

Safety Evaluation Report for an Early Site Permit (ESP) at the North Anna ESP Site

U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, DC 20555-0001

September 2005

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at http://www.nrc.gov/reading-rm.html. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and *Title 10, Energy*, in the Code of *Federal Regulations* may also be purchased from one of these two sources.

- The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250
- The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: Office of the Chief Information Officer,

Reproduction and Distribution

Services Section

U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov

Facsimile: 301-415-2289

Some publications in the NUREG series that are posted at NRC's Web site address http://www.nrc.qov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, Federal Register notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42rd Street New York, NY 10036–8002 www.ansi.org 212–642–4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

Safety Evaluation Report for an Early Site Permit (ESP) at the North Anna ESP Site

Manuscript Completed: September 2005

Date Published: September 2005

Division of Regulatory Improvement Programs Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

ABSTRACT

This safety evaluation report (SER) documents the U.S. Nuclear Regulatory Commission (NRC) staff's technical review of the site safety analysis report and emergency planning information included in the early site permit (ESP) application submitted by Dominion Nuclear North Anna, LLC (Dominion or the applicant), for the North Anna ESP site. By letter dated September 25, 2003, Dominion submitted the ESP application for the North Anna ESP site in accordance with Subpart A, "Early Site Permits," of Title 10, Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," of the *Code of Federal Regulations*. The North Anna ESP site is located approximately 40 miles north-northwest of Richmond, Virginia, and is adjacent to two existing nuclear power reactors operated by Virginia Electric and Power Company, which, like Dominion Nuclear North Anna, LLC, is a subsidiary of Dominion Resources, Inc. In its application, Dominion seeks an ESP that could support a future application to construct and operate one or more additional nuclear power reactors at the ESP site, with a total nuclear generating capacity of up to 8600 megawatts (thermal).

This SER presents the results of the staff's review of information submitted in conjunction with the ESP application. The staff has identified, in Appendix A to this SER, certain site-related items that will need to be addressed at the combined license or construction permit stage, should an applicant desire to construct one or more new nuclear reactors on the North Anna ESP site. The staff determined that these items do not affect the staff's regulatory findings at the ESP stage and are, for reasons specified in Section 1.7, more appropriately addressed at later stages in the licensing process. In addition, Appendix A to this SER also identifies the proposed permit conditions that the staff recommends the Commission impose, should an ESP be issued to the applicant.

TABLE OF CONTENTS

ABSTI	RACT	, ii
CONT	TENTS	v
EXEC	CUTIVE SUMMARY	xii
ABBR	EVIATIONS	XV
1. INT	TRODUCTION AND GENERAL DESCRIPTION	1-1
	 1.1 Introduction 1.2 General Site Description 1.3 Plant Parameter Envelope 1.4 Identification of Agents and Contractors 1.5 Summary of Principal Review Matters 1.6 Summary of Open and Confirmatory Items 1.7 Summary of Combined License Action Items 1.8 Summary of Permit Conditions 	1-3 1-5 1-7 1-7 1-8 1-8
2. SIT	TE CHARACTERISTICS	2-1
	2.1 Introduction	2-1
	2.1.1 Site Location and Description	2-4 2-8
	2.2 Nearby Industrial, Transportation, and Military Facilities	
	2.2.1–2.2.2 Identification of Potential Hazards in Site Vicinity 2-2.2.3 Evaluation of Potential Accidents	-17
	2.3 Meteorology	19 20 36 42 46
	2.4 Hydrology	58
;	2.4.1 Hydrologic Description2-2.4.2 Floods2-2.4.3 PMF on Streams and Rivers2-2.4.4 Potential Dam Failures2-	67 73

2.4.5	Probable Maximum Surge and Seiche Flooding	. 2-89
2.4.0	Ice Effects	2-9
2.4.7	Cooling Water Canals and Reservoirs	2-109
2.4.0	Channel Diversions	2-100
	0 Flooding Protection Requirements	
	1 Low-Water Considerations	
	2 Ground Water	
2.4.17 2.4.17	3 Accidental Releases of Liquid Effluents to Ground and Surface	2-12
۷.٦.١٠	Waters	2-128
2.4.1	4 Site Characteristics Related to Hydrology	
2.5 Geology	, Seismology, and Geotechnical Engineering	2-140
251	Basic Geologic and Seismic Information	2-140
	Vibratory Ground Motion	
	Surface Faulting	
	Stability of Subsurface Materials and Foundations	
	Stability of Slopes	
	Embankments and Dams	
3. DESIGN		3-1
3.5.1.	.6 Aircraft Hazards	3-1
11. RADIOLOGICA	L EFFLUENT RELEASE DOSE CONSEQUENCES FROM NORMAL	
11.1 Source	Terms	. 11-1
	1 Technical Information in the Application	
	2 Regulatory Evaluation	
	3 Technical Evaluation	
11.1.4	4 Conclusions	. 11-3
13. CONDUCT OF	OPERATIONS	. 13-1
13.3 Emerge	ency Planning	. 13-1
12 2 1	1 Significant Impediments to the Development of Emergency Plans.	13-2
	2 Contacts and Arrangements with Local, State, and Federal Agencie	
	Major Features of the Emergency Plans	
13.6 Industrial Secu	rity	13-59
40.04	Technical Information in the Application	12 50
		1.7-25
	Pegulatory Evaluation	13-59

15.	ACCIDENT ANALYSES	. 15-1
	15.1 Technical Information in the Application	. 15-3
	15.3.1 Selection of DBAs	. 15-4 . 15-5 . 15-5 . 15-5
	15.4 Conclusions	. 15-8
17.	EARLY SITE PERMIT QUALITY ASSURANCE MEASURES	. 17-1
	17.0 Introduction	
	17.1.1 Technical Information in the Application	. 17-2 . 17-3
-	17.2 Quality Assurance Program	. 17-4
٠	17.2.1 Technical Information in the Application	. 17-4 . 17-5
	17.3 Design Control	. 17-6
	17.3.1 Technical Information in the Application	. 17-7 . 17-7 17-10
	17.4 Procurement Document Control	17-10
	17.4.1 Technical Information in the Application 17.4.2 Regulatory Evaluation 17.4.3 Technical Evaluation 17.4.4 Conclusion	17-10 17-10 17-11 17-12
	17.5 Instructions, Procedures, and Drawings	17-12
	17.5.1 Technical Information in the Application	17-12 17-12 17-13

17.6 Document	Control	17-15
17.6.1 T	echnical Information in the Application	17-15
17.6.2 R	legulatory Evaluation	17-15
17.6.3 T	echnical Evaluation	17-15
17.6.4 C	Conclusion	17-15
17.7 Control of	Purchased Material, Equipment, and Services	17-16
17.7.1 To	echnical Information in the Application	17-16
	Regulatory Evaluation	
	echnical Evaluation	
	Conclusion	
17.9 Identification	on and Control of Materials, Parts, and Components	17_91
17.6 Identification	on and Control of Materials, Farts, and Components	17-21
17.8.1 Te	echnical Information in the Application	17-21
	egulatory Evaluation	
	echnical Evaluation	
	Conclusion	
17.0.4 0	Onolusion	11-22
17.9 Control of S	Special Processes	17-22
17 9 1 T	echnical Information in the Application	17-22
	egulatory Evaluation	
	echnical Evaluation	
	onclusion	
17.9.4 0	Officiasion	17-23
17.10 Inspection	1	17-23
17.10.1	Technical Information in the Application	17-23
	Regulatory Evaluation	
	Technical Evaluation	
	Conclusion	
17.10.4	Conclusion	17-25
17.11 Test Cont	rol	17-25
17 11 1 7	Technical Information in the Application	17-25
	Regulatory Evaluation	
	Technical Evaluation	
17.11.4 (Conclusion	17-27
17.12 Control of	Measuring and Test Equipment	17-27
17 19 1 T	Fechnical Information in the Application	17-27
	Regulatory Evaluation	
	Technical Evaluation	
17.12.4 (Conclusion	17-29
17.13 Handling	Storage and Shinning	17-29

17.13.1 Technical Information in the Application	
17.13.2 Regulatory Evaluation	
17.13.3 Technical Evaluation	
17.13.4 Conclusion	17-31
17.14 Inspection, Test, and Operating Status	. 17-31
17.14.1 Technical Information in the Application	17-31
17.14.2 Regulatory Evaluation	
17.14.3 Technical Evaluation	17-32
17.14.4 Conclusion	17-33
17.15 Nonconforming Materials, Parts, or Components	17-33
17.15.1 Technical Information in the Application	17-33
17.15.2 Regulatory Evaluation	
17.15.3 Technical Evaluation	
17.15.4 Conclusion	
TATION COMMISSION CONTRACTOR CONT	., 00
17.16 Corrective Action	.17-35
47.40.4. Technical Information in the Application	47.05
17.16.1 Technical Information in the Application	17-35
17.16.2 Regulatory Evaluation	
17.16.3 Technical Evaluation	
17.16.4 Conclusion	17-36
17.17 Quality Assurance Records	17-37
17.17.1 Technical Information in the Application	
17.17.2 Regulatory Evaluation	
17.17.3 Technical Evaluation	
17.17.4 Conclusion	17-39
	. 1
17.18 Audits	
17.18.1 Technical Information in the Application	
17.18.1 Technical Information in the Application	17-39
17.18.2 Regulatory Evaluation	17-40
17.18.3 Technical Evaluation	17-40
17.18.4 Conclusion	17-41
the second of	. =
17.19 Conclusions	17-42
18. REVIEW BY THE ADVISORY COMMITTEE ON REACTOR SAFEGUARDS	. 18-1
19. CONCLUSIONS	10-1
10. 001101010110	. 13-1

Appendices

А	Bounding Parameters for the Site	\-1
В	Chronology of Early Site Permit Application for the North Anna ESP Site	3-1
С	References)- 1
D	Principal Contributors E)-1
E	Report by the Advisory Committee on Reactor Safeguards	Ξ-1
	Figures	٠
2.4.3-1 2.4.3-2 2.4.3-4 2.4.5-1 2.4.6-1 2.4.6-2 2.4.7-1 2.5.1-1 2.5.1-2 2.5.1-3 2.5.1-6	Major roads, railways, and gas pipelines in the vicinity of the ESP site	78 81 81 83 97 98 99 05 44 47 50 60
	annual frequency of 5x10 ⁻⁵ using updated source and ground motion models 2-1. Magnitude-distance deaggregation for high frequencies (5 and 10 Hz) at a mean annual frequency of 5x10 ⁻⁵ using updated source and ground motion models 2-18	
2.5.2-3	Comparison of performance-based spectrum, mean 5x10 ⁻⁵ scaled spectra, and selected SSE spectrum (which overlaps the performance-based spectrum and envelops the other two)	32
	Response Zone III-IV control point (Elevation 250 ft., Layer 1) – 5% Critical Damping ARS – High Frequency (upper dark gray group) and Low Frequency (lower light gray group) time histories	34
	Transfer Function for ESP Site 2-18	35
	(SSAR Figure 2.5-48A) Selected Horizontal and Vertical Response Spectra for the Hypothetical Rock Outcrop Control Point SSE at the Top of Zone III-IV Material 2-18	
2.5.2-7	Regional seismicity for ESP site) 1

2.5.4-1 2.5.4-2 2.5.4-3 2.5.4-4 2.5.4-5	Subsurface Profile A-A' Subsurface Profile B-B' Locations of previous boreholes ESP borehole locations Variation of normalized shear modulus with cycle shear strain 2-1 Variation of domains ratio with cyclic shear strain	211 212 218 219 226
2.5.4-6	Variation of damping ratio with cyclic shear strain 2-	220
	Tables	
	Applicant's Proposed Ambient Air Temperature and Humidity Site Characteristics 2	
	Applicant's Proposed Basic Wind Speed Site Characteristic 2	
2.3.1-3	Applicant's Proposed Tornado Site Characteristics 2	2-24
	Tropical Cyclones Reported within 100-Nautical Mile Radius of the North Anna ESP Site from 1851 through 2003	2-24
	Applicant's Proposed Winter Precipitation Site Characteristics	
2.3.1-6	Applicant's Proposed Ultimate Heat Sink Meteorological Site Characteristics 2	2-27
	Staff's Proposed Regional Climatic Site Characteristics	2-34
2.3.4-1	Applicant's Proposed Short-Term (Accident Release) Atmospheric Dispersion Site Characteristics	2-48
2.3.4-2	Staff's Proposed Short-Term (Accident Release) Atmospheric Dispersion Site	
	Characteristics	
2.3.5-1	Applicant's Long-Term (Routine Release) Diffusion Estimates	2-53
2.3.5-2	Staff's Proposed Long-Term (Routine Release) Atmospheric Dispersion Site	
	Characteristics 2	
	Local Intense Precipitation (1-mi ² PMP) at the North Anna ESP Site	
	Probable Maximum Precipitation Values for the North Anna Dam Drainage Area . 2	
	PMP Depth-Duration Values for the North Anna Dam Drainage Area 2	
	Time Distribution of PMP for the North Anna Dam Drainage	
	PMF into Lake Anna 2	
	1 Staff's Proposed Site Characteristics Related to Hydrology 2-1	
2.5.2-1	Updated Seismic Hazard Results at ESP Site	177
15.3-1	Staff's Proposed Short-Term (Accident Release) Atmospheric Dispersion Site	
	Characteristics (Site-Specific x/Q Values	5-7

EXECUTIVE SUMMARY

Title 10, Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants" of the *Code of Federal Regulations* (10 CFR Part 52) contains requirements for licensing, construction, and operation of new nuclear power plants. These regulations address early site permits (ESPs), design certifications, and combined licenses (COLs). The ESP process (Subpart A, "Early Site Permits," of 10 CFR Part 52) is intended to address and resolve site-related issues. The design certification process (Subpart B, "Standard Design Certifications," of 10 CFR Part 52) provides a means for a vendor to obtain U.S. Nuclear Regulatory Commission (NRC) certification of a particular reactor design. Finally, the COL process (Subpart C, "Combined Licenses," of 10 CFR Part 52) allows an applicant to seek authorization to construct and operate a new nuclear power plant. A COL may reference an ESP, a certified design, both, or neither. It is incumbent on a COL applicant to resolve issues related to licensing that were not resolved as part of an ESP or design certification proceeding before the NRC can issue a COL.

This safety evaluation report (SER) describes the results of a review by NRC staff of an ESP application submitted by Dominion Nuclear North Anna, LLC (Dominion or the applicant), for the North Anna ESP site. The staff's review verified the applicant's compliance with the requirements of Subpart A of 10 CFR Part 52. This SER serves to identify the matters resolved in the safety review and to identify remaining items to be addressed by a future COL applicant.

The NRC regulations also contain requirements for an applicant to submit an environmental report pursuant to 10 CFR Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Activities." The NRC reviews the environmental report as part of the Agency's responsibilities under the National Environmental Policy Act of 1969, as amended. The NRC presents the results of that review in a final environmental impact statement, which is a report separate from this SER.

By letter dated September 25, 2003, Dominion submitted an ESP application (ADAMS Accession No. ML032731517)² for the North Anna ESP site. The North Anna ESP site is located approximately 40 miles north-northwest of Richmond, Virginia, and is adjacent to two existing nuclear power reactors operated by Virginia Electric and Power Company.

In accordance with 10 CFR Part 52, Dominion submitted information in its ESP application that includes (1) a description of the site and nearby areas that could affect or be affected by a nuclear power plant(s) located at the site, (2) a safety assessment of the site on which the

¹Applicants may also choose to seek a construction permit and operating license in accordance with 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities," instead of using the 10 CFR Part 52 process.

²ADAMS (Agencywide Documents Access and Management System) is the NRC's information system that provides access to all image and text documents that the NRC has made public since November 1, 1999, as well as bibliographic records (some with abstracts and full text) that the NRC made public before November 1999. Documents available to the public may be accessed via the Internet at http://www.nrc.gov/reading-rm/adams/web-based.html. Documents may also be viewed by visiting the NRC's Public Document Room at One White Flint North, 11555 Rockville Pike, Rockville, Maryland. Telephone assistance for using web-based ADAMS is available at (800) 397-4209 between 8:30 a.m. and 4:15 p.m., eastern standard time, Monday through Friday, except Federal holidays. The staff is also making this SER available on the NRC's new reactor licensing public Web site at http://www.nrc.gov/reactors/new-licensing/esp/north-anna.html.

facility would be located, including an analysis and evaluation of the major structures, systems, and components of the facility that bear significantly on the acceptability of the site, and (3) proposed major features of emergency plans. The application describes how the site complies with the requirements of 10 CFR Part 52 and the siting criteria of 10 CFR Part 100, "Reactor Site Criteria."

This SER presents the conclusions of the staff's review of information the applicant submitted to the NRC in support of the ESP application. The staff has reviewed the information provided by the applicant to resolve the open and confirmatory items identified in the draft safety evaluation report for the North Anna ESP, issued on December 20, 2004. In Section 1.6 of this SER, the staff provides a brief summary of the process used to resolve these items; specific details on the resolution for each open item is presented in the corresponding section of this report.

The staff has identified, in Appendix A to this SER, the proposed permit conditions that it will recommend the Commission impose, should an ESP be issued to the applicant. Appendix A also includes a list of COL action items or certain site-related items that will need to be addressed at the COL or construction permit stage, should an applicant desire to construct one or more new nuclear reactors on the North Anna ESP site. The staff determined that these items do not affect the staff's regulatory findings at the ESP stage and are, for reasons specified in Section 1.7, more appropriately addressed at these later stages in the licensing process. In addition, Appendix A lists the site characteristics and the bounding parameters identified by the staff for this site.

Inspections conducted by the NRC have verified, where appropriate, the conclusions in this SER. The scope of the inspections consisted of selected information in the ESP application and its references. This SER identifies applicable inspection reports as reference documents.

The NRC's Advisory Committee on Reactor Safeguards (ACRS) also reviewed the bases for the conclusions in this report. The ACRS independently reviewed those aspects of the application that concern safety, as well as the safety evaluation report, and provided the results of its review to the Commission in the interim report dated March 11, 2005 and in a final report dated July 18, 2005. This SER incorporates the ACRS comments and recommendations, as appropriate. Appendix E includes a copy of the report by the ACRS on the final safety evaluation, as required by 10 CFR 52.53, "Referral to the ACRS."

³ The applicant has also submitted information intended to partially address some of the general design criteria (GDC) in Appendix A, "General Design Criteria for Nuclear Power Plants," to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities." Only GDC 2, "Design Bases for Protection Against Natural Phenomena," applies to an ESP application, and it does so only to the extent necessary to determine the safe-shutdown earthquake (SSE) and the seismically induced flood. The staff has explicitly addressed partial compliance with GDC 2, in accordance with 10 CFR 52.17(a)(1) and 10 CFR 50.34(a)(12), only in connection with the applicant's analysis of the SSE and the seismically induced flood. Otherwise, an ESP applicant need not demonstrate compliance with the GDC. The staff has included a statement to this effect in those sections of the SER that do not relate to the SSE or the seismically induced flood. Nonetheless, this SER describes the staff's evaluation of information submitted by the applicant to address GDC 2.

ABBREVIATIONS 1

ABWR advanced boiling water reactor

ac acre

ACR-700 Atomic Energy of Canada Advanced CANDU Reactor
ADAMS Agencywide Documents Access and Management System

ALARA as low as is reasonably achievable

ALI annual limits on intake
ALWR advanced light-water reactor
ANS alert and notification system

ANSI American National Standards Institute
ANSS Advanced National Seismic System
AP1000 Westinghouse Advanced Plant 1000

ARA Applied Research Associates

ASCE American Society of Civil Engineers

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASME American Society of Mechanical Engineers
ASTM American Society for Testing and Materials
ASTM American Society for Testing and Materials

BRH Bureau of Radiological Health

BWR boiling water reactor

CDE committed dose equivalent
CEUS central and eastern United States
CFR Code of Federal Regulations

COL combined license

COVRERP Commonwealth of Virginia Radiological Emergency Response Plan

CP construction permit
CPT cone penetrometer test
CVSZ Central Virginia Seismic Zone
DAC derived air consentration

DAC derived air concentration
DBA design-basis accident
DCD design control document

DEIS draft environmental impact statement
DEM Department of Emergency Management

DOE Department of Energy
DSER draft safety evaluation report
EAB exclusion area boundary
EAC evacuation assembly center
EAL emergency action level
EAS emergency alert system
ECFS East Coast fault system

EDP engineering department procedure engineering department instructions

EDS engineering design spectrum
EIS environmental impact statement
EMI Emergency Management Institute
ENS emergency notification system
EOC emergency operations center
EOF emergency operations facility

EPA Environmental Protection Agency

EPDS electronic procedure distribution system EPIP emergency plan implementing procedure

EPRI Electric Power Research Institute

EPZ emergency planning zone ER Environmental Report

ERDS Emergency Response Data System ERO emergency response organization

ESBWR General Electric Economic and Simple Boiling Water Reactor

ESE east-southeast

ESIM evacuation simulation model

ESP early site permit
EST earth science team
ETE evacuation time estimate

ETSZ Eastern Tennessee Seismic Zone FAA Federal Aviation Administration

FEMA Federal Emergency Management Agency
FRERP Federal Radiological Emergency Response Plan

FRMAC Federal Radiological Monitoring and Assessment Center

FRP Federal Response Plan

FS factor of safety

FSER final safety evaluation report

ft foot/feet gal gallon

GBU Global Business Unit GDC general design criterion

GIS Geographical Information System
GSA Geological Society of America

GT-MHR General Atomics Gas Turbine Modular Helium Reactor

HEAR hospital emergency and administrative radio

HEC Hydrologic Engineering Center HMR hydrometeorological report HPN health physics network

Hz hertz

IEM Innovative Emergency Management, Inc.

In. inch

INPO Institute of Nuclear Power Operations

IRIS International Reactor Innovative and Secure Reactor

ISFSI independent spent fuel storage installation
ISO International Organization for Standardization

KI potassium iodide kPa kiloPascals lb pound

lbf/ft pound-force per square foot

LFA lead Federal agency

LLNL Lawrence Livermore National Laboratory

LOCA loss-of-coolant accident low-population zone light water reactor

M&TE measuring and test equipment

MCVH Medical College of Virginia Hospitals

maximally exposed individual MEI

miles per hour mi/hr

meteorological information and dose assessment system **MIDAS**

modified mercalli intensity MMI

millirem mrem

mean sea level MSL mSv milliSievert

measuring and test equipment MT&E

megawatt thermal MWt

North Anna Emergency Plan NAEP North Anna Power Station NAPS NBU Nuclear Business Unit

National Climatic Data Center NCDC Nuclear Design Control Manual **NDCM** Nuclear Design Control Program NDCP National Geodetic Vertical Datum NGVD

NE

Nuclear Energy Institute NEI

NEP nuclear emergency preparedness

nautical mile nmi

New Madrid Seismic Zone **NMSZ**

NNE north-northeast

National Oceanic and Atmospheric Administration NOAA

Nuclear Power Station Emergency Preparedness Training **NPSEPT**

Nuclear Quality Assurance Manual NQAM U.S. Nuclear Regulatory Commission NRC

nuclear-required records list NRRL

National Severe Storms Laboratory NSSL

Nuclear Utility Procurement Issues Committee **NUPIC**

National Weather Service operating-basis earthquake NWS OBE

Old Dominion Electric Cooperative operating license ODEC

OL

OREMS Oak Ridge Evaluation Modeling System

operational support center OSC

observation well OW

observation well protective action guideline **PAG**

protective action recommendation PAR

protective action zone
pebble bed modular reactor PAZ **PBMR** peak ground acceleration PGA

PMCL protective measures counterpart link

probable maximum flood PMF probable maximum hurricane
probable maximum precipitation **PMH** PMP

probable maximum winter precipitation **PMWP** Pacific Northwest National Laboratories PNNL purchase order

PO

plant parameter envelope PPE

PPR potential problem reporting

PQAM project quality assurance manager PSHA probabilistic seismic hazard analysis

psi pound per square inch
PWR pressurized-water reactor

QA quality assurance

QAPD quality assurance program description

QAPP quality assurance program plan

RAA remote assembly area

RAI request for additional information radiological assistance program

REI Risk Engineering, Inc.

RERP radiological emergency response plan
RERT Radiological Emergency Response Team

RIC Richmond International Airport

RG regulatory guide

RQD rock quality designation

RS review standard

RSCL reactor safety counterpart link

s second S south

SCC State Corporation Commission SCR stable continental regions SCS Soil Conservation Service

SE southeast

SEI Structural Engineering Institute

SER safety evaluation report

SF scale factor

SPT standard penetration test
SQAP software quality assurance plan
SRCC Southern Regional Climate Center

SSAR site safety analysis report

SSC system, structure, and component

SSE safe-shutdown earthquake

SSHAC Senior Seismic Hazard Advisory Committee

SW southwest

SWR service water reservoir

TEDE total effective dose equivalent TLD thermoluminescent dosimeter TSC technical support center

UFSAR updated final safety analysis report

UHF ultra-high frequency
UHS ultimate heat sink
ULF ultra-low frequency

USACE U.S. Army Corps of Engineers

USBR United States Bureau of Reclamation
USGS United States Geological Survey
VCU Virginia Commonwealth University

VDEM Virginia Department of Emergency Management VDGIF Virginia Department of Game and Inland Fisheries

VDH	Virginia Department of Health
VSP	Virginia State Police
VT	Virginia Polytechnic Institute and State University
WHTF	waste heat treatment facility
ZPA	zero period acceleration

1. INTRODUCTION AND GENERAL DESCRIPTION

1.1 Introduction

Dominion Nuclear North Anna, LLC (Dominion or the applicant), filed an application with the U.S. Nuclear Regulatory Commission (NRC), docketed on October 23, 2003, for an early site permit (ESP) for a site the applicant designated as the North Anna ESP site. The proposed site is located near Lake Anna in Louisa County, Virginia, approximately 40 miles (mi) northnorthwest of Richmond, Virginia.

The staff has completed its review in the areas of seismology, geology, meteorology, and hydrology, as well as in the area of hazards to a nuclear power plant that could result from manmade facilities and activities on or in the vicinity of the site. The staff also assessed the risks of potential accidents that could occur as a result of the operation of a nuclear plant or plants at the site and evaluated whether the site could support adequate physical security measures for a nuclear power plant or plants. The staff evaluated whether the applicant's quality assurance measures are equivalent in substance to the measures discussed in Appendix B, "Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants" to Title 10, Part 50, "Domestic Licensing of Production and Utilization Facilities," of the Code of Federal Regulations (10 CFR Part 50). The NRC has found that such measures provide reasonable assurance that information derived from ESP activities that would be used in the design and/or construction of structures, systems, and components (SSCs) important to safety would support satisfactory performance of such SSCs once in service. The staff also evaluated the adequacy of the applicant's program for compliance with 10 CFR Part 21. "Reporting of Defects and Noncompliance." Finally, the staff reviewed the proposed major features of the emergency plan that Dominion would implement if a new reactor(s) is eventually constructed at the ESP site. The NRC would need to review the complete and integrated emergency plan in a separate licensing proceeding.

The Dominion ESP application includes the site safety analysis report (SSAR), which describes the safety assessment of the site, as required by 10 CFR 52.17, "Contents of Applications." The public may inspect copies of this document via the Agencywide Documents Access and Management System (ADAMS) using ADAMS Accession No. ML032731517.4 Dominion subsequently revised the application to address requests from the NRC staff for additional information. The applicant submitted the most recent version of its application, SSAR Revision 5 (ADAMS Accession No. ML052150226), to the Commission by letter dated July 25, 2005. Throughout the course of the review, the staff requested that the applicant submit additional information to clarify the description of the North Anna site. This report discusses some of the applicant's responses to these requests for additional information (RAIs).

Promote the spring of the

⁴ADAMS (Agencywide Documents Access and Management System) is the NRC's information system that provides access to all image and text documents that the NRC has made public since November 1, 1999, as well as bibliographic records (some with abstracts and full text) that the NRC made public before November 1999. Documents available to the public may be accessed via the Internet at http://www.nrc.gov/reading-rm/adams/web-based.html. Documents may also be viewed by visiting the NRC's Public Document Room at One White Flint North, 11555 Rockville Pike, Rockville, Maryland. Telephone assistance for using web-based ADAMS is available at (800) 397-4209 between 8:30 a.m. and 4:15 p.m., eastern standard time, Monday through Friday, except Federal holidays. The staff is also making this SER available on the NRC's new reactor licensing public Web site at http://www.nrc.gov/reactors/new-licensing/esp/north-anna.html.

Appendix B to this report provides a chronological listing of the licensing correspondence between the applicant and the Commission regarding the review of the North Anna ESP application under Project No. 719 and Docket No. 52-008. The application and other pertinent information and materials are available for public inspection at the NRC's Public Document Room at One White Flint North, 11555 Rockville Pike, Rockville, Maryland. The application and this safety evaluation report (SER) are also available at the Louisa County Public Library, 881 Davis Highway, Mineral, Virginia, as well as on the NRC's new reactor licensing public Web site at http://www.nrc.gov/reactors/new-licensing/esp/north-anna.html.

This report summarizes the results of the NRC staff's technical evaluation of the suitability of the proposed North Anna ESP site for a nuclear power plant or plants falling within the plant parameter envelope (PPE) that Dominion specified in its application. This SER delineates the scope of technical matters the staff considered in evaluating the suitability of the site. NRR Review Standard (RS)-002, "Processing Applications for Early Site Permits," issued May 2004, provides additional details on the scope and bases of the NRC staff's review of the radiological safety and emergency planning aspects of a proposed nuclear power plant site. This review standard contains regulatory guidance based on NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants," Revision 3, issued July 1981 (hereinafter referred to as the Standard Review Plan). The Standard Review Plan reflects the many years of experience the NRC staff has had in establishing and promulgating guidance to enhance the safety of nuclear facilities, as well as in evaluating safety assessments. Numerous sections and chapters in Standard Review Plan are not within the scope of or addressed in an early site permit (ESP) proceeding. The reader will therefore note "missing" chapter and section numbers in this document. The subjects of chapters and sections in Standard Review Plan not addressed herein will be addressed, as appropriate and applicable, in other regulatory actions (design certification, construction permit, operating license, and/or combined license) for a reactor or reactors that might be constructed on the North Anna ESP site. In addition, this SER documents the resolution of the open and confirmatory items identified in the draft SER (DSER) for the North Anna ESP, issued on December 20, 2004.

The applicant also filed an environmental report for the North Anna ESP site in which it evaluated those matters relating to the environmental impact assessment that can be reasonably reviewed at this time. The staff discussed the results of its evaluation of the environmental report for the North Anna ESP site in a draft environmental impact statement (DEIS) issued on December 7, 2004 (ADAMS Accession No. ML043380308; also available on the NRC's new reactor licensing public Web site). The applicant also provided a site redress plan, in accordance with 10 CFR 52.17(c), in order to perform the site preparation and limited construction activities allowed by 10 CFR 52.25(a) (i.e., the activities listed in 10 CFR 50.10(e)(1)). The DEIS also includes the results of the staff's evaluation of that plan.

As described above, the applicant supplemented the information in the SSAR by providing revisions to the document. The staff reviewed these revisions to determine their impact on the conclusions in this SER. On June 16, 2005, the NRC issued its SER for the North Anna ESP site and made it publically available. In light of the SER, Dominion identified several corrections that needed to be made to Revision 4 of its application. By letter dated July 25, 2005, Dominion provided Revision 5 to the North Anna ESP application. The changes reflected in Revision 5 of the application included corrections to Figure 2.5-55A, depicting the selected horizontal and vertical operating-basis earthquake (OBE) and safe-shutdown earthquake (SSE) spectra for the hypothetical rock outcrop control point at the top of Zone III-IV material. In addition, Dominion provided corrections to the coordinates for the ESP site footprint which was submitted to the

NRC in its response to Open Item 2.4-1. The staff completed its review of the most recent version, Revision 5 of the SSAR, as documented throughout this report and, for the reasons set forth herein, finds it to be acceptable. The changes in Revision 5 to the application resulted in minor modifications to the staff's SER issued June 16, 2005 including the following changes: Appendix A to this report was modified to reflect the correct figures submitted with Revision 5 of the application; Section 2.5 of this report was modified to incorporate the correct description of the analysis conducted by Dominion to determine the SSE spectrum and reflect the description in the evaluation; the table of contents was modified to follow the same layout as the standard review plan, and as a result the source term analysis was moved from Chapter 3 and placed in Chapter 11. The scope of all other changes to the SER issued on June 16, 2005 resulting from Revision 5 are limited to corrections of factual inaccuracies. These changes did not impact the staff's conclusions. Independent of Revision 5 to the application, the staff also reformatted and reorganized the SER without changing its substance or conclusions, and revised the definitions of Bounding Parameters for hydrology in Appendix A to better reflect the SER text.

Appendix A to this SER contains the list of site characteristics, permit conditions, combined license (COL) action items, and the bounding parameters that the staff is recommending that the Commission include in any ESP that might be issued for the proposed site. Appendix B to this SER details a chronology of the principal actions and correspondence related to the staff's review of the ESP application for the North Anna ESP site. Appendix C lists the references for this SER, Appendix D lists the principal contributors to this report, and Appendix E includes a copy of the report by the ACRS.

1.2 General Site Description

The ESP site is a parcel of land on the North Anna Power Station (NAPS) site in Louisa County, Virginia, approximately 40 mi north-northwest of Richmond, Virginia. The NAPS site includes other, existing nuclear facilities licensed by the NRC, specifically NAPS Units 1 and 2 (Docket Nos. 50-338/339; NRC Facility Operating License Nos. NPF-4/7) and the North Anna Independent Spent Fuel Storage Installation (NRC Docket No. 72-16; Materials License No. SNM-2507). As shown in SSAR Figure 1.2-4, the ESP site is adjacent to and generally west of the existing nuclear reactor units. The Virginia Electric and Power Company (Virginia Power) and the Old Dominion Electric Cooperative (ODEC) own the NAPS site as tenants in common. Virginia Power is the licensed operator of the existing nuclear units, with control of these facilities and the authority to act as the agent of ODEC. Virginia Power and the ESP applicant, Dominion Nuclear North Anna, LLC, are direct and indirect wholly owned subsidiaries, respectively, of Dominion Resources, Inc.

The application stated that the NAPS site comprises 1803 acres (ac), of which about 760 ac are covered by water. Virginia Power and ODEC own, and Virginia Power controls, all of the land within the NAPS site boundary, including those portions of the North Anna Reservoir and waste heat treatment facility (WHTF) that lie within the site boundary. These companies also own all land outside the NAPS site boundary that forms Lake Anna, up to the expected high-water marks. The NAPS site and all supporting facilities, including the North Anna Reservoir, the WHTF, the earth dam, dikes, railroad spur, and roads, constitute approximately 18,643 ac. Lake Anna, which includes the North Anna Reservoir and the WHTF, was created to serve the needs of the power station.

The application indicates that, if the ESP is granted and Dominion decides to proceed with the development of new nuclear units on the ESP site, it would enter into and obtain, to the extent necessary, appropriate Virginia State Corporation Commission (SCC) approval to construct and operate any new unit at the North Anna ESP site. The Virginia Code requires SSC approval of any agreement between the COL applicant and the current owners of the site providing for joint control of the exclusion area. The staff proposes to include a condition to govern exclusion area control on any ESP that might be issued. Section 2.1.2 of this report discusses this issue in detail.

The application also indicates that if the ESP were granted and Dominion were to decide to undertake any preconstruction activities described in the ESP, pursuant to 10 CFR 52.25, "Extent of Activities Permitted," Dominion would enter into and obtain, to the extent necessary, appropriate State public utility commission approval(s) of site redress or related agreement(s) with Virginia Power before conducting the activities. The application states that the approval(s) and agreement(s) would authorize the applicant to conduct the preconstruction activities and that they would confirm Dominion's obligation to perform any site redress that might be needed, pursuant to the NRC-approved site redress plan. The application states that Dominion's site redress obligation would be supported by a guaranty provided by its ultimate parent company, Dominion Resources, Inc.

Should the ESP holder decide to perform the activities authorized by 10 CFR 52.25, the ESP holder will need to obtain the authority to undertake those activities on the ESP site. In obtaining such right, the ESP holder must also obtain the corresponding right to implement the site redress plan described in the staff's final environmental impact statement, in the event no plant is built on the ESP site. The staff intends to include, in any ESP that might be issued for this application, a permit condition to address this matter, as discussed in Section 2.1.2 of this SER.

The largest community within 10 mi of the site is the town of Mineral, Virginia. According to the 2000 census, Mineral has a population of 424 located within about 1 mi² (incorporated). As reported in the NAPS updated final safety analysis report, the population in 1990 was 452. Therefore, the population of Mineral has remained essentially constant during the past decade. The 2000 resident population within 6 and 10 mi of the site was 5,890 and 15,511 persons, respectively. The applicant estimated the total peak daily transient population on Lake Anna (including the WHTF and Lake Anna State Park) to be less than 11,270. The nearest population center to the ESP site with more than 25,000 residents is the City of Charlottesville, Virginia, with a population of 45,049. The closest point of Charlottesville to the site is 36 mi to the west.

No military bases, missile sites, manufacturing plants, chemical plants, chemical or other storage facilities, airports, major railroad lines, major water transportation, or hazardous material (e.g., oil or gas) pipelines are located within 5 mi of the ESP site. As previously noted, the only industrial facilities within 5 mi of the ESP site are the existing NAPS units. Major highways, such as Interstates 95 and 64, are located more than 16 mi away from the site. U.S. Route 522 is located about 5 mi west of the site. The closest point of Virginia Route 652 is 1.5 mi to the south of the site. The only road that provides access to the site is State Route 700, coming from the southwest to within about 0.5 mi of the site. No public or commercial highways, railroads, or waterways traverse the site.

Three airports are located within 15 mi of the ESP site. Operations at the Louisa County Airport (Freeman Field), located 11 mi west-southwest of the site, primarily involve single-engine light aircraft. The Lake Anna Airport, near Bumpass, Virginia, is 7 mi south-southeast of the site. This airport has limited facilities.

1.3 Plant Parameter Envelope

The regulations at 10 CFR Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," and 10 CFR Part 100, "Reactor Site Criteria," that apply to an ESP do not require an ESP applicant to provide specific design information. However, some design information may be required to address 10 CFR 52.17(a)(1), which calls for "an analysis and evaluation of the major structures, systems, and components of the facility that bear significantly on the acceptability of the site under the radiological consequence evaluation factors identified in § 50.34(a)(1) of this chapter."

In Section 1.3 of the ESP SSAR, Dominion provided a list of postulated design parameters, referred to as the plant parameter envelope (PPE). The applicant stated that the PPE approach provides sufficient design details to support the NRC's review of the ESP application, while recognizing that new reactor technologies, not envisioned at the time Dominion submitted its ESP application, may become available in the future. Therefore, the applicant stated that it based the PPE on data from selected reactor designs and that the PPE is intended to bound multiple reactor designs. The applicant also stated that the actual reactor design selected would be reviewed at the COL stage to ensure that the design fits within the PPE.

In RAI 1.3-1, the staff asked the applicant to explain its use of the plant parameters in SSAR Table 1.3-1 for the cases in which site-specific characteristics are provided. The staff also requested that the applicant clearly identify site characteristics and plant design parameters that it proposed be included as the bases for an ESP, should one be issued. The applicant responded by providing, in Revision 3 of the ESP application, a new section (i.e., Section 1.9) of its SSAR. In this section, the applicant provided a summary listing of site characteristics that were established by analyses presented throughout the SSAR. The applicant proposed this section as a listing of important site characteristics necessary to establish the findings required by 10 CFR Parts 52 and 100 on the suitability of the proposed ESP site. The applicant stated that this section also provides a listing of design parameters and assumptions about the design of a future nuclear power plant or plants that might be constructed on the ESP site. According to the applicant, the design parameters described in this section are those that are needed to assess the site characteristics.

In RAI 1.3-2, the staff requested that the applicant (1) clarify its use of "bounding values" in Table 1.3-1, (2) add the dose criteria in 10 CFR 50.34(a)(1) to the table as "bounding value references" or explain why these references are not needed, and (3) clarify the use of "Bound Notes" in the table, including how they were used for the accident analyses. In its response, the applicant provided clarification and corrections to Table 1.3-1.

In RAI 1.3-3, the staff requested that the applicant clarify the relationship between the items in the "bounding values" provided in Table 1.3-1 and the references. The applicant responded that the PPE is a compilation of parameters that generally describe a bounding (or limiting) plant design. According to the applicant, the PPE is not intended to reflect the design of any single reactor type, but to provide assumed parameters for any future reactor(s) that might be built at the ESP site. The applicant stated that it developed assumed parameter values in the

PPE from a diverse group of reactor designs, and the "bounding value" is the limiting value from those designs. Finally, the applicant clarified that the "Bound Notes" column in Table 1.3-1 provides information as to the source of the bounding value and other pertinent information for the parameter.

The applicant has provided, through its PPE, sufficient design information to allow it to perform the evaluation required by 10 CFR 52.17(a)(1) to determine the adequacy of the proposed exclusion area and low-population zone (LPZ) for the site. Chapter 15 of the SSAR reports the results of this evaluation. In this evaluation, the applicant used design information limited to the rate of release of radioactivity to the environment as a result of a design-basis accident for hypothetical reactors similar to two representative reactor types from different vendors.

In addition to the information supporting the dose consequence evaluation, the applicant provided other design information in its PPE. Because the applicant is not requesting that an ESP be issued referencing a particular reactor design, the staff's review criterion for the PPE is that the PPE values should not be unreasonable for a reactor that might be constructed on the ESP site. The applicant's PPE is based on various reactor designs that are either certified by the NRC, are in the certification process, or may be submitted for certification in the future. The PPE references the following designs:

- ACR-700 (Atomic Energy of Canada, Ltd.)
- Advanced Boiling-Water Reactor (General Electric)
- AP1000 (Westinghouse Electric Company)
- Economic and Simplified Boiling-Water Reactor (General Electric)
- Gas Turbine Modular Helium Reactor (General Atomics)
- International Reactor Innovative and Secure Project (consortium led by Westinghouse)
- Pebble Bed Modular Reactor (PBMR (Pty) Ltd.)

The staff reviewed the applicant's PPE values and found them to be reasonable. As previously noted, the applicant identified certain PPE values as appropriate for inclusion in an ESP, should one be issued. The staff also reviewed the applicant's proposed list of PPE values and identified certain PPE values as bounding parameters or controlling PPE values as discussed in the individual sections of this SER. A controlling PPE value, or bounding parameter value, is one that necessarily depends on a site characteristic. As the PPE is intended to bound multiple reactor designs, the actual design selected in a COL or construction permit (CP) application referencing any ESP that might be issued in connection with this application would be reviewed to ensure that the design fits within the bounding parameter values. Appendix A to this SER lists the bounding parameters identified for the North Anna ESP site.

Should an ESP be issued for the North Anna ESP site, an entity might wish to reference that ESP, as well as a certified design, in a COL or CP application. Such a COL or CP applicant must demonstrate that the site characteristics established in the ESP bound the postulated site parameters established for the chosen design, and that the design characteristics of the chosen design fall within the bounding parameter values specified in the ESP. Otherwise, the COL or CP applicant must demonstrate that the new design, given the site characteristics in the ESP, complies with the Commission's regulations. Should an entity wish to reference the ESP and a design that is not certified, the COL or CP applicant must demonstrate that the design characteristics of the chosen design, in conjunction with the site characteristics established for the ESP, comply with the Commission's regulations.

1.4 Identification of Agents and Contractors

Dominion is the applicant for the North Anna ESP application and has been the only participant in the review of the suitability of the North Anna ESP site for a nuclear power plant. Bechtel Power Corporation, under contract with Dominion, served as primary contractor for development of the ESP application, supplying personnel, systems, and project management.

Several subcontractors also assisted in the development of Dominion's ESP application. Tetra Tech NUS, Inc., performed data collection and analysis and prepared several sections of the applicant's environmental report. MACTEC Engineering and Consulting, Inc., performed geotechnical field investigations and laboratory testing. William Lettis & Associates, Inc., performed geologic mapping and characterization of seismic sources. Finally, Risk Engineering, Inc., performed probabilistic seismic hazard assessments and related sensitivity analyses.

1.5 Summary of Principal Review Matters

This SER summarizes the results of the NRC staff's technical evaluation of the North Anna ESP site. The staff's evaluation included a technical review of the information and data the applicant submitted, with emphasis on the following principal matters:

- population density and land use characteristics of the site environs and the physical characteristics of the site, including seismology, meteorology, geology, and hydrology, to evaluate whether these characteristics had been adequately described and were given appropriate consideration to determine whether the site characteristics are in accordance with the Commission's siting criteria (Subpart B, "Evaluation Factors for Stationary Power Reactor Site Applications on or after January 10, 1997," of 10 CFR Part 100)
- potential hazards to a nuclear power plant or plants that might be constructed on the ESP site posed by manmade facilities and activities (e.g., mishaps involving storage of hazardous materials (toxic chemicals, explosives), transportation accidents (aircraft, marine traffic, railways, pipelines), and the existing nuclear power plants at the nearby NAPS)
- potential capability of the site to support the construction and operation of a nuclear power plant or plants with design parameters falling within those specified in the applicant's PPE under the requirements of 10 CFR Parts 52 and 100
- suitability of the site for development of adequate physical security plans and measures for a nuclear power plant or plants
- proposed major features for an emergency plan to be developed, should an applicant decide to seek a license to construct and operate a nuclear power plant or plants on the ESP site; any significant impediments to the development of emergency plans for the North Anna ESP site; and a description of contacts and arrangements made with local, State, and Federal Government agencies with emergency planning responsibilities

- quality assurance measures applied to the information submitted in support of the applicant's ESP application and safety assessment
- the acceptability of the applicant's proposed exclusion area and LPZ under the dose consequence evaluation factors of 10 CFR 50.34(a)(1)

During its review, the staff held several meetings with representatives of the applicant and the applicant's contractors and consultants to discuss various technical matters related to its review of the North Anna ESP site (refer to Appendix B to this report). The staff also visited the site to assist in its evaluation of safety matters.

1.6 Summary of Open and Confirmatory Items

As a result of its review of Dominion's application for the North Anna ESP, the staff identified several issues that remained open at the time the DSER was issued on December 20, 2004. The staff considers an issue to be open if the applicant has not provided requested information and the staff is unaware of what will ultimately be included in the applicant's response. The staff assigned each of these issues a unique identifying number for tracking purposes that indicates the section of this report describing it. The resolution of each open item is discussed in the SER section in which it appears. For example, Section 2.1 of this report discusses Open Item 2.1-1.

In addition, the staff identified one confirmatory item in the DSER. An item is identified as confirmatory if the staff and the applicant have agreed on a resolution of the particular item, but the resolution has not yet been formally documented. The confirmatory item identified by the staff, which is discussed in detail in Section 17.3 of this SER, required verification of information obtained from the Internet. The staff determined that the applicant provided adequate quality assurance measures to authenticate and verify data retrieved from Internet Web sites and considers this confirmatory item complete.

The DSER was issued with 28 open items and 1 confirmatory item. As set forth in this report, all open items have been resolved and the confirmatory item has been completed. This SER documents the resolution of all the open and confirmatory items identified in the DSER.

1.7 Summary of Combined License Action Items

The staff has also identified certain site-related items that will need to be addressed at the COL or CP stage, should a COL or CP applicant desire to construct one or more new nuclear reactors on the North Anna ESP site. This report refers to these items as COL action items. These COL action items relate to issues that are outside the scope of this SER. The COL action items do not establish requirements; rather, they identify an acceptable set of information to be included in the site-specific portion of the safety analysis report submitted by a COL or CP applicant referencing the North Anna ESP. An applicant for a COL or CP should address each of these items in its application. It may deviate from or omit these items, provided that the COL or CP application identifies and justifies the deviation or omission. The staff determined that the COL action items do not affect its regulatory findings at the ESP stage and are, for reasons specified in this report for each item, more appropriately addressed at later stages in the licensing process.

At the time the DSER was issued, there were a total of 19 COL action items. The staff reviewed the responses to open items provided by the applicant and identified a number of new COL action items as a result. This report highlights these COL action items, and the staff explains them in the applicable sections of this SER. Appendix A to this SER includes a list of COL action items that must be addressed by a future COL or CP applicant. The staff identified COL action items with respect to individual site characteristics in order to ensure that particular significant issues are tracked and considered during the COL or CP stage. The COL action items focus on matters that may be significant in any COL or CP application referencing the ESP for the North Anna site, should one be issued. Usually, COL action items are not necessary for issues covered by permit conditions or explicitly covered by the bounding parameters. The list of COL action items is not and should not be understood to be exhaustive.

1.8 Summary of Permit Conditions

The staff has identified certain permit conditions that it will recommend the Commission impose, should an ESP be issued to the applicant. Appendix A to this SER summarizes these conditions. These permit conditions, or limitations on the ESP, stem from the provisions of 10 CFR 52.24, "Issuance of Early Site Permit."

At the time the DSER was issued, the staff had proposed a total of 18 permit conditions. This report discusses these DSER permit conditions, which are identified with a unique assigned number to indicate the corresponding section of the SER in which the condition is described. The applicant provided responses to the DSER open items which resulted in the resolution of some proposed DSER permit conditions. In addition, the staff determined that a permit condition is not necessary when an existing NRC regulation requires a future regulatory review and approval process to ensure adequate safety during design, construction, or inspection activities for a new plant. Based on this criterion, the staff removed a number of permit conditions proposed in the DSER and, in some cases, added new permit conditions, COL action items, or site characteristics, as appropriate, to account for the concern.

Appendix A to this SER contains the final list of permit conditions which have been highlighted throughout this report. Each permit condition has been reassigned a number identifying the sequence in which it appears in this SER. The staff has provided an explanation of each permit condition in the applicable section of this report.

2. SITE CHARACTERISTICS

2.1 Introduction

2.1.1 Site Location and Description

2.1.1.1 Technical Information in the Application

In Section 2.1.1.1 of the site safety analysis report (SSAR), the applicant presented information concerning the site location and site area that would affect the design of structures, systems, and components (SSCs) important to safety of a nuclear power plant or plants falling within the applicant's plant parameter envelope (PPE) that might be constructed on the proposed early site permit (ESP) site. The applicant did not provide latitude and longitude or Universal Transverse Mercator coordinates for new units in the proposed ESP site. However, the North Anna Units 1 and 2 Updated Final Safety Analysis Report (UFSAR) for the existing North Anna Power Station (NAPS) does include them. The proposed ESP site is located within the existing NAPS site.

The applicant provided the following information on site location and site area:

- the site boundary for new units in the proposed ESP site with respect to the existing units
- the site layout for new units in the proposed ESP site with respect to the current and future developments
- the site location with respect to political subdivisions and prominent natural and manmade features of the area within the 6-mile (mi) low-population zone (LPZ) and 50-mile population zone
- the topography surrounding the proposed ESP site
- the distance from the proposed ESP site to the nearest exclusion area boundary (EAB), including the direction and distance

The contract of the state of th

- the potential radioactive material release points and their locations for the proposed new units
- the distance of the proposed site from regional U.S. and State highways
- the confirmation that no physical characteristics unique to the proposed ESP site were identified that could pose a significant impediment to the development of emergency plans

2.1.1.2 Regulatory Evaluation

Sections 1.8 and 2.1.1 of the SSAR identify the applicable U.S. Nuclear Regulatory Commission (NRC) regulations and guidance regarding site location and description as defined

in Title 10, Section 52.17, "Contents of Applications," of the *Code of Federal Regulations* (10 CFR 52.17); 10 CFR Part 100, "Reactor Site Criteria"; 10 CFR 50.34(a)(1); and NRC Review Standard (RS)-002, "Processing Applications for Early Site Permits," issued May 2004. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

The staff considered the following regulatory requirements in reviewing the site location and site area:

- 10 CFR Part 100, insofar as it requires consideration of factors relating to the size and location of sites
- 10 CFR 52.17, insofar as it requires the applicant's submission of information needed to evaluate factors involving the characteristics of the site environs

According to Section 2.1.1 of RS-002, an applicant has submitted adequate information if it satisfies the following criteria:

- The site location, including the exclusion area and the proposed location of a nuclear power plant or plants of specified type falling within a PPE that might be constructed on the proposed site, is described in sufficient detail to determine that the requirements of 10 CFR Part 100 and 10 CFR 52.17 are met, as discussed in Sections 2.1.2 and 2.1.3 and Chapter 15 of this safety evaluation report (SER).
- Highways, railroads, and waterways which traverse the exclusion area are sufficiently
 distant from planned or likely locations of structures of a nuclear power plant or plants of
 specified type falling within a PPE that might be constructed on the proposed site so that
 routine use of these routes is not likely to interfere with normal plant operation.

2.1.1.3 Technical Evaluation

The proposed ESP site is located within the existing NAPS site. The ESP site boundary, as shown in Figure 2.1-1, "Site Boundary," of the SSAR, is the same as the site boundary for the existing NAPS units.

The staff has verified the following coordinates of the existing NAPS units provided in the North Anna UFSAR:

	<u>Latitude</u>	<u>Longitude</u>	Universal Transverse Mercator
Unit 1	38°3'36"N	77°47'23 " W	4,215,990 mN—255,240 mN—zone 18S
Unit 2	38°3'38"N	77°47'26"W	4,215,960 mN—255,170 mN—zone 18S

The staff will review the exact coordinates of the new units at the time of a combined license (COL) or construction permit (CP) application when the applicant selects new units in the proposed ESP site. This is **COL Action Item 2.1-1**.

The applicant has defined the EAB envelope at a radius of 5000 feet (ft) from the now abandoned Unit 3 containment and the LPZ at a radius of 6 miles from the existing Unit 1 containment building. The applicant established the EAB and the LPZ to ensure that the radiological consequence evaluation factors identified in 10 CFR 50.34(a)(1) and the siting evaluation factors in Subpart B, "Evaluation Factors for Stationary Power Reactor Site Applications on or After January 10, 1997," of 10 CFR Part 100 are met. No persons live within the EAB.

NAPS is located in the northeastern portion of Virginia in Louisa County. Louisa County includes two incorporated towns, Louisa and Mineral. The proposed ESP site is on a peninsula on the southern shore of Lake Anna at the end of State Route 700. Lake Anna was created to serve the needs of NAPS. It is about 17 miles long and has 272 miles of irregular shoreline with various contour and scenic views. The proposed ESP site lies along the lake shoreline. The NAPS property comprises 1803 acres (ac), of which about 760 ac are covered by water. Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative (ODEC) own the NAPS site, which includes the existing two nuclear power units and the proposed ESP site, as tenants in common (see Section 2.1.2 of this SER).

The largest community within 10 miles of the proposed ESP site is the town of Mineral with a population of 424, according to the 2000 census. It is situated about 6 miles west-southwest of the proposed ESP site. Regionally, as shown in Figure 2.1-3, "Fifty-Mile Surrounding Area," of the SSAR, the proposed site is approximately 40 miles north-northwest of Richmond, Virginia; 36 miles east of Charlottesville, Virginia; 22 miles southwest of Fredericksburg, Virginia; and 70 miles southwest of Washington, D.C. Highways U.S. 1 and I-95 pass within 15 and 16 miles, respectively, east of the proposed site. No highways, railroads, or waterways traverse the proposed ESP exclusion area site boundary.

The staff has verified that the exclusion area distance is consistent with the distance the applicant used in its radiological consequence analyses described in Chapter 15, "Accident Analyses," of the SSAR. The applicant stated that, consistent with the licenses for the existing units, the gaseous effluent release limits for the proposed units would apply at or beyond the proposed ESP EAB; the liquid effluent release limits for the new units would apply at the end of the discharge canal, which is designated as the release point to unrestricted areas. The staff finds that these release points are acceptable for determining the radiation exposures to the public to meet the criterion "as low as reasonably achievable," cited in Appendix I, "Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion 'As Low as is Reasonably Achievable,' for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents," to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities."

For the reasons set forth in Section 13.3 of this SER, the staff further finds that no physical characteristics unique to the proposed ESP site have been identified that could pose a significant impediment to the development of emergency plans.

2.1.1.4 Conclusions

As set forth above, the applicant has provided and substantiated information concerning the site location and site area that would affect the design of SSCs important to safety of a nuclear power plant or plants of specified type falling within the applicant's PPE that might be

State of the State

constructed on the proposed ESP site. The staff has reviewed the applicant's information as described above and concludes that it is sufficient for the staff to evaluate compliance with the siting evaluation factors in 10 CFR Part 100 and 10 CFR 52.17, as well as the radiological consequence evaluation factors in 10 CFR 50.34(a)(1). The staff further concludes that the applicant provided information concerning the site location and site area in sufficient detail to allow the staff to evaluate, as documented in Sections 2.1.2 and 2.1.3 and Chapter 15 of this SER, whether the applicant has met the relevant requirements of 10 CFR Part 100 and 10 CFR 52.17.

2.1.2 Exclusion Area Authority and Control

2.1.2.1 Technical Information in the Application

In SSAR Section 2.1.2, the applicant presented information concerning its plan to obtain legal authority to determine all activities within the designated exclusion area, if it decides to proceed with the development of new reactor units at the proposed ESP site. In Revision 3 of the SSAR, the applicant stated the following:

If Dominion decides to proceed with the development of new units, it would enter into and obtain appropriate regulatory approvals to purchase or lease the ESP site from Virginia Power and ODEC. The agreement or conveyance documents would provide for the mutual use of the NAPS site as a single exclusion area. As part of this agreement, each party would agree to immediately notify the other in the event of an emergency and to abide by the reasonable requests of the party declaring an emergency to exclude non-plant personnel and property from the exclusion area. The parties would also agree to work cooperatively to control third party activity that might otherwise present an unacceptable hazard to nuclear operations. Because the appropriate regulatory approvals of the conveyance and agreement (pursuant to Virginia Code, 56-77 and 56-580) would be a prerequisite to Dominion's development of the new units, such arrangements would be in place before issuance of a COL for the new units.

In Request for Additional Information (RAI) 2.1.2-1, the staff asked the applicant for additional information regarding its approach to obtaining appropriate regulatory approvals to purchase or lease the ESP site. In its response, the applicant stated the following:

Virginia State Corporation and possibly North Carolina Utilities Commission approval [other than NRC] would be required [to purchase or lease the proposed ESP site]. The current NAPS exclusion area boundary (EAB) would continue to be the EAB for the existing units and any new units. This single exclusion area includes property that is not part of the ESP site. The use of the current exclusion area for the new units would be established by agreement between Dominion Nuclear North Anna and other NAPS owners. Dominion has not determined a specified term for any lease. However, any lease would provide that (1) the term of the lease would not expire until after termination of all NRC licenses for any facilities on the leased property, and (2) the lease may not be canceled or terminated, prior to the termination of all NRC licensees for any

facilities on the leased property, except with prior written consent of the NRC (e.g., consent in connection with the transfer of licenses under 10 CFR 50.80).

In RAI 2.1.2-2, the staff asked for the application for additional information on how an agreement or conveyance document (e.g., a lease or deed) would provide for the use of NAPS as a single exclusion area, in the event that additional reactors are constructed on the site. In its response, in a letter to the NRC dated August 10, 2004, the applicant stated the following:

Any lease or deed would provide mutual use of the existing site and the leased premises as a single exclusion area and single restricted area for all nuclear units at the North Anna site. Each party would agree to immediately notify the other in the event of an emergency and to abide by the reasonable request of the party declaring the emergency condition to exclude non-plant personnel and property from the exclusion area. The parties would agree to work cooperatively to control third party activity within the exclusion area and prevent any such activity that might otherwise present an unacceptable hazard to nuclear operations. This approach is consistent with the single exclusion area established by agreement for the Indian Point units (when Units 1 and 2 were owned by the Consolidated Edison Company and Unit 3 was owned by the Power Authority of the State of New York) and for the Nine Mile Point and Fitzpatrick plants.

