-05	<1	<1	<1	<3	<1
	15-Feb-05	<1	<1	<1	<3	<1
	11-Mar-05	<1	<1	<1	<3	<1
BARBER/ADAMS	19-Apr-05	<1	<1	<1	<3	<1
GOATS	15-Jul-05	<1	<1	<1	<3	<1
(Site #53)*	19-Aug-05	<1	<1	<1	<3	<1
	16-Sep-05	<1	<1	<1	<3	<1
	14-Oct-05	<1	<1	<1	<3	<1
	18-Nov-05	<1	<1	<1	<3	<1
	19-Aug-05	<1	<1	<1	<3	<1
HERNANDEZ	23-Sep-05	<1	<1	<1	<3	<1
GOATS	14-Oct-05	<1	<1	<1	<3	<1
(Site #54)	16-Dec-05	<1	<1	<1	<3	<1

Adams replaced Barber effective 7-15-05 Hernandez replaced Branch effective 7-15-05

TABLE 8.8 DRINKING WATER

ODCM required samples denoted by * units are pCi/liter

														<2000	
SAMPLE		<15		8000	<15	80	<15	80	<15	<15	<18	99>	<15	QTRLY	<4.0
LOCATION	ENDPOINT	Mn-54	Co-58	Fe-59	9 0 0	Zn-65	Nb-95	Zr-95 I-131		Cs-134	Cs-137	Ba-140	La-140	H-3	Gross Beta
_	25-Jan-05	<12	5	<16	11	₹3	<10	2 0	Ŷ	6 ∕	\$	31	<14		3. 3
	22-Feb-05	<10	<10	54	41	\$4	<13	%	<10	<10	< <u>1</u> 2	35	<15		<2.9
_	29-Mar-05	!<br !	ѷ	<19	<12	₹	<13	<19	<10	<10	<12	30	<14	<262	3.1
_	26-Apr-05	<14	<12	\$	<14	õ	<12	<17	<10	<10	<13	32	<15		<2.7
BERRYMAN	31-May-05	<13	<12	\$4	<u>11</u>	427	<13	50	<11	<12	<u>1</u>	<42	<15		3.3
RESIDENCE	28-Jun-05	411	<12	5	<12	62	<12	\$	11	<11	<12	<42	<13	<272	4.8 ± 1.8
(SITE #48)*	26-Jul-05	⊴13	<12	\$3	<12	<27	<13	51	<12	<12	<12	≪40	<15		4.2 ± 1.9
_	30-Aug-05	<14	11	620	<10	80	<14	\$	<12	<13	<14	<42	<12		3.9 ± 1.8
	27-Sep-05	<10	₸	<19	<12	27	₽	<18	Ŷ	°	<10	35	<15	<283	<2.8
	25-Oct-05	<13	₽	26	41	ŝ	<12	\mathcal{G}	<10	<10	11≥	39	<14		<3.0
	29-Nov-05	<12	11	25	<15	25	<13	\$3	<13	11	≤11	€ 1 3	<12		<2.7
	27-Dec-05	<13	4</th <th><25</th> <th><15</th> <th>00</th> <th><12</th> <th>23</th> <th><12</th> <th><12</th> <th><15</th> <th><41</th> <th><12</th> <th><252</th> <th>3.2 ± 1.8</th>	<25	<15	00	<12	23	<12	<12	<15	<41	<12	<252	3.2 ± 1.8
	25-Jan-05	<12	£	~25	<13	<29	<12	20	<11	11	<12	≤41	<12		<2.7
	22-Feb-05	<12	<12	47	<13	30	<12	5 1	<12	<12	11	6€	<10		4.0 ± 1.6
	29-Mar-05	⊡	<10	5	<14	26		<19	\$	° ∕	⊲10	36	<13	<266	<2.4
	26-Apr-05	<10	10	26	<15	\$4	<14	<18	ᢟ	1	₸	37	<14		3.6 ± 1.5
GAVETTE	31-May-05	<13	5	27	<10	59	<13	<u>8</u>	<10	<12	<12	80	<13		<2.7
RESIDENCE	28-Jun-05	<14	<12	5	<15	\$5	<15	52	<12	<13	<14	<40	<14	<270	5.0 ± 1.4
(SITE #55)	26-Jul-05	41	%	ġ	%	⊲26	₽	<16	<10	<11	<12	35	<15		2.9 ± 1.5
_	30-Aug-05	<14	<12	Ş	<12	80	<12	<17	≤11	<10	<13	<42	<14		4.0 ± 1.4
_	27-Sep-05	<13	<u>11</u>	<u>5</u> 5	<10	80000	<13	<19	41	<10	<13	80000000000000000000000000000000000000	<12	<281	3.9 ± 1.5
	25-Oct-05	<15	≤13	\$ 5	<13	59	<15	\$	₽	<12	<13	<48	<11		4.1 ± 1.6
	29-Nov-05	8	\$	80	<10	<18	<10	<16	8	6 ∕	<10	30	<15		3.7 ± 1.5
_	27-Dec-05	<12	<12	20	<14	26	<14	<18	<10	<11	<14	35	<15	<252	4.5 ± 1.5

١

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005

34

I

.

TABLE 8.8 DRINKING WATER

ODCM required samples denoted by * units are pCi/liter

															<2000	
	SAMPLE	MONTH	<15	<15	⊲0	<15	<30	<15	<30	<15	<15	<18	<60	<15	QTRLY	<4.0
	LOCATION	ENDPOINT	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	H-3	Gross Beta
		25-Jan-05	<10	<11	<22	<14	<24	<10	<21	<11	<10	<12	<39	<15		<2.6
		22-Feb-05	<9	<13	<27	<12	<28	<13	<19	<11	<12	<12	<44	<15		2.3 ± 1.4
		29-Mar-05	<12	<13	<26	<13	<29	<13	<19	<12	<12	<13	<43	<12	<264	3.1 ± 1.5
		26-Apr-05	<13	<12	<26	<14	<27	<13	<22	<11	<13	<12	<42	<15		4.0 ± 1.4
	McARTHUR	31-May-05	<11	<11	<23	<13	<25	<14	<18	<11	<10	<11	<39	<11		<2.5
	RESIDENCE	28-Jun-05	<12	<11	<23	<13	<30	<12	<19	<11	<11	<13	<42	<12	<271	3.8 ± 1.3
	(SITE #46)*	26-Jul-05	<12	<10	<24	<12	<30	<13	<20	<12	<11	<12	<39	<12		2.7 ± 1.4
		30-Aug-05	<14	<12	<29	<13	<30	<12	<22	<10	<10	<13	<40	<12		4.2 ± 1.4
		27-Sep-05	<13	<13	<26	<15	<29	<15	<20	<12	<11	<13	<45	<14	<283	3.2 ± 1.4
· · · · · · · · · ·		25-Oct-05	<14	<13	<24	<12	<30	<14	<21	<11	<11	<14	<41	<10		3.0 ± 1.5
 A second control of the second of the second		29-Nov-05	<12	<10	<20	<15	<28	<13	<20	<12	<10	<13	<42	<10		3.4 ± 1.4
		27-Dec-05	<13	<12	<30	<13	<24	<13	<16	<12	<11	<13	<43	<13	<251	3.0 ± 1.4
		25-Jan-05	<12	<10	<25	<12	<26	<14	<16	<12	<12	<13	<38	<15		<2.5
		22-Feb-05	<9	<13	<18	<15	<30	<12	<19	<9	<10	<11	<32	<11		<2.2
AND		29-Mar-05	<11	<10	<24	<15	<24	<12	<22	<10	<11	<12	<40	<14	<262	<2.3
	:	26-Apr-05	<12	<11	<29	<15	<30	<12	<22	<10	<12	<14	<37	<11		<2.0
	CHOWANEC	31-May-05	<15	<12	<29	<14	<29	<12	<25	<13	<11	<14	<44	<12	and the second	<2.5
	RESIDENCE	28-Jun-05	<11	<9	<20	<14	<24	<12	<19	<9	<11	<10	<34	<15	<270	2.2 ± 1.2
	(SITE #49) *	26-Jul-05	<13	<13	<28	<14	<30	<14	<23	<13	<12	<12	<41	<15		<2.1
	1	-30-Aug-05	<10	<11	<23	<12	<22	<11	<20	<11	<10	<11	<42	<14		<1.9
	. م • · · · · وهر سمير دره · · · ·	27-Sep-05	<9	<12	<30	<13	<23	<13	<20	<12	<11	<12	<40	<12	<270	<2.1
		25-Oct-05	<9	<10	<19	<15	<21	<11	<17	<8	<10	<10	<36	<13		<2.3
		29-Nov-05	<13	<9	<25	<12	<23	<10	<18	<9	<9	<10	<40	<15		<2.1
		27-Dec-05	<11	<10	<22	<14	<20	<12	<18	<10	<10	<9	<40	<15	<252	<2.1

