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ABSTRACT

There is a movement to introduce risk- and performance-based analyses into fire protection
engineering practice, both domestically and worldwide. This movement exists in the general fire
protection community, as well as the nuclear power plant (NPP) fire protection community.

In 2002, the National Fire Protection Association (NFPA) developed NFPA 805, Performance-

Based Standard for Fire Protection for Light-Water Reactor Electric Generating Plants, 2001

Edition. In July 2004, the U.S. Nuclear Regulatory Commission (NRC) amended its fire

protection requirements in Title 10, Section 50.48, of the Code of Federal Regulations (10 CFR |
50.48) to permit existing reactor licensees to voluntarily adopt fire protection requirements contained |
in NFPA 805 as an alternative to the existing deterministic fire protection requirements. In

addition, the nuclear fire protection community wants to use risk-informed, performance-based

(RI/PB) approaches and insights to support fire protection decision-making in general.

One key tool needed to support RI/PB fire protection is the availability of verified and validated
fire models that can reliably predict the consequences of fires. Section 2.4.1.2 of NFPA 805
requires that only fire models acceptable to the Authority Having Jurisdiction (AHJ) shall be
used in fire modeling calculations. Further, Sections 2.4.1.2.2 and 2.4.1.2.3 of NFPA 805 state
that fire models shall only be applied within the limitations of the given model, and shall be
verified and validated.

This report is the first effort to document the verification and validation (V&YV) of five fire models
that are commonly used in NPP applications. The project was performed in accordance with the
guidelines that the American Society for Testing and Materials (ASTM) set forth in Standard
E1355-04, “Evaluating the Predictive Capability of Deterministic Fire Models.” The resulits of
this V&V are reported in the form of ranges of accuracies for the fire model predictions.
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REPORT SUMMARY

This report documents the verification and validation (V&V) of five selected fire models
commonly used in support of risk-informed and performance-based (RI/PB) fire protection at

nuclear power plants (NPPs).

Background

Over the past decade, there has been a considerable movement in the nuclear power industry to
transition from prescriptive rules and practices towards the use of risk information to supplement
decision-making. In the area of fire protection, this movement is evidenced by numerous
initiatives by the U.S. Nuclear Regulatory Commission (NRC) and the nuclear community
worldwide. In 2001, the National Fire Protection Association (NFPA) completed the
development of NFPA Standard 805, “Performance-Based Standard for Fire Protection for Light
Water Reactor Electric Generating Plants 2001 Edition.” Effective July, 16, 2004, the NRC
amended its fire protection requirements in 10 CFR 50.48(c) to permit existing reactor licensees
to voluntarily adopt fire protection requirements contained in NFPA 805 as an alternative to the
existing deterministic fire protection requirements. RI/PB fire protection relies on fire modeling
for determining the consequence of fires. NFPA 805 requires that the “fire models shall be
verified and validated,” and “only fire models that are acceptable to the Authority Having
Jurisdiction (AHJ) shall be used in fire modeling calculations.”

Objectives

The objective of this project is to examine the predictive capabilities of selected fire models.
These models may be used to demonstrate compliance with the requirements of 10 CFR 50.48(c)
and the referenced NFPA 805, or support other performance-based evaluations in NPP fire
protection applications. In addition to NFPA 805 requiring that only verified and validated fire
models acceptable to the AHJ be used, the standard also requires that fire models only be applied
within their limitations. The V&V of specific models is important in establishing acceptable
uses and limitations of fire models. Specific objectives of this project are:

o Perform V&YV study of selected fire models using a consistent methodology (ASTM E1355)
and issue a report to be prepared by U.S. Nuclear Regulatory Commission Office of Nuclear
Regulatory Research (RES) and Electric Power Research Institute (EPRI).

¢ Investigate the specific fire modeling issues of interest to the NPP fire protection
applications.

¢ Quantify fire model predictive capabilities to the extent that can be supported by comparison
with selected and available experimental data.
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The following fire models were selected for this evaluation: (i) NRC’s NUREG-1805 Fire
Dynamics Tools (FDTS), (ii) EPRI’s Fire-Induced Vulnerability Evaluation Revision 1 (FIVE-
Rev. 1), (iii) National Institute of Standards and Technology’s (NIST) Consolidated Model of
Fire Growth and Smoke Transport (CFAST), (iv) Electricite de France’s (EdF) MAGIC, and (v)
NIST’s Fire Dynamics Simulator (FDS).

Approach

This program is based on the guidelines of the ASTM E1355, “Evaluating the Predictive
Capability of Deterministic Fire Models,” for verification and validation of the selected fire
models. The guide provides four areas of evaluation:

o Defining the model and scenarios for which the evaluation is to be conducted,
o Assessing the appropriateness of the theoretical basis and assumptions used in the model,
o Assessing the mathematical and numerical robustness of the model, and

¢ Validating a model by quantifying the accuracy of the model results in predicting the course
of events for specific fire scenarios.

Traditionally, a V&V study reports the comparison of model results with experimental data, and
therefore, the V&V of the fire model is for the specific fire scenarios of the test series. While
V&YV studies for the selected fire models exist, it is necessary to ensure that technical issues
specific to the use of these fire models in NPP applications are investigated. The approach
below was followed to fulfill this objective.

1. A set of fire scenarios were developed. These fire scenarios establish the “ranges of
conditions” for which fire models will be applied in NPPs.

2. The next step summarizes the same attributes or “range of conditions” of the “fire
scenarios” in test series available for fire model benchmarking and validation exercises.

3. Once the above two pieces of information were available, the validation test series, or
tests within a series, that represent the “range of conditions” was mapped for the fire
scenarios developed in Step 1. The range of uncertainties in the output variable of
interest as predicted by the model for a specific “range of conditions” or “fire scenario”
are calculated and reported.

The scope of this V&V study is limited to the capabilities of the selected fire models. There are
potential fire scenarios in NPP fire modeling applications that do not fall within the capabilities
of these fire models and therefore are not covered by this V&V study.

Results

The results of this study are presented in the form of relative differences between fire model
predictions and experimental data for fire modeling attributes important to NPP fire modeling
applications, e.g., plume temperature. The relative differences sometimes show agreement, but
may also show both under-prediction and over-prediction. These relative differences are
affected by the capabilities of the models, the availability of accurate applicable experimental
data, and the experimental uncertainty of this data. The relative differences were used, in
combination with some engineering judgment as to the appropriateness of the model and the
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agreement between model and experiment, to produce a graded characterization of the fire
model’s capability to predict attributes important to NPP fire modeling applications.

This report does not provide relative differences for all known fire scenarios in NPP applications.
This incompleteness is due to a combination of model capability and lack of relevant
experimental data. The first can be addressed by improving the fire models while the second
needs more applicable fire experiments.

EPRI Perspective

The use of fire models to support fire protection decision-making requires that their limitations
and confidence in their predictive capability is well understood. While this report makes
considerable progress towards that goal, it also points to ranges of accuracies in the predictive
capability of these fire models that could limit their use in fire modeling applications. Use of
these fire models present challenges that should be addressed if the fire protection community is
to realize the full benefit of fire modeling and performance-based fire protection. This requires
both short term and long term solutions. In the short term a methodology will be to educate the
users on how the results of this work may affect known applications of fire modeling. This may
be accomplished through pilot application of the findings of this report and documentation of the
insights as they may influence decision-making. Note that the intent is not to describe how a
decision is to be made, but rather to offer insights as to where and how these results may, or may
not be used as the technical basis for a decision. In the long term, additional work on unprovmg
the models and performing additional experiments should be considered.
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Performance-based Risk-informed regulation Fire Hazard Analysis (FHA)

Fire safety Fire protection Nuclear Power Plant

Fire Probabilistic Risk Assessment (PRA) Fire Probabilistic Safety Assessment
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PREFACE

This report is presented in seven volumes. Volume 1, the Main Report, provides general
background information, programmatic and technical overviews, and project insights and
conclusions. Volumes 2 through 6 provide detailed discussions of the verification and validation

(V&V) of the following five fire models:

Volume 2
Volume 3
Volume 4
Volume 5

Volume 6

Fire Dynamics Tools (FDT®)

Fire-Induced Vulnerability Evaluation, Revision 1 (FIVE-Revl)
Consolidated Model of Fire Growth and Smoke Transport (CFAST)
MAGIC

Fire Dynamics Simulator (FDS)

Finally, Volume 7 quantifies the uncertainty of the experiments used in the V&V study of these
five fire models.
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FOREWORD

Fire modeling and fire dynamics calculations are used in a number of fire hazards analysis (FHA) studies and
documents, including fire risk analysis (FRA) calculations; compliance with, and exemptions to the regulatory
requirements for fire protection in 10 CFR Part 50; “Specific Exemptions”; the Significance Determination
Process (SDP) used in the inspection program conducted by the U.S. Nuclear Regulatory Commission (NRC);
and, most recently, the risk-informed performance-based (RI/PB) voluntary fire protection licensing basis
established under 10 CFR 50.48(c). The RI/PB method is based on the National Fire Protection Association
(NFPA) Standard 805, “Performance-Based Standard for Fire Protection for Light-Water Reactor Generating

Plants.”

The seven volumes of this NUREG-series report provide technical documentation concemning the predictive
capabilities of a specific set of fire dynamics calculation tools and fire models for the analysis of fire hazards in
nuclear power plant (NPP) scenarios. Under a joint memorandum of understanding (MOU), the NRC Office of
Nuclear Regulatory Research (RES) and the Electric Power Research Institute (EPRI) agreed to develop this
technical document for NPP application of these fire modeling tools. The objectives of this agreement include
creating a library of typical NPP fire scenarios and providing information on the ability of specific fire models to
predict the consequences of those typical NPP fire scenarios. To meet these objectives, RES and EPRI initiated
this collaborative project to provide an evaluation, in the form of verification and validation (V&YV), for a set of five
commonly available fire modeling tools.

The road map for this project was derived from NFPA 805 and the American Society for Testing and Materials
(ASTM) Standard E1355-04, “Evaluating the Predictive Capability of Deterministic Fire Models.” These
industry standards form the methodology and process used to perform this study. Technical review of fire
models is also necessary to ensure that those using the models can accurately assess the adequacy of the scientific and
technical bases for the models, select models that are appropriate for a desired use, and understand the levels

of confidence that can be attributed to the results predicted by the models. This work was performed using
state-of-the-art fire dynamics calculation methods/models and the most applicable fire test data. Future
improvements in the fire dynamics calculation methods/models and additional fire test data may impact the results

presented in the seven volumes of this report.

This document does not constitute regulatory requirements, and RES participation in this study neither
constitutes nor implies regulatory approval of applications based on the analysis contained in this text. The
analyses documented in this report represent the combined efforts of individuals from RES and EPRI, both of
which provided specialists in the use of fire models ard other FHA tools. The results from this combined
effort do not constitute either a regulatory position or regulatory guidance. Rather, these results are intended

to provide technical analysis, and they may also help to identify areas where further research and analysis are

needed.

Carl J. Paperiello, Director
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
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1

INTRODUCTION

As the use of fire modeling tools increases in support of day-to-day nuclear power plant
applications including fire risk studies, the importance of verification and validation (V&V)
studies for these tools also increases. V&V studies afford fire modeling analysts confidence

in applying analytical tools by quantifying and discussing the performance of the given model
in predicting the fire conditions measured in a particular experiment. The underlying assumptions,
capabilities, and limitations of the model are discussed and evaluated as part of the V&V study.

The main objective of this study is to document a V&V study for the MAGIC zone model,

in accordance with ASTM E1355, Standard Guide for Evaluating the Predictive Capability

of Deterministic Fire Models [Ref. 1]. MAGIC is a zone model developed and maintained by
Electricité de France (EdF), which officially released the latest version of the model in 2005. The
MAGIC software calculates fire-generated conditions single or multi-compartment geometries as a
function of time [Refs. 2, 3, and 4].

The MAGIC software is a classical thermal model for fire simulations in zones able to process
communicative multi-compartment problems. Each compartment is divided into two volumes,
which are assumed to be homogeneous. The solution of the mass and energy balances
accumulated on each zone, together with the ideal gas law and equation of heat conduction
into the walls, results in the environmental conditions generated by the fire.

Consistent with ASTM E1355, this document is structured as follows:
e Chapter 2 provides qualitative background information about MAGIC and the V&V process.
e Chapter 3 presents a technical description of MAGIC, which includes the underlying physics

and chemistry inherent in the model. The description includes assumptions and approximations,
an assessment of whether the open literature provides sufficient scientific evidence to justify
the approaches and assumptions used, and an assessment of empirical or reference data used
for constant or default values in the context of the model. MAGIC’s source code and
technical description are EDF proprietary material; consequently, this report provides only

a technical summary of this material.

e Chapter 4 documents the mathematical and numerical robustness of MAGIC, which involves
verifying that the implementation of the model matches the stated documentation.

o Chapter 5 presents a sensitivity analysis, for which the researchers defined a base case scenario
and varied selected input parameters in order to explore MAGIC’s capabilities for modeling

typical characteristics of NPP fire scenarios.
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e Chapter 6 presents the results of the validation study in the form of relative differences
classified by fire modeling parameter. The following parameters were selected for validation

purposes:

Hot gas layer temperature and height

Ceiling jet temperature

Plume temperature

Flame height

Oxygen concentration

Smoke concentration

Room pressure

Target surface temperature and incident radiant and total heat flux

Wall surface temperature and incident total heat flux

e Appendix A presents the technical details supporting the calculated relative differences
discussed in Chapter 6 and provides graphical comparisons of experimental measurements
and modeling results.

e Appendix B presents MAGIC input files.
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MODEL DEFINITION

This chapter provides qualitative background information about MAGIC and the V&V process,
as suggested by ASTM E1355.

2.1 Name and Version of the Model

This V&V study focused on the latest version (V4.1.1b) of the MAGIC zone model, which EdF
released in November 2005.

2.2 Type of Model

MAGIC is a two-zone fire model that predicts the environmental conditions resulting from a fire
prescribed by the user within a compartmented structure. Essentially, the space to be modeled is
subdivided into two control volumes that represent upper and lower layers. The fundamental
equations of conservation of energy and mass are solved in each control volume as the fire heat
release rate develops over time. The thermal conditions of the control volumes are the boundary
conditions for localized heat transfer problems solved at the surfaces and targets in the room.

2.3 Model Developers
MAGIC was developed and is maintained by Electricité de France (EdF).

2.4 Relevant Publications
MAGIC is supported by three EdF publications, including (1) the technical manual, which provides

a mathematical description of the model [Ref. 2]; (2) the user’s manual, which details how to use
the graphical interface [Ref. 3]; and (3) the validation studies, which compare MAGIC’s results
with experimental measurements [Ref. 4]. These three proprietary publications are available

through EPRI to EPRI members.

2.5 Governing Equations and Assumiptions

MAGIC solves the conservation equations for mass and energy. The model does not explicitly
solve the momentum equation, except for use of the Bernoulli equation for the flow velocity
at room openings. These three equations and the ideal gas law are solved to obtain fire-
generated conditions in the selected control volumes.

MAGIC assumes that the room is divided in two zones (upper and lower control volumes),

in which the equations described above are solved. The upper control volume, referred to

in this report as the hot gas layer, is assumed to have uniform density and, therefore, temperature.
The same assumption applies to the lower control volume (also known as the lower layer).
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Chapter 3 of this report and Ref. 2 provide a complete technical description of MAGIC algorithms and
sub-models.

2.6 Input Data Required To Run the Model

In general, the following data is necessary to develop the input file for MAGIC. The required
inputs for each individual analysis may vary, and depend on the characteristics and objectives
of the fire scenario under analysis.

(1) The following parameters describe the compartment geometry and ventilation conditions:

e Compartment geometry (length, width, and height): The compartment (or each compartment in
a multi-room scenario) is assumed to have a rectangular floor base and flat ceiling.

¢ Floor, ceiling, and wall material properties (density, specific heat, and thermal conductivity):
Depending on the selected material, this information may be available in the MAGIC database.

e Natural ventilation (height and width of doors; height, width, and elevation of windows;
time to open/close doors and windows during a fire simulation; and leakage paths).

e Mechanical ventilation (injection and extraction rates, vent elevations, and time
to start/stop the system).

(2) The following parameters describe the characteristics of the fire:

¢ Fuel type and fire heat release rate profile. The heat release rate profile is specified using
the heat of combustion and the mass loss rate of the fuel.

e Fire location (elevation, near a wall, near a comer, or center of room).

¢ Footprint area of the fire: circular (e.g., pool fires specified by the diameter)
or rectangular (e.g., bounded pool fires, electrical cabinets specified by length and width)

¢ Fuel mass, irradiated fraction, and stochiometric fuel-oxygen ratio.

(3) Two sets of parameters (thermo-physical properties and location) describe targets.
Thermo-physical properties include the density, specific heat, and thermal conductivity
of the material. Location refers to where the target is with respect to the fire (expressed with
three-dimensional coordinates).

(4) The inputs for sprinklers and detectors are the device’s location with respect to the fire
and its response characteristics, which include activation temperature and response time index.

The MAGIC user’s guide [Ref. 3] provides a complete description of the input parameters
required to run MAGIC.

2.7 Property Data
Various equations associated with the MAGIC model require the following property data:
e For walls: density, thermal conductivity, and specific heat

For targets: density, thermal conductivity, and specific heat
For fuels: heat of combustion, mass loss rate, stochiometric fuel-oxygen ratio, specific area,
and radiated fraction '
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These properties may be available in fire protection engineering handbooks or the MAGIC database.
However, depending on the application, properties for specific materials may not be readily available.

2.8 Model Results

MAGIC has an extensive library of output values. Once a given simulation is completed,
MAGIC generates an output file with all of the solution variables. Through a “post-processor”
interface, the user selects the relevant output variables for the analysis. Typical outputs include
(but are not limited to) the following examples:

¢ environmental conditions in the room (such as hot gas layer temperature, oxygen
concentration, and smoke concentration) '

e heat transfer-related outputs to wall and targets (such as incident, convective, radiated, and
total heat fluxes)

¢ fire intensity and flame height

¢ flow velocities through vents and openings.






THEORETICAL BASIS FOR MAGIC

3.1 Introduction

This chapter provides a brief technical summary of the MAGIC zone model to address

the ASTM E1355 requirement to “verify the appropriateness of the theoretical basis

and assumptions used in the model.” However, given the proprietary nature of the software,
readers should refer to Ref. 2 for a complete technical description.

MAGIC is a “standalone” computer program for simulating fire conditions inside a compartment.
Technical details, as well as a user’s guide and validation studies of this computer program,
can be found in Refs. 2, 3, and 4.

3.2 Theoretical Basis for MAGIC

MAGIC is a classical two-zone fire model. That is, a room is divided into upper and lower zones
(or layers). The upper layer (also referred to as the hot gas or smoke layer) accumulates hot gases
generated in the combustion zone and primarily transported by the fire plume. The lower layer
primarily consists of fresh air and has its own energy and mass balance.

Perhaps the most important characteristic of the two-zone model formulation is that each zone
is assumed to have homogeneous properties. The gas density (and, consequently, the temperature),
oxygen concentration, and concentration of unburned gases are assumed to remain constant
throughout each layer. These properties change only as a function of time.

Resulting fire conditions are obtained by solving equations for conservation of mass, species,
and energy, together with the ideal gas law. The species equation yields the concentration

of unburned fuel and oxygen in each layer. The compartment pressure, layer temperature,
and layer heights are obtained from the mass and energy equation. Finally, the gas densities

are calculated using the ideal gas law.