2.1.2.2 Regulatory Evaluation

In SSAR Sections 1.8 and 2.1.2, the applicant identified the applicable NRC regulations and regulatory guidance regarding exclusion area authority and control related to Subpart A, "Early Site Permits," of 10 CFR Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," 10 CFR Part 100, and RS-002. The staff finds that the applicant correctly identified the applicable regulations and guidance. The staff considered 10 CFR 100.21(a) and 10 CFR 100.3, "Definitions," in reviewing the applicant's legal authority to determine all activities within the designated exclusion area. Pursuant to 10 CFR 100.21(a), every site must have an exclusion area, defined in 10 CFR 100.3 as the following:

That area surrounding the reactor, in which the reactor licensee has the authority to determine all activities including exclusion or removal of personnel and property from the area. This area may be traversed by a highway, railroad or waterway, provided these are not so close to the facility as to interfere with normal operations of the facility and provided appropriate and effective arrangements are made to control traffic on the highway, railroad, or waterway, in case of emergency, to protect the public health and safety... Activities unrelated to operation of the reactor may be permitted in an exclusion area under appropriate limitations, provided that no significant hazards to the public health and safety will result.

As stated in Section 2.1.2 of RS-002, the applicant must demonstrate, before issuance of an ESP, that it has an exclusion area and an LPZ, as defined in 10 CFR 100.3 and in accordance with the requirements of 10 CFR Part 100. Furthermore, the applicant must show that it has the authority within the exclusion area, as required by 10 CFR 100.3, or it must provide

reasonable assurance that it will have such authority before start of construction of a reactor or reactors that might be located on the proposed ESP site.

2.1.2.3 Technical Evaluation

As set forth in the application and in Section 2.1.2.1 of this SER, the exclusion area for the North Anna ESP site is identical to the exclusion area for the existing reactors at the site, North Anna Units 1 and 2. Further, the current owners of the ESP site, Virginia Power and ODEC, have the requisite control over the exclusion area, and such control is vested in Virginia Power. The applicant has stated that it intends to reach appropriate legal terms with the current owners of the ESP site to obtain the requisite control over the exclusion area. The applicant would enter into such an agreement with the current site owners at such time as the applicant elects to construct a nuclear power plant on the site.

The applicant has not attempted to demonstrate that it currently has the authority to determine all activities, including exclusion or removal of personnel and property from the area, as required by 10 CFR 100.3. To meet the exclusion area control requirements of 10 CFR 100.21(a) and 10 CFR 100.3, the applicant does not need to demonstrate total control of the property before issuance of the ESP. In the draft safety evaluation report (DSER), the NRC staff stated that the applicant must provide reasonable assurance that it can acquire the required control (i.e., that it has the legal right to obtain control of the exclusion area). The staff had not then obtained information sufficient to enable it to determine whether the applicant had such a legal right. Accordingly, the NRC staff identified DSER Open Item 2.1-1, which stated that the applicant should demonstrate that it has the legal right to control the exclusion area, or has an irrevocable right to obtain such control.

In its response to the open item, the applicant indicated as follows: In accordance with Virginia Code, §56-580 D, the ESP holder would be required to obtain the approval of the Virginia State Corporation Commission (SCC) to construct and operate any new unit at the North Anna ESP site, should it decide to do so. In such an event, SCC approval of any agreement between the CP or COL applicant and the current owners of the site providing for construction and operation of a new unit would be required pursuant to Virginia Code, §56-77. The same statute would require SCC approval of any agreement among these entities providing for joint control of the exclusion area. Other State approvals might also be required.

Based on the above information, the staff has determined that State approval would be required for the agreements described above, and no new nuclear power plant could be built in the absence of these approvals. Since the ESP holder would need to obtain the current owners' agreement to construct and operate any new nuclear power plant on the North Anna ESP site in order to seek State approval of such construction and operation, there does not appear to be any reason why the ESP holder could not obtain control of the exclusion area in a similar manner. Accordingly, for purposes of an ESP, there is reasonable assurance that the current owners would (as a corollary to any agreement for construction and operation) also agree to joint control of the exclusion area with the ESP holder, as proposed by the applicant, and seek the required State approvals of such an agreement or agreements. In addition, there does not appear to be any impediment to joint control of the exclusion area in the event State approval of such an arrangement is granted.

The State approvals described above would not be granted until sought upon a decision to seek a CP or COL, and do not currently vest a legal right in the applicant to obtain control of the exclusion area. Accordingly, the NRC staff proposes to include a condition in any ESP that might be issued to govern exclusion area control as **Permit Condition 1**. This permit condition would require that approvals called for by State law for, among other matters, agreements providing for shared control of the North Anna ESP exclusion area, be obtained and the agreements executed before construction of a nuclear power plant begins under a construction permit or COL referencing the ESP. Such a permit condition provides reasonable assurance that an ESP provides for control of the exclusion area. The condition requires that these arrangements be obtained and executed before the granting of an application referencing the ESP. Therefore, DSER Open Item 2.1-1 is closed.

Should the NRC grant the ESP and the ESP holder decide to perform the activities authorized by 10 CFR 52.25, "Extent of Activities Permitted," the ESP holder must obtain the authority to undertake those activities on the ESP site. In obtaining such a right, the ESP holder must also obtain the corresponding right to implement the site redress plan described in the staff's final environmental impact statement in the event that no plant is built on the ESP site. The staff proposes to include a condition in any ESP that might be issued requiring that the ESP holder obtain the right to implement the site redress plan before initially any activities authorized by 10 CFR 52.25, as Permit Condition 2.

The North Anna exclusion area extends into Lake Anna and the waste heat treatment facility (WHTF). Should the NRC grant the ESP and the ESP holder decide to apply for a COL (or for a CP and operating license (OL)), the ESP holder, COL or CP applicant must make arrangements with the appropriate Federal, State, or local agencies to provide for control of the portions of Lake Anna and the WHTF that are within the exclusion area. These agencies, together with COL or CP applicant, must have authority over these bodies of water sufficient to allow for the exclusion and ready removal, in an emergency, of any persons present on them. This is COL Action Item 2.1-2. No State or county roads, railways, or waterways traverse the North Anna ESP exclusion area.

2.1.2.4 Conclusions

As set forth above, the applicant has provided and substantiated information concerning its plan to obtain legal authority to determine all activities within the designated exclusion area. The staff has reviewed the applicant's information and concludes that it is sufficient to evaluate compliance with the exclusion area control requirements of 10 CFR 100.21(a) and 10 CFR 100.3.

The applicant has appropriately described the exclusion area and the methods by which access and occupancy of the exclusion area will be controlled during normal operation and in the event of an emergency situation.

Based on the foregoing, the staff concludes that the applicant's exclusion area is acceptable and meets the requirements of 10 CFR Part 100, subject to the limitations and conditions identified in this SER. Such permit conditions provide reasonable assurance that an ESP provides for control of the exclusion area. Further, the ESP holder must demonstrate that it will have authority to perform the activities authorized by 10 CFR 52.25, should it choose to do so,

and the corresponding right to implement the site redress plan, as described in the discussion of Permit Conditions 1 and 2.

2.1.3 Population Distribution

2.1.3.1 Technical Information in the Application

In SSAR Section 2.1.3, the applicant estimated and provided the population distribution surrounding the proposed ESP site, up to a 50-mile radius, based on the most recent U.S. census. In this section, the applicant also provided the population densities, the resident population distribution within the LPZ, the nearest population center, and population densities up to a 50-mile radius from the proposed ESP site.

The population distribution provided by the applicant encompasses nine concentric rings at various distances out to 50 miles from the proposed ESP site and 16 directional sectors. The applicant also estimated and provided transient population data out to 50 miles based on recreational use of Lake Anna, Lake Anna State Park, two commercial campgrounds, the WHTF, and Paramount's King's Dominion Amusement Park.

In RAI 2.1.3-1, the staff asked the applicant to project population estimates, including weighted transient populations, up to 2065 (the projected year for the end of plant life). In its response, the applicant reestimated and provided resident and weighted transient populations up to 2065, thereby revising its original estimate of resident and weighted transient populations up to 2040. The applicant incorporated this response into the SSAR.

In the revised Figure 2.1-14 of the SSAR, the applicant provided the cumulative population in 2000 and the projected cumulative population in 2065, as functions of the 10-mile to 50-mile radial distance from the proposed ESP site, as well as the population density curves spanning the same radial distances. The population density curves also included 500-persons-persquare-mile lines and 1000-persons-per-square-mile lines as a function of distance up to 50 miles from the site.

The applicant established the LPZ to ensure that the radiological consequences of design-basis reactor accidents at the LPZ meet the dose consequence evaluation factors set forth in 10 CFR 50.34(a)(1). The applicant described the LPZ in Section 2.1.3.4 of the SSAR. The LPZ is defined in 10 CFR 100.3 as "the area immediately surrounding the exclusion area which contains residents, the total number and density of which are such that there is a reasonable probability that appropriate measures could be taken in their behalf in the event of a serious accident." The LPZ for the ESP site is the same as the LPZ for the existing North Anna units; it consists of a circle with a radius of 6 miles centered on the North Anna Unit 1 containment building. The applicant provided a map (Figure 2.1-2) of the LPZ and figures showing the current and projected population data for the LPZ, including transient persons.

The applicant described the population center in Section 2.1.3.5 of the SSAR. The population center is defined in 10 CFR 100.3 as "a densely populated center containing more than about 25,000 residents." The applicant stated that the nearest population center with a population

greater than 25,000 people which is likely to exist over the lifetime of the proposed ESP site, is the city of Charlottesville, with a population of 45,049. The closest point of Charlottesville is 36 miles west of the ESP site. The next closest population center is Fredericksburg, which is 22 miles northeast of the proposed ESP site. Fredericksburg has a projected population of about 20,330 in 2065.

In RAI 2.1.3-2, the staff asked the applicant to describe appropriate protective measures that could be taken on behalf of the populace in the LPZ in the event of a radiological emergency. In its response, the applicant stated that, in the event of a radiological emergency, the plant staff would notify the Commonwealth of Virginia and local authorities. The plant staff would formulate protective action recommendations, as appropriate, and provide them to the Virginia Emergency Operations Center. The Commonwealth of Virginia would make a protective action decision and notify the affected populace.

2.1.3.2 Regulatory Evaluation

In SSAR Sections 1.8 and 2.1.3, the applicant identified the applicable NRC regulations and regulatory guidance regarding population distribution, as described in 10 CFR 52.17; 10 CFR Part 100; Regulatory Guide (RG) 4.7, Revision 2, "General Site Suitability Criteria for Nuclear Power Stations," issued April 1998; and RS-002. The staff finds that the applicant correctly identified the applicable regulations and guidance.

The staff considered the following regulatory requirements in its review of this section of the SSAR:

- 10 CFR 52.17, insofar as it requires each applicant to provide a description and safety assessment of the site, and insofar as it requires that site characteristics comply with 10 CFR Part 100
- 10 CFR Part 100, insofar as it establishes requirements with respect to population density

In particular, the staff considered the population density and use characteristics of the site environs, including the exclusion area, LPZ, and population center distance. The regulations in 10 CFR Part 100 provide definitions and other requirements for determining an exclusion area, LPZ, and population center distance.

As stated in Section 2.1.3 of RS-002, the applicable requirements of 10 CFR 52.17 and 10 CFR Part 100 are deemed to have been met if the population density and use characteristics of the site meet the following criteria:

- Either there are no residents in the exclusion area, or if residents do exist, they are subject to ready removal, in case of necessity.
- The specified LPZ is acceptable if it is determined that appropriate protective measures could be taken on behalf of the enclosed populace in the event of a serious accident.
- The population center distance is at least one and one-third times the distance from the reactor to the outer boundary of the LPZ. The population center distance is defined in

10 CFR 100.3 as the distance from the reactor to the nearest boundary of a densely populated center containing more than about 25,000 residents.

- The population center distance is acceptable if there are no likely concentrations of greater than 25,000 people over the lifetime (plus the term of the ESP) of a nuclear power plant or plants of specified type or falling within a PPE that might be constructed on the proposed site closer than the distance designated by the applicant as the population center distance. The boundary of the population center shall be determined upon considerations of population distribution. Political boundaries are not controlling.
- The population data supplied by the applicant in the safety assessment are acceptable if (1) they contain population data for the latest census, projected year(s) of startup of a nuclear power plant or plants of specified type (or falling within a PPE) that might be constructed on the proposed site (such date(s) reflecting the term of the ESP) and a projected year(s) of end of plant life, all in the geographical format given in Section 2.1.3 of RG 1.70, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants—LWR Edition," Revision 3, issued November 1978, (2) they describe the methodology and sources used to obtain the population data, including the projections, (3) they include information on transient populations in the site vicinity, and (4) the population data in the site vicinity, including projections, are verified to be reasonable by other means, such as U.S. Census Bureau publications, publications from State and local governments, and other independent projections.
- If the population density at the ESP stage exceeds the guidelines given in RG 4.7, Revision 2, special attention to the consideration of alternative sites with lower population densities is necessary. A site that exceeds the population density guidelines of Regulatory Position C.4 of RG 4.7, Revision 2, can nevertheless be selected and approved if, on balance, it offers advantages compared with available alternative sites when all of the environmental, safety, and economic aspects of the proposed and alternative sites are considered.

2.1.3.3 Technical Evaluation

The staff reviewed the data on the population in the site environs, as presented in the applicant's SSAR, to determine whether the exclusion area, LPZ, and population center distance for the proposed ESP site comply with the requirements of 10 CFR Part 100 and the acceptance criteria in Section 2.1.3.2 of this SER. The staff also evaluated whether, consistent with Regulatory Position C.4 of RG 4.7, Revision 2, the applicant should consider alternate sites with lower population densities. The staff also reviewed whether appropriate protective measures could be taken on behalf of the enclosed populace within the emergency planning zone (EPZ), which encompasses the LPZ, in the event of a serious accident.

The staff compared and verified the applicant's population data against U.S. Census Bureau Internet data. As documented in Section 13.3 of this SER, the staff reviewed the projected population data provided by the applicant. The information reviewed by the staff included the weighted transient populations for 2010, 2020, 2030, 2040, 2050, 2060, and 2065. If the NRC were to approve and issue the ESP in 2006 and a COL application submitted near the end of the ESP term, with a projected startup of new units in about 2025 and an operational period of 40 years for the new units, the projected year for end of plant life is about 2065. Accordingly, the staff finds that the applicant's projected population data cover an appropriate number of years and are reasonable.

The staff reviewed the transient population data provided by the applicant. The transient population up to a 50-mile radius is based on recreational use of Lake Anna, Lake Anna State Park, two commercial campgrounds, the WHTF, and Paramount's King's Dominion Amusement Park. The applicant stated that recreational use of Lake Anna, including Lake Anna State Park, is the greatest contributor to transient population in the area. The applicant collected information concerning transient population of the area from a number of contributing factors, including the number of boat ramps, wet slips, campsites, and picnic areas. Based on this information, the staff finds that the applicant's estimate of the transient population is reasonable.

The staff notes that no member of the public lives within the exclusion area.

The applicant evaluated representative design-basis accidents in Chapter 15 of the SSAR, and the staff independently verified the applicant's evaluation in Chapter 15 of this SER to demonstrate that the radiological consequences of design-basis reactor accidents at the proposed LPZ would be within the dose consequence evaluation factors set forth in 10 CFR 50.34(a)(1).

The distances to Charlottesville and Fredericksburg, the nearest population centers, are well in excess of the minimum population center distance of 7.8 miles (one and one-third times the distance of 6 miles from the reactor to the outer boundary of the LPZ). In addition, no population centers are closer than the population center distance specified by the applicant.

Therefore, the staff concludes that the proposed ESP site meets the population center distance requirement, as defined in 10 CFR Part 100. The staff has determined that no realistic likelihood exists that there will be a population center with 25,000 people within the 7.8-mile minimum population center distance during the lifetime of any new units that might be constructed on the site. This conclusion is based on projected cumulative resident and transient population within 10 miles of the site during the lifetime of any new units to 2065.

The staff evaluated the site against the criterion in Regulatory Position C.4 of RG 4.7, Revision 2, regarding whether it is necessary to give special attention to the consideration of alternative sites with lower population densities. The criterion is whether the population densities in the vicinity of the proposed site, including weighted transient population, projected at the time of initial site approval and within about 5 years thereafter, would exceed 500 persons per square mile averaged over any radial distance out to 20 miles (cumulative population at a distance divided by the area at that distance). The staff has determined that such population densities for the proposed site would be well below this criterion. Therefore, the staff concludes that the site conforms to Regulatory Position C.4 in RG 4.7, Revision 2. Assuming construction of a new nuclear reactor or reactors at the proposed site beginning near the end of the term of the ESP, and based on its review of the applicant's population density data and projections, the staff finds that the site also meets the guidance of RS-002 regarding population densities over the lifetime of facilities that might be constructed at the site, in that the population density over that period would be expected to remain below 500 persons per square mile averaged out to 20 miles from the site.

The staff reviewed information provided by the applicant regarding its ability to take appropriate protective measures on behalf of the populace in the LPZ in the event of a serious accident. In its response to RAI 2.1.3-2, the applicant stated that, in the event of a radiological emergency,

the plant staff would notify the Commonwealth of Virginia and local authorities. The plant staff would formulate protective action recommendations, as appropriate, and provide them to the Virginia Emergency Operations Center. The Commonwealth of Virginia would make a protective action decision and notify the affected populace.

The staff finds that the applicant's response is satisfactory because it is consistent with emergency planning for the 10-mile plume exposure EPZ. The LPZ is located entirely within the 10-mile EPZ. Comprehensive emergency planning for the protection of all persons within the 10-mile EPZ, as addressed in Section 13.3 of this SER, would include those persons within the LPZ. Based on the information the applicant presented on this subject, and on the staff's conclusions discussed in Section 13.3 of this SER, the staff concludes that appropriate protective measures could be taken on behalf of the enclosed populace within the LPZ in the event of a serious accident.

2.1.3.4 Conclusions

As set forth above, the applicant has provided an acceptable description of current and projected population densities in and around the site. These densities projected at the time of initial plant operation (if one were to be constructed on the site) and within about 5 years thereafter are within the guidelines of Regulatory Position C.4 of RG 4.7, Revision 2. The applicant has properly specified the LPZ and population center distance. The staff finds that the proposed LPZ and population center distance meet the definitions in 10 CFR 100.3. Therefore, the staff concludes that the applicant's population data and population distribution are acceptable and meet the requirements of 10 CFR 52.17 and 10 CFR Part 100. In Chapter 15 of this SER, the staff documents that the radiological consequences of bounding design-basis accidents at the outer boundary of the LPZ meet the requirements of 10 CFR 52.17.

2.2 Nearby Industrial, Transportation, and Military Facilities

2.2.1-2.2.2 Identification of Potential Hazards in Site Vicinity

For an ESP application, the applicant provides information on relative location and separation distance with respect to industrial, military, and transportation facilities and routes on the site and in its vicinity. Such facilities and routes may include air, ground, and water traffic; pipelines; and fixed manufacturing, processing, and storage facilities. Section 2.2 of the SSAR presents information concerning the industrial, transportation, and military facilities in the vicinity of the proposed ESP site. The staff's review focused on potential external hazards or hazardous materials that are present or which may reasonably be expected to be present during the projected lifetime of a nuclear power plant or plants that might be constructed on the proposed site. The staff has prepared Sections 2.2.1–2.2.2, 2.2.3, and 3.5.1.6 of this SER in accordance with the review procedures described in RS-002, using information presented in SSAR Section 2.2, responses to RAIs, and the reference materials described in the applicable sections of RS-002.

2.2.1.1-2.2.2.1 Technical Information in the Application

In SSAR Section 2.2.2.1, the applicant stated that Louisa County, Virginia, the location of the proposed site, is a rural and residential area. The applicant further stated that no substantial industrial activities occur within 5 miles of the proposed ESP site. According to the applicant, the county has granted its approval for a zoning ordinance allowing industrial development of about 620 ac near the proposed ESP site's EAB. The applicant also noted that several other areas located within 10 miles of the proposed site are zoned for industrial development, although no current plans for development exist.

Because the applicant identified a zoning ordinance, approved by the Louisa County Board of Supervisors, for industrial development of about 620 ac near the proposed site EAB, the staff requested clarification, in RAI 2.2.2-1, regarding the location of the 620-ac development. The applicant provided additional information describing the specific location of the development and the type of industrial activity that is covered by the zoning ordinance.

In Section 2.2.2.2 of the SSAR, the applicant stated that no mining activities occur within 5 miles of the proposed ESP site.

Section 2.2.2.3 of the SSAR describes the roads within 10 miles of the proposed ESP site. These consist of several Virginia State routes (Routes 208, 601, and 652), which pass no closer than 1.5 miles to the proposed site; U.S. Route 522, which passes within about 5 miles of the proposed site; and Virginia State Route 700, which provides access to the proposed site. SSAR Section 2.2.2.4 states that the Chesapeake and Ohio Railway passes within about 5.5 miles of the proposed site. In Section 2.2.2.5, the applicant stated that six marinas near the proposed ESP site provide access to pleasure craft on Lake Anna. The marina locations are between 1.4 and 2.3 miles from the proposed site. The applicant stated that no large boats or barges exist on Lake Anna.

With respect to aircraft activities in the vicinity of the proposed ESP site, the applicant described nearby airports and airways. Specifically, Table 2.2-1 of Section 2.2.2.6.1 of the SSAR lists the three airports that are within 15 miles of the proposed ESP site. Figure 2.2-1 of Section 2.2.2.6.1 of the SSAR illustrates the airport locations. Two of the three airports are within 10 miles of the proposed ESP site. In SSAR Section 2.2.2.6.2, the applicant stated that one civil airway (V223) and three military training routes (IR714, IR760, and VR1754) pass within less than 5 miles of the proposed ESP site.

In Section 2.2.2.7 of the SSAR, the applicant stated that no oil or gas pipelines are located within 5 miles of the proposed ESP site. Similarly, in Section 2.2.2.8 of the SSAR, the applicant stated that no military facilities exist within 5 miles of the proposed ESP site. Figure 2.2.1-1 illustrates the locations of nearby major roads, railroads, and gas pipelines relative to the ESP site.

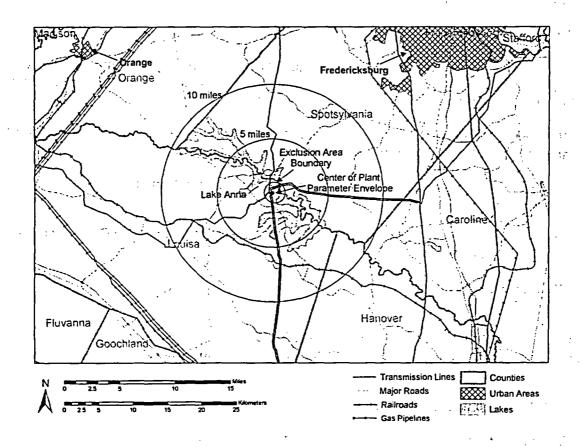


Figure 2.2.1-1 Major roads, railways, and gas pipelines in the vicinity of the ESP site

2.2.1.2-2.2.2 Regulatory Evaluation

In SSAR Section 1.8, the applicant identified 10 CFR 52.17(a)(1) and 10 CFR 100.20, "Factors to be Considered When Evaluating Sites," as the regulations applicable to SSAR Sections 2.2.1 and 2.2.2. In the same section, the applicant identified the following applicable NRC guidance regarding potential hazards in the vicinity of the proposed ESP site:

- RG 1.91, Revision 1, "Evaluation of Explosions Postulated to Occur on Transportation Routes Near Nuclear Power Plant Sites," issued February 1978
- RG 1.78, Revision 1, "Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Chemical Release," issued December 2001
- RG 1.70, Revision 3, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, LWR Edition," issued November 1978

- NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants"
- RS-002

The staff considered the following regulatory requirements in reviewing information regarding potential site hazards which would affect the safe design and siting of a nuclear power plant or plants falling within the applicant's PPE that might be constructed at the proposed site:

- 10 CFR 52.17(a)(1)(vii), with respect to information on the location and description of any nearby industrial, military, or transportation facilities and routes
- 10 CFR 100.20(b), with respect to information on the nature and proximity of manrelated hazards

The following RGs identify methods acceptable to the NRC staff to meet the Commission's regulations identified above:

- RG 1.91, Revision 1
- RG 1.78, Revision 1

Sections 2.2.1–2.2.2, 2.2.3, and 3.5.1.6 of RS-002 and RG 1.70, Revision 3, provide guidance on information appropriate for identifying, describing, and evaluating potential manmade hazards.

2.2.1.3-2.2.2.3 Technical Evaluation

The staff evaluated the potential for manmade hazards in the vicinity of the proposed ESP site by reviewing (1) the information the applicant provided in Sections 2.2.1–2.2.2 of the SSAR, (2) the applicant's responses to the staff's RAIs, (3) information the staff obtained during a visit to the proposed ESP site and its vicinity, and (4) other publicly available reference material, such as U.S. Geological Survey topographic maps, satellite imagery, and geographic information system coverage files (Platts, 2004, POWER map Geographic Information System Spatial Data, including map layers of natural gas pipelines, railroads, and electric transmission lines; and Terraserver-usa.com, 2004, online 1-meter Aerial Imagery of the Lake Anna, Virginia, region). Using these data, the staff found no additional hazards beyond those the applicant identified.

The staff evaluated the information on the nearby 620-ac development that the applicant provided in its response to RAI 2.2.1-1. Included among the 30 industrial uses permitted for this area are "acetylene gas manufacture on a commercial scale," "fireworks or explosives manufacture, nitrating process, the loading of explosives, or their storage in bulk," "petroleum refining," and "sulphurous, sulphuric, nitric or hydrochloric or other corrosive or offensive acid manufacture, or their use or storage, except on a limited scale (by conditional use permit) as accessory to a permitted industry." Pursuant to this ordinance, an entity seeking permission for a specific industrial use must apply for and obtain a "conditional use permit" from the Louisa County Planning Commission. The request for a permit may be denied by the planning

commission, the governing body, if there is a finding that the use would be detrimental to the health and safety of the public.

Currently, there have been no hazardous industrial facilities identified on this site. Hence, the site does not pose any industrial hazard at the present time. In the event that some industrial use were implemented on the site, any hazard determination would be based upon specific information regarding the nature of the hazard, as well as specific nuclear plant design parameters, neither of which are available at this time. On this basis, the staff finds that the 620 ac site currently does not present any identifiable hazards, and an evaluation of industrial hazards, if any, associated with the site can be performed, if warranted, should a CP or COL application referencing any ESP issued for the North Anna site be submitted. This is COL Action Item 2.2-1.

2.2.1.4-2.2.2.4 Conclusions

As set forth above, the applicant has provided information in the SSAR regarding potential site hazards in accordance with the guidance of RG 1.70, such that compliance with the requirements of 10 CFR 100.20 and 10 CFR 100.21, "Non-Seismic Site Criteria," can be evaluated. The applicant has reviewed the nature and extent of activities involving potentially hazardous materials conducted on or in the vicinity of the site to identify hazards that might pose undue risk to a facility falling within the applicant's PPE that might be constructed on the proposed site. Based on its evaluation of the information presented in the SSAR, as well as information the staff obtained independently, the staff concludes that all potentially hazardous activities on and in the vicinity of the site have been identified. Sections 2.2.3 and 3.5.1.6 of this SER discuss the evaluation of such hazards.

2.2.3 Evaluation of Potential Accidents

2.2.3.1 Technical Information in the Application

In SSAR Section 2.2.3, the applicant evaluated earth-bound and aircraft hazards. Section 3.5.1.6 of this SER discusses the staff's evaluation of aircraft hazards.

Consistent with its identification of potential hazards in SSAR Sections 2.2.1 and 2.2.2, the applicant limited its evaluation of earth-bound hazards to the effects of explosion and formation of flammable vapor clouds from nearby sources. The applicant stated that the largest explosive load routinely transported by truck on Virginia highways contains 8500 gallons (gal) of gasoline. The explosive force of this quantity of gasoline is estimated to be equivalent to 50,700 pounds (lb) of TNT, using a simple TNT-equivalent yield formula. The applicant, citing the methodology of RG 1.91, concluded that, if this amount of gasoline were to explode, a peak overpressure of 1 pound per square inch (psi) would be experienced as far as 1900 ft away from the point of explosion. The closest point of Virginia Route 652 to the ESP site is 1.5 miles (6420 ft). The applicant noted that RG 1.91 cites 1 psi as a conservative value of peak positive incident overpressure, below which no significant damage would be expected. Thus, the applicant concluded that no significant damage would occur in the event of an explosion resulting from a gasoline truck traffic accident.

The applicant did not evaluate pipeline hazards because no natural gas pipeline or mining facilities are located within 10 miles of the ESP site, and no pipelines carrying potentially hazardous materials are located within 5 miles of the ESP site. Therefore, the applicant concluded that the potential for hazards from these sources that could adversely affect safe operation of the plant is minimal.

In RAI 2.2.3-1, the staff asked the applicant to describe whether the existing NAPS units pose any undue risk to a nuclear power plant or plants falling within the applicant's PPE that might be constructed and operated on the proposed ESP site. In its response, the applicant stated that no such hazards exist.

2.2.3.2 Regulatory Evaluation

In SSAR Sections 1.8 and 2.2, the applicant identified the following applicable NRC guidance regarding potential hazards in the vicinity of the proposed ESP site:

- RG 1.91, Revision 1
- RG 1.78, Revision 1
- RG 1.70, Revision 3
- NUREG-0800
- RS-002

In SSAR Section 1.8, the applicant identified the regulation applicable to SSAR Section 2.2.3 as 10 CFR 100.20. It also identified the requirements of RS-002 as applicable.

The staff considered the following regulatory requirements in reviewing information regarding potential site hazards which would affect the safe design and siting of a nuclear power plant or plants falling within the applicant's PPE that might be constructed at the proposed site:

- 10 CFR 52.17(a)(1)(vii), with respect to information on the location and description of any nearby industrial, military, or transportation facilities and routes
- 10 CFR 100.20(b), with respect to information on the nature and proximity of manrelated hazards
- 10 CFR 100.21(e), with respect to the evaluation of potential hazards associated with nearby transportation routes and industrial and military facilities

The following RGs identify methods acceptable to the NRC staff to meet the Commission's regulations identified above:

- RG 1.91, Revision 1
- RG 1.78, Revision 1

Sections 2.2.1–2.2.2, 2.2.3, and 3.5.1.6 of RS-002 and RG 1.70 provide guidance on information appropriate for identifying, describing, and evaluating potential manmade hazards.

2.2.3.3 Technical Evaluation

The staff reviewed the applicant's analysis of the effects of potential explosions and the formation of flammable vapor clouds. The only potential source of explosions or flammable vapor clouds within 5 miles of the proposed site is truck traffic on the nearby highways. According to the applicant, the largest explosive load routinely transported by truck on Virginia highways contains 8500 gal of gasoline. The staff has previously reviewed and evaluated the explosive yield from this quantity of gasoline, as documented in the UFSAR for the existing NAPS. The resulting TNT equivalent was found to be 50,700 lb, which yields a peak overpressure of 1 psi at 1,900 ft from the point of explosion. Since the closest highway (Virginia Route 652) is 6429 ft from the proposed ESP site, the potential peak overpressure at the proposed site would be less than 1 psi. Hence, using the criteria of RG 1.91, no significant damage to safety-related SSCs that may be located on the proposed site would be expected.

The staff evaluated the information in the SSAR regarding the location of the ESP site relative to the location of the existing NAPS units and the applicant's response to RAI 2.2.3-1. In its response to this RAI, the applicant stated that it did not identify any hazards with respect to NAPS Units 1 and 2 that would pose an undue risk to a nuclear power plant or plants that might be constructed on the ESP site.

The staff independently reviewed possible hazards posed by the existing NAPS units. This review did not identify any hazards that would preclude the provision of protective or mitigative design features for a nuclear power plant or plants to be constructed on the ESP site. This view is supported by the fact that the staff found, during the licensing review for NAPS Units 1 and 2, that design features of those units would adequately protect the NAPS units against identified hazards (e.g., release of toxic or flammable materials, internal and external missiles). Design-specific interactions between the existing and new units would need to be evaluated and, if necessary, addressed at the COL stage. The need for consideration of design-specific hazards interactions is COL Action Item 2.2-2.

2.2.3.4 Conclusions

As set forth above, the applicant has identified potential accidents related to the presence of hazardous materials or activities on and near the proposed ESP site which could affect a nuclear power plant falling within the applicant's PPE. The staff finds that the applicant has selected those potential accidents which should be considered as design-basis events at the COL stage, in accordance with 10 CFR Part 100. The staff also finds that the applicant has identified and evaluated hazards from nearby facilities such that the staff concludes that such facilities pose no undue risk to the type of facility proposed for the site, subject to confirmation at the COL stage regarding design-specific hazards interactions. Therefore, the staff concludes that the site location is acceptable with regard to potential accidents that could affect such a facility and that it meets the requirements of 10 CFR 52.17(a)(1)(vii), 10 CFR 100.20(b), and 10 CFR 100.21(e).

2.3 Meteorology

To ensure that a nuclear power plant or plants could be designed, constructed, and operated on an applicant's proposed ESP site in compliance with the Commission's regulations, the NRC

staff evaluates regional and local climatological information, including climate extremes and severe weather occurrences that may affect the design and siting of a nuclear plant. The staff reviews information concerning atmospheric dispersion characteristics of a nuclear power plant site to determine whether the radioactive effluents from postulated accidental releases, as well as routine operational releases, are within Commission guidelines. The staff has prepared Sections 2.3.1 through 2.3.5 of this SER in accordance with the review procedures described in RS-002, using information presented in SSAR Section 2.3, responses to staff RAIs, and generally available reference materials, as described in the applicable sections of RS-002.

2.3.1 Regional Climatology

2.3.1.1 Technical Information in the Application

In this section of the SSAR, the applicant presented information concerning the averages and the extremes of climatic conditions and regional meteorological phenomena that could affect the design and siting of a nuclear power plant that falls within the applicant's PPE and that might be constructed on the proposed site. The applicant provided the following information:

- a description of the general climate of the region with respect to types of air masses, synoptic features (high- and low-pressure systems and frontal systems), general airflow patterns (wind direction and speed), temperature and humidity, precipitation (rain, snow, and sleet), and relationships between synoptic-scale atmospheric processes and local (site) meteorological conditions
- seasonal and annual frequencies of severe weather phenomena, including tornadoes, waterspouts, thunderstorms, lightning, hail (including probable maximum size), and high air pollution potential
- meteorological site characteristics to be used as minimum design and operating bases, including the following:
 - the maximum snow and ice load (water equivalent) on the roofs of safety-related structures
 - the ultimate heat sink (UHS) meteorological conditions resulting in the maximum evaporation and drift loss of water and minimum water cooling
 - the tornado parameters, including translational speed, rotational speed, and the maximum pressure differential with the associated time interval
 - the 100-year return period straight-line winds
 - other meteorological conditions to be used for design- and operating-basis considerations

The applicant characterized the regional climatology pertinent to the North Anna ESP site using data reported by the National Weather Service (NWS) at the Richmond, Virginia, first-order weather station, as well as nearby cooperative observer stations, such as Louisa, Partlow, and

Piedmont, Virginia. The applicant obtained information on severe weather from a variety of sources, including publications by the National Climatic Data Center (NCDC), the American Society of Civil Engineers (ASCE), the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), and the American National Standards Institute (ANSI).

The North Anna ESP site is located in the eastern Piedmont climatic division of Virginia. According to the applicant, the climate can be described as modified continental; the summers are warm and humid, and the winters are generally mild. The Blue Ridge Mountains to the west act as a potential barrier to outbreaks of cold, continental air in winter. The open waters of the Chesapeake Bay and the Atlantic Ocean contribute to the humid summers and mild winters.

Temperatures in the site region rarely exceed 100 °F or fall below 0 °F. Table 2.3.1-1 presents the applicant's dry-bulb and wet-bulb site characteristics for the North Anna ESP site, based on temperature and humidity data recorded at the Richmond weather station.

more property of the contract of the

A substitution of the second of

ktora samat kapora kilongila.

Table 2.3.1-1 Applicant's Proposed Ambient Air Temperature and Humidity Site Characteristics

SITE CHARACTERISTIC		VALUE	DESCRIPTION	
Maximum Dry-Bulb	2% annual exceedance	90 °F with 75 °F concurrent wet bulb	Wet-bulb and dry- bulb temperatures	
Temperature	0.4% annual exceedance	95 °F with 77 °F concurrent wet bulb	associated with the listed exceedance values and the	
	0% annual exceedance	104.9 °F with 79 °F concurrent wet bulb	100-year return period	
100-year return period		109 °F		
Minimum Dry-Bulb	1% annual exceedance	18 °F		
Temperature	0.4% annual exceedance	14 °F		
	100-year return period	-19 °F		
Maximum Wet-Bulb	0.4% annual exceedance	79 °F		
Temperature	0% annual exceedance	84.9 °F		
	100-year return period	88 °F		

The applicant stated that the area around the site receives an annual average rainfall of approximately 44 inches (in.). Rainfall is fairly well distributed over the entire year, with the exception of July and August when thunderstorm activity raises the monthly totals. Extratropical storms can also contribute significantly to precipitation during September.

Richmond, Virginia, averages about 12.4 in. of snow a year. Snow generally remains on the ground for only 1 or 2 days, although durations of a week or more have occurred as a result of heavy snowfall events immediately followed by cold weather patterns.

According to the applicant, the general synoptic conditions typically predominate in regard to climatic characteristics of the site region. However, during periods of extreme temperatures or light-wind conditions, the local conditions have an influence on the site's meteorology. Nearby Lake Anna has a moderating effect with respect to extreme temperatures in the immediate vicinity of the site. The Blue Ridge Mountains to the west also tend to channel winds along a general north-south orientation during light-wind conditions.

In Revision 0 to the SSAR, the applicant stated that the extreme fastest-mile wind speed at 30 ft above the ground (100-year return period) is 80 miles per hour (mi/hr), with a fastest-mile

wind speed value of 68 mi/hr recorded at Richmond during the period 1958–1989. In RAI 2.3.1-1, the staff asked the applicant to provide a 3-second (s) gust wind speed that represents a 100-year return period. In response to RAI 2.3.1-1, the applicant provided a 3-s gust wind speed value of 96 mi/hr, which represents a 100-year return period at 33 ft above the ground.

In Revision 3 to the SSAR, the applicant revised its extreme fastest-mile 100-year return period wind speed value to 64 mi/hr, based on a calculated value reported for Richmond by ANSI A58.1-1982, "Minimum Design Loads for Buildings and Other Structures." In Revision 3 to the SSAR, the applicant identified the 64 mi/hr fastest-mile wind speed value as a basic wind speed site characteristic.

In Open Item 2.3-1, the staff stated that the applicant's revised 100-year return period fastest-mile basic wind speed site characteristic of 64 mi/hr is not conservative when compared to the minimum 50-year return period fastest-mile basic wind speed value of 70 mi/hr specified in Section 6.5.2 of ANSI A58.1-1982. The applicant's chosen fastest-mile basic wind speed site characteristic of 64 mi/hr is also not conservative when compared to the highest fastest-mile wind speed value of 68 mi/hr recorded at Richmond during the 32-year period 1958–1989. In its submittal dated March 3, 2005, the applicant responded to Open Item 2.3-1 by proposing that the 3-s gust wind speed value of 96 mi/hr be used as the basic wind speed site characteristic instead of the 64 mi/hr fastest-mile wind speed value. Table 2.3.1-2 presents the applicant's revised proposed basic wind speed site characteristic.

Table 2.3.1-2 Applicant's Proposed Basic Wind Speed Site Characteristic

SITE CHARACTERISTIC	VALUE	DESCRIPTION	
Basic Wind Speed	96 mi/hr	3-s gust wind velocity associated with a 100-year return period at 33 ft above ground level in the site area	

In RAIs 2.3.1-1 and 2.3.1-6, the staff asked the applicant to provide additional information regarding site characteristic tornado data and the methodology used for determining tornado characteristics. In its response, the applicant stated that a total of 235 tornadoes were reported within a 2-degree square area around the North Anna ESP site (i.e., an area enclosed by 2-degree longitudinal and latitudinal lines centered on the North Anna ESP site) during the period 1950–2003. The applicant used these data to calculate the annual probability of a tornado striking a point within this 2-degree square area as 5.94×10⁻⁵ per year. This is equivalent to a tornado mean recurrence interval of 16,835 years. The applicant also used these data to generate the tornado site characteristics (based on a 10⁻⁷ per year occurrence), shown in Table 2.3.1-3.

Table 2.3.1-3 Applicant's Proposed Tornado Site Characteristics

SITE CHARACTERISTIC	VALUE	DESCRIPTION
Maximum Wind Speed	260 mi/hr	Sum of the maximum rotational and maximum translation wind speed components at the site, due to passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Maximum Translational Speed	52 mi/hr	Translation component of maximum wind speed at the site, due to the movement across ground of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Maximum Rotational Speed	208 mi/hr	Rotation component of maximum wind speed at the site, due to passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Radius of Maximum Rotational Speed	150 ft	Distance from the center of the tornado at which the maximum rotational wind speed occurs at the site, due to passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Maximum Pressure Drop	1.5 lbf/in. ²	Decrease in ambient pressure from normal atmospheric pressure at the site, due to passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Maximum Rate of Pressure Drop	0.76 lbf/in.²/s	Maximum rate of pressure drop at the site, due to passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year

The SSAR states that, on average, a tropical cyclone or its remnants can be expected to impact some part of Virginia each year. As stated in the SSAR, the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center hurricane database reports that 55 tropical cyclone centers or storm tracks have passed within a 100-nautical mile (nmi) radius of the North Anna ESP site from 1851 through 2003. Table 2.3.1-4 presents the storm classifications and respective frequencies of these tropical cyclone occurrences over this period.

Table 2.3.1-4 Tropical Cyclones Reported within 100-Nautical Mile Radius of the North
Anna ESP Site from 1851 through 2003

CLASSIFICATION	NUMBER OF OCCURRENCES	MAXIMUM SUSTAINED WIND SPEED RANGE
Category 3 Hurricane	1	111–130 mi/hr
Category 2 Hurricane	1 .	96–110 mi/hr
Category 1 Hurricane	5	74–95 mi/hr
Tropical Storm	27	39–73 mi/hr
Tropical Depression	13	≤38 mi/hr
Subtropical Depression	. 1	≤38 mi/hr
Extra-Tropical Storm	7	undefined

According to the applicant, tropical cyclones are responsible for the following record rainfall events in the North Anna ESP site area:

- In August 1969, Hurricane Camille (a tropical depression by the time it passed within 100 nmi of the North Anna ESP site) resulted in a record 24-hour rainfall of 11.18 in. at the Louisa cooperative weather station. The SSAR notes that this is the overall highest 24-hour rainfall total recorded at any station in the North Anna ESP site area.
- In August 1955, Hurricane Connie (a tropical storm by the time it passed within 120 nmi of the North Anna ESP site) resulted in a record 24-hour rainfall total of 8.79 in. at Richmond.

According to the applicant, the occurrence of snowfalls greater than or equal to 1 in. in the North Anna ESP site area ranges from about 3 to 5 days per year. Daily snowfall totals greater than or equal to thresholds of 5 in. and 10 in. occur less than 1 day per year. The applicant reported maximum 24-hour and monthly snowfall totals for the North Anna ESP site region of 21.6 in. at Richmond in January 1940 and 41.0 in. at Partlow in January 1966, respectively. The applicant reported the weight of the 100-year return period snowpack for the North Anna ESP site area as 30.5 pound-force per square foot (lbf/ft²) and the 48-hour winter probable maximum precipitation (also known as the probable maximum winter precipitation (PMWP)) as 20.75 in. In response to Open Item 2.3-2, the applicant also reported a maximum ground snow load of 45.4 lbf/ft² as the weight of the 100-year snowpack plus 48-hour maximum snowfall. As shown in Table 2.3.1-5, the applicant selected the 100-year return period snowpack value of 30.5 lbf/ft², the 100-year snowpack plus 48-hour maximum snowfall value of 45.4 lbf/ft², and the 48-hour PMWP value of 20.75 in. as winter precipitation site characteristics for use in the design of the roofs of safety-related structures.

Table 2.3.1-5 Applicant's Proposed Winter Precipitation Site Characteristics

SITE CHARACTERISTIC	VALUE	DESCRIPTION	
100-Year Snowpack	30.5 lbf/ft²	Weight, per unit area, of the 100-year return period snowpack at the site	
100-Year Snowpack plus 48-Hour Maximum Snowfall	45.5 lbf/ft ²	48-hour maximum snowfall (28.5 in. = 15 lbf/ft² on top of 100-year return snowpack (30.5 lbf/ft²)	
48-Hour Winter Probable Maximum Precipitation	20.75 in.	Maximum probable winter rainfall in a 48-hour period	

According to the applicant, data published by the NCDC show that Louisa and Spotsylvania Counties can expect, on average, hail with diameters greater than or equal to 0.75 in. about 1 day per year. Nearby counties to the south and east of the North Anna ESP site can expect hail with diameters greater than or equal to 0.75 in. to occur from 1 to 2 days per year. Hail events with diameters up to 1.75 in. have been reported in recent years in both Louisa and Spotsylvania Counties, four in Louisa County in 1998 and three in Spotsylvania County in 1993. Softball-size hail (about 4.5 in. in diameter) has been observed in recent years at two locations in the general North Anna ESP site area—once in Free Union, Virginia (approximately 42 miles

west of the ESP site) on June 4, 2002, and once in Lignum, Virginia (approximately 28 miles north-northwest of the ESP site), on May 4, 1996.

The applicant estimated that, on average, 36 thunderstorm-days per year occur in the site area, resulting in an estimated 11.2 lightning flashes to earth per square mile per year. Given the frequency of thunderstorms and the size of the North Anna ESP site PPE (site footprint within which any new reactors would be located) (0.068 mi²), the expected frequency of lightning flashes in the PPE is 0.76 per year.

According to the applicant, low-level inversions in the North Anna ESP site region based at or below an elevation of 500 ft occur during approximately 30 percent of the year. Most of these inversions are nocturnal in nature, generated through nighttime cooling. These inversions occur most frequently during the autumn and winter seasons and least frequently during the spring and summer seasons. Likewise, the autumn and winter seasons have the greatest frequency of occurrence of shallow mixing depths, with autumn and winter having afternoon mean maximum mixing height depths of about 4600 ft and 3300 ft, respectively.

The applicant examined temperature and humidity data from Richmond (1978–2003) to determine the meteorological site characteristics for the UHS in accordance with RG 1.27, "Ultimate Heat Sink for Nuclear Power Plants," issued January 1976. The applicant stated that the controlling parameters for the type of UHS selected by the applicant (i.e., a mechanical draft cooling tower over a buried water storage basin or other passive water storage facility) are the wet-bulb temperature and the coincident dry-bulb temperature. The applicant considered the worst (i.e., highest) 30-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures to represent the meteorological conditions resulting in maximum evaporation and drift loss. Likewise, the applicant considered the worst (i.e., highest) 1-day and 5-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures to conservatively represent the meteorological conditions resulting in minimum water cooling. Consequently, the applicant calculated the worst 1-day, worst 5-day, and worst 30-day daily average wet-bulb temperatures and coincident dry-bulb temperatures as UHS meteorological site characteristics values. Table 2.3.1-6 presents these results.

In Open Item 2.3-3, the staff identified the need for an additional UHS meteorological site characteristic for use in evaluating the potential for water freezing in the UHS water storage facility, a phenomenon which would reduce the amount of water available for use by the UHS. In its submittal dated March 3, 2005, the applicant responded to Open Item 2.3-3 by proposing use of the maximum cumulative degree-days below freezing as the relevant site characteristic. The applicant proposed a maximum cumulative degree-day below freezing site characteristic value of 322 °F degree-days, based on the maximum value derived from December 1 through March 31 for the period 1949–2001, using daily mean air temperatures recorded at Piedmont.

Table 2.3.1-6 Applicant's Proposed Ultimate Heat Sink Meteorological Site Characteristics

SITE CHARACTERISTIC	VALUE	DESCRIPTION
Worst 1-Day Daily Average of Wet-Bulb Temperatures and Coincident Dry-Bulb Temperatures	78.9 °F wet-bulb temperature with coincident 87.7 °F dry-bulb temperature	Meteorological conditions resulting in the minimum water cooling during any 1 day
Worst 5-Day Daily Average of Wet-Bulb Temperatures and Coincident Dry-Bulb Temperatures	77.6 °F wet-bulb temperature with coincident 80.9 °F dry-bulb temperature	Meteorological conditions resulting in the minimum water cooling during any consecutive 5 days
Worst 30-Day Daily Average of Wet-Bulb Temperatures and Coincident Dry-Bulb Temperatures	76.3 °F wet-bulb temperature with coincident 79.5 °F dry-bulb temperature	Meteorological conditions resulting in the maximum evaporation and drift loss during any consecutive 30 days
Maximum Cumulative Degree-Days Below Freezing	322 °F degree-days	Meteorological condition resulting in the maximum formation of surface ice in the UHS basin

2.3.1.2 Regulatory Evaluation

In SSAR Section 1.8.1, the applicant identified the following applicable NRC regulations regarding regional climatology:

 Appendix A, "General Design Criteria for Nuclear Power Plants," to 10 CFR Part 50, General Design Criterion (GDC) 2, "Design Bases for Protection Against Natural Phenomena," with respect to information on severe regional weather phenomena that have historically been reported for the region and that are reflected in the design bases for SSCs important to safety

. Pagasagasang

- Appendix A to 10 CFR Part 50, GDC 4, "Environmental and Dynamic Effects Design Bases," with respect to information on tornadoes that could generate missiles
- 10 CFR 100.20(c) and 10 CFR 100.21(d) with respect to the consideration that has been given to the regional meteorological characteristics of the site

In SSAR Sections 1.8.2 and 2.3.1, the applicant identified the following applicable NRC guidance regarding regional climatology:

 RG 1.27 with respect to the meteorological conditions that should be considered in the design of the UHS

- Section 2.3.1 of RG 1.70 with respect to the type of general climate and regional meteorological data that should be presented
- RG 1.76, "Design Basis Tornado for Nuclear Power Plants," issued April 1974, with respect to the characteristics of the design-basis tornado

The staff has reviewed this portion of the application in accordance with the guidance identified by the applicant, and to determine if the application is in compliance with the identified regulations, with the exception of the GDC. An ESP applicant need not demonstrate compliance with the GDC with respect to regional climatology.

Section 2.3.1 of RS-002 and Section 2.3.1 of RG 1.70 provide the following guidance on information appropriate for determining regional climatology:

- The description of the general climate of the region should be based on standard climatic summaries compiled by NOAA. Consideration of the relationships between regional synoptic-scale atmospheric processes and local (site) meteorological conditions should be based on appropriate meteorological data.
- Data on severe weather phenomena should be based on standard meteorological records from nearby representative NWS, military, or other stations recognized as standard installations that long periods of data on record. The applicability of these data to represent site conditions during the expected period of reactor operation should be substantiated.
- Tornado site characteristics may be based on RG 1.76 or the staff's interim position on design-basis tornado characteristics (see letter dated March 25, 1988, from the NRC to the Advanced-Light Water Reactor Utility Steering Committee). An ESP applicant may specify any tornado wind speed site characteristics that are appropriately justified, provided that a technical evaluation of site-specific data is conducted.
- Basic (straight-line) wind speed site characteristics should be based on appropriate standards, with suitable corrections for local conditions.
- The UHS meteorological data, as stated in RG 1.27, should be based on long-period regional records which represent site conditions. Suitable information may be found in climatological summaries for the evaluation of wind, temperature, humidity, and other meteorological data used for UHS design.
- Freezing rain estimates should be based on representative NWS station data.
- High air pollution potential information should be based on U.S. Environmental Protection Agency (EPA) studies.
- All other meteorological and air quality data to be used for safety-related plant design and operating bases should be documented and substantiated.

2.3.1.3 Technical Evaluation

The staff evaluated regional meteorological conditions using information reported by the NCDC, the National Severe Storms Laboratory (NSSL), the Southern Regional Climate Center (SRCC), ASHRAE, ASCE, and the Structural Engineering Institute (SEI). The staff reviewed statistics for the following climatic stations located in the vicinity of the North Anna ESP site:

- Partlow, Virginia, located approximately 5 miles east of the ESP site
- Louisa, Virginia, located approximately 11 miles west of the ESP site
- Piedmont, Virginia, located approximately 21 miles west-northwest of the ESP site
- Richmond, Virginia, located approximately 47 miles southeast of the ESP site
- Charlottesville, Virginia, located approximately 36 miles west of the ESP site

Normal climatic data for the period 1971–2000 reported by NCDC for the eastern Piedmont climatic division of Virginia indicate that the annual mean temperature in the area is about 56.6 °F and ranges from a low monthly mean value of about 35.9 °F in January to a high monthly mean value of about 76.8 °F in July (NCDC, "Eastern Piedmont, Virginia, Divisional Normals—Temperature, Period 1971–2000, Climatography of the United States No. 85"). One of the highest temperatures recorded in the site region was 106 °F at Partlow on both August 31 and September 2, 1953 (SRCC, "Partlow, Virginia, Period of Record Monthly Climate Summary, Period of Record: 06/01/1952 to 12/31/1976"); one of the lowest temperatures recorded in the site region was -21 °F at Louisa on February 5, 1996 (SRCC, "Louisa, Virginia, Period of Record Monthly Climate Summary, Period of Record: 08/01/1948 to 03/31/2004").

The annual mean wet-bulb temperature at Richmond is 52.3 °F, ranging from a high monthly mean value of 71.5 °F in July to a low monthly mean value of 34.3 °F in January. The annual mean relative humidity is 70 percent (NCDC, "Richmond, Virginia, 2002 Local Climatological Data, Annual Summary with Comparative Data").

For the reasons set forth below, the staff concurs with the temperature and humidity site characteristics presented by the applicant. The applicant's 2- and 0.4-percent annual exceedance maximum dry-bulb temperatures, the 1- and 0.4-percent annual exceedance minimum dry-bulb temperatures, and the 0.4 percent exceedance maximum wet-bulb temperatures are based on Richmond data published by the NCDC ("Engineering Weather Data CDROM").1 The applicant's 0-percent annual exceedance maximum dry-bulb and maximum wet-bulb temperatures represent the highest values recorded at Richmond during the period 1973-2002. The 100-year return period maximum dry-bulb and maximum wet-bulb temperatures provided by the applicant were extrapolated from the Richmond 1973-2002 data using a least squares regression method, as described in the applicant's response to NRC RAI 2.3.1(b). In order to verify the applicant's 100-year return period data, the staff also calculated 100-year return period maximum dry-bulb and maximum wet-bulb temperatures using NCDC data for Richmond during the period 1961-1990 (NCDC, "Solar and Meteorological Surface Observational Network (SAMSON) for Eastern U.S. CDROM") and algorithms based on the Gumbel Type 1 extreme value distribution as defined in Chapter 27 of if a more with a complete some of the complete

¹The data presented by the applicant as the 1- and 0.4-percent annual exceedance minimum dry-bulb temperatures are equivalent to the NCDC 99- and 99.6-percent annual exceedance (i.e., occurrence) values.

the 2001 ASHRAE Handbook—Fundamentals. The staff found that the 100-year return period maximum dry-bulb and maximum wet-bulb temperature values calculated by the applicant bound the equivalent values calculated by the staff.

The staff chose not to list the applicant's 0-percent annual exceedance maximum dry-bulb and wet-bulb temperatures as site characteristics because these values are dependent upon the length of the available period of record. The staff presented 100-year return period values instead.

According to the 1971–2000 normal climatic data reported by NCDC for the eastern Piedmont climatic division of Virginia ("Eastern Piedmont, Virginia, Divisional Normals—Precipitation, Period 1971–2000, Climatography of the United States No. 85"), precipitation is well distributed throughout the year, with monthly climate division normals for the North Anna ESP site region ranging from a minimum of about 3.18 in. in December to a maximum of about 4.36 in. in July. In September 1987, Charlottesville experienced one of the highest monthly amounts of precipitation observed in the area—17.96 in. (SRCC, "Charlottesville, Virginia, Period of Record Monthly Climate Summary, Period of Record: 08/05/1948 to 03/31/2004"). On August 20, 1969, Louisa recorded one of the highest 24-hour precipitation totals for the site region—11.18 in. (SRCC, "Louisa, Virginia, Period of Record Monthly Climate Summary, Period of Record: 08/01/1948 to 03/31/2004"). This rainfall was associated with Hurricane Camille.

Snowfall in the site vicinity averages approximately 16.6 in. per year, based on historical data collected during 1952–1976 at the Partlow cooperative weather station (SRCC, "Partlow, Virginia, Period of Record Monthly Climate Summary, Period of Record: 06/01/1952 to 12/31/1976"). Measurable snowfall has occurred from November through April, with the most snow typically falling in January (5.7 in. on average in Partlow).

Damaging storms occur mainly from snow and freezing rain in winter, and from hurricanes, tornadoes, and severe thunderstorms in other seasons (NCDC, "Richmond, Virginia, 2002 Local Climatological Data, Annual Summary with Comparative Data"). Damage may be caused by wind, flooding, or rain, or by any combination of these. Tornadoes are infrequent, but some occurrences have been observed within the area.

The applicant presented a 100-year return period fastest-mile wind speed value of 64 mi/hr in Revision 3 to the SSAR. The applicant's chosen 100-year return period fastest-mile wind speed is not conservative when compared to the minimum 50-year return period fastest-mile basic wind speed of 70 mi/hr specified in Section 6.5.2 of ANSI A58.1-1982. The applicant's chosen value is also not conservative when compared to the highest fastest-mile wind speed of 68 mi/hr recorded at Richmond during the 32-year period of record, 1958–1989. Consequently, the staff does not endorse the use of the 64 mi/hr 100-year return period fastest-mile wind speed value as a basic wind speed site characteristic. This concern resulted in Open Item 2.3-1.

In its response to Open Item 2.3-1, the applicant proposed using a 100-year return period 3-s gust wind speed value of 96 mi/hr as the basic wind speed site characteristic. The applicant determined this value in accordance with the guidance provided by the ASCE and the SEI industry standard on building loads ("Minimum Design Loads for Buildings and Other Structures," SEI/ASCE 7-02). Therefore, the staff concludes that a 3-s gust wind speed site characteristic of 96 mi/hr is acceptable.

According to NSSL (NCDC, "Severe Thunderstorm Climatology, Total Threat"), the mean number of days per year with the threat of tornados occurring within 25 miles of the North Anna ESP site is approximately 0.4 to 0.6 for any tornado, approximately 0.05 to 0.10 for a significant tornado (F2 or greater; wind speeds in excess of 113 mi/hr), and less than 0.005 for a violent tornado (F4 or greater; wind speeds in excess of 207 mi/hr).

At the NRC's direction, Pacific Northwest National Laboratories (PNNL) prepared a technical evaluation report evaluating the tornado site characteristics for the North Anna ESP site (Ramsdell, Jr., V.J., "Technical Evaluation Report on Design Basis Tornadoes for the North Anna ESP Site"). This report derived a best estimate annual tornado strike probability of 1.6×10⁻⁴, based on tornado data from the period January 1950 through August 2003. This probability corresponds to a mean recurrence interval of 6250 years. Using a slightly different methodology and period of record, the applicant calculated a similar but higher tornado return period of 16,835 years. The PNNL report also derived a best estimate 10⁻⁷ per year occurrence tornado site characteristics wind speed of 245 mi/hr, which is bounded by the applicant's tornado site characteristics (i.e., pressure drop and rate of pressure drop) assuming the radius of the maximum rotational wind speed is 150 ft and the ratio between the rotational wind speed and the translational wind speed is 4. These assumptions are consistent with the staff's interim position on design-basis tornado characteristics. Therefore, the staff concludes that the applicant's tornado site characteristics are acceptable.