TABLE 8.9 GROUNDWATER

ODCM required samples denoted by	*
units are pCi/liter	

SAMPLE	DATE	<15 Mn-54	<15 Co-58	<30	<15 Co-60	<30 Zn-65	<15 N b-95	⊲0 Zr-95	<15 I-131	<15 Cs-134	<18 Cs-137	<60 Ba-140	<15 La-140	<2000
LOCATION	COLLECTED			Fe-59		Z11-05	140-95	LI-93	1-131			Da-140		Н-3
WELL	25-Jan-05	<12	<12	<25	<14	<25	<13	<21	<13	<11	<13	<44	<15	<262
27ddc	26-Apr-05	<13	<12	<28	<14	<30	<14	<20	<13	<12	<13	<41	<15	<266
(Site #57)*	26-Jul-05	<12	<9	<26	<15	<23	<13	<17	<10	<11	<12	<38	<15	<275
. ,	25-Oct-05	<12	<12	<20	<9	<27	<15	<19	<12	<11	<12	<44	<14	<263
WELL	25-Jan-05	<14	<12	<27	<14	<30	<14	<22	<13	<12	<13	<52	<14	<269
34abb	26-Apr-05	<12	<10	<21	<12	<29	<13	<22	<11	<10	<11	<37	<15	<272
(Site #58)*	26-Jul-05	<12	<12	<19	<11	<26	<15	<22	<12	<10	<14	<48	<13	<276
	25-Oct-05	<11	<10	<19	<11	<22	<11	<16	<10	<8	<11	<32	<15	<264

í.,

TABLE 8.10 SURFACE WATER

- .

ODCM required samples denoted by * units are pCi/liter

SAMPLE LOCATION	MONTH ENDPOINT	<15 Mn-54	<15 Co-58	<30 Fe-59	<15 Co-60	<30 Zn-65	<15 Nb-95	<30 Zr-95	<15 I-131	<15 Cs-134	<18 Cs-137	<60 Ba-140	<15 La-140	<3000 H-3
	25-Jan-05	<13	<10	<20	<14	<19	<10	<17	<10	<9	<10	<31	<13	
	22-Feb-05	<13	<10	<26	<11	<23	<10	<18	<12	<10	<11	<36	<13	
	29-Mar-05	<12	<13	<29	<15	<30	<13	<24	<15	<12	<13	<45	<15	<263
	26-Apr-05	<13	<14	<29	<15	<27	<13	<20	<15	<12	<14	<45	<12	
RESERVOIR	31-May-05	<13	<13	<24	<15	<30	<14	<21	<15	<13	<12	<48	<13	
(Site #60) *	28-Jun-05	<9	<10	<23	<9	<24	<12	<19	13 ± 7	<9	<10	<25	<13	<273
	26-Jul-05	<11	<11	<20	<13	<27	<10	<15	<11	<8	<11	<29	<12	
	30-Aug-05	<11	<12	<25	<15	<22	<13	<21	<14	<12	<12	<43	<12	
	27-Sep-05	<11	<11	<26	<14	<29	<14	<21	<13	<11	<13	<45	<13	<280
	25-Oct-05	<10	<9	<18	<10	<18	<12	<18	<10	<9	<11	<30	<13	
	29-Nov-05	<8	<9	<16	<11	<21	<10	<15	<11	<8	<10	<36	<11	
	27-Dec-05	<10	<8	<22	<15	<22	<11	<19	<11	<10	<10	<34	<11	<251
	25-Jan-05	<12	<11	<27	<12	<30	<13	<20	<14	<11	<13	<44	<11	
Λ	22-Feb-05	<11	<8	<27	<15	<23	<11	<18	8 ± 10	<11	<13	<37	<15	
	29-Mar-05	<8	<8	<22	<9	<24	<9	<13	7 ± 6	<9	<8	<25	<14	1120 ± 155
	26-Apr-05	<9	<8	<17	<12	<18	<8	<15	<9	<7	<10	<28	<11	
EVAP POND 1	31-May-05	<11	<13	<28	<15	<29	<14	<27	<11	<13	<15	<42	<13	1000 + 155
(Site #59) *	28-Jun-05	<12	<11	<21	<13	<30	<13	<16	<8	<9	<12	<29	<13	1209 ± 155
	26-Jul-05	<12	<10	<18	<13	<30 <20	<12	<17	<9 <10	<10 <10	<11	<33 <37	<9 <15	
	30-Aug-05	<13	<14 <12	<27 <23	<12 <15	<29 <30	<13 <14	<19 <20	19 ± 10	<10 <10	<11 <15	<37 <43	<13	1601 ± 159
	27-Sep-05 25-Oct-05	<14 <14	<12	<29	<15	<30 <30	<14 <14	<20 <24	<13 <13	<10	<13 <14	<43 <42	<12 <9	1001 ± 139
	23-0ci-05 29-Nov-05	<14	<10	<26	<11	<30 <30	<14	<24 <19	<11	<12	<14	<42 <38	<13	
	27-Dec-05	<12	<10	<30	<14	<28	<13	<21	<13	<11	<12	< <u>40</u>	<11	2038 ± 158
	25-Jan-05	<9	<9	<21	<10	<23	<10	<18	<8	<8	<11	<30	<10	
	22-Feb-05	<11	<11	<22	<14	<29	<12	<19	<10	<11	<12	<36	<11	
	29-Mar-05	<12	<12	<26	<13	<30	<11	<23	<13	<12	<15	<43	<12	1633 ± 155
	26-Apr-05	<12	<10	<25	<15	<27	<11	<19	<9	<9	<13	<41	<12	
EVAP POND 2	31-May-05	<10	<11	<21	<12	<30	<10	<16	<9	<10	<12	<31	<13	
(Site #63) *	28-Jun-05	<12	<11	<29	<14	<30	<12	<22	<12	<11	<14	<40	<11	1736 ± 159
	26-Jul-05	<12	<10	<24	<15	<30	<11	<20	<12	<11	<14	<38	<9	
	30-Aug-05	<11	<10	<24	<12	<30	<10	<16	<10	<9	<11	<35	<10	
	27-Sep-05	<12	<11	<23	<13	<30	<12	<21	<11	<11	<13	<33	<11	1687 ± 163
	25-Oct-05	<12	<10	<24	<12	<30	<12	<18	<10	<10	<15	<41	<15	
	29-Nov-05	<13	<11	<25	<14	<30	<12	<21	<13	<11	<14	<45	<13	
	27-Dec-05	<13	<12	<28	<15	<30	<13	<20	<14	<12	<u><14</u>		<u><15</u>	1763 ± 154

TABLE 8.10 SURFACE WATER

.