Specific sub-models are used to characterize the various physical processes:

e pyrolysis of the fuel(s) on fire

e combustion in gaseous phase, governed by the properties of emitted products and the air
supply attributable to the plume flow

¢ smoke production and unburned products, for which the properties depend on the fuels

e the fire plume over each source in various configurations (circular or linear fire, at different
heights, above the openings)

o heat exchange by convection and radiation between the flame, air, hot gas layer, walls,
and environment
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e natural flows through the openings (vertical and horizontal), which allow the compartments
to communicate with each other and the outside

e forced or natural ventilation

¢ thermal behavior and reaction of critical elements to determine their malfunction or ignition
¢ thermal behavior and combustion of electric cables

e water spray from sprinklers

From a geometric point of view, MAGIC works on a set of rectangular rooms with flat ceilings,
with their edges parallel to the reference axes. These rooms communicate with each other and
the outside through horizontal or vertical openings.

MAGIC provides the following general results:

e temperatures of hot and cold zones

e concentrations of oxygen and unburned gases

e smoke migration into each room

o the mass flow rates of air and smoke through the openings and vents

o the pressures at the floor level of each room

e the temperatures at the surface of the walls

e the thermal fluxes (radiative and total) exchanged by the targets placed by the user

Figure 3-1 summarizes MAGIC’s modeling features.

g\ e |
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Figure 3-1: Pictorial Representation of MAGIC’s Features
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3.2.1 Combustion

The standard combustion model in MAGIC assumes a perfect oxidation reaction; that is, the fire
will burn at the specified heat release rate if oxygen is available. MAGIC tracks the amount

of oxygen in the fuel (in the case of a pre-mixed fuel), oxygen entrained by the fire, unburned
fuel in the environment, and the predefined fuel source in order to determine whether complete
combustion will occur. The chemical aspects of combustion are not considered. If the input

of oxygen quantity into the plume is at least equal to the quantity necessary to burn all of

the gaseous fuels in the plume, combustion is considered to be complete and controlled by

the fuel flow rate. If not, the combustion is incomplete and controlled by the available oxygen.

The user can also specify a low oxygen limit (LOL).

3.2.2 Hot Gas Layer Temperature and Height

Hot gas layer temperature and height result from balance equation of energy and mass for the
defined control volume. Properties are assumed to be homogeneous in the volume except in the
specific regions of the plume and ceiling-jet. Mass balance takes into account the fire plume flow
from the lower layer, and air supplied or exhaust through vents or openings. Energy balance
takes into consideration convection and radiation to the room surfaces (walls ceiling and floor)
and to the lower layer. The radiation properties of the layer are obtained from its opacity (based
on smoke concentration resulting from the mass balance). Oxygen and un-burnt gas
concentrations also result from the mass and energy balances in the hot gas layer volume. Similar

conservation equations are applied to the lower layer.

3.2.3 Walls, Ceiling and Floor

Walls, ceiling and floor are represented using one-dimensional finite difference meshing of
conduction. Two separate calculations are made: one for the section of wall in the upper layer
and the ceiling and a similar one for the lower layer and the floor. Boundary conditions for wall
inside a room use convection and a detailed radlatlon exchange. As a default, heat transfer

coefficient and wall emissivity are fixed to 15 W/m %/K and 0.9 respectively. The heat transfer
coefficient can also be correlated to the temperature and the estimated velocity in the layer, as an
option. This study is based on default values.

Each wall can be constructed with multiple successive layers of a homogenous material; however,
the characteristics of each material are assumed to remain constant. The initial temperature condition
at both sides of the wall is the ambient temperature. The boundary conditions are calculated as
the simulation goes on and are based on heat exchange between surfaces and gas layers.

3.2.4 Filame Height, Fire Plume & Ceiling Jets

The fire plume in MAGIC is modeled using McCaffrey’s semi-empirical correlations for fire
plume entrainment [Ref. 5] McCaffrey's correlation for temperature and velocity in the flame
region, Heskestad's correlation [Ref. 7] for temperature and velocity in the plume region. The
software incorporates the effects of the smoke layer on fire plume temperature [Ref. 6], and
simulates ceiling jets using the model developed by Cooper [Ref. 6] to account for hot gas layer
effects. As such, MAGIC models both confined and unconfined ceiling jets and considers the
adiabatic ceiling jet correlation and exchanges to walls from the layers’ properties. In addition,
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MAGIC accounts for fires located along a wall or in corners, and it estimates flame height using
Heskestad’s correlation [Ref. 71.

3.2.5 Natural & Mechanical Ventilation

The model for flows through horizontal openings is based on the formulation proposed by Cooper
[Ref. 8]. This model addresses the issue of one- or two-way flow at the opening using
experimental results. It is important to note that this model has been developed from
experimental conditions in which the horizontal opening was not directly above the fire source.
The model does not apply to configurations in which the fire plume directly influences the flow.

MAGIC uses the Bernoulli equation to model flows through vertical openings with a
corresponding orifice flow coefficient. Flows are assumed to be perpendicular to the surface of

the opening.
The ventilation model used in MAGIC is based on the KIRCHOFF equation, and is represented
by a fan between ducts. In each duct, regular and singular pressure differences are considered.

Upstream and downstream nozzles make the link between rooms and vent systems. In the case
of no fan, the model calculates the mass flow through the ducts considering pressure differences.

3.2.6 Radiation

Radiation modeling is relatively complex in MAGIC. The gas layer is treated as a semi-
transparent gas. Radiation exchanges between surfaces (walls and openings), flames, and gas
layers are considered. One system is built for the upper layer and another for the lower layer.
Those systems exchange through the layer interface. View factors are re-evaluated for every
iteration due to the layer interface height variations.

3.2.7 Targets

Two kinds of targets are implemented in MAGIC. The basic target is equivalent to a flux meter
(with controlled surface temperature), and the thermal target is equivalent to a one-dimensional
homogeneous material. Fire sources, gas layers, walls, and openings generate the incident heat fluxes.
Convective and radiative fluxes are considered, and the heat exchange is calculated in detail.

For example, MAGIC considers direct radiation flux from sources located in adjacent rooms, and
correlates the convective exchange to local temperature and gas velocity. The target can be
located in the plume or ceiling jet, and MAGIC calculates the target temperature using

a one-dimensional finite difference conduction model.

3.2.8 Electrical Cables

Electrical cables are numerous in NPPs, and they serve as both fuel and targets in NPP fire scenarios.
Figure 3-2 summarizes the modeling of electrical cables in MAGIC.
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Figure 3-2: Simplified Inner Structure of an Armored Electrical Cable

The cable is composed of successive layers of materials that are thermally described by the user.
Each layer includes a certain amount of discretization points, limited to 40 per layer. The code
automatically implements a node at the center of the cable, and the heat transfer inside the cable

is considered to follow an axial symmetry.

In the calculation, an electrical cable is divided in 20-cm segments along its length. The total
number of segments should not exceed 50. For each segment, MAGIC calculates the thermal

exchanges with the outside and the thermal heating.

The maximum surface temperature encountered on all the segments is the criterion to start
the cable ignition, from a piloted ignition threshold value or (if needed) a pyrolysis output
(introduced by the user). After the ignition, the cable behaves as a classical fuel, and its thermal

behavior is no longer modeled (that is, the surface temperature retains its last value).

An important consideration in this validation study is the treatment of multi-conductor cables. In
MAGIC, multi conductor cables were modelled as single conductor as follows:

n
e The cross sectional area of the equivalent single conductor is Z A, where Ai is the area of
i=1
each individual conductor and n is the total number of conductors in the cable.

e The thickness of the jacket remains the same

e The thickness of the insulation is given by (cable thickness — jacket thickness — equivalent
conductor radius).

Figure 3.3 illustrates this process.
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Figure 3-3: Modeling multi-conductor cables in MAGIC

3.2.9 Sprinkler Suppression
Modeling of sprinkler suppression is divided into three phases:

(1) Sprinkler activation determines the instant when the device is activated. Specifically,
the sprinkler is triggered when the temperature of the gas contained in the sprinkler bulb
reaches its activation temperature, which generally varies from 70 to 150°C depending on the
sprinkler. The model for sprinkler activation developed by Heskestad [Ref. 9] is implemented

in MAGIC.

(2) Cooling of the hot gas layer by the water spray is achieved through the interaction between
water droplets and the hot gas layer, which results in several physical and thermal
phenomena. The spray comprises a multitude of drops that have different speeds, diameters,
and directions. The thermal exchanges between the hot gases and the drops increase the
temperature of the drops and lead to partial or total evaporation and cooling of hot gases.

(3) Fire extinction takes into account the interaction between water drops and the fire.
Specifically, the power of the fire is stabilized when the spray is in contact with the fire.
This modeling is conservative and has been adopted in MAGIC.

3.3 Concluding Remarks

This chapter provided an overview of the modeling features of MAGIC. A complete technical
description is available in Reference 2.

MAGIC is based a combination of on macroscopic conservation equation and empirical
correlations for specific phenomena. This combination between fundamental principles and
experimental observations leads to a sound quantitative approach for its intended domain of
application. In addition to the validity of semi-empirical sub-models that may be used
independently, confidence in the predictive capabilities of the code is mainly obtained through
validation exercises, were the sub-models work together in order to provide consistent results for

the different relevant outputs in a specific scenario.
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Although MAGIC can be used for general fire modeling applications, it has been intended since
the beginning for nuclear power plant applications. For this reason its validation file and some of
its sub-models, e.g., electrical cables, are specially adapted to this field.

It is necessary to stress the importance of the input parameters. Databases in MAGIC give
consistent information to the user, who can also customize with preferential materials. MAGIC
also provides some checks for the validity of the input values. However, typical fire modeling
studies usually involve uncertain inputs. In those cases, the analyst’s expertise and experience in
the field is important for developing valid input files and obtaining consistent conclusions from
the model results.
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MATHEMATICAL AND NUMERICAL ROBUSTNESS

4.1 Introduction

This chapter documents the mathematical and numerical robustness of MAGIC, which involves
verifying that the implementation of the model matches the stated documentation. Specifically,
ASTM E1355 requires the following analyses to address the mathematical and numerical

robustness of models:

e Analytical tests involve testing the correct functioning of the model. In other words, these tests
use the code to solve a problem with a known mathematical solution. However, there are
relatively few situations for which analytical solutions are known.

e Code checking refers to verifying the computer code on a structural basis. This verification
can be achieved manually or by using a code-checking program to detect irregularities
and inconsistencies within the computer code.

o Numerical tests investigate the magnitude of the residuals from the solution of a numericaily
solved system of equations (as an indicator of numerical accuracy) and the reduction in residuals
(as an indicator of numerical convergence).

4.2 Mathematical and Numerical Robustness Analyses for MAGIC

MAGIC consists of a user interface and a mathematical source code models. This section covers
only the second module in detail. Section 4.2.4 describes a classical quality assurance policy

for the user interface.
4.2.1 Comparison with Analytical Solutions

General analytical solutions do not exist for fire problems — even for the simplest cases.
Nonetheless, it is possible to test specific aspects of the model in typical situations. Some studies
have been performed to control the correct behavior of the following sub-models of MAGIC:

e conduction into the wall: comparison to other models and analytic solutions

e target and cable thermal behavior: consistency of the behavior in typical situations
¢ plumes model: comparison with the theoretical model

e vent and opening: comparison to other zone and field models

e room pressure. comparison with pressure estimated by the perfect gas law and simplified
energy equation
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4.2.2 Code Checking and Code Quality

In general, MAGIC is structured as shown in Figure 4-1. The code reads data in a case file
(*.cas, which can be accessed using any word processing software or the MAGIC interface
itself), and initializes all of the variables for the problem. To solve the system of differential
equations, the model divides time into successive intervals, and then solves the equations
recursively from instant to (where the variables are known) and by using a recurrence formula
linking instant t, to ty41.

All the solution variables at instant t, are obtained through Array Y (temperatures, pressure,
concentrations, and gas characteristics). The 26 constituent equations related to a given room
are numbered from Y(1) to Y(26).

A subroutine calculates all of the fluxes (Y’) derived from the physical model implementation
between t, and t,,; . This Array, Y, is transmitted to the solver for the calculation of t,;.

The ordinary differential equation (ODE) solver is based on a trial-and-error process to estimate
the solution variables at t;,;.
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Figure 4-1: Simplified Functional Breakdown of the MAGIC Code
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The equations of conduction inside the walls and cables, the sprinkler spray, and the equations
of transport in the ventilation system are solved independently during the calculation cycle
of transfers. All temperatures are updated at each calculation step.

The ODE system is solved using backward differential formulas (Gear method). The solver uses
a specific algorithm based on the BROYDEN approach [Refs. 10 and 11]. This method is interesting
because there are several distinct time scales in the resolution of the ODE. Indeed, the fire combustion
is the fastest phenomenon encountered, and the transport time scale is much slower than the fire
reaction. This is why a numerical resolution (such as Gear) with trial-and-error enables the model
to dynamically adjust the resolution time step. If the problem presents dramatic physical changes
in relatively short periods of time, the time step decreases; however, in the opposite case,

the time step increases.

In addition, the BROYDEN approach is a quasi-Newton method to process the system of
nonlinear algebraic equations. In this method, the Jacobean matrix is replaced by a series

of “approached” matrices converging toward the exact matrix at the solution point. First,

the “approached” matrix is decomposed in a product of two matrices — LU with L as the lower
triangular matrix, and U as the upper triangular matrix with 1 on the diagonal (CROUT method).

The resolution makes a first iteration with the Newton method, and three iterations with

the BROYDEN method. This solution enables the model to improve the convergence

when the problem presents dramatic physical changes in relatively short periods of time.

This method avoids recalculation of the Jacobean matrix at each iteration (thereby saving time).

The source code itself is tested with the following methods:

¢ First, to control robustness, the code may be compiled in several different platforms and
software applications. The MAGIC code has been compiled under Microsoft Windows 2000
and Windows XP, with a variety of compilers, including Absoft Pro Fortran, Visual
FORTRAN, and G77. In addition, a global update of the FORTRAN sources was performed
in 2004 [Ref. 12], and aspects such as code documentation, variable glossary, and source
cleanup were addressed.

e In terms of code quality, two tools have been used to control the language:
» FOR_STUDY from Cobalt Blue
> PLUSFORT from Polyhedron Software

These tools confirm the consistency of variables and constants (undefined and incorrectly or
redundantly declared) and use of good FORTRAN syntax.

The software quality assurance system provides a process to fix detected anomalies concerning
the interface of the code. Maintenance of MAGIC is based on observation forms, which identify
problems. Then, a modification form describes the problem analysis and proposed solutions.
Finally, a correction form explains the chosen solution and implementation features. The project
manager decides on the implementation of the correction in future versions.
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4.2.3 Numerical Tests

For each new code version, a set of tests is used to ensure that the calculation is correct. These tests
come from previous case studies. The convergence and speed of the calculation is the first step
of control. Main results from the original study are then compared, and significant differences

are analyzed.

Specific tests are performed in the maintenance process when new models are implemented into
the code, or when existing models are corrected or improved. Those tests are not systematically
conducted for new versions, but they are available in case problems arise with the model under study.

4.2.4 User Interface

The method used is a classical V-cycle development with tests, as illustrated in Figure 4-2.

Maintenance

Needs expression

™~ e

Specifications < > Validation (Recipes)
General design < > Merger tests
Detailed design <> Unit tests

\' Execution (coding) /

Figure 4-2: V-Cycle Representation

The code meets the corresponding specifications at each step of the cycle. The following
reference documents are available:

e Conception documentation [Ref. 13] presents the general “architecture” and input/output files,
and summarizes all of the class, function, and subroutine codes in the interface. The document
includes a short description of objectives and parameters for each.

e Reception test framework [Ref. 14] validates all of the interface functions and enables the user
to verify consistency between the specification and software.

o User reference guide [Ref. 15] presents the various interface menus and details their uses.

o Tutorials [Ref. 16] allow self-teaching through step-by-step exercises.

4.3 MAGIC Improvements as a Result of the V&V Process

Some improvements were made in MAGIC as a result of the V&V process. This highlights the
importance of the verification and validation process including a rigorous comparison of code
predictions with experimental observations. MAGIC version 4.1.1b includes the latest the
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improvements resulting from the V&V. Specifically, the following MAGIC features were
corrected during the V&V process:

¢ Improvement of the soot mass balance within the plume
¢ Improvement of the correlation for temperature in the flame region

e Correction of a problem in the flame length calculation when lower than the layer interface.

4.4 Concluding remarks

MAGIC has been developed to allow quick and robust calculations of typical fire conditions in
single and multi-compartment building, on a standard PC platform. Calculations will be very
quick (a few seconds) for simple scenarios, e.g., single room with opening and vents.
Configurations with several communicating rooms (up to 24) can be managed by the code.
Calculation times however are correlated to the complexity of the problem. The number of
communicating rooms maybe the most influencing parameter. The use of the cable model can
also have a significant "cost" on calculation time.

The development and maintenance of MAGIC is performed by EdF R&D. On average, a
MAGIC revision is released once a year.
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MODEL SENSITIVITY

This chapter discusses sensitivity analysis, which ASTM E1355 defines as a study of how

changes in model parameters affect the results. In other words, sensitivity refers to the rate of

change of the model output with respect to input. variations. The purpose of this sensitivity analysis is

twofold:

1. Test MAGIC predictive capabilities with a range of different inputs to check for consistency in the
results, and

2. Compare different modeling strategies in MAGIC in support of the validation study described later
in Chapter 6 and Appendix A. Specifically, two modeling strategies selected for validation
includes:

a. The use of thermic-target (slab) sub-model in MAGIC for predicting cable surface
temperature VS the use of the cable sub-model.

b. The use of thermic-target (slab) sub-model in MAGIC for predicting temperature and heat
fluxes to room surfaces VS the use of the wall temperature sub-model.

5.1 Definition of Base Case Scenario for Sensitivity Analysis

Conducting a sensitivity analysis requires the definition of a base case scenario. Variations in
the output of the model are measured with respect to the base case scenario.

The base case scenario for this study was analyzed in Benchmark Exercise #1 as part of an
ongoing International Collaborative Fire Modeling Project (ICFMP) [Ref. 17]. This section
summarizes the technical description of the scenario. (Note that only Part 1 of the benchmark

exercise was selected as the base case.)

e Room
e Length: 15.2 m (50 ft)
e Width: 9.1 m (30 ft)
e Height: 4.6 m (15 ft)
e Walls: 0.15 m thick concrete (6 in)
e Door: 24mx 2.4 m (62 ft?)
e Mechanical ventilation: 5 air changes per hour
e Ventsize: 0.5 m’ (5.4 ft)
e Vent elevation: 2.4 m (7.9 ft)

e Target

e Cable Tray A: 0.6 m wide, 0.08 m deep
e Elevation (cable tray A): 2.3 m, 0.9 m off the right wall of the room
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e (Cable Tray B: 0.6 m wide, 0.08 m deep
e Elevation (Cable Tray B): 2.3 m, along the left wall of the room

e Material properties for concrete

Specific heat: 1,000 J/kg-K
Thermal conductivity: 1.75 W/m-K
Density: 2200 kg/m3

Emissivity: 0.95

e Material properties for cables (targets): See Table 5-1.
Table 5-1: Material Properties for Cables

Thermal cond
aterial [kW/mK] |Density [kg/m3}{Cp [kJ/Kg-k]
E 0.00021 1375 1.566
PVC 0.000147 1380 1.469

e Ambient conditions

Temperature: 27 C (81 F)
Relative humidity: 50%
Pressure: 101,300 Pa
Elevation: 0

Wind speed: 0

e Fire (heat release rate): The fire heat release rate was assumed to have a t2 growth profile.
The fire reaches its peak intensity in 600 seconds. Two peak intensities (1.0 MW and 5.0 MW)
were selected for this sensitivity analysis, in order to explore different MAGIC features
and capabilities. For example, fire intensity capable of consuming all of the oxygen
in the enclosure allows the sensitivity analysis to explore situations that exercise MAGIC’s
extinction model. Figure 5-1 illustrates the two heat release rate profiles.