During the period 1900–2002, a total of 4 hurricanes and 17 tropical storms directly hit Virginia (Landreneau, D., "Atlantic Tropical Storms and Hurricanes Affecting the United States: 1899-2002," NOAA Technical Memorandum NWS SR-206 (updated through 2002)). These storms typically weaken as they move inland, so wind damage is usually confined to the coastal regions, while damage inland comes primarily from heavy rain and flooding. One of the most significant tropical cyclones to affect portions of east-central Virginia during the last several decades was Hurricane Isabel on September 18-19, 2003. Isabel made landfall near Drum Inlet, North Carolina, as a Category 2 hurricane (maximum sustained winds between 96 and 100 mi/hr), then weakened to a tropical storm over southern Virginia as it tracked northwest into central Virginia, just west of Richmond. The highest sustained wind speed recorded at Richmond was 38 mi/hr; the highest gust recorded at Richmond was 73 mi/hr. The unusually large wind field resulted in the most extensive power outages ever experienced in Virginia. Inland flooding also resulted from rainfall amounts ranging from 4 to 7 in., which occurred over parts of the Piedmont regions of central and south central Virginia (Beven, J., and H. Cobb, "Tropical Cyclone Report, Hurricane Isabel, 6-19 September 2003," National Hurricane Center and NCDC Storm Event Database, "Storm Events for Virginia, 01/01/1950 through 04/30/2004"). Although Hurricane Isabel had a significant impact on the ESP site region, it did not result in any recordbreaking wind or rainfall statistics and, as such, has no impact on the climatic site characteristics of the North Anna ESP site.

The highest monthly and annual total snowfalls recorded at the Partlow station were 41 in. and 54 in., respectively. One of the highest reported 24-hour snowfall observations in the site region was 21.6 in. in January 1940 at Richmond (NCDC, "Richmond, Virginia, 2002 Local Climatological Data, Annual Summary with Comparative Data"). One of the highest snow depths recorded in the site region was 24 in. on January 26, 1987, and on January 30, 1966, in Louisa (SRCC, "Louisa, Virginia, Period of Record Monthly Climate Summary, Period of Record: 08/01/1948 to 03/31/2004").

RG 1.70 specifies both the weight of the 100-year return period snowpack and the weight of the 48-hour PMWP to assess the potential snow loads on the roofs of safety-related structures. The staff's interim position on winter precipitation loads (see memorandum dated March 24. 1975, from H. R. Denton to R. R. Maccary) provides clarification as to the load combinations to he used in evaluating the roofs of safety-related structures. Consistent with the staff's interim position on winter precipitation loads, the winter precipitation loads to be included in the combination of normal live loads to be considered in the design of a nuclear power plant or plants that might be constructed on a proposed ESP should be based on the weight of the 100-year snowpack or snowfall, whichever is greater, recorded at ground level. Likewise, the winter precipitation loads to be included in the combination of extreme live loads to be considered in the design of a nuclear power plant or plants that might be constructed on a proposed ESP should be based on the weight of the 100-year snowpack at ground level plus the weight of the 48-hour PMWP at ground level for the month corresponding to the selected snowpack. A COL or CP applicant may choose and justify an alternative method for defining the extreme winter precipitation load by demonstrating that the 48-hour PMWP could neither fall nor remain on the top of the snowpack and/or building roofs.

The applicant has identified a 100-year return period snowpack of 30.5 lbf/ft² for the North Anna ESP site. The applicant determined this value in accordance with the guidance of SEI/ASCE 7-02. Because the applicant performed its analysis in accordance with the appropriate guidance and the results bound the observations described above, the staff concludes that a 100-year return period snowpack site characteristic value of 30.5 lbf/ft² is acceptable.

The applicant has identified a 48-hour PMWP value of 20.75 in. of water for the North Anna ESP site. Because the applicant determined this value in accordance with the guidance of NUREG/CR-1486, "Seasonal Variation of 10-Square-Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian," issued April 1980, the staff concludes that a 48-hour PMWP site characteristic value of 20.75 in. of water is acceptable.

Open Item 2.3-2 requests that the applicant justify exclusive use of snowpack weight for calculating snowload or provide an alternative method. In response to Open Item 2.3-2, the applicant has proposed an additional winter precipitation site characteristic. The applicant defined this additional winter precipitation site characteristic as the sum of the 100-year return period snowpack and the 48-hour maximum winter snowfall event. The applicant used the maximum monthly snowfall recorded for Richmond (28.5 in. of snow, which is approximately equivalent to 15 lbf/ft²) to conservatively define the 48-hour maximum winter snowfall event. The staff has chosen not to include the applicant's proposed sum of the 100-year return period snowpack (30.5 lbf/ft²) and the 48-hour maximum winter snowfall event (15 lbf/ft²), 45.5 lbf/ft², as an additional winter precipitation site characteristic. Once the roof design is known, the COL or CP applicant has the option to demonstrate that the 48-hour PMWP could neither fall nor remain entirely on top of the 100-year snowpack and/or building roofs.

The following discussion on freezing rain, hail, and lightning is intended to provide a general climatic understanding of the severe weather phenomena in the site region but does not result in the generation of site characteristics for use as design or operating bases.

The NCDC reports a 50-year return period uniform radial ice thickness of 0.75 in. resulting from freezing rain, with a concurrent 3-s gust wind speed of 30 mi/hr for the North Anna ESP site

area (Jones, K., et al., "The Development of a U.S. Climatology of Extreme Ice Loads," Technical Report 2002-01).

Hail often accompanies severe thunderstorms. According to the NCDC storm events database (NCDC Storm Event Database, "Storm Events for Virginia, 01/01/1950 through 07/31/2003"), 66 occurrences of hail with diameters of 0.75 in. or greater were reported in the five-county region surrounding the site between January 1, 1955, and July 31, 2003. Seventeen of these occurrences reported hail diameters of 1.5 in. or more. The largest reported size was 2.5 in. which occurred on July 9, 1977, in Caroline County, approximately 25–30 miles southeast of the site. According to NSSL (NCDC, "Severe Thunderstorm Climatology, Total Threat"), the threat of hail occurring within 25 miles of the North Anna ESP site is approximately 2 days per year for damaging hail or hail 0.75 in. in diameter or greater, and 0.25 to 0.50 days per year for hail 2 in. or more in diameter.

The applicant has estimated that approximately 11.2 lightning flashes per year per square mile occur around the site area. The applicant's estimate is consistent with the mean annual ground flash density of 4 flashes per square kilometer (10.4 flashes per square mile) presented in NUREG/CR-3759, "Lightning Strike Density for the Contiguous United States from Thunderstorm Duration Records," issued in 1984 for the North Anna ESP site region.

Large-scale episodes of atmospheric stagnation are not infrequent in the site region. Korshover ("Climatology of Stagnating Anticyclones East of the Rocky Mountains, 1936–1975") reports that, during the 40-year period between 1936 and 1975, high-pressure stagnation conditions, lasting for 4 days or more, occurred about 49 times, with an average of 4.8 stagnation days per case. Five of these stagnation cases lasted 7 days or longer.

The staff found that, according to Holzworth ("Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution throughout the Contiguous United States"), seasonal mixing heights range from an average low of 400 meters (1300 ft) during autumn mornings to an average high of 1800 meters (5900 ft) during spring and summer afternoons. According to Hosler ("Low-Level Inversion Frequency in the Contiguous United States"), low-level, mostly nocturnal inversions are expected to occur approximately 30 percent of the time, with the greatest frequency during the fall and winter (approximately 34 percent of the time and 33 percent of the time, respectively) and with the least frequency during the spring and summer (approximately 28 percent of the time for each season).

The above discussion on atmospheric stagnation, mixing heights, and inversions is intended to provide a general climatic understanding of the air pollution potential in the region. Section 2.3.2 of this SER discusses the ESP air quality conditions considered for design and operating bases. Section 2.3.4 and 2.3.5 of this SER present the atmospheric dispersion site characteristics used to evaluate short-term postaccident airborne releases and long-term routine airborne releases, respectively.

In order to verify the applicant's UHS meteorological site characteristic resulting in minimum water cooling and maximum evaporation and drift loss, the staff examined 30 years (1961–1990) of hourly temperature and humidity data from Richmond ("Solar and Meteorological Surface Observational Network (SAMSON) for Eastern U.S. CDROM"). The staff calculated 1-day, 5-day, and 30-day average wet-bulb temperatures from the hourly data and selected the periods with the highest average wet-bulb temperatures as the worst periods.

The resulting maximum 1-day, 5-day, and 30-day average wet-bulb temperature values were similar to the values presented by the applicant.

In Open Item 2.3-3, the staff identified the need for an additional UHS meteorological site characteristic for use in evaluating the potential for ice formation in the UHS water storage facility. In its response to Open Item 2.3-3, the applicant identified a maximum cumulative degree-days below freezing value of 322 °F degree-days as a UHS meteorological site characteristic for use in evaluating the potential for water freezing in the UHS water storage facility. Section 2.4.7 of this SER describes the staff's independent evaluation of the meteorological conditions resulting in the maximum formation of surface ice (and therefore the minimum initial volume of liquid water available to the UHS). Using daily temperature data from Piedmont, the staff was able to reproduce a maximum cumulative degree-days below freezing value similar to the value presented by the applicant.

Based on the discussion presented above, the staff concludes that the UHS meteorological site characteristics proposed by the applicant are acceptable.

The staff intends to include the regional climatic site characteristics listed in Table 2.3.1-7 in any ESP permit that might be issued for the North Anna ESP site.

Table 2.3.1-7 Staff's Proposed Regional Climatic Site Characteristics

SITE CHARACTERISTIC		VALUE	DESCRIPTION
Ambient Air Ter	nperature and Hur	nidity	
Maximum Dry-Bulb Temperature	2% annual exceedance	90 °F with 75 °F concurrent wet-bulb	The ambient dry-bulb temperature (and coincident wet-bulb temperature) that will be exceeded 2% of the time annually
	0.4% annual exceedance	95 °F with 77 °F concurrent wet-bulb	The ambient dry-bulb temperature (and coincident wet-bulb temperature) that will be exceeded 0.4% of the time annually
	100-year return period	109 °F	The ambient dry-bulb temperature that has a 1% annual probability of being exceeded (100-year mean recurrence interval)
Minimum Dry- Bulb Temperature	99% annual exceedance	18 °F	The ambient dry-bulb temperature below which dry-bulb temperatures will fall 1% of the time annually
	99.6% annual exceedance	14 °F	The ambient dry-bulb temperature below which dry-bulb temperature will fall 0.4% of the time annually
	100-year return period	- 19 °F	The ambient dry-bulb temperature for which a 1% annual probability of a lower dry-bulb temperature exists (100-year mean recurrence interval)
Maximum Wet-Bulb	0.4% annual exceedance	79 °F	The ambient wet-bulb temperature that will be exceeded 0.4% of the time annually
Temperature	100-year return period	88 °F	The ambient wet-bulb temperature that has a 1% annual probability of being exceeded (100-year mean recurrence interval)

SITE CHARACTERISTIC	VALUE	DESCRIPTION
Basic Wind Speed	4	
3-s Gust	96 mi/hr	The 3-s gust wind speed at 33 ft above the ground that has a 1% annual probability of being exceeded (100-year mean recurrence interval)
Tornado	·	1
Maximum Wind Speed	260 mi/hr	Maximum wind speed resulting from passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Translational Speed	52 mi/hr	Translation component of the maximum tornado wind speed
Rotational Speed	208 mi/hr	Rotation component of the maximum tomado wind speed
Radius of Maximum Rotational Speed	150 ft	Distance from the center of the tornado at which the maximum rotational wind speed occurs
Maximum Pressure Drop	1.5 lbf/in.²	Decrease in ambient pressure from normal atmospheric pressure resulting from passage of the tornado
Maximum Rate of Pressure Drop	0.76 lbf/in.²/s	Rate of pressure drop resulting from the passage of the tornado
Winter Precipitation		
100-Year Snowpack	30.5 lbf/ft²	Weight of the 100-year return period snowpack (to be used in determining normal precipitation loads for roofs)
48-Hour Probable Maximum Winter Precipitation	20.75 in. of water	Probable maximum precipitation during the winter months (to be used in conjunction with the 100-year snowpack in determining extreme winter precipitation loads for roofs)
Ultimate Heat Sink		
Meteorological Conditions Resulting in the Minimum Water Cooling During Any 1 Day	78.9 °F wet-bulb temperature with coincident 87.7 °F dry-bulb temperature	Historic worst 1-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures
Meteorological Conditions Resulting in the Minimum Water Cooling During Any Consecutive 5 Days	77.6 °F wet-bulb temperature with coincident 80.9 °F dry-bulb temperature	Historic worst 5-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures resulting in minimum water cooling
Meteorological Conditions Resulting in the Maximum Evaporation and Drift Loss During Any Consecutive 30 Days	76.3 °F wet-bulb temperature with coincident 79.5 °F dry-bulb temperature	Historic worst 30-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures
Meteorological Conditions Resulting in Maximum Water Freezing in the UHS Water Storage Facility	322 °F degree-days below freezing	Historic maximum cumulative degree-days below freezing

The staff acknowledges that long-term climatic change resulting from human or natural causes may introduce trends into design conditions. However, no conclusive evidence or consensus of

opinion is available on the rapidity or nature of such changes. If in the future the ESP site is no longer in compliance with the terms and conditions of the ESP (e.g., new information shows that the climatic site characteristics no longer represent extreme weather conditions due to climate change), the staff may seek to modify the ESP or impose requirements on the site in accordance with the provisions of 10 CFR 52.39, "Finality of Early Site Permit Determinations," if necessary, to bring the site into compliance with Commission requirements to assure adequate protection of the public health and safety.

2.3.1.4 Conclusions

As set forth above, the applicant has presented and substantiated information relative to the regional meteorological conditions important to the safe design and siting of a nuclear power plant or plants falling within the applicant's PPE that might be constructed on the proposed site. The staff has reviewed the available information provided and, for reasons given above, concludes that the identification and consideration of the regional and site meteorological characteristics set forth above meet the requirements of 10 CFR 100.20(c) and 10 CFR 100.21(d).

The staff finds that the applicant has considered the most severe regional weather phenomena in establishing the site characteristics identified above. The staff has generally accepted the methodologies used to determine the severity of the weather phenomena reflected in these site characteristics, as documented in SERs for previous licensing actions. Accordingly, the staff concludes that the use of these methodologies results in site characteristics containing margin sufficient for the limited accuracy, quantity, and period of time in which the data have been accumulated. In view of the above, the site characteristics previously identified are acceptable for use as part of the design bases for SSCs important to safety, as may be proposed in a COL or CP application.

With regard to tornado wind speed, the applicant conducted a technical assessment of site-specific tornado data. The staff finds the assessment sufficient to justify the applicant's proposed site tornado characteristics, which deviate from the staff's interim position on design-basis tornado characteristics. In addition, the staff finds that these tornado site characteristics are acceptable for the design-basis tornado used for the generation of missiles.

The staff has reviewed the applicant's proposed site characteristics related to climatology for inclusion in an ESP for the applicant's site, should one be issued, and finds these characteristics to be acceptable. The staff has also reviewed the applicant's proposed design parameters (PPE values) for inclusion in such an ESP (SSAR Section 1.3) and finds them to be reasonable. The staff did not perform a detailed review of these parameters.

2.3.2 Local Meteorology

2.3.2.1 Technical Information in the Application

In Section 2.3.2 of the SSAR, the applicant presented local (site) meteorological information. This SSAR section also addresses the potential influence of construction and operation of a nuclear power plant or plants falling within the applicant's PPE on local meteorological conditions that might in turn adversely impact such a plant or plants or the associated facilities.

Finally, the applicant provided a topographical description of the site and its environs. The applicant presented the following information:

 a description of the local (site) meteorology in terms of airflow, temperature, atmospheric water vapor, precipitation, fog, atmospheric stability, and air quality

1. 1 1

- an assessment of the influence on the local meteorology of construction and operation
 of a nuclear power plant or plants falling within the applicant's PPE that might be
 constructed on the proposed site and its facilities, including the effects of plant
 structures, terrain modification, and heat and moisture sources resulting from plant
 operation
- a topographical description of the site and its environs, as modified by the structures of a nuclear power plant or plants falling within the applicant's PPE that might be constructed on the proposed site

The applicant used data from the NWS first-order weather station at Richmond, Virginia, as well as data provided by NCDC from six nearby cooperative observer weather stations, to characterize temperature, rainfall, and snowfall for the North Anna ESP site area. The applicant also provided wind, humidity, and fog data collected at Richmond.

In general, the applicant considered the more extensive meteorological data available for Richmond to be fairly representative of conditions in the ESP site area. However, the applicant noted slight differences in the Richmond data with respect to minimum temperature extremes, diurnal temperature ranges, and average annual snowfall, as compared to corresponding data observed at nearby cooperative weather stations. The applicant attributed these differences to the consequences of urban heating for the more urban Richmond location.

The applicant also characterized local meteorological conditions using data collected from the meteorological monitoring program at the existing NAPS. According to the applicant, the meteorological variables collected by the NAPS monitoring program are appropriate for use in describing local meteorological conditions because of the proximity of the NAPS meteorological tower to the ESP site.

The applicant presented historical normals (e.g., 30-year averages) and extremes of temperature, rainfall, and snowfall for the seven nearby NWS and cooperative weather stations in the North Anna ESP site area. Daily mean temperatures among the observing stations are fairly similar, ranging from 54.2 °F to 57.6 °F. Extreme maximum temperatures have ranged from 100 °F to 107 °F, whereas extreme minimum temperatures have ranged from -10 °F to -21 °F. Normal annual precipitation totals are also fairly comparable among these observing stations, ranging from 42.24 in. to 48.87 in. Normal annual snowfall totals range from 12.4 in. to 18.8 in.

According to the applicant, an average of 27.2 days per year of heavy fog has been reported for Richmond, which is the location closest to the North Anna ESP site for which a fog data set exists. Low regions at the site and in the vicinity of Lake Anna would be expected to have a higher frequency of fog occurrences because of the accumulation of relatively cool surface air from flows draining from higher elevations, as compared to the relatively flat region of the Richmond weather station.

According to information provided by the applicant, onsite winds occur along a north-south orientation on an annual basis, with seasonal variations. Wind data taken from the 33-ft level of the onsite meteorological tower for the 14-year period between 1974 and 1987 indicate that the predominant wind directions are from the south-southwest (about 10 percent of the time), north (about 9 percent of the time), northwest (about 9 percent of the time), and west-northwest (about 8 percent of the time). Winds from the northeast clockwise through south-southeast and from the west-southwest and the west occur least frequently (each about 4 percent of the time). Wind direction distributions based on data from the 159-ft level are similar to those based on the lower-level data. The onsite annual average wind speeds are 6.3 mi/hr at the 33-ft level and 8.6 mi/hr at the 159-ft level.

The SSAR presents atmospheric stability data based on delta-temperature measurements between the 159-ft and 33-ft levels on the onsite meteorological tower. Neutral (Pasquill type "D") and slightly stable (Pasquill type "E") conditions predominate, occurring about 31 and 26 percent of the time, respectively. Moderately stable (Pasquill type "F") and extremely stable (Pasquill type "G") conditions occur about 8 and 5 percent of the time, respectively.

The applicant stated that the dimensions of the new plant structures and associated paved, concrete, and other improved surfaces would be insufficient to generate discernable impacts on local and regional meteorological conditions beyond the areas immediately adjacent to the site structures and improved surfaces. The applicant concluded that the small and localized surface water temperature increases on Lake Anna resulting from the operation of an open-cycle cooling system for the applicant's proposed Unit 3 would not be expected to significantly impact the ongoing moderation of temperature extremes and alterations of local wind patterns by the lake. Induced fogging conditions under extreme humidity conditions during cooler seasons would most likely coincide with naturally occurring fogging conditions, and the applicant does not expect the proposed Unit 3 to significantly increase the occurrence of local fog. Similarly, the applicant expects that any increases in ambient temperatures resulting from the operation of a closed-loop dry tower system proposed for Unit 4 would be very localized to the ESP site and would not affect the ambient ground and atmospheric temperatures beyond the site boundary.

In Open Item 2.3-4, the staff stated that the applicant has not described the impact of potential increases in atmospheric temperature resulting from the operation of closed-cycle (dry) cooling towers associated with proposed Unit 4 on plant design and operation. In its response to Open Item 2.3-4, the applicant stated that the operation of the dry cooling towers would be expected to have minimal impact on the design and operation of the new Units 3 and 4. The dry cooling towers would be approximately 150 ft high and would consist of a series of modules, each containing air circulating fans. According to the applicant, the warm air plume from the dry cooling towers would tend to rise vertically, driven by the velocity imparted by the fans and thermal buoyancy. During most expected atmospheric conditions, the resulting heated plume would be expected to rise above the top of the tallest powerblock structures in the plant envelope area. Only a strong wind blowing across the bank of cooling towers could cause plume downwash because of building wake effects. This strong wind would also enhance the mixing with cooler air from outside the plume, resulting in negligible changes in temperature at ground level.

Since the specific design of the ESP facility is not known, the applicant stated that it is not possible to predict with certainty the impact of the warm air dry cooling tower plumes on specific

plant features, such as heating, ventilation, and air-conditioning intakes. The applicant stated that potential impact of the dry cooling towers on the design and operation on the ESP facility would be considered as part of detailed engineering.

According to the applicant, the North Anna ESP site region is characterized by gently rolling terrain that rises to an average height of 50 to 150 ft above Lake Anna. The primary topographic influences on local meteorological conditions at the North Anna ESP site are Lake Anna and the North Anna River Valley. Because of the complex configuration of the lake, overwater trajectories would generally be less than 2.5 miles. As a result of the gently rolling terrain, cold air drains into low-lying areas at night. Some wind channeling along Lake Anna is expected during low wind speed conditions. The Blue Ridge Mountains, which are located 40 to 50 miles northwest of the site, also tend to channel the prevailing winds from the south and south-southwest during the summer months.

The applicant stated that, should additional units be constructed, a portion of the currently undeveloped area of the ESP site would be cleared of existing vegetation and subsequently graded to accommodate the new units and the ancillary structures. No large-scale cut and fill activities would be needed to accommodate the new units since a large portion of the area to be developed is already relatively level. Therefore, the applicant expects that terrain modifications associated with development of the ESP facility would be limited to the existing NAPS site and would not impact terrain features around the lake and valley nor significantly alter the site's existing gently undulating surface that is characteristic of its location in the Piedmont region of Virginia.

The applicant stated that it did not expect air quality characteristics to be a significant factor in the design and operating bases for any new facilities that might be constructed on the ESP site. The North Anna ESP site is located within the Northeastern Virginia Intrastate Air Quality Control Region, which has been designated as being in attainment or unclassified for all EPAdesignated national ambient air quality standards. The nuclear steam supply system and related radiological systems associated with any new facilities that might be constructed on the ESP site would not be sources of criteria pollutants or other air toxics. Further, the applicant does not expect the addition of supporting auxiliary boilers, emergency diesel generators. station blackout generators, and other sources of nonradiological emissions to be significant sources of criteria pollutant emissions because these units will operate on an intermittent test and/or emergency basis.

menum at our requirement of the securi

2.3.2.2 Regulatory Evaluation

In SSAR Section 1.8.1, the applicant identified the following applicable NRC regulations regarding local meteorology:

- Appendix A to 10 CFR Part 50, GDC 2, with respect to information on severe regional weather phenomena that has historically been reported for the region and that is reflected in the design bases for SSCs important to safety
- 10 CFR 100.20(c) and 10 CFR 100.21(d), with respect to the consideration that has been given to the regional meteorological characteristics of the site

In SSAR Section 1.8.2, the applicant identified the following applicable NRC guidance regarding local meteorology:

- RG 1.23, Revision 0, "Onsite Meteorological Programs," dated February 1972 and proposed Revision 1, dated September 1980, with respect to the criteria for an acceptable onsite meteorological measurements program
- Section 2.3.2 of RG 1.70, with respect to the type of local meteorological information that should be presented, including the potential impact of the plant on local meteorology and the local meteorological and air quality conditions used for design and operating basis considerations

The staff has reviewed this portion of the application in accordance with the guidance identified by the applicant, and to determine if the application is in compliance with the identified regulations, with the exception of the GDC. An ESP applicant need not demonstrate compliance with the GDC with respect to local meteorology.

Section 2.3.2 of RS-002 and Section 2.3.2 of RG 1.70 provide the following guidance on information appropriate for presentation on local meteorology:

- Local meteorological data based on onsite measurements and data from nearby NWS stations or other standard installations should be presented in the format specified in Section 2.3.2 of RG 1.70. RG 1.23 provides guidance related to onsite meteorological measurements.
- A topographical description of the site and environs should be provided. Section 2.3.2.2
 of RG 1.70 provides guidance on the topographical description.
- A discussion and evaluation of the influence of a nuclear power plant or plants of specified type (or falling within a PPE) that might be constructed on the proposed site and its facilities on local meteorological and air quality conditions should be provided. Potential changes in the normal and extreme values resulting from plant construction and operation should be discussed.

2.3.2.3 Technical Evaluation

The staff evaluated local meteorological conditions using data from the NAPS onsite meteorological monitoring system, as well as climatic data reported by NCDC. Section 2.3.3 of this SER provides a discussion of the representativeness of the NAPS onsite data.

Normal climatic data for the period 1971–2000 reported by NCDC for the eastern Piedmont climatic division of Virginia indicate that the annual mean temperature in the area is about 56.6 °F (NCDC, "Eastern Piedmont, Virginia, Divisional Normals—Temperature, Period 1971–2000, Climatography of the United States No. 85"). This value compares well with the range of daily mean temperatures reported by the applicant for nearby weather stations. Monthly mean temperatures for the eastern Piedmont climatic division range from a low monthly mean value of about 35.9 °F in January to a high monthly mean value of about 76.8 °F in July (NCDC, "Eastern Piedmont, Virginia, Divisional Normals—Temperature, Period 1971–2000, Climatography of the United States No. 85").

Precipitation for the Piedmont climatic division averages 45.00 in. per year (NCDC, "Eastern Piedmont, Virginia, Divisional Normals—Precipitation, Period 1971–2000, Climatography of the United States No. 85"). This value is compatible with the range of normal annual precipitation totals reported by the applicant for nearby weather stations. Precipitation is well distributed throughout the year, with monthly climate division normals for the North Anna ESP site region ranging from a minimum of about 3.18 in. in December to a maximum of about 4.36 in. in July.

The staff reviewed the applicant's description of the local meteorology and determined that the information is representative of conditions at and near the site. The wind and atmospheric stability data are based on onsite data recorded by the NAPS meteorological monitoring system. Section 2.3.3 of this SER provides a discussion of the NAPS onsite data. The other meteorological summaries are based on data from nearby stations with long periods of record. The applicant demonstrated that synoptic-scale conditions are generally responsible for periods of excessive heat and cold outbreaks that resulted in the recording of compatible extreme temperatures throughout the ESP site area. A review of these recorded extreme values shows that they are reflected in the site characteristics presented in SSAR Section 2.3.1.

The staff reviewed topographic maps and topographic cross sections to ensure that the information needed is well labeled and can be readily extracted.

Because of the limited and localized nature of the expected terrain modifications associated with the development of the ESP facility, the staff finds that these terrain modifications, along with the resulting plant structures and associated improved surfaces, will not have enough of an effect on local meteorological conditions to affect plant design and operation. Similarly, because the operation of an open-cycle cooling system for the applicant's proposed Unit 3 is not expected to significantly impact either atmospheric temperature extremes or increase the occurrence of local fog, the staff finds that the atmospheric impact of the operation of an open-cycle cooling system for the proposed Unit 3 will not affect plant design and operation.

In Open Item 2.3-4, the staff requested that the applicant describe the impact of potential increases in atmospheric temperature resulting from the operation of closed-cycle dry cooling tower and associated with proposed Unit 4 on plant design and operations. In its response to Open Item 2.3-4, the applicant noted that it is not possible to predict with certainty the warm air transport and dispersion from the cooling tower to specific plant features because the design of the plant is not known at this time.

Since the specific layout and design of the ESP facility is not known, the staff finds that it is not possible to accurately predict the impact of the Unit 4 dry cooling tower plumes on specific plant features. The potential impact of the dry cooling towers on the design and operation of the ESP facility should be considered as part of detailed engineering and will need further evaluation at the time of the COL application. This is COL Action Item 2.3-1.

Since the North Anna ESP site is located in an air quality control region that has been designated as being either in attainment or unclassifiable for all EPA-designated national ambient air quality standards, the staff agrees with the applicant that the ESP site air quality conditions should not be a significant factor in the design and operating bases for the new units.

2.3.2.4 Conclusions

As set forth above, the applicant has presented and substantiated information on local meteorological, air quality, and topographic characteristics of importance to the safe design and operation of a nuclear power plant or plants falling within the applicant's PPE that might be constructed on the proposed site. The staff has reviewed the available information provided and, for the reasons given, concludes that the applicant's identification and consideration of the meteorological, air quality, and topographical characteristics of the site and the surrounding area meet the requirements of 10 CFR Part 100, 10 CFR 100.20(c), and 10 CFR 100.21(d) and are sufficient to determine the acceptability of the site.

The staff has also reviewed available information relative to severe local weather phenomena at the site and in the surrounding area. As set forth above, the staff concludes that the applicant has identified the most severe local weather phenomena at the site and surrounding area.

2.3.3 Onsite Meteorological Measurements Program

2.3.3.1 Technical Information in the Application

In Section 2.3.3 of the SSAR, the applicant presented information concerning its Onsite Meteorological Measurements Program, including instrumentation and measured data. Specifically, the applicant provided the following information:

- description of meteorological instrumentation, including siting of sensors, sensor
 performance specifications, methods and equipment for recording sensor output, the
 quality assurance program for sensors and recorders, and data acquisition and
 reduction procedures
- meteorological data, including consideration of the period of record and amenability of the data for use in characterizing atmospheric dispersion conditions

The applicant used the existing Onsite Meteorological Measurements Program for the NAPS facility to collect data for the North Anna ESP site and intends to use it for the proposed ESP facility.

The applicant upgraded the existing NAPS monitoring program in June 1977, and, according to the applicant, it meets the system accuracy criteria presented in proposed Revision 1 to RG 1.23. Measurements are available from both a primary and backup system. The backup system is intended to function when the primary system is out of service, providing assurance that basic meteorological information will be available during and immediately following an accidental airborne radioactivity release.

The primary NAPS meteorological monitoring program consists of a guyed, triaxial, open-lattice 160-ft tower located approximately 1900 ft east of the NAPS Unit 1 reactor containment building. Wind speed, wind direction, and horizontal wind direction fluctuation (sigma theta) are measured at the 33-ft and 159-ft elevations. Ambient temperature and dew point temperature are measured at the 33-ft elevation, and vertical temperature difference (delta-temperature) is

measured between the 160-ft and 33-ft elevations. Precipitation is monitored at the ground level.

The backup NAPS meteorological monitoring program consists of a freestanding 33-ft tower located approximately 1300 ft northeast of the NAPS Unit 1 reactor containment building. Wind speed, wind direction, and horizontal wind direction fluctuation (sigma theta) are measured at the top of the tower. The bases of both towers are at similar elevation to plant grade, and the ground cover at the base of the primary tower (which measures delta-temperature) is primarily native grasses.

Signal cables from both the primary and backup towers are routed through conduit into an instrument shelter at the base of each tower. Inside each shelter, the signals are provided as input to the appropriate signal-conditioning equipment, with output going to digital data recorders. These data are transmitted daily via modem to the applicant's corporate headquarters, where they are reviewed to identify anomalous data and then archived. Output from the signal-conditioning equipment is also sent to strip chart recorders in the control room and the emergency response facility data system for use in emergency response.

The primary tower wind sensors are mounted on booms approximately twice the tower face width and are positioned so that the tower will not influence the prevailing south-southwest wind flow. The ambient temperature, dew point temperature, and delta-temperature sensors are housed in motor-aspirated shields to insulate them from the effects of precipitation and thermal radiation.

The meteorological monitoring system is calibrated at least semiannually. Data recovery for the 1996–1998 period of record used to evaluate atmospheric dispersion exceeded 90 percent.

2.3.3.2 Regulatory Evaluation

In SSAR Section 1.8.1, the applicant identified the following applicable NRC regulations regarding the Onsite Meteorological Measurements Program:

- 10 CFR 50.47, "Emergency Plans," and Appendix E, "Emergency Planning and Preparedness for Production and Utilization Facilities," to 10 CFR Part 50, as they relate to additional meteorological measurements taken for emergency preparedness planning
- Appendix I to 10 CFR Part 50, as it relates to meteorological data used to determine compliance with the numerical guides for doses in meeting the criterion of "as low as is reasonably achievable"
- 10 CFR 100.20(c) and 10 CFR 100.21(d), as they relate to meteorological data collected for use in characterizing the meteorological conditions of the site

In SSAR Sections 1.8.2 and 2.3.3, the applicant identified the following applicable NRC guidance regarding onsite meteorological measurements programs:

 RG 1.23, Revision 0, and proposed Revision 1, with respect to the criteria for an acceptable onsite meteorological measurements program

- Section 2.3.3 of RG 1.70, with respect to describing the meteorological measurements at the site and providing joint frequency distributions of wind speed and direction by atmospheric stability class
- Section 2.3 of RG 4.2, "Preparation of Environmental Reports for Nuclear Power Stations," issued July 1976, with respect to providing at least one annual cycle of onsite meteorological data
- Appendix 2 to NUREG-0654, Revision 1, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants," issued November 1980; NUREG-0696, "Functional Criteria for Emergency Response Facilities," issued February 1981; and NUREG-0737, "Clarification of TMI Action Plan Requirements," issued October 1980, with respect to meteorological measurements taken for emergency preparedness planning

The staff has reviewed this portion of the application in accordance with the guidance identified by the applicant, and to determine if the application is in compliance with the identified regulations. However, this section of the application did not address the requirements of 10 CFR 50.47 and Appendix E to 10 CFR Part 50. Consequently, the staff did not review this section for compliance with these requirements.

Both RG 1.23 and Section 2.3.3 of RS-002 document the criteria for an acceptable onsite meteorological measurements program. The onsite meteorological measurements program should produce data that describe the meteorological characteristics of the site and its vicinity for the purpose of making atmospheric dispersion estimates for both postulated accidental and expected routine airborne releases of effluents, and for comparison with offsite sources to determine the appropriateness of climatological data used for design considerations.

Section 2.3.3 of RS-002 and Section 2.3.3.7 of RG 1.70 provide guidance on information appropriate for presentation on an onsite meteorological measurements program. As set forth in this guidance, at least one annual cycle of onsite meteorological data should be provided. These data should be presented in the form of joint frequency distributions of wind speed and wind direction by atmospheric stability class in the format described in RG 1.23. If a site has a high occurrence of low wind speeds, a finer category breakdown should be used for the lower speeds so data are not clustered in a few categories. A listing of each hour of the hourly averaged data should also be provided on electronic media in the format described in Appendix A to Section 2.3.3 of RS-002. Evidence of how well these data represent long-term conditions at the site should be discussed.

2.3.3.3 Technical Evaluation

The staff evaluated the Onsite Meteorological Measurements Program by reviewing the program description presented in the SSAR, as well as conducting a site visit. The site visit consisted of reviewing the meteorological monitoring system location and exposure, sensor type and performance specifications, data transmission and recording, data acquisition and reduction, and instrumentation maintenance and calibration procedures. In addition, the staff reviewed an hourly listing of the 1996–1998 meteorological database provided by the applicant in its response to RAI 2.3.3-1.

The staff considers the meteorological data collected by the existing NAPS monitoring program to be representative of the dispersion conditions at the North Anna ESP site. The North Anna ESP site is within the existing NAPS site, and the proposed facility is intended to be in close proximity to the existing facility. The NAPS primary meteorological tower is located far enough away from existing plant structures to preclude any adverse impact on measurements. The base of the tower is at an elevation similar to plant grade at both NAPS and the proposed ESP facility. The ground cover at the base of the meteorological tower is primarily native grasses.

The staff reviewed the location of the primary and backup towers with respect to nearby ground features and potential obstructions to flow (e.g., trees, buildings), including existing plant structure layouts, and concluded that these features pose minimal adverse effects on the measurements taken at the towers. The nearby instrument shelters for both towers are less than 10 ft in height. Pine trees, previously 30–35 ft in height and located approximately 135 ft northwest and south of the primary tower, were cut in 2002 to 23–27 ft in height. Dominion Energy has put these trees on a 3-year pruning schedule to ensure they remain below 30 ft in height (i.e., below the lower measuring height on the primary tower), as recommended in proposed Revision 1 to RG 1.23.

The staff evaluated the types and heights of the meteorological variables being measured and found them to be compatible with the criteria of RG 1.23. During the site visit, the staff also reviewed the applicant's sensor types and performance specifications, data transmission and recording methods, and the inspection, maintenance, and calibration procedures and frequencies. The staff found them to be consistent with RG 1.23.

The staff performed a quality review of the NAPS 1996–1998 hourly meteorological database provided by the applicant in response to RAI 2.3.3-1 using the methodology described in NUREG-0917, "Nuclear Regulatory Commission Staff Computer Programs for Use with Meteorological Data," issued July 1982. The staff performed further review using computer spreadsheets. Examination of the data revealed generally stable and neutral atmospheric conditions at night and unstable and neutral conditions during the day, as expected. Wind speed, wind direction, and stability class frequency distributions for each measurement channel were similar from year to year, and the 1996–1998 wind direction and stability class frequency distributions were reasonably consistent with the 1974–1987 data presented in Section 2.3.2 of the NAPS UFSAR. A comparison between the joint frequency distribution used by the licensee as input to PAVAN and XOQDOQ and a staff-generated joint frequency distribution from the hourly database are compatible.

2.3.3.4 Conclusions

As set forth above, the applicant has provided and substantiated information on the Onsite Meteorological Measurements Program. The staff has reviewed the available information relative to the meteorological measurements program and the data collected by the program. On the basis of this review and as set forth above, the staff concludes that the system provides data adequate to represent onsite meteorological conditions, as required by 10 CFR 100.20. The onsite data also provide an acceptable basis for (1) making estimates of atmospheric dispersion for design-basis accident and routine releases from a nuclear power plant or plants falling within the applicant's PPE that might be constructed on the proposed site and (2) meeting the requirements of 10 CFR Part 100 and Appendix I to 10 CFR Part 50.

2.3.4 Short-Term (Accident) Diffusion Estimates

2.3.4.1 Technical Information in the Application

In this section of the SSAR, the applicant presented atmospheric dispersion estimates for postulated accidental airborne releases of radioactive effluents to the EAB and LPZ. The applicant provided the following information:

- atmospheric transport and diffusion models to calculate relative concentrations for postulated accidental radioactive releases
- meteorological data summaries used as input to diffusion models
- specification of diffusion parameters
- probability distributions of relative concentrations
- determination of relative concentrations used for assessment of consequences of postulated radioactive atmospheric releases from design-basis and other accidents

The applicant used the NRC-sponsored computer code PAVAN (NUREG/CR-2858, "PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials from Nuclear Power Stations," issued in 1982) to estimate relative concentration (x/Q) values at the EAB and LPZ for potential accidental releases of radioactive material. The PAVAN model implements the methodology outlined in RG 1.145, Revision 1, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants," issued November 1982.

The PAVAN code estimates χ/Q values for various time-averaging periods ranging from 2 hours to 30 days. The meteorological input to PAVAN consists of a joint frequency distribution of wind speed, wind direction, and atmospheric stability data. The PAVAN code computes χ/Q values at the EAB and LPZ for each combination of wind speed and atmospheric stability for each of the 16 downwind direction sectors. The code then ranks χ/Q values for each sector in descending order, and it derives an associated cumulative frequency distribution based on the frequency distribution of wind speed and stabilities for that sector. The χ/Q value that is equaled or exceeded 0.5 percent of the total time is determined for each sector, and the highest 0.5-percentile χ/Q value among the 16 sectors becomes the maximum sector-dependent χ/Q value. The code also ranks χ/Q values independent of wind direction into a cumulative frequency distribution for the entire site. The PAVAN program then selects the χ/Q value that is equaled or exceeded 5 percent of the total time. The larger of the two values, the maximum sector-dependent 0.5-percent χ/Q value and the overall site 5-percent χ/Q value, are used to represent the χ/Q value for a 0–2-hour time period.

To determine χ/Q values for longer time periods, PAVAN calculates an annual average χ/Q value. Logarithmic interpolation is then used between the 0–2-hour χ/Q values and the annual

average χ /Q values to calculate the values for intermediate time periods (i.e., 8 hours, 16 hours, 72 hours, and 624 hours).

In RAI 2.3.4-1, the staff asked the applicant to rerun the PAVAN computer code using the wind speed categories discussed in Section 4.6 of NUREG/CR-2858 and provide a copy of the resulting input files used to execute PAVAN. The applicant complied with this request in its response to RAI 2.3.4-1.

The applicant used the following input data and assumptions in applying the PAVAN model for the North Anna site:

- The meteorological input to PAVAN consisted of a joint frequency distribution of wind speed, wind direction, and atmospheric stability data based on 3 years (1996–1998) of onsite meteorological data. The applicant used wind data from the 33-ft level of the onsite meteorological tower, and it derived the stability data from the vertical temperature difference (delta-temperature) measurements taken between the 159-ft and 33-ft levels of the onsite meteorological tower.
- The applicant modeled one conservative ground-level release point and took no credit for building wake effects.
- The EAB is the perimeter of a 5000-ft radius circle from the center of the abandoned Unit 3 containment. In order to calculate the x/Q values for the EAB, the applicant used the shortest distances from the ESP plant envelope area boundary to the EAB. The LPZ is a 6-mi-radius circle centered at the Unit 1 containment building. Similarly, in order to calculate the x/Q values for the LPZ, the applicant used the shortest distances from the ESP plant envelope area boundary to the LPZ.

Based on the PAVAN modeling results, the applicant proposed short-term (accident release) atmospheric dispersion site characteristics for inclusion in an ESP, as presented in Table 2.3.4-1, should one be issued for the applicant's proposed ESP site.

The second section of the second seco

The I first of the control of the

Table 2.3.4-1 Applicant's Proposed Short-Term (Accident Release) Atmospheric Dispersion Site Characteristics

SITE CHARACTERISTIC	VALUE	DEFINITION
0–2 hr x/Q Value @ EAB	2.26×10 ⁻⁴ s/m ³	The atmospheric dispersion factor used in the safety analysis to estimate dose consequences of accidental airborne releases
0-8 hr x/Q Value @ LPZ	2.05×10 ⁻⁵ s/m ³	The atmospheric dispersion factor used in the safety analysis to estimate dose consequences of accidental airborne releases
8-24 hr χ/Q Value @ LPZ	1.36×10 ⁻⁵ s/m ³	The atmospheric dispersion factor used in the safety analysis to estimate dose consequences of accidental airborne releases
1-4 day χ/Q Value @ LPZ	5.58×10 ⁻⁶ s/m ³	The atmospheric dispersion factor used in the safety analysis to estimate dose consequences of accidental airborne releases
4-30 day x/Q Value @ LPZ	1.55×10 ⁻⁶ s/m ³	The atmospheric dispersion factor used in the safety analysis to estimate dose consequences of accidental airborne releases

2.3.4.2 Regulatory Evaluation

In SSAR Section 1.8.1, the applicant identified the applicable NRC regulation regarding short-term (accident release) diffusion estimates as 10 CFR 100.21, with respect to the meteorological considerations used in the evaluation to determine an acceptable exclusion area and LPZ.

In SSAR Sections 1.8.2 and 2.3.4, the applicant identified the following applicable NRC guidance regarding accident release diffusion estimates:

- RG 1.5, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Steam Line Break Accident for Boiling Water Reactors," issued March 1971; RG 1.24, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Pressurized Water Reactor Radioactive Gas Storage Tank Failure," issued March 1972; RG 1.25, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors," issued March 1972; RG 1.77, "Assumptions Used for Evaluating a Control Rod Ejection Accident for Pressurized Water Reactors," issued May 1974; and RG 1.78, Revision 1, with respect to an acceptable basis for implementing the requirements of 10 CFR Part 100
- RG 1.23, Revision 0, and proposed Revision 1, with respect to the criteria for an acceptable onsite meteorological measurements program

- Section 2.3.4 of RG 1.70, with respect to providing conservative and realistic estimates
 of atmospheric diffusion at the EAB and LPZ, based on the most representative
 meteorological data and impacts caused by local topography
- RG 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," issued July 1977, with respect to criteria for characterizing atmospheric transport and diffusion conditions for evaluating the consequences of routine releases
- RG 1.145, Revision 1, with respect to acceptable methods for choosing atmospheric dispersion factors (x/Q values) for evaluating the consequences of potential accidents
- RG 4.7, with respect to discussing the major site characteristics related to public health and safety that the staff considers in determining the suitability of the site

The staff has reviewed this portion of the application in accordance with the guidance identified by the applicant, and to determine if the application is in compliance with the identified regulations.

Section 2.3.4 of RS-002 and Section 2.3.4 of RG 1.70 provide guidance on information appropriate for presentation on short-term (accident release) diffusion estimates. The application should present or describe the following:

- conservative estimates of atmospheric transport and diffusion conditions at appropriate distances from the source for postulated accidental releases of radioactive materials to the atmosphere
- a description of the atmospheric dispersion models used to calculate relative concentrations (x/Q values) in air resulting from accidental releases of radioactive material to the atmosphere, with models documented in detail and substantiated within the limits of the model so that the staff can evaluate their appropriateness to site characteristics, plant characteristics (to the extent known), and release characteristics
- the meteorological data used for the evaluation (as input to the dispersion models), which represent annual cycles of hourly values of wind direction, wind speed, and atmospheric stability for each mode of accidental release
- an explanation of the variation of atmospheric diffusion parameters used to characterize lateral and vertical plume spread (σ_y and σ_z) as a function of distance, topography, and atmospheric conditions, as related to measured meteorological parameters, and description of a methodology for establishing these relationships that is appropriate for estimating the consequences of accidents within the range of distances that are of interest with respect to site characteristics and established regulatory criteria
- cumulative probability distributions of relative concentrations (χ/Q values) and the
 probabilities of these χ/Q values being exceeded, presented for appropriate distances
 (e.g., the EAB and LPZ) and time periods as specified in Section 2.3.4.2 of RG 1.70, as
 well as an adequate description of the methods used for generating these distributions

• the relative concentrations used for assessing the consequences of atmospheric radioactive releases from design-basis and other accidents

2.3.4.3 Technical Evaluation

The applicant generated its atmospheric diffusion estimates for postulated accidental airborne releases of radioactive effluents to the EAB and LPZ using the staff-endorsed computer code PAVAN. The staff evaluated the applicability of the PAVAN model and concluded that no unique topographic features preclude the use of the PAVAN model for the North Anna ESP site. The staff also reviewed the applicant's input to the PAVAN computer code, including the assumptions used concerning plant configuration and release characteristics and the appropriateness of the meteorological data input. The staff found that the applicant made conservative assumptions by ignoring building wake effects and treating all releases as ground-level releases. The staff made an independent evaluation of the resulting atmospheric diffusion estimates by running the PAVAN computer model and obtained similar results.

From this review, the staff concludes that the applicant has used an adequately conservative atmospheric dispersion model and appropriate meteorological data to calculate relative concentrations for appropriate offsite (EAB and LPZ) distances and directions from postulated release points for accidental airborne releases of radioactive materials.

In order to evaluate atmospheric dispersion characteristics with respect to radiological releases to the control room, detailed design information (e.g., vent heights, intake heights, and distance and direction from release vents to the room) is necessary. Because little detailed design information is available for the nuclear power plant or plants that might be constructed on the proposed site, the COL or CP applicant should assess the dispersion of airborne radioactive materials to the control room at the COL or CP stage. This is **COL Action Item 2.3-2**.

The staff intends to include the short-term (accident release) atmospheric dispersion factors listed in Table 2.3.4-2 as site characteristics in any ESP that might be issued for the North Anna ESP site.

Table 2.3.4-2 Staff's Proposed Short-Term (Accident Release) Atmospheric Dispersion Site Characteristics

SITE CHARACTERISTIC	# VALUE 1899	DEFINITION -
0-2-hr x/Q Value @ EAB	2.26×10 ⁻⁴ s/m ³	The 0–2-hour atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the EAB
0-8-hr x/Q Value @ LPZ	2.05×10 ⁻⁵ s/m ³	The 0-8-hour atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ
8-24-hr χ/Q Value @ LPZ	1.36×10 ⁻⁵ s/m ³	The 8–24-hour atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ
1-4-day χ/Q Value @ LPZ	5.58×10 ⁻⁶ s/m ³	The 1–4-day atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ
4-30-day χ/Q Value @ LPZ	1.55×10 ⁻⁶ s/m ³	The 4–30-day atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ

2.3.4.4 Conclusions

As set forth above, the applicant has made conservative assessments of postaccident atmospheric dispersion conditions using its meteorological data and appropriate diffusion models. The applicant has calculated representative atmospheric transport and diffusion conditions for the EAB and the LPZ. The staff has reviewed the applicant's proposed short-term atmospheric dispersion site characteristics for inclusion in an ESP for the applicant's site, should one be issued, and, as discussed above, finds these characteristics to be acceptable. Therefore, the staff concludes that the applicant's atmospheric dispersion estimates are appropriate for the assessment of consequences from radioactive releases for postulated (i.e., design-basis) accidents, in accordance with 10 CFR 100.21.

Based on these considerations, the staff concludes that the applicant's short-term atmospheric dispersion estimates are acceptable and meet the relevant requirements of 10 CFR Part 100. The staff will address atmospheric dispersion estimates used to evaluate radiological doses for the control room in its review of any COL or CP application that references this information.

Control of the Contro

2.3.5 Long-Term (Routine) Diffusion Estimates

2.3.5.1 Technical Information in the Application

In this section of the SSAR, the applicant presented its atmospheric diffusion estimates for routine releases of effluents to the atmosphere. Specifically, the applicant provided the following information:

- the atmospheric dispersion models used to calculate concentrations in air and the amount of material deposited as a result of routine releases of radioactive material to the atmosphere
- the meteorological data used as input to diffusion models
- diffusion parameters
- relative concentration (χ/Q) and relative deposition (D/Q) values used to assess the consequences of routine airborne radioactive releases
- points of routine release of radioactive material to the atmosphere, the characteristics of each release mode, and the location of potential receptors for dose computations

The applicant used the NRC-sponsored computer code XOQDOQ (NUREG/CR-2919, "XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," issued in 1982) to estimate χ /Q and D/Q values resulting from routine releases. The XOQDOQ model implements the methodology outlined in RG 1.111. The applicant used the following input data and assumptions in applying the XOQDOQ model for the North Anna ESP site:

- The meteorological input to XOQDOQ consisted of a joint frequency distribution of wind speed, wind direction, and atmospheric stability data based on 3 years (1996–1998) of onsite meteorological data. The wind data were from the 33-ft level of the onsite meteorological tower, and the stability data were derived from the vertical temperature difference (delta-temperature) measurements taken between the 159-ft and 33-ft levels of the onsite meteorological tower.
- The applicant modeled one conservative ground-level release point, assuming a minimum building cross-sectional area of 24,220 square ft.
- Because the PPE area proposed for the North Anna ESP site is an area, not a point, the
 applicant used the shortest distances from any point on the plant envelope to the
 receptors of interest as input to the XOQDOQ model.

The applicant calculated annual average undepleted/no decay, undepleted/2.26-day decay, and depleted/8.00-day decay χ /Q values and D/Q values for the site boundary and special receptors of interest (nearest resident, meat animal, and vegetable garden within 5 miles in each downwind sector), as identified in the North Anna Power Station 2001 Radiological Environmental Monitoring Program Annual Report.

Table 2.3.5-1 lists the long-term atmospheric dispersion estimates that the applicant derived based on the XOQDOQ modeling results.

Table 2.3.5-1 Applicant's Long-Term (Routine Release) Diffusion Estimates

TYPE OF LOCATION	UNDEPLETED	UNDEPLETED	DEPLETED	D/Q VALUE
	NO DECAY	2.26-DAY DECAY	8.00-DAY DECAY	(1/m²)
EAB	3.7×10 ⁻⁶	3.7×10 ⁻⁶	3.3×10 ⁻⁶	1.2×10 ⁻⁸
	(0.88 mi ESE)	(0.88 mi ESE)	(0.88 mi ESE)	(0.62 mi S)
Residence	2.4×10 ⁻⁶	2.4×10 ⁻⁶	2.1×10 ⁻⁶	7.2×10 ⁻⁹
	(0.96 mi NNE)	(0.96 mi NNE)	(0.96 mi NNE)	(0.96 mi NNE)
Meat Animal	1.4×10 ⁻⁶	1.4×10 ⁻⁶	1.2×10 ⁻⁶	3.1×10 ⁻⁹
	(1.37 mi SE)	(1.37 mi SE)	(1.37 mi SE)	(1.56 mi NNE)
Vegetable Garden	2.0×10 ⁻⁶	2.0×10 ⁻⁶	1.8×10 ⁻⁶	6.0×10 ⁻⁹
	(0.94 mi NE)	(0.94 mi NE)	(0.94 mi NE)	(0.94 mi NE)

2.3.5.2 Regulatory Evaluation

In SSAR Section 1.8.1, the applicant identified the applicable NRC regulations regarding long-term (routine release) diffusion estimates as Appendix I to 10 CFR Part 50, with respect to demonstrating compliance with the numerical guides for doses contained in this appendix by characterizing atmospheric transport and diffusion conditions in order to estimate the radiological consequences of routine releases of materials to the atmosphere.

The staff finds that the applicant should have also identified 10 CFR 100.21(c)(1), which requires that site atmospheric dispersion characteristics be evaluated and dispersion parameters established such that radiological effluent release limits associated with normal operation from the type of facility proposed to be located at the site can be met for any individual located offsite. Nonetheless, for the reasons set forth below, the staff finds that the applicant has met these regulatory requirements.

y missions

In SSAR Sections 1.8.2 and 2.3.5, the applicant identified the following applicable NRC guidance regarding routine release diffusion estimates:

- Section 2.3.5 of RG 1.70, with respect to providing realistic estimates of annual average atmospheric transport and diffusion characteristics to a distance of 50 miles from the plant, including a detailed description of the model used and a calculation of the maximum annual average atmospheric dispersion factor (χ/Q value) at or beyond the site boundary for each venting location
- RG 1.111, with respect to criteria for characterizing atmospheric transport and diffusion conditions for evaluating the consequences of routine releases

The staff also identified the following RGs as applicable NRC guidance regarding routine release diffusion estimates:

• RG 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I,"

issued October 1977, with respect to the criteria to be used for specific receptors of interest (applicable to the extent the applicant provides receptors of interest at the ESP stage)

 RG 1.112, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors," issued May 1977, with respect to the criteria to be used to identify release points and release characteristics (applicable to the extent the applicant provides release points and release characteristics at the ESP stage)

As discussed below, the staff finds that the applicant has met the criteria in all applicable RGs for performing routine release diffusion estimates.

Section 2.3.5 of RS-002 and Section 2.3.5 of RG 1.70 provide the following guidance on information appropriate for presentation on long-term (routine release) diffusion estimates.

- The applicant should provide a description of the atmospheric dispersion models used to
 calculate concentrations in air and the amount of material deposited as a result of
 routine releases of radioactive material to the atmosphere. The models should be
 sufficiently documented and substantiated to allow a review of their appropriateness for
 site characteristics, plant characteristics (to the extent known), and release
 characteristics.
- The applicant should discuss the relationship between atmospheric diffusion parameters, such as vertical plume spread (σ₂), and measured meteorological parameters. The applicant should substantiate the use of these parameters in terms of the appropriateness of their use in estimating the consequences of routine releases from the site boundary to a radius of 50 miles from the plant site.
- The applicant should provide the meteorological data used as input to the dispersion models. Data used for this evaluation should represent hourly average values of wind speed, wind direction, and atmospheric stability, which are appropriate for each mode of release. The data should reflect atmospheric transport and diffusion conditions in the vicinity of the site throughout the course of a year.
- The applicant should provide the relative concentration (χ /Q) and relative deposition (D/Q) values used for assessing the consequences of routine radioactive gas releases, as described in Section 2.3.5.2 of RG 1.70.
- The applicant should identify points of routine release of radioactive material to the atmosphere, the characteristics of each release mode, and the location of potential receptors for dose computations (if available at the ESP stage). Bounding values for these parameters may be provided at the ESP stage. In such a case, the applicant will need to confirm, at the COL or CP stage, that the parameters provided at the ESP stage bound the actual values provided at the COL or CP stage, and that the calculational methodology used for the confirmation is consistent with that employed at the ESP stage.

2.3.5.3 Technical Evaluation

The applicant generated its atmospheric diffusion estimates for routine airborne releases of radioactive effluents to the site boundary and special receptors of interest using the staff-endorsed computer code XOQDOQ. The staff evaluated the applicability of the XOQDOQ model and concluded that no unique topographic features preclude the use of the XOQDOQ model for the North Anna ESP site. The staff also reviewed the applicant's input to the XOQDOQ computer code, including the assumptions it used concerning plant configuration and release characteristics and the appropriateness of the meteorological data input. The staff found that the applicant made conservative assumptions by treating all releases as ground-level releases. The staff made an independent evaluation of the resulting atmospheric diffusion estimates by running the XOQDOQ computer model and obtaining similar results.

From this review, the staff concludes that the applicant used an appropriate atmospheric dispersion model and adequate meteorological data to calculate relative concentration and relative deposition at appropriate distances from postulated release points for the evaluation of routine airborne releases of radioactive material. Any COL or CP applicant referencing this information should verify that the specific release point characteristics (e.g., release height and building wake dimensions) and specific locations of receptors of interest (e.g., nearest resident or garden) used to generate the ESP long-term (routine release) atmospheric dispersion site characteristics bound the actual values provided at the COL or CP stage. This is COL Action Item 2.3-3.

The staff intends to include the long-term (routine release) atmospheric dispersion factors listed in Table 2.3.5-2 as site characteristics in any ESP that the NRC might issue for the North Anna ESP site.

Table 2.3.5-2 Staff's Proposed Long-Term (Routine Release) Atmospheric Dispersion Site Characteristics

SITE CHARACTERISTIC	VALUE	DEFINITION
Annual Average Undepleted/No Decay x/Q Value @ EAB	3.7×10 ⁻⁶ s/m ³	The maximum annual average EAB undepleted/no decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26-Day Decay x/Q Value @ EAB	3.7×10 ⁻⁶ s/m ³	The maximum annual average EAB undepleted/2.26-day decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00-Day Decay x/Q Value @ EAB	3.3×10 ⁻⁶ s/m ³	The maximum annual average EAB depleted/8.00-day decay χ/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average D/Q Value @ EAB	1.2×10 ⁻⁸ 1/m ²	The maximum annual average EAB D/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/No Decay x/Q Value @ Nearest Resident	2.4×10 ⁻⁶ s/m ³	The maximum annual average resident undepleted/no decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26-Day Decay x/Q Value @ Nearest Resident	2.4×10 ⁻⁶ s/m ³	The maximum annual average resident undepleted/2.26-day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00-Day Decay x/Q Value @ Nearest Resident	2.1×10 ⁻⁶ s/m ³	The maximum annual average resident depleted/8.00-day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average D/Q Value @ Nearest Resident	7.2×10 ⁻⁹ 1/m ²	The maximum annual average resident D/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/No Decay x/Q Value @ Nearest Meat Animal	1.4×10 ⁻⁶ s/m ³	The maximum annual average meat animal undepleted/no decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26-Day Decay x/Q Value @ Nearest Meat Animal	1.4×10 ⁻⁶ s/m ³	The maximum annual average meat animal undepleted/2.26-day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00-Day Decay χ/Q Value @ Nearest Meat Animal	1.2×10 ⁻⁶ s/m ³	The maximum annual average meat animal depleted/8.00-day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual

SITE CHARACTERISTIC	VALUE	DEFINITION
Annual Average D/Q Value @ Nearest Meat Animal	3.1×10 ⁻⁹ 1/m ²	The maximum annual average meat animal D/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/No Decay x/Q Value @ Nearest Vegetable Garden	2.0×10 ⁻⁶ s/m ³	The maximum annual average vegetable garden undepleted/no decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26-Day Decay x/Q Value @ Nearest Vegetable Garden	2.0×10 ⁻⁶ s/m ³	The maximum annual average vegetable garden undepleted/2.26-day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00-Day Decay x/Q Value @ Nearest Vegetable Garden	1:8×10 ⁻⁶ s/m ³	The maximum annual average vegetable garden depleted/8.00-day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average D/Q Value @ Nearest Vegetable Garden	6.0×10 ⁻⁹ 1/m ²	The maximum annual average vegetable garden D/Q value for use in determining gaseous pathway doses to the maximally exposed individual

2.3.5.4 Conclusions

As set forth above, the applicant has provided meteorological data and an atmospheric dispersion model that are appropriate for the characteristics of the site and release points. The applicant has calculated representative atmospheric transport and diffusion conditions for 16 radial sectors from the site boundary to a distance of 50 miles, as well as for specific receptor locations. The staff has reviewed the long-term atmospheric dispersion estimates that the applicant proposed for inclusion as site characteristics in an ESP for its site (should one be issued) and, for the reasons set forth above, finds these estimates to be acceptable. Therefore, the staff concludes that the applicant has provided the information needed to address the requirements of 10 CFR 100.21(c)(1).