ODCM required samples denoted by * units are pCi/liter

· 1

.

	DATE					unnis ai c	ponner							
SAMPLE LOCATION		Mn-5 4	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	H-3
	4-Jan-05	<8	<7	<21	<12	<18	<10	<15	<9	<9	<9	<30	<15	
	11-Jan-05	<11	<12	<26	<15	<26	<12	<20	<12	<12	<12	<37	<13	
	18-Jan-05	<12	<12	<22	<15	<27	<11	<17	28 ± 12	<11	<13	<35	<11	
	25-Jan-05	<10	<14	<22	<15	<27	<15	<22	45 ± 12	<11	<13	<43	<12	<282
	1-Feb-05	<12	<12	<25	<14	<26	<13	<19	24 ± 11	<11	<12	<41	<14	
	8-Feb-05	<11	<13	<23	<14	<26	<11	<18	12 ± 9	<8	<11	<41	<15	
	15-Feb-05	<11	<14	<28	<13	<30	<11	<25	39 ± 12	<13	<14	<45	<9	
	22-Feb-05	<13	<14	<26	<15	<28	<11	<18	56 ± 12	<9	<14	<42	<12	
WRF	1-Mar-05	<14	<12	<28	<13	<29	<14	<20	43 ± 16	<13	<15	<43	<13	<269
INFLUENT	8-Mar-05	<11	<9	<25	<13	<30	<12	<21	61 ± 14	<11	<12	<41	<13	
	15-Mar-05	<14	<12	<28	<14	<29	<14	<26	29 ± 15	<12	<12	<44	<15	
	22-Mar-05	<15	<12	<20	<9	<24	<14	<21	30 ± 10	<10	<13	<32	<13	
	29-Mar-05	<12	<11	<24	<15	<30	<12	<20	44 ± 13	<10	<12	<38	<14	<271
	5-Apr-05	<10	<10	<19	<9	<23	<10	<20	46 ± 13	<10	<10	<39	<15	
	12-Apr-05	<12	<10	<23	<15	<29	<10	<23	95 ± 18	<12	<13	<34	<14	
	18-Apr-05	<14	<14	<19	<11	<29	<15	<18	42 ± 13	<10	<13	<38	<14	<277
	3-May-05	<14	<12	<27	<14	<30	<12	<23	40 ± 13	<10	<14	<41	<10	
	10-May-05	<11	<9	<22	<11	<22	<11	<19	58 ± 12	<10	<11	<30	<15	
	17-May-05	<13	<13	<29	<15	<28	<12	<20	54 ± 15	<13	<15	<42	<13	
	24-May-05	<13	<14	<27	<13	<30	<12	<20	20 ± 14	<12	<12	<40	<14	
	31-May-05	<11	<12	<24	<15	<27	<13	<19	158 ± 23	<10	<12	<40	<12	<276
	7-Jun-05	<12	<12	<24	<15	<22	<12	<22	33 ± 11	<11	<14	<41	<13	
	14-Jun-05	<10	<11	<21	<10	<25	<11	<16	79 ± 15	<10	<11	<34	<13	
	21-Jun-05	<12	<9	<29	<15	<30	<12	<17	26 ± 11	<9	<12	<42	<11	
	28-Jun-05	<12	<12	<26	<11	<27	<15	<23	30 ± 11	<13	<13	<43	<14	<275
	5-Jul-05	<13	<10	<28	<13	<26	<11	<18	31 ± 11	<11	<12	<38	<13	
	12-Jul-05	<13	<13	<24	<14	<30	<11	<23	48 ± 14	<13	<13	<48	<14	20 A. 20
	19-Jul-05	<12	<14	<27	<14	<29	<14	<23	22 ± 11	<12	<14	<43	<15	
	26-Jul-05	<14	<11	<26	<12	<29	<13	<20	38 ± 12	<11	<12	<37	<10	<284
	2-Aug-05	<11	<9	<22	<14	<28	<12	<19	10 ± 9	<11	<12	<32	<13	