Heat Release Rate Profiles

100:: i—é/ ; . —

0 00 400 600 800 1000 1200

Time [sec]
—e 1.OMW ——5.0 MW

Figure 5-1: Selected Heat Release Rate Profiles
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5.2 Sensitivity Analysis

A total of 16 MAGIC simulations were conducted for this sensitivity analysis. A key input
parameter was modified in each run in order to explore MAGIC’s capabilities and sensitivities
with respect to input parameters. Note, however, that MAGIC requires numerous input
parameters, and this study did not analyze all of those input parameters and their combinations.
Instead, the researchers selected key parameters relevant to typical commercial NPP fire scenarios.
Table 5-2 summarizes the 16 MAGIC fire simulations selected for sensitivity analysis.

Table 5-2: Summary of MAGIC Simulations Selected for Sensitivity Analysis

Heat Release NaFurql M:cch.. Lower Ver_tical Horigontal
Case Rate [KW] Ventxl;mon Ventlgat:lon (?xygen Fuel Type F{rfa Fl'rfi

[m°] [m’/s] Limit [%] Position | Position

1 1000 0.015 0 0 Heptane Floor Center
2 1000 0.015 0.88 0 Heptane Floor Center
3 1000 0.015 0 10 Heptane Floor Center
4 1000 0.015 0.88 10 Heptane Floor Center
5 1000 5.76 0 0 Heptane Floor Center
6 1000 5.76 0 0 Toluene Floor Center
7 1000 5.76 0 0 Heptane 0.5H Center
8 1000 5.76 0 0 Heptane Floor 0.25W
9 5000 0.015 0 0 Heptane Floor Center
10 5000 0.015 0.88 0 Heptane Floor Center
11 5000 0.015 0 10 Heptane Floor Center
12 5000 0.015 0.88 10 Heptane Floor Center
13 5000 5.76 0 0 Heptane Floor Center
14 5000 5.76 0 0 Toluene Floor Center
15 5000 5.76 0 0 Heptane 0.5H Center
16 5000 5.76 0 0 Heptane Floor 0.25W

The first eight simulations were conducted with the assumption of a peak fire intensity of 1.0 MW.
The researchers varied parameters affecting the size of the ventilation openings, the mechanical
ventilation system, the fuel type, and the fire location, in order to explore their effects on selected
results. Simulations 9-16 are identical to the first eight, but with a peak fire intensity of 5.0 MW.
Targets of both PVC and XPL material were specified in the computational domain. Therefore,
sensitivities to thermo-physical properties of targets can be explored in each of the analyzed cases.
Figure 5-2 provides a pictorial representation of the fire scenario selected for sensitivity analysis,

as defined in MAGIC.
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Figure 5-2: Problem Specification in MAGIC

The sensitivity analysis and its results are classified by relevant fire-modeling attributes selected
for this V&V study, as presented in the following sections.

5.2.1 Hot Gas Layer Temperature and Height

The hot gas layer temperature is perhaps the single most important output of a zone model,
since it is the direct result of the energy and mass balance in the upper control volume.

In general, the hot gas layer temperature is affected by the fire intensity, natural and mechanical
ventilation characteristics, and material properties of the room. This study analyzed the effect
of the first three groups of inputs on the hot gas layer temperature. The properties of the wall
were not evaluated, since most NPP fire scenarios involve concrete rooms.

Figure 5-3 summarizes the hot gas layer temperature profiles for selected cases in the sensitivity
analysis. The first group of profiles (Cases 1, 2, and 5) was associated with a heat release rate
of 1.0 MW, and the predicted hot gas layer temperature was just below 140 °C. Notice that

the temperature profile is similar to the heat release rate. That is, once the fire reaches steady-state
at 600 seconds, the temperature profile is almost steady.

The second group of profiles (Cases 9, 10 and 13) reached temperatures just below 350 °C.
Notice that the profiles for Cases 9 and 10 show decay after 600 seconds, which is attributed to
a reduction in the heat release rate as a result of low oxygen concentration. Recall that only
air leakages were assumed in these two simulations. Notice that Case 13 was not affected

by the amount of oxygen because the door was open and fresh air was constantly moving

into the enclosure.
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In summary, although it is generally obvious that the heat release rate affects the hot gas layer
temperature, higher fire intensities consume additional oxygen, which may prevent the fire
from burning at its specified heat release rate.

The hot gas layer height output is directly associated with the hot gas layer temperature, as it is
also a direct output of the energy and mass balance in the upper control volume. This output result
is also generally affected by the same input parameters as the hot gas layer temperature.

Figure 5-3 also illustrates a selected set of hot gas layer heights. Notice two distinctive sets of
results. First, the profiles for Cases 1, 2, 9, and 10 reached the floor of the room. Those cases
consist of fire simulations that assume a small leakage area below the door (closed door
simulation). In Cases 5 and 13, the hot gas layer did not reach the floor, because the door was
assumed to be open. As expected, the layer interface in Case 13 leveled lower than the one in
Case 5, because of the higher heat release rate.

Hot Gas Layer Temperature Hot Gas Layer Height
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400
45 —e—Case9
350 +— —e—Case9 4 \ 4
m | ‘ ~o— Casea 10
300 1~ —o—Case 10 7 . 35 3 Case 13 ]
& € e
g BT a1z g ] : 2 ]
200 ; ;s 25
£ 2\
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50- 05 \
o - ] 0 %—
o 5 10 15 20 0 5

Time (min)
Figure 5-3: Hot Gas Layer Temperature Profiles

5.2.2 Ceiling Jet Temperature

Two sensors were specified in MAGIC’s computational domain to record the gas temperature
at the specified locations. Figure 5-4 illustrates selected ceiling jet temperature profiles.
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Figure 5-4: Ceiling Jet Temperature Profiles

MAGIC performed as expected. First, for each case, the temperature at a larger radial distance,
R, was lower than at a shorter R. Second, the ceiling jet temperature was higher than the
predicted hot gas layer temperatures for the respective cases. For example, at a relatively large radial
distance from the fire, R = 4 m, the ceiling jet temperature was just above 150 °C in Case 5.
Recall that the predicted hot gas layer temperature for Case 5 was below 150 °C. Another
interesting observation is that the ceiling jet temperatures are higher in the closed room
simulation (Case 1), compared to the open room simulation (Case 5). This behavior was also
observed in the corresponding simulations with a 5-MW heat release rate. Consider, for example,
the ceiling jet temperature profiles for Case 9. In this case, with an input heat release rate of 5.0
MW, the peak ceiling jet temperatures were above 600 °C. The decaying nature of the heat release
rate profile (resulting from an oxygen-limited environment) is also reflected, similar to the one
observed for hot gas layer temperature.

Finally, Cases 7 and 15 are also relevant to the ceiling jet temperature. In this case, the input
parameter of interest is the fire elevation (as opposed to the horizontal radial distance and heat
release rate). For a fire located 2.3 m above the floor, the ceiling jet temperatures were above
250 °C. Case 5, which had identical conditions but with a floor base fire, resulted in temperatures
more than 50 °C lower. Figure 5-4 illustrates the temperature profiles for the ceiling jet in Cases 7
and 15.
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5.2.3 Plume Temperature

Three plume temperature sensors were specified in MAGIC’s computational domain,

as illustrated in Figure 5-3. The input parameters included in the sensitivity analysis were

the elevation of the sensor above the fire and fire intensity. MAGIC again performed as expected.
Specifically, plume temperatures were lower as the elevation above the fire increased,
temperatures were higher for higher heat release rate profiles, and temperatures were higher than
the corresponding hot gas layer temperatures for evaluated cases. Figures 5-5 illustrates

the plume temperature profiles for Cases 1 and 9, respectively.

Two important observations can be made regarding Figure 5-5. First, the plume temperature for
the lowest sensor (z = 2.5 m) in Case 1 reached values above 700 °C. This is a clear in
indication that the sensor is just outside the stecady flame region of the fire. In Case 9, however,
where the fire intensity was 5.0 MW, all peak plume temperatures were above 1,000 °C. These
values should be interpreted as sensors immersed in flames.

In the case of a fire elevated 2.3 m from the floor, MAGIC predicted plume temperatures on the
order of thousands of degrees for the lowest two sensors. Peak flame temperatures are generally
on the order of 1,500 °C.
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5.2.4 Flame Height

The flame height results illustrated in Figure 5-6 suggest two observations. First, the flame
presents a linear growth during the o growth period of the fire. Flame height are constant during
the steady burning period. Second, notice that MAGIC predicted flame heights above the ceiling

height of 4.6 m in Cases 9 and 13.
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Figure 5-6: Flame Height Profiles

5.2.5 Oxygen Concentration

Two important aspects of modeling oxygen concentrations in commercial NPP scenarios

are the amount of oxygen available for combustion in the room and the lower oxygen limit
(LOL). These two aspects are, of course, closely related. In terms of the oxygen available for
combustion, the fire consumes whatever oxygen is available. As long as there is oxygen above
the LOL, the fire will burn at its specified heat release rate. The larger the heat release rate, the
larger the amount of the consumed oxygen. Natural and mechanical ventilation conditions will

affect the amount of oxygen available. The LOL is a user input, and the most conservative value
is 0 percent. That is, the fire will burn with an intensity governed by the amount of oxygen or
fuel until all the oxygen in the room has been consumed.

Figure 5-7 illustrates the oxygen concentration proﬁle for Cases 5 and 13, which are simulations
with one open door. Notice that the concentration was well above 10 percent. As expected, Case
13 showed a lower oxygen concentration because of the higher heat release rate.

The mechanical ventilation effects in oxygen concentration profiles can be observed in Figure 5-7.
Notice that there is more oxygen in Cases 2 and 10, in which the mechanical ventilation system

(both injection and extraction) was operating.

However, the effects of low oxygen concentration on the heat release rate can be observed

in simulations with closed doors (specifically Cases 9 and 11). Figure 5-7 compiles the results.
The heat release rate for these cases can be read in the right y-axis. Notice that in Case 9,

where the LOL is O percent, the heat release rate begins to decay when the oxygen concentration
is 0 percent. In Case 11, where the LOL is 10 percent, the heat release rate begins to decay
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at 550 seconds, when the oxygen concentration is 10 percent. It is interesting to note that the two
oxygen concentration profiles are identical up to 10 percent. At that point, the fire in Case 9
maintains its original intensity and, therefore, consumes more oxygen than the fire in Case 11.

Oxygen centration Heat Release Rate
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Figure 5-7: Oxygen Concentration Profiles

5.2.6 Smoke Concentration

The relevant output for smoke concentration in MAGIC is average extinction coefficient, k,
with units of 1/m. Average specific area is also available [Ref. 17], which can be also a way to
input soot yield using a conversion factor of 7600 (ys = k/0.0076) [Ref.18]. The average
extinction coefficient can be converted to concentration in units of mg/m’ or visibility in units of
m with relatively simple algebraic manipulations. For the purpose of NPP applications, visibility
would be the most relevant output. Recall from Ref. 1 that the average extinction coefficient
correlates linearly with visibility, based on the equation S = 3/k for a light-reflecting object, or S
= 8/k for a light-emitting object, where S is the visibility distance in m.

In this sensitivity analysis, Case studies 5, 6, 13 and 14 are relevant to visibility. In those cases,
the fuel was varied from heptane to toluene in order to explore the effects on the average
extinction coefficient. The MAGIC input governing the average extinction coefficient is

the specific area, s, which has units of m*/kg. The specific area for heptane is 106.4 m’/kg, while
the value for toluene is 1482 m%kg.
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Figure 5-8 summarizes the average extinction coefficient results. Cases S and 6 are associated
with a 1.0-MW fire, while Cases 13 and 14 are associated with a 5.0-MW fire. As expected,
the highest extinction coefficient resulted from the toluene fuel burning at an intensity of 5.0 MW.
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Figure 5-8: Smoke concentration profiles

5.2.7 Room Pressure

In addition to the variations in heat release rate, the room openings varied from a leakage path
of 0.015 m” to a 5.76-m> open door in order to explore the impact on room pressure. Figure 5-9
illustrates the pressure profiles for Cases 1, 5, 9, and 13, which were simulations with closed
(only leakage paths) and open doors for the two heat release rates selected for the study.

Given the differences in magnitude, profiles for Cases 5 and 13 should be read on the right y-axis.

In open door simulations (Cases 5 and 13) the pressure at the floor was negative, indicating that
fresh air was moving into the enclosure. Recall that the hot gas layer in these simulations did not
reach the floor. The region below this hot gas layer interface is associated with the negative
pressure profiles in Figure 5-9. In terms of sensitivity to heat release rate, the 5.0-MW fire (Case
13) resulted in higher negative pressure, indicating that air would move into the room at higher
velocities than in the case of the 1.0-MW fire. It is interesting to note that the pressurization
levels are on the order of Pascals.

By contrast, for rooms with only leakage paths, the pressure profiles were positive (for the most part)
and on the order of thousands of Pascals. This is an indication that flows are moving out of the
room through the leakage paths. In addition, notice that Case 9 had a negative pressure spike
after 600 seconds. As shown in Figure 5-9, this is the time when the heat release rate suddenly
decays as a result of an oxygen-limited environment. This pressure spike is attributable to
sudden change in heat release rate. At this point, the heat lost to the boundaries is greater than
the heat generated by the fire. After this spike, air begins to move into the enclosure through

the leakage paths, and the fire is able to burn with an intensity governed by the amount of air
drawn into the room. This spike was not observed in Case 1 because the fire had enough oxygen

to burn at its specified intensity.
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Figure 5-9: Room Pressure Profiles

5.2.8 Target Temperature and Heat Flux

Of primary interest in NPP applications are the effects of the cables’ thermo-physical properties
on the predicted surface temperature. As illustrated in Figure 5-2, this analysis included two
types of cables (XPE and PVC). The two cables have different material properties. The effects
of the material properties were explored by comparing surface temperature results for Cases 1
and 9. The only difference between these two cases was the fire heat release rate. As depicted in

Figure 5-11, the selected material properties did not have a significant impact on the surface
temperature profile. Notice that the profiles are almost identical for the XPE and PVC targets in

both cases. However, the damage or ignition temperature was an important distinction.

Another important aspect of evaluating target response in NPP fire scenarios is the difference
between gas temperatures at the location of the target and the surface temperature of that target.
MAGIC provides both results as part of its output library, and Figure 5-11 illustrates this comparison.
In Case 9, the gas temperature was higher than the surface temperature for the first 800 seconds
of the simulation, and the highest temperature difference was just above 100 °C. The temperatures
then converged when the fire was well into its decay stage. By contrast, the gas temperature

was always higher than the surface temperature throughout the simulation in Case 1

and the temperature difference was around 50 °C.

MAGIC offers two modeling alternatives for predicting cable temperature as a thermal target

or a cable. This section compares the two alternatives. The fundamental difference between the
two alternatives is that a cable is treated as a cylinder, while a thermal target is treated as a slab.
This shape difference requires the following computational distinctions:

¢ numerical resolution one-dimensional plane for targets and one-dimensional cylinder for cables
e convective heat exchange coefficient on a plane or cylindrical surface
¢ configuration factors for the radiative flux calculation

In the following example, a cable is compared to a target. The target is considered similar
because the thickness of the target (1) is equal to the radius of the cable, and (2) is calculated
conserving the same surface-to-volume ratio. Figure 5-10 illustrates the cable and target.
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Figure 5-10: Equivalence between Cable and Targets

The surface-to-volume ratio gives a thickness target value of e = g Figure 5-11 above also

includes temperature profiles with targets with thicknesses D/4 and D/2. Targets with thickness
D/4 resulted with the highest surface temperature.
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Figure 5-11: Target temperature profiles

In terms of heat flux, the MAGIC output options “Total heat flux” and “Incident heat flux” are
relevant in this study. The former is the total radiative and convective heat flux contributions to
the target. The later is total radiative heat flux received by the target. The thickness of the target
does not affect these output options.

As illustrated in Figure 5-2, PVC and XPE targets were located 3.55 m away from the fire,

and the elevation of both targets was 2.3 m. In MAGIC, these targets serve as sensors and record
thermal conditions in their specified location. Each case study exhibited the identical predicted
heat flux to each target type. That is, given the symmetrical arrangement of targets relative to
the fire source, both XPE and PVC targets receive the same radiated heat flux in each case. As
expected, the total heat flux is higher than the Incident heat flux due to the contribution of the
convective heat transfer. '

Finally, the fuel type appears to have some effect on thermal radiation levels. According to

the results, the simulations conducted with heptane fires produced higher heat fluxes than the
corresponding simulations conducted with toluene fires (Cases 6 & 14), although the magnitude
differences were less than 1 kW/m?. Figures 5-12 and 5-13 compile the graphical results.
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Figure 5-12: Target heat flux profiles, 1MW fire.
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5.2.9 Wall Temperature

Figures 5-14 and 5-15 summarize a comparison between the use on MAGIC output options
“Wall Temperature”, and “Surface Temperature of the target”. The output “Wall temperature”
results from a one dimensional finite difference conduction calculation in to the walls. The
internal boundary condition is the thermal properties of the gas in contact with the particular wall
surface (upper or lower gas layer). The “Surface temperature of the target” output option results
from a conduction calculation into a slab of similar thickness as the wall.

This comparison is important because the validation study described in Chapter 6 for wall
temperature was developed using the later option. That is, virtual sensors in MAGIC, e.g.,
targets, were specified in the same location as the wall thermocouples in the experimental series.
The targets were specified with the same thermo-physical properties and thickness as the walls.
The only difference in the specification is the emissivity. The targets had an emmisivity of 0.95
and MAGIC does not require emissivity as a wall property input.

Results suggests that the use of the “Target” feature in MAGIC to predict wall surface
temperature can produce higher temperatures with the exception of the floor surface in open door
tests. In the cases ran with a 1 MW fire, the temperature difference between both modeling
strategies is approximately 10 °C. In cases ran with a 5 MW fire, the temperature difference is
between 40 °C and 60 °C.
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Figure 5-14: Target temperature vs. wall temperature, 1 MW fire
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5.3 Concluding Remarks

This chapter illustrates the effect of the most important parameters in fire modeling with the code
MAGIC. The set of models included in MAGIC are intended to translate the impact of those
parameters on the fire-generated conditions in a compartment. It is therefore important to
understand the effects the input parameters have in the predicted fire conditions considering that
the simulation results are simplifications and idealizations of real fire induced temperatures and
flows.

It is difficult to generalize which input parameters are more important that others since it depend
on specific applications, and most (if not all) of the parameters are mathematically related. As
illustrated in the chapter, different parameters are important for different sub-models. In most
applications, the fire modeling analyst will need to determine which outputs are relevant for the
scenario under evaluation, which parameters will affect those outputs, and how variations in
those parameters will impact the conclusions made from the simulation results.
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MODEL VALIDATION

This chapter summarizes the results of a validation study conducted for the zone model MAGIC,
in which its predictions are compared with measurements collected from six sets of large-scale
fire experiments. A brief description of each set of experiments is given here. Further details can
be found in Volume 7 and in the individual test reports.