Based on these considerations, the staff concludes that the applicant's characterization of longterm atmospheric transport and diffusion conditions is appropriate for use in demonstrating compliance with the numerical guides for doses contained in Appendix I to 10 CFR Part 50.

The second of the second

The applicant provided bounding values for points of routine release of radioactive material to the atmosphere, the characteristics of each release mode, and the location of potential receptors for dose computations. Any COL or CP applicant must confirm that the parameters provided at the ESP stage bound the actual values provided at the COL or CP stage, and that the calculational methodology used for the confirmation is consistent with that employed at the ESP stage.

Secretary of the second secretary

The first of the control of the cont

2.4 Hydrology

To ensure that a nuclear power plant or plants could be designed, constructed, and operated on the applicant's proposed ESP site in compliance with the Commission's regulations, the NRC staff evaluates hydrology information that may affect the design and siting of such a plant. The staff has prepared Sections 2.4.1 through 2.4.14 of this SER in accordance with the review procedures described in RS-002, using information presented in SSAR Section 2.4, the applicant's responses to RAIs, and generally available reference materials, as described in the applicable sections of RS-002.

The proposed site is adjacent to the currently operating NAPS Units 1 and 2. The water source for the proposed units on the ESP site is the impoundment of the North Anna River, referred to as Lake Anna. Lake Anna currently serves as the principal water source for the two existing units, both of which use once-through cooling systems to dissipate heat from the turbine condenser. The proposed units would also use Lake Anna as the source of cooling water during normal operation. The applicant stated that the proposed Unit 3 would use a once-through cooling system, and the proposed Unit 4 would use a dry cooling tower system for heat rejection during normal operation. Therefore, the water supply needs for Unit 4 would be minimal compared to those of the two existing units and the proposed Unit 3. Neither of the proposed units would rely directly on the lake for safety-related cooling needs. If the selected plant design includes a UHS for each of the proposed units, it would consist of mechanical draft towers over a buried engineered water storage basin.

2.4.1 Hydrologic Description

2.4.1.1 Technical Information in the Application

SSAR Section 2.4.1 states that the ESP site is located near Lake Anna, which was created by a dam constructed across the North Anna River as part of the overall development of the NAPS site. The North Anna Dam is located about 4 miles north of Bumpass, Virginia, and about 5 miles downstream from the ESP site. Lake Anna is about 17 miles long, with an irregular shoreline approximately 272 miles in length.

A series of dikes and canals separates Lake Anna into two segments. The larger segment, approximately 9600 ac in area, is named the North Anna Reservoir and serves as the storage impoundment. The smaller segment, approximately 3400 ac in area, is the WHTF and functions to dissipate heat to the atmosphere from cooling water that has been discharged from the existing units.

The applicant stated that the North Anna Dam is the only significant water control structure on the North Anna River. The dam is an earth-filled structure, approximately 5000 ft long and 30 ft wide at the crest at an elevation of 265 ft mean sea level (MSL). The dam has a 200-ft-long

¹Mean Sea Level (MSL): A datum, or "plane of zero elevation," established by averaging all stages of oceanic tides over a 19-year tidal cycle or "epoch." This plane is corrected for the curvature of the earth and is the standard reference for elevations on the earth's surface. Another term for MSL is the National Geodetic Vertical Datum.

concrete spillway founded on bedrock. The spillway has three radial crest gates, each of which is 40 ft wide and 35 ft high. Two skimmer gates, each 8.5 ft by 8.5 ft, allow regulation of small discharges.

SSAR Section 2.4.1 states that the proposed ESP site will house two new reactor units. However, the applicant did not clearly demarcate the proposed locations of the units through survey coordinates, making it difficult to determine the feasibility of constructing intake tunnels and related structures. In RAI 2.4.1-1, the staff requested additional information on these survey coordinates, locations of any existing aquifers in the ESP site area, layout of intake tunnels and pipes from Lake Anna to the proposed new units, total service water flow rate for the two existing units, and the combined service water flow rate when all four units (two existing and two new) would be operating. In response to RAI 2.4.1-1, the applicant provided a figure that lists coordinates of the ESP plant perimeter corners. Regarding aquifers, the applicant stated that the subsurface beneath the ESP site consists of a single aquifer that belongs to the Piedmont Physiographic Province aquifer system. Other aquifers nearest the ESP site belong to the Coastal Plain Physiographic Province, but occur about 15 miles away. The applicant stated that, because the entire subsurface beneath the ESP site belongs to a single aquifer system, a drawing of the aquifer system is not required.

The applicant also stated in this RAI response that intake tunnels for Unit 3 will be routed from the ESP intake area about 200 ft south to the ESP footprint, and the discharge tunnel for Unit 3 will be routed from the ESP footprint about 1900 ft east to the ESP discharge. The applicant stated that adequate space is available for these tunnels to ensure that they would not interfere with the underground piping and structures of the existing units.

The applicant also stated that the service water reservoir supplies service water for NAPS Units 1 and 2. The service water system for Units 1 and 2 is a single, two-loop system. Four pumps with a capacity of 11,500 gallons per minute (gpm), two for each unit, service these two loops. Two of these pumps operate during normal operation, three during a unit shutdown, and all four during an accident condition. Two more identical pumps are located in the intake structure as backup to the normal service water supply. The applicant stated that the service water flowpath for any additional units on the ESP site is not defined, but that service water flows can be estimated to be approximately 5 percent of total circulating water flow.

The applicant stated that the non-safety-related cooling water need for all four units, including the proposed additional units, is 121 cubic feed per second (cfs), which includes both natural and forced evaporation from the lake. The applicant estimated a margin of 209 cfs in the water budget, assuming that the average net inflow of 370 cfs is available, with a minimum release of 40 cfs from Lake Anna.

The applicant revised the SSAR to be consistent with the above RAI responses.

SSAR Section 2.4.1.1 originally stated that, during critical low-flow periods, makeup water for cooling would be obtained from Lake Anna and supplemented by an external source that the COL applicant would identify. In RAI 2.4.1-2, the staff requested that the applicant identify the quantity of supplemental water. In response to RAI 2.4.1-2, the applicant stated that, because of uncertainty concerning the adequacy of makeup water for the proposed Unit 4, it changed the cooling system from wet cooling towers to dry cooling towers. The applicant informed the NRC of a revised approach to cooling the proposed Unit 4 in a letter dated March 31, 2004.

The applicant stated that dry cooling towers have no evaporative water losses, require no makeup water, and have no blowdown discharges. However, if the dry cooling tower system contains a secondary cooling water loop with a free water surface pump sump, a small amount of evaporation loss, on the order of 1 gpm, would occur. The applicant stated that, with this change in the cooling system, the consumptive cooling water use for the proposed Unit 4 would decrease from 35 cfs to 0.002 cfs or less during normal plant operation. The applicant revised the SSAR to be consistent with these RAI responses.

Figure 2.4-10 in the SSAR shows the combined stage-storage relationship for Lake Anna and the WHTF. In RAI 2.4.1-3, the staff requested that the applicant provide the data for and a description of the method used to construct this stage-storage relationship. The staff indicated that the stage-storage relationship should extend at least down to stage elevation 219 ft MSL. In response to RAI 2.4.1-3, the applicant stated that it derived the stage-storage curve for Lake Anna from topographic contour maps. The applicant constructed contour maps from aerial photogrammetry of the proposed lake area before the North Anna Dam was built. It measured surface areas enclosed by the contours using a planimeter, and it determined incremental storage volume between two contours, assuming a truncated square pyramid shape between these contours. The applicant checked the stage-storage curve for accuracy on photo sheets and on U.S. Geological Survey (USGS) topographic maps. The applicant also provided a table showing the stage-storage curve and revised the SSAR to be consistent with the RAI response.

In SSAR Section 2.4.1.1, the applicant stated that the cooling water withdrawal rate for Unit 3 will be 2540 cfs, and that for Unit 4 this rate will be 44 cfs. In RAI 2.4.1-4, the staff requested that the applicant clarify whether these values are based upon annual averages or maximums. If these values are annual averages, the staff asked the applicant to provide estimates of maximums. In RAI 2.4.1-4, the staff also requested the applicant to provide the basis for the estimation of consumptive loss from the Unit 4 cooling tower. In response to RAI 2.4.1-4, the applicant stated that the cooling water withdrawal rate of 2540 cfs for Unit 3 is a nominal design coolant flow. This is the nominal flow during periods of peak lake temperature. The applicant stated that the actual daily maximum circulating water flow for Unit 3 would be within a few percent of the nominal value. The applicant informed the NRC of a revised approach to cooling the proposed Unit 4 in a letter dated March 31, 2004, and subsequently revised the SSAR to reflect this approach. The revised application states that the proposed Unit 4 would use a closed-cycle cooling system with dry cooling towers. This approach eliminates the use of Lake Anna as a source of makeup water for Unit 4. The applicant also stated that the secondary cooling loop evaporative losses for the proposed Unit 4 may consume a small amount of water, on the order of 1 gpm.

2.4.1.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as GDC 2 in Appendix A to 10 CFR Part 50, 10 CFR 52.17(a), and 10 CFR 100.20(c), as well as the applicable regulatory guidance, RG 1.70 and RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above, with the exception that an ESP applicant need not demonstrate compliance with the GDC.

Section 2.4.1 of RS-002 provides the following review guidance used by the staff in evaluating this SSAR section.

The SSAR should address 10 CFR Parts 52 and 100, as they relate to identifying and evaluating hydrologic features of the site. The regulations at 10 CFR 52.17(a) and 10 CFR 100.20(c) require that the physical characteristics of a site (including seismology, meteorology, geology, and hydrology) be taken into account to determine its acceptability for a nuclear power reactor. In addition, 10 CFR 100.20(c) addresses the hydrologic characteristics of a proposed site that may affect the consequences of an escape of radioactive material from the facility. Factors important to hydrologic radionuclide transport, described in 10 CFR 100.20(c)(3), should be obtained from onsite measurements. The staff evaluated SSAR Section 2.4.1 in light of these requirements.

To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the applicant's SSAR should contain a description of the surface and subsurface hydrologic characteristics of the site and region. This description should be sufficient to assess the acceptability of the site and the potential for those characteristics to influence the design of the SSCs of a nuclear power plant or plants (or a facility falling within a PPE) that might be constructed on the proposed site.

Meeting this guidance provides reasonable assurance that the hydrologic characteristics of the site and potential hydrologic phenomena would pose no undue risk to the type of facility (or facility falling within a PPE) proposed for the site. Further, it provides reasonable assurance that such a facility would pose no undue risk of radioactive contamination to surface or subsurface water from either normal operations or as the result of a reactor accident.

To meet the requirements of the hydrologic aspects of 10 CFR Parts 52 and 100, SSAR Section 2.4.1 should form the basis for hydrologic engineering analysis with respect to subsequent sections of the application for an ESP. Therefore, completeness and clarity are of paramount importance. Maps should be legible and adequate in coverage to substantiate applicable data. Site topographic maps should be of good quality and of sufficient scale to allow independent analysis of preconstruction drainage patterns. Data on surface water users. location with respect to the site, type of use, and quantity of surface water used are necessary. Inventories of surface water users should be consistent with regional hydrologic inventories reported by applicable Federal and State agencies. The description of the hydrologic characteristics of streams, lakes, and shore regions should correspond to those of the USGS. NOAA, Soil Conservation Service (SCS), U.S. Army Corps of Engineers (USACE), or appropriate State and river basin agencies. Descriptions of all existing or proposed reservoirs and dams (both upstream and downstream) that could influence conditions at the site should be provided. Descriptions may be obtained from reports of the USGS, U.S. Bureau of Reclamation (USBR), USACE, and others. Generally, reservoir descriptions of a quality similar to those contained in pertinent data sheets of a standard USACE hydrology design memorandum are adequate. Tabulations of drainage areas, types of structures. appurtenances, ownership, seismic and spillway design criteria, elevation-storage relationships, and short- and long-term storage allocations should be provided. ស្តែក្រសួល មានស្ថានមនុស្ស ស្ត្រាស់ ស្តេចប្រជាជាក្រសួលប្រជាជាក្នុងប្រជាជាក្រសួល ប្រជុំស្ត្រាស់ ស្ត្រីស្ត្រាំ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់

2.4.1.3 Technical Evaluation

The staff conducted a site visit in accordance with the guidance provided in Section 2.4.1 of RS-002. The staff used information from the site visit, digital maps, and streamflow data from the USGS to verify the hydrologic description provided in Section 2.4.1 of the SSAR. Because Virginia Electric and Power Company (which, like the applicant, is a subsidiary of Dominion Resources, Inc.) built the reservoir and continues to operate it, the company has a large volume of historical data pertaining to the reservoir. The applicant has supplemented that data with maps, charts, and data from Federal, State, and regulatory bodies describing hydrologic characteristics and water use in the site vicinity.

The staff verified the combined surface area of Lake Anna and the WHTF using the USACE major dams map layer. This map layer dataset lists the combined surface area of Lake Anna and the WHTF as 13,000 ac, compared to 13,096 ac reported by the applicant.

The applicant stated in SSAR Section 2.4.1.2.1 that the catchment area of the North Anna River above the North Anna Dam is about 343 mi². The staff verified this statement by comparing the catchment area reported by the applicant with the 344 mi² drainage area of USGS streamflow gauge 01670400, at the North Anna River near Partlow, Virginia. The applicant stated in SSAR Section 2.4.1.2.1 that the discharge measured at the Partlow streamflow gauge reflects the regulated outflow from Lake Anna for the entire period of record since the dam was completed in 1972. The staff notes that measurements of discharge from the dam are not available from the closure of the dam sometime in 1972 until October 1, 1978.

The staff independently searched for streamflow gauges in the site vicinity and found that the USGS has maintained four streamflow gauges near the plant. Two gauges measured streamflows of tributaries draining into Lake Anna, and two measured streamflows downstream of the Lake Anna Dam. The longest streamflow record exists for the North Anna River near the Doswell, Virginia, gauge. This gauge reflects the release from Lake Anna and runoff from an additional 97 mi² of watershed downstream of the Lake Anna Dam. Streamflow at this gauge was recorded from April 1929 through October 1988. Streamflow immediately downstream from the Lake Anna Dam (North Anna River near Partlow, Virginia) was recorded from October 1978 through October 1995. The gauge on Contrary Creek, which drains into Lake Anna. reflects only 5.53 mi² of the watershed and has a record from October 1975 through January 1987. Another stream gauge upstream of Lake Anna (Pamunkey Creek at Lahore, Virginia) records runoff from 40.5 mi² of the Pamunkey Creek drainage area for the period from August 1989 through July 1993. The two upstream gauges record flows representative of only 46 mi², or approximately 13 percent of the total upstream area contributing flow to Lake Anna. The staff could not use the limited upstream tributary inflow data to independently estimate historical frequency distribution of water levels at the ESP site. Consequently, the staff used a different empirical approach to estimate low-water conditions at the ESP site, as discussed in Section 2.4.11.3 of this SER.

In RAI 2.4.1-1, the staff requested additional information on coordinates of grid sectors for the individual NAPS units. The staff also requested a layout of the intake piping/tunnel from the lake to the proposed units and locations of existing perched aquifers in the site area to demonstrate ESP site feasibility. In this RAI, the staff asked the applicant to provide the total service water flow rate needed for the two existing units with once-through cooling systems, as well as the integrated cooling flow demand for all four units, to determine whether sufficient margin exists in the available water flow from the North Anna Reservoir to account for any uncertainties associated with water and land-use changes in the vicinity of the plant.

The applicant's response to RAI 2.4.1-1 included a figure that lists the coordinates of the corners of the ESP PPE (ESP site footprint). However, the applicant did not identify the coordinate system. The staff needed information regarding the coordinate reference system and the units of these coordinates to fully define the boundaries of the ESP site footprint. This was Open Item 2.4-1. The staff identified in Open Item 2.4-1 the need for information regarding the coordinate reference system and the units of measurement of these coordinates to fully define the boundaries of the ESP site footprint.

In its submittal dated March 3, 2005 (Dominion, "Responses to Draft Safety Evaluation Report Open Items"), the applicant stated that map coordinates used the Virginia State Plane North American Datum (NAD) 83 South Zone coordinate system, and that map coordinates are expressed in feet. The staff reviewed the applicant's response and determined that the additional information provided by the applicant is sufficient to fully define the boundaries of the ESP site footprint. Accordingly, the staff considers Open Item 2.4-1 to be resolved.

In response to RAI 2.4.1-1, the applicant explained that unconfined aquifer conditions exists beneath the ESP site in the unconsolidated deposits and bedrock, which form the Piedmont Physiographic Province aquifer system. (Unconfined aquifer conditions are those in which there is no impervious layer confining the water bearing strata.) Since the ESP site and the general area are underlain by the Piedmont Physiographic Province aquifer system, the staff finds that there is no concern regarding perched aquifers at the ESP site.

The applicant provided a figure that contains a layout of the ESP intake and discharge tunnels. Based on SSAR Figure 1.2-4, the staff determined that parts of the ESP intake and discharge tunnels will be located outside the PPE (ESP footprint). In the DSER, the staff stated that the applicant needed to specify minimum distances from the SSCs of the existing units to the ESP intake and discharge tunnels to ensure that no interference will occur with SSCs of the existing units. This was Open Item 2.4-2. The staff planned to impose these distances as DSER Permit Condition 2.4-1 to ensure that no such interference would occur if a COL or CP were ultimately granted.

In response to Open Item 2.4-2, the applicant explained in its submittal dated March 3, 2005, that the discharge tunnel for proposed Unit 3 would be routed from the ESP footprint east a distance of up to 1800 ft to the ESP discharge. SSAR Figure 1.2-4 shows the locations of the ESP intake area, the ESP footprint, and the ESP discharge. These layouts generally coincide with those originally planned for abandoned Units 3 and 4, which were never completed. The proposed Unit 4 would use a closed-cycle cooling system with dry cooling towers to transfer rejected heat to the atmosphere. As shown in SSAR Figure 1.2-4, proposed Unit 3 would have its own intake west of the existing units' intake and its own outfall adjacent to the existing units' outfall at the head of the discharge canal. The preliminary construction strategy would be to use existing structures and routes to the extent possible. In the event that the existing tunnels from the abandoned units are deemed unsuitable, new tunnels would be constructed in the same vicinity. While the routing for these tunnels would pass beneath roadways, power lines, fence lines, and other structures, the tunnels would remain well away from the existing units' major powerblock structures.

In its response, the applicant also described potential construction techniques that could be used to build the new discharge tunnel, and it stated that it would be feasible to perform the construction activities associated with the intake and discharge tunnels with no adverse

interactions with the existing units' SSCs. Based on the above, the staff has determined that it is feasible to construct the proposed Unit 3 discharge tunnel in the future, should the existing abandoned discharge tunnel be determined to be unsuitable during the design of the proposed Unit 3. Any construction on the ESP site prior to issuance of a COL or CP will be constrained by the existing plants' operating licenses as governed by 10 CFR Part 50, including the requirements of 10 CFR 50.59. Since the current licensee controls access to the exclusion area, as described in Section 2.1.2 of this SER, the holder of any ESP issued for the North Anna site, and any COL or CP applicant referencing such an ESP will be able to construct and operate a new unit only in accordance with the terms of an agreement with the licensee of the existing units. The licensee of the existing units is obligated to satisfy the provisions of 10 CFR 50.59, and it will ensure that such an agreement reflects the results of any evaluation performed pursuant to 10 CFR 50.59. Accordingly, the requirements of Part 50 will ensure that any changes to the existing units SSCs resulting from construction on the ESP site will be adequately controlled. Therefore, the staff has determined that it is not necessary to impose DSER Permit Condition 2.4-1.

For this site permit review, the staff does not endorse any proposed construction technique; instead, the applicant's response is used only for a feasibility determination. The Section 50.59 process, or, should discharge tunnel construction be described in a COL or CP application, the future COL or CP review process will ensure the safety of any new construction. In the latter circumstance, the staff would review the layout of intake and discharge tunnels and the construction techniques to be used by any COL or CP applicant before commencement of construction activities. This is COL Action Item 2.4-1. Based on the above, the staff considers Open Item 2.4-2 to be resolved.

The applicant estimated a margin of 209 cfs in the water budget, assuming that the average net inflow of 370 cfs would be available. All units, including the proposed additional units, need 121 cfs of non-safety-related cooling water. The State of Virginia requires a minimum release of 40 cfs from Lake Anna for water surface elevation at or above 248 ft MSL and a minimum release of 20 cfs below it. However, during periods of low flow, the expected inflow into Lake Anna can be substantially lower than the average inflow. These periods may be critical for non-safety-related cooling needs. The staff asked the applicant to describe the potential impacts of low-flow conditions on the operation of all units. This was Open Item 2.4-3.

In response to Open Item 2.4-3, the applicant stated, in its submittal dated March 3, 2005, that Section 5.2.2 of the environmental report describes a water budget analysis carried out to determine potential impacts of low-flow conditions on the operation of all units. The applicant carried out the water budget analysis to assess potential impacts of low-flow conditions on the operation of all units. This analysis determined that the minimum water surface elevation in Lake Anna during the simulation period, which included the severe 2001–2002 drought, would be 242.6 ft MSL when proposed Unit 3 is assumed to operate along with NAPS Units 1 and 2.

The applicant also stated that, at the time of the submission of the SSAR, modifications were underway to reconfigure the intake of NAPS Units 1 and 2 to allow operation of these units down to a low water surface shutdown elevation of 242 ft MSL. These modifications were complete as of March 3, 2005, the date of applicant's response to staff's open items. The low water surface shutdown elevation for operation of NAPS Units 1 and 2, and of proposed Unit 3, is now 242 ft MSL. The applicant stated that, since the low water surface shutdown elevation in

Lake Anna for normal operation of proposed Unit 3 (242 ft MSL) is less than the minimum water surface elevation determined by applicant's water budget analysis (242.6 ft MSL), the normal operation of proposed Unit 3 would not be impacted, even during extended periods of low inflow to Lake Anna.

The staff evaluated the water budget as set forth below. The staff estimated inflows for the drainage upstream of Lake Anna using data from the adjacent Little River drainage basin adjusted for the differences in drainage areas. The reason for using an adjacent drainage basin is that too few of the tributaries flowing into Lake Anna are gauged for the data to be useful in constructing an inflow sequence for the analysis. The staff also decided that the flow downstream from Lake Anna Dam cannot be used to estimate inflows to Lake Anna because they are too heavily influenced by consumptive losses from Units 1 and 2 and the flow regulation resulting from the lake. The Little River drainage is a 107 mi² area adjacent to the North Anna drainage with streamflow measurements from October 1961 to the present. The direct precipitation input to the lake was based on precipitation records from the meteorological station at the Richmond, Virginia airport.

The staff estimated outflows from the lake based on the current operating rules for the Lake Anna Dam, which are regulated by the State of Virginia. Releases are generally performed to maintain a water surface elevation of 250 ft MSL. When the water surface elevation drops below 250 ft MSL because of inadequate inflow to offset the natural and induced evaporative losses, the release is maintained at the normal minimum flow of 40 cfs. If the water surface elevation declines below 248 ft MSL, releases were assumed to decrease to 20 cfs immediately. The minimum operating depth for the intake pumps for ESP Unit 3 as well as those for Units 1 and 2 is 242 ft MSL.

Based on the applicant's PPE estimate of 29 cfs, the staff-estimated minimum lake elevation that would occur anytime during the period from 1978–2003 was 242.8 ft MSL. Therefore, the staff concluded that any drop below 242 ft MSL would be infrequent.

The staff's water budget analysis also addressed the gradual decrease in water surface elevation in Lake Anna during normal operation of all units, including the proposed Unit 3, for an extended period of time that also included a severe 2-year drought during water years 2001 and 2002. The staff used precipitation data from the Richmond, Virginia, airport (period of record from January 1, 1921, to May 31, 2004) in its water budget analysis. In terms of precipitation, water year 1924 was the driest, and water year 2002 was the second driest. Combined precipitation during water years 2001 and 2002 was the driest 2-year period in the record.

The staff's concern in Open Item 2.4-3 was to determine if water surface elevation in Lake Anna could fall rapidly and/or frequently enough to result in an excessive reliance of proposed Unit 3 on its UHS, if the selected plant design includes a UHS.

The staff's water budget analysis estimated that, during the severe 2001–2002 2-year historical drought, the water surface elevation in Lake Anna would not have fallen below 242.6 ft MSL with the existing units running at full capacity and the proposed Unit 3 running using a once-through cooling system, also at full capacity. In an alternative configuration, with the existing units running at full capacity and the proposed Unit 3 operating at full capacity with a wet cooling tower, water surface elevation in Lake Anna would have fallen to 242 ft MSL, the proposed low water surface elevation for shutdown of proposed Unit 3. The staff used

conservative estimates of consumptive water use by the Unit 3 wet cooling tower for this alternative configuration. In this alternative configuration, it took 71 days for water surface elevation in Lake Anna to fall from 244 ft MSL to 242 ft MSL. While it is possible for a more rapid decrease in water surface elevation in Lake Anna to occur in the presence of a more severe combination of starting water surface elevation, low inflow, and little precipitation, the staff considers the 71-day period for the water surface elevation to fall from 244 ft MSL to 242 ft MSL indicative of Lake Anna's large capacity to allow a gradual decrease in its water surface elevation, even under extreme droughts. Therefore, the staff concludes that water surface elevation in Lake Anna does not fall rapidly and that sufficient time will be available to plant operators before the low water surface elevation shutdown threshold is reached to plan a shutdown of the proposed Unit 3 without endangering its safety, even under severe drought conditions. Based on the staff's independent water budget analysis described above, the staff also concludes that the water surface elevation in Lake Anna does not fall near the low water surface elevation shutdown threshold frequently enough to result in an excessive reliance of Unit 3 on its UHS, if the selected plant design includes a UHS. Accordingly, the staff considers Open Item 2.4-3 to be resolved.

SSAR Section 2.4.1.1 originally stated that, during critical, low-flow periods, makeup water would be obtained from Lake Anna, supplemented by an external source which the COL applicant would identify. In RAI 2.4.1-2, the staff requested that the applicant identify the source and quantity of the makeup flow. The applicant informed the NRC in a letter dated March 31, 2004, that proposed Unit 4 would use dry cooling towers as its normal cooling system. The applicant stated that the change in the proposed Unit 4 cooling system from wet cooling towers to dry cooling towers will reduce its consumptive water use from 35 cfs to approximately 0.002 cfs. The change of the proposed Unit 4 cooling system to a dry cooling system eliminates the need for any significant quantity of alternative cooling water. The applicant has revised its application to commit to a dry cooling system for the proposed Unit 4. This is a satisfactory response to RAI 2.4.1-2.

Subsequently, the staff based its water budget analysis and interpretation of its results on the assumption that the proposed Unit 4 would use a negligible amount of water (on the order of 1 gpm) from Lake Anna for its normal cooling. In order to ensure the safety of any proposed nuclear power plant or plants that may be built on the ESP site, the NRC staff proposes to include a condition in any ESP that might be issued for this site requiring that an applicant for a fourth proposed unit use a dry cooling tower system during normal operation. This is **Permit Condition 3**. In addition, any COL or CP applicant should develop a plant shutdown protocol for proposed Unit 3 when water surface elevation in Lake Anna falls to 242 ft MSL. This is **COL Action Item 2.4-2.**

The staff independently obtained estimates of the stage-storage relationship for Lake Anna. The staff obtained USGS 1:24,000 digital raster graph maps for Lake Anna and mosaicked them to create a georeferenced topographic map using the geographical information system software, ArcMap, Version 9.0. The bathymetry contours on this topographic map have elevations from 180 to 250 ft MSL. The staff manually digitized the lake boundary and the bathymetry contour lines and corrected them for errors. The staff created a digital surface using these digitized contours. The staff created horizontal sections, or isosurfaces, of this digital surface from 180 to 250 ft MSL at 10 ft intervals. The staff digitally determined areas of these isosurfaces and then calculated the enclosed volume between two successive

isosurfaces to independently estimate the stage-storage relationship for Lake Anna. The staff's independent estimates closely match the applicant's stage-storage curve. Therefore, the staff considers the applicant's curve to be satisfactory.

SSAR Section 2.4.1.1 reports an estimated withdrawal of 2540 cfs for Unit 3 and 44 cfs for the proposed Unit 4. A subsequent letter from the applicant to the NRC dated March 31, 2004, stated that the proposed Unit 4 would use a dry cooling tower. In RAI 2.4.1-4, the staff requested the applicant to clarify whether the cooling water flow values are annual averages or maximums. The staff indicated that if they were annual averages, estimates for daily maximums were needed. In its response, the applicant stated that the cooling water flow rate of 2540 cfs for the proposed Unit 3 is a nominal value and that the daily maximum flow rate would be within a few percent of this nominal value. In addition, proposed Unit 4 secondary cooling loop evaporative issues will consume a small amount of water, on the order of 1 gpm.

Based on information provided in the SSAR and the applicant's response to the RAIs discussed in this section of the SER, the staff concludes that the additional water budget available for use by the new units is 2540 cfs. The staff intended to identify this maximum water use as DSER Permit Condition 2.4-2. Since the available water flow is at least equal to the controlling PPE value of 2540 cfs, and Appendix A of this SER identifies the controlling PPE values, it is not necessary to add this permit condition. The future review process will ensure that a new plant's cooling water use is safely limited to the amount of water flow not to exceed 2540 cfs. The PPE Table 3.1-1 of the application states that the bounding Unit 3 discharge water temperature is 113 °F, and the cooling water temperature rise is 18 °F, which results in a maximum inlet temperature limit of 95 °F. Since the available water flow rate depends upon these conditions. the staff proposes to include these controlling PPE values in any ESP that the NRC might issue for the site. Pursuant to 10 CFR 52.24, the staff proposes the cooling water flow rate of 2540 cfs, the cooling water temperature rise of 18 °F, and the maximum inlet temperature of 95 °F as controlling PPE values when the lake level is less than or equal to 244 ft MSL. Appendix A of this SER lists the controlling PPE values. Any COL or CP applicant referencing an ESP issued for the North Anna site should show that the combined cooling water flow rate for the new units does not exceed 2540 cfs. This is COL Action Item 2.4-3.

2.4.1.4 Conclusions

As set forth above, the applicant has provided information pertaining to the general hydrologic characteristics of the site, including descriptions of rivers, streams, and lakes; water-control structures; and users of waters. Therefore, the staff concludes that, with the noted conditions, the applicant has met the requirements regarding general hydrologic descriptions with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c).

ora in the supplier of the company that the group to the supplier to the group to the supplier to the supplier

The company of the control of the co

2.4.2 Floods

2.4.2.1 Technical Information in the Application

Lake Anna was created to provide a reliable supply of cooling water for NAPS. The watershed that drains into Lake Anna is approximately 323 mi². The area of Lake Anna, including the WHTF, is approximately 20 mi². The North Anna Dam is located about 4 miles north of

Bumpass, Virginia, and about 5 miles downstream from the ESP site. Lake Anna is about 17 miles long, with an irregular shoreline approximately 272 miles in length.

The applicant presented peak flood discharges and peak reservoir levels for Lake Anna (since 1979) in SSAR Section 2.4.2.1. The largest flood recorded on the North Anna River at the Doswell, Virginia, gauge station occurred in 1969, with a peak discharge of 24,800 cfs. The applicant reported that the flood of 1972 that resulted from Hurricane Agnes was 24,000 cfs and nearly matched the historical peak discharge. However, it was attenuated at the time by the recently completed, but only partially filled, Lake Anna.

In SSAR Section 2.4.2.2, the applicant considered several possibilities for determining its design-basis flood, including the probable maximum flood (PMF) on streams and rivers, potential dam failures, the probable maximum surge and seiche² flood, and ice-effect flooding. The applicant selected the highest water level from among these flooding possibilities as the maximum flooding level. The highest water level in Lake Anna results from the PMF produced by the probable maximum precipitation (PMP) over the lake's watershed. The applicant's analysis estimates a design-basis flood elevation of 267.39 ft at the ESP site.

The staff requested, in RAI 2.4.2-1, that the applicant provide a description of likely upstream land-use changes and changes in downstream water demand that would alter both flood risk and the intensity and frequency of low-flow conditions. The staff indicated that factors affecting potential runoff (such as urbanization, forest fire, or change in agricultural use), erosion, and sediment deposition needed to be considered for determining flood elevation at the ESP site. In addressing RAI 2.4.2-1, the applicant stated that its response to environmental RAI E4.2.2-2 describes likely upstream land-use changes and downstream water demand. The applicant identified three counties located upstream of Lake Anna that may undergo growth. New development could lead to an increase in impervious surface area and, consequently, an increase in runoff to Lake Anna. The applicant stated that all three counties plan to implement stormwater management measures to reduce downstream impacts. The projected development in these counties is low, and the applicant expects such development to result in only a small impact to Lake Anna. The applicant also described the potential effect of forest fires and consequent sediment deposition in Lake Anna and concluded that these effects will not affect flood-level determination. The applicant stated that an increase in water demand resulting from the proposed Unit 3 would lead to longer periods when the lake level will be below 250 ft MSL, as compared to existing conditions. The applicant proposed that the presence and operation of the proposed Unit 3 may increase the likelihood that the lake level will be below 250 ft MSL when a flood event occurred. Since more storage will be available under such circumstances, the applicant concluded that the flood-water level at the ESP site would be reduced. The applicant revised the SSAR to be consistent with its RAI response.

The staff requested, in RAI 2.4.2-2, that the applicant provide its methodology for documenting hillslope failures in the watershed of Lake Anna. The staff indicated that any documented hillslope failures should include both the failure mechanism and the hillslope properties (e.g., terrain grade, drainage, and soil type). In response to RAI 2.4.2-2, the applicant stated that it

² A seiche is a standing wave oscillation of an enclosed water body that continues, pendulum fashion, after the cessation of the originating force, which may have been either seismic or atmospheric (USACE 2003).

had investigated landslide hazards in the North Anna site area. The applicant used field reconnaissance, air photo interpretation, literature search, and discussions with researchers familiar with the region. The applicant determined that large, deep-seated landslides do not occur in the North Anna site area or along the shores of Lake Anna. The topography in the Piedmont region is not susceptible to landslides and extensive debris flows. The applicant found no published maps of landslides in the Lake Anna area. The applicant concluded that no potential exists for large, deep-seated landslides or debris flows that may produce a seiche in Lake Anna.

The staff requested, in RAI 2.4.2-3, that the applicant provide its methodology for documenting seismically induced seiches in Lake Anna. The staff indicated that any evidence of a historical seismically induced seiche in the area should include a description of the seismic event, land damage, date of occurrence, and other information. In response to RAI 2.4.2-3, the applicant stated that it performed a literature search to determine if any seismically induced seiches had occurred in Lake Anna or other lakes in the area. In its response, the applicant referred to a paper published in the *Science of Tsunami Hazards*, the international journal of the Tsunami Society. This paper lists all known reports of tsunami and tsunami-like waves, including seiches, that have occurred in the eastern United States since 1600. The applicant found no listings of seiche activity in Virginia in the paper. The applicant also stated that the plant personnel at North Anna have not reported any seiches on Lake Anna.

The staff requested, in RAI 2.4.2-4, that the applicant demonstrate that drainage capacity at the existing grade is sufficient to accommodate local, intense precipitation. If this capacity is not sufficient, the staff asked the applicant to describe any active, safety-related drainage systems that will be installed for the ESP units. In addition, the staff requested the applicant to indicate whether drainage from the proposed site would use a drainage canal under the existing railroad spur. In its response, the applicant stated that the final grade at the ESP site would slope gently from south to north toward Lake Anna. The applicant stated that it would determine the final grade of the site after completing a detailed analysis for drainage of local intense precipitation (i.e., the local PMP defined in SSAR Section 2.4.2.3). The applicant proposed to drain local intense precipitation using surface ditches and swales. The applicant described two scenarios related to the existing railroad spur. If the spur is left in place, drainage culverts would be needed. Flood analysis for local intense precipitation would assume that all culverts are blocked, and grading near the railroad spur would be provided to allow floodwater to flow over the railroad spur and the road located north of it. Grading north of the road would be provided to direct floodwater to a surface ditch that would discharge to Lake Anna. If the railroad spur is removed, the road north of it would be provided with a low-water crossing consisting of a wide drainage canal at an elevation lower than the existing elevation of the road. The applicant also proposed to provide a storm drain beneath this drainage canal to discharge flow generated by less severe storms. For either of these scenarios, the applicant stated that slab and entrance curb elevations for safety-related facilities would be placed above the flood elevations determined from a detailed analysis of flooding caused by local intense precipitation.

2.4.2.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to the NRC regulations and regulatory guidance. The applicant identified the applicable regulations as Appendix S, "Earthquake Engineering for Nuclear Power Plants," to 10 CFR Part 50, 10 CFR 52.17(a), and 10 CFR 100.20(c) and the applicable regulatory guidance, RGs 1.29, "Seismic

Design Classification"; 1.59, "Design Basis Floods for Nuclear Power Plants"; 1.70; and 1.102, "Flood Protection for Nuclear Power Plants"; as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Section 2.4.2 of RS-002 provides the following review guidance the staff used in evaluating this SSAR section.

Acceptance criteria for this section address 10 CFR Parts 52 and 100, as they relate to identifying and evaluating hydrologic features of the site. The regulations at 10 CFR 52.17(a) and 10 CFR 100.20(c) require that the site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into account when determining its acceptability to host a nuclear reactor or reactors.

To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of the surface and subsurface hydrologic characteristics of the site and region and an analysis of the PMF. This description should be sufficient to assess the acceptability of the site and the potential for those characteristics to influence the design of plant SSCs important to safety. Meeting this guidance provides reasonable assurance that the hydrologic characteristics of the site and potential hydrologic phenomena would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting the relevant limiting parameters.

To determine whether the applicant met the requirements of the hydrologic aspects of 10 CFR Parts 52 and 100, the staff used the following specific criteria:

- For SSAR Section 2.4.2.1, the staff compares the potential flood sources and flood response characteristics of the region and site identified by its review (as described in the review procedures) to those identified by the applicant. If similar, the staff accepts the applicant's conclusions. If, in the staff's opinion, significant discrepancies exist, the staff will ask the applicant to provide additional data, reestimate the effects on a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site, or revise the applicable flood design bases, as appropriate.
- For the SSAR Section 2.4.2.2, the applicant's estimate of controlling flood levels is acceptable if it is no more than 5 percent less conservative than the staff's independently determined (or verified) estimate. If the applicant's SSAR estimate is more than 5 percent less conservative, the applicant should fully document and justify its estimate of the controlling level. Alternatively, the applicant may accept the staff's estimate.
- For SSAR Section 2.4.2.3, the applicant's estimates of the local PMP and the capacity of site drainage facilities (including drainage from the roofs of buildings and site ponding) are acceptable if the estimates are no more than 5 percent less conservative

than the corresponding staff assessment. Similarly, conclusions relating to the potential for any adverse effects of blockage of site drainage facilities by debris, ice, or snow should be based upon conservative assumptions of the storm and vegetation conditions likely to exist during storm periods. If a potential hazard does exist (e.g., the elevation of ponding exceeds the elevation of plant access openings), the applicant should document and justify the local PMP basis.

The staff used the appropriate sections of the following documents to determine the acceptability of the applicant's data and analyses in meeting the requirements of 10 CFR Parts 52 and 100. RG 1.59 provides guidance for estimating the design-basis flooding considering the worst single phenomenon, as well as combinations of less severe phenomena. The staff used the publications of USGS, NOAA, SCS, USACE, applicable State and river basin authorities, and other similar agencies to verify the applicant's data relating to the hydrologic characteristics and extreme events in the region.

2.4.2.3 Technical Evaluation

The staff obtained historical flows from USGS streamflow records for the Doswell and Partlow gauges. The peak discharge at Doswell ("Peak Streamflow for the Nation, USGS 01671000 North Anna River Near Doswell, Virginia") during the 1972 flood was 23,300 cfs, and the corresponding peak discharge at Partlow ("Peak Streamflow for the Nation, USGS 01670400 North Anna River near Partlow, Virginia") was 22,000 cfs.

Hydrometeorological Report (HMR) 52 ("Application of Probable Maximum Precipitation Estimates—United States East of the 105th Meridian," National Weather Service, August 1982) states that local intense precipitation at a given site should be based on the short-duration (1 hour), 1-mi² PMP. The staff used the HMR 52 guidelines to estimate the 1-hour, 1-mi²-PMP depth for the ESP site. Column 2 of Table 2.4-1 lists the multiplication factors recommended in HMR 52 that are applied to 1-hour, 1-mi² PMP depth to estimate the PMP depths for other durations. Column 3 of Table 2.4.2-1 includes the staff's estimated PMP depths corresponding to these durations.

Table 2.4.2-1 Local Intense Precipitation (1-mi² PMP) at the North Anna ESP Site

Duration	Multiplier to 1-hr PMP depth	PMP depth (in.)
5 min	0.331	6.1 '
15 min	0.522	9.58
30 min	0.748	13.73
1 hr	1.000	18.3
6 hr	1.527	28.02

The estimation of onsite drainage capacity and the availability of cooling water during critical low-flow periods call for margins sufficient to account for future urbanization of the watershed. These margins should be based upon available county and/or State growth management plans. In RAI 2.4.2-1, the staff indicated that a description of likely upstream land-use changes and changes in downstream water demand that could alter both flood risk and the intensity and frequency of low-flow conditions was needed. The staff also indicated that factors affecting

potential runoff (e.g., urbanization, forest fire, or change in agricultural use), erosion, and sediment deposition should be considered in the determination of flood elevation at the site.

In response to RAI 2.4.2-1, the applicant described the effects of upstream land-use changes and an increase in downstream water demand. Using this information, and assuming very conservative infiltration loss terms (i.e., low water losses) during computation of flood-water elevations at the ESP site, the staff has verified (as documented in Section 2.4.3 of this SER) that there is reasonable assurance that flooding caused by a PMF occurring in the Lake Anna watershed will not pose an undue risk to a facility falling within the PPE that might be located on the ESP site.

In response to RAI 2.4.2-2, the applicant performed field reconnaissance, literature searches, and consultations with researchers familiar with the region. The applicant found no evidence of large landslides or debris flows in the region that could produce a seiche in Lake Anna. The staff has determined that the applicant has adequately addressed these concerns and that it has provided sufficient information to conclude that hillslope failure leading to a seiche in Lake Anna is not credible.

In response to RAI 2.4.2-3, the applicant performed a literature survey and referred to a paper published in *Science of Tsunami Hazards* that lists all known tsunami and tsunami-like waves, including seiches, which have occurred in the eastern United States since 1600. The applicant did not find any listed event that occurred in Virginia. The applicant stated that plant personnel at North Anna have not reported any such event. Accordingly, the staff concludes that the applicant has adequately addressed the possibility that seismically induced seiches could occur in Lake Anna. The staff's independent estimate, discussed in Section 2.4.5 of this SER, also indicates that seismically induced seiches in Lake Anna are unlikely.

In response to RAI 2.4.2-4, the applicant stated that drainage facilities at the ESP site will be determined after a detailed analysis of flooding resulting from local intense precipitation. The applicant described two possible scenarios, one for the case in which the existing railroad spur is left in place and the other for the case in which the railroad spur is removed. Both scenarios would possibly call for suitable grading at the site, near the railroad spur and near the road located north of the railroad spur, to direct any flood produced by local intense precipitation at the ESP site to Lake Anna.

Drainage systems, such as storm drains or culverts, may become blocked during a flooding event. To preclude the possibility of a safety concern for this reason, the staff intended to specify in DSER Permit Condition 2.4-3 that any COL or CP applicant would be required to design the ESP site grade in such a way as to ensure that any flooding caused by local intense precipitation on the ESP site will be discharged to Lake Anna without relying on such systems. Since detailed design of the plants, including the site grade, are beyond the scope of an ESP review, the staff has determined that it is not necessary to impose DSER Permit Condition 2.4-3.

The staff will review the detailed design of the site grade based on applicable NRC regulations and regulatory guidance if an application is submitted referencing any ESP that might be issued. Any COL or CP applicant should show that the ESP site is graded such that any flooding caused by local intense precipitation will be discharged to Lake Anna even in the event

that any and all active drainage systems may be blocked and unable to function. This is COL Action Item 2.4-4. Appendix A of this SER identifies the minimum site grade at 271 ft MSL as a controlling PPE value. In addition, the staff intended to specify in DSER Permit Condition 2.4-4 that the COL or CP applicant will be required to locate any safety-related facility at an elevation above the maximum water surface elevation produced by local intense precipitation (PMP) expected on the ESP site. Since the plant grade has not yet been determined, and its detailed design is beyond the scope of an ESP review, the staff has determined that it is not necessary to impose DSER Permit Condition 2.4-4. The staff will review flooding protection measures based on applicable NRC regulations and regulatory guidance if an application is submitted referencing any ESP that might be issued. Any COL or CP applicant should show that all safety-related structures are located at elevations above the maximum water surface elevation produced by local intense precipitation, or that adequate flood protection measures are in place to ensure their safety. This is COL Action Item 2.4-5.

2.4.2.4 Conclusions

As set forth above, the applicant has provided sufficient information pertaining to floods. Therefore, the staff concludes that the applicant has met the requirements relating to floods with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c).

2.4.3 PMF on Streams and Rivers

2.4.3.1 Technical Information in the Application

According to the applicant, the watershed draining into Lake Anna is approximately 323 mi² in area. The area of Lake Anna, including the WHTF, is approximately 20 mi². Flooding in the watershed would lead to increased water surface level in Lake Anna.

The applicant adhered to the six-subsection format outlined in RG 1.70. Accordingly, the staff's summary of the applicant's methods and findings, discussed below, will also follow this format.

Probable Maximum Precipitation

The applicant stated in SSAR Section 2.4.3.1 that the watershed drainage is 343 mi², including the surface area of Lake Anna and the WHTF. The applicant estimated PMP according to procedures outlined in Hydrometeorological Reports (HMRs) 51 ("Probable Maximum Precipitation Estimates. United States East of the 105th Meridian," NOAA, June 1978), 52, and 53 ("Seasonal Variation of 10-Square-Mile Probable Maximum Precipitations Estimates. United States East of the 105th Meridian," NOAA, April 1980). The applicant temporally distributed the 72-hour PMP storm according to guidelines in HMR 52 and ANS/ANSI-2.8-1992, "American National Standard for Determining Design Basis Flooding at Power Reactor Sites," issued 1992. To analyze the PMF runoff, the applicant used an antecedent 72-hour storm equivalent to 40 percent of the PMP, followed by 3 dry days, followed by the full 72-hour PMP storm.

(1) The first light of the first section of the control of the

Precipitation Losses

The applicant stated in SSAR Section 2.4.3.2 that it calibrated the precipitation loss parameters in the Hydrologic Engineering Center (HEC) watershed modeling code, HEC-1, using historical storms. The applicant adjusted these losses to minimize differences between observed and simulated rainfall runoff relationships for the basin. The applicant investigated the historical storms used in a 1976 study and three additional storms that occurred in February 1979, March 1994, and June 1995. The applicant selected these additional storms because they produced high water levels in Lake Anna.

Runoff and Stream Course Models

The applicant stated in SSAR Section 2.4.3.3 that it used HEC-1 to estimate runoff and to route the resulting flood through Lake Anna. The applicant then compared the HEC-1 computed discharge and reservoir stages to observed values. The applicant adjusted both base flow and precipitation losses to minimize differences between observed and simulated values, and it used HEC-1 to route the flood through the reservoir with a level pool routing procedure. The analysis treated Lake Anna, including the WHTF, as a single reservoir when the water surface was above 253.5 ft MSL, corresponding to the top of the dikes separating the WHTF from Lake Anna. The analysis neglected any potential storage in the WHTF when the reservoir water surface was below 253.5 ft MSL.

PMF Flow

The applicant estimated peak PMF inflow to Lake Anna in SSAR Section 2.4.3.4 as 302,100 cfs. It estimated the peak discharge over the North Anna Dam to be 141,000 cfs. The applicant also stated that no other dams exist upstream of the North Anna Dam, except two small reservoirs in the drainage area. The applicant did not include the effects of releases from these two small reservoirs in the PMF flow estimation.

Water Level Determinations

The applicant routed the PMF through the reservoir using an HEC-1 level pool routing procedure. The applicant stated in SSAR Section 2.4.3.5 that the maximum water level estimated at the dam is 264.07 ft MSL. The applicant also stated that the resulting backwater profile at the ESP site would be approximately 0.2 ft higher than the water level at the dam. Therefore, the applicant's maximum estimated PMF water surface elevation at the ESP site is 264.27 ft MSL.

Coincident Wind Wave Activity

The applicant stated in SSAR Section 2.4.3.5 that it based the wave setup, added to the PMF-estimated water surface elevation at the ESP site, on a 2-year wind, and that it used a wind speed over ground of 56.0 mi/hr. The applicant estimated maximum and effective fetch lengths³ to be 10,600 ft and 4,700 ft, respectively. Based upon the values of these parameters,

³ Fetch length is the horizontal distance (in the direction of the wind) over which a wind generates seas or creates a wind setup. On reservoirs and smaller bodies of water, wind setup

the applicant estimated a significant wave height⁴ of 2.15 ft, a maximum wave height of 3.60 ft, a wind setup value of 0.09 ft, and a wave runup⁵ value of 3.03 ft. The applicant reported the maximum PMF water surface elevation at the ESP site, including wind setup and wave runup, to be 267.39 ft MSL.

The staff requested, in RAI 2.4.3-1, that the applicant provide a calibrated unit hydrograph, expressed in terms of input parameters for HEC-1, from an adjacent unregulated basin of a size similar to the Lake Anna watershed or explain why such a hydrograph is not necessary. In its response, the applicant stated that it based the unit hydrograph it developed for Lake Anna on actual rainfall data and observed water level and discharge data measured at the North Anna Dam. The applicant stated that because this unit hydrograph is based on actual observed responses in the basin, it is more representative of the Lake Anna rainfall-runoff response than that of an adjacent unregulated basin. The applicant also provided definitions of the parameters of the Clark Synthetic Unit Hydrograph and described how the presence of Lake Anna in the drainage area affects these parameters.

The staff requested, in RAI 2.4.3-2, that the applicant provide the supporting input files and the software version information that it used to generate the results discussed in this section. In its response, the applicant provided four HEC-1 input files that it used to determine the watershed runoff hydrograph, perform flood routing, and determine lake water levels. The applicant stated that it used Version 4.0.1E of the HEC-1 computer program for these analyses.

2.4.3.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 52.17(a)(1)(vi) and 10 CFR 100.20(c) and the applicable regulatory guidance as RGs 1.29, 1.59, 1.70, and 1.102, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Section 2.4.3 of RS-002 provides the following review guidance used by the staff in evaluating this SSAR section.

Acceptance criteria for this section address 10 CFR Parts 52 and 100, as they relate to identifying and evaluating the hydrologic features of the site. The regulations at 10 CFR

is the vertical rise in the still water level on the leeward side of a body of water caused by wind stresses on the surface of the water. Wind setdown is a similar effect, resulting in lowering of the water level. (USACE 2003).

⁴ Significant wave height is a statistical term relating to the highest one-third of waves of a given wave group and defined by the average of their heights and periods. The composition of the highest waves depends upon the extent to which the lower waves are considered.

⁵ Wave runup is the upper level reached by a wave on a beach or coastal structure, relative to the still water level.

Parts 52 and 100 require that a site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into account when determining the acceptability of a site for a nuclear reactor or reactors.

To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of the hydrologic characteristics of the site and region and an analysis of the PMF. This description should be sufficient to assess the acceptability of the site and the potential for those characteristics to influence the design of SSCs important to safety for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. Meeting this guidance provides reasonable assurance that any hydrologic phenomena of severity up to and including the PMF would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

To determine whether the applicant met the requirements of the hydrologic aspects of 10 CFR Parts 52 and 100, the staff used the following specific criteria.

The PMF, as defined in RG 1.59, has been adopted as one of the conditions to be evaluated in establishing the applicable maximum stream and river flooding level. PMF estimates are needed for all adjacent streams or rivers and site drainage (including the consideration of PMP on the roofs of safety-related structures). The criteria for accepting the applicant's PMF-related design basis depend on one of the following three conditions:

- (1) The elevation attained by the PMF (with coincident wind waves) establishes a minimum protection level for use in the design of the facility.
- (2) The elevation attained by the PMF (with coincident wind waves) is not controlling; the minimum flood protection level is established by another flood phenomenon (e.g., the probable maximum hurricane (PMH)).
- (3) The site is "dry"; that is, the site is well above the elevation attained by a PMF (with coincident wind waves).

When condition 1 is applicable, the staff will assess the flood level. The assessment may be made independently from basic data, by detailed review and checking of the applicant's analyses, or by comparison with estimates made by others that have been reviewed in detail. The applicant's estimates of the PMF level and the coincident wave action are acceptable if the estimates are no more than 5 percent less conservative than the staff estimates. If the applicant's estimates of discharge are more than 5 percent less conservative than the staff's, the applicant should fully document and justify its estimates or accept the staff estimates.

When condition 2 or 3 applies, the staff analyses may be less rigorous. For condition 2, acceptance is based on the protection level estimated for another flood-producing phenomenon exceeding the staff estimate of PMF water levels. For condition 3, the site grade should be well above the staff assessment of PMF water levels. The evaluation of the adequacy of the margin

(difference in flood and site elevations) is generally a matter of engineering judgment. The judgment is based on the confidence in the flood-level estimate and the degree of conservatism in each parameter used in the estimate.

The staff used the appropriate sections of several documents to determine the acceptability of the applicant's data and analyses. RG 1.59 provides guidance for estimating the PMF. Publications of NOAA and USACE may be used to estimate PMF discharge and water level condition at the site, as well as coincident wind-generated wave activity.

2.4.3.3 Technical Evaluation

The staff's evaluation consisted of the following independent analysis to verify the applicant's PMF analysis. The staff completed this evaluation in accordance with RS-002.

Probable Maximum Precipitation

The staff determined the PMP using HMRs 51 and 52 and ANSI/ANS-2.8-1992. HMR 51 gives a set of charts of PMP depths for durations of 6, 12, 24, 48, and 72 hours, corresponding to drainage areas of 10, 200, 1,000, 5,000, 10,000, and 20,000 mi². Using these charts, the staff determined PMP depths (in inches) for drainage areas of 10, 200, 1000, and 5000 mi² for all of the above-stated durations (Table 2.4.3-1).

Using the values in Table 2.4.3-1, the staff prepared depth-area-duration curves following the guidelines of HMR 51 to bracket the drainage area of Lake Anna. Figure 2.4.3-1 illustrates these depth-area-duration curves. The staff determined PMP depth values corresponding to the North Anna Dam drainage area of 343 mi² from Figure 2.4-1 to construct Table 2.4.3-2.

Table 2.4.3-1 Probable Maximum Precipitation Values for the North
Anna Dam Drainage Area

	Duration (hr)				
Area (mi²)	6	12	24	48	72
10	28.6	33.4	37.0	41.0	42.8
200	19.8	23.6	28.0	31.7	33.5
1000	14.6	18.5	23.8	26.0	27.0
5000	8.8	12.1	15.5	19.3	20.3

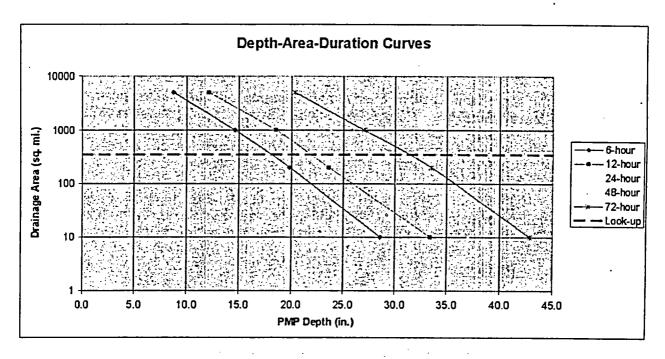


Figure 2.4.3-1 Depth-area-duration curves prepared for bracketing North Anna drainage area. The dotted horizontal line corresponds to a drainage area of 343 mi², equal to that of the North Anna Dam.

Table 2.4.3-2 PMP Depth-Duration Values for the North Anna Dam Drainage Area

	Duration (hr)				
	6	12	24	48	72
North Anna PMP					
(343 mi²)	18.2	22.0	26.6	30.0	31.2

HMR 52 and ANSI/ANS-2.8-1992 provide guidelines for distributing the PMP depths in time to create a storm sequence during the PMP event. Following these guidelines, the staff computed incremental PMP depths corresponding to all 6-hour durations during the 72-hour PMP (column 2 of Table 2.4.3-3). The incremental depths were grouped into three 24-hour periods in descending order (column 3). The staff rearranged the PMP depths within each 24-hour group according to the guidelines of ANSI/ANS-2.8-1992 (column 4). Finally, the staff rearranged column 4 following the guidelines of ANSI/ANS-2.8-1992 to create the time distribution of the PMP storm over the North Anna Dam drainage area (column 5).

Table 2.4.3-3 Time Distribution of PMP for the North Anna Dam Drainage

6-hr	Depth	Group	ANSI/ANS-2.8-1992	Time Distribution for	Time
period	(in.)	No.	Rearrange	PMP (in.)	_(hr)
1	18.20		2.30	0.85	6
2	3.80] 4	3.80	0.85	12
3 .	2.30	· '	18.20	0.85	18
4	2.30		2.30	0.85	24
5	0.85	j -	0.85	2.30	30
6 .	0.85	2	0.85	3.80	36
7	0.85	-	0.85	18.20	42
8	0.85		0.85	2.30	48
9 .	0.30		0.30	0.30	54
10	0.30	3	0.30	0.30	60
11	0.30	ا	0.30	0.30	66
12	0.30		0.30	0.30	72

Precipitation Losses

The staff assumed that no precipitation losses occurred in order to maximize the flood generated by the PMP storm over the North Anna Dam drainage area.

Runoff and Stream Course Models

The staff conservatively estimated runoff by assuming that the drainage instantaneously discharged to Lake Anna. Under this assumption, the staff estimated the runoff corresponding to all 6-hour durations by multiplying the PMP depth corresponding to that 6-hour duration by the area of the North Anna Dam drainage, and converting the volume of runoff into discharge. Table 2.4.3-4 depicts the PMF thus obtained for the North Anna Dam drainage.

Table 2.4.3-4 PMF into Lake Anna

Time (hr)	Runoff (in.)	Runoff (cfs)
6	0.85	31,358
12	0.85	31,358
18	0.85	31,358
24	0.85	31,358
30	2.3	84,851
36	14 3.8 14 million	140,188
42	18.2	671,426
- 48	2.3	84,851
54 · · ·	0.3	11,067
60	0.3	11,067
66	0.3	11,067
72	0.3	11,067

PMF Flow

Table 2.4.3-4, above, presents the staff's estimates of the PMF for the North Anna Dam drainage.