TABLE 8.10 SURFACE WATER

ODCM required samples denoted by * units are pCi/liter

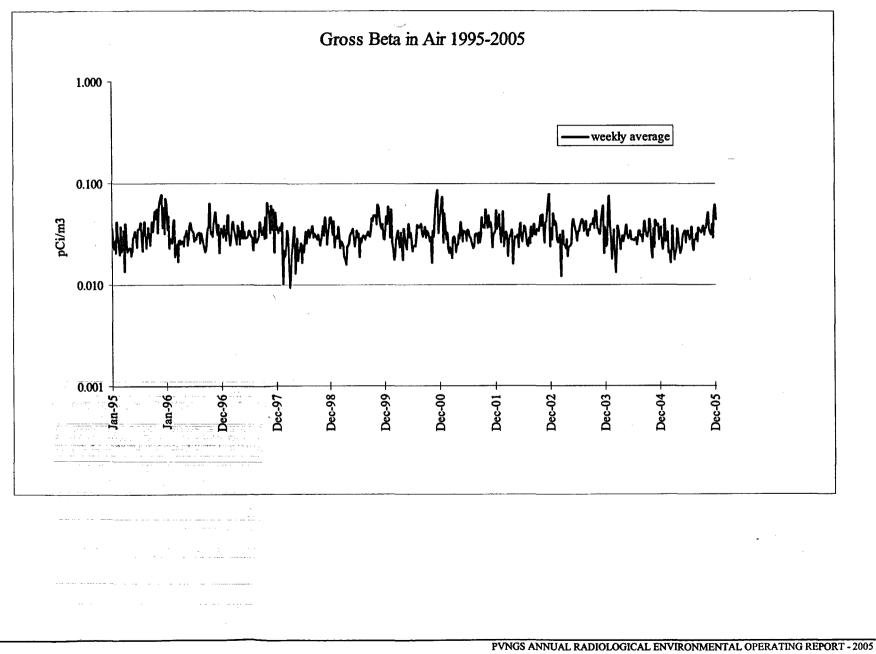
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<15 <12 <15 <11 <14 <14 <12 <11	0 H-3 <293
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<15 <12 <15 <11 <14 <14 <12 <11	
WRF16-Aug-05<11	<12 <15 <11 <14 <14 <12 <11	<293
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<15 <11 <14 <14 <12 <11	<293
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<11 <14 <14 <12 <11	<293
$ \begin{array}{c ccc} (continued) & 6-Sep-05 & <9 & <9 & <18 & <11 & <26 & <11 & <19 & 25 \pm 10 & <9 & <13 & <31 \\ 13-Sep-05 & <11 & <11 & <17 & <15 & <27 & <9 & <16 & 25 \pm 10 & <11 & <14 & <44 \end{array} $	<14 <14 <12 <11	<293
13-Sep-05 <11 <11 <17 <15 <27 <9 <16 25 ± 10 <11 <14 <44	<14 <12 <11	
	<12 <11	
20-Sep-05 <10 <10 <24 <11 <30 <11 <20 39 + 11 <10 <11 <22	<11	
27-Sep-05 <13 <11 <25 <13 <30 <11 <21 11 ± 13 <9 <12 <39		<288
4-Oct-05 <9 <10 <29 <11 <26 <11 <18 18 ± 9 <9 <11 <34	<15	
10-Oct-05 <13 <13 <27 <11 <25 <13 <19 21 ± 12 <11 <10 <47	<15	
25-Oct-05 <13 <10 <26 <14 <30 <12 <21 <15 <10 <14 <38	<9	<282
1-Nov-05 <12 <11 <25 <14 <30 <13 <16 42 ± 11 <9 <12 <41	<11	
8-Nov-05 <10 <10 <23 <12 <30 <11 <21 31 ± 11 <11 <12 <40	<15	
15-Nov-05 <11 <12 <22 <9 <23 <10 <13 29 ± 8 <9 <10 <31	<15	
29-Nov-05 <12 <10 <21 <11 <30 <12 <24 34 ± 12 <11 <12 <41	<13	<259
6-Dec-05 <14 <11 <22 <10 <30 <12 <22 34 ± 15 <12 <14 <42	<13	
13-Dec-05		
20-Dec-05 <12 <12 <23 <13 <30 <10 <19 23 ± 9 <11 <12 <41	<14	
	<15	<261
4-Jan-05 <9 <10 <16 <12 <20 <10 <20 <8 <10 <11 <33	<15	<278
11-Jan-05 <11 <10 <19 <11 <28 <10 <19 <7 <9 <10 <29	<15	<293
18-Jan-05 <11 <9 <16 <13 <22 <10 <19 <10 <9 <10 <37	<15	<278
SEDIMENT. 25-Jan-05 <13 <9 <26 <15 <22 <12 <20 <11 <12 <14 <42	<13	<283
BASIN #2 1-Feb-05 <12 <12 <30 <12 <27 <14 <21 <10 <10 <13 <44	<9	<287
8-Feb-05 <11 <10 <25 <11 <30 <14 <25 <14 <11 <13 <50	<12	<283
14-Feb-05 <11 <12 <25 <12 <26 <12 <18 <10 <10 <12 <40	<14	<288
22-Feb-05 <12 <10 <27 <14 <24 <12 <20 <11 <11 <14 <34	<15	878 ± 175
1-Mar-05 <12 <10 <28 <14 <29 <13 <20 <8 <11 <10 <31	<13	621 ± 185
8-Mar-05 <10 <9 <22 <13 <22 <10 <14 <8 <9 <11 <33	<12	907 ± 188
15-Mar-05 <15 <13 <23 <11 <29 <13 <21 <12 <14 <14 <46	<13	849 ± 184
22-Mar-05 <12 <12 <24 <14 <29 <8 <18 <7 <9 <12 <29	<13	857 ± 184
29-Mar-05 <13 <10 <22 <11 <30 <10 <21 <10 <10 <11 <39	<12	873 ± 180
5-Apr-05 <10 <11 <24 <9 <21 <9 <19 <8 <9 <12 <42	<15	958 ± 183
11-Apr-05 <10 <9 <19 <9 <20 <10 <18 <8 <7 <10 <29	<15	861 ± 187
16-Aug-05 <10 <11 <25 <15 <27 <12 <20 <10 <10 <13 <39	<14	<292
19-Oct-05 <15 <13 <23 <15 <28 <15 <24 <14 <13 <13 <45	<13	387 ± 165

TABLE 8.11 SLUDGE/SEDIMENT

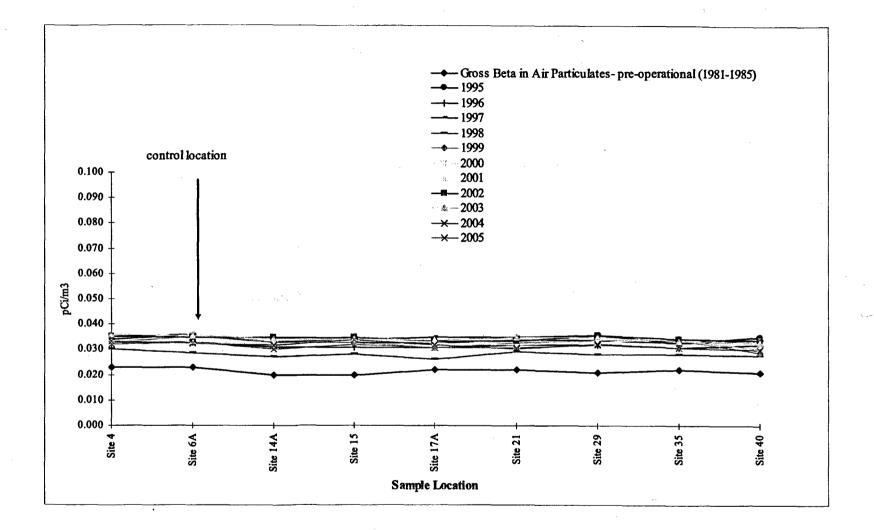
ODCM required samples denoted by * units are pCi/kg, wet