ICFMP BE #2: Benchmark Exercise #2 consists of 8 experiments, representing 3 sets of
conditions, to study the movement of smoke in a large hall with a sloped ceiling. The results of
the experiments were contributed to the Interational Collaborative Fire Model Project ICFMP)
for use in evaluating model predictions of fires in larger volumes representative of turbine halls
in NPPs. The tests were conducted inside the VTT Fire Test Hall, which has dimensions of 19 m
high by 27 m long by 14 m wide (62 ft x 88.5 ft x 46 ft). Each case involved a single heptane

pool fire, ranging from 2 MW to 4 MW.

ICEMP BE #3: Benchmark Exercise #3, conducted as part of the International Collaborative Fire
Model Project (ICFMP) and sponsored by the US NRC, consists of 15 large-scale tests
performed at NIST in June, 2003. The fire sizes range from 350 kW to 2.2 MW in a
compartment with dimensions 21.7m x 7.1 m x 3.8 m (71 ft x 23 ft x 12.5 ft), designed to
represent a variety of spaces in a NPP containing power and control cables. The walls and ceiling
are covered with two layers of 25 mm thick marinate boards, while the floor is covered with two
layers of 25 mm thick gypsum boards. The room has one 2 m x 2 m (6.6 ft x 6.6 ft) door and a
mechanical air injection and extraction system. Ventilation conditions and fire size and location
are varied, and the numerous experimental measurements include gas and surface temperatures,

heat fluxes, and gas velocities.

ICFMP BE #4: Benchmark Exercise #4 consists of kerosene pool fire experiments conducted at
the Institut fiir Baustoffe, Massivbau und Brandschutz (iBMB) of the Braunschweig University
of Technology in Germany. The results of two experiments were contributed to the International
Collaborative Fire Model Project (ICFMP). These fire experiments involve relatively large fires
in a relatively small (3.6 m x 3.6 m x 5.7 m high, 11.8 ft x 11.8 ft x 18.7 ft) concrete enclosure.
Only one of the two experiments was selected for the present V&V study (Test 1).

ICFMP BE #5: Benchmark Exercise #5 consists of fire experiments conducted with realistically
routed cable trays in the same test compartment as BE #4. Only one test (Test 4) was selected for
the present evaluation, and only the first 20 min during which time an ethanol pool fire preheats

the compartment.

FM/SNL, Series: The Factory Mutual & Sandia National Laboratories (FM/SNL) Test Series is a
series of 25 fire tests conducted for the NRC by Factory Mutual Research Corporation (FMRC),
under the direction of Sandia National Laboratories (SNL). The primary purpose of these tests
was to provide data with which to validate computer models for various types of NPP
compartments. The experiments were conducted in an enclosure measuring 60 ft long x 40 ft
wide x 20 ft high (18 m x 12 m x 6 m), constructed at the FMRC fire test facility in Rhode
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Island. All of the tests involved forced ventilation to simulate typical NPP installation practices.
The fires consist of a simple gas burner, a heptane pool, a methanol pool, or a polymethyl-
methacrylate (PMMA) solid fire. Four of these tests were conducted with a full-scale control
room mockup in place. Parameters varied during testing are the heat release rate, enclosure
ventilation rate, and fire location. Only three of these tests have been used in the present
evaluation (Tests 4, 5 and 21). Test 21 involves the full-scale mock-up. All are gas burner fires.

NBS Multi-Room Series: The National Bureau of Standards (NBS, now the National Institute of
Standards and Technology, NIST) Multi-Compartment Test Series consists of 45 fire tests
representing 9 different sets of conditions, with multiple replicates of each set, which were
conducted in a three-room suite. The suite consists of two relatively small rooms, connected via
a relatively long corridor. The fire source, a gas burner, is located against the rear wall of one of
the small compartments. Fire tests of 100, 300 and 500 kW were conducted, but for the current
V&V study, only three 100 kW fire experiments have been used (Test 100A, 1000, and 100Z).

Technical details of the calculations, including output of the model and comparison with
experimental data are provided in Appendix A. The results are organized by quantity as follows:

e Section 6.1: Hot gas layer temperature and height
¢ Section 6.2: Ceiling jet temperature

e Section 6.3: Plume temperature

e Section 6.4: Flame height

e Section 6.5: Oxygen concentration

e Section 6.6: Smoke concentration

e Section 6.7: Room pressure

e Section 6.8: Target temperature and heat fluxes

e Section 6.9: Wall temperature and heat fluxes

The model predictions are compared to the experimental measurements in terms of the relative
difference between the maximum (or where appropriate, minimum) values of each time history:

,_AM-AE_(M,-M,)-(E,-E,)
- A& (E,-E)

AM is the difference between the peak value of the model prediction, Mp, and its original value,
Mo. AE is the difference between the experimental measurement, Ep, and its original value, Eo.

A positive value of the relative difference indicates that the model has over-predicted the severity
of the fire; for example, a higher temperature, lower oxygen concentration, higher smoke

concentration, etc.
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Each section in this chapter contains a scatter plot that summarizes the relative difference results
for all of the predictions and measurements of the quantity under consideration. The details of
the calculations, the input assumptions, and the time histories of the predicted and measured
output are included in Appendix A. Only a brief discussion of the results is included in this
chapter. At the end of each section, a color rating is assigned to each of the output category,
indicating, in a very broad sense, how well the model treats that particular quantity. Colors are
assigned based on the following criteria. Once the user determines the validation results reported
here are applicable (see Volume 1), the user must determine the predictive capability of the fire
models. The following two criteria are used to characterize the predictive capability of the

model:

Criterion 1 - Are the physics of the model appropriate for the calculation being made? This
criterion reflects an evaluation of the underlying physics described by the model and the physics
of the fire scenario. Generally the scope of this study is limited to the fire scenarios that are
within the stated capability of the selected fire models, e.g., this study does not address the fire
scenarios that involve flame spread within single and multiple cable trays.

Criterion 2 - Are there calculated relative differences outside the experimental uncertainty? This
criterion is used as an indication of the accuracy of the model prediction. Since fire experiments
are used as a way of establishing confidence in model prediction, the confidence can only be as
good as our experiments. Therefore, if model predictions fall within the ranges of experimental
uncertainties, the predictions are determined to be accurate. However, one should recognize that
the experimental uncertainties vary with the experiment and the attribute being measured (see
volume 7 of this report). These ranges could be as much as +50% for the experiments and
attributes we used in this validation study. This leads to some judgment about the relative
difference proximity relative to the range of uncertainty, as the uncertainty ranges are not
necessarily all-inclusive or definitive.

The predictive capability of the model is characterized as follows based on the above criteria.

: If both criteria are satisfied, i.e., the model physics are appropriate for the calculation
bemg made and the calculated relative differences are within or very near experimental
uncertainty, then the V&YV team concluded that the fire model prediction is accurate for the
ranges of experiments in this study, and as described in tables 2-4 and 2-5. A grade of GREEN
indicates the model can be used with confidence to calculate the specific attribute. The user
should recognize, however, that the accuracy of the model prediction is still somewhat uncertain
and for some attributes, such as smoke concentration and room pressure, these uncertainties may

be rather large.

: If the first criterion is satisfied and the calculated relative differences are outside
the experimental uncertainty but indicate a consistent pattern of model over-prediction or under-
prediction, then the model predictive capability is characterized as YELLOW+ for over-
prediction, and YELLOW- for under-prediction. The model prediction for the specific attribute
may be useful within the ranges of experiments in this study, and as described in tables 2-4 and
2-5, but the users should take care and use caution when interpreting the resuits of the model. A
complete understanding of model assumptions and scenario applicability to these V&V results is
necessary. Generally, the model may be used if the grade is YELLOW+ when the user ensures
that model over-prediction reflects conservatism. The user must exercise caution when using
models with capabilities described as YELLOW+.
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: If the first criterion is satisfied and the calculated relative differences are outside
experimental uncertainty with no clear pattern of over- or under-prediction, then the model
predictive capability is characterized as YELLOW. Caution should be exercised when using a
fire model for predicting these attributes. In this case, the user is referred to the details related to
the experimental conditions and validation results documented in volumes 2 through 6. The user
is advised to review and understand the model assumptions and inputs, as well as the conditions
and results to determine and justify the appropriateness of the model prediction to the fire
scenario for which it is being used.

-: If the first criterion is not met, then the particular fire model capability should not be used.

No color: This V&YV study did not investigate this capability. This may be due to one or more
reasons that include unavailability of appropriate data or lack of model, sub-model, or output.

As suggested in the criteria above, there is a level of engineering judgment in the classification
of fire model predictive capabilities. Specifically, engineering judgment is exercised in the
following two areas:

1. Evaluation of the modeling capabilities of the particular tool if the model physics are
appropriate.

2. Evaluation of the magnitude of relative differences when compared to the experimental
uncertainty. Judgment in this area impacts the determination of Green versus Yellow colors.

In general, a Green or Yellow classification suggests that the V&V team determined that the
model physics are appropriate for the calculation been made, within assumptions. The difference
between the colors is due to the magnitude of the calculated relative differences. Judgment
considerations include general experimental conditions, experimental data quality, and the
characterization of the experimental uncertainty.

6.1 Hot Gas Layer Temperature and Height

The single most important prediction a fire model can make is the temperature of the hot gas
layer. After all, the impact of the fire is often assessed not only a function of the heat release
rate, but also as a function of the compartment temperature. A good prediction of the height of
the hot gas layer is largely a consequence of a good prediction of its temperature because smoke
and heat are largely transported together and most numerical models describe the transport of
both with the same type of algorithm. Following is a summary of the accuracy assessment for
the hot gas layer predictions of the six test series:

ICFMP BE #2: MAGIC under-predicts the hot gas layer temperature by less than 10 % for all
three cases. This falls within the range of experimental uncertainty. In addition, MAGIC under-
predicts also by less than 10 % the hot gas layer height in all three cases. That is, the MAGIC
height prediction is above the measured one. A graphical comparison of the MAGIC predictions
and the experimental observations for these three cases is presented in Figure A-2. The scatter
plot in Figure 6-1 illustrates the relative differences between the measured and predicted peak
hot gas layer temperatures and heights.

ICFMP BE #3: MAGIC predicts the hot gas layer temperature and height to within
experimental uncertainty for all 15 tests. It should be noted that the discrepancies in the hot gas
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layer height depicted in Figures A-4, and A-5 (which refers to closed door tests) is due to the
data reduction method used to determine the experimental layer interface. This method is not
applicable for tests in which a single gas layer develops. Notice that MAGIC predicts that the
hot gas layer eventually reaches the floor generating a single gas layer in the room. That
prediction is consistent with visual observations during the experiments. Due to the
inconsistency between model results and the reduced experimental data, no relative differences
were calculated for closed-door tests.

The collection of graphical comparisons between MAGIC predictions for hot gas layer
temperatures and heights for ICFMP BE #3 is presented in Figures A-4 to A-7. The relative
differences calculated for peak values are summarized in Table A-2 and Figure 6-1.

ICFMP BE #4: MAGIC predicts the hot gas layer temperature within experimental uncertainty
for the single test (Test 1). However, there is some discrepancy in the shapes of the curves for
the hot gas layer height (see Figure A-11). This discrepancy is associated with a relative
difference of 25%, which is outside the range of experimental uncertainty. A possible
explanation for the discrepancy in the layer height is the fact that the room was almost engulfed
in flames, which may not be consistent with the fundamental assumption in MAGIC of two
distinct gas layers. The relative differences for layer temperature and height are plotted also in

Figure 6-1.

ICFMP BE #5: MAGIC predicts the hot gas layer temperature and height to within
experimental uncertainty for the single test (Test 4). The graphical comparison between
experimental measurements and model predictions, illustrated in Figure A-11 suggests very good
agreement between the profiles. The calculated relative differences for peak hot gas layer
temperature and height are listed in Table A-4.

FM/SNL: MAGIC predicts the hot gas layer temperature to within experimental uncertainty for
Tests 4, 5 and 21. In the case of the hot gas layer height, there are inconsistencies in the

comparison of hot experimental measurements and model predictions. As discussed earlier for
the case of closed door tests in ICFMP BE#3, the data reduction method for determining hot gas

layer height is not applicable for closed door tests. Consequently, the graphical comparisons
presented in Figure A-13 do not show good agreement between model predictions and
experimental measurements. For that same reason, no relative differences were calculated for

hot gas layer height in this test series.

NBS Multi-Room: MAGIC predictions in this test series are for the most part outside the
experimental uncertainty for both the fire room and adjacent compartments. The largest relative
differences are associated with adjacent compartments to the fire room. As depicted in Figures
A-15 to A-17, and in Figure 6-1, MAGIC over predicted the hot gas layer temperature in all
cases. The hot gas layer height shows under-predictions of up to around 50% in some of the

rooms.

Summary: Hot Gas Layer Temperature and Height
e The research team considers the MAGIC model for calculating hot gas layer temperatures to -
be appropriate for its intended applications.
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o The MAGIC predictions of the hot gas layer temperature and height are, with the exception
of the selected tests from the NBS test series, within experimental uncertainty of 15%.

e The scatterplot in Figure 6-1 summarizes the relative differences calculated for hot gas layer
temperatures and height. As explained earlier, no relative differences were calculated for
close door tests.

e Validation results suggest that MAGIC is certainly suited for prediction hot gas layer
temperatures and heights in scenarios where this study is applicable. Because most of the
validation results are within experimental uncertainty, and MAGIC is over predicting hot gas
layer temperatures in the selected tests from the NBS test series, a color assignment of green
is assigned for the room of fire origin and a yellow + for adjacent rooms. In the case of hot
gas layer height, a green classification is assigned for the room of fire origin and a yellow for

adjacent rooms.
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Figure 6-1: Scatter plot of relative differences for hot gas layer temperature and height in
ICFMP BE #2, 3, 4, 5, and the selected FM/SNL and NBS Tests. Experimental uncertainties
are 13% (HGL temp) and 9% (HGL height).

6.2 Ceiling Jet Temperature

The ceiling jet algorithm in MAGIC consists primarily in the model proposed by Cooper [Ref 6-
6]. It is recommended that analysts review MAGIC’s technical reference (Ref 6-2) for specific
details about the implementation of the ceiling jet algorithm. Typical of ceiling jet correlations,
it applies only to the flow of hot gases under a flat ceiling. Only two of the six test series
(ICFMP BE #3 and FM/SNL) involved a ceiling jet formed over a relatively wide, flat ceiling.

ICFMP BE #3: MAGIC predicts the ceiling jet temperature to within experimental uncertainty
with the exception of three tests, Test 10, 13, & 16 as illustrated in Figure 6-2. Interestingly,
Test 10 is a replicate of Test 4, which was predicted to within experimental uncertainty. The
ventilation system was on during these two tests, and the inconsistent results may be attributed to
it. It is difficult to draw conclusions about over predictions in Test 15 and 16. Figure 6-2 also
suggests that the relative differences for opened door tests are smaller (near 0%) than those in
closed door tests. Furthermore, only two under-predictions, -7% in Test 1 and —1% in Test 14

were calculated.
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The graphical comparisons between experimental measurements and MAGIC predictions for
ceiling jet temperature are grouped in Figures A-18 and A-19. Table A-9 lists the calculated

relative differences.

FM/SNL: MAGIC predicts the ceiling jet temperature at two locations in Test 4, 5 and 21 to
within experimental uncertainty. The graphical comparisons are provided in Figure A-20. The
calculated relative differences are listed in Table A-10, and plotted in Figure 6-2.

Summary: Ceiling Jet Temperature

e With three exceptions, corresponding to closed-door tests in ICFMP BE#3, MAGIC ceiling
jet predictions are within experimental uncertainty. .

¢ The MAGIC ceiling jet sub-model is well suited for the range of scenarios validated in this
study. In general, this validation applies to ceiling jet flows under flat unobstructed ceilings
and a r/H up to 1.7 (r is the horizontal radial distance and H is the distance between the fire
source and the ceiling). Notice that the MAGIC technical manual (Ref 6-2) suggest that “the
model is valid up to i/H = 3. In MAGIC they are applied up to 1/H =10, to avoid a
discontinuity in gas temperature. In cases where the ceiling-jet exceeds t/H = 10, it is
assumed that the gas temperature beyond 1/H = 10 equals the temperature at r/H = 10. These
hypotheses are conservative even if they have not been explored experimentally”.

e Based on the model robustness and the fact that most relative differences are within
experimental uncertainty of 15% and no outliers were observed, a green classification

assigned.
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Figure 6-2: Scatter plot of relative differences for ceiling jet temperatures in ICFMP BE #3,
and the selected FM/SNL Tests. Experimental uncertainty is 16%.
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6.3 Plume Temperature

As with the ceiling jet, MAGIC has a specific plume sub-model. This validation refers primarily
to the implementation of the McCaffrey plume temperature correlation and the correction for
plume flows above the hot gas layer interface. The line plume model in MAGIC was not
evaluated in this study. Data from ICFMP BE #2 and the FM/SNL test series have been used to

assess the accuracy of plume temperature predictions.

ICFMP BE #2: MAGIC predictions of plume temperature are within the experimental
uncertainty of 15%. Figure A-22 provides the graphical comparisons between model predictions
and experimental measurements. The calculated relative differences are listed in Table A-11 and

plotted in Figure 6-3.

FM/SNL: MAGIC predicts the plume temperatures in Test 4 and 5 to within experimental
uncertainty. See Figure A-23 and Table A-12 for the graphical comparisons and the calculated
relative differences.

Summary: Plume Temperature

¢ The axisymmetric plume temperature model in MAGIC is well suited for applications similar

to the ones evaluated in this study.

¢ Since all the relative differences are within experimental uncertainty and the experimental
and predicted temperature profiles show good agreement, a classification of green is assigned
for the axisymmetric plume model in MAGIC.
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Figure 6-3: Scatter plot of relative differences for plume temperatures in ICFMP BE #2, and
the selected FM/SNL Tests. Experimental uncertainty is 14%.
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6.4 Flame Height

Flame height is recorded by visual observations, photographs or video footage. Videos from the
ICFMP BE # 3 test series and photographs from BE #2 are available. It is difficult to precisely
measure the flame height, but the photos and videos allow one to make estimates accurate to

within a pan diameter.

The MAGIC model for flame height consists in the Heskestad’s flame height correlation. See
reference 6-2 for technical details.

ICFMP BE #2: The height of the visible flame in the photographs of BE #2 has been estimated
to be between 2.4 and 3 pan diameters (3.8 m to 4.8 m). From Figure A-24, which reports
MAGIC flame height predictions, flame heights are between 3 and 7 m.

ICFMP BE #3: MAGIC appears to predict the flame height correctly in this test series, at least
to the accuracy of visual observations and a few photographs taken before the hot gas layer
obscures the upper part of the fire. The experiments were not designed to measure the flame
height other than through visual observation. Flame height pictures and MAGIC predictions can
be found in Figures A-26 to A-28. Notice for example that Figure A-26 suggests flames with
heights similar to the height of the door (2 m). MAGIC predictions peak above 2 m in all cases.

Summary: Flame Height

e MAGIC appears to provide flame height predictions consistent with the ones observed in
available photographs for BE#2. MAGIC flame height predictions for BE#3 are also
consistent with observations made from available photographs.

¢ This evaluation does not suggest that MAGIC is under-predicting flame height. Therefore,
based on the consistency with visual evidence, a green classification is assigned.
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6.5 Oxygen Concentration

The oxygen concentration in MAGIC results directly from the conservation of mass equation in
both the upper and lower layer. The evaluation results are based on oxygen concentrations
calculated in the upper layer. It should be stressed that this study is limited to well-ventilated

fires.