Preliminary Water Level Determinations

The staff followed two approaches to independently and conservatively bracket water levels at the ESP site during the PMF. The first approach was to compute reservoir levels under a steady inflow equal to the applicant's peak PMF discharge (302,100 cfs). The staff conservatively assumed a discharge capacity for each of three spillways of the North Anna Dam as 40,000 cfs. Under the steady inflow scenario, once the spillways reach their discharge capacity, the reservoir would fill and then overtop.

The staff estimated the overtopping flow that must pass over the crest of the dam to be 182,100 cfs. Under these conditions, the staff assumed the full width of the North Anna Dam to act like a weir and estimated the height of flow passing over it using the following wide rectangular weir equation (Chow, *Open Channel Hydraulics*, 1959)—discharge per unit width is $q = CH^{3/2}$, where C is a coefficient ranging from 2.67 to 3.05, and H is the height of flow passing over the weir. The staff obtained values of H corresponding to the two extreme values of C, assuming the dam width is equal to 5,000 ft. Hence, the staff-estimated conservative value of H is 5.71 ft.

The staff estimated the corresponding water level to be 270.71 ft MSL. This value is close to the plant grade. A further increase of water level caused by wind wave runup, surges, and seiche would result in flooding of the ESP site. However, the staff determined that the assumption of steady inflow equal to the applicant's peak PMF discharge was overly conservative because the lake attenuates the time between the steady inflow and the peak PMF discharge.

The next approach the staff used was to route the staff-estimated PMF (column 3 of Table 2.4.3-4), assuming no precipitation loss and instantaneous translation, through Lake Anna using level pool routing (Linsley, et al., *Hydrology for Engineers*, 1982, p. 272). This second approach resulted in the reservoir inflow-outflow sequence shown in Figure 2.4.3-2. Figure 2.4.3-3 depicts the corresponding reservoir elevations. The staff used the following reservoir operation rules during the PMF event—(1) operate the spillway gates, if reservoir elevation is at 250 ft MSL, to let all inflow pass through, and (2) raise reservoir gates gradually when reservoir elevation exceeds 250 ft MSL to allow more discharge, depending on the reservoir elevation, until water is freely discharged over the spillways.

The staff estimated the maximum reservoir elevation during the PMF event to be 269.13 ft MSL. A further increase of water elevation caused by wind wave runup, surges, and seiche would result in flooding of the ESP site. However, as previously stated, the staff determined that the level pool routing of the staff-estimated North Anna Dam drainage PMF was too conservative because the lake attenuates the time between the steady inflow and the peak PMF discharge.

Because the preliminary analysis did not take into account the delaying effect of Lake Anna for the arrival of the peak PMF flow at the ESP site, the staff used the input data for the HEC-1

analysis from the applicant to independently estimate floodwater level at the ESP site, as discussed below.

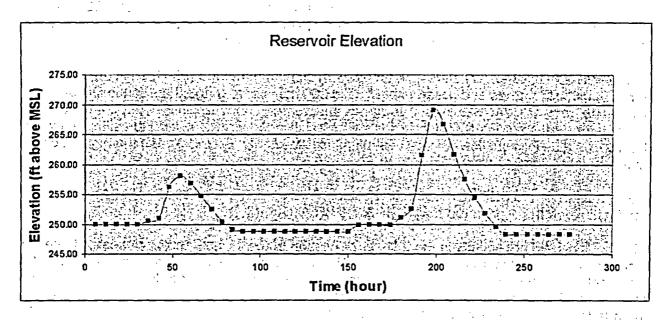


Figure 2.4.3-2 Inflow and outflow hydrographs for North Anna reservoir during the PMF event

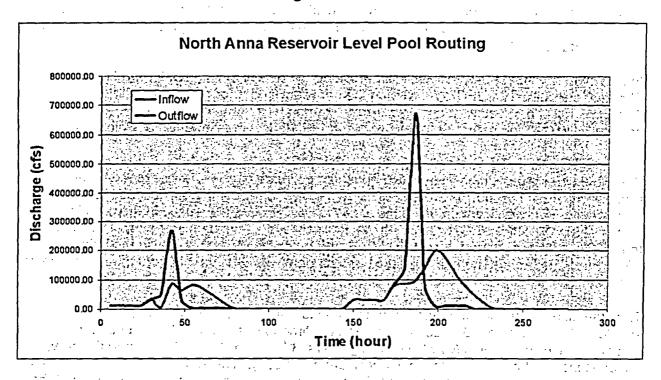


Figure 2.4.3-3 Reservoir elevation during the PMF event

Coincident Wind Wave Activity

The staff estimated wave heights based upon wave height nomographs (see USACE, "Coastal Engineering Manual," EM 1110-2-1100, Revision 1, 2003). These nomographs estimate wave height based upon fetch length and wind speed. The staff used a fetch length of 10,560 ft.

ANSI/ANS-2.8-1992 (p. 17) states, "A probable maximum hurricane (PMH) shall be considered for U.S. coastline areas and areas within 100 to 200 miles bordering...the Atlantic Ocean...." Guidance from ANSI/ANS-2.8-1992 suggests that, for the Great Lakes Region, the maximum over-water wind speed is 100 mi/hr. The staff used this conservative value to estimate a wave height of 4.3 ft. This shallow-water wave height is based upon an average of the highest one-third of representative waves.

Section 2.4.5 of this SER discusses wind setup. Based upon a wind speed of 100 mi/hr, the staff estimated the wind setup for the ESP site to be 0.46 ft.

The applicant did not specify in the SSAR the location of the lowest (and/or closest to Lake Anna) safety-related facility of the ESP site. The staff requested this information in RAI 2.4.1-1. The applicant responded by providing a revised site layout plan with coordinate grids. In order to meet the PPE constraints on ground water level and the site ground water level, the staff intended to constrain the locations of the proposed units toward the northeast corner of the proposed footprint in DSER Permit Condition 2.4-12. The staff determined that it is unnecessary to impose DSER Permit Condition 2.4-12 since it will review and evaluate any future plant design in accordance the NRC regulations to ensure adequate safety during design, construction, or inspection activities for a new plant. Refer to Section 2.4.12 of this SER for additional details.

In response to RAI 2.4.3-1, the applicant provided the details of its input for the HEC-1 analysis. The staff conducted its HEC-1 runs using the applicant's data for routing the PMF through Lake Anna. As described below, the staff determined that the maximum water surface elevation caused by PMF, wind setup, and wave runup is 1.5 ft below the plant grade, which is 271 ft MSL.

The staff's preliminary, highly simplified bounding estimate of water level exceeded the proposed ESP site grade. Therefore, the staff needed to review the applicant's HEC-1 calculations. The applicant provided the staff the HEC-1 input file it used in the calculations. The staff repeated the HEC-1 run using the applicant's input file and the newer Version 4.1 of the HEC-1 software, issued June 1998. The staff determined that the maximum inflow into the lake was 302,953 cfs. The peak outflow from the dam was 141,246 cfs, and the corresponding water surface elevation in the lake was 264.1 ft MSL.

The staff also determined that, for computing floods from PMP, unit hydrograph flood peaks should be increased from 5 to 20 percent, and the time to peak should be reduced by 33 percent (Linsley, et al., *Hydrology for Engineers*, 3rd Edition, 1982; Pilgrim and Cordery, "Flood Runoff," Chapter 9 in *Handbook of Hydrology*, 1992). The staff adjusted the applicant's unit hydrograph according to these guidelines to provide a more conservative estimate of the unit hydrograph than that used by the applicant. Figure 2.4.3-4 illustrates the staff's conservative and the applicant's original unit hydrographs. The peak discharge in staff's conservative unit hydrograph is 20 percent greater than that in applicant's unit hydrograph, and

the time to peak in staff's conservative unit hydrograph is reduced by 50 percent compared to that in applicant's unit hydrograph.

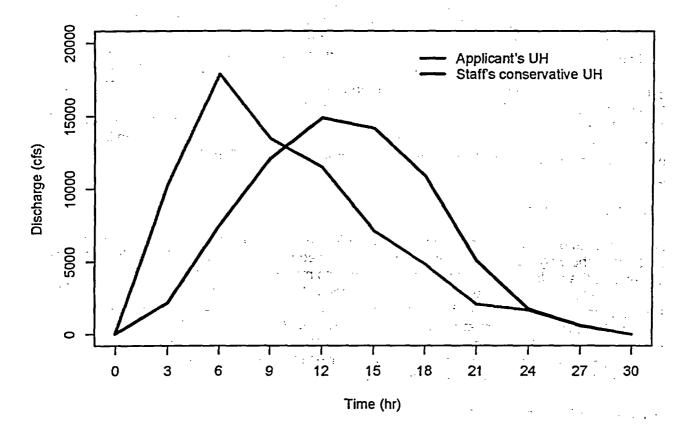


Figure 2.4.3-4 Applicant's original (black line) and staff's conservative (red line) unit hydrographs

The staff also conservatively assumed that no infiltration losses occurred during the PMP event. The staff modified the applicant's HEC-1 input file and carried out another HEC-1 run using the conservative unit hydrograph and no infiltration loss. This run resulted in a peak inflow of 342,502 cfs and a corresponding peak discharge of 143,775 cfs. The maximum calculated water surface elevation at the dam was 264.6 ft MSL.

The staff estimated the maximum water surface elevation at the ESP site by adding wave height (4.3 ft) and wind setup (0.46 ft) to the maximum water surface elevation at the dam (264.6 ft MSL). The staff estimated the maximum water surface elevation at the ESP site to be 269.5 ft MSL. This conservatively estimated maximum water surface elevation at the ESP site is 1.5 ft below the plant grade.

Two small lakes exist upstream from Lake Anna. Lake Louisa was formed by the construction of Louisa Dam on Hickory Creek in 1960, and Lake Orange was formed by the construction of Lake Orange Dam on Clear Creek in 1964. The combined capacity of these two lakes is 7671 ac-ft, approximately equal to 3 percent of Lake Anna's storage capacity between the normal pool and the top of the North Anna Dam. In Section 2.4.4 of this SER, the staff

estimates that an increase in inflow volume of 7671 ac-ft to Lake Anna would result in an increase of 0.9 ft in water surface elevation, if the starting elevation were 250 ft MSL. The water surface elevation would increase 0.5 ft, if the starting water surface elevation were 265 ft MSL. Therefore, the staff estimated the water surface elevation corresponding to the PMF, coincident wind wave action, and breach of Lakes Louisa and Orange to be 270 ft MSL. The staff concluded from this information that the maximum water surface elevation caused by the PMF and the coincident wind effects will not result in flooding of the ESP site. The staff's estimate of the PMF level is slightly higher than the applicant's (270 ft MSL vs 267.39 ft MSL). Pursuant to 10 CFR 52.24, the staff is proposing the maximum elevation of ground water at 270 ft MSL or 1 ft below the free surface, whichever is higher, the flood elevation at 270 ft MSL, and the minimum lake water level at 242 ft MLS as site characteristics for inclusion in any ESP that might be issued for the North Anna site. Appendix A of this SER lists the site characteristics.

2.4.3.4 Conclusions

As set forth above, the applicant has provided information pertaining to the PMF on streams and rivers showing that the PMF is below the proposed grade of the ESP PPE (site footprint). Therefore, the staff concludes that the applicant has met the requirements relating to the effects of PMF on streams and rivers, with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c). Further, for the reasons set forth above, the staff concludes that the applicant has considered, in establishing the minimum stream and river flood level acceptable for design purposes, the most severe natural phenomena that have been historically reported for the site and surrounding area with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated.

2.4.4 Potential Dam Failures

2.4.4.1 Technical Information in the Application

The ESP site is located adjacent to Lake Anna and is approximately 5 miles upstream of the North Anna Dam. Lake Anna was created to supply water to the existing NAPS and would be the cooling water and primary service water source for the proposed North Anna Unit 3. The applicant intends to use a dry, closed-cycle cooling system for the proposed Unit 4 which would not withdraw significant amounts of water from the lake for cooling. The UHS for the proposed units would consist of a mechanical draft cooling tower over a buried water storage basin or other passive water storage facility, as called for by the reactor design. The UHS would also provide water for the service water system in the event that the primary source becomes unavailable.

The applicant stated that no other significant dams exist on the North Anna River, either upstream or downstream of the ESP site. The only impoundments in the area are small farm ponds and two small recreational lakes (Lake Louisa and Lake Orange). The applicant concluded that failure of either of these lakes would not produce any measurable effect on Lake Anna, the North Anna Dam, or any safety-related system.

The applicant concluded that the UHS design ensures adequate water for emergency cooling, even if Lake Anna were to be drained as a result of a dam failure. The applicant also

concluded that no safety-related structures or systems would be adversely affected by the loss of water caused by a dam failure.

The staff requested, in RAI 2.4.4-1, that the applicant document impounded volumes and the locations of Lake Louisa and Lake Orange relative to Lake Anna. The staff also requested that the applicant provide its methodology for documenting failure of dams on these lakes. In its response, the applicant stated that Lake Louisa is located on Hickory Creek, a tributary to the North Anna River, and Lake Orange is located on Clear Creek, a tributary to Pamunkey Creek, which is a tributary to Lake Anna. Lake Louisa is located approximately 3.4 miles upstream of Lake Anna. It has a surface area of 280 ac, and a storage volume of 4713 ac-ft. Lake Orange is located approximately 8.8 miles upstream of Lake Anna. It has a surface area of 120 ac, and a storage volume of 2958 ac-ft. The applicant stated that the storage capacity of Lake Anna between the normal water surface elevation of 250 ft MSL and the top of the dam elevation of 265 ft MSL is 245,000 ac-ft. This storage capacity of Lake Anna is sufficient to accommodate the combined storage capacity of the two recreational lakes, which is equal to 7671 ac-ft. The applicant also considered the scenario in which dams on both Lake Louisa and Lake Orange fail during a PMP event, such that the discharge from these dam breaches arrives at Lake Anna at the same time as the peak discharge of the PMF generated by the PMP event on Lake Anna's watershed. The applicant estimated that the additional increase in PMF peak water surface elevation caused by these dam breaches would be 0.4 ft. The applicant concluded that the resulting water surface elevation would be 264.67 ft MSL, which is below the proposed site grade of 271 ft MSL. (The staff considers such an effect in Section 2.4.3.3 of this SER.)

The staff requested, in RAI 2.4.4-2, that the applicant provide details regarding storage capacity and design parameters for this underground basin. In its response, the applicant stated that a mechanical draft cooling tower over an underground basin would be used as the UHS, if the selected plant design includes a UHS. A separate cooling tower and basin would be provided for each proposed unit. The storage volume for each basin would be 4,090,625 ft³, and each basin would be approximately 235 ft wide, 350 ft long, and 50 ft deep. The applicant stated that additional basin depth will be provided for freeboard and to accommodate a possibly frozen surface layer.

2.4.4.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 52.17(a)(1)(vi), 10 CFR 100.20(c), and 10 CFR 100.23(c), and the applicable regulatory guidance as RGs 1.29, 1.59, 1.70, and 1.102, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Stranger Stranger Commence of the Commence of

Section 2.4.4 of RS-002 provides the review guidance discussed below and used by the staff in evaluating this SSAR section.

Acceptance criteria for this section are based on meeting the requirements of the following regulations:

• 10 CFR Parts 52 and 100, as they relate to evaluating hydrologic features of the site

 10 CFR 100.23, "Geologic and Seismic Siting Criteria," as it relates to establishing the design-basis flood resulting from seismic dam failure

The regulations at 10 CFR 52.17(a) and 10 CFR 100.20(c) require that the site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into account when determining its acceptability to host a nuclear reactor or reactors.

The regulations at 10 CFR Parts 52 and 100 are applicable to SSAR Section 2.4.4 because they address the physical characteristics, including hydrology, considered by the Commission when determining the acceptability of a site for a power reactor. To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of the hydrologic characteristics of the region and an analysis of potential dam failures. The description should be sufficient to assess the acceptability of the site and the potential for those characteristics to influence the design of SSCs important to safety. Meeting this criterion provides reasonable assurance that the effects of high water levels resulting from failure of upstream dams, as well as those of low water levels resulting from failure of a downstream dam, would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of relevant parameters.

The regulation at 10 CFR 100.23 requires consideration of geologic and seismic factors in determining site suitability. Specifically, 10 CFR 100.23(c) requires an investigation of the geologic and seismic site characteristics to permit evaluation of seismic effects on the site. Such an evaluation will consider seismically induced floods, including failure of an upstream dam during an earthquake.

The regulation at 10 CFR 100.23 is applicable to SSAR Section 2.4.4 because it requires investigation of seismic effects on the site. Such effects include seismically induced floods or low water levels, which constitute one element in the Commission's consideration of the suitability of proposed sites for nuclear power plants. RG 1.70 provides more detailed guidance on the investigation of seismically induced floods, including results for seismically induced dam failures and antecedent flood flows coincident with the flood peak. Meeting this guidance provides reasonable assurance that, given the geologic and seismic characteristics of the proposed site, a nuclear power plant or plants of a specified type (or falling within a PPE) could be constructed and operated on the proposed site without undue risk to the health and safety of the public, with respect to those characteristics.

The staff used the following criteria to determine whether the applicant met the requirements of 10 CFR Parts 52 and 100 and 10 CFR 100.23, as they relate to dam failures:

• The staff will review the applicant's analyses and independently assess the coincident river flows at the site and at the dams being analyzed. ANSI/ANS-2.8-1992 provides guidance on acceptable river flow conditions to be assumed coincident with the dam failure event. To be acceptable, the applicant's estimates (which may include landslide-induced failures) of the flood discharge resulting from the coincident events should be no more than 5 percent less conservative than the staff estimates. If the applicant's

estimates differ by more than 5 percent, the applicant should fully document and justify its estimates or accept the staff estimates.

- The applicant should identify the location of dams and potentially "likely" or severe modes of failure. Dams or embankments for the purpose of impounding water for a nuclear power plant(s) or plants that might be constructed on the proposed site should also be identified. The potential for multiple, seismically induced dam failures and the domino failure of a series of dams should be discussed. Approved models of the USACE and the Tennessee Valley Authority should be used to predict the downstream water levels resulting from a dam breach. First-time use of other models will necessitate complete model description and documentation. The staff will determine the acceptance of the model (and subsequent analyses) based on its review of model theory, available verification, and application. For cases which assume something other than instantaneous failure, the applicant should thoroughly document the conservatism of the rate of failure and shape of the breach. A determination of the peak flow rate and water level at the site for the worst possible combination of dam failures, as well as a summary analysis (that substantiates the condition as the critical permutation) should be presented, along with a description (and the bases) of all coefficients and methods used. In addition, the effects of other concurrent events on plant safety, such as blockage of the river and waterborne missiles, should be considered.
- The effects of coincident and antecedent flood flows (or low flows for downstream structures) on initial pool levels should be considered. Depending upon estimated failure modes and the elevation difference between plant grade and normal river levels, it may be acceptable to use conservative, simplified procedures to estimate flood levels at the site. Where calculated flood levels using simplified methods are at or above plant grade and include assumptions which cannot be demonstrated as conservative, it will be necessary to use unsteady flow methods to develop flood levels at the site. References 7, 13, and 14 of RS-002 are acceptable methods; however, other programs could be acceptable with proper documentation and justification. Computations, coefficients, and methods used to establish the water level at the site for the most critical dam failures should be summarized. Coincident wind-generated wave activity should be considered in a manner similar to that discussed in Section 2.4.3 of RS-002.

RG 1.59 provides guidance for estimating the maximum flooding level, considering the worst single phenomenon and a combination of less severe phenomena.

an enter a major sulfill and the enter a contract part

2.4.4.3 Technical Evaluation

The staff consulted USGS maps to independently verify the applicant's information and concluded that no dams of significant storage, the failure of which could endanger the North Anna Dam, exist upstream.

Using the National Inventory of Dams, the staff independently found that Lake Louisa was formed by the construction of Louisa Dam on Hickory Creek in 1960, and Lake Orange was formed by the construction of Lake Orange Dam on Clear Creek in 1964. The storage capacity of Lake Louisa is 4173 ac-ft and Lake Orange is 2958 ac-ft. The combined capacity of these two lakes is 7671 ac-ft, approximately 3 percent of Lake Anna's storage capacity between the normal pool and the top of the North Anna Dam. The staff estimated that an increase in inflow

volume of 7671 ac-ft to Lake Anna would result in an increase of 0.9 ft in water surface elevation, if the starting elevation were 250 ft MSL. The water surface elevation would increase 0.5 ft if the starting water surface elevation were 265 ft MSL. The staff estimated the water surface elevation corresponding to the PMF, coincident wind wave action, and breach of Lakes Louisa and Orange to be 270 ft MSL. The staff concludes that simultaneous arrival of all water stored in these two lakes coincident with the PMF would not result in flooding of the ESP site, which is at an elevation of 271 ft MSL.

In the event of failure of the North Anna Dam, the proposed new nuclear power plants would rely on the UHS for essential cooling, if the selected plant design includes a UHS. The applicant intends to use underground reservoirs for the UHS, which would be approximately 50 ft deep. The maximum elevation of ground water at the proposed site is 270 ft MSL. It is essential for ensuring the integrity of the UHS reservoirs that any uplift of the reservoirs caused by buoyancy, either during construction or during the life of the proposed plants, is precluded. Therefore, the free surface elevation of the UHS may not fall below 270 ft MSL. The staff identified this as DSER Permit Condition 2.4-5.

The applicant in its letter dated March 3, 2005, in response to Open Item 2.4-6, stated that details of the location and construction of the UHS have not been established. If the chosen reactor design calls for a conventional UHS, the design, location, and construction details of the UHS would be determined as part of detailed engineering and described in the COL or CP application. The applicant's response includes a detailed discussion of the engineering feasibility of ensuring that an underground UHS reservoir would be able to rely on the friction resistance from the foundation on the embedded side walls of the reservoir without any vertical uplift of the UHS reservoir because of hydrostatic upward pressure from ground water. The applicant also discussed the potential for use of rock anchors to prevent uplift of the UHS reservoir.

The staff does not endorse any reliance on skin friction between backfill and a structure critical to safety. The foundation is likely to encounter fissured rock and, over a period of 40 to 60 years, could experience considerable shrinkage and cracking, all of which can render side friction ineffective. Uplift resistance has been estimated using a nonnuclear standard (U.S. Department of Transportation, Federal Highway Administration, "Drilled Shafts," Publication No. FHWA-HI-88-042, July 1988) for anchors in fissured rock. The staff does not endorse or accept the applicant's conceptual approach for establishing UHS reservoir stability under buoyancy. However, the staff accepts that a combination of water height limit in the reservoir and an engineered and monitored posttensioned anchorage system can reliably prevent any uplift of the UHS reservoir, should one be needed. A detailed engineering design of the UHS reservoir is not within the scope of the ESP review. Based on the above, the staff has determined that NRC regulations and regulatory guidance will ensure the safety of any future UHS design and construction; therefore the proposed permit condition is not needed for the ESP. Instead, any COL or CP applicant should demonstrate that the UHS reservoirs are designed so as to satisfy the NRC's regulations. A COL or CP applicant may demonstrate compliance by following applicable NRC guidance. This is COL Action Item 2.4-6.

In response to RAI 2.4.4-2, the applicant provided details of the UHS, if the selected plant design includes a UHS, for the proposed units and the storage capacity of the associated underground UHS basins. Based on the applicant's dimensions of the underground UHS basin,

the staff estimated the storage capacity of the UHS basins to be 4.1 million ft³. Based on its review of site water availability, the staff intended to specify in DSER Permit Condition 2.4-6 that this estimated UHS basin storage capacity, should the selected plant design include a UHS, as the minimum acceptable storage capacity. Since the selection and detailed design of the plants, including their emergency cooling systems, that may be constructed on the ESP site are beyond the scope of an ESP review, the staff determined that it is not necessary to impose DSER Permit Condition 2.4-6. The staff will perform its review of the design of the plants, including their emergency cooling systems, according to NRC regulations and regulatory guidance. If the selected plant designs include, a UHS, any COL or CP applicant should demonstrate that the UHS storage basins provide storage sufficient to meet 30-day emergency cooling water needs accounting for any and all losses including but not limited to seepage, evaporation, and icing for the selected plants. Programmatic provisions should be provided for plant shut down when the liquid water volume in the UHS storage basin is inadequate. This is COL Action Item 2.4-7.

2.4.4.4 Conclusions

As set forth above, the applicant has provided sufficient information pertaining to dam failures. Therefore, the staff concludes that the applicant has met the requirements relating to dam failures, with respect to 10 CFR 52.17(a), 10 CFR 100.20(c), and 10 CFR 100.23(c). The applicant has considered the most severe natural phenomena that have been historically reported for the site and surrounding area, with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated in establishing the minimum consequences of dam failure acceptable for design purposes.

2.4.5 Probable Maximum Surge and Seiche Flooding

The ESP site is located on the shores of Lake Anna, approximately 50 miles inland from the Chesapeake Bay at an elevation of 271 ft MSL. Lake Anna is a 17-mi-long reservoir formed when the dam was constructed on the North Anna River. The ESP site is located at the approximate longitudinal midpoint of the reservoir, 5 miles upstream of the North Anna Dam.

2.4.5.1 Technical Information in the Application

The applicant stated that the ESP site is not located on an estuary or an open coast and concluded that both surge and seiche flooding would not produce critical water levels at the site. The applicant estimated a maximum fetch length of 10,600 ft. The applicant concluded that, given the relatively short fetch length, surges and waves produced from winds or oscillatory waves alone would not produce water heights greater than the still water level resulting from the PMF.

2.4.5.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as Appendix S to 10 CFR Part 50, 10 CFR 52.17(a), 10 CFR Part 100, and 10 CFR 100.20(c) and the applicable regulatory guidance as RGs 1.29, 1.59, 1.70, 1.102, and 1.125, "Physical Models for Design and Operation of Hydraulic Structures and Systems for Nuclear Power Plants,"

Revision 1 dated October 1978 as well as RS-002. The staff reviewed the probable maximum surge and seiche flooding portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above, except that consideration of Appendix S to 10 CFR Part 50 is limited to the determination of seismically induced floods and water waves pursuant to Section IV(c) of Appendix S.

Section 2.4.5 of RS-002 provides guidance for the staff's evaluation of this SSAR section. This section states that the staff's review is based on determining whether the applicant has met the requirements of 10 CFR Parts 52 and 100, as they relate to evaluating the hydrologic characteristics of the site. Specific criteria necessary to meet the relevant hydrologic requirements of 10 CFR Parts 52 and 100 include the regulations at 10 CFR 52.17(a) and 10 CFR 100.20(c), which require that the site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into account when determining its acceptability for a nuclear reactor or reactors.

To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of the surface and subsurface hydrologic characteristics of the region and an analysis of the potential for flooding caused by surges or seiches. This description should be sufficient to assess the acceptability of the site and the potential for a surge or seiche to influence the design of SSCs important to safety for a nuclear power plant or plants of a specified type that might be constructed on the proposed site. Meeting this guidance provides reasonable assurance that the most severe flooding likely to occur as a result of storm surges⁶ or seiches would not pose an undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

If it has been determined that surge and seiche flooding estimates are necessary to identify flood design bases, the applicant's analysis will be considered complete and acceptable if the following areas are addressed and can be independently evaluated from the applicant's submission:

- All reasonable combinations of PMH, moving squall line, or other cyclonic wind storm parameters are investigated, and the most critical combination is selected for use in estimating a water level.
- Models used in the evaluation are verified or have been previously approved by the staff.
- Detailed descriptions of bottom profiles are provided (or are readily obtainable) to enable an independent staff estimate of surge levels.

⁶A storm surge is a rise above normal water level on the open coast caused by the action of wind stress on the water surface. A storm surge resulting from a hurricane also includes that rise in level caused by atmospheric pressure reduction, as well as that resulting from wind stress (USACE 2003).

- Detailed descriptions of shoreline protection and safety-related facilities are provided to enable an independent staff estimate of wind-generated waves, runup, and potential erosion and sedimentation.
- Ambient water levels, including tides and sea-level anomalies, are estimated using NOAA and USACE publications as described below.
- Combinations of surge levels and waves that may be critical to the design of a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site are considered, and adequate information is supplied to allow a determination that no adverse combinations have been omitted.

This section of the SSAR may also state with justification that surge and seiche flooding estimates are not necessary to identify the flood design basis (e.g., the site is not near a large body of water).

The staff uses hydrometeorological estimates and criteria issued by USACE and NOAA for developing PMHs for east and Gulf Coast sites, squall lines for the Great Lakes, and severe cyclonic wind storms for all lake sites to evaluate the conservatism of the applicant's estimates of severe windstorm conditions, as discussed in RG 1.59. The USACE and NOAA criteria call for variation of the basic meteorological parameters within given limits to determine the most severe combination that could result. The applicant's hydrometeorological analysis should be based on the most critical combination of these parameters.

The staff uses data from the publications of NOAA, USACE, and other sources (such as tide tables, tide records, and historical lake level records) to substantiate antecedent water levels. These antecedent water levels should be as high as the "10% exceedance" monthly spring high tide, in addition to a sea-level anomaly based on the maximum difference between recorded and predicted average water levels for durations of 2 weeks or longer for coastal locations, or the 100-year recurrence interval high water for the Great Lakes. In a similar manner, the staff independently evaluates storm track, wind fields, effective fetch lengths, direction of approach, timing, and frictional surface and bottom effects to ensure that the applicant has selected the most critical values. The staff verifies models used to estimate surge hydrographs that it has not previously reviewed and approved by modeling historical events, with any discrepancies in the model being on the conservative (i.e., high) side.

The staff uses USACE criteria and methods, as generally summarized in Reference 9 of RS-002, as a standard to evaluate the applicant's estimate of coincident wind-generated wave action and runup. In addition, the staff uses the criteria and methods of the USACE and other standard techniques to evaluate the potential for oscillation of waves at natural periodicity.

2.4.5.3 Technical Evaluation

The staff conducted its review in accordance with Section 2.4.5 of RS-002 and RG 1.59. The ESP site is located 50 miles inland from the nearest body of open water (i.e., the Chesapeake Bay) subject to a storm surge. The ESP site is at an elevation of 271 ft MSL. Therefore, the staff concludes that the ESP site is not subject to a storm surge.

The following describes the staff's independent evaluation to estimate seiche effects. Fetch length is one of the key parameters for determining wind setup, and it is generally based upon the longest straight-line distance to the opposing shore. Although the ESP site is 5 miles from the North Anna Dam and more than 10 miles from the upstream end of the reservoir, the longest straight-line distance to the opposing shore is approximately 2 miles (see Figure 2.4.5-1).

Irregular lake bathymetry and strong thermal stratification that exists during various parts of the year affect wind setup near the ESP site. An accurate estimate of the wind setup that considers all of these complicating factors would require use of a multidimensional hydrodynamic and water quality model.

A simplifying and conservative approach to estimating wind setup is to assume that the lake is not thermally stratified and is represented as a uniform rectangular basin with one side equal to the fetch length. The staff assumed a uniformly distributed wind stress along the water surface, so that the hydrodynamic equations of motion can be simplified and an analytic solution for the surface setup can be obtained. The following is the resulting solution:

$$\varsigma = \frac{CU^2L}{h}$$

where ζ is the wind setup in ft, U is the wind speed in mi/hr, h is the average depth of the lake in ft, L is the fetch length in ft, and C is an empirical coefficient equal to 1.5×10^{-7} (Heaps, "Vertical Structure of Current in Homogeneous and Stratified Waters," in *Hydrodynamics of Lakes*, 1984, pp. 153–207). The staff used a value of 10,560 ft for L. Bathymetry contours (see Figure 2.4.5-1) indicate that the original river level was at an approximate elevation of 200 ft MSL. Since the water depth, h, is in the denominator, a smaller depth would produce a larger (i.e., more conservative) wind setup. However, since wind setup is a relatively minor effect (no more than a few feet), a low initial lake surface elevation would indicate that the wind setup would be unlikely to reach the ESP site elevation and is not reasonable, so a deeper average water depth was chosen based upon the ESP site elevation. Accordingly, the staff used an average water depth of 35 ft.

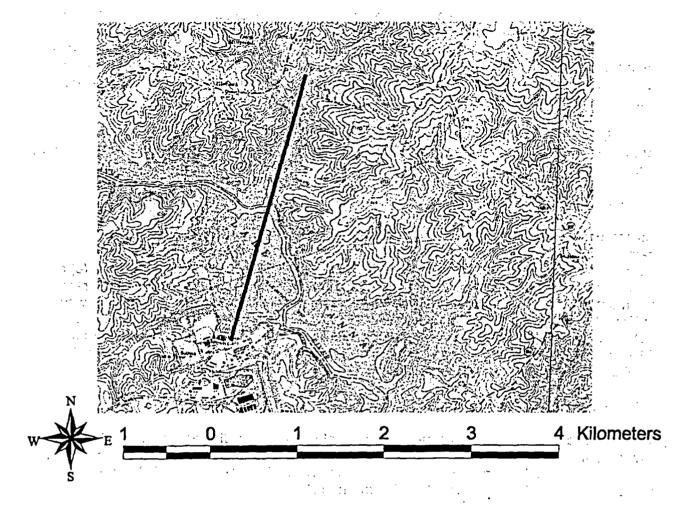


Figure 2.4.5-1 North Anna Power Station site and fetch length

Another parameter in the wind setup equation is wind speed over the water surface. One of the derivation assumptions for the wind setup equation is that the wind speed is steady and uniformly blowing in the direction of maximum fetch. ANSI/ANS-2.8-1992 suggests that, for the Great Lakes region, the maximum over-water wind speed is 100 mi/hr. The staff used this conservative value as the steady over-water wind speed in the wind setup equation.

Using these values, the staff estimated the resulting wind setup as 0.46 ft. The staff combined this increase in water surface elevation at the ESP site with the estimated stage resulting from the PMF, as discussed in Section 2.4.3 of this SER.

The staff estimated the period of oscillation caused by seiche along the fetch length line shown in Figure 2.4.5-1 based on the theory for free oscillation of water of uniform depth in a rectangular basin (Wilson, "Seiches," *Advances in Hydroscience*, Volume 8, 1972):

$$T = \frac{2L}{\sqrt{gh}}$$

where T is the period of seiche motion in seconds, g is the acceleration caused by gravity (32.2 ft/s²), and L and h are as defined in the equation for wind setup. The staff estimated the resulting seiche period to be approximately 10.5 minutes. This period is significantly shorter than the meteorologically induced wave periods (e.g., synoptic storm pattern frequency and dramatic reversals in steady wind direction necessary for wind setup). Therefore, the staff concludes that meteorologically forced resonance on Lake Anna is not likely.

Overall, the staff concludes that seismically induced seiche is not likely in Lake Anna because of the large difference between the period of oscillation caused by seiche and that of seismically induced vibration.

2.4.5.4 Conclusions

As set forth above, the applicant has provided sufficient information pertaining to surge and seiche. Therefore, the staff concludes that the applicant has met the requirements relating to surge and seiche with respect to 10 CFR 52.17(a), 10 CFR 100.20(c), and Section IV(c) of Appendix S to 10 CFR Part 50. In addition, the seismically induced flooding analysis reflects the most severe seismic event historically reported for the site and surrounding area (with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated). The staff concludes that the applicant partially conforms to GDC 2 in Appendix A to 10 CFR Part 50, insofar as that analysis defines the minimum flood level acceptable for design for seismically induced surge and seiche.

2.4.6 Probable Maximum Tsunami Flooding

The ESP site is located approximately 50 miles inland from the Chesapeake Bay (Potomac River) at an elevation of 271 ft MSL on the shores of Lake Anna, a 17-mi-long reservoir that was formed when the dam was constructed on the North Anna River. The ESP site is approximately 5 miles upstream of the North Anna Dam.

2.4.6.1 Technical Information in the Application

The applicant stated in SSAR Section 2.4.6 that, because the site is at an inland location and not located on an estuary or open coast, tsunami flooding is not a design consideration. The applicant only considered tsunami flooding associated with seismically generated waves in open water that affect coastal areas.

2.4.6.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 52.17(a), 10 CFR Part 100, 10 CFR 100.20(c), and 10 CFR 100.23(c) and the applicable regulatory guidance as RGs 1.29, 1.59, 1.70, 1.102, and 1.125, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Section 2.4.6 of RS-002 provides the guidance the staff used in evaluating this SSAR section, which is based on meeting the requirements of the following regulations:

- 10 CFR Parts 52 and 100, as they relate to identifying and evaluating hydrologic features of the site
- 10 CFR 100.23, as it relates to investigating the tsunami potential at the site

The regulations at 10 CFR 52.17(a) and 10 CFR 100.20(c) require that the site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into account when determining its acceptability to host a nuclear reactor or reactors. The regulations at 10 CFR Parts 52 and 100 are applicable to SSAR Section 2.4.6 because they address the physical characteristics, including hydrology, considered by the Commission when determining the acceptability of the proposed site. To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of the hydrologic characteristics of the coastal region in which the proposed site is located and an analysis of severe seismically induced waves. The description should be sufficient to assess the acceptability of the site and the potential for a tsunami to influence the design of SSCs important to safety for a nuclear power plant or plants of a specified type that might be constructed on the proposed site. Meeting this guidance provides reasonable assurance that the most severe flooding likely to occur as a result of a tsunami would pose no undue risk to the type of facility proposed for the site.

CHILD TO THE STATE OF THE STATE

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

The regulation at 10 CFR 100.23(c) requires that geologic and seismic factors be considered when determining the suitability of the site. As required by 10 CFR 100.23(c), an investigation of the geologic and seismic site characteristics is conducted to permit adequate evaluation of seismic effects on the site. Such an evaluation will consider seismically induced floods and water waves. This regulation is applicable to SSAR Section 2.4.6 because it requires investigation of seismic effects on the site. Such effects include distantly and locally generated waves or tsunami that have affected or could affect a proposed site, including the runup or drawdown associated with historic tsunami in the same coastal region, as well as local features of coastal topography that might modify runup or drawdown. RG 1.70 provides more detailed guidance on the investigation of seismically induced flooding.

To determine whether the applicant met the requirements of 10 CFR Part 52, 10 CFR Part 100, and 10 CFR 100.23 with respect to tsunami and the analysis thereof, the staff used the following specific criteria:

- If it has been determined that tsunami estimates are necessary to identify flood or lowwater design information, the analysis will be considered complete if the following areas are addressed and can be independently evaluated from the applicant's submission:
 - All potential distant and local tsunami generators, including volcanoes and areas
 of potential landslides, are investigated and the most critical ones are selected.

- The analysis uses conservative values of seismic characteristics (source dimensions, fault orientation, and vertical displacement) for the tsunami generators selected.
- All models used in the analysis are verified or have been previously approved by the staff. RG 1.125 provides guidance on the use of physical models of wave protection structures.
- Bathymetric data are provided (or are readily obtainable).
- Detailed descriptions of shoreline protection and safety-related facilities are provided for wave runup and drawdown estimates. RG 1.102 provides guidance on flood protection for nuclear power plants.
- Ambient water levels, including tides, sea level anomalies, and wind waves, are estimated using NOAA and USACE publications, as described below.
- If the applicant adopts RG 1.59, Regulatory Position 2, the design basis for tsunami protection of all safety-related facilities identified in RG 1.29 should be shown at the COL or CP stage to be adequate in terms of the time necessary for implementing any emergency procedures.
- The applicant's estimates of tsunami runup and drawdown levels are acceptable if the estimates are no more than 5 percent less conservative than the staff estimates. If the applicant's estimates are more than 5 percent less conservative (based on the difference between normal water levels and the maximum runup or drawdown levels) than the staff's, the applicant should fully document and justify its estimates or accept the staff estimates.
- This section of the SSAR will also be acceptable if it states the criteria that the applicant used to determine that tsunami flooding estimates are not necessary to identify the minimum flood level used for design (e.g., the site is not near a large body of water).

2.4.6.3 Technical Evaluation

The staff found during its independent review that, according to NOAA (NOAA, 2004: What was the highest tsunami? Frequently asked questions, Tsunami Research Program website, http://www.pmel.noaa.gov/tsunami/Faq/x005 highest, accessed November 1, 2004), the 10 most destructive tsunami in the Pacific Ocean since 1990 produced maximum wave heights of 9.8 to 49 ft. A wave height of 100 ft was recorded on the coast of Japan during the 1993 Okushiri tsunami. The ESP site is located at an elevation of 271 ft MSL. The staff therefore concluded that the effects of even the largest tsunami in open water would not be high enough to exceed the elevation of the ESP site.

The staff also considered the potential of flooding on the shores of Lake Anna near the ESP site as a result of wave runup caused by a seismically induced hillslope failure. A hypothetical landslide was modeled to examine the potential for the ESP site to be exposed to a seismically induced water wave. The staff's calculation assumed a landslide created by the surrounding hillsides, which are at an approximate elevation of 300 ft MSL. Assuming normal water surface

level in Lake Anna, a landslide could therefore fall 50 ft before hitting the water. If drag is neglected, an object falling from the hilltop could reach a vertical speed of approximately 55 ft/s. The staff conservatively assumed that such a hillslope failure might result in a horizontal water wave of the same speed. In addition, the staff conservatively assumed that this landslide would displace water from the existing shoreline to the deepest portion of the lake approximately 70 ft offshore (see Figure 2.4.6-1).

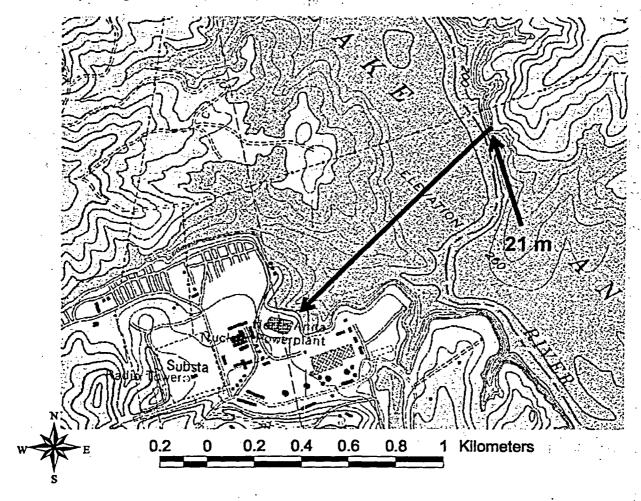


Figure 2.4.6-1 Landslide diagram resulting in wave traveling towards the ESP site. The 70 ft segment indicated in blue is the distance from the shore to the thalweg and represents that part of the water column displaced by the landslide.

The staff performed a numerical hydrodynamic modeling of Lake Anna using the three-dimensional transient-free surface model, Flow-3D. This model is a commercial software package that is supported though Flow Science, Inc. (Flow Science, Inc., "Flow-3D User's Manual," 2003). The model has a large user base and has been previously tested under a wide range of applications. Both the "Flow-3D User's Manual" and Hirt and Nichols, "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," issued 1981, provide details of the model's theoretical background. A report by Bradford, "Numerical Simulation of Surf Zone

Dynamics," issued 2000, provides a recent and relevant application of the model for breaking waves, including free-surface breakup.

Flow-3D uses the finite volume method to solve the three-dimensional Reynolds-averaged Navier-Stokes equations. The physical domain simulated by the model can be divided into variable-sized hexahedral cells. This application used the Renormalized Group Model (Yakhot and Smith, "The Renormalization Group, the e-Expansion and Derivation of Turbulence Models," 1972) as the turbulence model. The staff divided the domain into uniform cells 1 ft in all directions. The staff simplified the model to two dimensions (the model domain was one cell wide), and the domain totaled approximately 500,000 computational cells. Bathymetry near the ESP site was approximated using a preimpoundment contour map, which was further simplified into two sloping regions (Figure 2.4.6-2). The first region extended approximately 3200 ft from the line following the lowest part of the lake bed (thalweg) towards the ESP site. Over this distance, the bottom rose 30 ft from an elevation of 200 to 230 ft MSL. The second region continued horizontally for approximately 900 ft, until intersecting the normal water surface level near the ESP site. Over this latter distance, the bottom rose 40 ft from an elevation of 230 to 270 ft MSL. The staff conservatively estimated bottom roughness to be equivalent to that of a smooth wall.

The staff initialized the numerical model with a 70-ft horizontal zone with a horizontal velocity of 55 ft/s, while the remainder of the lake was quiescent (see Figure 2.4.6-2). The staff assumed the boundary condition at midlake to be a wall that caused outgoing waves to reflect back towards the ESP site. The boundary condition on top of the domain was gauge (atmospheric) pressure.

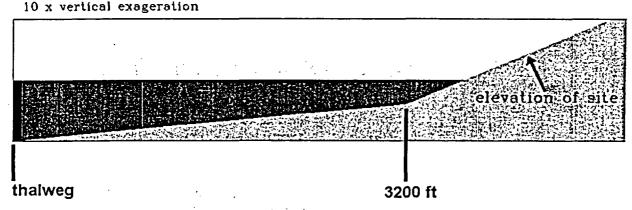


Figure 2.4.6-2 Initial conditions for the numerical model. The red zone at the left of the figure is the 70-ft-wide zone initialized at 55 ft/s.

The highest extent of the wave runup was reached after approximately 118 seconds and resembled a thin jet traveling up the smooth beach slope (see Figure 2.4.6-3). The highest extent of wave runup on the bank was just below an elevation of 270 ft MSL, and the water did not reach the elevation of the ESP site. At an elevation of 270 ft MSL, the wave was less than 1 ft thick. The wave reached 2 ft in thickness at an elevation of 260 ft MSL, which was 11 ft lower than the elevation of the ESP site.

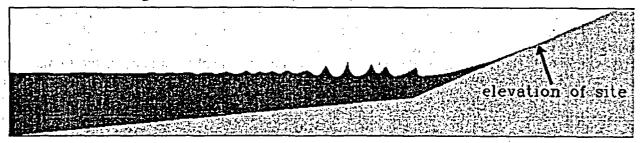


Figure 2.4.6-3 Highest extent of wave runup on shore

Therefore, the staff concluded that, even under conservative conditions of flooding generated by severe landslide, the ESP site would remain dry.

2.4.6.4 Conclusions

As set forth above, the applicant has provided information pertaining to probable maximum tsunami flooding showing that the elevation of such a flood is below the proposed grade of the ESP PPE (site footprint), and no flood protection measures are needed. Therefore, the staff concludes that the applicant has met the requirements relating to probable maximum tsunami flooding, with respect to 10 CFR 52.17(a), 10 CFR 100.20(c), and 10 CFR 100.23(c).

2.4.7 Ice Effects

The ESP site is located approximately 50 miles inland from the Chesapeake Bay (Potomac River) at an elevation of 271 ft MSL. The Chesapeake Bay climate influences the climate at the site throughout the year. The site is located on the shores of Lake Anna, a 17-mi-long reservoir that was formed when the North Anna Dam was constructed on the North Anna River. The site is located at the approximate longitudinal midpoint of the reservoir, 5 miles upstream of the North Anna Dam.

2.4.7.1 Technical Information in the Application

In SSAR Section 2.4.7.3, the applicant discussed historical ice formation in the region. The applicant reported that, after the construction of the dam and before the start of the operation of the existing NAPS units, an ice sheet formed on the lake. However, since the beginning of operation of those units, ice sheets have formed only on the upper reaches of Lake Anna. The staff requested, in RAI 2.4.7-1, that the applicant provide details, including location, duration, and height, of the occurrence of ice dams and subsequent downstream flood waves in the region. In its response, the applicant stated that no historical records indicate the formation of ice dams in the North Anna River, and therefore no records show any subsequent downstream flooding resulting from breaking of ice dams.

SSAR Section 2.4.7.4 states that, during the design of the intake structures, any COL applicant should assess the formation of anchor ice on the trash racks and screens. The staff requested,

in RAI 2.4.7-2, that the applicant provide site characteristics relevant to such an assessment, including constraints on intake design based on a propensity for anchor ice and potential ice depth. In its response, the applicant stated that the site characteristics presented in SSAR Section 2.4.7.5 are not conducive to the formation of anchor ice on the trash racks and screens at the intake structure. The applicant indicated that no historical record shows the formation of ice crystals or granules in turbulent water (resembling slush, and referred to as frazil ice) in the existing intake structure. The applicant further stated that ice formation in the intake structure is an extremely rare event, such as when all units do not operate for prolonged periods during very severe wintry conditions. The applicant stated that, when any unit is in operation, heat loads dissipated in Lake Anna would preclude the formation of any frazil ice and thus the possibility of anchor ice. The applicant stated that an assessment would be made, at the COL stage, during the detailed design review regarding whether anchor ice could form on intake structures, and that the design would address any such icing issues identified.

SSAR Section 2.4.7.5 states that, during the period the existing units have operated at NAPS, surface ice has not formed in the area of the lake between the discharge and the intake of the plant. Ice sheets formed upstream of Route 208 during this period. The applicant stated that, because the area where ice sheets formed is located far from the main circulation path of cooling water, ice sheet formation will not affect operation of the intake for the ESP units. The applicant also stated that ice sheet formation is possible in the lake when all units may be offline during a sustained cold period. Based on daily mean air temperature data for 1961 to 1995, the applicant stated that, during several years, the mean daily air temperature was below freezing for 1 to 3 weeks in January and February. The applicant estimated the maximum ice thickness that could have formed under historically observed low air temperature conditions, assuming no units were in operation. The applicant estimated 200 degree-days below freezing during January and February 1977. The applicant used Assur's method (described by Chow, "Handbook of Applied Hydrology," 1964) to estimate an ice thickness of 13.5 in. The applicant concluded that this surface ice thickness would not impact water flow to intakes during restart of the units because of a water depth of at least 24 ft at the ESP intake.

SSAR Section 2.4.7.5 states that a separate UHS, if the selected plant design includes one, would supply the emergency cooling and service water needed to maintain the proposed units in a safe mode. The staff requested in RAI 2.4.7-3 that the applicant describe the source of cooling water needed for this purpose. In response to RAI 2.4.7-3, the applicant stated that initial filling and continued makeup water for UHS cooling tower basins would be obtained from Lake Anna.

The applicant stated that the UHS would provide both emergency and service water, and that ice-flow accumulation will not affect safety-related facilities. The staff requested, in RAI 2.4.7-4, that the applicant identify the constraints on the design of the UHS with regard to ice formation and that it indicate the maximum depth of ice formation in the water stored in the UHS to ensure the availability of sufficient water in the UHS during freezing. In its response, the applicant stated that the minimum water storage capacity of the UHS would be 4,090,625 ft³. The UHS basins would be designed with sufficient depths to store the minimum water volume below the ice sheet, or measures would be taken to preclude the possibility of ice formation on the surface of the UHS basin.

SSAR Section 2.4.7.6 states that the PPE snow load is 50 lb/ft². The staff requested, in RAI 2.4.7-5, that the applicant confirm whether it calculated local snow load (a site

characteristic) using the meteorological attributes discussed in SSAR Section 2.3.1.3.4. In its response, the applicant stated that the snow load for design of structures is determined using the equivalent depth of a 48-hour PMP on a 100-year return period snowpack. The 100-year snowpack is equivalent to 30.5 lb/ft², and the 48-hour PMP is equivalent to 107.9 lb/ft² or 20.75 in. of water.

2.4.7.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 52.17(a), 10 CFR Part 100, 10 CFR 100.20(c), and 10 CFR 100.23(c) and the applicable regulatory guidance as RGs 1.27, 1.29, 1.59, 1.70, and 1.102, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above, with the exception of 10 CFR 100.23(c) which does not apply.

Section 2.4.7 of RS-002 provides review guidance used by the staff in evaluating this SSAR section. Acceptance criteria for this section are based on meeting the requirements of 10 CFR Parts 52 and 100, as they relate to identifying and evaluating hydrologic features of the site.

The regulations in 10 CFR 52.17(a) and 10 CFR 100.20(c) require that the site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into account when determining its acceptability for a nuclear power reactor. To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of any icing phenomena with the potential to result in adverse effects to the intake structure or other safety-related facilities for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. Ice-related characteristics historically associated with the site and region should be described, and an analysis should be performed to determine the potential for flooding, low water, or ice damage to safety-related SSCs. The analysis should be sufficient to evaluate the site's acceptability and to assess the potential for those characteristics to influence the design of SSCs important to safety for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. Meeting this guidance provides reasonable assurance that the effects of potentially severe icing conditions would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of relevant parameters.

RG 1.59 provides guidance for developing the hydrometeorologic design basis.

To determine whether the applicant met the requirements of 10 CFR Parts 52 and 100, as they relate to ice effects, the staff used the following specific criteria:

Publications of NOAA, USGS, USACE, and other sources are used to identify the
history and potential for ice formation in the region. Historical maximum depths of icing
should be noted, as well as mass and velocity of any large, floating ice bodies. The

phrase, "historical low water ice affected," or similar phrases in streamflow records (USGS and State publications) will alert the reviewer to the potential for ice effects. The following items should be considered and evaluated, if found necessary:

- The regional ice and ice jam formation history should be described to enable an independent determination of the need for including ice effects in the design basis.
- If the potential for icing is severe, based on regional icing history, it should be shown that water supplies capable of meeting safety-related needs are available from under the ice formations postulated, and that safety-related equipment could be protected from icing as in the second item above. If this cannot be shown, it should be demonstrated that alternate sources of water are available that could be protected from freezing, and that the alternate source would be capable of meeting safety-related requirements in such situations.
- If floating ice is prevalent, based on regional icing history, potential impact forces on safety-related intakes should be considered. The structural design basis should include the dynamic loading caused by floating ice. (This item is to be addressed at the COL or CP stage.)
- If ice blockage of the river or estuary is possible, it should be demonstrated that the resulting water level in the vicinity of the site has been considered. If this water level would adversely affect the intake structure or other safety-related facilities of a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site, it should be demonstrated that an alternate safety-related water supply would not also be adversely affected.
- The applicant's estimates of potential ice flooding or low flows are acceptable if the estimates are no more than 5 percent less conservative than the staff estimates. If the applicant's estimates are more than 5 percent less conservative than the staff's, the applicant should fully document and justify its estimates or accept the staff estimates.

2.4.7.3 Technical Evaluation

In SSAR Section 2.4.7.3, the applicant discussed historical ice formation in the region. The applicant reported that, after the construction of the dam and before the start of the operation of the existing NAPS units, an ice sheet formed on the lake during the winter of 1977. Since NAPS began operating, ice sheets have formed only on the upper reaches of Lake Anna (upstream of the Route 208 bridge). The staff accessed the USACE historical database of ice jams on August 2, 2004. One ice jam was reported over the past 70 years for the North Anna River, on March 4, 1934, near the Doswell USGS gauge located approximately 16 miles downstream of the ESP site. This observation suggests that ice jam formation upstream of the ESP site is possible. The breakup of an upstream ice dam may result in flood waves at the ESP site. SSAR Section 2.4.7 does not provide regional characteristics of the location, duration, height of ice dams, and ice-induced high flows.

Because there is a historical record of ice jams on the North Anna River, the staff determined that the applicant should address the possibility of an ice jam or an ice dam formation upstream of the ESP site and should estimate the effect of a flood wave generated from the breakup of such an ice formation. This was Open Item 2.4-4. In response to Open Item 2.4-4 (Dominion, "Responses to Draft Safety Evaluation Report Open Items," March 3, 2005), the applicant evaluated the effect of a flood wave generated from the breakup of an ice jam or an ice dam formation upstream of the ESP site. Since the North Anna River is the largest tributary to Lake Anna, the applicant postulated the ice dam to occur on the North Anna River close to where it enters Lake Anna. The applicant selected this location to estimate the greatest volume of water that could be impounded by an ice dam, and the effect of the breaching of such a postulated ice dam on downstream flooding of the ESP site. Using topographic maps, the applicant estimated that the surface area of water impounded behind this ice dam would be 150 ac. The applicant estimated the volume of impounded water behind the ice dam as 1500 ac-ft by conservatively assuming a dam height of 10 ft and the depth of impoundment equal to 10 ft.

The applicant stated that the volume of impounded water behind the postulated ice dam (1500 ac-ft) on North Anna River is significantly smaller than the combined storage volume of Lakes Louisa and Orange (7671 ac-ft). As described in Section 2.4.4 of this SER, a simultaneous and complete failure of Lakes Louisa and Orange coincident with a PMF on Lake Anna's watershed is not sufficiently severe to flood the ESP site grade. Consequently, the applicant concluded that any flood produced by breakage of an ice dam on the North Anna River would also not result in flooding of the ESP site grade.

The staff reviewed the applicant's submission and determined that the applicant's approach (trying to bound a flood produced by breakage of an ice dam using the combined flood produced by simultaneous breakage of dams on Lakes Louisa and Orange) is satisfactory, based on the following rationale: The staff determined that, according to the USACE National Inventory of Dams, the height of the Lake Orange Dam is 44 ft and that of the Lake Louisa Dam is 25 ft. The staff also determined that no historical report exists of the formation of an ice dam on the North Anna River that exceeded 10 ft in height. Therefore, the staff concluded that no ice dam on North Anna River can create an impoundment of volume equal to the combined storage of Lakes Louisa and Orange. Consequently, any flood produced by breakage of an ice dam on the North Anna River will be smaller than the flood produced by simultaneous breakage of dams on Lakes Louisa and Orange. The staff determined in Section 2.4.4 of this SER that a flood produced by simultaneous breakage of dams on Lakes Louisa and Orange, coincident with the PMF in Lake Anna's watershed, would not flood the ESP site. Consequently, the staff concludes that any flood produced by breakage of the largest ice dams on North Anna River would also not flood the ESP site. Based on this review, the staff considers Open Item 2.4-4 to be resolved.

Based on the information provided in the SSAR regarding the applicant's UHS design proposed as part of the PPE, ice formation in the lake would not directly affect the UHS because its operation would be independent of the normal cooling water intake. However, ice formation in the lake could lead to increased reliance on the UHS. The staff's technical evaluation considered the safety implications of ice formation characteristics (i.e., sheet, anchor, and frazil ice) when all, some, or none of the four units (two existing and two future) would be in operation. The critical condition associated with freezing of the lake involves startup after all units have been shut down. For this condition, it is necessary to quantify ice characteristics to be used by the COL or CP applicant for design of the intake structures.

The staff independently verified the following hydrological characteristics provided by the applicant:

- The lowest monthly minimum air temperature at the Richmond Airport for any month was 15 °F in January 1977. The long-term average minimum air temperature for station VA7201 is 27.5 °F in January and 29.5 °F in February (NCDC, "Local Climatological Data Annual Summary and Comparative Data," temperature records through December 2001 for stations VA 7201, VA 6712, VA 6533, VA 5050, 2001).
- Three other NCDC weather stations surrounding the site recorded the following minimum temperatures. The lowest monthly minimum air temperature at Piedmont Research Station (station VA 6712, period of record August 1948 to December 2001) was 13 °F) in January 1977. The long-term average minimum air temperature is 24.0 °F in the month of January and 26.2 °F in February. The lowest monthly minimum air temperature at Partlow 3 WNW Station (station VA 6533, period of record June 1952 to December 1976) was 11 °F in January 1970. The long-term average minimum air temperature is 20.8 °F in the month of January and 23.8 °F in February. The lowest monthly minimum air temperature at Louisa Station (station VA 5050, period of record August 1948 to December 2001) was 15 °F in January 1977. The long-term average minimum air temperature is 24.8 °F in January and 26.8 °F in February.

The staff independently estimated the likely thickness of surface ice that may form near the intake structures. During this estimation, the staff used mean daily air temperatures recorded at the Piedmont Research Station (Station VA 6712 as discussed in the previous paragraph) located on the northwest ridge of the watershed draining into Lake Anna. The mean air temperatures at this station are available for water years 1949 to 2001. The staff estimated cumulative degree-days starting December 1 through March 31 for each water year. The most severe cumulative degree-days below freezing occurred in 1977 (Figure 2.4.7-1).