$\begin{array}{ c c c c c c } \hline LOCATION & COLLECTED & I-131 & Cs-134 \\ \hline & 4-Jan-05 & 706 \pm 103 & <24 \\ & 11-Jan-05 & 550 \pm 77 & <18 \\ & 18-Jan-05 & 514 \pm 79 & <17 \\ & 25-Jan-05 & 545 \pm 85 & <32 \\ & 1-Feb-05 & 759 \pm 106 & <34 \\ & 8-Feb-05 & 664 \pm 95 & <30 \\ & 15-Feb-05 & 618 \pm 93 & <18 \\ & 22-Feb-05 & 1219 \pm 153 & <24 \\ & 1-Mar-05 & 861 \pm 115 & <16 \\ & 8-Mar-05 & 978 \pm 131 & <27 \\ & 1444 \pm 170 & <24 \\ \hline \end{array}$	Cs-137 <26 <16 <21 <40 <38 <37 <26 <30 <24 <20 <20	In-111 21 ± 22 39 ± 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<16 <21 <40 <38 <37 <26 <30 <24 <20	
	<21 <40 <38 <37 <26 <30 <24 <20	
$\begin{array}{cccccc} 25\text{-Jan-05} & 545\pm85 & <32\\ 1\text{-Feb-05} & 759\pm106 & <34\\ 8\text{-Feb-05} & 664\pm95 & <30\\ 15\text{-Feb-05} & 618\pm93 & <18\\ 22\text{-Feb-05} & 1219\pm153 & <24\\ 1\text{-Mar-05} & 861\pm115 & <16\\ 8\text{-Mar-05} & 978\pm131 & <27\\ \end{array}$	<40 <38 <37 <26 <30 <24 <20	
	<38 <37 <26 <30 <24 <20	
$\begin{array}{ccccc} 8-Feb-05 & 664 \pm 95 & <30 \\ 15-Feb-05 & 618 \pm 93 & <18 \\ 22-Feb-05 & 1219 \pm 153 & <24 \\ 1-Mar-05 & 861 \pm 115 & <16 \\ 8-Mar-05 & 978 \pm 131 & <27 \end{array}$	<37 <26 <30 <24 <20	
	<26 <30 <24 <20	39 ± 25
$\begin{array}{cccc} 22 \mbox{-Feb-05} & 1219 \pm 153 & <24 \\ 1 \mbox{-Mar-05} & 861 \pm 115 & <16 \\ 8 \mbox{-Mar-05} & 978 \pm 131 & <27 \end{array}$	<30 <24 <20	
1-Mar-05861 ± 115<168-Mar-05978 ± 131<27	<24 <20	
8-Mar-05 978 ± 131 <27	<20	
	<20	
15-Mar-05 1444 ± 179 <24		
22-Mar-05 872 ± 107 <15	<24	
29-Mar-05 722 ± 93 <23	<17	
5-Apr-05 807 ± 101 <25	<25	
12-Apr-05 746 ± 104 <21	<20	
WRF 18-Apr-05 1368 ± 167 <25	<28	
CENTRIFUGE 3-May-05 753 ± 94 <24	<21	
WASTE SLUDGE 10-May-05 590 ± 78 <21	<23	27 ± 16
17-May-05 536 ± 80 <25	<34	49 ± 20
24-May-05 599 ± 94 <25	<25	
31-May-05 687 ± 88 <18	<25	
7-Jun-05 2121 ± 246 <27	<28	
14-Jun-05 1634 ± 180 <21	<19	
21-Jun-05 1110 ± 142 <29	<27	
28-Jun-05 739 ± 93 <22	<22	20 ± 21
5-Jul-05 838 ± 113 <16	<24	68 ± 23
12-Jul-05 612 ± 93 <9	<36	24 ± 27
19-Jul-05 1372 ± 158 <28	<29	
26-Jul-05 1122 ± 142 <21	<21	35 ± 22
2-Aug-05 681 ± 96 <25	<27	77 ± 24
9-Aug-05 $360 \pm 54 < 22$	<25	
16-Aug-05	<26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<23 <26	
		47 ± 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<21	41 ± 22
19-Sep-05 911 ± 120 <15 27-Sep-05 789 ± 109 <16	<26 <28	
	<20 <19	
	<19	
$\begin{array}{cccc} 11 - \text{Oct-05} & 898 \pm 120 & <21 \\ 18 - \text{Oct-05} & 660 \pm 95 & <22 \end{array}$	<0 <25	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~25 <26	
$\begin{array}{cccc} 1-100-05 & 505 \pm 75 & <18 \\ 8-Nov-05 & 1843 \pm 204 & <26 \\ \end{array}$	~20 <20	86 ± 31
$\begin{array}{cccc} & & & & & & & & & & & \\ & & & & & & & $	< <u>40</u>	
$\begin{array}{cccc} 14-100-05 & 1556 \pm 209 & <50 \\ 29-Nov-05 & 1623 \pm 194 & <26 \\ \end{array}$	<28	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~28 <20	37 ± 27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~20 <21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<11 <38	
27-Dec-05 1008±134 <26	<22	
	1997 - 199 7 - 19	사내용의 위험 제 나이지를 물어서 많이
· · · · · · · · · · · · · · · · · · ·		

TABLE 8.11 SLUDGE/SEDIMENT


ODCM required	l samples	denoted	by *
Units aı	e pCi/kg	, wet	

SAMPLE LOCATION	DATE COLLECTED	Cs-134	Cs-137
(N)	16-Nov-05	<15	<17
(E)		<10	<18
EVAP POND 1 (S)		<15	<15
(W)		<12	<18
(C)		<15	<18
(N)	16-Nov-05	<11	19 ± 15
(E)	~	<15	29 ± 13
EVAP POND 2 (S)	1	<12	<18
(W)	,	<14	17 ± 11
(C)		<13	<18
SED. BASIN #2 (E)	2-Dec-05	<40	<56
SED. BASIN #2 (N)	2-Dec-05	<40	<79


COOLING TOWER SLUDGE/SCALE

UNIT	APPROXIMATE VOLUME (yd ³)	ISOTOPE	ACTIVITY RANGE (uCi/ml)	SAMPLE TYPE	FRACTION OF SAMPLES ABOVE MDA
U3R10	30	n/a	<mda< td=""><td>louver scale/sludge</td><td>none</td></mda<>	louver scale/sludge	none
U2R11	150	Co-60	<mda 1.07e-06<="" td="" to=""><td>louver scale/sludge</td><td>25 of 26</td></mda>	louver scale/sludge	25 of 26
U3R11	155	Co-60 Cs-137	6.72E-07 to 1.32E-06 <mda 8.86e-08<="" td="" to=""><td>tower sludge</td><td>24 of 24 7 of 24</td></mda>	tower sludge	24 of 24 7 of 24
U2R12	907	Co-60 Cs-137	3.72E-07 to 1.16E-06 <mda 1.48e-07<="" td="" to=""><td>tower/canal sludge</td><td>32 of 32 30 of 32</td></mda>	tower/canal sludge	32 of 32 30 of 32