ICFMP BE #3: The relative differences associated with MAGIC predictions of upper layer
oxygen concentration range from approximately —30% to 25%. Some of these relative
differences are outside the range of experimental uncertainty of 9%. As suggested in Figure 6-4,
there appears to be a pattern of negative relative differences associated with open door tests not
observed in the close door tests. In all these cases, the measured oxygen concentration was
above 15%. In terms of the close door tests, all the relative differences are within experimental
uncertainty with the exception of tests 4 and 10, which consisted of mechanically ventilated
room. Recall that negative relative differences indicate that MAGIC predicted higher oxygen
concentrations that those measured in the experiments. Figures A-29 and A-30 illustrate the
experimental and model oxygen concentration profiles.

ICFMP BE #5: MAGIC prediction of the upper layer oxygen concentration in Test 4 of this test
series is above the experimental uncertainty of 9%.

Summary: Oxygen Concentration

e The MAGIC model is capable of making oxygen concentration predictions, assuming that
the basic stoichiometry of the combustion reaction is known. Recall that this study is limited
to well-ventilated compartment fires only.

e Relative differences in BE # 3 are comparable to experimental uncertainty in the case of
close room tests. In the case of open door tests, they are below experimental uncertainty
range in BE#3. The relative difference associated with the single comparison in BE#S is also
outside the range of experimental uncertainty.

¢ Based on the above discussion, a classification of yellow is assigned for the oxygen
concentration predictions in MAGIC.
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Figure 6-4: Scatter plot of relative differences for oxygen concentration in ICFMP BE#3 and
BE#5. Experimental uncertainty is 16%.

6.6 Smoke Concentration

Only ICFMP BE #3 has been used to assess predictions of smoke concentration. For these tests,
the smoke yield was specified as one of the test parameters. MAGIC consistently over predicted
smoke concentrations from approximately 30% to 500% in the closed door tests. For open door
tests, MAGIC predictions are within the experimental uncertainty of 33%.

The graphical comparisons for smoke concentration are summarized in Figures A-32 and A-33.
The relative differences are listed in Table A-15 and plotted in Figure 6-5.

Summary: Smoke Concentration

e MAGIC is capable of transporting smoke throughout a compartment, assuming that the
production rate is known and that its transport properties are comparable to gaseous exhaust

products.

e MAGIC over predicts the smoke concentration in close door tests. The predictions for open
door tests are within experimental uncertainty.

e No firm conclusions can be drawn explaining why the drastic differences in predictions
between open and close door tests. Therefore, a yellow classification is assigned since there
is no clear indication that MAGIC would always result in conservative estimates.
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Figure 6-5: Scatter plot of relative differences for smoke concentration in ICFMP BE#3.
Experimental uncertainty is 33%.

6.7 Compartment Pressure

Comparisons between measurement and prediction of compartment pressure for BE #3 are
shown in Figure A-34 and A-35. For those tests in which the door to the compartment is open,
the over-pressures are only a few Pascals, whereas when the door is closed, the over-pressures

are several hundred Pascals.
The relative differences were calculated as follows:

e For closed-door rooms, the relative difference refers to the positive peak at the early stages of
the fire. Positive relative differences indicate that MAGIC over-predicted the measured

peak.
¢ For opened door rooms, the relative difference refers to the negative magnitudes of the

pressure, typically at the late stages of the test. Positive relative differences suggest that
MAGIC calculated a more negative difference than the experimental measurement.

Relative differences are listed in Table A-16.

Visual examination of experimental data and model results plots (see Figure A-34) strongly
suggest that tests with open doors, where leakages are not critical because of the large door
opening, MAGIC captures both the magnitude and the profile of the pressure. These figures
describe a negative pressure profile at the floor of the room, indicating that fresh air is moving

into the enclosure.

In close door tests, MAGIC is able to capture the both peaks and pressure profiles (see Figure A-
35). It is important to mention that fan tests were conducted before some of the tests resulting in
relatively well known leakage areas. Furthermore, notice that MAGIC captures the positive and
negative pressure peaks. These peaks are an indication of a positively pressurize room in the
early stages of the test, and a negatively pressurize room when the fuel supply is discontinued
and heat loses to the boundaries are higher than the fire hear release rate.
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In general, the predicted pressures are of comparable magnitude to the measured pressures, and
in most cases differences can be explained using the reported uncertainties in the leakage area
and the fact that the leakage area changed from test to test because of the thermal stress on the
compartment walls. The one notable exception is Test 16. This experiment was performed with
the door closed and the ventilation on, and there is considerable uncertainty in the magnitude of

both the supply and exhaust flow rates.

The relative differences are plotted in Figure 6-6. Notice that only the relative difference
associated with Test 16 is outside the experimental uncertainty ranges of 50% and 75% for tests
with ventilation system off or on respectively.

Summary: Compartment Pressure

e The basic mass and energy conservation equations solved by MAGIC ensure reliable
predictions of compartment pressure. It should be stressed that compartment pressure
predictions are extremely sensitive to the lcakage area and forced ventilation. In the MAGIC
runs, leakage area listed in the experimental descriptions was divided by the orifice flow
coefficient, 0.68, so that it is reflected in the model as the actual opening area.

e The MAGIC pressure predictions for BE #3 are within experimental uncertainty, with an
exception that may be related to the behavior of a ventilation fan.

e A green classification is assigned for compartment pressure predictions in MAGIC assuming
that room leakages are known in closed-door scenarios.
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Figure 6-6: Scatter plot of relative differences for room pressure in ICFMP BE#3.
Experimental uncertainties are 40% (no forced vent) and 80% (forced vent).
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6.8 Radiation, Total Heat Flux and Target Temperature

Target temperature and heat flux data are available from ICFMP BE #3, #4 and #5. In BE #3,
the targets are various types of cables in various configurations — horizontal, vertical, in trays or
free-hanging. In BE #4, the targets are three rectangular slabs of different materials instrumented
with heat flux gauges and thermocouples. In BE #5, the targets are again cables, in this case
bundled power and control cables in a vertical ladder.

ICFMP BE #3: There are nearly 200 comparisons of heat flux and surface temperature on four
different cables that are graphed in the Section A.8.1. Consequently, it is difficult to make
sweeping generalizations about the accuracy of MAGIC. The section is classified by target. For
each target, the graphical comparison of experimental measurements and MAGIC predictions are
presented for Target temperature, Cable temperature, radiation and total heat flux. At best, one
can scan the figures and the associated tables to get a sense of the overall performance. The
experimental uncertainty is about 20 % and 14% for heat flux and surface temperature
respectively. The following important aspects of this evaluation should be considered:

e MAGIC provides the capability of modeling cable temperature as Targets, where the material
is simulated as a slab, or a cable itself, where the material is simulated as a cylinder with
concentrical layers of conductor, insulation and jacket. This evaluation includes both
alternatives. When cables are modeled as targets (slab), the thickness of the target was
selected as d/4 were d is the diameter of the cable (see discussion on cable modeling and
sensitivity analysis in Chapters 3 & 5).

e The measured radiative heat flux is compared with MAGIC output “Incident heat flux”
which is the sum of all radiated heat fluxes to a target. The total heat flux measurements is
compared with MAGIC output “Total heat flux, flux meter”’, which simulates a typical water-
cooled heat flux meter.

Figures 6-7 to 6-10 show the relative differences for target and cable temperature as well as
radiative and total heat fluxes for targets B-TS-14, D-TS-12, F-TS-20, and G-TS-33. The

following observations are relevant:

e It can be concluded that the majority of the comparisons resulted within experimental
uncertainty or over predictions for surface temperature.

o There is in general more scatter in heat flux predictions than in surface temperature
predictions.

¢ In the case of temperature, there is almost no difference in modeling cables as targets or
cables provided that thermo-physical properties are the same and the thickness of the target is
a quarter of the diameter of the cable.
Relative differences for heat flux suggest under and over predictions.
Specific conclusions can be made on a case-by-case basis. For example, temperatures for G-
TS-33 are for the most part over-predicted.

ICFMP BE #4: MAGIC over-predicts both the heat flux and surface temperature of three “slab”
targets located about 1 m from the fire. The trend is consistent, but it cannot be explained solely
in terms of experimental uncertainty. The technical details supporting relative differences are
included in Figure A-68 and Table A-21.
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ICFMP BE #5: MAGIC predicts both temperature and total heat flux to targets in BE#5 test 4
approximately to within experimental uncertainty. The technical details supporting relative
differences are included in Figure A-69 and Table A-22.

Summary: Target Heat Flux and Surface Temperature

o MAGIC is capable of predicting the radiative and total heat flux to targets, assuming
know thermo-physical properties. MAGIC is also capable of predicting the surface

temperature of a target.
o Based on the scatter plots of relative differences, the following classification is assigned:
- Yellow for surface temperature of the target
- Yellow for total heat flux, and
- Yellow for radiated heat flux
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Figure 6-7: Scatter plot of relative differences for target temperature in ICFMP BE#3.
Experimental uncertainty is 14%.
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Figure 6-8: Scatter plot of relative differences for target temperature in ICFMP BE#3.

Experimental uncertainty is 14%.
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Figure 6-9: Scatter plot of relative differences for radiant heat flux in ICFMP BE#3.
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6.9 Wall Heat Flux and Surface Temperature

Heat flux and wall surface temperature measurements are available from ICFMP BE #3, plus
wall surface temperature measurements are available from BE #4 and BE #5. As with target heat
flux and surface temperature above, there are numerous comparisons.

It should be noted that the wall temperatures and heat fluxes in MAGIC were calculated locating
targets in the walls. The targets are characterized by the thermo-physical properties and
thickness of the wall. The targets were located in the same model location as the experimental
instruments in the test room. Consequently, this evaluation does not include the MAGIC output
option “Wall Temperature”, or “Wall heat flux” available in the Wall output category.
Experimental measurements were compared with MAGIC’s output option “Total absorbed heat

flux”.

ICFMP BE #3: It cannot be generalized that MAGIC predicts wall temperatures and heat fluxes
within the experimental uncertainty of 14% and 20 % respectively. For the most part, walls are
over predicted and ceiling and floor are under predicted. As noted by the corresponding markers
in Figures 6-11 and 6-12, most of the relative differences for the ceiling and floor temperature
and heat flux are negative. The over predictions for the wall and floor can be up to
approximately 100% with very few exceptions.

The graphical comparison of experimental and predicted temperature and heat flux profiles is
presented in Figures A-70 to A-85 and Tables A-24 to A-27.

ICFMP BE #4: MAGIC predicted two wall surface temperatures to within the experimental
uncertainty of 20%. The two points are presumably very close to the fire because the
temperatures are 600 °C to 700 °C (see Figure A-86) above ambient. The relative differences are

—11% and 10% as listed in Table A-28.

ICFMP BE #5: MAGIC predictions of wall temperature are comparable to experimental
uncertainty with a significant outlier of more than 800%. At this point, there is no explanation

for such an outlier.
Summary: Wall Heat Flux and Surface Temperature

e MAGIC has the capability of predicting the radiative and total heat flux to walls.
MAGIC is also capable of predicting the surface temperature of a wall, assuming that its
composition is fairly uniform and its thermal properties are well-characterized.

e MAGIC predictions of heat flux and surface temperature are generally over predictions
for walls with few comparisons below the lower limit of experimental uncertainty.
Ceiling and floor were consistently under predicted. Based on these results, a yellow
classification is assigned.
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Scatter plot of relative differences for heat flux in ICFMP BE# 3, 4 and 5.
Experimental uncertainty is 20%
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6.10 Summary

This chapter presents a summary of numerous comparisons of the MAGIC model with a range of
experimental results conducted as part of this V&V effort. Thirteen quantities were selected for
comparison and a color rating assigned to each of the output categories, indicating, in a very
broad sense, how well the model treats that particular quantity:

e Hot Gas Layer (HGL) Temperature and Height: Green

e Ceiling Jet Temperature: Green

e Plume Temperature: Green

e Flame Height: Green

e Oxygen: Yellow

e Smoke Concentration: Yellow

e Compartment Pressure: Green

o Radiation Heat Flux, Total Heat Flux, and Target Temperature: Yellow
e Wall Heat Flux and Surface Temperature: Yellow

Five of the quantities were assigned a green rating indicating that the research team concluded
the physics of the model accurately represent the experimental conditions and the calculated
relative differences comparing the model and the experimental are consistent with the combined
experimental and input uncertainty. A few notes on the comparisons are appropriate:

e The MAGIC predictions of the HGL temperature and height are, with a few exceptions,
within or close to experimental uncertainty.

e MAGIC predictions for ceiling jet and plume temperatures are comparable to experimental
uncertainty. In the case of the ceiling jet, results suggest a higher scatter among relative
difference in BE #3 closed-door tests than in BE #3 opened-door tests. At this point, no
specific explanation for this behavior is available. In the case of plume temperature, all
relative differences were within experimental uncertainty.

e MAGIC predicts the flame height consistent with visual observations of flame height for the
experiments. This is not surprising since MAGIC simply uses a well-characterized
experimental correlation to calculate flame height.

e Compartment pressure: MAGIC predicted compartment pressure to within experimental
uncertainty.

Four of the quantities were assigned a yellow rating indicating the user should exercise caution
when using the model to evaluate that quantity. This typically indicates limitations in the use of
the model. A few notes on the comparisons are appropriate:

¢ Predictions of smoke concentration by MAGIC are typically over-predicted. Predicted
concentrations for open-door tests are within experimental uncertainties, but those for closed-

door tests are far higher.
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Most cable surface temperatures are predicted within or above experimental uncertainties.
Very few under predictions were observed. However, this is not the case for total and radiant
heat fluxes. Relative differences are both under and over predicted. Total heat flux to targets
is typically predicted to within about 30 %, and often under-predicted. Care should be taken
in the prediction of localized conditions such as target temperature and heat flux due to
inherent limitations in all zone fire models.

Oxygen concentrations were consistently under predicted at about 30% for opened door tests
in BE#3. However, these under predictions resulted from oxygen concentration
comparisons above 15%, which are above concentrations suggesting fire extinction. In the
case of close door tests, MAGIC results are comparable to experimental uncertainty.

Predictions of compartment surface temperature and heat flux are for the most part over
predicted for walls. Consistent under predictions are observed for the ceiling temperature
and heat flux. Finally, the floor surface presents both over and under predictions.

Differences between the model and the experiments were evident in these studies. Some of the
differences can be explained by limitations of the model as well as of the experiments. Like all
predictive models, the best predictions come with a clear understanding of the limitations of the
model and of the inputs provided to do the calculations.
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A

TECHNICAL DETAILS FOR THE MAGIC VALIDATION
STUDY

Appendix A provides comparisons of FDS predictions and experimental measurements for the
six series of fire experiments under consideration. Each section to follow contains an assessment
of the model predictions for the following quantities:

A.1  Hot Gas Layer Temperature and Height
A2  Ceiling Jet Temperature

A3  Plume Temperature

A.4  Flame Height

A.5 Oxygen Concentration

A.6 Smoke Concentration

A.7  Compartment Pressure

A.8 Target Heat Flux and Surface Temperature
A.9  Wall Heat Flux and Surface Temperature

The model predictions are compared to the experimental measurements in terms of the relative
difference between the maximum (or where appropriate, minimum) values of each time history:

_AM -AE _ (Mp —Mo)—(Ep_Eo)
~ AE (E,-E,)

£

AM is the difference between the peak value of the model prediction, Mp, and its original value,
Mo. AE is the difference between the experimental measurement, Ep, and its original value, Eo.

A positive value of the relative difference indicates that the model has over-predicted the severity
of the fire; for example, a higher temperature, lower oxygen concentration, higher smoke

concentration, etc.

Finally, all of the calculations performed in the evaluation were open; that is, the heat release rate
of the fire was a specified model input, and the results of the experiments were provided to the

analysts.
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A.1 Hot Gas Layer Temperature and Height

Relative differences for hot gas layer temperature were calculated using experimental data from
ICFMP benchmark exercises 2, 3, 4, and 5, the FM/SNL test series, and the NBS multi-
compartment fire test series. In the case of hot gas layer temperature, positive relative
differences are an indication that the MAGIC predictions are higher than the experimental
observations. In contrast, in the case of hot gas layer height, positive relative differences suggest
that the MAGIC prediction is below the measured layer height.

A.1.1 ICFMP BE #2

The HGL temperature and depth were calculated from the averaged gas temperatures from three
vertical thermocouple arrays using the standard reduction method. There were 10 thermocouples
in each vertical array, spaced 2 m (6.6 ft) apart in the lower two-thirds of the hall, and 1 m (3.3
ft) apart near the ceiling. Figure A-1 presents a snapshot from one of the simulations.
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Figure A-1: Cut-away view of the MAGIC simulation of ICFMP BE #2, Case 2.
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The comparison between measured hot gas layer temperatures and heights for ICFMP BE #2
Cases 1, 3 and 3 are presented in Figure A-2.
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Figure A-2: Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #2.

Table A-1 summarizes the relative differences calculated for the hot gas layer temperature and
height. MAGIC slightly under predicts the temperature. At the same time, measured hot gas
layer heights are consistently higher than the MAGIC prediction by a relatively small margin.
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Table A-1: Relative differences of hot gas layer temperature and height in ICFMP BE# 2

Hot Gas Layer Temperature Hot Gas Layer Height
Relative Relative
Differenc , Differenc
Test AE (°C)| AM (°C) e AE (m) | AM (m) e
ICFMP 2-1 54.8 50.8 -7% -14.57 | -13.66 -6%
ICFMP 2-2 86.3 81.6 -5% -14.77 | -14.35 -3%
ICFMP 2-3 82.6 81.3 -2% -13.86 | -12.55 -9%

A.1.2 ICFMP BE # 3

BE #3 consists of 15 liquid spray fire tests with different heat release rate, pan locations, and
ventilation conditions. The basic geometry as modeled in MAGIC is shown in Error!
Reference source not found.. Gas temperatures were measured using seven floor-to-ceiling
thermocouple arrays (or “trees”) distributed throughout the compartment. The average hot gas
layer temperature and height were calculated using thermocouple Trees 1, 2, 3, 5, 6 and 7. Tree
4 was not used because one of its thermocouples (4-9) malfunctioned during most of the

experiments.
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Figure A-3: Snapshot of the MAGIC simulation of ICFMP BE #3, Test 3.

In the closed-door tests, the HGL layer descended all the way to the floor. However, the
reduction method, used on both the measured and predicted temperatures, does not account for
the formation of a single layer, and therefore does not indicate that the layer dropped all the way
to the floor. Notice that in the MAGIC simulations, the hot gas layer is predicted to reach the

floor.
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It is important to indicate also that the HGL reduction method produces spurious results in the
first few minutes of each test because no clear layer has yet formed.