Water Year 1977

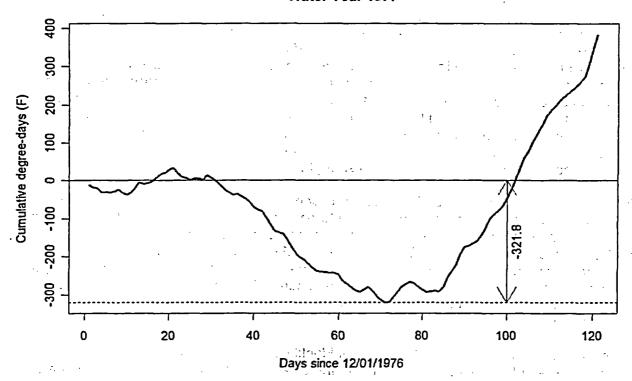


Figure 2.4.7-1 Accumulated degree-days since December 1, 1976, at the Piedmont Research Station meteorologic station

The maximum accumulated degree-days below freezing during the period of December 1, 1976, to March 31, 1977, was 321.8 °F, as shown in Figure 2.4.7-1. The staff used Assur's method to estimate a maximum ice thickness of 17.1 in. The staff's estimate is higher than the applicant's estimate of 13.5 in. However, this difference does not have any safety impact because, as explained below, the increase in ice thickness does not affect the intake for the proposed additional units. The ice sheet could be in place for several weeks. The staff determined, based on Figure 3.4-4 of the application and the minimum Lake Anna water level of 242 ft MSL, that the intake for the proposed additional units would be at least 20 ft below the minimum low-water level. The staff therefore concluded that the staff-calculated maximum estimated ice thickness of 17.1 in. would not hamper operation of the proposed additional units. However, the staff also determined that extended periods of water temperatures at freezing are possible near the intake structure. In Appendix A to this SER, the staff proposes the minimum lake water level of 242 ft MSL and the maximum ice thickness of 17.1 in. as site characteristics.

In response to RAI 2.4.7-2, the applicant stated that formation of frazil and anchor ice is an extremely rare condition that can only happen when all units are shut down and prolonged, wintry conditions prevail. The applicant stated that this issue would be addressed during design of the intake structures. However, the staff determined that minimum lake temperature is a site characteristic important as a design basis for a nuclear power plant or plants that might be constructed on the site. Therefore, this was Open Item 2.4-5.

In response to Open Item 2.4-5, the applicant stated in its submittal dated March 3, 2005, that the only scenario in which frazil and anchor ice could form is when all units have been shut down for a prolonged period in the winter, allowing the lake to cool to ambient temperature while conditions suitable for formation of frazil ice exist. The applicant stated that frazil ice can form in open water (i.e., no ice cover is present) with air and water temperatures near freezing, strong winds, and clear nights. The applicant stated that no safety-related facilities would be impacted if frazil ice were to form near the intake. The applicant also stated that the possibility of anchor ice accumulation on the trash racks and screens of the intake structure was remote and would be addressed during detailed engineering. In case the detailed engineering review concluded that anchor ice could form, the applicant proposed to use measures in the design of the intake structure to preclude formation of anchor ice. These measures may include heating the intake components subject to anchor ice formation, circulating warm water to the intake, and using coatings to reduce ice adhesion strength.

The staff determined that the ESP site supports conditions that may lead to formation of fraziland anchor ice near cooling water intake structures. The staff also determined that minimum lake temperature is not a suitable site characteristic to describe the potential for formation of frazil ice. According to the USACE Ice Engineering Manual, frazil ice forms in turbulent, supercooled water. Supercooled water is at a temperature below its equilibrium freezing point, which, for pure water, is 32 °F at atmospheric pressure. Supercooling can occur in lakes and rivers in turbulent, open-water areas when the air temperature is significantly less than 32 °F, usually 18 °F or lower.

In response to Open Item 2.4-5, the applicant identified the potential for frazil and anchor ice formation, in lieu of a minimum lake temperature, as a site characteristic for the cooling water intake structure. The potential for formation of frazil and anchor ice at the ESP site was included as a site characteristic in SSAR Table 1.9-1. The staff has determined that the applicant's proposed site characteristic reflects the conditions necessary for the formation of frazil ice, which are discussed above, and the staff considers Open Item 2.4-5 to be resolved.

SSAR Section 2.4.7.5 states that a separate UHS would supply the emergency cooling and service water needed to maintain the proposed units in a safe mode. The SSAR did not identify the source of the cooling water needed for this purpose. In response to RAI 2.4.7-5, the applicant stated that Lake Anna would be the source of initial filling and continued makeup water for the UHS basins. The staff finds this to be acceptable based on the large quantity of water available for makeup and the relatively small demand represented by the UHS.

SSAR Section 2.4.7.5 states that the UHS will provide both emergency and service water and that ice-flow accumulation will not affect safety-related facilities. The SSAR does not identify constraints on the design of the UHS with regard to ice formation, nor does it indicate the maximum depth of ice formation in the water stored in the UHS to ensure the availability of sufficient water in the UHS during freezing.

In response to RAI 2.4.7-4, the applicant stated that the minimum storage capacity of the UHS basins, if the selected plant design includes a UHS, would be maintained by either providing sufficient depth, such that the minimum water volume would be available below the ice sheet, or by adopting measures that would preclude the formation of an ice sheet on the surface of the UHS basins. In order to obviate the need for any limits on the operation of the proposed units, the UHS storage capacity should be large enough to accommodate ice formation. Through

DSER Permit Condition 2.4-7, the staff intended to ensure that the storage volume of the UHS basins would be sufficient to provide emergency cooling water to the respective ESP plants for 30 days, accounting for any and all losses from the UHS basins. This issue is addressed by COL Action Item 2.4-7. Pursuant to this item, given in Section 2.4.4.3 of this SER, a COL or CP applicant referencing the ESP will need to address whether 30-day cooling water supply will be available in the UHS storage basins to account for all potential losses. The issue raised by DSER Permit Condition 2.4-7 is thus resolved, and a permit condition is not necessary.

With respect to ice in a UHS, the staff requested that the applicant identify an additional UHS design-basis site characteristic. Section 2.3 of this SER discusses this issue in the resolution of Open Item 2.3-3. In its letter of March 3, 2005, responding to the staff's Open Items, the applicant agreed to use the staff's proposed characteristic of cumulative degree-days below freezing during winter estimated using measured air temperature at the Piedmont Research Station meteorologic station as the site characteristic appropriate for the estimation of thickness of an ice layer that may form in the UHS storage basins. Section 2.3.1.3 of this SER provides additional details on this issue.

SSAR Table 1.9-1 states that the PPE snow load is 30.5 lb/ft² based on the 100-year return period snowpack at the site. In response to RAI 2.4.7-3, the applicant stated that the 48-hour winter PMP is 20.75 in. and the weight of the 100-year return period snowpack is 30.5 lb/ft². In accordance with the criteria in RG 1.70, the snow load is obtained by using a 48-hour PMP event combined with a 100-year snowpack. The staff estimate of this combined load (using the applicant's 48-hour winter PMP value) is 138.4 lb/ft². The staff determined that this calculated site-specific snow load is overly conservative. Section 2.3.1 of this SER provides additional information regarding this issue.

Upon resolution of the open item related to snow load discussed in Section 2.3.1, the staff intended to establish the snow load for the site and to include the value determined in any ESP that the NRC might issue for the proposed ESP site. In response to Open Item 2.3-2, in its letter dated March 3, 2005, the applicant addressed the snow load issue. Section 2.3.1.3 of this report provides a detailed discussion on this issue and resolution to Open Item 2.3-2. Table 2.3.1-5 of this report provides the snow load to be considered for a future design. RG 1.70 specifies both the weight of the 100-year return period snowpack and the weight of the 48-hour PMWP to assess the potential snow loads on the roofs of safety-related structures. The staff's interim position on winter precipitation loads (see memorandum dated March 24, 1975, from H.R. Denton to R.R. Maccary) is summarized in the following paragraph as it applies to any future COL or CP applicant, and provides clarification as to the load combinations to be used in evaluating the roofs of safety-related structures.

As set forth in the staff's interim position on winter precipitation loads, the winter precipitation loads to be included in the combination of normal live loads for the design of a nuclear power plant or plants that might be constructed on a proposed ESP site should be based on the weight of the 100-year snowpack or snowfall, whichever is greater, recorded at ground level. Likewise, the winter precipitation loads to be included in the combination of extreme live loads to be considered in the design of a nuclear power plant or plants that might be constructed on a proposed ESP site should be based on the weight of the 100-year snowpack at ground level plus the weight of the 48-hour PMWP at ground level for the month corresponding to the selected snowpack. A COL or CP applicant may choose and justify its alternative method for

defining the extreme load combination of maximum snow load and winter precipitation load by demonstrating that the 48-hour PMWP could neither fall nor remain on the top of the snowpack and/or building roofs because of the specific design of the roof. The future design of roofs for safety-related structures will be reviewed and approved based on NRC regulations and regulatory guidance.

2.4.7.4 Conclusions

As set forth above, the applicant has provided sufficient information pertaining to ice effects. Therefore, the staff concludes that the applicant has met the requirements concerning ice effects with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c). Further, the applicant has considered the most severe natural phenomena that have been historically reported for the site and surrounding area with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated, in establishing site characteristics pertaining to ice effects that are acceptable for design purposes.

2.4.8 Cooling Water Canals and Reservoirs

Lake Anna was constructed to provide a reliable supply of cooling water for NAPS. The North Anna Dam is located about 4 miles north of Bumpass, Virginia, and about 5 miles downriver from the ESP site. Lake Anna is about 17 miles long, with an irregular shoreline approximately 272 miles in length.

A series of dikes and canals separates Lake Anna into two segments. The larger segment, approximately 9600 ac, is named the North Anna Reservoir and serves as the storage impoundment. The smaller segment, approximately 3400 ac, is the WHTF and functions to dissipate the heat of the cooling water discharged from the existing units to the atmosphere.

The North Anna Dam is the only significant water control structure on the North Anna River. The dam is an earth-filled structure, approximately 5000 ft long with a 30-ft-wide crest at an elevation of 265 ft MSL. The dam has a 200-ft-long concrete spillway founded on bedrock. The spillway has three radial crest gates, each 40 ft wide and 35 ft high. Two skimmer gates, each 8.5 ft square, allow for the regulation of small discharges.

2.4.8.1 Technical Information in the Application

The applicant stated in SSAR Section 2.4.8 that the proposed Unit 3 would use a once-through cooling system for normal plant cooling. This cooling system would withdraw cooling water at a rate of 2540 cfs from a new intake structure located west of the intake structures for the existing Units 1 and 2. The cooling water would be pumped through the proposed Unit 3 condensers and auxiliary heat exchangers and then discharged into the WHTF for heat dissipation. A new outfall would be constructed adjacent to the existing units' outfall at the head of the discharge channel that leads into the WHTF.

The applicant informed the NRC of a revised approach to cooling the proposed Unit 4 in a letter dated March 31, 2004, and subsequently revised the SSAR to reflect this approach. The revised application states that the proposed Unit 4 would use a closed-cycle cooling system with dry cooling towers. This approach eliminates the use of Lake Anna as a source of makeup

water for Unit 4, as well as the potential need for Unit 4 to rely on external water sources during drought conditions.

The applicant stated in SSAR Section 2.4.8 that the UHS for the proposed units would consist of a mechanical draft cooling tower over a buried water storage basin or other passive water storage facility, if the selected plant design includes a UHS. This facility would have its own water storage basins, independent of Lake Anna, for safety-related cooling and would contain water sufficient to maintain the plant in a safe shutdown mode for 30 days.

The applicant stated that a series of canals and dikes divides Lake Anna into two parts. The smaller part is the WHTF, and the larger part is the North Anna Reservoir. Circulating cooling water for the existing units is withdrawn from the North Anna Reservoir at the existing screen well, pumped through the condenser, and discharged through the circulating water discharge canal into the WHTF. The WHTF consists of three ponds that are interconnected by two canals. The discharge canal and the interconnecting canals are each designed to carry 8000 cfs. The applicant estimated a maximum discharge capacity of 6795 cfs when all four units are operating and concluded that the design water surface elevation of 251.5 ft MSL in the WHTF would not be affected because the canals were designed for a discharge of 8000 cfs. The canals are constructed through bedrock and are unpaved. Vegetation on all banks provides erosion protection, except near the discharge structure at Dike 3, where rip rap is provided.

The circulating water flows through these ponds and is discharged through six submerged skimmer gates located on Dike 3 into the North Anna Reservoir. The dikes are constructed of compacted earth material, except for a 700-ft section of Dike 3, which is constructed of dumped rock fill. The submerged skimmer gates are constructed within the rock fill section, and the rock fill section itself acts as an emergency overflow spillway. The crest of the rock fill section is at an elevation of 253.5 ft MSL, while the rest of the crest of the dike is at an elevation of 260 ft MSL. When water surface elevation in the WHTF exceeds 253.5 ft MSL, the rock fill section overtops, while ensuring the difference in water surface elevations between the WHTF and the North Anna Reservoir does not exceed 2 ft. The applicant estimated that the rock fill is likely to overtop once every 100 years. the first of the second of

2.4.8.2 Regulatory Evaluation Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 50.55a, "Codes and Standards"; GDC 2; GDC 44, "Cooling Water"; and 10 CFR Part 100 and the applicable regulatory guidance as RGs 1.27, 1.29, 1.59, 1.70, 1.102, and 1.125. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above, with the exception that an ESP applicant need not demonstrate compliance with the GDC or with 10 CFR 50.55a. White the state of the state

Acceptance criteria for this section are based on meeting the requirements of 10 CFR Parts 52 and 100, as they relate to identifying and evaluating the hydrologic features of the site.

The regulations in 10 CFR 52.17(a) and 10 CFR 100.20(c) require that the site's physical characteristics (including seismology, meteorology, geology, and hydrology) be taken into

and the state of the second of the second of the second

account when determining its acceptability for a nuclear power reactor. To satisfy the hydrologic requirements of 10 CFR Parts 52 and 100, the SSAR should contain a description of cooling water canals and reservoirs for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. The analysis related to cooling water canals and reservoirs should be sufficient to evaluate the site's acceptability and to assess the potential for those characteristics to influence the design of SSCs important to safety for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. Meeting this guidance provides reasonable assurance that the capacities of cooling water canals and reservoirs are adequate.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

2.4.8.3 Technical Evaluation

The staff visually inspected the site on February 23 and 24, 2004. The staff determined that the application accurately describes the cooling canals, outfalls, and levees near the ESP site.

Section 2.4.3 of this SER presents the staff's evaluation of the ability of Lake Anna (including the WHTF) to survive a PMF. The staff did not consider Lake Anna to be a safety-related reservoir since it is not a part of the proposed UHS for the proposed units.

The applicant stated that the UHS for the ESP units would consist of a mechanical draft cooling tower over a buried water storage basin, if the selected plant design includes a UHS. This UHS would have its own water storage basins that would be independent of the lake. In addition, the applicant stated that since the cooling tower basin for the UHS would contain its own 30-day water supply, water levels in Lake Anna would not affect the ability of the UHS to provide emergency cooling for safe shutdown.

The applicant suggested that the proposed Unit 3 would use a once-through cooling system during normal plant operation. The applicant also suggested that the proposed Unit 4 would use a closed-cycle cooling system with dry towers during normal plant operation. The limitation on the quantity of cooling water and other attributes of the cooling system design for the proposed Units 3 and 4 form part of the bases for site constraints. Consequently, the staff proposes the Unit 3 cooling water flow rate as a controlling PPE value, and the use of dry towers for Unit 4 as a permit condition in any ESP that the NRC might issue for the proposed ESP site. Appendix A to this SER contains a list of the permit conditions and controlling PPE values for this site.

The applicant did not provide details of the location and construction of the UHS buried water storage basin. Therefore, the staff could not review these details. The staff indicated that these details were needed because they relate to the reliability and stability of the UHS under the pressure head of ground water, which is at the grade level at certain locations of the ESP site. These data were the subject of RAIs 2.4.1-1 and 2.4.4-2. The need for location and construction details to determine differential head between ground water and the UHS was Open Item 2.4-6. Section 2.4.4.3 of this report addresses the feasibility of preventing UHS reservoir uplift because of buoyancy. Section 2.4.4.3 notes that the staff does not accept the

applicant's conceptual approach (see March 3, 2005, letter from the applicant in response to open items) for preventing the UHS reservoir uplift; nonetheless, the staff accepts that a combination of water height limit in the reservoir and an engineered and monitored posttensioned anchorage system can reliably prevent any uplift of the UHS reservoir, should one be needed. A detailed engineering design of the UHS reservoir is not within the scope of the ESP review. Based on the above, the staff has determined that NRC regulations and regulatory guidance will ensure the safety of any future design and construction; therefore, information related to the location of the UHS reservoir is not needed for the ESP. Section 2.4.3.3 of this SER describes the maximum elevation of ground water at 270 ft MSL or 1 ft below the free surface, whichever is higher, as a site characteristic that would need to be considered by the COL or CP applicant in the detailed engineering design of the UHS to resist the potential for hydrostatic uplift, should the selected design include a UHS. Therefore, Open Item 2.4-6 is resolved.

Lake Anna and the WHTF are not safety-related facilities, as described in the application. Consequently, any future design at the ESP site that relies on the WHTF or on the North Anna Reservoir for any safety-related water use will be subject to further staff evaluation of such use. Through DSER Permit Condition 2.4-8, the staff intended to ensure that Lake Anna and the WHTF will not be used for safety-related water use. Instead, dedicated underground UHS water storage basins that are independent of Lake Anna and the WHTF will supply emergency cooling water supply for the ESP plants' UHS, if the selected plant designs includes a UHS. Further, the applicant has considered the design capacity of the cooling water canals and discharge structure in establishing that the addition of Units 3 and 4 would not affect the normal design-water level for WHTF. While the acceptability of the design of cooling water canals and discharge structure is beyond the scope of an ESP review, the staff determined that the NRC's existing regulatory process will ensure that any application proposing the use of Lake Anna for safety-related water will be appropriately evaluated, and therefore it is not necessary to impose DSER Permit Condition 2.4-8. The COL or CP applicant should address whether Lake Anna or the WHTF will be used for safety-related water withdrawals. This is COL Action Item 2.4-8.

The details provided in SSAR Section 2.4.8 associated with cooling water canals and reservoirs specific to the proposed Units 3 and 4 are identified by the applicant as PPE values in Table 1.3-1 of the application. The staff has determined that the once-through cooling water flow rate of 2540 cfs for Unit 3 is a controlling PPE value and the use of a dry cooling tower for Unit 4 is controlled by Permit Condition 3.

As set forth above, the applicant has provided sufficient information pertaining to cooling water canals and reservoirs. Therefore, the staff concludes that the applicant has met the requirements related to cooling water canals and reservoirs, with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c). The Mark Control of the Control of t

2.4.9 Channel Diversions The way to the property of the state of the s

The watershed upstream of the North Anna Dam lies in the Piedmont Physiographic Province, a rolling to hilly area, underlain mostly by metamorphosed sedimentary and crystalline rocks. These rocks are relatively resistant to erosion.

2.4.9.1 Technical Information in the Application

The applicant stated in SSAR Section 2.4.9 that there has been no major channel diversion of the North Anna River. The applicant also stated that localized ice jams would not create a low-flow period of sufficient duration to affect the cooling water supply.

The staff requested, in RAI 2.4.9-1, that the applicant document historical or geological evidence of possible diversions and meandering of the North Anna River upstream of the ESP site. In its response, the applicant stated that the possibility of upstream diversion of the North Anna River is extremely remote. The applicant used interpretations of USGS topographic maps and pre-dam aerial photographs to conclude that historical channel diversions have been minor and have occurred only in ancient geologic periods. These diversions are confined to valley bottoms of the existing drainage pattern.

The applicant also stated, in response to RAI 2.4.9-1, that the underground storage basins for the UHS, if the selected plant design includes a UHS, will be filled before plant startup and subsequently isolated from Lake Anna, thus eliminating Lake Anna as a backup water source for emergency cooling.

2.4.9.2 Regulatory Review

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as Appendix A to 10 CFR Part 50, GDC 44, 10 CFR 52.17(a), 10 CFR Part 100, and 10 CFR 100.20(c) and applicable regulatory guidance as RGs 1.27 and 1.70, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Section 2.4.9 of RS-002 provides the review guidance used by the staff in evaluating this SSAR section. Acceptance criteria for this section relate to 10 CFR Parts 52 and 100, insofar as they require that hydrological characteristics be considered in the evaluation of the site. The regulations at 10 CFR 52.17(a), 10 CFR 100.20(c), and 10 CFR 100.21(d) require that physical characteristics of the site (including seismology, meteorology, geology, and hydrology) be taken into account to determine the acceptability of a site for a nuclear reactor.

Channel diversion or realignment, which poses the potential for flooding or adversely affecting the supply of cooling water for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site, is one physical characteristic that must be evaluated pursuant to 10 CFR 100.21(d). Consideration of criteria under 10 CFR 100.21(d) in view of this evaluation provides reasonable assurance that the effects of flooding caused by channel diversion resulting from severe natural phenomena would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

To meet the requirements of 10 CFR Parts 52 and 100, as they relate to channel diversion, the staff use the following specific criteria:

- A description of the applicability (potential adverse effects) of stream channel diversions is necessary.
- Historical diversions and realignments should be discussed.
- The topography and geology of the basin and its applicability to natural stream channel diversions should be addressed.
- If applicable, the safety consequences of diversion and the potential for high or low water levels, caused by upstream or downstream diversion, to adversely affect safety-related facilities, water supply, or the UHS should be addressed. RG 1.27 provides guidance on acceptable UHS criteria.

2.4.9.3 Technical Evaluation

The staff developed a basic understanding of the geomorphology of the region during its site visit. The staff's search did not produce any evidence of major channel diversion of the North Anna River. Channel diversions usually occur in relatively flat, deep alluvial plains where the river channel meanders greatly. The North Anna watershed upstream of the dam lies in the Piedmont Physiographic Province, a rolling to hilly area, underlain mostly by metamorphosed sedimentary and crystalline rocks. These rocks are relatively resistant to erosion. Because of these physiographic features, the staff concludes that channel diversion above Lake Anna is not likely.

Section 2.4.7 of this SER evaluates channel diversion caused by ice effects, and Section 2.4.11 of this SER evaluates the resulting low-water conditions.

In response to RAI 2.4.9-1, the applicant provided details of topographic and geomorphologic interpretations carried out using USGS topographic maps and pre-dam aerial photographs. The applicant concluded that diversion of North Anna River from its present drainage pattern is extremely remote. The staff concluded that the applicant has provided sufficient information to address this issue, and this information supports the above staff conclusion.

2.4.9.4 Conclusions

As set forth above, the applicant has provided information pertaining to channel diversions showing that channel diversion above Lake Anna is not likely. Therefore, the staff concludes that the applicant has met the requirements regarding channel diversions, with respect to 10 CFR Part 50, 10 CFR 52.17(a), 10 CFR 100.20(c), and 10 CFR 100.21(d). Further, the applicant has considered the most severe natural phenomena that have been historically reported for the site and surrounding area with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated in establishing that channel diversion is not likely at this site.

2.4.10 Flooding Protection Requirements

The proposed ESP site grade is at an elevation of 271 ft MSL.

2.4.10.1 Technical Information in the Application

In SSAR Sections 2.4.2 and 2.4.3, the applicant estimated the design-basis flood elevation at the ESP site to be 267.39 ft MSL. This elevation includes the effects of flooding caused by a PMF resulting from a PMP over the North Anna Dam's drainage area, wind setup, and wave runup. The applicant stated that all safety-related SSCs for the proposed additional units would be placed at or above the existing site grade of 271 ft MSL. The applicant therefore concluded that the ESP site does not require any safety-related flood-protection facilities.

In SSAR Sections 2.4.2 and 2.4.10, the applicant stated that the drainage design for the ESP site would consider the effects of intense local precipitation. Safety-related facilities associated with the ESP units would be designed to withstand the peak discharge resulting from local intense precipitation. In addition, the applicant stated that new facilities would incorporate measures to ensure that flooding as a result of either construction or operation of the proposed additional units would not compromise the existing units' safety-related facilities.

2.4.10.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 50.55a, GDC 2, 10 CFR 52.17(a), and 10 CFR 100.20(c) and the applicable regulatory guidance as RGs 1.29, 1.59, 1.70, 1.102, and 1.125. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above, with the exception that an ESP applicant need not demonstrate compliance with the GDC or with 10 CFR 50.55a. Acceptance criteria for this section relate to 10 CFR Parts 52 and 100, insofar as they require that hydrological characteristics be considered in the evaluation of the site. Specifically, the regulations at 10 CFR 52.17(a) and 10 CFR 100.20(c) require that physical characteristics of the site (including seismology, meteorology, geology, and hydrology) be taken into account to determine the acceptability of a site for a nuclear reactor.

The regulation in 10 CFR 100.20(c) requires that the PMF be estimated using historical data. Meeting this requirement provides reasonable assurance that the effects of flooding or a loss of flooding protection resulting from severe natural phenomena would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

To determine whether the applicant met the requirements of 10 CFR Parts 52 and 100, as they relate to flooding protection, the staff used the following specific criteria:

- The applicability (potential adverse effects) of a loss of flooding protection should be described.
- Historical incidents of shore erosion and flooding damage should be discussed.
- The topography and geology of the basin and its applicability to damage as a result of flooding should be addressed.
- If applicable, the safety consequences of a loss of flooding protection and the potential to adversely affect safety-related facilities, water supply, or the UHS should be addressed. RG 1.27 provides guidance on acceptable UHS criteria.

2.4.10.3 Technical Evaluation

During its review of SSAR Sections 2.4.2 and 2.4.3, the staff estimated the design-basis flood elevation to be 270 ft MSL. The staff estimated local, intense precipitation for the ESP site to be 18.3 in./hr. Table 2.4.2-1 in Section 2.4.2 of this SER provides the complete hyetograph (a chart or graphic representation of the average distribution of rain over the site surface area) for the 6-hour local, intense precipitation.

Since the ESP site grade (at an elevation of 271 ft above MSL) is higher than the design-basis flood elevation (270 ft MSL), flood protection requirements do not apply. In the DSER, however, the staff indicated that safety-related SSCs that may be constructed on the proposed site should be constructed with ingress and egress openings located above the elevation of 271 ft MSL to ensure they are protected from flooding. The staff intended to ensure protection of safety-related SSCs from flooding by specifying minimum ingress and egress elevation in DSER Permit Condition 2.4-9 and to include the grade elevation as a site characteristic in any ESP that might be issued for the proposed site. However, the staff determined that DSER Permit Condition 2.4-9 is unnecessary since any ESP that might be issued will include a site characteristic specifying the maximum water surface elevation and any application referencing such an ESP should demonstrate that the proposed design bounds this site characteristic. This will ensure that all SSCs will be protected from flooding. Accordingly, COL Action Item 2.4-4 and COL Action Item 2.4-5, as described in Section 2.4.2.3 of this SER, provide for the review of specific design and engineering details of SSCs for flooding protection according to NRC regulations and regulatory guidance at the COL or CP stage.

The need to protect the slope embankment at the intake location is based on the potential for degradation resulting from water and wave action. Through DSER Permit Condition 2.4-10, the staff intended to provide erosion protection to protect the slope embankment. However, the staff determined that it is sufficient for any COL or CP applicant to address the issue of slope embankment protection during design of the intake structure. This is COL Action Item 2.4-9. In its review of a COL or CP application that references any ESP that might be issued, the staff will evaluate the design of the intake structure in accordance with NRC regulations and regulatory guidance.

Any COL or CP applicant will ensure that the flood control measures protecting the safety-related facilities of the existing units will not be compromised during construction or operation of the proposed units. The staff intended to ensure flood protection of the existing units' SSCs

during construction and operation of the ESP unit by imposing DSER Permit Condition 2.4-11. However, the staff determined that 10 CFR 50.59 requires the licensee of the existing units to evaluate changes to flood protection provisions, which are described in the existing units' final safety analysis reports. Since the current licensee controls access to the exclusion area, as described in Section 2.1.2 of this SER, the holder of any ESP issued for the North Anna site, and any COL or CP applicant referencing such an ESP will be able to construct and operate a new unit only in accordance with the terms of an agreement with the licensee of the existing units. The licensee of the existing units is obligated to satisfy the provisions of 10 CFR 10.59, and it will ensure that such an agreement reflects the results of the evaluations performed pursuant to 10 CFR 50.59. Accordingly, the requirements of Part 50 will ensure that any changes to the existing units' flood protection measures resulting from construction on the ESP site will be adequately controlled. Therefore, DSER Permit Condition 2.4-11 is unnecessary.

2.4.10.4 Conclusions

As set forth above, the applicant has provided information pertaining to flooding protection requirements showing that the design-basis flood elevation is below the proposed grade of the ESP PPE (site footprint), and no flood protection measures are needed. Therefore, the staff concludes that the applicant has met the flood protection requirements with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c). Further, in making this demonstration, the applicant has considered the most severe natural phenomena that have been historically reported for the site and surrounding with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated.

2.4.11 Low-Water Considerations

The site is adjacent to Lake Anna, which provides the cooling water for the current and proposed units. Events that may potentially reduce or limit the availability of cooling water at this site include low lake level, seiches, wind-induced set down, and intake blockages from sediment or from ice.

The normal cooling water supply for non-safety-related needs of the proposed units would be obtained from Lake Anna, created by the North Anna Dam. The UHS underground storage basins, if the selected plant design includes a UHS, would provide a 30-day supply of emergency cooling water. The applicant stated that the UHS storage basins would be maintained full and are not dependent upon the water level in Lake Anna for their safety function.

The applicant stated in SSAR Section 2.4.11.1 that for the new units, the anticipated minimum lake level for operation would be the same as the existing units, at elevation 242.0 ft MSL. A lake water level below 242.0 ft MSL could warrant a shutdown of the new and exiting units, however, it would not impact safety-related systems since the water supply from the lake is used only for normal cooling of non-safety-related systems.

Normal operation for the proposed Unit 3 would use a once-through cooling system, operated with water drawn from Lake Anna. The applicant's March 31, 2004, letter to the NRC states that the normal operation cooling system for proposed Unit 4 would use dry cooling towers. Underground water storage basins would supply the proposed UHS for both proposed units, if

the selected plant design includes a UHS. The applicant subsequently revised the SSAR to be consistent with the statements made in this letter.

2.4.11.1 Technical Information in the Application

र राज्या र अध्यक्ति

To determine the impact of new units on Lake Anna water levels, the applicant considered, in SSAR Section 2.4.11, constraints on water availability resulting from low flow in streams, seiches, drought, and from future controls. In SSAR Section 2.4.11.4, the applicant cited its water budget calculation that estimates the lake elevation changes associated with the addition and operation of the proposed Unit 3, which are included in the environmental report, Section 5.2.2. This water budget analysis considers the impact of induced evaporation associated with the proposed Unit 3 cooling system, and it provides information on the frequency and magnitude of low-water conditions in the lake.

In RAI 2.4.11-1, the staff requested information regarding critical ambient conditions, such as air temperature and relative humidity, which might limit operation of a UHS if included in the design. The staff also requested information regarding the meteorological conditions that might constrain the safety-related cooling tower design of the new units. In its response, the applicant referred to its response to the same question in RAI 2.3.1-1. In its response to RAI 2.3.1-1, the applicant identified the controlling parameters as the wet-bulb temperature and coincident dry-bulb temperature for the type of UHS being considered for Unit 3, which could be a mechanical draft cooling tower over a buried water storage basin or other passive water storage facility, depending on the design selected at the COL or CP stage. The applicant also stated that the meteorological conditions that would result in the maximum evaporation and drift loss of water from an engineered UHS and the corresponding minimum cooling from such a UHS are the critical wet and dry-bulb conditions for the UHS cooling tower design.

In Section 2.4.11.3 of the SSAR, the applicant stated that the minimum observed Lake Anna water surface elevation was 245.1 ft MSL on October 10, 2002. This low-water level followed the driest September to August period and the third driest October to September period in the 108-year record for Virginia's statewide precipitation.

In SSAR Section 2.4.11.4, the applicant provided the results of a water budget analysis to estimate the lake levels, which is described in further detail in Section 5.2.2 of Part 3 of the applicant's environmental report. With all four units operating, the applicant estimated the minimum lake level to be 242.6 ft MSL. In SSAR Section 2.4.11.1, the applicant stated that the shutdown threshold level for the existing units is an elevation of 244.0 ft MSL. The shutdown threshold level for the new units would be an elevation of 242.0 ft MSL. Section 2.4.11.3 of this SER further discusses these two different shutdown threshold levels and the related minimum lake elevations.

In RAI 2.4.11-2, the staff requested the applicant to describe likely upstream land-use changes and changes in downstream water demand that could alter the frequency of low-flow conditions and related minimum water elevation in Lake Anna. This RAI also asked the applicant to calculate the availability of cooling water during critical low-flow periods, including sufficient margins to account for future urbanization of the watershed. In addressing this issue, the applicant stated that its response to the staff's environmental RAI E4.2.2-2 describes the projected upstream development based on growth plans for the counties in the drainage area. All three upstream counties (Louisa, Orange, and Spotsylvania) anticipate future growth in

areas near existing towns. Increased development would impact low-flow conditions because of increased ground water withdrawals and increased impervious areas. Decreased ground water levels may lead to reduced baseflow to Lake Anna. The applicant stated that the anticipated development is small compared to the size of the watershed and concluded that its impact on low-flow conditions will be small. The applicant also concluded that the water balance model presented in Section 5.2.2 of Part 3 of the environmental report would be accurate, even after consideration of the impact resulting from upstream land-use changes. The applicant described the margins available in the cooling water supply in its response to RAI 2.4.1-1.

2.4.11.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as GDC 2 and 44, as well as 10 CFR 100.23(c), and identified the applicable regulatory guidance as RGs 1.27 and 1.70, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Acceptance criteria for this section relate to the following regulations and criteria:

- 10 CFR Parts 52 and 100 require that hydrologic characteristics be considered in the evaluation of the site.
- 10 CFR 100.23 requires, in part, that siting factors to be evaluated must include cooling water supply.

The regulations in 10 CFR Parts 52 and 100 require, in part, that hydrologic characteristics be considered in the evaluation of a nuclear power plant site. In order to satisfy 10 CFR Parts 52 and 100, the applicant should describe in the SSAR the surface and subsurface hydrological characteristics of the site and region. In particular, the UHS for the cooling water system may consist of water sources affected by, among other things, site hydrological characteristics that may reduce or limit the available supply of cooling water for safety-related SSCs. Site hydrological characteristics that may reduce or limit the flow of cooling water include those resulting from river blockage or diversion, tsunami runup and drawdown, and dam failure.

Meeting the requirements of 10 CFR Parts 52 and 100 provides assurance that severe hydrologic phenomena, including low-water conditions, would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

The regulation in 10 CFR 100.23 requires the evaluation of siting factors, including cooling water supply. The evaluation of the emergency cooling water supply for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed

site should consider river blockages, diversion, or other failures that may block the flow of cooling water, tsunami runup and drawdown, and dam failures.

The regulation at 10 CFR 100.23 applies to this section because the UHS for the cooling water system consists of water sources that are subject to natural events that may reduce or limit the available supply of cooling water (i.e., the heat sink). Natural events, such as river blockages or diversion or other failures that may block the flow of cooling water, tsunami runup and drawdown, and dam failures, should be conservatively estimated to assess the potential for these characteristics to influence the design of SSCs important to safety for a nuclear power plant or plants of a type specified by the applicant (or falling within a PPE) that might be constructed on the proposed site. The available water supply should be sufficient to meet the needs of the plant or plants to be located at the site; those needs may fall within a PPE (e.g., the stored water volume of the cooling water ponds), if an applicant uses that approach. Specifically, those needs include the maximum design essential cooling water flow, as well as the maximum design flow for normal plant needs at power and at shutdown.

To meet the requirements of the hydrologic aspects of the above regulations, the specific criteria discussed in the paragraphs below are used. Acceptance is based principally on the adequacy of the UHS to supply cooling water for normal operation, anticipated operational occurrences, safe shutdown, cooldown (first 30 days), and long-term cooling (periods in excess of 30 days) during adverse natural conditions.

Low Flow in Rivers and Streams

For essential water supplies, the low-flow/low-level design for the primary water supply source is based on the probable minimum low flow and level resulting from the most severe drought that can reasonably be considered for the region. The low flow and level site parameters for operation should be such that shutdowns caused by inadequate water supply will not trigger frequent use of emergency systems.

Low Water Resulting from Surges, Seiches, or Tsunami

For coastal sites, the appropriate PMH wind fields should be postulated at the ESP stage to provide maximum winds blowing offshore, thus creating a probable minimum surge level. Lowwater levels on inland ponds, lakes, and rivers caused by surges should be estimated from probable maximum winds oriented away from the plant site. The same general analysis methods discussed in Sections 2.4.3, 2.4.5, and 2.4.6 of RS-002 are applicable to low-water estimates resulting from the various phenomena discussed. If the site is susceptible to such phenomena, minimum water levels resulting from setdown (sometimes called runout or rundown) from hurricane surges, seiches, and tsunami should be verified at the COL or CP stage to be higher than the intake design basis for essential water supplies.

Historical Low Water

If historical flows and levels are used to estimate design values by inference from frequency distribution plots, the data used should be presented so that an independent determination can be made. The data and methods of NOAA, USGS, SCS, USBR, and USACE are acceptable.

Future Controls

This section is acceptable if water use and discharge limitations (both physical and legal), already in effect or under discussion by responsible Federal, regional, State, or local authorities, that may affect water supply for a nuclear power plant or plants of a type specified by the applicant that might be constructed on the proposed site have been considered and are substantiated by reference to reports of the appropriate agencies. The design basis should identify and take into account the most adverse possible effects of these controls to ensure that essential water supplies are not likely to be negatively affected in the future.

2.4.11.3 Technical Evaluation

The applicant has stated that the proposed additional units will not rely on Lake Anna for safety-related water needs. Further, the applicant has proposed engineered subsurface water reservoirs and mechanical cooling towers to fulfill UHS requirements, should the selected plant design need a conventional UHS.

The staff has performed its review in accordance with the guidance in RS-002 regarding the frequency of shutdown of operating units. Low upstream tributary inflow and minimum lake elevations for the operation of all four units should be such that shutdowns caused by inadequate water supply do not cause frequent use of emergency systems. Hydrologic conditions that could lead to low lake elevations can be characterized as follows:

- gradual, such as a sustained drought
- abrupt and prolonged, such as failure of the North Anna Dam
- abrupt but temporary, such as hillslope failure

The technical evaluation in this section focuses on the gradual decrease in water elevation associated with drought; Section 2.4.4 of this SER discusses abrupt and prolonged low-flow conditions resulting from a failure of the North Anna dam. Section 2.4.6 addresses the abrupt but temporary low-flow condition caused by a hillslope failure. Wave runup results in high water level from a baseline pool level as the wave approaches the shore and a low water level as the wave recedes from the shore. Declines in the lake elevation will be sufficiently gradual to provide advance warning to properly respond to low-water conditions during which the UHS would be used, except in the case of failure of the North Anna Dam.

The staff performed an independent analysis of the Lake Anna water budget under critical conditions to estimate the extreme low-water elevation. The staff constructed a coupled water budget and temperature model consistent with the limited available data. The water-budget component of the model was based on a lumped representation of the conservation of mass. The water temperature component of the model was a lumped, two-compartment representation of the lake based on the conservation of energy. The water budget and temperature components are linked through the evaporation process.

In this water-budget model, changes in lake storage over time were equal to the differences between the inflows and the outflows. Inflows consist of runoff from drainage upstream of the lake and precipitation occurring directly on the lake. Outflows consist of the natural and induced evaporations and releases from the dam.

The staff estimated inflows from the drainage upstream of the lake using data from an adjacent drainage basin, the Little River drainage basin, adjusted for the difference in drainage areas. The Little River drainage area comprises 107 mi² adjacent to the North Anna drainage basin. Based on a review of streamflow records from USGS gauge 01671100 (Little River near Doswell, Virginia), the staff selected the period from October 2001 to September 2002 as the critical water year. The staff used precipitation records from the meteorological station at the Richmond, Virginia, airport to estimate direct precipitation on the lake.

The staff estimated outflows from the lake based on the current operating rules for the Lake Anna Dam. The staff's analysis assumed that the current units and the additional unit 3 continue to operate until the lake water level falls below 242 ft MSL.

The staff estimated the evaporative loss from the ambient compartment of the lake from the Massachusetts Institute of Technology model (Ho, E. and E.E. Adams, "Final Calibration of the Cooling Lake Model for North Anna Power Station," Ralph M. Parsons Laboratory, Aquatic Science and Environmental Engineering, Department of Civil Engineering, Massachusetts Institute of Technology, Report No. 295, August, 1984). This model was empirically validated through onsite observation for the licensing of NAPS Units 1 and 2 and is acceptable. The staff derived the evaporative loss from the fixed temperature compartment using the applicant's PPE values. The staff performed sensitivity analyses to assess the impact of various evaporative loss assumptions.

The staff determined the minimum water surface elevation to be 242.6 ft MSL when the existing units and the proposed Unit 3 are operating. The staff estimated that water surface elevation in the lake would fall to this minimum elevation only infrequently during low-water years. The applicant has proposed a minimum water surface elevation of 242 ft MSL in SSAR Section 2.4.11.1.

Since the applicant's proposed minimum water surface elevation site characteristic is lower than the staff's estimate, the applicant's value is acceptable.

In RAI 2.4.11-1, the staff requested that the applicant estimate the frequency of low-water conditions that could result in use of the UHS. The staff further asked the applicant to describe in greater detail the critical ambient conditions, such as combinations of temperature and relative humidity, that might limit operations under low-water conditions. In its response, the applicant only discussed the issue related to evaporation loss from the UHS. The applicant identified the meteorological conditions resulting in the maximum evaporation and drift loss of water from the engineered UHS as the worst 30-day average combination of controlling atmospheric parameters. The staff's assessment of meteorological site characteristics is included in Section 2.3 of this SER.

The staff notes that, in addition to evaporation losses, icing in a UHS storage basin, if included in the selected plant design, may also result in limits on UHS operation to ensure the availability of sufficient water during freezing to supply both emergency and service water. The staff determined, in Section 2.3.1.3 of this SER, that the 7-day average of low air temperature is 19.9 °F. In order to obviate the need for limits on the operation of the proposed units, any COL or CP applicant should design the UHS storage capacity to accommodate ice formation at the sustained low-air temperature of 19.9 °F. As discussed in Section 2.4.7 of this SER in

response to the issue raised by DSER Permit Condition 2.4-7, the staff included **COL Action Item 2.4-7**, in which a COL or CP applicant referencing this ESP should address whether a 30-day cooling water supply will be available in the UHS storage basins to account for all potential losses, including ice formation. The applicant's response to RAI 2.4.11-1 is satisfactory, based on the discussion above.

Future land-use development, such as urbanization of the upstream Lake Anna watershed, may lead to changes in consumptive water use. As an indicator of future development, the population of Louisa County, where the site is located, grew 25 percent from 1979 to 2000, and residential land use grew from 1.8 to 5.5 percent during the same period. Likely upstream land-use changes and changes in downstream water demand could alter the occurrence of low-flow conditions and related minimum lake levels.

In RAI 2.4.11-2, the staff asked the applicant to describe likely upstream land use changes and changes in downstream water demands that would likely alter the intensity or frequency of lowflow conditions and to calculate the availability of cooling water during critical low-flow periods. In its response to RAI 2.4.11-2, the applicant indicated that upstream development is expected to be small compared to the size of the watershed and will have only a small effect on low-flow conditions. The applicant noted that its response to a similar question in RAI E4.2.2-2 provides a description of the projected upstream development based on available county growth management plans. In its response to RAI 2.4.11-2, the applicant stated that the availability of cooling water during low-flow conditions has been considered in the water balance model presented in Section 5.2.2 of the application and summarized in SSAR Section 2.4.11. The staff reviewed the applicant's response and determined that the applicant has adequately discussed the effects of upstream land-use change in the drainage area. The applicant identified cooling water needs that may lead to restrictions on the operation of future plants because of changes in the frequency of low-flow conditions and related minimum water elevation in Lake Anna. Any COL or CP applicant should identify the most restrictive cooling water needs to account for the frequency of low flow conditions and related minimum water elevation in Lake Anna and propose corresponding actions to account for such conditions. This is COL Action Item 2.4-10, previously identified as DSER COL Action Item 2.4-1. The applicant's response to RAI 2.4.11-2 is satisfactory, based on the discussion above.

2.4.11.4 Conclusions

As set forth above, the applicant has provided information pertaining to low-water considerations, including hydrologic conditions that could lead to low lake elevations, conditions that could result in use of a UHS, and potential effects of upstream land-use change in the drainage area. Therefore, the staff concludes that the applicant has met the requirements related to low-water considerations with respect to 10 CFR 52.17(a) and 10 CFR 100.20(c). Further, the applicant has considered the most severe natural phenomena that have been historically reported for the site and surrounding area with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated in establishing low-water conditions for use in design.

2.4.12 Ground Water

NAPS is located in the Piedmont Physiographic Province in an area underlain by crystalline bedrock. The powerblock for the proposed additional units would be sited on soil that was disturbed during construction of the now-abandoned NAPS Units 3 and 4. Further disturbance of the subsurface environment is expected during construction of the proposed additional units.

2.4.12.1 Technical Information in the Application

In SSAR Section 2.4.12, the applicant provided a description of regional hydrogeology and ground water conditions based on reports prepared by USGS, EPA, and the Commonwealth of Virginia. In a generalization to the Piedmont Physiographic Province, Trapp and Horn ("Ground Water Atlas of the United States, Segment 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia," USGS, Hydrologic Investigations Atlas 730-L, 1997) characterize the bedrock as "almost impermeable" and as yielding "water primarily from secondary porosity and permeability provided by fractures." Water occurs primarily in a regolith (a layer of weathered, heterogeneous material overlying bedrock) of variable thickness. In discussing the hydrogeology of areas underlain by crystalline bedrock, Trapp and Horn state that the porosity of the regolith ranges between 20 and 30 percent, while the porosity of the bedrock is about 0.01 to 2 percent. Most fractures in the bedrock are steeply inclined, while "the size, number, and interconnection of the fractures decreases with depth." Recharge to the aquifers in the Piedmont Physiographic Province occurs primarily from infiltration. Within the subsurface, water tends to follow the topography, moving from upland recharge areas to discharge areas at lower elevations.

The applicant based most of its description of local hydrogeology at the North Anna site on previous site investigations. In addition, the applicant conducted more recent site sampling and analysis as part of its subsurface investigation program. The applicant drilled seven boreholes (B01 to B07) and installed nine observation wells (OW-41 to OW-49) as part of this program. The applicant stated that the subsurface consists of five zones—the crystalline parent rock, weathered rock, two zones of saprolite (altered and weathered bedrock caused by continual exposure to moisture still in place) distinguished by the amount of core stone in each zone, and residual soils. The borehole logs identify a sixth material, the fill, which occurs in the area near the abandoned Units 3 and 4. The applicant screened eight of the observation wells in the unconsolidated materials (residual soil, saprolite, or weathered rock) and one in the parent rock.

Previous studies (e.g., Revision 38 of the NAPS UFSAR) predicted that maximum ground water elevations beneath the site in the existing plant area could reach 265 to 270 ft MSL based on a uniformly sloping water table from 271 ft MSL at the toe of the slope south of abandoned Units 3 and 4 to the 250 ft MSL elevation of Lake Anna. Figure 2.4-16 in the SSAR shows that water levels in new wells, OW-844 and OW-841, vary from about 267 ft MSL (at OW-844) to 250 ft MSL (at OW-841). The applicant used these measurements to support a design ground water level of 265 to 270 ft MSL in the PPE (site footprint) of the ESP site.

The applicant conducted slug tests in the newly installed wells to provide estimates of saturated hydraulic conductivities. Saturated hydraulic conductivities for the wells drilled into the unconsolidated subsurface zone range from 0.2 to 3.4 ft/d. The slug test failed conditions set by the Bouwer-Rice method ("A Slug Test Method for Determining Hydraulic Conductivity of

Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, Vol. 12, No. 3, pp. 423–428, 1976) for the well screen into the consolidated rock because of the short duration of stable data. This is frequently the case in consolidated rock. The applicant estimated the hydraulic conductivity using available slug test data and presented the results in SSAR Table 2.4-16. The saturated hydraulic conductivity values reported for this well are 1.8 to 3.1 ft/d.

SSAR Figure 2.4-15 depicts ground water levels between December 2002 and June 2003. The staff requested, in RAI 2.4.12-1, that the applicant update this figure with piezometer data from June 2003 to September 2003 and piezometer data before December 2002, if they exist, or explain how this span of data represents the seasonal variation in ground water levels. The staff also asked the applicant to explain how the ESP subsurface investigation program is consistent with previous ground water measurements. In its response, the applicant stated that it would update SSAR Table 2.4-15 and Figure 2.4-15 to include ground water level measurements taken at the North Anna site on September 29, 2003. The applicant also concluded that the quarterly measurements recorded for the ESP application appear to generally reflect the magnitude of ground water level fluctuation on a yearly basis. Further, the applicant noted that maximum ground water level fluctuations are likely to occur over much longer periods of time and may be about 60 percent greater than those measured during the 1-year ESP recording period.

2.4.12.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of the applicant's conformance to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as 10 CFR 52.17(a), 10 CFR 100.20(c), 10 CFR 100.23, and 10 CFR 100.23(c) and the applicable regulatory guidance as RGs 1.27, 1.29, and 1.70, as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Acceptance criteria for this section relate to the following regulations and criteria:

- 10 CFR Parts 52 and 100 require that hydrologic characteristics be considered in the evaluation of the site.
- 10 CFR 100.23 sets forth the criteria to determine the suitability of design bases for a
 nuclear power plant or plants of a specified type (or falling within a PPE) that might be
 constructed on the proposed site with respect to seismic characteristics of the site. It
 also requires that siting factors, including the cooling water supply, be evaluated, taking
 into account information concerning the physical, including hydrological, properties of
 the materials underlying the site.

As specified in 10 CFR 100.20(c), the site's physical characteristics (including seismology, meteorology, geology, and hydrology) must be considered when determining its acceptability for a nuclear power reactor.

The regulation at 10 CFR 100.20(c)(3) requires that factors important to hydrological radionuclide transport be addressed using onsite characteristics. Pursuant to the hydrologic requirements of 10 CFR Part 100, the SSAR should describe ground water conditions at the

proposed site and how the construction and operation of a nuclear power plant or plants of a specified type that might be constructed on the site will affect those conditions. Meeting this guidance provides reasonable assurance that the release of radioactive effluents from a plant or plants of a specified type that might be constructed on the proposed site will not significantly affect ground water at or near a proposed site.

The regulation at 10 CFR 100.23 requires that geologic and seismic factors be considered when determining the suitability of the site for each nuclear power plant. In particular, 10 CFR 100.23(d)(4) requires that such factors as the physical properties of materials underlying the site and cooling water supply be evaluated. The regulation at 10 CFR 100.23 is applicable to SSAR Section 2.4.12 because it addresses requirements for investigating the hydrologic conditions at and near the site.

Meeting this guidance provides reasonable assurance that the effects of a safe-shutdown earthquake would pose no undue risk to the type of facility proposed for the site.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

To determine whether the applicant met the requirements of the hydrologic aspects of 10 CFR Parts 52 and 100, the staff used the following specific criteria:

- A full, documented description of regional and local ground water aquifers, sources, and sinks is necessary. In addition, the type of ground water use, wells, pump, and storage facilities, as well as the flow needed for a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the site, should be described. If ground water is to be used as an essential source of water for safety-related equipment, the design basis for protection from natural and accident phenomena should be compared with the RG 1.27 guidelines. Bases and sources of data should be adequately described and referenced.
- A description of present and projected local and regional ground water use should be provided. Existing uses, including amounts, water levels, location, drawdown, and source aquifers should be discussed and tabulated. Flow directions, gradients, velocities, water levels, and effects of potential future use on these parameters, including any possibility for reversing the direction of ground water flow, should be indicated. Any potential ground water recharge area within the influence of a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the site and the effects of construction, including dewatering, should be identified. The influence of existing and potential future wells with respect to ground water beneath the site should also be discussed. Bases and sources of data should be described and referenced. References 6 through 12 of RS-002 discuss certain studies concerning ground water flow problems.
- The need for and extent of procedures and measures to protect present and projected ground water users, including monitoring programs, should be discussed. These items are site specific and will vary with each application.

2.4.12.3 Technical Evaluation

As set forth below, the staff determined that the SSAR adequately describes onsite and offsite ground water use. The site is located adjacent to Lake Anna. Lake Anna and other water bodies exist between the ESP site and the nearest offsite ground water users. This spatial relationship and the relatively small withdrawal rates, both onsite and offsite, contribute to the hydrological isolation of the ESP site from offsite ground water users.

The applicant conducted slug tests in the newly installed wells to provide estimates of saturated hydraulic conductivities. The staff determined that the method the applicant used, as set forth in the SSAR, to estimate the saturated hydraulic conductivities (i.e., the Bouwer-Rice method) is appropriate because this is a well-established method that is widely accepted in standard engineering practice. While the estimate of hydraulic conductivity derived with the Bouwer-Rice method is appropriate for shallow unconsolidated strata, the failure to satisfy the constraints of the Bouwer-Rice method in well tests in the deeper consolidated strata is consistent with conditions in which the movement of water is limited to flow in fractures. The hydraulic conductivities in the shallow unconsolidated strata will bound the dominant subsurface transport pathways, because ground water flow in deeper consolidated strata can only pass through fractures and fissures.

Observed increases in water levels in the new wells ranged from less than 1 ft to more than 3 ft over the period of December 17, 2002, through June 17, 2003. The applicant included previously existing wells monitored at the same time in the analysis. The observed variation in water levels in wells could be significant but represents only a 6-month period. The staff evaluated additional information the applicant provided in response to RAI 2.4.12-1 but found that it needed additional data to determine whether the new ground water level measurements correlate with data from the long-term piezometers. Ground water measurements should contain at least 1 full year of data to determine recent seasonal fluctuation in ground water levels at the ESP site. The staff was also concerned that the ground water measurements provided by the applicant may have been made too soon following the 2001-2002 drought, and may still show some influence of the drought as the ground water elevations recovered near their pre-drought levels. This was Open Item 2.4-7.

In response to Open Item 2.4-7, the applicant provided additional ground water measurements to the staff in its March 3, 2005, submittal. The applicant provided another set of ground water elevations previously measured on September 29, 2003. This additional set, along with the ground water elevation measurements on December 17, 2002, March 17, 2003, and June 17. 2003 represented the seasonal variation in ground water elevations at the ESP site on a quarterly basis. The applicant also carried out a new set of ground water measurements on February 1, 2005, in nine observation wells and ten piezometers. In addition to the ground water measurements, the applicant also provided the water surface elevation in Lake Anna on February 1, 2005. Based on this additional measurement, the staff concludes that ground water elevations measured during the 2002-2003 water year did not show influences of the 2001-2002 drought, and were therefore suitable for characterization of ground water elevations and gradients at the ESP site. The applicant estimated a horizontal hydraulic gradient of 0.029 ft/ft from the center of the ESP site footprint to Lake Anna based on February 1, 2005. measurements. Since this estimate is slightly smaller than applicant's estimate of 0.03 ft/ft presented previously in the SSAR, the applicant concluded that the horizontal hydraulic gradient was not underestimated because of the 2002 drought.

Based on the additional ground water data, the staff verified the horizontal ground water gradient estimated by the applicant. The staff used the difference between the ground water elevation measured at observation well OW-846 and the water surface elevation of Lake Anna on February 1, 2005, to estimate a horizontal hydraulic gradient of 0.023 ft/ft based on an estimated distance of 1160 ft from observation well OW-846 to Lake Anna. Since the applicant's estimate of the horizontal hydraulic gradient is greater, and therefore more conservative than that estimated by the staff, it is deemed acceptable. The staff also determined that the additional data describing seasonal variations of well water elevations presented in the applicant's February 1, 2005, response adequately characterize seasonal fluctuations in ground water levels at the ESP site.

Based on the above review, the staff considers Open Item 2.4-7 to be resolved.

Ground water discharge to streams and to Lake Anna is significant, ranging from 32 to 67 percent of streamflow, according to several studies conducted in the province cited by Trapp and Horn. The staff was unable to independently estimate the ground water flowpath from the powerblock of the proposed additional units to Lake Anna since the applicant did not initially provide the precise location of the powerblock. In the following assessment, the staff used applicant-provided values for effective porosity and distance from the powerblock to Lake Anna.

The staff used the following relationship to determine average ground water velocity:

Velocity = Hydraulic Gradient x Saturated Hydraulic Conductivity/Effective Porosity

The applicant used the geometric mean of the measured hydraulic conductivity values (1.3 ft/d). Use of the geometric mean is not conservative because it results in slower ground water velocity and increased travel time to the environment. Using 3.4 ft/d (SSAR Section 2.4.12.1.2) as the conservative value for hydraulic conductivity, 3 ft/100 ft as the hydraulic gradient, and 0.33 as the effective porosity, the staff estimated the ground water velocity to be 0.31 ft/d, as opposed to 0.12 ft/d as reported by the applicant. The staff's calculated travel time from the powerblock to the lake, using 1800 ft as the distance to the environment, is approximately 16 years, as opposed to the applicant's estimate of 40 years. In the DSER, the staff indicated that the applicant needed to explain why it did not use a more conservative hydraulic conductivity. This was Open Item 2.4-8. The staff intends to identify hydraulic conductivity as a site characteristic in any ESP that the NRC might issue for this application.

In response to Open Item 2.4-8, the applicant agreed in its March 3, 2005, submittal, to use the conservative value of 3.4 ft/d for hydraulic conductivity as the site characteristic. This value is conservative because it is the maximum hydraulic conductivity calculated for the saprolite, for which conductivity ranges from about 0.2 to 3.4 ft/d. The generally accepted industry practice is to use the average hydraulic conductivity of the saprolite. Based on the applicant's response, the staff considers Open Item 2.4-8 resolved.

The applicant's response to RAI 2.4.1-1 includes a figure that lists the coordinates of the corners of the ESP PPE (site footprint). However, as discussed in Section 2.4.1.3 of this SER, the staff indicated in the DSER that it needed additional information regarding the reference system and the units of these coordinates to determine the distance from the powerblock to the lake. Consequently, the staff identified the need for information on the coordinate system for

the ESP site boundaries in Open Item 2.4-1. This open item was resolved when the applicant provided the coordinates of the corners of the ESP PPE (ESP site footprint) which is based on the North Anna plant site coordinate reference system. The coordinate system units are "feet."

The applicant proposed a site characteristic of ground water elevation less than 270 ft MSL. and it proposes an ESP plant grade (PPE value) of 271 ft MSL. The applicant identified the general location of the proposed additional units in Figure 2.4-16. Based on the ground water level data presented in SSAR Figure 2.4.16 and the UFSAR, the staff concludes that the applicant's design elevations are adequate from the perspective of the location of the water table, if the proposed additional units are constructed within the area where the ground water levels do not exceed 270 ft MSL. The staff intended this requirement, proposed in DSER Permit Condition 2.4-12, to constrain the location of the proposed units toward the northeast corner of the proposed footprint. Ground surface elevations at the ESP site generally increase from its northeast corner near Lake Anna to the southwest. As described in the SSAR, the ground water levels also approximately follow the undulations of the ground surface, varying from about 250 ft MSL near Lake Anna in the northeast corner of the ESP site footprint to over 300 ft MSL near the southwest corner. The ground water levels at the ESP site footprint could rise as high as 1 ft below the ground surface. The maximum elevation of ground water is a site characteristic and the value is set at 270 ft MSL or 1 ft below the free surface, whichever is higher. The staff determined that it is unnecessary to impose DSER Permit Condition 2.4-12 since it will review and evaluate any future plant design in accordance with NRC regulations and regulatory guidance to ensure the safety of any future plant that may be constructed within the ESP site footprint.

With respect to 10 CFR 100.23(d), the applicant is not proposing to use ground water for cooling water. Accordingly, hydraulic conditions in groundwater are of no concern with respect to cooling water supplies.