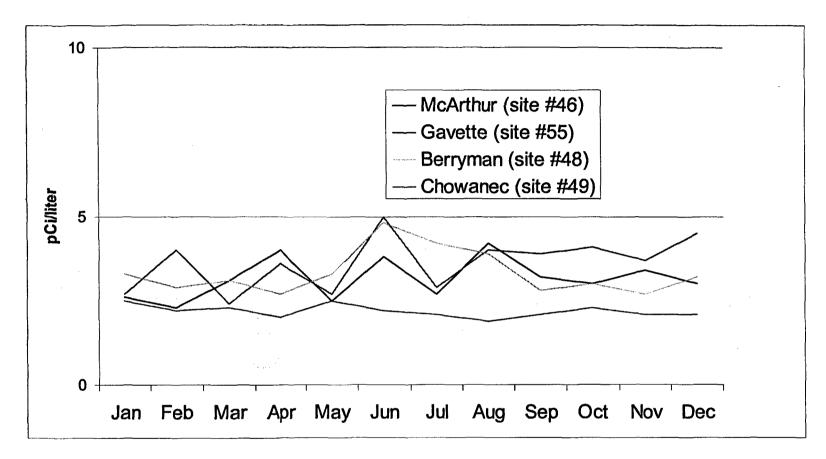
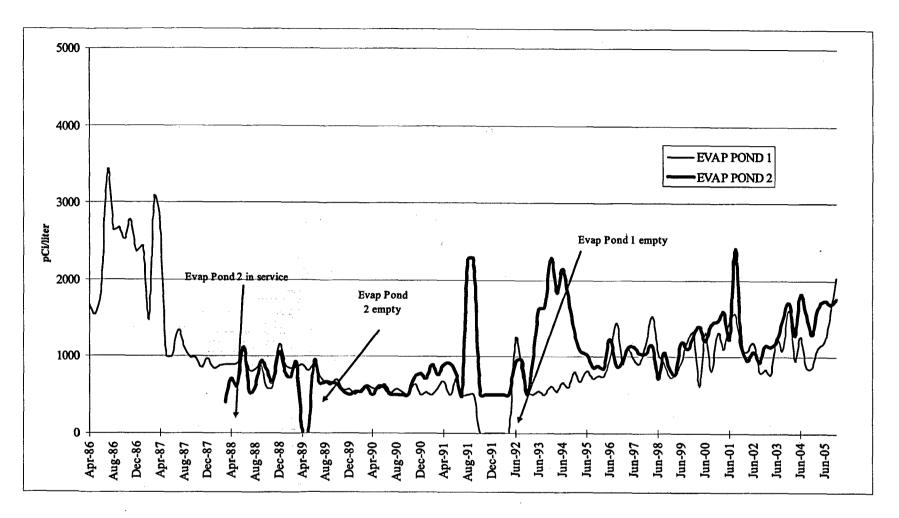
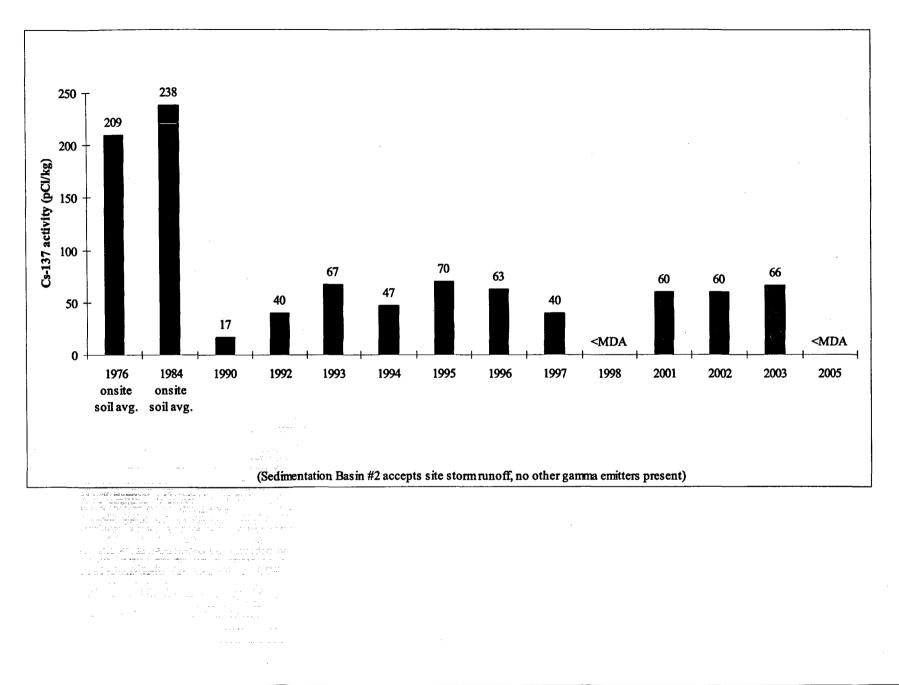


FIGURE 8.2 HISTORICAL GROSS BETA IN AIR (ANNUAL SITE TO SITE COMPARISONS) COMPARED TO PRE-OP




FIGURE 8.3 GROSS BETA IN DRINKING WATER

NOTES: MDA values plotted as activity (e.g. <2.3 is plotted as 2.3)

FIGURE 8.4 EVAPORATION POND TRITIUM ACTIVITY

9. Thermoluminescent Dosimeter (TLD) Results and Data

The environmental TLD used at PVNGS is the Panasonic Model 812 Dosimeter. The Model 812 is a multi-element dosimeter combining two elements of lithium borate and two elements of calcium sulfate under various filters.

TLDs were placed in forty-nine locations from one to thirty-five miles from the PVNGS. TLD locations are shown in Figures 2.1 and 2.2 and are described in Table 9.1. TLD results for 2005 are presented in Table 9.2. Historical environmental gamma radiation results for 1985 through 2005 are presented in graphical form on Figure 9.1 (excluding transit control TLD #45).

Figure 9.2 depicts the environmental TLD results from 2005 as compared to the preoperational TLD results (excluding sites #41, #43, and #46-50 as they were either deleted or had no pre-op TLD at these locations for comparison). The site to site comparisons indicate a direct correlation with respect to pre-operational results. It is evident that the offsite dose, as measured by TLDs, has not changed since Palo Verde became operational.

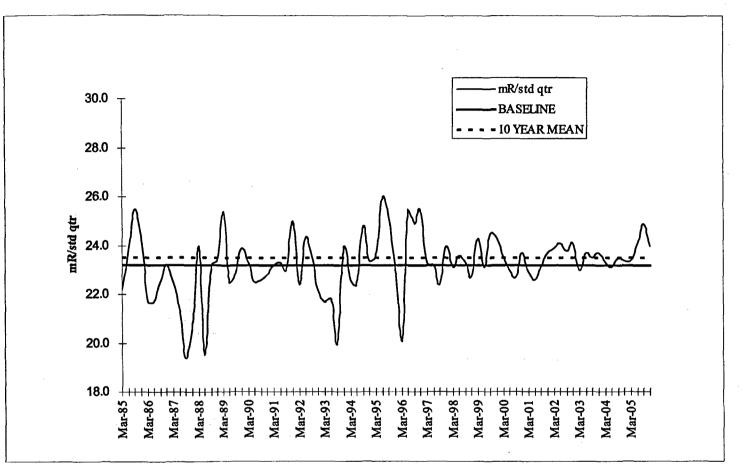
TABLE 9.1 TLD SITE LOCATIONS

(distances and directions are relative to Unit 2 in miles)

TLD SITE	LOCATION	LOCATION DESCRIPTION
1	E30	Goodyear
2	ENE24	Scott-Libby School
3	E21	Liberty School
4	E16	Buckeye
5	ESE11	Palo Verde School
6*	SSE31	APS Gila Bend substation
7	SE7	Old US 80 and Arlington School Rd
8	SSE4	Southern Pacific Pipeline Rd.
9	S 5	Southern Pacific Pipeline Rd.
10	SE5	355 th Ave. and Elliot Rd.
11	ESE5	339 th Ave. and Dobbins Rd.
12	E5	339 th Ave. and Buckeye-Salome Rd.
13	N1	N site boundary
14	NNE2	NNE site boundary
15	NE2	NE site boundary, WRF access road
16	ENE2	ENE site boundary
17	E2	E site boundary
18	ESE2	ESE site boundary
19	SE2	SE site boundary
20	SSE2	SSE site boundary
21	S3	S site boundary
22	SSW3	SSW site boundary
23	W5	N of Elliot Rd
24	SW4	N of Elliot Rd
25	WSW5	N of Elliot Rd
26	SSW4	S of Elliot Rd
27	SW1	SW site boundary
28	WSW1	WSW site boundary
29	W1	W site boundary
30	WNW1	WNW site boundary
31	NW1	NW site boundary
32	NNW1	NNW site boundary
33	NW4	S of Buckeye Rd
34	NNW5	395 th Ave. and Van Buren St.
35	NNW8	Tonopah
36	N5	Wintersburg Rd. and Van Buren St.
37	NNE5	363 rd Ave. and Van Buren St.
38	NE5	355 th Ave. and Buckeye Rd.
39	ENE5	343 rd Ave. N of Broadway Rd.
40	N3	Wintersburg
41	ESE3	Arlington School
42	N8	Ruth Fisher School
•=		