The comparison between MAGIC simulations and measured hot gas layer temperatures and
heights are compiled in Error! Reference source not found. to Figure A-7.
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Figure A-4. Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #3, closed door tests.
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Figure A-6. Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #3, open door tests.
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Figure A-7: Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #3, open door tests.
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Table A-2: Relative differences of hot gas layer temperature and height in ICFMP BE# 3

Hot Gas Layer Temperature Hot Gas Layer Height
Relative Relative
Test AE (°C) | AM (°C) |Difference| AE (m) | AM (m) |Difference
ICFMP 3-1 122.9 120.3 -2% N/A'
ICFMP 3-7 116.8 117.3 0% N/A’
ICFMP 3-2 229.2 219.2 -4% N/A'
ICFMP 3-8 217.7 218.3 0% N/AT
ICFMP 3-4 204.3 210.8 3% N/A'
ICFMP 3-10 | 197.8 209.4 6% N/A'
ICFMP 3-13 290.5 298.9 3% N/A'
ICFMP 3-16 268.4 278.6 4% N/A
ICFMP 3-17 135.3 129.2 -5% N/A'
ICFMP 3-3 207.3 207.1 0% -3.26 -3.82 17%
ICFMP 3-9 204.0 204.5 0% -3.23 -3.82 18%
ICFMP 3-5 175.5 176.5 1% -2.98 -3.82 28%
ICFMP 3-14 208.2 205.8 -1% -3.29 -3.82 16%
ICFMP 3-15 210.6 205.3 -3% -3.13 -3.75 20%
ICFMP 3-18 193.4 204.6 6% -3.26 -3.82 17%

1. Relative difference not applicable for closed door compartment fire experiments since the
data reduction method does not account for the formation of a single layer, which is the case

when the hot gas layer reaches the floor.
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A.1.3 ICFMP BE #4

ICFMP BE # 4 consisted of two experiments, of which one was chosen for validation, Test 1.
Compared to the other experiments, this fire was relatively large in a relatively small
compartment. Thus, its HGL temperature is considerably higher than the other fire tests under
study. As shown in Figure A-8, the compartment geometry is fairly simple, consisting of a
rectangular shape room.
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Figure A-8: Snapshot of the MAGIC simulation of ICFMP BE #4, Test 1.

Figure A-9 includes the comparison between experimental and predicted hot gas layer
temperature and height. The relative differences calculated for this experiment are listed in

Table A-3.
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Figure A-9: Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #4, Test 1.
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Table A-3: Relative differences of hot gas layer temperature and height in ICFMP BE# 4

Hot Gas Layer Temperature Hot Gas Layer Height
Relative Relative
Test AE (°C) | AM (°C) |Difference| AE (m) | AM (m) |Difference
ICFMP 4-1 700.1 741.4 6% -4.20 -5.27 25%
A.1.4: ICFMP BE #5

BE #5 was performed in the same fire test facility as BE #4. Figure A-10 displays the overall
geometry of the compartment, as idealized by MAGIC. Only one of the experiments from this
test series was used in the evaluation, Test 4, and only the first 20 min of the test, during the
“pre-heating” stage when only the ethanol pool fire was active. The burner was lit after that

point, and the cables began to bumn.
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Figure A-10: Snapshot of the MAGIC simulation of ICFMP BE #5, Test 4.

Figure A-11 summarizes the comparison between the experimental and predicted hot gas layer
and height during the first 20 minutes of simulation. The corresponding relative differences are

listed in Table A-4.
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Figure A-11: Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #5, Test 4.

Table A-4: Relative differences of hot gas layer temperature and height in ICFMP BE# 5

Hot Gas Layer Temperature

Hot Gas Layer Height

Relative Relative
Test AE (°C) | AM (°C) |[Difference| AE (m) | AM (m) |Difference
ICFMP 5-4 185.7 182.8 -2% -4.70 -4.72 1%
A.1.5 FM/SNL Test Series
arison.

Tests 4, 5, and 21 from the FM-SNL test series were selected for com

fmammm
o
©
[
<D

Figure A-12 provides a pictorial representation of the experimental geometry as idealized in
MAGIC. The experimental hot gas layer temperature and height were calculated using the
standard method. The thermocouple arrays that are referred to as Sectors 1, 2 and 3 were
averaged (with an equal weighting for each) for Tests 4 and 5. For Test 21, only Sectors 1 and 3
were used, as Sector 2 fell within the smoke plume.
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Figure A-12: Snapshot from the MAGIC simulation of FM/SNL Test 5.

Figure A-13 summarizes the graphical comparison of hot gas layer temperatures and heights for
tests 4, 5, and 21. The relative differences are included in Table A-5.
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Figure A-13: Hot Gas Layer (HGL) Temperature and Height, FM/SNL Series.

Table A-5: Relative differences of hot gas layer temperature and height in FM/SNL

Hot Gas Layer Temperature Hot Gas Layer Height
Relative Relative
Test AE (°C) | AM (°C) |[Difference| AE (m) | AM (m) |Difference
FM/SNL 4 59.2 51.0 -14% -3.40 -5.50 N/A
FM/SNL 5 46.6 40.4 -13% -3.23 -5.41 N/A
FM/SNL 21 66.0 59.6 -10% -3.43 -5.79 N/A
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A.1.6 The NBS Multi-Room Test Series

This series of experiments consisted of two relatively small rooms connected by a long corridor.
The fire was located in one of the rooms. Eight vertical arrays of thermocouples were positioned
throughout the test space: one in the burn room, one near the door of the burn room, three in the
corridor, one in the exit to the outside at the far end of the corridor, one near the door of the other
or “target” room, and one inside the target room. Four of the eight arrays were selected for
comparison with model prediction: the array in the burn room, the array in the middle of the
corridor, the array at the far end of the corridor, and the array in the target room. In Tests 100A
and 1000, the target room was closed, in which case the array in the exit doorway was used.

The standard reduction method was not used to compute the experimental HGL temperature or
height for this test series. Rather, the test director reduced the layer information individually for
the eight thermocouple arrays using an alternative method (Peacock 1991).
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Figure A-14: Snapshot from the MAGIC simulation of NBS Multi-Room Test 100Z

The following three figures (Figure A-15 to Figure A-17) compiled the graphical comparison
between experimental measurements and modeling results for hot gas layer temperature and
height for the three selected experiments. Recall that the target room was closed in the first two
experiments (A and O). Consequently, no relative difference was calculated for the target room
in those two experiments. The relative differences are listed in Table A-6 to Table A-8.
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Figure A-15: Hot Gas Layer (HGL) Temperature and Height, NBS Multiroom, Test 100A.
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Table A-6: Relative differences of hot gas layer temperature and height in NBS Tests

Hot Gas Layer Temperature

Hot Gas Layer Height

Relative Relative
AE (°C) | AM (°C) | Difference| AE (m) | AM (m) | Difference
INBSA BumRoom | 2478 | 3184 | 29% 1.18 | -1.17 -1%
INBS A Corridor4.5| 85.9 93.5 9% -2.24 -1.18 -47%
INBS A Corridor 18 77.5 93.5 21% -1.27 -1.18 -7%
NBS A Corridor 38 71.1 93.5 31% -2.22 -1.18 -47%
NBS A [Corridor EXI| 66.4 93.5 41% -2.37 -1.18 -50%
Target
NBS A Room Target room closed
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Table A-7: Relative differences of hot gas layer temperature and height in NBS Tests

Hot Gas Layer Temperature Hot Gas Layer Height
Relative Relative
AE (°C) | AM (°C) | Difference| AE (m) | AM (m) | Difference
INBS O |Burmn Room | 310.3 | 399.3 29% -1.59 -1.19 -25%
NBS O [Corridor4.5]f 94.5 97.3 3% -1.55 -1.06 -32%
NBS O [Corridor 18 94.7 97.3 3% -2.12 -2.44 15%
NBS O [Corridor 38 89.8 97.3 8% -2.14 -2.44 14%
NBS O (Corridor EXI} 65.5 97.3 48% -2.23 -2.44 10%
NBS O [Target
Room Target room closed
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Figure A-17. Hot Gas Layer (HGL) Temperature and Height, NBS Multiroom, Test 100Z.

Table A-8: Relative differences of hot gas layer temperature and height in NBS Tests

Hot Gas Layer Temperature Hot Gas Layer Height
Relative Relative
AE (°C) | AM (°C) | Difference| AE (m) | AM (m) | Difference
INBSZ |Burmn Room | 283.9 | 311.9 10% 167 | 117 | -30%
NBS Z [Corridor 4.5 68.7 92.9 35% -1.24 -1.05 -15%
NBS Z [Corridor 18 61.1 92.9 52% -1.70 -1.05 -38%
NBS Z [Corridor 38 58.2 92.9 60% -1.76 -1.05 -40%
NBS Z [Corridor EXI| 51.2 92.9 82% -1.36 -1.05 -23%
Target
NBSZ |00 317 | 378 | 19% | 208 | -166 | 114%
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A.2 Ceiling Jet Temperature

MAGIC has an explicit ceiling jet temperature model based on the model developed by Cooper
[Ref. 6]. The model also accounts for the hot gas layer effects using Cooper’s method. In
general, a target is specified in the computational domain. If the target is exposed to ceiling jet,
the “Target/Gas Temperature” output option provides the ceiling jet temperature.

Experimental measurements for this category are available from ICFMP BE #3 and the FM/SNL
series only.

Positive relative differences are an indication that the MAGIC prediction is higher than the
experimental observation.

A.2.1ICFMP BE # 3

The thermocouple nearest the ceiling in Tree 7, located towards the back of the compartment,
was chosen as a surrogate for the ceiling jet temperature. The 15 graphical comparisons of
experimental measurements and model results are grouped in Figure A-18 and Figure A-19. The
relative differences are listed in Table A-9.
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Figure A-18: Near-ceiling gas (ceiling jet) temperatures, ICFMP BE #3, closed door tests.
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Figure A-19: Near-ceiling gas (ceiling jet) temperatures, ICFMP BE #3, open door tests
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A-26

Table A-9: Relative differences for ceiling jet temperature in ICFMP BE #3

Relative
Differenc
Instrument | AE (°C) AM (°C) e

ICFMP 3-1 Tree 7-10 154.9 140.1 -10%
ICFMP 3-7 | Tree 7-10 139.3 136.8 -2%
ICFMP 3-2 | Tree 7-10 270.6 269.4 0%
ICFMP 3-8 | Tree 7-10 246.9 268.3 9%
ICFMP 3-4 | Tree 7-10 228.9 261.0 14%
ICFMP 3-10| Tree 7-10 217.5 259.1 19%
ICFMP 3-13] Tree 7-10 330.5 400.9 21%
ICFMP 3-16{ Tree 7-10 277.7 376.6 36%
ICFMP 3-17| Tree 7-10 155.9 172.3 11%
ICFMP 3-3 | Tree 7-10 240.7 234.6 -3%
ICFMP 3-9 | Tree 7-10 234.6 231.4 -1%
ICFMP 3-5 | Tree 7-10 207.7 204.7 -1%
ICFMP 3-14| Tree 7-10 240.8 232.5 -3%
ICFMP 3-15] Tree 7-10 243.7 2314 -5%
ICFMP 3-18| Tree 7-10 235.1 233.2 -1%
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A.2.2 The FM/SNL Test Series

The near-ceiling thermocouples in Sectors 1 and 3 were chosen as surrogates for the ceiling jet
temperature. Figure A-20 compiles the graphical comparisons between experimental
measurements for ceiling jet temperature and the MAGIC predictions. The corresponding
relative differences are listed in Table A-10.
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Figure A-20: Near-ceiling gas (ceiling jet) temperatures, FM/SNL Serles, Sectors 1 and 3.
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Table A-10: Relative differences for ceiling jet temperatures in FM/SNL Tests

Relative
Differenc
Instrument | AE (°C) AM (°C) e
1/98H 82.8 78.8 5%
FM/SNL 4 11/98H 66.1 58.1 -12%
1/98H 73.7 66.8 -9%
FM/SNL S 11/98H 52.6 47.5 -10%
1/98H 75.9 74.2 -2%
FM/SNL 21 11/98H 77.2 74.2 -4%
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A.3 Plume Temperature

Plume temperature measurements are available from ICFMP BE #2 and the FM/SNL series. For
all the other series of experiments, the temperature was not measured above the fire (BE#3), the
fire plume leaned because of the flow pattern within the compartment (BE#4), or the fire was set
up against a wall (NBS). Only for BE #2 and the FM/SNL series were the plumes relatively free
from perturbations.

Once a target is specified in the calculation domain, MAGIC identifies if it is located within the
fire plume region. Plume temperature results are captured in the “Target/Gas Temperature”
output option. The output would include hot gas layer effects in the plume temperature if the
target is located inside the fire plume and above the hot gas layer interface. Positive accuracies
are an indication that MAGIC predictions are higher than the experimental observations.

A.3.1 ICFMP BE # 2

BE #2 consisted of liquid fuel pan fires conducted in the middle of a large fire test hall. Plume
temperatures were measured at two heights above the fire, 6 m (19.7 ft) and 12 m (39.4 ft). The
flames extended to about 4 m (13.12 ft) above the fire pan. (Figure A-21). The suspended
rectangle contains an array of thermocouples designed to locate the plume centerline. Notice
that the smoke plume does not always rise straight up because of air currents within the large test

hall.

Figure A-21: Fire plumes in ICFMP BE #2. Courtesy Simo Hostikka, VTT Building and
Transport, Espoo, Finland.
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Figure A-22: Near-ceiling gas temperatures, FM/SNL Series, Sectors 1 and 3.

Figure A-22 above illustrates the graphical comparison between experimental plume
temperatures and MAGIC prediction for the three cases in ICFMP BE #2. The corresponding
relative differences are listed in Table A-11.

Table A-11: Relative differences for plume temperature in ICFMP BE #2

Relative
Instrume Differenc
nt AE (°C)| AM (°C) e

ICFMP 21 |TG.1 166 161 -3%
TG.2 79 87 10%
ICFMP 2-2 |TG.1 288 258 -11%
TG.2 128 141 10%
ICFMP 2-3 |TG.1 252 229 -9%
TG.2 128 132 3%
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A.3.2 The FM/SNL Test Series

In Tests 4 and 5, thermocouples were positioned near the ceiling directly (5.9 m, 19.4 ft) over the
fire pan. In Test 21, the fire pan was inside a cabinet. For that reason, no plume temperature
comparison has been made. Figure A-23 presents the graphical comparisons and Table A-12
lists the corresponding relative differences.
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Figure A-23: Near-plume temperatures, FM/SNL Series, Sectors 13.

Table A-12: Relative differences of plume temperature in FM/SNL tests

Relative
Instrume Differenc
nt AE (°C)| AM (°C) e
FM/SNL 4 28/98H 116 115 0%
FM/SNL 5 28/98H 94 101 8%
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A.4 Flame Height

Flame height is recorded by visual observations, photographs or video footage. Videos from the
ICFMP BE # 3 test series and photographs from BE #2 are available. It is difficult to precisely
measure the flame height, but the photos and videos allow one to make estimates accurate to

within a pan diameter.

A.4.1 ICFMP BE #2

Shown in Figure A-24 are MAGIC predictions for flame height. Figure A-25 contains
photographs of the actual fire. The height of the visible flame in the photographs has been
estimated to be between 2.4 and 3 pan diameters (3.8 m to 4.8 m, 12.5 to 15.7 ft). The height of
the simulated fire fluctuates from 5 m (16.4 ft) to 6 m (19.7 ft) during the peak heat release rate

phase.
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Figure A-24: Flame heights for ICFMP BE # 2
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Figure A-25: Photcgraphs of heptane pan fires, ICFMP BE #2, Case 2. Courtesy, Simo
Hostikka, VTT Building and Transport, Espoo, Finland.
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A.4.2 ICFMP BE #3

No measurements were made of the flame height during BE #3, but numerous photographs were
taken. Figure A-26 is one of these photographs. These photographs provide at least a qualitative
assessment of the MAGIC flame height prediction. Recall that the size of the door is 2.0 m (6.6
ft) high. Inspection of the picture suggests that the flame height, at least is some of its
oscillations, can be more than 2.0 m (6.6 ft) high. MAGIC however appears to be over-
predicting flame heights, as most of the predictions are over 3 m high.

¥

Figure A-26: Photograph and simulation of ICFMP BE #3, Test 3, as seen throughthe2 m
by 2 m docrway. Photo courtesy of Francisco Joglar, SAIC.
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Figure A-27: Near-ceiling gas temperatures, ICFMP BE #3, closed door tests.
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A.5 Oxygen Concentration

Oxygen concentration data is available for accuracy calculations in ICFMP benchmark exercises
number 3, and 5. For the calculations, measured values in the experiments are compared with
the upper layer oxygen concentration, which is an output available in MAGIC. Relative
differences are calculated comparing the lowest concentration measured in the experiments with
the lowest concentration predicted by MAGIC. Positive relative differences indicate that
MAGIC is predicting a lower concentration than the one measured in the experiments.

A.5.1 ICFMP BE #3

In experiments with close room doors in the ICFMP BE # 3 test series, the fuel supply was
discontinued when the oxygen concentration was measured around 12 to 15 %. In these tests,
relative differences are measured at the lowest concentration before the experiment was

terminated.

The graphical comparisons for closed and open door tests and relative differences are provided in
Figure A-29, Figure A-30, and Table A-13 respectively.
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Figure A-29: O, concentration, ICFMP BE #3, closed door tests.
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Figure A-30: O,, ICFMP BE #3, open door tests.

A-39




Technical Details for the MAGIC Validation Study

Table A-13: Relative differences of oxygen concentration in ICFMP BE #3 tests

Relative
Differenc
AE AM e

ICFMP 3-1 -0.065 -0.070 8%
ICFMP 3-7 -0.064 -0.068 6%
ICFMP 3-2 -0.092 -0.100 8%
ICFMP 3-8 -0.096 -0.098 2%
ICFMP 3-4 -0.079 -0.065 -17%
ICFMP 3-10 -0.079 -0.065 -18%
ICFMP 3-13 -0.101 -0.110 9%
ICFMP 3-16 -0.091 -0.081 -11%
ICFMP 3-17 -0.033 -0.028 -16%
ICFMP 3-3 -0.052 -0.039 -24%
ICFMP 3-9 -0.054 -0.038 -30%
ICFMP 3-5 -0.030 -0.025 -17%
ICFMP 3-14 -0.055 -0.038 -31%
ICFMP 3-15 -0.052 -0.038 -27%
ICFMP 3-18 -0.051 -0.037 -27%
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A.5.1 ICFMP BE #5

Figure A-31 and Table A-14 present the graphical comparison and relative difference for oxygen
concentration in ICFMP BE#5 Test 4.
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Figure A-31: O;, ICFMP BE #5, Test 1

Table A-14: Relative differences of oxygen concentration in ICFMP BE #3 tests

Relative
Differenc
AE AM e
[ICFMP 5-4 -0.028 -0.035 24%
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A.6 Smoke Concentration

Data for smoke concentration is only available in ICFMP BE # 3. Positive accuracies are an
indication of MAGIC prediction higher smoke concentrations than the ones measured in the
experiments. Depending on the application, this may not mean a conservative result.

The units used for accuracy calculations are mg/m®. Notice that MAGIC output is average
extinction coefficient, k, with units of 1/m. As a result, the direct output from the model was
converted to mg/m’ using the following equation:

=k
v=J4.
where v is the concentration in mg/m?, and ky, is a constant with value 0.0076 m2/mg (Ref. 18).

A.6.1 ICFMP BE #3

Figure A-32and Figure A-33 contain comparisons of measured and predicted smoke
concentration at one measuring station in the upper layer for closed and open door tests.
MAGIC consistently under predicts the smoke concentration with the exception of Test 17,
which consisted of a Toluene fuel. . This trend is reflected in the relative differences listed in

Table A-15.
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Figure A-32: Smoke concentration in ICFMP BE #3, closed door tests.
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Figure A-33: Smoke concentration in ICFMP BE #3, open door tests.
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Table A-15: Relative differences of smoke concentration in ICFMP BE #3 tests

Relative
Differenc
AE (mg/m°) | AM (mg/m°) e

ICFMP 3-1 41.50 258.62 523%
ICFMP 3-7 55.05 250.39 355%
ICFMP 3-2 128.00 305.08 138%
ICFMP 3-8 99.53 359.64 261%
ICFMP 3-4 79.90 196.32 146%
ICFMP 3-10 70.75 194.81 175%
ICFMP 3-13 223.51 282.84 27%
ICFMP 3-16 139.07 219.10 58%
ICFMP 3-17 353.09 1453.17 312%
ICFMP 3-3 118.03 127.06 8%
ICFMP 3-9 117.00 126.03 8%
ICFMP 3-5 87.34 91.36 5%
ICFMP 3-14 91.30 126.62 39%
ICFMP 3-15 123.71 126.65 2%
ICFMP 3-18 110.18 126.08 14%
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A.7 Room Pressure

Experimental measurements for room pressure are available from the ICFMP BE #3 test series
only. The pressure within the compartment was measured at a single point, near the floor. In the
simulations of the closed door tests, the compartment is assumed to leak via a small opening near
the ceiling. In order to reflect the actual leakage area in the model, the measured area was
divided by 0.68, which is the orifice flow coefficient used in MAGIC for all flows through
vertical openings.