2.4.12.4 Conclusions

As set forth above, the applicant has provided sufficient information pertaining to ground water. Therefore, the staff concludes that, the applicant has met the requirements related to ground water in 10 CFR 52.17(a), 10 CFR 100.23, and 10 CFR 100.20(c)(3).

2.4.13 Accidental Releases of Liquid Effluents to Ground and Surface Waters

The North Anna site is located within the Piedmont Physiographic Province in an area underlain by crystalline bedrock. The powerblock for the proposed additional units would be sited on soil disturbed during construction of the now-abandoned NAPS Units 3 and 4.

2.4.13.1 Technical Information in the Application

In SSAR Section 2.4.13, the applicant stated that all analysis of accidental releases to ground and surface waters would be deferred to the COL stage. However, pursuant to 10 CFR 52.17(a)(1) and 10 CFR 100.20(c)(3), the applicant is required at the ESP stage to obtain factors for applicable hydrological radionuclide release pathways for a site-suitability determination. The staff requested, in RAI 2.4.13-1, that the applicant provide a conceptual model of the subsurface environment, with reference to drill logs, as-built fill, and compaction

plans. The staff stated that the subsurface conceptual model should provide estimates, and the basis for these estimates, for the hydraulic conductivity of the soil, surface recharge rates, soil and ambient ground water chemical properties, and piezometric boundary conditions. In its response, the applicant stated that it developed a conceptual model of the subsurface for the ESP site, based primarily on data presented in the ESP application and supplemented by other published data. The applicant obtained data included in the ESP application from site-specific subsurface investigations and from published sources.

The applicant stated that the ground surface at the existing units and some parts of the ESP site are located at an elevation of 271 ft MSL. The ground surface rises to an elevation of over 300 ft MSL to the west and to the south of the ESP site. The ESP site is filled with fabricated material, residual soil, or saprolite. The powerblock area of the abandoned Units 3 and 4 was partially filled. The applicant stated that existing fill and residual soil would be removed from the ESP site before any future construction.

The applicant stated that saprolite overlies bedrock at the NAPS site. Based on drilling results at the site, saprolite ranges in thickness from 2 to 102 ft. The saprolite at the NAPS site varies in its lithology (structure, composition, color, and texture), depending on its parent material and its degree of weathering, and it may be classified into the categories of sand, silty sand, clayey sand, sandy silt, clayey silt, and clay. The bedrock beneath the ESP site, which belongs to Cambrian (about 500-540 million years (Ma) ago) and Ordovician age (about 443-490 Ma) Ta River Metamorphic Suite, is at depths ranging from 8 to 49 ft and consists of mostly quartz gneiss with variable weathering with joints and fractures. These joints and fractures have clay filling.

The applicant stated that ground water beneath the ESP site occurs in unconfined conditions, both in saprolite and in bedrock. Saprolite and bedrock are hydrologically connected to each other. The applicant measured potentiometric head difference between the bedrock and the saprolite at only one location (between wells OW-845 and OW-846 in Figure 5 of Dominion, "Supplemental Response to Request for Additional Information No. 4," August 19, 2004. The measured head difference is 0.3 ft, with an upward hydraulic gradient.

The applicant prepared a piezometric head contour map (Figure 5 of the same RAI response) using ground water levels measured in March 2003. The applicant concluded from this contour map that ground water flow across the ESP site is to the north and east towards Lake Anna, with a hydraulic gradient of about 0.03 ft/ft. The applicant stated that this gradient is expected to be typical of ground water flow at the ESP site, despite seasonal and long-term fluctuations caused by the controlling influence of Lake Anna and surrounding drainages.

The applicant provided a conceptual hydrogeologic model based on site investigation. The primary system for migration of radionuclides is ground water flow in unconsolidated deposits (i.e., the saprolite) and in the bedrock. Ground water in saprolite is stored and is transmitted through the pore spaces. In the crystalline bedrock, ground water is stored and is transmitted through joints and fractures. The number, extent, and opening width of joints and fractures are expected to decrease with depth, thus limiting significant water transmission in the bedrock to its upper few hundred feet.

The applicant stated that recharge to the aquifers at the NAPS site occurs largely as infiltration of rainfall and snowmelt. Average annual precipitation in the NAPS area is about 44 in., and

average annual recharge is estimated to be 8 to 10 in. A minor source of recharge to the ground water at the NAPS site is the clay-lined service water reservoir for the existing NAPS units. Infiltration of water from the service water reservoir locally alters ground water levels. A series of underdrains beneath the existing pumphouse for Units 1 and 2 controls ground water levels, as well. Some ground water discharge occurs through the five active water supply wells and four minor wells, and some evapotranspiration occurs at the foundation area for the abandoned Units 3 and 4.

The applicant stated that ground water underlying the ESP site is expected to be in hydrologic connection with Lake Anna. Therefore, the water level in Lake Anna serves as a piezometric boundary condition for ground water flow towards the lake. The ground water flow at the ESP site discharges to Lake Anna and the WHTF. The applicant stated that a ground water divide is expected to exist upgradient of the ESP site and to approximately coincide with the topographic divide.

The applicant stated that no site-specific data are available to determine the chemical characteristics of ground water at the ESP site. The applicant assumed that the water quality of crystalline aquifers in the Piedmont Physiographic Province is representative of the water quality at the ESP site.

The applicant stated that, in case of an accidental release of liquid radioactive material at the ESP site, the contaminants will infiltrate to the ground water table and then flow laterally with regional ground water flow towards Lake Anna and the WHTF. Depending upon the location of the accidental release with respect to water supply wells, contaminants may impact some wells. The applicant stated that no offsite ground water users would be impacted as a result of the direction of ground water flow and the presence of ground water boundary conditions between the ESP site and these users. Finally, the applicant stated that a detailed numerical model will be developed as part of any COL application to be submitted for the proposed ESP site.

2.4.13.2 Regulatory Evaluation

Section 1.8 of the SSAR presents a detailed discussion of how the applicant proposes to conform to NRC regulations and regulatory guidance. The applicant identified the applicable regulations as Appendix B, "Annual Limits on Intakes (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage," to 10 CFR Part 20, "Standards for Protection Against Radiation," and 10 CFR Part 100 and the applicable regulatory guidance as RGs 1.27, 1.70, and 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," Revision 1 dated April 1977 as well as RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above.

Acceptance criteria for this section relate to 10 CFR Parts 52 and 100, as they require the evaluation of the hydrologic characteristics of the site with respect to the consequences of the escape of radioactive material from the facility.

The regulations in 10 CFR Parts 52 and 100 require that local geological and hydrological characteristics be considered when determining the acceptability of a nuclear power plant site. The geological and hydrological characteristics of the site may have a bearing on the potential

consequences of radioactive materials escaping from a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. Special precautions should be planned if a reactor or reactors were to be located at a site where a significant quantity of radioactive effluent could accidentally flow into nearby streams or rivers or find ready access to underground water tables.

These criteria apply to SSAR Section 2.4.13 because site hydrologic characteristics are evaluated with respect to the potential consequences of radioactive materials escaping from a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. The staff reviews radionuclide transport characteristics of ground water and surface water environments with respect to accidental releases to ensure that current and future users of ground water and surface water are not adversely affected by an accidental release from a nuclear power plant or plants of a specified type (or falling within a PPE) that might be constructed on the proposed site. RGs 1.113 and 4.4, "Reporting Procedure for Mathematical Models Selected to Predict Heated Effluent Dispersion in Natural Water Bodies," issued May 1974, provide guidance in selecting and using surface water models for analyzing the flowfield and dispersion of contaminants in surface waters.

Meeting the requirements of 10 CFR Parts 52 and 100 provides reasonable assurance that accidental releases of liquid effluents to ground water and surface water, and their adverse impact on public health and safety, will be minimized.

For those cases in which a reactor design is not specified, the ESP applicant may instead provide a PPE to characterize a facility or facilities for comparison with the hydrologic characteristics of the site. A PPE can be developed for a single type of facility or a group of candidate facilities by selecting limiting values of the relevant parameters.

To determine whether the applicant met the requirements of 10 CFR Parts 52 and 100 with respect to accidental releases of liquid effluents, the staff used the following specific criteria:

- Radionuclide transport characteristics of the ground water environment, with respect to
 existing and future users, should be described. Estimates and bases for coefficients of
 dispersion, adsorption, ground water velocities, travel times, gradients, permeabilities,
 porosities, and ground water or piezometric levels between the site and existing or
 known future surface water and ground water users should be described and should be
 consistent with site characteristics. Potential pathways of contamination to ground water
 users should also be identified. Sources of data should be described and referenced.
- Transport characteristics of the surface water environment, with respect to existing and known future users, should be described for conditions that reflect worst-case release mechanisms and source terms, so as to postulate the most pessimistic contamination from accidentally released liquid effluents. Estimates of the physical parameters necessary to calculate the transport of liquid effluent from the points of release to the site of existing or known future users should be described. Potential pathways of contamination to surface water users should be identified. Sources of information and data should be described and referenced. Acceptance is based on the staff's evaluation of the applicant's computational methods and the apparent completeness of the set of parameters necessary to perform the analysis.

• Mathematical models are acceptable to analyze the flowfield and dispersion of contaminants in ground water and surface water, providing that the models have been verified by field data and that conservative site-specific hydrologic parameters are used. Furthermore, conservatism should be the guide in selecting the proper model to represent a specific physical situation. Radioactive decay and sediment adsorption may be considered, if applicable, providing that the adsorption factors are conservative and site specific. RG 1.113 provides guidance in selecting and using surface water models. References 7 through 15 of RS-002 discuss the transport of fluids through porous media.

2.4.13.3 Technical Evaluation

As originally submitted, SSAR Section 2.4.13 did not contain an analysis of accidental releases to ground and surface waters, which the staff needs to evaluate currently applicable hydrological accidental radionuclide release pathways. In the DSER, the staff indicated that the applicant should provide a conceptual model of the subsurface environment, with reference to drill logs, as-built fill, and compaction plans. The staff indicated further that the subsurface conceptual model should provide estimates, and the basis for these estimates, for the hydraulic conductivity of the soil, surface recharge rates, soil and ambient ground water chemical properties, and piezometric boundary conditions. In RAI 2.4.13-1, the staff stated that these model attributes were necessary for the staff to conduct a site-suitability evaluation in accordance with RG 1.113 and requested the applicant to provide this information.

In its response, the applicant provided details of the hydrogeologic characteristics at the ESP site, including a conceptual model of ground water movement through the saprolite and the bedrock underlying the ESP site.

The applicant reported that the only observation of piezometric head difference made between the saprolite and the bedrock indicates an upward hydraulic gradient. The staff needed to understand the implications of an upward hydraulic gradient, with respect to the transport of effluents to the environment. Therefore, it requested that the applicant provide more details about the magnitude, frequency, and spatial location of these upward hydraulic gradients at the ESP site. This was Open Item 2.4-9. The staff intended to identify upward hydraulic gradient as a site characteristic in any ESP that might be issued for this application.

In its response to Open Item 2.4-9 dated March 3, 2005, the applicant characterized the significance of the upward hydraulic gradient between the bedrock and the saprolite as they relate to transport of effluent in the environment by comparing the vertical component of ground water velocity to its horizontal component.

The applicant estimated the vertical hydraulic conductivity assuming that the anisotropy ratio $(K_h:K_v)$ is 3:1, where K_h and K_v refer to horizontal and vertical hydraulic conductivities for the subsurface. Based on this assumption and the geometric mean of the measured horizontal hydraulic conductivity values (1.3 ft/d) for the saprolite, the applicant used the ground water elevation measurements at observation wells OW-845 and OW-846 to estimate a vertical seepage velocity range between 0.006 and 0.019 ft/d. The corresponding estimate for the horizontal seepage velocity is 0.12 ft/d. The applicant estimated that the vertical seepage velocity is about 5 to 15 percent of the horizontal seepage velocity and argued that the vertical

hydraulic gradient between the bedrock and saprolite at the ESP site is of minor significance with respect to the transport of effluent in the environment.

The staff reviewed the applicant's approach for ascertaining the significance of the vertical hydraulic gradient on the transport of effluent in the subsurface. The applicant's justification of the relatively minor significance of the upward hydraulic gradient is based on the assumed anisotropy ratio (K_h:K_v) of 3:1 that was used to estimate the vertical hydraulic conductivity and, subsequently, the vertical component of seepage velocity. Because not enough evidence points to layering (such as horizontal clay lenses) within the saprolite that underlies the ESP site, the staff could not find a justification for the applicant's assumed anisotropy ratio. However, the bedrock has a significantly lower hydraulic conductivity and also a significantly lower porosity as compared to the overlying saprolite. Therefore, the staff concluded that, even if the subsurface hydraulic conductivity were isotropic (i.e., a K_h:K_v of 1:1, leading to a more conservative vertical hydraulic conductivity than the applicant's estimate) at the ESP site, the amount of upward flow out of the bedrock into the saprolite would be small compared to the nearly horizontal regional ground water flow in the saprolite. Based on this reasoning, the staff considers Open Item 2.4-9 resolved.

The applicant stated that the typical hydraulic gradient of ground water flow across the ESP site to Lake Anna and the WHTF is 0.03 ft/ft. The applicant based this estimate on only one piezometric head contour map constructed using ground water level observations from March 2003. The applicant stated that this hydraulic gradient is typical of the ESP site, despite seasonal and long-term variation in the ground water regime. However, in the DSER, the staff indicated that the applicant should provide data to support this statement and to define the range of seasonal and long-term variation in hydraulic gradient from the ESP site into Lake Anna and the WHTF. This was Open Item 2.4-10. The staff stated that it intended to identify the hydraulic gradient from the ESP site to Lake Anna and the WHTF as a site characteristic in any ESP that might be issued for this application.

In response to Open Item 2.4-10, in its submittal dated March 3, 2005, the applicant stated that, in order to determine the range of variation in the horizontal hydraulic gradient, it prepared additional piezometric head contour maps using ground water elevations recorded at four times other than the March 2003 measurement date. The applicant stated that the configuration of piezometric head contours on all of these maps is very similar and concluded that only minor fluctuations in ground water levels were recorded between December 2002 and February 2005. The applicant estimated the horizontal hydraulic gradient from the center of the ESP site footprint near observation well OW-846 to the Lake Anna shoreline near observation well OW-848 using all five ground water level measurements. The applicant-estimated horizontal hydraulic gradients range from 0.027 to 0.029 ft/ft.

The staff verified the horizontal ground water gradient estimated by the applicant for the February 1, 2005, measurement. The staff used the difference between the ground water elevation measured at observation well OW-846 and the water surface elevation of Lake Anna on February 1, 2005, to estimate a horizontal hydraulic gradient of 0.023 ft/ft based on a staff-estimated distance of 1160 ft from observation well OW-846 to Lake Anna. Since the applicant's estimate of the horizontal hydraulic gradient is greater and therefore more conservative than that estimated by the staff, the applicant's value is deemed acceptable. The staff also determined that the additional data presented by the applicant adequately characterize the seasonal fluctuations in ground water levels at the ESP site.

Based on the applicant's response, the staff considers Open Item 2.4-10 resolved.

The site suitability evaluation, with respect to radionuclide transport characteristics as defined by 10 CFR 100.20(c)(3), requires the use of observed site-specific parameters important to hydrological radionuclide transport (such as soil, sediment, and rock characteristics; adsorption and retention coefficients; ground water velocity; and distances to the nearest surface body of water) obtained from onsite measurements. The applicant did not provide the onsite measured values of adsorption and retention coefficients for radioactive materials. This was Open Item 2.4-11. The staff intended to identify onsite measured values of adsorption and retention coefficients for radioactive materials as a site characteristic.

In response to Open Item 2.4-11, the applicant stated in its submittal dated March 3, 2005, that it obtained site-specific adsorption coefficients important to subsurface hydrological radionuclide transport from onsite measurements of soil characteristics. The applicant assembled a radionuclide inventory from information provided in the AP1000 Design Control Document, Tier 2, Table 12.2-9 (Sheet 4), for the effluent holdup tank liquid phase and waste holdup tank, and in the Advanced Boiling-Water Reactor Standard Safety Analysis Report, Table 12.2-13a, for the low conductivity waste collection tank. These documents list the radionuclides that are expected to be present in the liquid radwaste systems of the respective reactors. The applicant compiled a composite list of radionuclides and their activities using the two radwaste inventories, using the more conservative activity from the two designs.

The applicant screened the radionuclides in the composite list to identify those radionuclides that may migrate through the subsurface to the environment (Lake Anna) with a residual activity in excess of the values identified in Column 2 of Table 2 in Appendix B to 10 CFR Part 20. During this screening, the applicant assumed an instantaneous release of the radwaste inventory to the saturated zone, ignored any adsorption or retardation of the radionuclides during their migration from the point of release to Lake Anna, and accounted for the radioactive decay of the individual radionuclides in the inventory during the migration. The applicant used a travel time of 16 years for the radwaste plume to migrate from the point of release to Lake Anna based on the maximum measured hydraulic conductivity of 3.4 ft/d, a horizontal hydraulic gradient of 0.03 ft/ft, an effective porosity of 0.33, and an estimated travel distance of 1800 ft from the point of release to Lake Anna. The applicant selected all radionuclides that retained a residual activity in excess of values identified in Column 2 after 16 years of decay during migration to the lake. For these radionuclides, iron (Fe)-55, cobalt (Co)-60, strontium (Sr)-90, cesium (Cs)-134, and Cs-137, the adsorption (distribution) coefficient was considered important to subsurface hydrological transport.

The applicant stated that it obtained distribution coefficients for each of the selected radionuclides from published values based on the measured physical and chemical soil properties at the ESP site. The applicant obtained distribution coefficients for Co and Fe from Sheppard and Thibault (1990) by selecting a soil type that yielded the most conservative (lowest) value. It obtained the distribution coefficients for Cs and Sr from EPA (1999). The applicant also included manganese (Mn), ruthenium (Ru), and zinc (Zn) in its analysis to account for the fact that the travel time from the point of release to the lake could be less than 16 years if the release occurred near the edge of the ESP site footprint closest to Lake Anna. The applicant obtained the distribution coefficients for Mn, Ru, and Sr from Sheppard and Thibault (1990). The applicant presented the values of the distribution coefficient for eight radionuclides in a table included in its submittal dated March 3, 2005.

The staff reviewed the applicant's response to Open Item 2.4-11 and identified three major issues regarding subsurface migration of radionuclides released accidentally in the ground water to the accessible environment (Lake Anna and the WHTF). The first issue is the composition of the radionuclide inventory and selection of specific radionuclides from the inventory that may be critical to public health and safety. A description of the staff's evaluation of the applicant's approach to the selection of specific radionuclides follows. The second issue is the definition or delineation of potential subsurface pathways from the point of release to the accessible environment. The third issue is related to the uncertainty of subsurface hydrological properties that may affect the migration of the radionuclides.

Selection of Specific Radionuclides

Section 2.4.13 of RS-002 outlines the review of accidental radioactive liquid effluent releases as they may affect existing and known future uses of ground water and surface water resources. The guidance calls for evaluation of transport capabilities and potential subsurface contamination pathways under accident conditions to determine the most adverse scenarios for contamination of ground water or of surface waters via subsurface pathways. RS-002 states that concentrations of radionuclides in the body of water under consideration should be estimated based on dispersion computations with initial concentrations determined for the most critical event. Final estimated concentrations in the radioactive effluent at the points of interest should be within acceptable limits as prescribed by Column 2 of Table 2 in Appendix B to 10 CFR Part 20.

According to 10 CFR Part 20, which prescribes standards for protection against radiation, total ionizing radiation dose to an individual, including doses resulting from licensed and unlicensed radioactive material and from radiation sources other than background radiation, must not exceed the standards for protection. The effluent concentration values given in Column 2 are equivalent to the radionuclide concentrations that, if ingested continuously for a year, would produce a total effective dose equivalent of 0.05 rem (50 millirem or 50 millisieverts). The staff concludes that, because of the presence of several radionuclides in the potential accidental release, an individual near a contaminated point of interest would receive a cumulative ionizing radiation dose from each radionuclide that constitutes the effluent. For this reason, the staff has determined that the applicant's screening procedure for selecting the radionuclides of importance to subsurface hydrological transport may be inappropriate. In the staff's view, the dose calculations must include all radionuclides that may reach Lake Anna or the WHTF via a subsurface pathway in order to estimate the total dose to an individual using these waters.

Subsurface Pathways to Accessible Environment

The applicant used a distance of 1800 ft from the point of release to Lake Anna to estimate the time of travel for regional ground water flow. Since the nuclear power plant design has not been selected at the ESP stage and no details regarding the location of an accidental radioactive material release are available, the staff concludes that it is not possible at the ESP stage to delineate all possible subsurface pathways at the ESP site and to evaluate the potential pathways to determine the most critical event. In the staff's view, all subsurface pathways from the final location of the release point to Lake Anna and the WHTF should be delineated once the plant design has been selected. More detailed hydrologic measurements may be necessary at that point to characterize the subsurface properties along these pathways to establish the most critical event.

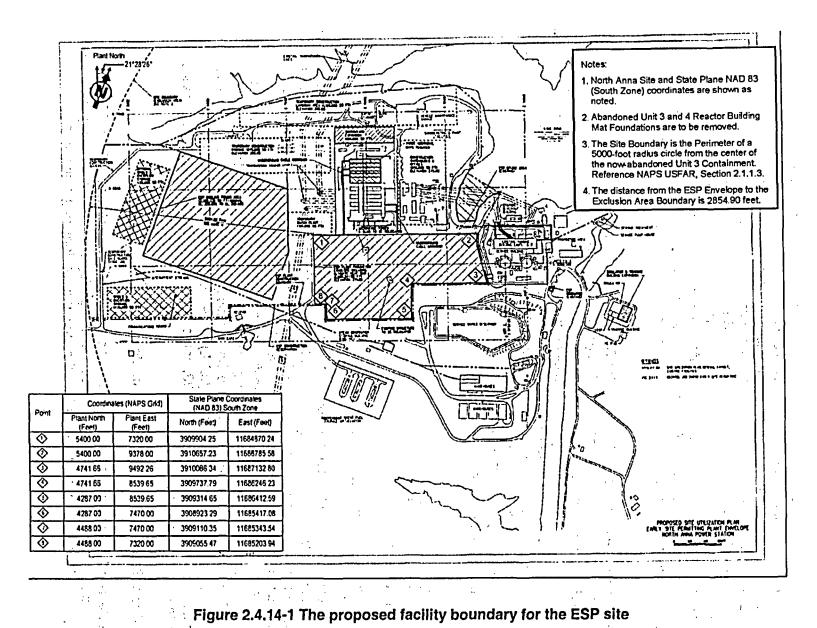
Uncertainty of Subsurface Hydrological Properties

Several subsurface hydrological properties influence the migration of the radionuclide plume in the ground water. Some of these properties include hydraulic conductivity, hydraulic gradient, and distance to the nearest point to a surface water body that are common to all radionuclides that may constitute the radwaste inventory. Some other properties such as adsorption and retention coefficients may be unique to each radionuclide. In addition, subsurface chemical properties, such as pH, may affect different radionuclides differently (EPA 1999a, 1999b, 2004). The radwaste itself may contain certain complexing agents that are frequently used in decontamination processes to remove buildup of radionuclides from cooling systems, such as one or more chelating agents including ethylenedinitrilo tetraacetic acid, picolinic acid, oxalic acid, and citric acid. The presence of these complexing agents can enhance the mobility of some radionuclides, especially transition metals (Davis et al., 2000; Serne et al., 2002). For this reason, EPA (1999b) cautions that its lookup tables do not apply to environments containing organic chelates.

The staff concludes that, because of incomplete knowledge of subsurface hydrological and chemical properties and the likely composition of the radwaste effluent itself, significant uncertainty exists in characterization of radionuclide migration in the subsurface at the ESP site at the time of ESP review. The staff has determined that, after the reactor design is selected and additional details related to radwaste tank design and the location within the proposed site are known, appropriate subsurface hydrological characterization can be completed. Therefore, at the time of a COL or CP application, more reliable estimation of radionuclide migration to surface waters via subsurface pathways can be made.

At the ESP application stage, a decision related to a specific reactor design has not been made. Therefore, the following details are not available for the staff to fully consider the effect of accidental release of liquid effluents in ground and surface waters: exact location of radwaste storage facilities, location and elevation of likely point of release, and detailed characterization of liquid pathways above and below ground from the point of release to the accessible environment. Although the staff conceptually used siting factors such as soil, sediment, and rock characteristics, adsorption and retention coefficients, ground water velocity, and distances to the nearest surface body of water in its site suitability determination, it determined that this issue could be resolved if there were no releases of radionuclides to the ground water. Accordingly, the staff proposes to include a condition in any ESP that might be issued for the North Anna site requiring that an applicant referencing such an ESP design any new unit's radwaste systems with features to preclude any and all accidental releases of radio-nuclides into any potential liquid ground water pathway. This is Permit Condition 4.

2.4.13.4 Conclusions


As set forth above, the applicant has provided sufficient information pertaining to liquid pathways. Therefore, the staff concludes that, with the noted conditions, the applicant has met the requirements related to liquid pathways of 10 CFR 52.17(a) and 10 CFR 100.20©)(3).

2.4.14 Site Characteristics Related to Hydrology

Based on its review of SSAR Section 2.4, the staff has determined that any ESP that might be issued for the proposed site should include the site characteristics given in Table 2.4.14-1.

Table 2.4.14-1 Staff's Proposed Site Characteristics Related to Hydrology

SITE CHARACTERISTIC	VALUE
Proposed Facility Boundaries	Figure 2.4.14-1 shows the proposed facility boundary using its corners numbered 1–8 and also lists the geographical coordinates of these points in Virginia State Plane Coordinate System using NAD 83 Datum. The coordinates are expressed in feet.
Minimum Lake Water Level	242 ft MSL
Maximum Elevation of Ground Water	270 ft MSL or 1 ft below the free surface, whichever is higher
Flood Elevation	270 ft MSL
Local Intense Precipitation	18.3 in./hr and 6.1 in. in 5 minutes
Frazil and Anchor Ice	The ESP site has the potential for the formation of frazil and anchor ice.
Maximum Ice Thickness	17.1 in. thick
Maximum Cumulative Degree-Days Below Freezing	322 °F
Hydraulic Conductivity	3.4 ft/d
Hydraulic Gradient	0.03 ft/ft

2.5 Geology, Seismology, and Geotechnical Engineering

In SSAR Section 2.5, the applicant described the geological, seismological, and geotechnical engineering properties of the ESP site. SSAR Section 2.5.1 describes the basic geologic and seismologic data for the site and region surrounding the site. SSAR Section 2.5.2 describes the vibratory ground motion at the site in terms of a probabilistic seismic hazard analysis (PSHA) and develops a site SSE ground motion. SSAR Section 2.5.3 describes the potential for surface faulting at or near the surface of the ESP site. SSAR Section 2.5.4 presents information on the stability of the site's subsurface materials. SSAR Section 2.5.5 describes the stability of slopes at the site. Finally, SSAR Section 2.5.6, which covers embankments and dams, states that the applicant did not reanalyze the North Anna Dam as part of the ESP application.

Since the ESP site is located adjacent to NAPS Units 1 and 2, abandoned Units 3 and 4, and the independent spent fuel storage installation (ISFSI), the applicant stated in SSAR Section 2.5 that it used the previous site investigations for these facilities as its starting point for the characterization of the geological, seismological, and geotechnical engineering properties of the ESP site. As such, the material in Section 2.5 of the ESP application focuses on any newly published information since the publication of the NAPS updated safety analysis report in the 1970s as well as recent geological, seismological, geophysical, and geotechnical investigations performed for the ESP site. The applicant stated that it conducted these investigations in progressively greater detail closer to the ESP site. The applicant defined the following zones of investigation around the site:

- region—within 200 miles
- vicinity—within 25 miles
- area—within 5 miles

The ESP site itself is defined as the area within 0.6 mile of the site location.

The applicant also used the seismic source and ground motion models published by the Electric Power Research Institute (EPRI) for the central and eastern United States (CEUS), "Seismic Hazard Methodology for the Central and Eastern United States," as the starting point for its seismic hazard evaluation. The applicant updated the EPRI seismic source and ground motion models in accordance with RG 1.165, "Identification and Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion," issued March 1997. RG 1.165 indicates that applicants may use the seismic source interpretations developed by Lawrence Livermore National Laboratory (LLNL) in the "Eastern Seismic Hazard Characterization Update," published in 1993, or the EPRI models, published in 1986, as inputs for a site-specific analysis.

2.5.1 Basic Geologic and Seismic Information

SSAR Section 2.5.1 describes the geologic and seismologic characteristics of the ESP site region and area. SSAR Section 2.5.1.1 describes the geologic and tectonic setting of the site region, and SSAR Section 2.5.1.2 describes the structural geology of the site area.

2.5.1.1 Technical Information in the Application

2.5.1.1.1 Regional Geology

SSAR Section 2.5.1.1 describes (1) the physiographic provinces that encompass a 200-mile radius of the site, (2) the geologic history in terms of the major tectonic events, (3) regional stratigraphy, (4) the regional tectonic setting, and (5) regional gravity and magnetic data.

Physiographic Provinces

SSAR Section 2.5.1.1.1 describes the regional physiography and geomorphology of the ESP site. The ESP site lies within the Piedmont physiographic province. The Piedmont province lies between the Coastal Plain province to the east and the Blue Ridge province to the west and is characterized by deeply weathered bedrock. Elevations in the Piedmont province range from 800 to 1500 ft in the western portion of the province to about 200 ft in the eastern portion, near the Coastal Plain province. Figure 2.5.1-1, reproduced from SSAR Figure 2.5-1, illustrates each of the physiographic provinces within the site region.

Regional Geologic History

SSAR Section 2.5.1.1.2 describes the geologic history of the ESP site region, which is composed of episodes of continental collisions with intervening episodes of continental rifting. Episodes of continental collisions have produced a series of accreted terranes that are separated by low-angle detachment faults. In contrast, intervening episodes of continental rifting have produced high-angle normal faults that either extend downward into the low-angle detachment faults or penetrate entirely through the accreted terranes. The latest major tectonic events in the region include the Allegheny orogeny (mountain building) and Mesozoic and Cenozoic crustal extension (rifting) episodes. The collision of the North American and African plates caused the Allegheny orogeny, which occurred during the late Carboniferous Period (about 290–330 million years (Ma) ago) and extended into the Permian Period (240–290 Ma). Crustal extension followed the Allegheny orogeny during the early Mesozoic Era (200–240 Ma) that began the opening of the Atlantic Ocean. This early Mesozoic extensional episode continued with the development of the mid-Atlantic spreading center during the Cenozoic Era (63 Ma–present). Currently, the site region is located on the passive, divergent trailing margin of the North American plate following this last episode of continental extension and rifting.

Regional Stratigraphy

Section 2.5.1.1.3 of the SSAR describes the regional stratigraphy of the ESP site. Two distinct rock types mark the regional stratigraphy of the Piedmont province. The first and oldest type is the crystalline rock of the late Precambrian (570–1500 Ma) and Paleozoic age (240–570 Ma). Overlying these rocks are Mesozoic-age (63–240 Ma) sedimentary rocks deposited locally in down-faulted basins within the crystalline rocks. Residual soils derived from weathering of the crystalline rocks, as well as Quaternary-age (2 Ma–present) alluvium and colluvium, overlay both the sedimentary and crystalline rocks.

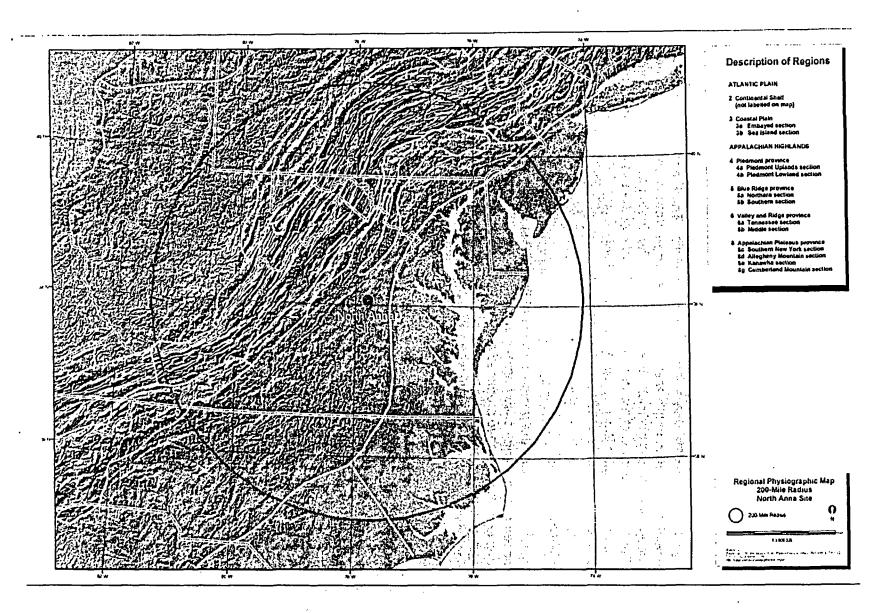


Figure 2.5.1-1 Regional physiographic map (200-mile radius)

Regional Tectonic Setting

Section 2.5.1.1.4 of the SSAR describes the regional tectonic setting for the ESP site. Figure 2.5.1-2, reproduced from SSAR Figure 2.5-5, presents a simplified tectonic and stratigraphic map of the site region, including many of the local faults.

The ESP site lies within the central Appalachian region of Virginia, which is part of the northeast-trending Appalachian orogenic belt that extends nearly the entire length of the eastern United States. The tectonic stress in the CEUS, including the Appalachian region, is primarily characterized by northeast-southwest-directed horizontal compression. The expert teams that participated in the 1986 EPRI hazard evaluation concluded that the most likely source of the tectonic stress in the CEUS region is a ridge-push body force associated with the mid-Atlantic ridge, which is transmitted to the interior of the North American tectonic plate. Studies cited in SSAR Section 2.5.1.1.4 found the magnitude of the northeast-southwest-directed stress to be about 2 to 3x10¹² N/m, which corresponds to average equivalent stresses of about 40 to 60 MPa, distributed across a 30-mile-thick elastic plate.

7

SSAR Section 2.5.1.1.4 categorizes four principal tectonic structures within the 200-mile ESP site region based on the age of formation or reactivation of the structures, including those active during (1) the Paleozoic Era (240–570 Ma), (2) the Mesozoic Era (63–240 Ma), (3) the Tertiary Period (2–63 Ma), and (4) the Quaternary Period (2 Ma–present).

Paleozoic Tectonic Structures

The rocks and structures within the physiographic provinces that encompass the ESP site region are associated with thrust sheets that formed during the convergent Appalachian orogenic events of the Paleozoic Era (240–570 Ma). The majority of these thrust sheets are shallow and dip eastward into a low-angle, basal Appalachian decollement. Below the decollement are rocks that form the North American basement complex. The basement rocks contain normal faults that formed during the late Precambrian to Cambrian Period (570–1500 Ma). Literature cited in the SSAR states that much of the sparse seismicity in the Appalachian region occurs within this North American basement complex and not within the more abundant, shallow thrust sheets mapped at the surface.

Major Paleozoic tectonic structures near the ESP site include the Hylas shear zone, Spotsylvania thrust fault, Long Branch thrust fault, Chopawamsic thrust fault, Lake of the Woods thrust fault, and Mountain Run fault zone. No seismic activity has been attributed to any of the Paleozoic faults within 200 miles of the site, and, as such, the applicant considers none to be capable tectonic sources, as defined in Appendix A to RG 1.165. Of these tectonic structures, the Hylas shear zone, the Lake of the Woods thrust fault, and the Mountain Run fault zone are the most prominent. In response to RAI 2.5.1-4, the applicant revised SSAR Section 2.5.1.1.4 to state that there is no reported geomorphic expression, historical seismicity, or Quaternary deformation along either the Hylas shear zone or the Lake of the Woods thrust fault. Diffuse, scattered seismicity occurs throughout the Central Virginia seismic zone (CVSZ), but it is not spatially concentrated or aligned with either of these two structures. SER Section 2.5.1.3.1 provides a complete description of the applicant's response to RAI 2.5.1-4 and the staff's evaluation of the applicant's response.

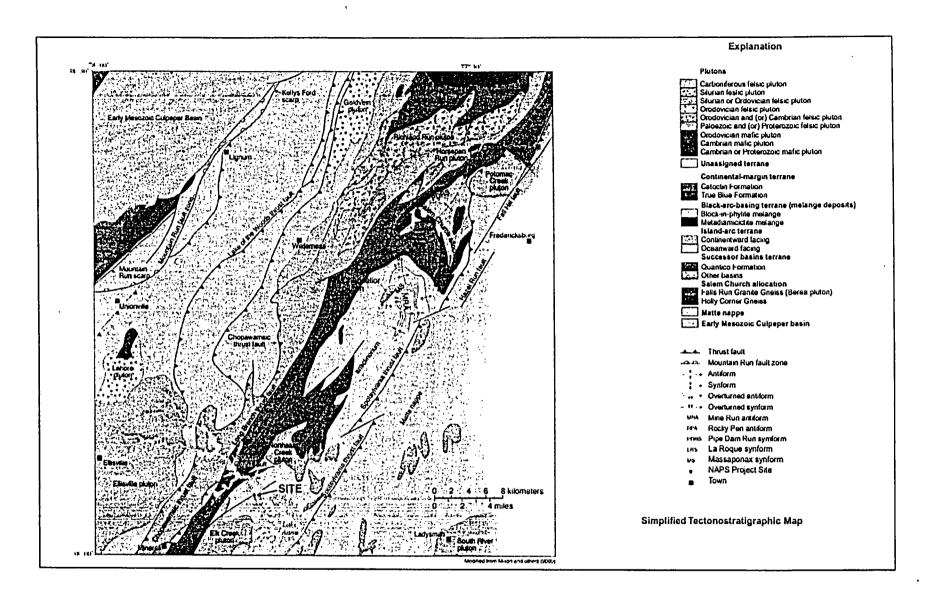


Figure 2.5.1-2 Simplified tectonostratigraphic map

Since the Mountain Run fault zone is one of the most clearly recognizable faults in the region with two pronounced scarps occurring along the fault zone, the applicant identified it as a potential Quaternary tectonic feature. SSAR Section 2.5.1.1.4 states that these two pronounced scarps along the Mountain Run fault zone have led some experts to suggest that the fault has experienced a late Cenezoic (63 Ma-present) phase of movement. The Mountain Run fault zone is a 75-mile-long fault zone that lies approximately 18 miles northwest of the site. The following excerpt from SSAR Section 2.5.1.1.4 describes the applicant's investigation of the Mountain Run fault zone:

Field and aerial reconnaissance performed for this ESP application did not reveal any geologic or geomorphic features indicative of potential Quaternary activity along the Mountain Run fault zone. A review of 1:24,000 scale topographic maps revealed that the steeper portions of the Mountain Run scarp correlate with the areas where the Mountain Run (stream) is impinging on the scarp. In addition, the northwest side of the narrow Mountain Run valley is steepest where the stream is impinging on that side of the valley. These observations suggest that the scarp most likely formed due to erosion, as southeastward-migrating streams impinge against the more resistant rocks in the Mountain Run fault zone.

Based on the reconnaissance described above, the applicant concluded that the Mountain Run fault zone is not a capable tectonic source. In response to RAI 2.5.1-5, the applicant stated that its reconnaissance field and aerial evaluations demonstrated that the Mountain Run and Kelly's Ford scarps along the Mountain Run fault zone are associated with incised drainages that are preferentially eroding the southeast valley walls, creating asymmetric valley profiles. As such, the applicant determined that the scarps are most likely products of fluvial erosion. SER Section 2.5.1.3.1 provides a complete description of the applicant's response to RAI 2.5.1-5 and the staff's evaluation of the applicant's response. Mesozoic Tectonic Structures

A series of elongated Mesozoic Era (63-240 Ma) rift basins are exposed in a belt extending from Nova Scotia to South Carolina. These rift basins exhibit a high degree of parallelism with the surrounding structural grain of the Appalachian orogenic belt. They were formed during the extension and thinning of the Earth's crust as Africa and North America rifted apart to form the Atlantic Ocean. Section 2.5.1.1.4 of the SSAR states that, although the Mesozoic basins have long been considered potential sources for earthquakes along the eastern seaboard, none of the basins in the site region is associated with a known capable tectonic source. Tertiary Tectonic Structures

Tertiary Period (2-63 Ma) tectonic structures within 200 miles of the ESP site include the Brandywine fault system in Maryland, the National Zoo faults in Washington, DC, the Dutch Gap fault in Virginia, and the Stafford fault system. The Stafford fault is a 42-mile-long fault system that comes within 16.5 miles of the site. Section 2.5.1.1.4 states that the NAPS licensee's (Virginia Power's) detailed drilling, trenching, and mapping of the Stafford fault system in the Fredericksburg region in the early 1970s showed that the youngest identifiable fault movement occurred before the middle Miocene Epoch (i.e., more that 10 Ma ago). Subsequent investigations have shown some minor, later activity along the Stafford fault

system. However, none of this activity has occurred during the Quaternary Period (i.e., the past 2 Ma). Thus, the applicant concluded that the Stafford fault system is not a capable tectonic source. The applicant stated that the EPRI 1986 seismic source models incorporated all of the available information on the Stafford fault system. In addition, the applicant stated that no new significant information has been developed since 1986 regarding the potential activity of the Stafford fault system. In response to RAI 2.5.1-6, the applicant stated that it based its conclusion that the Stafford fault system is not a capable tectonic source on a review of existing literature, discussions with researchers familiar with the area, areal and field reconnaissance, and geomorphic analyses. SER Section 2.5.1.3.1 provides a complete description of the applicant's response to RAI 2.5.1-6 and the staff's evaluation of the applicant's response.

Quaternary Tectonic Features

To define Quaternary tectonic (2 Ma-present) features, the applicant used the study of Crone and Wheeler (Ref. 59, SSAR Section 2.5) as one of its criteria. Crone and Wheeler compiled geologic information on Quaternary faults, liquefaction features, and possible tectonic features in the CEUS. They evaluated and classified these features into one of four categories (Classes A, B, C, and D) based on geologic evidence of Quaternary faulting or deformation. Within a 200-mile radius of the ESP site, Crone and Wheeler identified 11 potential Quaternary features. Of these 11 features, only the CVSZ showed geologic evidence that demonstrates the existence of a Quaternary fault of tectonic origin (Class A). SSAR Section 2.5.1.1.4 states that none of the other features compiled by Crone and Wheeler have "demonstrated evidence of Quaternary activity that would imply recurrent activity in the past 500,000 years." The applicant investigated many of these features, such as the Mountain Run fault zone described above, in great detail to determine their potential for Quaternary activity. Figure 2.5.1-3, reproduced from SSAR Figure 2.5-12, shows the Quaternary features identified by Crone and Wheeler.

The ESP site is located near the northern boundary of the CVSZ. Because the causative faults have not been identified, the applicant characterized the CVSZ as a seismogenic source rather than a capable tectonic source. The largest earthquake known to have occurred in the CVSZ is the body-wave magnitude (m_b) 5.0 Goochland County event in 1875. The CVSZ is an area defined by moderate to low historical seismic activity, as well as paleoseismicity, since Obermeier and McNulty recently identified two paleoliquefaction features within the CVSZ (Ref. 71, SSAR Section 2.5). However, SSAR Section 2.5.1.1.4 states that the absence of widespread paleoliquefaction led Obermeier and McNulty to conclude that an earthquake of magnitude 7 or larger has not occurred within the CVSZ in the last 2000-3000 years, or in the eastern portion of the seismic zone for the last 5000 years. In addition, the applicant stated that "these isolated locations of paleoliquefaction may have been produced by local shallow moderate magnitude earthquakes of [moment magnitude (Mw)] 5 to 6." In RAI 2.5.1-1, the staff asked the applicant to describe these two paleoliquefaction features and their impact on the seismic characterization of the CVSZ. In its response, the applicant modified SSAR Section 2.5.1.1.4 to reaffirm its conclusion that the original 1986 EPRI study adequately characterizes the magnitude level of the CVSZ. SER Section 2.5.1.3.1 provides a complete description of the applicant's response to RAI 2.5.1-1 and the staff's evaluation of the applicant's response.

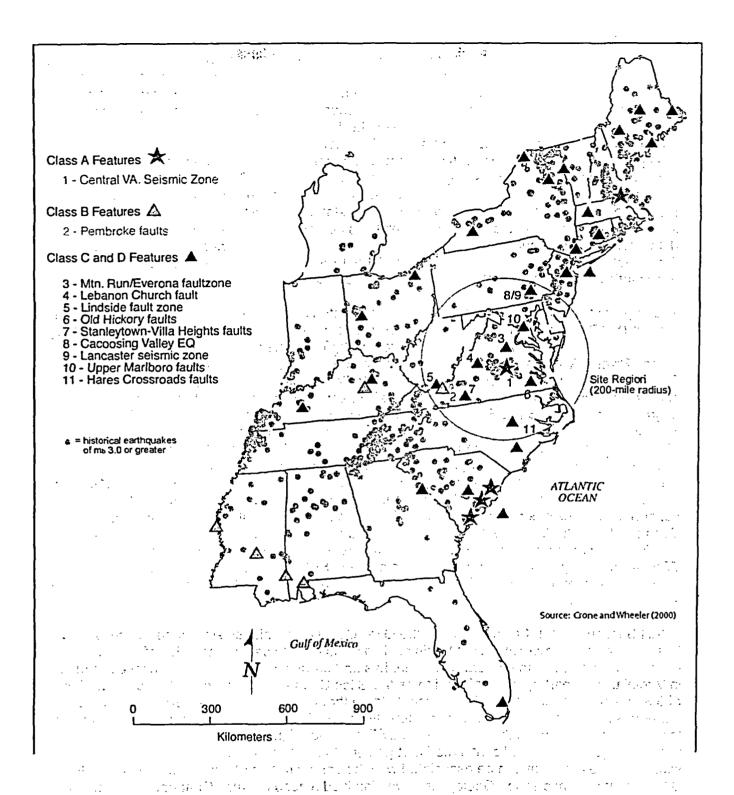


Figure 2.5.1-3 Quaternary features map

The applicant also identified the seven fall lines across the Piedmont and Blue Ridge provinces of North Carolina as another potential Quaternary tectonic feature. Weems identified these seven fall lines (Ref. 70, SSAR Section 2.5), which are based on the alignment of short stream segments with anomalously steep gradients. Because other studies of potential tectonic features in the CEUS do not include the seven fall lines identified by Weems, the applicant concluded that they do not represent a capable tectonic source. In RAI 2.5.1-3, the staff asked the applicant to more strongly justify its conclusion that the seven fall lines do not represent a capable tectonic source. In its response, the applicant revised SSAR Section 2.5.1.1.4 to strengthen its conclusion by stating that Weems does not present direct credible evidence for a tectonic origin of the fall lines. The applicant also stated that, based on its evaluation of the stratigraphic, structural, and geomorphic relations across and adjacent to the fall zones, differential erosion resulting from variable bedrock hardness is a more plausible explanation than Quaternary tectonism. SER Section 2.5.1.3.1 provides a complete description of the applicant's response to RAI 2.5.1-3 and the staff's evaluation of the applicant's response.

The applicant cited another potential Quaternary tectonic feature known as the East Coast fault system (ECFS). The ECFS is a 370-mile-long fault system that consists of three 125-mile-long segments extending from the Charleston area in South Carolina northeastward to near the James River in Virginia. The southern segment of the ECFS (ECFS-S) is associated with the Charleston earthquake of 1868 (with an estimated magnitude of about 7) and continues to show microseismic activity. Only Marple and Talwani postulated the central and northern segments of the ECFS (ECFS-C and ECFS-N) as tectonic features (Ref. 75, SSAR Section 2.5). The closest approach of the northern segment to the site is approximately 70 miles to the southeast. Because the ECFS-N and ECFS-C have not been associated with any seismicity and gravity or magnetic anomalies, the applicant concluded that they are not likely to exist or, if they do exist, they have a very low probability of activity. In RAI 2.5.1-2, the staff asked the applicant to describe the aerial reconnaissance and other sources it used to support its conclusions regarding the ECFS-N, which is the closest segment to the ESP site. Consistent with its response, the applicant revised SSAR Section 2.5.1.1.4 to reaffirm this conclusion by demonstrating that other researchers and studies have determined that the ECFS-N is not a potential source of seismic activity. SER Section 2.5.1.3.1 provides a complete description of the applicant's response to RAI 2.5.1-2 and the staff's evaluation of the applicant's response.

SSAR Section 2.5.1.1.4 also describes the Giles County, Virginia, seismic zone, which is located near the border with West Virginia. The Giles County seismic zone is defined by a concentration of small to moderate earthquakes and produced the largest historical earthquake in Virginia. This earthquake, referred to as the Giles County earthquake, had an estimated m_b of 5.8 and occurred in 1897. The applicant stated that the shaking at the ESP site from this earthquake would have been about an intensity level of 5, which signifies ground motion that is felt by nearly everyone in the vicinity of the ESP site and might crack plaster or overturn unstable objects. The applicant stated that geologists have not identified any capable tectonic sources in the area that can be associated with the concentration of seismic activity within the Giles County seismic zone. Geologists have identified a zone of small Quaternary-age surface faults within the Giles County seismic zone, near Pembroke, Virginia. However, the applicant stated that these faults do not appear to be related to the seismicity within the Giles County seismic zone, which occurs at depths between 3 and 16 miles beneath the Appalachian basal decollement in the North American basement. The EPRI seismic source model maximum magnitudes (M_{max}) for the Giles County seismic source zone vary from m_b 6.6 to 7.2.

Subsequent hazard studies have used similar values for the M_{max} of the Giles County seismic zone. Therefore, the applicant decided not to revise the EPRI seismic source model for the Giles County seismic zone.

In addition to the principal tectonic features and seismic zones within the ESP site region, the applicant, in SSAR Section 2.5.1.1.4, also described the major active seisomogenic source zones located outside the site region. These sources include the Eastern Tennessee seismic zone (ETSZ), the Charleston seismic source, and the New Madrid seismic zone (NMSZ). These three seismic source zones are more than 300 miles from the ESP site. However, large earthquakes from sources at this distance could contribute to the long-period ground motion hazard at the ESP site. Figure 2.5.1-4, reproduced from SSAR Figure 2.5-14, illustrates these three seismic source zones, as well as other regional seismic source zones.

Eastern Tennessee Seismic Zone

The ESP site is located over 300 miles east of the ETSZ. The ETSZ is about 185 miles long and 30 miles wide and is located in the Valley and Ridge Province of eastern Tennessee. Although the ETSZ has not produced a damaging earthquake in historical time, this zone did produce the second highest release of seismic strain energy in the CEUS during the 1980s. Earthquakes in the ETSZ occur at depths between 3 and 16 miles, and none have exceeded an Mw of 4.6 (Ref. 88, SSAR Section 2.5). In addition, earthquakes within the ETSZ have not been attributed to known faults, and no capable tectonic faults have been identified within the seismic zone. The EPRI seismic source model includes various source geometries and parameters to represent the seismicity of the ETSZ. The Mmax values used by EPRI for the ETSZ range from mb 6.6 to 7.4. Subsequent hazard studies have used Mmax values of mb 6.45 and 7.25 (Refs. 57 and 79, SSAR Section 2.5). The applicant concluded that both of these more recent estimates of Mmax are similar to those used by EPRI for the ETSZ. Therefore, the applicant decided not to revise the EPRI seismic source model for the ETSZ.

Charleston Seismic Source

The Charleston seismic source is located about 375 miles south of the ESP site. The earthquake which occurred in Charleston, South Carolina, on August 31, 1886, is the largest historical earthquake event to occur in the eastern United States. The earthquake produced intense shaking in the epicentral area (Modified Mercalli Intensity (MMI) X) and was felt as far away as Chicago (MMI V) (Ref. 90, SSAR Section 2.5). Estimates of the magnitude for the 1886 Charleston earthquake are 7.3 (Ref. 90, SSAR Section 2.5) and 6.8 (Ref. 93, SSAR Section 2.5). The applicant stated that both of these more recent estimates of the magnitude of the Charleston earthquake are similar to the upper bound range of M_{max} values used in the 1986 EPRI study (m_b 6.8 to 7.5). Therefore, the applicant concluded that no new information has been developed since 1986 that would warrant a significant revision to the EPRI seismic source model in terms of earthquake magnitude. However, estimates of earthquake recurrence for the Charleston source, based on dates of paleoliquefaction events, have been updated since 1986. The most recent summary of paleoliquefaction data (Ref. 91, SSAR Section 2.5) for the Charleston source indicates a mean recurrence time of 550 years. This mean recurrence time is roughly an order of magnitude less than the seismicity-based

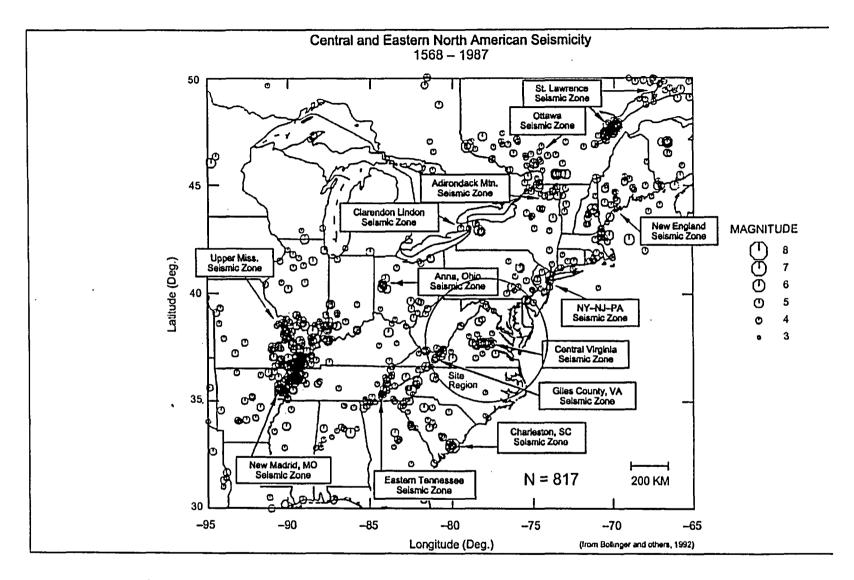


Figure 2.5.1-4 Seismic source zones and seismicity in central and eastern North America

recurrence estimates used in the 1986 EPRI study. Therefore, the applicant modified the Charleston recurrence interval from several thousand years to 550 years, based on the paleoseismic observations. The applicant included this reduction in recurrence interval in its sensitivity analysis, which is described in SSAR Section 2.5.2.

New Madrid Seismic Zone

The NMSZ extends from northeastern Arkansas to southwestern Tennessee and is over 620 miles west of the ESP site. The NMSZ produced three large-magnitude earthquakes between December 1811 and February 1812. Estimates of the magnitudes of these events range between 7 and 8. However, because of the considerable distance between the NMSZ and the ESP site, the NMSZ only contributed 1 percent of the hazard at the NAPS site in the 1986 EPRI study. Since 1986, estimates of the M_{max} for the NMSZ have generally been within the range of M_{max} values used by the EPRI study (m_b 7.2 to 7.9). However, the recurrence interval for the NMSZ, based on paleoseismic observations, is now only 500 years, which is considerably less than the recurrence estimates used in the 1986 EPRI study. The applicant included this reduction in recurrence interval in its sensitivity analysis, which is described in SSAR Section 2.5.2.

Regional Gravity and Magnetic Data

The applicant reviewed regional maps of gravity and magnetic data in SSAR Section 2.5.1.1.5. The Geological Society of America (GSA) published regional maps of gravity and magnetic fields in North America in 1987. The maps present gravity and magnetic field data at a 1:5,000,000 scale. The applicant stated that these maps are useful for identifying and assessing gravity and magnetic anomalies with wavelengths on the order of tens of kilometers or greater.

The gravity map of the eastern United States shows that, at the latitude of Virginia, there is a long-wavelength, east-to-west gravity gradient, referred to as the Piedmont gravity gradient. The Piedmont gravity gradient stretches across the Blue Ridge and Piedmont provinces of Virginia. The applicant stated the following about the Piedmont gravity gradient:

The presence of the Piedmont Gravity Anomaly was known at the time of the 1986 EPRI study. This anomaly is a first-order feature of the gravity field and is interpreted to reflect eastward thinning of the North American crust and lithosphere.

Magnetic data published by GSA reveal numerous northeast-southwest-trending magnetic anomalies, generally parallel to the structural features of the Appalachian orogenic belt. However, in contrast to the gravity data, the magnetic anomalies do not provide information on crustal-scale features in the lithosphere. Rather, the applicant stated that anomalies in the magnetic field are associated primarily with upper crustal variations in magnetic susceptibility, such as mafic and ultramafic rocks. The magnetic data provide additional characterization of the geophysical properties of the upper crust and supporting evidence for the interpretation of the seismic reflection data. The applicant stated that the magnetic data published since 1986 do not reveal any new anomalies related to geologic structures that had not been identified before the 1986 EPRI study.

2.5.1.1.2 Site Geology

SSAR Section 2.5.1.2 describes the site area in terms of (1) physiography, (2) geologic history, (3) stratigraphy, (4) geologic structure, (5) geologic hazard evaluation, (6) engineering geology, and (7) ground water conditions.

Site Area Physiography

The ESP site is located within the Piedmont province and is bordered by Lake Anna to the north and east. The ESP site is in an area with a topography that is gently undulating, varying in elevation from about 200 to 500 ft. The applicant stated that the slopes in the region typically range from 2 to 5 percent, with steeper slopes along the lower tributaries of some of the larger streams ranging from 7 to 10 percent. Site grade for the existing units is at an approximate elevation of 271 ft. The ground surface gently rises to the west and south to elevations of over 300 ft. Figure 2.5.1-5, reproduced from SSAR Figure 2.5-16, presents the site topographic map.

Site Area Geologic History

The applicant stated that, since early Paleozoic time (about 500 Ma), rocks of the Piedmont province have undergone three compressional orogenies during the Paleozoic Era and one extensional episode during the Mesozoic Era (63–240 Ma). These orogenies produced a complex pattern of folding and faulting in the region surrounding the site. The rocks of the Piedmont province exhibit varying degrees of metamorphism, depending on their location in relation to the axis of major stress, which generally trends northeast-southwest. During the more recent Cenozoic time (63 Ma–present), the area surrounding the ESP site was subject to erosion along the passive continental margin. Erosion continued during the Pleistocene (0.01–2 Ma) glacial and interglacial periods. Weathering processes during the glacial and interglacial periods include frost shattering, freeze-thaw cycles, accelerated wind erosion, and accelerated solifluction (flowage of saturated soil). The applicant concluded that these weathering processes, together with downcutting streams and rivers during the present, produced the residual soils that cover the ESP site.

Site Area Stratigraphy

The applicant stated that the ESP site is underlain by rocks of the Ta River Metamorphic Suite, which are in turn underlain by rocks of the Chopawamsic Formation and the Mine Run Complex. Surficial sediments at the site consist of mainly residual soil and saprolite, with some alluvium found along stream channels. The Ta River Metamorphic Suite underlying the site is thousands of feet thick, and the rocks within the suite are dark gray to black gneisses of Cambrian and/or Ordovician age. The applicant stated that borings completed at the ESP site encountered rocks of the Ta River Metamorphic Suite that are gray to dark gray quartz gneiss and hornblende gneiss. Residual soil and saprolite overlie the rocks of the Ta River Metamorphic Suite. The residual soil is derived from the weathering of the underlying metamorphic rocks and generally consists of clay, silt, and sand-sized particles with minor rock fragments. The saprolite is also derived from weathering of the underlying metamorphic rock but, unlike the residual soil, retains many of the structural and mineralogical features of the rock. The saprolite extends down to the top of the rock from which it was derived.