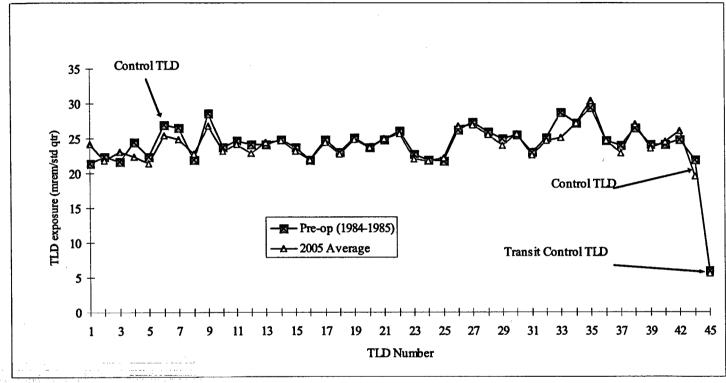
TABLE 9.1 TLD SITE LOCATIONS

TLD SITE	LOCATION	LOCATION DESCRIPTION
44*	ENE35	El Mirage
45**	Onsite	Central Laboratory (lead pig)
46	ENE30	Litchfield Park School
47	E35	Littleton School
48	E24	Jackrabbit Trail
49	ENE11	Palo Verde Rd.
50	WNW5	S of Buckeye-Salome Rd.


(distances and directions are relative to Unit 2 in miles)

* Site #6 and site #44 are the control locations.

** Site #45 is the transit control TLD (stored in lead pig).


TABLE 9.2 2005 ENVIRONMENTAL TLD RESULTS

		Units are m			
TLD Site #					
1	23.4	24.2	25.2	23.6	24.1
2	21.7	21.3	22.0	22.3	21.8
3	22.1	22.6	24.1	23.4	23.1
4	21.2	22.1	23.1	22.9	22.3
5	20.5	20.8	22.1	22.1	21.4
6 (control)	24.7	25.5	25.9	25.8	25.5
7	24.5	24.7	25.7	24.7	24.9
8	21.3	23.3	24.2	22.3	22.8
9	26.1	26.7	26.8	27.7	26.8
10	22.1	23.7	24.1	23.0	23.2
11	23.9	23.8	25.1	23.9	24.2
12	22.0	22.4	24.1	23.3	23.0
13	24.3	24.0	25.1	24.6	24.5
14	23.9	24.9	26.0	24.3	24.8
15	22.5	24.1	23.3	22.9	23.2
16	20.8	22.8	21.9	22.4	22.0
17	24.2	23.8	25.6	24.0	24.4
18	23.1	23.0	22.8	22.0	22.7
19	24.0	24.8	25.3	25.2	24.8
20	23.0	23.4	24.2	24.5	23.8
21	24.4	24.2	26.2	25.3	25.0
22	24.5	25.9	26.8	25.4	25.7
23	21.5	22.3	22.2	22.3	22.1
24	21.1	20.9	22.8	22.3	21.8
25	21.3	22.1	23.4	21.9	22.2
26	25.6	26.7	28.3	26.4	26.8
27	26.0	25.9	28.9	26.9	26.9
28	23.4	25.7	27.0	26.1	25.6
29	23.7	24.3	24.3	23.7	24.0
30	24.7	26.4	26.3	25.4	25.7
31	21.4	22.9	23.8	22.4	22.6
32	23.6	25.3	25.8	24.1	24.7
33	24.5	26.3	25.4	24.6	25.2
34	27.0	27.4	27.7	26.6	27.2
35	28.6	31.2	31.5	30.3	30.4
36	23.7	24.2	25.8	25.2	24.7
37	23.3	22.1	23.8	22.5	22.9
38	26.7	27.1	28.0	26.5	27.1
39	23.0	24.2	24.1	23.4	23.7
40	24.4	24.6	25.0	24.2	24.6
41	22.5	23.4	23.8	22.1	23.0
42	25.5	26.0	27.0	26.1	26.2
44 (control)	19.0	20.4	20.4	18.8	19.7
45 (transit control)	5.6	5.8	5.7	5.1	5.6
46	26.8	27.5	27.0	26.2	26.9
47	21.5	22.4	23.1	23.0	22.5
48	23.4	23.9	24.8	22.9	23.8
49	22.5	22.3	23.4	22.4	22.7
50	18.2	19.0	19.4		18.8

FIGURE 9.1 NETWORK ENVIRONMENTAL TLD EXPOSURE RATES

FIGURE 9.2 ENVIRONMENTAL TLD COMPARISON - PRE-OPERATIONAL VS 2005

TLD #41 monitoring location was deleted in June, 2000 due to school closing (this TLD was placed at new school in 2004) TLD #43 monitoring location was deleted in 1994 due to school closing TLDs #46-50 are not included since they were not included in the pre-op monitoring program

10. Land Use Census

10.1. Introduction

In accordance with the PVNGS ODCM, Section 6.2, the annual Land Use Census was performed within five miles of Unit 2 containment in May-June 2005.

Observations were made in each of the 16 meteorological sectors to determine the nearest milking animals, residences, and gardens of greater than 500 square feet. This census was completed by driving the roads and speaking with residents.

The results of the Land Use Census are presented in Table 10.1 and discussed below. The directions and distances listed are in sectors and miles from the Unit 2 containment.

10.2. Census Results

Nearest Resident

There were two (2) changes in nearest resident status. Dose calculations indicated the highest dose to be 0.167 mrem.

Milk Animal

There were no changes in nearest milk animal (goat) status. Dose calculations indicated the highest dose to be 0.360 mrem. However, two (2) sample locations, one control and one indicator location, changed due to unavailability of samples.

Vegetable Gardens

There were two (2) changes in nearest garden status (two former gardens are no longer there). Dose calculations indicated the highest dose to be 0.335 mrem.

See Table 10.1 for a summary of the specific results and Table 2.1 for current sample locations.

TABLE 10.1 2005 LAND USE CENSUS

(Distances and directions are relative to Unit 2 in miles)

	NEAREST	NEAREST	NEAREST	CALCIII	ATED DOSE	
SECTOR	RESIDENT	GARDEN	MILK ANIMAL	CALCULATED DOSE		CUANCE
SECTOR	RESIDENT	GARDEN		р (п	rem)	CHANGE
			(COW/GOAT)			FROM 2004
N	1.55	NONE	NONE	Resident	4.78E-02	Garden
NNE	1.52	2.05	2.05	Resident	7.99E-02	
				Garden	2.87E-01	
	<u> </u>			Milk	3.60E-01	·
NE	2.16	NONE	3.91	Resident	1.15E-01	
			1.0.1	Milk	3.30E-01	
ENE	2.67	4.72	4.84	Resident Garden	6.61E-02 1.28E-01	
				Milk	1.28E-01 1.46E-01	
E	2.81	NONE	NONE	Resident	7.39E-02	
ESE	1.95	3.85	NONE	Resident	1.67E-01	Resident
LOL	1.75	5.05	NONE	Garden	3.35E-01	Resident
SE	4.10	NONE	NONE	Resident	7.81E-02	
SSE	NONE	NONE	NONE	NA		
S	NONE	NONE	NONE	NA		
SSW	NONE	NONE	NONE	NA		
SW	1.39	NONE	NONE	Resident	1.45E-01	
WSW	0.75	NONE	NONE	Resident	1.27E-01	
W	0.70	NONE	NONE	Resident	9.37E-02	
WNW	2.67	NONE	NONE	Resident	2.02E-02	
NW	0.93	NONE	NONE	Resident	5.71E-02	Resident
NNW	1.30	NONE	NONE	Resident	4.66E-02	Garden

COMMENTS:

Dose calculations were performed using the GASPAR code and 2004 meteorological data and source term. Dose reported for each location is the total for all three PVNGS Units and is the highest individual dose identified (organ, bone, total body, or skin).