A.7.1 ICFMP BE #3

Visual examination of experimental data and model results plots strongly suggest that tests with
open doors, where leakages are not critical because of the large door opening, MAGIC captures
both the magnitude and the profile of the pressure. These figures describe a negative pressure
profile at the floor of the room, indicating that fresh air is moving into the enclosure.

Similarly, in close door tests, MAGIC is able to capture the both peaks and pressure profiles. It
is important to mention that fan tests were conducted before some of the tests resulting in
relatively well known leakage areas. Furthermore, notice that MAGIC captures the positive and
negative pressure peaks. These peaks are an indication of a positively pressurize room in the
early stages of the test, and a negatively pressurize room when the fuel supply is discontinued
and heat loses to the boundaries are higher than the fire hear release rate.

Comparisons between measurement and prediction are shown in Figure A-34 and Figure A-35.
For tests in which the door to the compartment is open, the over-pressures are only a few Pascals
at the early stages of the fire, whereas when the door is closed, the over-pressures can be up to
several hundred Pascals. The calculated relative differences are listed in Table A-16.

The relative differences were calculated as follows:

¢ For closed-door rooms, the relative difference refers to the positive peak at the early stages of
the fire. Positive relative differences indicate that MAGIC over-predicted the measured

peak.

¢ For opened door rooms, the relative difference refers to the negative magnitudes of the
pressure, typically at the late stages of the test. Positive relative differences suggest that
MAGIC calculated a more negative difference than the experimental measurement.
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Figure A-34: Compartment pressure in ICFMP BE #3, closed door tests.
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Figure A-35: Compariment pressure in ICFMP BE #3, open door tests.
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Table A-16: Relative differences for compartment pressure in ICFMP BE #3 tests

Relative
Differenc
AE (Pa) AM (Pa) e

ICFMP 3-1 57.6 35.7 -38%
ICFMP 3-7 45.9 21.0 -54%
ICFMP 3-2 290.0 241.2 -17%
ICFMP 3-8 189.3 195.7 3%
ICFMP 3-4 56.6 57.6 2%
ICFMP 3-10 49.3 34.3 -30%
ICFMP 3-13 231.5 313.6 35%
ICFMP 3-16 80.6 162.5 102%
ICFMP 3-17 194.9 144.8 -26%
ICEMP 3-3 -1.9 2.7 41%
ICFMP 3-9 2.0 2.7 36%
ICFMP 3-5 -1.8 2.5 40%
ICFMP 3-14 2.1 2.7 31%
ICFMP 3-15 -2.4 -2.8 17%
ICFMP 3-18 -2.0 -2.8 41%

A.8 Target Temperature and Heat Fiux

Target temperature and heat flux data are available from ICFMP BE #3, #4 and #5. In BE #3,
the targets are various types of cables in various configurations — horizontal, vertical, in trays or
free-hanging. In BE #4, the targets are three rectangular slabs of different materials instrumented
with heat flux gauges and thermocouples. In BE #5, the targets are again cables, in this case
bundled power and control cables in a vertical ladder.

Cable targets in MAGIC can be represented as Cables or as Thermal Targets. This section
provides graphical comparisons and relative differences for both options. Targets are virtual
sensors in the computational domain characterized by a thickness and themo-physical properties.
On the other hand, cables are specified as cylinders of some length, with multiple concentric
layers of different materials to account for jacket, insulation and conductor.

For radiated heat flux, the Target/Heat Flux/Incident heat flux output option in MAGIC was
selected for comparison with experimental results. This is the sum of all external radiative heat
fluxes impacting the target. In the case of total heat flux, the Target/Heat Flux/ Total heat flux
“fluxmeter” output option in MAGIC was selected for comparison.

The total flux gauges used in the experiment corresponds to the total heat flux with a target
calibrated using 75°C (167 °F) cooling water. In MAGIC, the target measuring total heat flux is

based on ambient temperature (~20 °C, 68 °F).
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A.8.1 ICFMP BE #3

For each of the four cable targets considered, measurements of the local gas temperature, surface
temperature, radiative heat flux, and total heat flux are available. The following pages display
comparisons of these quantities for Control Cable B, Horizontal Cable Tray D, Power Cable F

and Vertical Cable Tray G.

The superposition of gas temperature, heat flux and surface temperature in the Figures on the
following pages provides information about how cables heat up in fires. In MAGIC, cables can
be modeled using the Targets option or the Source/Cable option. This study evaluates both. The
target option is listed in the graphical comparisons as “Surface Temperature of the Target”. The
Cable/Source option is listed as “Maximum Surface Temperature”.

Favorable or unfavorable predictions of cable surface temperatures can usually be explained in
terms of comparable errors in the prediction of the thermal environment in the vicinity of the
cable. Regardless of the complexity of the target, the model must be able to predict the thermal

insult to it.

The following Figures and Tables provide the graphical comparisons and calculated relative
differences. Results are classified by cable. That is, for a selected cable, the surface and gas
temperature and the total and radiated heat fluxes for the 15 tests are grouped together. The
tables for relative differences for those 15 tests follow each group of graphical comparisons.
Relative differences were calculated for surface temperature, radiative heat flux and total heat

flux.
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Figure A-36: Thermal environment near Cable B, ICFMP BE #3, Tests 1 and 7.
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Figure A-37: Thermal environment near Cable B, ICFMP BE #3, Tests 2 and 8.
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Figure A-38: Thermal environment near Cable B, ICFMP BE #3, Tests 4 and 10.
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Figure A-39: Thermal environment near Cable B, ICFMP BE #3, Tests 13 and 16
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Figure A-41: Thermal environment near Cable B, ICFMP BE #3, Tests 3 and 8.
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Figure A-42: Thermal environment near Cable B, ICFMP BE #3, Tests 5 and 14.
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Figure A-43: Thermal environment near Cable B, ICFMP BE #3, Tests 15 and 18.
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Table A-17: Relative differences for surface temperature to cable B

Target Surface Temp, B-| Cable Surface Temp, B-
TS-14 TS-14
Control Relative Relativ
Cable |{AE (°C)|AM (°C)| Diff | AE (°C) [AM (°C) ! e Diff
Test1 | 106 115 8% 106 112 5%
Test7 | 90 111 23% 87 108 -1%
Test2 | 176 204 16% 176 187 6%
Test8 | 183 203 11% 183 186 1%
Test4 | 149 201 35% 149 192 29%
Test 10| 144 198 38% 144 189 31%
Test 13| 186 264 42% 186 228 25%
Test 16| 160 244 52% 160 222 38%
Test 17 83 80
Test3 | 226 206 -9% 226 202 | -11%
Test9 | 228 204 ~-10% 228 199 -12%
Test5 | 150 182 21% 150 175 16%
Test 14| 199 201 1% 199 199 0%
Test 15| 416 315 | -24% 416 333 | -20%
Test 18] 236 200 | -15% 236 200 | -15%

Table A-18: Relative differences far radiative and total heat flux to cable B

Radiant Heat Flux Gauge
3 Total Heat Flux, Gauge 4
AE

Control |(kW/m? AM |Relative] AE AM |Relative
Cable ) |(kW/m?)| Diff  |[(KW/m?)|(kW/m?)| Diff
Test 1 1.1 1.3 12% | 185 | 3.06 | 65%
Test 7 2.9 3.6 26% | 1.84 | 299 | 62%
Test 2 4.4 36 | -18% | 526 | 6.92 | 31%
Test 8 2.9 3.4 17% | 558 | 6.85 | 23%
Test 4 3.9 30 | -22% | 552 | 657 | 19%
Test10 | 1.2 1.2 2% 491 | 651 | 33%
Test13 | 2.9 3.6 23% | 826 | 11.48 | 39%
Test16 | 4.3 35 | -19% | 8.37 | 10.03 | 20%
Test17 | 2.7 3.4 25% | 2.36 | 3.43 | 45%
Test 3 4.8 7.0 47% | 710 | 674 | -5%
Test 9 2.8 3.3 15% | 6.58 | 6.56 0%
Test5 | 465 ] 74 | -84% | 6.86 | 567 | -177%
Test14 | 4.1 5.9 42% | 3.82 | 6.37 | 65%
Test15 | 1.3 1.5 15% | 57.72 | 11.72 | -80%
Test 18 | 5.2 38 | -28% | 761 | 6.86 | -10%

A-59



Technical Details for the MAGIC Validation Study

A-60

Temperature (C)

Temperature (C)

Temperature {C)

Temperature (C)

160
Target D-TS-12 Temperature
140 + CAMP BE 43, Test 1 p
120 4
100 ]
N ‘
V - MAGCD1S-12: Gas
60 - temperature Il
© ——— MAGIC D-TS-12 : Surface] |
g temmperature of the target
20 4 Y —»— Tree 3-9 H
4] T . T ’ i

160
Cable TS-12 Temperature
140 1~ \CAMP BE #3, Test 2

o —
pd
pd

/ ~— MAGIC D-TS-12 : Maximum
surface termperature

T a T T T

0 5 10 5 20 25 30
Time (min)

Target D-TS-12 Temperature
ICFMPBE #3, Test 7

A —
=
= MA rag.{nl-,esqa: Surface

80
60 y
P 1
temmperature of the target
20 |~—s—Tree 3-9 I
0

T T T T T

0 5 10 15 20 25 30
Time (min)
160
Cable D-TS-12 Temperature
140 T VP BE #3, Test 7 /\
120 T~
100 / /
80 /
60 .
// -—— MAGIC D-TS-12 : Maximum
40 surface termperature H
2 et D-Ts-12 L
° - ; -
0 5 10 15 20 25 30
Time (min)

Heat Flux (kW/m2)

Heat Flux (kW/m2)

35

e Cable Rad Gauge 7
30H....... MAGIC RG748 : Total heate ™Y
flux ‘fluxmeter’ 3
25 MAGIC RG7&8.+¥icident e
heat flux kS
20 b\‘\-....// - X
\4
15 \/"\ .
10 ; /’-ﬂ"\\
05 : Target O-TS-12 Heat Flux
v : ICAVP BE #3, Test 1
0,0 # T v
0 5 10 15 20 25 30
Time (min)
35
Target D-TS-12 Heat Flux
3,0 +-ICAPBE #3, Test 7 v
25 :'-
/ 3
2,0 2. kN
N .,
N .

1.5
' \/

1.0 H:
Z —e——Cable Rad Gauge 7 —
05 1
--cee-- MAGIC RG78&8 : Total heat flux
0,0 # ‘fluxmeter ) v
0 mGIC RG78&8 : Incident heat 25 30
Time (min)

Figure A-44: Thermal environment near Cable D, ICFMP BE #3, Tests 1 and 7.
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Figure A-45: Thermal environment near Cable D, ICFMP BE #3, Tests 2 and 8.
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Figure A-46: Thermal environment near Cable D, ICFMP BE #3, Tests 4 and 10.
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Figure A-47: Thermal environment near Cable D, ICFMP BE #3, Tests 13 and 16
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Figure A-48: Thermal environment near Cable D, ICFMP BE #3, Test 17.
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Figure A-49: Thermal environment near Cable D, ICFMP BE #3, Tests 3 and 9.
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Figure A-50: Thermal environment near Cable D, ICFMP BE #3, Tests 5 and 14.
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Figure A-51: Thermal environment near Cable D, ICFMP BE #3, Tests 15 and 18.
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Table A-19: Relative differences for surface temperature to cable D

Target Surface Temp, D- | Cable Surface Temp, D-
TS-12 TS-12

Control Relative Relativ
Cable | AE (°C) {AM (°C){ Diff | AE (°C) {AM (°C)| e Diff
Test 1 115 112
Test 7 87 111 27% 87 108 -4%
Test 2 126 204 62% 126 187 48%
Test 8 150 203 36% 150 186 4%
Test 4 113 201 7% 113 192 70%
Test 10| 132 198 50% 132 189 43%
Test 13] 173 263 52% 173 229 32%
Test 16] 156 243 56% 156 222 42%
Test 17
Test 3 210 204 -3% 210 201 -4%
Test 9 220 201 -9% 220 199 -8%
Test 5 132 178 34% 132 174 9%
Test 14 178 203 14% 178 202 14%
Test 15| 243 247 1% 243 251 8%
Test 18| 217 199 -8% 217 199 -8%

Table A-20: Relative differences for radiative and total heat flux to cable D

Radiant Heat Flux Gauge 7| Total Heat Flux, Gauge 8

Control| AE AM |Relative| AE AM |Relative
Cable | (kW/m?) |(kW/m?)| Diff |(kW/m?)|(kW/m?)| Ditf
Test 1 1.44 1.59 10% 3.07
Test 7 4.16 3.64 -12% 2.52 2.99 19%
Test 2 3.75 9.83 6.93 | -29%

est8 | 3.26 3.43 5% 8.51 6.86 | -19%
Test4 | 4.78 3.22 | -33% | 7.23 6.60 -9%
Test 10| 1.35 1.54 14% 6.71 6.54 -3%
Test 13| 3.55 3.59 1% 11.22 | 11.50 3%
Test 16| 5.26 3.61 -31% | 11.67 | 10.08 | -14%
Test 17| 2.91 3.39 16% 3.29 3.43 4%
Test3 | 6.58 7.02 7% 9.45 6.85 | -28%
Test 9 3.32 3.33 0% 9.06 6.68 | -26%
Test 14 3.95 6.07 6.45 6%
Test 5 4.83 5.90 22% 8.52 5.87 | -81%
Test 15| 1.52 1.49 2% | 20.87 | 8.39 | -60%
Test 18 3.43 7.83 6.50 | -17%
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Figure A-52: Thermal environment near Cable F, ICFMP BE #3, Tests 1 and 7.
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Figure A-53: Thermal environment near Cabfe F, ICFMP BE #3, Tests 2 and 8.
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Figure A-54: Thermal environment near Cable F, ICFMP BE #3, Tests 4 and 10.

A-T71 .



Technical Details for the MAGIC Validation Study

A-72

Temperature (C)

Temperature (C}

Temperalure (C)

Temperature (C)

600
——t— F-T5-20
500 H....... MAGIC B-TS-20 : Gas
temperature
a00 H—— MAGIC B-TS-20 : Surtace
temmperature of the target
—w—Tree 5-6 -
300 - .
100
-‘y Target F-TS-20 Terperature
ICFMPBE #3, Test 13
0 r T T T T
0 2 4 6 8 10 12
Time (min)
250
Cable F-TS-20 Tenperature
A ICFMP BE #3, Test 13
200 \
150
100 1
/ —~—Fs-20
01g —— MAGIC F-Ts-20 : Maximum | |
surface terrperature
0 — — v v
0 5 10 15 20 25
Time (min)
600
| <=t -T5-20
500 -ce--.- MAGCB-TS-20:Gas [
L rature
400 e B-T5-20: Surface| |
terrperature of the target
~——t—— Tree 5-6
300 e 3
200 -
.
100 Target F-TS-20 Tenperature |
o ICFMP BE #3, Test 16
0 2 4 6 8 10 12
Time (min)
250
Cable F~TS-20 Temperature
A ICFMP BE#3, Test 16
- /}\
- [ \
100 N
——F-T3-20 >
w 4
~—— MAGIC F-Ts-20 : Maximum
surface termperature
0 . . " —
0 5 10 15 20 25 30
Tire {min)

\
2

Heat Flux (kW/m2

n
.

Heat Flux (kW/m2,

16,0
——e—— Cable Rad Gauge 1
14,0
------- MAGIC RG182: Total
12,0 heat flux fluxmeter
-~A— MAGIC RG182 :
10,0 ~° % Incident heat flux
' {==s-=— Cable Total Fux 2
8,0 .
60 4 ,,pK\‘rargex F-TS-20 Heat Aux
’ W ),&Fw BE#3, Test 13
40 T
" \..\~' ‘\“Avy
2,0 T~y
3
0,0 r T . . .
0 2 4 6 8 10 12
Time (min)
14,0 Cable Rad Gauge 1 H
12,0 +~———————p v MAGIC RG1&2 : Total |
heat flux fluxmeter'
10,0 — MAGIC AG18&2 :
' .= incident heat flux
80 —=w—r Cable Total Aux 2 1]
60 ; Target F-TS-20 Heat Fiux
] BE#3, Test 16
40
2,0
00 W=7 ,

Figure A-55: Thermal environment near Cable F, ICFMP BE #3, Tests 13 and 16
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Figure A-56: Thermal environment near Cable F, ICFMP BE #3, Test 17.
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Figure A-57: Thermal environment near Cable F, ICFMP BE #3, Tests 3 and 9.
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Figure A-58: Thermal environment near Cable F, ICFMP BE #3, Tests 5 and 14.
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Figure A-59: Thermal environment near Cable F, ICFMP BE #3, Tests 15 and 18.
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Table A-21: Relative differences for surface temperature to cable F

Target Surface Temp, F-TS-20 | Cable Surface Temp, F-TS-20

Power Relative Relative
Cable | AE (°C) |AM (°C)| Diff |AE (°C) |AM (°C)| Diff
Test 1 83 109 32% 83 95 15%
Test 7 90 109 21% 87 101 12%
Test 2 129 183 42% 129 150 16%
Test 8 131 181 38% 131 148 13%
Test 4 149 189 27% 149 158 6%
Test 10 150 194 29% 150 174 16%
Test 13 143 219 52% 143 188 31%
Test 16 168 227 35% 168 199 19%
Test 17

est3 195 202 3% 195 182 ~7%
Test 9 195 200 3% 195 180 ~-8%

est5 175 178 2% 175 157 -10%
Test 14 171 197 15% 171 179 5%
Test 15 669 245 -63% 669 231 -66%
Test 18 232 205 -11% 232 184 -20%

Table A-22: Relative differences for radiative and total heat flux to cable F

Radiant Heat Flux Gauge 1| Total Heat Flux, Gauge 2
Power AE AM |Relative|] AE AM |Relative
Cable | (kW/m?) |(kW/m?)| Diff [(kW/m?)|(kW/m?)| Ditf
Test 1 0.87 1.24 44% 1.60 3.05 90%
Test 7 1.99 3.60 81% 1.51 2.98 95%
Test 2 2.95 3.40 15% 4.77 6.89 44%
Test 8 2.02 3.33 65% 4.93 6.82 38%
est4 2.65 2.69 2% 5.02 6.49 29%
Test 10| 0.82 1.22 48% 4.36 6.43 48%
Test 13/ 1.93 3.54 83% 7.28 11.40 56%
Test 16/ 1.93 3.29 71% 6.13 9.90 61%
Test 17| 2.73 3.26 20% 1.85 3.43 83%
Test 3 2.90 6.91 139% 5.565 6.51 17%
Test 9 2.12 3.17 50% 5.08 6.33 25%
Test 5 18.29 9.59 -48% 6.45 5.34 -18%
Test 14| 2.76 5.73 108% 3.46 6.26 77%
est 15/ 0.88 1.49 69% | 23.94 | 10.44 | -56%
Test 18] 5.18 3.87 -25% 8.74 6.94 -21%
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Figure A-60: Thermal environment near Cable G, ICFMP BE #3, Tests 1 and 7.
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Figure A-61: Thermal environment near Cable G, ICFMP BE #3, Tests 2 and 8.
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Figure A-62: Thermal environment near Cable G, ICFMP BE #3, Tests 4 and 10.
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Figure A-63: Thermal environment near Cable G, ICFMP BE #3, Tests 13 and 16
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Figure A-64: Thermal environment near Cable G, ICFMP BE #3, Test 17.



Temperature (C)

Temperature (C)

Temperature (C)

Temperature (C)

250
Target TS-33 Terrperature > L
CAVPBE #3, Test 3 A
200 1 g
150 /
100 . Vertical Cable Ts-33
creasae MAGIC TS-33 : Gas
I rature
S0 1 —_— T5-33: Surface |
temperature of the target
—tt— Tree 2-5
0 T ¥ - T
[o] 5 10 15 20 25
Time (min)
250
Cable TS-33 Terrperature
ICFVP BE#3, Test 3 /\
200
150
100
—e— Vertical Cable Ts-33
50
V4 —— MAGIC TS-33 : Maximum
surface termperature
0+ -r T T T T
o] 5 10 15 20 25 30
Time (rrin)
250
Target T5-33 Temperature
ICAMP BE #3, Test 9
200 4 3
Y
150 - /
/ —+—— Vertical Cable Ts-33
100 H
1 rature
50 4 — TS-33: Surtace -
temperature of the target
s Tree 2-5
[
] 5 10 15 20 25
Tame (min)
250
Cable TS-33 Termperature

CFMPBE #3, Test 9 Y
- //
100

—e— Vertical Cable Ts-33

—— MAGIC TS-33 : Maximum

"4

surface termperature
0 y T v v
0 5 10 15 20 25
Time {min)

Technical Details for the MAGIC Validation Study

Heat Flux (kW/m2,

N
7]

Heat Flux (kW/m2!

8,0
70
60
50
40
30
20
1,0
0,0

Target TS-33 Heat Fux

TICAMPBE#3, Test 3 .

4 .
|——+——Cable Rad Gauge 10
----- -+ MAGIC RG9&10 : Total |

] heat flux ‘fluxmeter' ||
————MAGIC RG9&10 :

Incident heat flux

—— Cable Total Flux 9

[ 5 10 15 20 25

Tirme (min)

Target TS-33 Heat Flux

ICFMP BE #3, Test 9

60
50 1
404
30+
201 f% heat fiux ‘fluxmeter
TR MAGE RG9&10
10 Incident heat flux
! |-—¢— Cable Total Fux 9
0,0
0 5 10 15 20 25

Tiene (min)

Figure A-65: Thermal environment near Cable G, ICFMP BE #3, Tests 3 and 9.
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Figure A-66: Thermal environment near Cable G, ICFMP BE #3, Tests 5 and 14.
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Figure A-67: Thermal environment near Cable G, ICFMP BE #3, Tests 15 and 18.
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Table A-23: Relative differences for surface temperature to cable G

Target Surface Temp, G- | Cable Surface Temp, G-
TS-33 TS-33

Control Relative Relativ
Cable |AE (°C)|AM (°C)| Diff | AE (°C) |AM (°C) | e Diff
Test 1 64 114 79% 64 111 74%
Test 7 78 111 42% 90 107 37%
Test 2 107 204 91% 107 184 72%
Test 8 107 203 90% 107 182 70%
Test 4 125 201 61% 125 189 51%
Test 10 148 198 34% 148 186 25%
Test 13 133 264 98% 133 222 66%
Test 16 169 243 44% 169 216 27%
Test 17
Test 3 169 206 22% 169 200 19%
Test 9 165 204 23% 165 198 19%
Test 5 161 183 14% 161 172 7%
Test 14 270 230 -15% 270 204 -24%
Test 15 160 200 25% 160 197 23%
Test 18 106 200 89% 106 197 87%

Table A-24: Relative differences for radiative and total heat flux to cable G

Radiant Heat Flux Gauge

10 Total Heat Flux, Gauge 9
Control AE AM |Relative| AE AM |Relative
Cable |(kW/m?)| (kW/m?)| Diff |(kW/m?)|(kW/m?)| Diff
Test 1 1.51 1.41 -6%
Test 7 5.97 3.64 -39% 1.89 2.99 56%
Test 2 536 | 3.71 -31%
Test 8 6.00 | 3.41 -43% | 5.98 6.86 15%
Test 4 545 | 3.16 | -42% | 6.42 6.58 2%
Test10 | 147 | 1.33 | -10% | 6.20 6.51 5%
Test13 | 6.03 | 359 | -40% | 12.18 | 11.50 | -6%
Test16 | 5.15 | 8358 | -31% | 12.23 | 10.05 | -18%
Test17 | 542 | 3.37 | -38% | 3.07 | 3.43 11%
Test 3 10.06 | 7.01 -30% | 6.45 6.82 6%
Test 9 1050 | 6.12 | -42% | 6.37 | 6.65 4%
Test 5 373 | 328 | -12% | 6.69 5.80 | -13%
Test14 | 11.96 | 587 | -51% | 10.90 | 8.39 | -23%
Test15 | 242 | 215 | -11% | 5.12 6.36 | 24%
Test18 | 2.85 | 3.06 8% 445 | 6.13 38%
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A.8.2 ICFMP BE #4

Targets in BE #4, Test 1 were three material probes made of concrete, aerated concrete and steel.
Sensor M29 represents the aerated concrete material while Sensors M33 and M34 represent the
concrete and steel materials respectively.

MAGIC appears to over predict both total heat flux and surface temperature to the targets. The
graphical comparisons for heat flux and surface temperature and the resulting relative differences
are presented in Figure A-68 and Table A-17respectively.
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Figure A-68: Heat Flux and Surface Temperatures of Target Slabs, ICFMP BE #4, Test 1.

Table A-25: Relative differences for surface temperature, and total heat flux to targets

Relative AE AM Relative

AE (°C) | AM (°C) | Diff | (kW/m? | (kW/m?) | Diff

Steel, M34 356 684 92% | 27.18 | 7565 | 178%

|CEMP 4-1[Concrete, M33 308 608 97% | 4656 | 75.65 | 63%
Gas Concrete,

M29 489 728 49% | 32.41 75.65 | 133%
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A.8.3ICFMPBE #5

A vertical cable tray was positioned near a wall opposite the fire. Heat flux gauges were inserted
in between two bundles of cables, one containing power cables, the other, control. On the
following pages are plots of the gas temperature, heat flux and cable surface temperatures at
three vertical locations along the tray.

Figure A-69 compiles the graphical comparisons for total heat flux and surface temperature.
Table A-26 and Table A-27 list the corresponding relative differences.
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Figure A-69: Thermal environment near Vertical Cable Tray, ICFMP BE #5, Test 4.
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Table A-26: Relative differences for surface temperature

Surface Relative
Temperature Instrument AE (°C) AM (°C) |Differencel
CcO 1-3 141.1 165.1 17%

TCO 3-3 144.3 165.2 14%
TCO 1-5 147.8 159.2 8%

ICFMP 5-4  tco35 2255 1593 | 28%
TCO 1-7 182.6 157.6 -14%
TCO 3-7 180.2 157.7 -13%
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Table A-27: Relative differences for total heat flux

otal Heat AE AM Relative
Flux Instrument (KW/m?) (KW/m?) Diff
WS2 141 161 14%
ICFMP 5-4 WS3 144 174 21%
WS4 148 158 7%
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A.9 Compartment Wall Temperature and Heat Flux

Heat fluxes and surfaces temperatures at compartment walls, floor and ceiling are available from
ICFMP BE #3 and #5. This category is similar to that of the previous section, Heat Flux and
Surface Temperature of Targets, only here the focus is on compartment walls, ceiling and floors.

MAGIC offers two alternatives for wall temperature and heat flux results. The first alternative
results from a heat balance at the surface of the wall in both the upper and lower layer. The
second option is to locate a target characterized by the wall properties. The second option is
preferred for validation purposes since the target can be placed in the same location as the
experimental sensors.

A.9.1 ICFMP BE #3

Thirty-six heat flux gauges were positioned at various locations on all four walls of the
compartment, plus the ceiling and floor. Comparisons between measured and predicted heat
fluxes and surface temperatures are shown on the following pages for a selected number of
locations. Over half of the measurement points were in roughly the same relative location to the
fire and hence the measurements and predictions were similar. For this reason, data for the east
and north walls are shown because the data from the south and west walls are comparable. Data
from the south wall is used in cases where the corresponding instrument on the north wall failed,
or in cases where the fire was positioned close to the south wall.

The heat flux gauges used on the compartment walls measured the net, not total, heat flux. In
MAGIC, this measured heat flux is compared with the Target/Heat Flux/ Total Absorbed Heat

Flux output option.

The following graphical comparisons are grouped per room surface (long wall, short wall,
ceiling or floor). The term long wall refers to either the north or south wall. The term short wall
refers to either the east or west wall. Two sensors have been selected for comparison for each
surface. Comparisons include both surface temperature and heat flux. The corresponding
relative differences are provided after the graphical comparison for each room surface.
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Figure A-70: Long wall heat flux and surface temperature, ICFMP BE #3, closed door tests,
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Figure A-71: Long wall heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-72: Long wall heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-73: Long wall heat flux and surface temperature, ICFMP BE #3, open door tests.
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Table A-28: Relative differences for temperature and total heat flux corresponding to
the long wall

Wall Temperature Wall Total Heat Flux
Long (Instrument Relative] AE | AM |Relative
Wall AE (°C)|AM (°C) | Diff (kW/m*}(kW/m?)| Diff
N1 54 89 65% 0.7 1.1 49%
Test 1 S4 68 89 31% 1.0 1.2 25%
N1 53 87 63% | 0.8 1.0 | 29%
Lrest 7 S4 70 87 23% | 1.1 1.1 -5%
N1 96 168 65% 2.4 2.8 17%
Test 2 S4 120 158 32% 2.8 2.8 -1%
N1 95 167 66% 2.5 2.8 12%
Test 8 N4 120 157 19% 1.5 2.8 83%
N1 97 159 64% 2.0 2.4 20%
Test 4 N4 124 169 9% 1.5 2.3 59%
N1 94 158 68% | 2.0 24 | 20%
Test 10 N4 124 158 -3% 1.5 23 | 53%
N1 110 209 91%
Test 13 N4 151 210 5%
N1 107 195 83%
Test 16 N4 150 196 -10%
N1 39 70 79% 1.5 2.1 47%
Test 17 N4 54 71 -13% | 0.9 2.1 125%
N1 114 168 47% 1.7 2.0 18%
Test 3 N4 169 170 -1% 1.4 20 | 40%
N1 113 165 47% 1.7 2.0 17%
Test 9 N4 167 168 -6% 1.4 2.0 | 40%
N1 94 143 52% | 1.5 1.8 | 20%
Test 5 N4 150 147 -5% 1.7 20 | 20%
N1 114 167 46% 1.8 2.0 16%
Test 14 N4 146 176 31% | 2.7 2.6 ~4%
S1 115 167 34% 1.9 2.0 9%
Test 15 S3 308 182 -17% | 5.9 3.1 -46%
S 109 166 41% 1.8 2.0 14%
Test 18 S4 312 191 -39%
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Figure A-74: Short wall heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-75: Short wall heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-76: Short wall heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-77: Short wall heat flux and surface temperature, ICFMP BE #3, open door tests.
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Table A-29: Relative differences for temperature and total heat flux corresponding to

the short wall
Wall Temperature Wall Total Heat Flux
Short Relative| AE AM [Relative
Wal  |"STUMeM e ooy | aM ey | Difi kwimR)wim?)|  Dift
E1 55 89 61% 0.7 1.1 64%
Test 1 E2 71 91 28% 0.9 1.0 17%
E3 53 87 59% 0.7 1.2 77%
Test 7 E2 70 88 26% 1.0 1.0 6%
E1 110 158 44% 2.3 2.8 20%
Test 2 E2 125 162 29% 2.9 2.8 -2%
E1 109 157 44% 2.5 2.8 12%
Test 8 E2 125 160 29% 2.9 2.8 -3%
E1 106 159 50% 1.9 2.4 26%
Test 4 E2 121 162 34% 2.2 2.4 12%
E3 102 158 51% 1.8 2.4 36%
Test 10 E2 117 161 38% 2.1 2.4 14%
E1 127 208 65%
Test 13 E4 55 214 | 290%
E1 123 195 58%
Test 16 E2 141 201 42%
E3 52 69 22% 1.6 2.2 40%
Test 17 E2 61 74 21% 1.9 2.2 14%
E1 87 168 92% 1.6 2.1 27%
Test 3 E2 146 170 16% 2.0 2.1 1%
E3 83 165 90% 1.4 2.1 49%
Test 9 E4 75 167 124%
E1 71 142 99% 1.2 2.2 80%
Test 5 E2 118 144 23% 1.7 1.8 4%
E3 90 167 94% 1.2 2.1 70%
Test 14 E2 148 169 14% 21 | 2.0 -2%
E3 84 167 73% 1.4 2.1 46%
Test 15 E2 151 168 11% 2.2 2.0 7%
E3 87 166 76% 1.3 2.1 58%
Test 18 E2 153 167 9% 2.2 2.0 -9%
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Figure A-78: Ceiling heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-79: Ceiling heat fiux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-80: Ceiling heat flux and surface temperature, ICFMP BE i3, open door tests.
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Figure A-81: Celiling heat flux and surface temperature, ICFMP BE #3, open door tests.
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Table A-30: Relative differences for temperature and total heat flux corresponding to
the ceiling

Ceiling Temperature | Ceiling Total Heat Flux
Instrument Relative] AE AM |Relative
Ceiling AE (°C) |AM (°C)| Diff  [(KW/m2)(KW/m?) Diff
C1 81 89 [ 10% | 1.0 1.0 3%
Test 1 Ca 176 89 | -49% | 1.3 11 | -17%
C1 80 86 8% 1.0 10 | -1%
Test 7 Ca 191 87 | -55%
C1 148 158 | 7% 3.5 28 | -21%
Test 2 C4 308 159 | -49% | 4.8 | 2.8 | -42%
C1 148 157 | 6% 39 | 28 | -28%
Test 8 Ca 325 157 | -52% | 5.5 27 | -50%
Ct 147 158 | 8% 2.9 24 | -19%
Test 4 C4a 180 159 | -12% | 49 | 2.3 | -52%
C1 138 158 | 14% | 2.6 23 | -10%
Test 10 C4 221 158 | -29%
Cc7 35 209 | 501%
Test 13 C5 500 | 210 | -58%
C7 171 196 | 15%
Test 16 C5 419 197 | -53%
C1 69 71 4%
est 17 Ca 230 71 | -69%
(o} 155 167 | 8% 2.2 20 | -9%
Test 3 C4 287 181 | -37% | 4.5 28 | -36%
Cc2 46 166 [ 260% | 2.0 | 20 | 2%
Test 9 Ca 290 179 | -38% | 4.1 28 | -32%
Ci 125 142 13% 2.0 1.8 -13%
Test 5 C5 166 | 146 | -12% | 4.7 | 1.8 | 61%
C1 158 166 | 5% 2.2 20 | -11%
Test 14 C5 248 | 277 | 12%
C1 157 166 | 6%
Test 15 Ca 287 192 | -33%
C1 145 165 | 14% | 23 | 2.0 | -16%
Test 18 Ca 250 167 | -33%
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Figure A-82: Floor heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-83: Floor heat flux and surface temperature, ICFMP BE #3, closed door tests.
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Figure A-84: Floor heat flux and surface temperature, ICFMP BE #3, open door tests.
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Figure A-85: Floor heat flux and surface temperature, ICFMP BE #3, open door tests.
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Table A-31: Relative differences for temperature and total heat flux corresponding to

the fioor
Floor Temperature Floor Total Heat Flux
Instrument Relative| AE AM |Relative)
Floor AE (°C)|AM (°C) | Diff (KW/m?)|(kW/m?) Diff
F1 38 53 40% | 06 | 07 | 18%
Test 1 F4 77 66 -15% | 16 | 2.3 | 43%
Fi 36 52 43% | 06 | 06 | 9%
Test 7 F4 78 63 -19% | 1.7 | 2.3 | 34%
F1 74 99 34% | 1.8 1.9 6%
Test 2 F4 156 | 131 | -16% | 6.4 | 4.7 | 27%
F1 71 98 37% | 1.9 19 | 2%
Test 8 F4 148 132 | -11% | 6.2 | 48 | -23%
F1 76 118 | 55% | 1.6 17 | 7%
Test 4 F4 152 144 5% | 59 | 47 | -22%
F1 71 120 | 68% | 1.5 1.7 | 17%
Test 10 F4 158 145 -8% 5.7 4.7 -17%
F1 89 132 [ 48%
Test 13 F2 73 130 | 77%
F1 80 119 | 49%
Test 16 F2 206 118 [ -43%
F1 24 44 80% | 0.9 1.7 | 96%
Test 17 F2 117 51 -56% | 1.5 1.5 1%
F1 54 112 [ 110% | 1.2 1.2 | 8%
Test 3 F2 186 135 | -27% | 2.3 1.5 | -34%
F1 53 110 [ 106% | 1.2 1.2 | 5%
Test 9 F2 94 132 | 41% | 1.9 15 | -21%
F1 42 91 118% | 0.9 1.0 | 16%
Test 5 F4 171 232 | 36% | 100 | 4.9 | -52%
F1 52 111 [ 113% [ 1.1 1.2 | 9%
Test 14 F2 47 117 [149% | 1.3 1.3 | -3%
F1 52 112 [ 113% | 1.2 1.2 | 6%
Test 15 F2 140 155 | 10% | 7.5 1.8 | -76%
F1 50 108 | 118% | 1.1 1.2 | 10%
Test 18 F2 55 117 [ 115% | 1.3 1.3 | -4%
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A.9.2 ICFMP BE #4

Three thermocouples were mounted on the back wall of the compartment. Because the fire
leaned towards the back wall, the temperatures measured by the thermocouples are considerably
hotter than most of the other wall surface points considered in this report.
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Figure A-86: Back wall surface temperatures, ICFMP BE #4,
Table A-32: Relative differences for wall temperature
Relative
Instrument] AE (°C) AM (°C) Diff
M19 596 656 10%
P 4-
ICFMP 41 20 724 656 9%
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A.9.3 ICFMP BE #5

Wall surface temperatures were measured in two locations during the BE #5 test series. The
thermocouples labeled TW 1-x (Wall Chain 1) were against the back wall; those labeled TW 2-x
(Wall Chain 2) were behind the vertical cable tray. Seven thermocouples were in each chain,
spaced 80 cm apart. In Figure A-87, the lowest (1), middle (4), and highest (7) locations are
used for comparison.
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Figure A-87: Back and side wall surface temperatures, ICFMP BE #5, Test 4.

Table A-33: Relative differences for wall temperature

Relative
Instrument AE (°C) AM (°C) Diff
TW 1-1 79 51 -35%
TW 2-1 12 113 868%
TW 1-4 118 134 13%
ICFMP 5-4 W24 96 132 38%
TW 1-7 121 131 9%
TW 2-7 100 135 36%
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B

MAGIC INPUT FILES

Appendix B includes the MAGIC input files used for the simulations in this V&V study. These
file will only be available electronically due to their size and formatting.
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