11. Summary and Conclusions

The conclusions are based on a review of the radio assay results and background gamma radiation measurements for the 2005 calendar year. Where possible, the data were compared to pre-operational sample data.

All sample results for 2005 are presented in Tables 8.1-8.11 and <u>do not include observations</u> of naturally occurring radionuclides, with the exception of gross beta in air and gross beta in <u>drinking water</u>. Table 11.1 summarizes the ODCM required samples and is in the format required by the NRC BTP on Environmental Monitoring.

I-131 concentrations identified on occasion in the Evaporation Ponds, WRF Influent, WRF Centrifuge sludge, and Reservoir is the result of offsite sources and appears in the effluent sewage from Phoenix. The levels of I-131 detected in these locations are consistent with levels identified in previous years.

Tritium concentrations identified in surface water onsite have been attributed to PVNGS gaseous effluent releases and secondary plant releases. These concentrations are consistent with historical values.

Natural background radiation levels are consistent with measurements reported in previous Pre-operational and Operational Radiological Environmental annual reports, References 1 and 2.

There were no measurable radiological impacts on the environment due to PVNGS operations in 2005.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona Docket Nos. STN 50-528/529/530 Calendar Year 2005

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD) (from Table 6.1)	All Indicator Locations Mean (f) ^a Range	Location with Hig Name Distance and Direction	ghest Annual Mean <u>Mean (f</u>) ^a Range	Control Locations Mean (f) ^a Range	Number of Nonroutine Reported Measurements
Direct Radiation (mrem/std. qtr.)	TLD - 196	NA	24.2 (184/184) 18.2 - 31.5	Site #35 8 miles 335°	30.4 (4/4) 28.6 - 31.5	22.6 (8/8) 18.8 - 25.9	0
Air Particulates (pCi/m ³)	Gross Beta – 497 Gamma Spec.	0.010	0.032 (445/445) 0.015 - 0.066	Site #7A 3 miles 60°	0.035 (32/32) 0.023 - 0.062	0.033 (52/52) 0.016 - 0.070	0
	Composite- 38					415	•
	Cs-134	0.05	<lld <lld< td=""><td>NA NA</td><td><lld <lld< td=""><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld </td></lld<></lld 	NA NA	<lld <lld< td=""><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>0 0</td></lld<></lld 	0 0
	Cs-137	0.06		NA			
Air Radioiodine (pCi/m ³)	Gamma Spec 499 I-131	0.07	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Broadleaf	Gamma Spec 17	· · · · · · · · · · · · · · · · · · ·					
Vegetation	I-131	60	<lld< td=""><td>NA</td><td><pre></pre></td><td><lld< td=""><td>0</td></lld<></td></lld<>	NA	<pre></pre>	<lld< td=""><td>0</td></lld<>	0
(pCi/Kg-wet)	Cs-134	60	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
••••	Cs-137	80	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Groundwater (pCi/liter)	H-3 – 8	2000	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gamma Spec 8						
	Mn-54	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Fe-59	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-58	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-60	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zn-65	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zr-95	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona Docket Nos. STN 50-528/529/530 Calendar Year 2005

Medium or		Lower Limit of	All Indicator	Location with Hig	ghest Annual Mean	Control	
Pathway	Type and Total	Detection	Locations			Locations	Number of
Sampled	Number of	(LLD)		Name	Mean (f) ^a		Nonroutine
(Unit of	Analyses	(from Table	Mean (f) ^a	Distance and	Range	Mean (f) ^a	Reported
Measurement)	Performed	6.1)	Range	Direction	-	Range	Measurements
	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
Groundwater	I-131	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
(pCi/liter)	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
-continued-	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gross Beta – 48	4.0	3.6 (24/48) 2.2 – 5.0	Site #55 3 miles 220°	4.0 (9/12) 2.9 - 5.0	NA	0
	H-3 – 16	2000	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gamma Spec. – 48						
Drinking Water	Mn-54	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
(pCi/liter)	Fe-59	·	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-58	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
 Security Physics (Security Security Security	Co-60	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zn-65	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
· · · · · · · · · · · · · · · · · · ·	Zr-95	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	· I-131	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-134		<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0

· · · · · · · · ·

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2005

.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona Docket Nos. STN 50-528/529/530 Calendar Year 2005

Medium or	True and T-4-1	Lower Limit of	All Indicator	Location with Hig	ghest Annual Mean	Control	Number of
Pathway	Type and Total	Detection	Locations	N		Locations	Nonroutine
Sampled	Number of	(LLD)		Name	<u>Mean (f)</u> ^a		Reported
(Unit of	Analyses	(from Table	Mean $(f)^{a}$	Distance and	Range	Mean (f) ^a	Measurements
Measurement)	Performed	6.1)	Range	Direction		Range	Measurements
	Gamma Spec. – 13				_		
	I-131	1.0	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Milk	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
(pCi/liter)	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
<u>,</u> ,,	Gamma Spec 36 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-95	15 30 15 15 30 30	<lld <lld <lld <lld <lld <lld< td=""><td>NA NA NA NA NA</td><td><lld <lld <lld <lld <lld <lld <lld< td=""><td>NA NA NA NA NA</td><td>0 0 0 0 0 0</td></lld<></lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld 	NA NA NA NA NA	<lld <lld <lld <lld <lld <lld <lld< td=""><td>NA NA NA NA NA</td><td>0 0 0 0 0 0</td></lld<></lld </lld </lld </lld </lld </lld 	NA NA NA NA NA	0 0 0 0 0 0
	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
Surface Water (pCi/liter)	I-131	15	12 (4/36) 7 - 19	Site #60 Onsite 67°	13 (1/12) 13 - 13	NA	0
	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona Docket Nos. STN 50-528/529/530 Calendar Year 2005

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD) (from Table 6.1)	All Indicator Locations Mean (f) ^a Range	Location with Hig <u>Name</u> Distance and Direction	hest Annual Mean <u>Mean (f</u>) ^a Range	Control Locations Mean (f) ^a Range	Number of Nonroutine Reported Measurements
Surface Water (pCi/liter) -continued-	H-3 - 12	3000	1598 (8/12) 1120 - 2038	Site #63 Onsite 180°	1705 (4/4) 1633 - 1763	NA	0

(a) Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

NOTE: Miscellaneous samples that are not listed on Tables 2.1 and 9.1 (not ODCM required) are not included on this table.

12. References

- 1. Pre-Operational Radiological Monitoring Program, Summary Report 1979-1985.
- 2. 1985-2004 Annual Radiological Environmental Operating Reports, Palo Verde Nuclear Generating Station.
- 3. Palo Verde Nuclear Generating Station Technical Specifications and Technical Reference Manual (TRM).
- 4. Offsite Dose Calculation Manual, PVNGS Units 1, 2, and 3.
- 5. Regulatory Guide 4.8, Environmental Technical Specifications for Nuclear Power Plants.
- 6. NRC Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979.