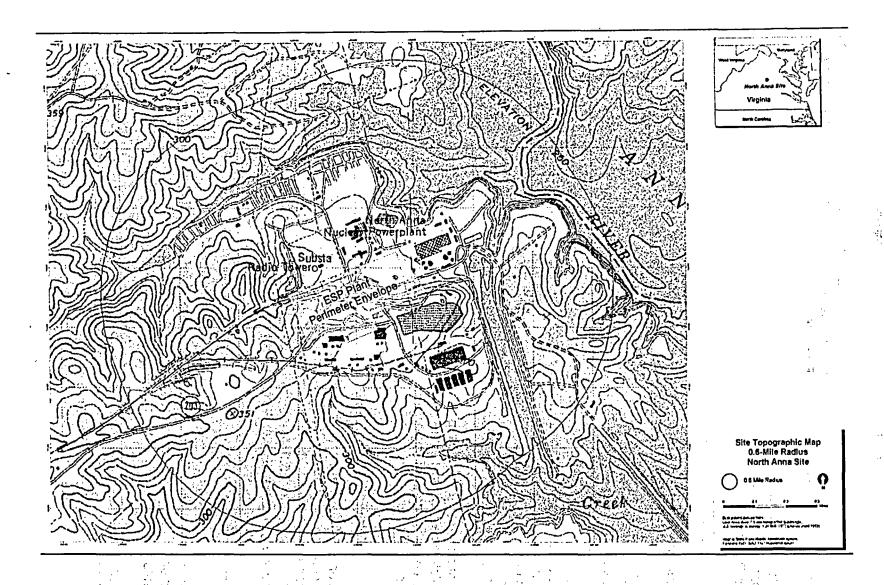


Figure 2.5.1-5 Site topographic map (0.6-mile radius)

Site Area Structural Geology

Structural features at and within a 5-mile radius of the ESP site consist of a series of northeaststriking faults and folds within the metamorphic bedrock. The applicant identified the following bedrock faults within a 5-mile radius of the ESP site:

- (1) Spotsylvania thrust
- (2) Chopawamsic thrust
- (3) Long Branch thrust
- (4) Sturgeon Creek fault
- (5) unnamed faults "a," "b," and "c"

The applicant stated that none of the above faults are considered to be capable tectonic sources, as defined by RG 1.165. The Spotsylvania, Chopawamsic, and Long Branch thrust faults are northeast-striking, east-dipping Paleozoic structures that can be mapped for miles within the Piedmont province and represent the largest surficial tectonic structures within the site area. The Sturgeon Creek fault and the three unnamed faults ("a," "b," and "c") also strike northeast; however, they are smaller structures than the other three thrust faults. Unnamed fault "a," which traverses NAPS and the ESP site, was the subject of intensive study following its exposure during the excavations for abandoned Units 3 and 4. This fault has a length of about 3000 ft based on geologic mapping of excavations and trenches. The applicant cited the conclusions of a Dames and Moore study (Ref. 9, SSAR Section 2.5), stating that unnamed fault "a" is not a capable tectonic source, as well as the NRC staff's acceptance of this conclusion found in the SER for abandoned NAPS Units 3 and 4.

The applicant stated that the most prominent folds at the site are the northerly plunging syncline/anticline pair located in the western portion of the site. The axis of the site passes near an area of exposed bedrock, and foliations near the axis of the fold dip steeply (65–90 degrees).

Site Area Geologic Hazard Evaluation

SSAR Section 2.5.1.2.5 states that the only geologic hazards associated with the ESP site are (1) vibratory ground motion from regional earthquake activity and (2) potential surface faulting from site area earthquakes. The applicant discussed these two potential geologic hazards in SSAR Sections 2.5.2 and 2.5.3, respectively. The corresponding sections of this SER provide the staff's review of these two potential geologic hazards.

Site Engineering Geology

SSAR Section 2.5.1.2.6 briefly describes the engineering behavior of the soil and rock at the ESP site, prior earthquake effects, effects of human activities, construction ground water control, and unforseen geologic features. Section 2.5.4 of the SSAR discusses the results of the applicant's geotechnical investigation in greater detail.

The applicant described the composition of the saprolite at the ESP site as micaceous silty, clayey sand and sandy silt/clay with occasional to many relict rock fragments. The saprolite more or less retains the fabric or structure of the parent bedrock, depending on the degree of weathering. However, although the saprolite has the relict structure of the parent bedrock, its

engineering properties typically resemble those of a soil. The applicant classified the saprolite at the site into Zone IIA and IIB saprolite, based on its general composition and grain size. Zone IIA saprolite is classified as silty sand, clayey sand, and high- and low-plasticity silt and clay. Zone IIB saprolite is classified as silty sand. Zone IIA saprolite is the more weathered of the two saprolites and contains less than 10 percent relict rock fragments. In contrast, Zone IIB saprolite contains between 10 and 50 percent relict rock fragments and is more dense than Zone IIA saprolite. The presence of mica in the saprolite is likely to reduce its maximum compacted density and increase its compressibility. The applicant provided the following example of this phenomenon:

The SWR [service water reservoir] pump house for the existing units was constructed on about 65 feet of Zone IIA saprolite, consisting mainly of sandy silt, with frequent layers of micaceous sandy silt. For about two years after its construction, the pumphouse structure underwent relatively high settlement that declined significantly thereafter. The settlement was caused by the weight of the SWR dike fill built up around the pumphouse. The micaceous nature of the material is considered to have played a major role in the settlement. High compressibilities and low maximum densities of the saprolite, therefore, preclude using it as engineered fill at the ESP site.

The applicant stated that bedrock at the ESP site is composed of predominantly quartz gneiss with biotite of the Ta River Metamorphic Suite. The gneiss is a hard, foliated rock, which exhibits various degrees of weathering. The degree of weathering of the gneiss affects its engineering behavior and properties. The applicant classified the gneiss at the site into three categories (Zones III, III-IV, and IV) based on its degree of weathering. Zone III is the uppermost weathered part of the bedrock, is highly weathered and fractured, and contains traces of clay and iron oxide. Regarding Zone III, the applicant stated the following:

Because of the tendency for zones of severely weathered and fractured rock to weather further upon exposure, they would be removed and replaced with cement grout where encountered in excavations for the new units. This would ensure the bearing capacity of the foundation rock mass.

Zones III-IV and IV are considerably less weathered, with the degree of weathering decreasing with increasing depth. Zone III-IV is moderately weathered, and Zone IV is slightly weathered to fresh. Based on the testing of rock borings, the applicant concluded that Zones III-IV and IV are suitable bearing surfaces for Category I plant structures. The applicant did not consider the joints and fractures present in both zones to be of sufficient density or extent to affect the engineering behavior of the rock with respect to its bearing capacity or integrity.

The applicant stated that no physical evidence of any fissuring, liquefaction, landsliding, lurching, or caving of banks exists to indicate that past earthquake ground shaking has disturbed either the surficial sediments or the bedrock beneath the ESP site. This result follows from the relatively low intensity of historic ground shaking at the site.

The major potential effect of human activity on the ESP site is the mining in the vicinity of the site which occurred from the 1700s to 1974. Sulfide and gold deposits have been mined predominantly in and around the town of Mineral, Virginia, approximately 7 miles west of the site. The closest mining deposit, the Allah Cooper deposit, is about 3 miles northwest of the

site. The applicant stated that, based on published documentation of these mining activities and their distance from the site, the activities have not affected, nor would they affect, the ESP site.

The applicant stated that ground water withdrawal from the surficial sediments and bedrock around the ESP site is not an issue because of the low withdrawal quantities and the limited areal extent of the withdrawals. Current site ground water withdrawal is generally limited to water supply wells for plant drinking and process water purposes.

Concerning construction ground water control issues, the applicant stated that ground water at the ESP site generally occurs at depths ranging from about 6 to 58 ft below the present day ground surface. The exception to this is the excavation area of the abandoned Units 3 and 4, which was partially backfilled and where ground water is within about 2 ft of the ground surface. The applicant further stated that ground water levels at the site would likely result in the need for temporary dewatering of foundation excavations extending below the water table.

Concerning the potential for unforseen geologic features, the applicant stated that it would (1) geologically map future excavations for safety-related structures and (2) evaluate any unforseen geologic features that are encountered. In addition, the applicant stated that it would notify the NRC "when any excavations for safety-related structures are open for their examination and evaluation."

Site Ground Water Conditions

The applicant stated that ground water at the ESP site is present in unconfined conditions in both the surficial sediments and underlying bedrock. Ground water movement at the site is generally to the north and east, toward Lake Anna. Hydraulic conductivity values for the saprolite range from about 0.2 to 3.4 ft/d. SSAR Section 2.4.12 provides a detailed description of the site ground water conditions.

2.5.1.2 Regulatory Evaluation

SSAR Section 2.5.1 presents information on the geologic and seismologic characteristics of the ESP site region and area. In SSAR Section 1.8, the applicant stated that the information presented in SSAR Section 2.5.1 conforms to the requirements of GDC 2 in Appendix A to 10 CFR Part 50, Subpart A of 10 CFR Part 52, and 10 CFR Part 100. The applicant also stated in this section that it developed the geologic and seismologic information in accordance with the guidance presented in RGs 1.70, 1.165, 4.7 (Revision 2 dated 1998), 1.132, "Site Investigations for Foundations of Nuclear Power Plants," Revision 2, dated October 2003, and RS-002. The staff reviewed this portion of the application for conformance with the applicable regulations, and considered the corresponding regulatory guidance, as identified above with the exception that an ESP applicant need not demonstrate compliance with the GDC.

In reviewing the SSAR, the staff considered the regulations at 10 CFR 52.17(a)(1)(vi) and 10 CFR 100.23(c), which require that the applicant for an ESP describe the seismic and geologic characteristics of the proposed site. In particular, 10 CFR 100.23(c) requires that an ESP applicant investigate the geologic, seismologic, and engineering characteristics of the proposed site and its environs with sufficient scope and detail to support evaluations to estimate the SSE ground motion and to permit adequate engineering solutions to actual or potential

geologic and seismic effects at the site. Section 2.5.1 of NUREG-0800, RG 1.165, and Section 2.5 of RG 1.70 provide specific guidance concerning the evaluation of information characterizing the geology and seismology of a proposed site.

2.5.1.3 Technical Evaluation

This section of the SER provides the staff's evaluation of the geologic and seismologic information submitted by the applicant in SSAR Section 2.5.1. The technical information presented in SSAR Section 2.5.1 resulted from the applicant's surface and subsurface geological, seismological, and geotechnical investigations performed in progressively greater detail as they moved closer to the site. Through its review, the staff determined whether the applicant complied with the applicable regulations and conducted its investigations with an appropriate level of thoroughness within the four areas designated in RG 1.165, which are based on various distances from the site (i.e., 200 miles, 25 miles, 5 miles, and 0.6 mile).

SSAR Section 2.5.1 contains the geologic and seismic information gathered by the applicant in support of the vibratory ground motion analysis and site SSE spectrum provided in SSAR Section 2.5.2. According to RG 1.165, applicants may develop the vibratory design ground motion for a new nuclear power plant using either the EPRI or LLNL seismic source models for the CEUS. However, RG 1.165 recommends that applicants update the geological, seismological, and geophysical database and evaluate any new data to determine whether revisions to the EPRI or LLNL seismic source models are necessary. As a result, the staff focused its review on geologic and seismic data published since the late 1980s that could indicate a need for changes to the EPRI or LLNL seismic source models.

To thoroughly evaluate the geologic and seismologic information presented by the applicant, the staff obtained the assistance of USGS. The staff and its USGS advisors visited the ESP site and surrounding area to confirm the interpretations, assumptions, and conclusions presented by the applicant concerning potential geologic and seismic hazards. The staff's review of SSAR Section 2.5.1 focused on (1) tectonic or seismic information, (2) nontectonic deformation information, and (3) conditions caused by human activities, with respect to both the regional and site geology.

2.5.1.3.1 Regional Geology

The staff focused its review of SSAR Section 2.5.1.1 on the applicant's description of the regional tectonics, with emphasis on the Quaternary Period, structural geology, seismology, paleoseismology, physiography, geomorphology, stratigraphy, and geologic history within a distance of 200 miles from the site. Based on its review of SSAR Sections 2.5.1.1.1, 2.5.1.1.2, and 2.5.1.1.3, as described below, the staff concludes that the applicant provided a thorough and accurate description of these geologic features and characteristics in support of the ESP application. In SSAR Section 2.5.1.1.1, the applicant described each of the physiographic provinces within the site region, with an emphasis on the Piedmont province, where the ESP site is located. In SSAR Section 2.5.1.1.2, the applicant described the geologic history of the ESP site region, including each of the episodes of continental collisions and rifting. In SSAR Section 2.5.1.1.3, the applicant described the regional stratigraphy of the Piedmont province, including the major rock units underlying the site. These three SSAR sections describe well-documented geologic information, and the staff concludes that they contain an accurate and thorough description of the regional geology as required by 10 CFR 52.17 and 10 CFR 100.23.

In SSAR Section 2.5.1.1.4, the applicant described the principal tectonic structures within the 200-mile ESP site region based on the age of formation or reactivation of the structures. To define the Quaternary tectonic (2 Ma-present) features, the applicant used the study of Crone and Wheeler (Ref. 59, SSAR Section 2.5) as one of its criteria. This study is a compilation of geologic information on Quaternary faults, liquefaction features, and possible tectonic features in the CEUS. Crone and Wheeler evaluated and classified these features into one of four categories (Classes A, B, C, and D) based on geologic evidence of Quaternary faulting or deformation. The Crone and Wheeler classifications are based on an evaluation of the information that is available in the published geoscience literature and not on a direct examination of the actual geologic features. The applicant used the Crone and Wheeler classifications as one of its criteria (SER Section 2.5.1.1.1 describes other criteria used by the applicant) for assessing the potential Quaternary activity of the following faults:

- Hylas shear zone
- Lake of the Woods thrust fault
- Mesozoic rift basins
- Stafford fault system
- Central Virginia seismic zone
- Mountain Run fault zone
- seven fall lines
- East Coast fault system

For some of the above faults, the applicant used the Crone and Wheeler classifications as its primary basis for assessing the potential Quaternary activity.

The staff determined that the applicant's use of the Crone and Wheeler classifications as a sole or primary basis for assessing the potential Quaternary activity of the above features was insufficient. Therefore, the staff asked the applicant in RAIs 2.5.1-1 through 2.5.1-6 to provide additional information to substantiate its claims for categorizing these features as noncapable. The following sections describe the applicant's responses to RAIs 2.5.1-1 through 2.5.1-6 and the staff's evaluation of these responses.

Central Virginia Seismic Zone

Concerning the Quaternary tectonic features within the ESP site region, the applicant concluded that only the CVSZ shows geologic evidence that demonstrates the existence of a Quaternary fault of tectonic origin. The ESP site is located near the northern boundary of the CVSZ (see SER Figures 2.5.1-3 and 2.5.1-4). The CVSZ is an area defined by moderate to low historical seismic activity, as well as paleoseismicity, since Obermeier and McNulty recently identified two paleoliquefaction features within the CVSZ (Ref. 71, SSAR Section 2.5). In its response to RAI 2.5.1-1, the applicant stated that it interpreted the liquefaction features identified by Obermeier and McNulty to represent at least one, and possibly two, moderate magnitude earthquakes in the CVSZ in the middle to late Holocene epoch. However, because of the absence of liquefaction features in otherwise susceptible middle to late Holocene deposits elsewhere in the study area, Obermeier interprets these liquefaction features as the result of localized, moderately sized (magnitude approximately 5.5 to 6.5) earthquakes. The applicant stated that larger earthquakes with a magnitude of approximately 7 would have produced a more widespread liquefaction field with more numerous, larger liquefaction features. As a basis for its conclusion, the applicant stated that Dr. Obermeier canvassed

thousands of meters of exposure of liquefiable deposits in his search area, and the absence of liquefaction in these deposits and the restricted nature of the observed liquefaction features indicate that a magnitude 7 earthquake has not occurred in the Holocene and that abundant magnitude 6 to 7 earthquakes have not occurred in the Holocene within the CVSZ.

Concerning the implications of possibly two moderate-sized (magnitude 5.5 to 6.5) earthquakes occurring in the CVSZ during the middle to late Holocene epoch (past 5,000 to 10,000 years), the applicant stated that the occurrence of these earthquakes is consistent with the EPRI seismic source recurrence estimates for the CVSZ. The average recurrence interval for earthquakes with a magnitude greater than 6 within the CVSZ in the EPRI source model is 7055 years. For somewhat smaller events (magnitude greater than 5.5), the EPRI source model estimates about six events over a period of 10,000 years.

Because of the absence of widespread liquefaction features in susceptible Holocene soil deposits surveyed by geologists, the staff concurs with the applicant's conclusion that the few liquefaction features within the CVSZ are most likely caused by a few local moderate-magnitude earthquakes. The staff concludes that the applicant accurately characterized the impact of the paleoliquefaction features on the overall seismic characterization of the CVSZ. In addition, the staff concurs with the applicant's conclusion that the occurrence of these earthquakes is consistent with the EPRI seismic source recurrence estimates for the CVSZ. Section 2.5.1.1.1 of this SER summarizes the applicant's revisions to SSAR Section 2.5.1 as a result of RAI 2.5.1-1.

East Coast Fault System

The applicant cited another potential Quaternary tectonic feature known as the ECFS. The ECFS-N is located approximately 70 miles southeast of the ESP site. Figure 2.5.1-6, reproduced from the applicant's response to RAI 2.5.1-2, shows the postulated ECFS-S, ECFS-C, and ECFS-N. The applicant concluded, in SSAR Section 2.5.1.1.4, that the ECFS-N "probably does not exist or has a very low probability of activity if it does exist." The applicant based its conclusion, in part, on an aerial reconnaissance of the ECFS-N. In its response to RAI 2.5.1-2, the applicant stated that it primarily relied on a review of the evidence presented by Marple and Talwani (Ref. 74, SSAR Section 2.5) to conclude that the ECFS-N probably does not exist or, if it does exist, it has a very low probability of being active during the late Cenozoic Era. Specifically, the applicant stated that, "In our view, Marple and Talwani did not perform a very detailed or rigorous geomorphic analysis to conclude that an active fault is present beneath the coastal plain of North Carolina and Virginia." The applicant stated that its aerial reconnaissance of the ECFS-N played an important, but less significant, role in developing this conclusion.

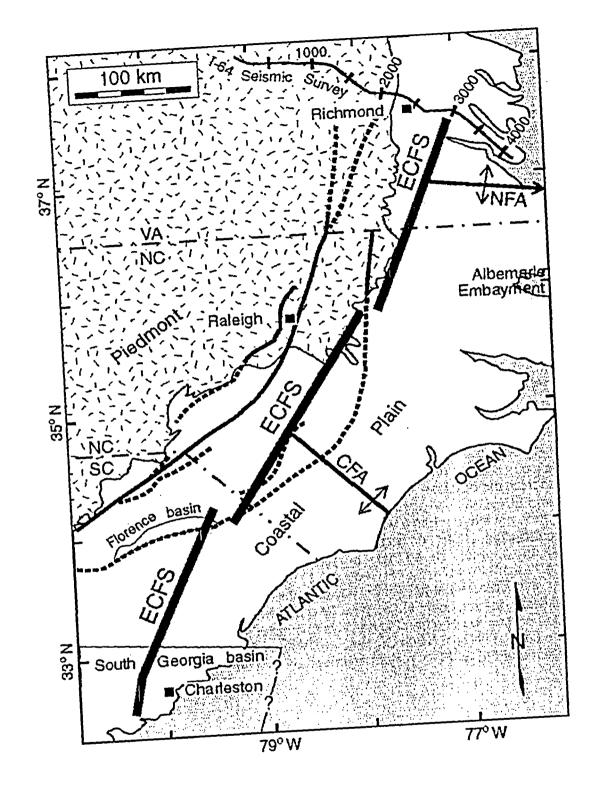


Figure 2.5.1-6 Map showing general area of coverage of Obermeier and McNulty (1998) liquefaction study relative to interpretations of the Central Virginia Seismic Zone.

To support its conclusion regarding the ECFS-N, the applicant evaluated the (1) geological data, (2) geophysical and seismological data, and (3) geomorphic data used by Marple and Talwani to infer the presence of the ECFS-N. The applicant stated that the only geologic data that Marple and Talwani cite in support of the ECFS-N is the coincidence of the ECFS-N with the westward termination of the Norfolk arch axis, which is shown above in Figure 2.5.1-6. In their paper, Marple and Talwani note that their depiction of the Norfolk arch axis is modified from a small-scale map in Pazzaglia (Ref. 6, RAI 2.5.1-2 in RAI Letter No. 3), which shows the Norfolk arch axis terminating westward against the Fall Line. The Fall Line is the boundary between the Coastal Plain and Piedmont physiographic provinces and is a narrow zone of small waterfalls and rapids that occurs at the point where the major rivers pass from the resistant granites and other ancient rocks of the Piedmont to the more easily eroded sands, clays, and shales of the Coastal Plain. Low hills rise to elevations of about 300 ft along the Fall Line. Regarding this modification by Marple and Talwani, the applicant stated the following:

Specifically, Marple and Talwani (2000) have modified Pazzaglia's map by showing the Norfolk arch axis as terminating about 25 km east of the Fall Zone, on trend with their inferred location of the ZRA-N [ECFS-N]. Marple and Talwani (2000) provide no additional references, interpretations or original data to justify their changes to Pazzaglia's map of the Norfolk arch axis. Thus, it is not possible to determine if their modification of the Norfolk arch axis is based on independent data, or simply a re-interpretation of the Norfolk arch location that is compatible with their model of the ZRA-N [ECFS-N]. We conclude that the location of the Norfolk arch axis, as presented in Marple and Talwani (2000), does not provide independent geologic evidence in support of the ZRA-N [ECFS-N]. Therefore, there is no known geologic evidence to support the existence of the ZRA-N [ECFS-N].

The geophysical or seismological data presented by Marple and Talwani in support of the ECFS-N is an east-west trending seismic reflection profile along Interstate 64 (I-64) through Central Virginia. This geophysical inference of the ECFS-N is based on the Marple and Talwani characterization of the seismic reflection data presented in a publication by Pratt et al. (Ref. 7, RAI 2.5.1-2 in RAI Letter No. 3). However, the applicant pointed out that Pratt and others do not interpret a steeply dipping crustal shear zone in the vicinity of the ECFS-N. The only crustal-scale structure in this region interpreted by Pratt and others is an east-dipping shear zone that underlies the Goochland terrain about 30 km beneath the inferred location of the ECFS-N. As such, the applicant concluded that the I-64 seismic reflection profile does not support the interpretation by Marple and Talwani.

The geomorphic data that Marple and Talwani use to postulate the existence of the ECFS-N are inferred river anomalies. Specifically, Marple and Talwani use their interpretation of geomorphic anomalies along streams that cross the inferred location of the ECFS-N to postulate its existence. These anomalies include channel incision, upward-displaced fluvial surfaces, cross-valley change, sinuosity change, anastomosing stream pattern, and stream deflections. The applicant stated that of these six categories of river anomalies, only "upward-displaced fluvial surfaces" require a tectonic interpretation. The other five anomalies are examples of channel pattern change that can be and typically are produced by non-tectonic processes. The applicant examined each of these river anomaly categories with reference to the ECFS-N to weigh the evidence for its existence and concluded the following:

Based on our independent assessment of "river anomalies" on the ZRA-N [ECFS-N], we find (1) no evidence for the existence of a fault and (2) direct stratigraphic evidence against the types of deformation postulated by Marple and Talwani (2000). In some cases, we could not verify or duplicate geomorphic observations, such as channel incision, cited by Marple and Talwani (2000). The "upward displaced fluvial surfaces" cited in their paper are inferred only from qualitative analysis of convexities of river profiles and, therefore, this type of "anomaly" does not provide evidence for tectonic uplift and is inconsistent with other geomorphic observations. And finally, we documented direct stratigraphic evidence for no Quaternary deformation in the vicinity of a large meander of the Nottoway River that Marple and Talwani (2000) interpreted to have formed in response to systematic folding and northeastward tilting. We conclude that the fluvial geomorphic features cited by Marple and Talwani (2000) are likely produced by non-tectonic fluvial processes, are not anomalous, and, thus do not support their interpretation of the presence and activity of the ZRA-N (northern segment of the ECFS).

To evaluate the applicant's response to RAI 2.5.1-2, the staff reviewed the evidence presented by Marple and Talwani as well as the applicant's analyses of the evidence to support the existence of the ECFS-N. The staff finds that the geologic, seismologic, and geomorphic evidence presented by Marple and Talwani to support the existence of the ECFS-N is questionable. The staff concurs with the applicant's conclusion that the majority of the geologic data cited by Marple and Talwani in support of their postulated ECFS apply only to the central and southern segments. There are no Cenozoic faults or structure contour maps indicating uplift along the ECFS-N. Accordingly, the staff finds that evidence for the existence and recent activity of the northern segment of the ECFS is low; however, the staff believes that the ECFS-N should be included as a possible contributor to the seismic hazard for the ESP site. The applicant gave the ECFS-N a 10 percent probability of existence as part of its modeling of the seismic sources to determine the SSE. The staff believes, based on its review of the evidence, that a 10 percent probability of existence is an acceptable value. In summary, the staff concludes that the applicant has adequately investigated the possibility of the existence of an ECFS-N. Section 2.5.1.1.1 of this SER summarizes the applicant's revisions to SSAR Section 2.5.1 resulting from RAI 2.5.1-2.

Local Faults

Other potential Quaternary tectonic features characterized by the applicant include the Hylas shear zone, Mountain Run fault zone, and Lake of the Woods thrust fault. The Hylas shear zone, Mountain Run fault zone, and Lake of the Woods thrust fault are prominent structural features between 5 and 25 miles from the ESP site (see SER Figure 2.5.1-2). The applicant concluded that these Paleozoic faults have not been reactivated and are therefore not capable tectonic sources. In RAI 2.5.1-4, the staff asked the applicant to explain its conclusions regarding the Hylas shear zone and Lake of the Woods thrust fault. In its response to RAI 2.5.1-4, the applicant stated that these faults show no concentration or alignment of historic seismicity, geomorphic expression, or Quaternary deformation. The applicant further stated that, based on its review of the literature, these faults are Paleozoic structures with mylonitic shear textures. This implies that the faults formed at deep crustal levels and that their current surface exposure is the result of exhumation. Based on geologic evidence of Quaternary faulting or deformation, Crone and Wheeler (Ref. 59, SSAR Section 2.5) categorize the

Mountain Run fault zone as only Class C. Crone and Wheeler's comprehensive database of Quaternary features does not mention the Hylas shear zone and Lake of the Woods thrust fault. Based on the lack of historical seismicity, geomorphic evidence, and Quaternary deformation along the Lake of the Woods thrust fault and Hylas shear zone, the staff concurs with the applicant's conclusion that these two faults are Paleozoic faults that have not been reactivated during the Quaternary Period. Section 2.5.1.1.1 of this SER summarizes the applicant's revisions to SSAR Section 2.5.1 resulting from RAI 2.5.1-4.

In RAI 2.5.1-5, the staff asked the applicant to describe the physiographic features associated with the Mountain Run and Kelly's Ford scarps along the Mountain Run fault zone which led the applicant to conclude that the scarps resulted from fluvial erosion and not tectonic deformation. In its response, the applicant stated that it performed reconnaissance-level field and aerial evaluations of the Mountain Run fault zone. To evaluate the potential for Quaternary activity of the Mountain Run fault zone, the applicant examined several geologic profiles across the Mountain Run fault zone, including both the Mountain Run and Kelly's Ford scarps. Based on its examination across these geologic profiles, the applicant concluded the following:

- No consistent expression of a scarp is present along the Mountain Run fault in the
 vicinity of the Rappahannock River. The northwest-facing Kelly's Ford scarp is similar to
 a northwest-facing scarp along the southeastern valley margin of Mountain Run; both
 scarps were formed by streams that preferentially undercut the southeastern valley
 walls, creating asymmetric valley profiles.
- No northwest-facing scarp is associated with the Mountain Run fault zone between the Rappahannock and Rapidan rivers. Undeformed late Neogene (2–5 Ma) colluvial deposits bury the Mountain Run fault zone in this region, demonstrating the absence of Quaternary (2 Ma-present) fault activity.
- The northwest-facing Mountain Run scarp southwest of the Rapidan River alternates with a southeast-facing scarp on the opposite side of the Mountain Run valley; both sets of scarps have formed by the stream impinging on the edge of the valley.

Based on the evidence cited in the applicant's response, the staff concludes that the scarps along the Mountain Run fault zone are most likely products of fluvial erosion and not Cenozoic fault activity. In particular, the Mountain Run fault zone is overlain by undeformed late Neogene colluvial deposits and thus has not experienced Quaternary surface fault rupture. Section 2.5.1.1.1 of this SER summarizes the applicant's revisions to SSAR Section 2.5.1 resulting from RAI 2.5.1-5.

The applicant also identified the seven fall lines across the Piedmont and Blue Ridge provinces of North Carolina as another potential Quaternary tectonic feature. Weems identified these seven fall lines (Ref. 70, SSAR Section 2.5), which are based on the alignment of short stream segments with anomalously steep gradients. Because other studies of potential tectonic features in the CEUS do not include the seven fall lines identified by Weems, the applicant concluded that they do not represent a capable tectonic source. In its response to RAI 2.5.1-3, the applicant stated that Weems does not present direct credible evidence for a tectonic origin of the fall lines. The applicant stated that the fall lines described by Weems are not defined by formal, consistently applied criteria, and thus are not as well defined and laterally continuous as depicted. In particular, Weems selectively correlated different features to form a laterally

continuous fall line, while in other cases similar features are not correlated. The applicant also stated that, based on its evaluation of the stratigraphic, structural, and geomorphic relations across and adjacent to the fall zones, differential erosion resulting from variable bedrock hardness is a more plausible explanation than Quaternary tectonism. As part of its response to RAI 2.5.1-3, the applicant presented a detailed analysis of geologic and geomorphic data to support its conclusion that the fall lines are not tectonic features. This analysis shows that Weems postulated three hypotheses for the origins of the fall lines in the Blue Ridge and Piedmont provinces:

- (1) variable erosion across linear belts of rocks of varying hardness
- (2) late Cenozoic climatic and sea level fluctuations, producing "waves" of headwaterretreating nick points that are expressed as fall zones and fall lines
- (3) localized neotectonic uplift along fall lines

Weems rejected the first two hypotheses, stating that control of fall lines by rock hardness "is true only locally and occurs as a consequence of uplift." He also stated that climatic control does not adequately explain the observed patterns of fall lines. Weems concluded that tectonic uplift "is the dominant cause of the existing Piedmont fall lines" because neither differential rock erosion, nor regional creation of nick points by climate-driven changes in fluvial patterns, could "adequately explain the observed patterns." The applicant concluded that Weems adopted a tectonic interpretation primarily because the alternative interpretations were less compelling, and not because of direct evidence supporting a tectonic origin. The applicant also found that it was unable to reproduce Weems' delineation of individual fall zones or his correlations of fall zones as laterally continuous fall lines. In summary, the applicant found that Weems' model for the lateral continuity of fall lines for hundreds of miles along trend in the Blue Ridge and Piedmont provinces is based on subjective assessments of some steep stream reaches as anomalous fall zones.

To further assess the claims made by Weems, the applicant conducted geomorphic analyses of the Tidewater and Central Piedmont fall lines because these two features lie within the North Anna site vicinity. Concerning the Tidewater fall line, the applicant found that a profile of Pliocene marine sand shows no deformation across the Tidewater fall line at the Rappahannock River. The applicant also found that a very strong correlation exists between variations in rock type and gradient changes in the South Anna River profile that strongly suggests that the Tidewater fall line formed as a result of variable erosion across rocks of varying hardness. Concerning the Central Piedmont fall line, the applicant found that the increased gradients along the Rapidan and Rappahannock Rivers as they exit the Culpeper Basin are associated with Jurassic igneous rocks and Paleozoic metamorphic rocks, not Triassic basin sediments as stated by Weems. The applicant stated that the observed gradient as the streams leave the basin is explained by differential erosion of bedrock without invoking tectonic deformation along the Central Piedmont fall line.

Based on the evidence cited by the applicant in response to this RAI, in particular the applicant's evaluation of the stratigraphy and structural relations associated with the fall zones, the staff concludes that the applicant has accurately characterized the seven fall lines as nontectonic features. The staff concurs with the applicant's interpretation that differential erosion resulting from variable bedrock hardness is a more plausible explanation than

Quaternary tectonism for the fall lines. The staff notes that evidence for the existence of the seven fall lines as a Quaternary tectonic feature is based solely on the work of Weems and that other geologists have not made this inference. Section 2.5.1.1.1 of this SER summarizes the applicant's revisions to SSAR Section 2.5.1 resulting from RAI 2.5.1-3.

The Stafford fault system approaches to within 16.5 miles of the ESP site to the northeast. In SSAR Section 2.5.1.1.4, the applicant concluded that there is no Quaternary activity along the fault system. In RAI 2.5.1-6, the staff asked the applicant to elaborate on the field observations and aerial reconnaissance that support this conclusion. In its response, the applicant stated that it based its conclusion that the Stafford fault system is not a capable tectonic source on a review of existing literature, discussions with researchers familiar with the area, aerial and field reconnaissance, and geomorphic analyses. The applicant examined the topographic profiles of several terraces that cross the Stafford fault system and found only minor, nontectonic relief on some of the terrace surfaces. In addition, the applicant did not find any scarps or anomalous breaks in the topography on the terrace surfaces associated with the mapped fault traces. Based on the evidence cited by the applicant, in particular the applicant's examination of the topography of the profiles that cross the fault system, the staff concludes that the applicant accurately characterized the Stafford fault system as being inactive during the Quaternary Period.

Based on its review of SSAR Section 2.5.1.1.4 and the applicant's responses to the RAIs, cited above, the staff concludes that the applicant identified and properly characterized all regional tectonic features. The staff concludes that SSAR Section 2.5.1.1.4 provides an accurate and thorough description of the regional tectonics, with an emphasis on potential Quaternary activity, as required by 10 CFR 52.17 and 10 CFR 100.23.

To support its geologic interpretations of the region surrounding the ESP site, the applicant in SSAR Section 2.5.1.1.5 reviewed the regional maps of gravity and magnetic anomalies published by GSA in 1987. The applicant used the regional gravity map to identify the Piedmont gravity gradient and interpreted this feature as an eastward thinning of the North American crust and lithosphere. The applicant interpreted the regional magnetic anomalies as upper crustal variations in magnetic susceptibility, such as mafic and ultramafic rocks, and used the magnetic data as supporting evidence for its interpretation of its seismic reflection data. The staff concludes that the regional gravity and magnetic data support the applicant's overall conclusions concerning the regional geologic and tectonic features.

2.5.1.3.2 Site Geology

The staff focused its review of SSAR Section 2.5.1.2 on the applicant's description of the site-related geologic features, seismic conditions, and conditions caused by human activities. Based on its review of SSAR Sections 2.5.1.2.1 and 2.5.1.2.2, described below, the staff concludes that the applicant has provided a thorough and accurate description of these geologic features and characteristics in support of the ESP application. In SSAR Section 2.5.1.2.1, the applicant described the local topography as gently undulating, varying in elevation from about 200 to 500 ft with the site grade for the existing units at about 271 ft. In SSAR Section 2.5.1.2.2, the applicant described the compressional orogenies and extensional episode that produced the folding and faulting in the region surrounding the site. The applicant also described the local erosion and weathering that produced the residual soils that cover the ESP site. The staff concludes that these two SSAR sections, which describe readily observable

local geologic features, contain an accurate and thorough description of the local site geology as required by 10 CFR 52.17 and 10 CFR 100.23.

In SSAR Section 2.5.1.2.3 the applicant described the soil and rock layering beneath the ESP site. The applicant based its description of the site stratigraphy on several borings performed for the existing NAPS Units 1 and 2 and the abandoned NAPS Units 3 and 4, and as part of the ESP application subsurface program. The applicant stated in SSAR Section 2.5.1.2.3 that the borings drilled as part of the ESP application subsurface program reveal "severely weathered. fractured and jointed intervals in Zone III-IV and Zone IV rock," and that these fracture zones range in thickness from about 0.5 to 1 foot thick. The applicant encountered these fracture zones in four of the seven new borings performed as part of the ESP subsurface program. In RAI 2.5.4-2, the staff asked the applicant to describe the impact of the fracture zones on the suitability of the site to host safety-related structures. In response to RAI 2.5.4-2, the applicant stated that it would excavate and replace with lean concrete any weathered or fractured zones encountered at the foundation level. In addition, the applicant stated that it would perform multiple borings once the building locations are chosen. These borings will identify whether there are any fracture zones beneath the foundation thicker than those encountered in the ESP borings. The staff concludes that the applicant's proposal to excavate and replace weathered or fractured zones with lean concrete is an adequate method to ensure the stability of the foundation. The replacement of fractured rock with lean concrete is well understood and commonly done to enhance the strength and stability of the rock to support building loads. Accordingly, the NRC staff proposes to include a condition in any ESP that might be issued requiring that the ESP holder and/or an applicant referencing such an ESP replace weathered or fractured rock at the foundation level with lean concrete before initiation of foundation construction. This is Permit Condition 5. In addition, the applicant's proposal to perform additional borings, once it has selected building locations, is necessary to ensure that any significant weathered or fractured zones are identified. The need for additional borings to identify any weathered or fractured rock beneath the new foundations is COL Action Item 2.5-1. Section 2.5.4 of this SER provides further discussion of the above permit condition and action item as well as the engineering properties of the soil and rock beneath the ESP site.

Based on its review of SSAR Section 2.5.1.2.3 and the applicant's response to the staff's RAIs, cited above, the staff concludes that the applicant adequately described the site area stratigraphy. The staff concludes that SSAR Section 2.5.1.2.3 provides an accurate and thorough description of the site area stratigraphy, with an emphasis on the uppermost layers of rock and residual soil, as required by 10 CFR 52.17 and 10 CFR 100.23. Section 2.5.4 of this SER provides the staff's complete evaluation of the applicant's description of the ESP site subsurface materials and engineering properties.

SSAR Section 2.5.1.2.4 describes the local faults and folds within the metamorphic bedrock underlying and surrounding the site. The applicant identified seven bedrock faults within a 5-mile radius of the ESP site and concluded, based on site area investigations and a review of the published literature, that none of the faults are capable tectonic sources, as defined in RG 1.165. The NAPS licensee thoroughly investigated one of the faults, unnamed fault "a," which traverses the ESP site, following its exposure within the excavations for the abandoned Units 3 and 4. The staff concluded in its 1974 SER for the abandoned Units 3 and 4 that the "North Anna fault zone is neither genetically nor structurally related to any known capable fault," and concurred with Virginia Power's conclusion that fault "a" is not a capable tectonic source.

Subsequent to Virginia Power's investigation, a local geologist mapped fault "a" over a total distance of about 7 miles, which is considerably longer than the original length of about 3000 ft mapped by Virginia Power. In RAI 2.5.3-2, the staff asked the applicant to evaluate the evidence for the continuation of fault "a" beyond the ESP site. In its response, the applicant stated that the local geologist, Li Pavlides, is deceased and did not document an explanation or basis for his mapping of fault "a" beyond the ESP site. The applicant performed aerial reconnaissance, field reconnaissance, and an air photo interpretation of fault "a" and, based on these studies, concluded that no stratigraphic, structural, or geomorphic evidence would support the existence of fault "a" beyond the EPS site. Based on the evidence presented by the applicant, in particular the evidence cited as a result of the field reconnaissance described below, the staff concludes that the applicant has adequately investigated the possible extension of fault "a" beyond the ESP site. During its field reconnaissance, the applicant found no scarps or lineaments along the trace of fault "a" as mapped by Pavlides. The staff notes that the NAPS licensee's trenching of the fault shows that fault "a" is most likely a minor fault or bedrock shear within the Ta River metamorphic suite and that it is very unlikely that such a minor fault could be recognized or mapped over a significant distance without a significant number of exposures. Section 2.5.3 of this SER provides further discussion of fault "a" and RAI 2.5.3-2.

Based on its review of SSAR Section 2.5.1.2.4 and the applicant's response to RAI 2.5.3-2, cited above, the staff concludes that the applicant adequately described the site area structural geology. The staff concludes that SSAR Section 2.5.1.2.4 provides an accurate and thorough description of the site area structural geology, with an emphasis on the structural features within a 5-mile radius of the ESP site, as required by 10 CFR 52.17 and 10 CFR 100.23. Section 2.5.3 of this SER provides the staff's complete evaluation of the applicant's description of the local bedrock faults near the ESP site and their potential for tectonic deformation and producing vibratory ground motion.

SSAR Section 2.5.1.2.5 states that the only geologic hazards associated with the ESP site are (1) vibratory ground motion from regional earthquake activity and (2) potential surface faulting from site area earthquakes. SSAR Sections 2.5.2 and 2.5.3, respectively, discuss these two potential geologic hazards. The corresponding sections of this SER provide the staff's review of these potential hazards. In SSAR Table 1.9-1, the applicant identified the item, "Capable Tectonic Structures or Sources," as an ESP site characteristic and design parameter. This item specifies that there is no fault displacement potential within the investigative area. The staff reviewed the applicant's description of the site area geologic hazards provided in SSAR Section 2.5.1.2.5 and concludes that the ESP site has no fault displacement potential. Section 2.5.3 of this SER provides the staff's evaluation of the fault displacement potential for the ESP site. The staff concludes that SSAR Section 2.5.1.2.5 does not address two other potential site area geologic hazards, namely slope instability and liquefaction, also arising from local or regional earthquakes. However, the applicant addressed these two topics in detail in SSAR Sections 2.5.4 and 2.5.5.

SSAR Section 2.5.1.2.6 describes the engineering behavior of soil and rock at the ESP site. In addition, SSAR Section 2.5.1.2.6 addresses prior earthquake effects, effects of human activities (mineral extraction and ground water withdrawal), construction ground water control, and unforseen geologic features. In its description of the soil engineering behavior, the applicant stated that the high compressibilities and low maximum densities of the saprolite preclude its use as engineered fill at the ESP site. Because of the relatively high initial settlement of the NAPS pumphouse structure, constructed on about 65 ft of saprolite fill, the

staff agrees with this conclusion. Accordingly, the staff is proposing **Permit Condition 6**, which would prohibit the ESP holder and/or an applicant referencing such an ESP from using an engineered fill with high compressibility and low maximum density, such as saprolite.

Based on its review of SSAR Section 2.5.1.2.6, the staff concludes that the applicant has adequately described the site soil and rock characteristics. In particular, the applicant thoroughly described zones of weathering and structural weakness within the soils and bedrock, soil and rock types that could be unstable because of their physical properties, and the effects of human activities (e.g., mining extraction and ground water withdrawal) at the site. The staff concludes that SSAR Section 2.5.1.2.6 provides an accurate and thorough description of the local site conditions, as required by 10 CFR 100.23. In addition, because of limited ground water withdrawal and the distance of any mining activity from the site, the staff concludes there is no potential for the effects, such as subsidence or collapse, of human activity that could compromise the safety of the site.

SSAR Section 2.5.1.2.7 describes the ground water at the ESP site in terms of flow direction and hydraulic conductivity. SSAR Section 2.4.12 provides a detailed discussion of the site ground water conditions; Section 2.4.12 of this SER discusses the staff's evaluation of SSAR Section 2.4.12.

2.5.1.4 Conclusions

As set forth above, the staff reviewed the geologic and seismologic information submitted by the applicant in SSAR Section 2.5.1. On the basis of its review, as described above, the staff finds that the applicant provided a thorough characterization of the geologic and seismologic characteristics of the site, as required by 10 CFR 100.23. These results provide an adequate basis to conclude that no capable tectonic faults exist in the plant site area (5 mi) that have the potential to cause near-surface displacement. The staff concurs with the applicant's classification of the CVSZ as a capable seismogenic source zone rather than a tectonic source zone, since no capable tectonic sources have been identified within the CVSZ. In addition, the staff concludes, as described above, that the applicant has identified and appropriately characterized all the seismic sources significant to determining the SSE for the ESP site, in accordance with RG 1.165 and NUREG-0800, Section 2.5.1. Based on the applicant's geological, geophysical, and geotechnical investigations of the site vicinity and site area, the staff concludes that the applicant has properly characterized the site lithology, stratigraphy, geological history, structural geology, and the characteristics of subsurface soils and rocks. The staff also concludes that there is no potential for the effects of human activity (i.e., ground water withdrawal or mining activity) to compromise the safety of the site.

2.5.2 Vibratory Ground Motion

SSAR Section 2.5.2 describes the applicant's determination of the ground motions at the ESP site from possible earthquakes in the site area and region. SSAR Sections 2.5.2.1 through 2.5.2.4 describe the seismic source and ground motion models used by the applicant. SSAR

Section 2.5.2.5 summarizes the seismic wave transmission characteristics of the ESP site. Finally, SSAR Section 2.5.2.6 describes the development of the SSE ground motion for the ESP site.

The applicant stated that the information provided in SSAR Section 2.5.2 complies with NUREG-0800 and uses the procedures recommended in RG 1.165. In addition, the applicant based its seismic ground motion calculations on the EPRI seismic source model for the CEUS. According to RG 1.165, applicants may use the seismic source interpretations developed by LLNL in 1993 or those developed by EPRI as inputs for a site-specific analysis. RG 1.165 also recommends a review and update, if necessary, of both the seismic source and ground motion models used to develop the SSE ground motion for a given site.

2.5.2.1 Technical Information in the Application

2.5.2.1.1 Seismicity

SSAR Section 2.5.2.1 describes both the review and update of the earthquake catalog used to define the seismic sources for the ESP site. The applicant used the original EPRI seismicity catalog, which is complete only through 1984. Therefore, in addition to reevaluating the EPRI catalog, the applicant added seismicity data for the time period from 1985 through 2001 (see SER Figure 2.5.1-4).

The seismicity catalog used for the original EPRI study compiled the data from the seismic networks in the CEUS. Therefore, to develop the EPRI catalog, it was necessary to remove duplicate earthquakes, ensure a consistent magnitude scale (mb), remove data from events other than earthquakes (e.g., mine blasts and sonic booms), and perform a final check to ensure that the catalog includes significant historic events. To update the 1984 EPRI seismicity catalog, the applicant focused on sources of seismic data in the region surrounding the ESP site. The applicant stated that the most complete regional catalog for recent earthquakes is published by the Virginia Polytechnic Institute and State University (VT) and maintained by Martin Chapman of VT. The VT seismic catalog is complete through 2001 for Virginia. Maryland, Delaware (south of latitude 40° N), West Virginia (south of latitude 40° N), North Carolina, South Carolina, Georgia, Florida, Alabama, Tennessee (east of longitude 88° W), and Kentucky (east of longitude 88° W). However, the VT seismic network and database do not completely cover the region surrounding the ESP site. To supplement the VT catalog, the applicant used the seismic catalog from the Advanced National Seismic System (ANSS) for latitudes of 39.7° N and higher. The updating of seismicity in the ESP site region bounded by latitude 35° to 41° N and longitude 74° to 82° W resulted in the identification of 30 additional earthquakes (24 from the VT catalog and 6 from the ANSS catalog).

2.5.2.1.2 Geologic Structures and EPRI Seismic Source Model for the Site Region

SSAR Section 2.5.2.2 describes the seismic source interpretations from the 1989 EPRI study and the evaluation of new information on seismic sources since the EPRI study. In general, the

applicant found that the 1989 EPRI seismic source models did not need to be updated for the ESP site seismic source characterization.

Six independent earth science teams (ESTs) developed the characterization of CEUS seismic sources in the EPRI project. These ESTs evaluated geological, geophysical, and seismological data to model the occurrence of future earthquakes and analyze earthquake hazards at nuclear power plant sites in the CEUS. The six ESTs involved in the EPRI project included (1) the Bechtel Group, (2) Dames and Moore, (3) Law Engineering, (4) Roundout Associates, (5) Weston Geophysical Corporation, and (6) Woodward-Clyde Consultants. EPRI implemented the results of the seismic source characterizations from each of the ESTs in a PSHA for nuclear power plant sites in the CEUS. SSAR Tables 2.5-5 through 2.5-10 summarize the seismic source information developed by each of the ESTs for sources in the region surrounding the ESP site. This information includes the M_{max}, closest distance to the ESP site, probability of activity, and an indication as to whether new information regarding the seismic source has been identified since the original EPRI seismic hazard analyses. The application does not present earthquake recurrence values for each of the seismic sources because the recurrence values were computed for each 1-degree latitude and longitude cell that intersects any portion of a seismic source and, as such, many larger source zones have multiple recurrence values.

In RAI 2.5.2-4(a), the staff asked the applicant to provide additional seismicity parameters, beyond those shown in SSAR Tables 2.5-5 through 2.5-11, for the seismic source zones surrounding the ESP site. In response to RAI 2.5.2-4(a), the applicant provided the seismic source recurrence values used for the EPRI study for the 1-degree latitude and longitude cell encompassing the ESP site region. SER Section 2.5.2.3.2 provides a complete description of the applicant's response to RAI 2.5.2-4(a) and the staff's review of the applicant's response.

The applicant stated the following concerning the seismic source characterizations of the original EPRI study:

Except for the three specific cases described earlier [below], no new seismological, geological, or geophysical information in the literature published since the publication of the 1986 EPRI source model (Reference 120) suggests that these sources should be modified. The three cases where new information requires modification of the EPRI source characterizations is the addition of the northern segment of the [East Coast Fault System] ECFS (ECFS-N) as a new potential seismic source, the new recurrence and geometry parameters for the existing Charleston source (modeled after the southern segment of the [East Coast Fault System] ECFS (ECFS-S), and the new recurrence parameters for the New Madrid source.

SSAR Sections 2.5.2.2.2 through 2.5.2.2.7 briefly describe the seismic source characterizations made by the six ESTs for each of the sources surrounding the ESP site. Since the largest contributor to the seismic hazard at the ESP site is the CVSZ, the applicant described its source characterization by the six ESTs in SSAR Section 2.5.2.2.8. The six ESTs characterize the largest M_{max} earthquake for the CVSZ as m_b 6.6 to 7.2, with each magnitude value accompanied by a weight. For example, the Dames and Moore EST assigned the M_{max} values for the CVSZ as m_b 6.6 and 7.2, with a corresponding weight for these two magnitudes of 0.8 and 0.2, respectively. The applicant stated that, since the EPRI study, two paleoliquefaction

features have been found within the CVSZ, and that these new observations are "consistent with the M_{max} values and recurrence parameters assigned by the EPRI teams." Furthermore, in SSAR Section 2.5.2.2.8, the applicant concluded the following:

The lack of widespread liquefaction features in the 300 km of stream exposures searched within the CVSZ, despite the presence of mid-to-late-Halocene potentially liquefiable deposits, has led some researchers (Reference 71) to conclude that it is unlikely that any earthquakes have occurred in the area investigated in excess of M~7 during the Holocene.

In RAI 2.5.2-7, the staff asked the applicant to describe how the modern and historical seismicity of the CVSZ is distributed within either a specific source zone or a background source zone. In its response, the applicant described the source model used by each of the six EPRI teams to characterize the CVSZ. SER Section 2.5.2.3.2 provides a complete description of the applicant's response to RAI 2.5.2-7 and the staff's review of the applicant's response.

In RAI 2.5.2-4(b), the staff asked the applicant to justify its decision not to update the M_{max} assigned to the CVSZ for the 1989 EPRI seismic source models, considering the 1994 EPRI study, "Seismotectonic Interpretation and Conclusion from the Stable Continental Region Database." In its response, the applicant stated that EPRI initiated the 1994 study in the mid-1980s specifically for use by the EPRI teams in their development of the 1989 EPRI seismic source models. EPRI provided the preliminary results of the 1994 study to each of the EPRI teams for their use in assigning M_{max} values in stable continental regions (SCRs), such as the ESP site region. As such, the EPRI teams used the estimates of M_{max} and source zone geometry drawn from the preliminary results of the 1994 EPRI study for their 1989 seismic source models. SER Section 2.5.2.3.2 provides a complete description of the applicant's response to RAI 2.5.2-4(b) and the staff's review of the applicant's response.

SSAR Section 2.5.2.2.9 describes the post-EPRI PSHA studies within the North Anna site region for comparison with the PSHA completed as part of the ESP application. Since the EPRI seismic hazard project, researchers have completed three PSHA studies that overlap or include the seismic sources within the North Anna site region. These three studies include the following:

- Savannah River nuclear site (Ref. 125, SSAR Section 2.5)
- seismic hazard of Virginia (Ref. 126, SSAR Section 2.5)
- USGS National Seismic Hazard Mapping Project (Ref. 127, SSAR Section 2.5)

The PSHA performed for the Savannah River nuclear site in South Carolina specifies sources, recurrence rates, focal depths, and M_{max} values for earthquake sources in the southeastern United States. As part of the Savannah River PSHA, Bollinger (Ref. 125, SSAR Section 2.5) identified three seismic sources that fall within the North Anna site region. These sources include the CVSZ, the Giles County seismic zone, and a complementary background zone. For the CVSZ, the Savannah River PSHA assigns an M_{max} of m_b 6.4, which is comparable to the range of M_{max} values given for the CVSZ by the EPRI teams. For the Giles County seismic zone and complementary background zone, the Savannah River PSHA assigns maximum values of 6.3 and 5.7, respectively. These M_{max} values are also similar to those used by the EPRI teams for these two source zones.

The applicant stated that researchers at VT (Ref. 126, SSAR Section 2.5) performed a seismic hazard assessment of Virginia in 1994 on a county-by-county basis. The study defined a total of 10 seismic sources based primarily on patterns of seismicity, with 7 of the 10 sources located within the region surrounding the North Anna site. For each source zone, the authors of the study assumed an M_{max} of m_b 7.25. This M_{max} is based on the assumption that an earthquake similar to the one that occurred in 1868 in Charleston, South Carolina (m_b 6.8 to 7.5), could occur in any of the sources within the North Anna site region. The applicant stated that this M_{max} is consistent with the range of M_{max} values that the EPRI teams assigned to the CVSZ and Giles County seismic zones.

The third PSHA performed after the EPRI 1989 study was the 2002 USGS National Seismic Hazard Mapping Project. The 2002 USGS national seismic hazard maps are the updated 1996 USGS seismic hazard maps that incorporate changes in the recurrence and geometry of the Charleston, South Carolina, seismic source, as well as the recurrence and M_{max} assigned to the New Madrid seismic source zone. Rather than defining many local seismic source zones, the USGS hazard study includes only a small number of sources surrounded by larger background zones. Within the ESP site region, the USGS model defines a single source zone, the Extended Margin Background Zone, which covers nearly the entire eastern and southeastern United States. The M_{max} value assigned to the Extended Margin Background Zone by USGS is 7.5, which corresponds to m_b 7.2. The applicant stated that this M_{max} value is consistent with the range of maximum values assigned to the CVSZ by the EPRI teams.

2.5.2.1.3 Correlation of Seismicity with Geologic Structures and EPRI Sources

As part of the review and update of the 1989 EPRI seismic source model, the applicant compared the updated seismicity (1985 through 2001) with the earlier EPRI seismicity catalog (1627 through 1984). As a result of this comparison, the applicant concluded that the updated catalog does not show (1) any earthquakes within the site region that can be associated with a known geologic structure, (2) a unique cluster of seismicity that would suggest a new seismic source outside of the EPRI source model, (3) a new pattern of seismicity that would warrant significant revision to the EPRI seismic source geometry, (4) an increase in the M_{max} for any of the EPRI seismic sources, and (5) any changes to the recurrence values for the EPRI seismic sources.

2.5.2.1.4 1989 EPRI Probabilistic Seismic Hazard Analysis, Deaggregation, and 1-Hz, 2.5-Hz, 5-Hz, and 10-Hz Spectral Velocities

SSAR Section 2.5.2.4 describes the confirmation of the 1989 EPRI PSHA results for North Anna. For its confirmation, the applicant used the peak ground acceleration (PGA) hazard curves for comparison with the 1989 EPRI PSHA results for North Anna. The applicant found that the average difference in annual probability of ground motion exceedance is +1.1 percent, which corresponds to a 0.3 to 0.7 percent increase of the ground motion amplitude. This difference is much less than the total uncertainty in seismic hazard calculations, and, as such, the applicant concluded that the current PSHA for the ESP site correctly models the seismic sources and ground motion equations. To further confirm the accuracy of the current PSHA, the applicant also replicated the 1-, 2.5-, 5-, and 10-Hertz (Hz) spectral velocity hazard curves using the 1989 EPRI seismic sources and ground motion models. In addition, using the procedure described in RG 1.165, the applicant calculated the controlling earthquakes for the ESP site using the 1989 EPRI results. The low-frequency controlling earthquake magnitude

and distance are M_w 5.9 and 25 km, respectively, and the high-frequency controlling earthquake magnitude and distance are M_w 5.5 and 18 km, respectively. The applicant used these controlling earthquakes for comparison with the updated PSHA results for the ESP site presented in SSAR Section 2.5.2.6.1.

2.5.2.1.5 Seismic Wave Transmission Characteristics of the Site

SSAR Section 2.5.2.5 briefly summarizes the subsurface model used for the ESP site. The foundation materials are divided into the following five zones from surface to bedrock:

- residual clays and clay silts (Zone I)
- weathered saprolite (Zone IIA)
- saprolite (Zone IIB)
- weathered rock (Zone III)
- parent rock (Zone IV)

The applicant stated that the containment (reactor building) and primary safety-related structures would be founded on sound bedrock, either Zone IV or Zone III-IV (slightly to moderately weathered rock). The applicant also stated that other safety-related structures (possibly the diesel generator building and certain tanks) may be founded on Zone III weathered rock or Zone II saprolitic soils.

Section 2.4.5.7 of the SSAR presents a detailed description of the seismic wave transmission characteristics of each of the above soil and rock layers. The description includes the shear wave velocity, as well as the variation of shear modulus and damping with strain for each of the zones.

In RAIs 2.5.2-1(c) and 2.5.2-8, the staff asked the applicant to explain how it factored the properties of the site-specific subsurface materials into the determination of the SSE. In its responses, the applicant stated the following:

The SSE spectrum is calculated directly using the EPRI 2003 ground motion models. For the North Anna ESP site, the selected SSE directly incorporates the hard rock foundation assumption of the EPRI 2003 ground motion models (a shear-wave velocity of 2.8 km/s or about 9,200 ft/s). The containment (reactor) building and primary supporting safety-related structures would be founded on sound bedrock, either Zone IV or Zone III-IV materials (see SSAR Section 2.5.2.5) for which this shear wave velocity is a good approximation. Therefore, site-specific materials are factored into the determination of the SSE by recognizing that the hazard analysis performed to develop the SSE uses attenuation relations that are directly applicable to specific subsurface conditions at the North Anna site.

As set forth in the DSER, the staff considered the applicant's response above to be inadequate based on a comparison of the hard rock shear wave velocity (9200 ft/s) assumed by the EPRI 2003 ground motion models and the bedrock Zone III-IV shear wave velocity (3300 ft/s) beneath the ESP site. DSER Open Item 2.5-2 covered the necessity to include the local site conditions in the determination of the SSE. As a result of Open Item 2.5-2, the applicant reran its analysis to determine the seismic wave transmission characteristics of the site. The

applicant's new analysis used a rock subsurface profile that extends from the top of Zone III-IV bedrock to a depth of 160 ft under the site where the shear wave velocity reaches about 9200 ft/s. The applicant used the ESP rock subsurface profile to estimate the amplification of the SSE ground motion at a control point located at the top of competent Zone III-IV rock. The following SER Section (2.5.2.1.6) provides a complete description of the applicant's response to Open Item 2.5-2, and SER Section 2.5.2.3.5 provides the staff's evaluation of the applicant's response.

2.5.2.1.6 Safe-Shutdown Earthquake Ground Motion

SSAR Section 2.5.2.6 describes the development of the SSE ground motion for the ESP site. The first four subsections of SSAR Section 2.5.2.6 describe the updating of the 1989 EPRI PSHA in terms of (1) a new regional earthquake catalog, (2) new M_{max} information, (3) new seismic source characterizations, and (4) new ground motion models. The subsequent subsections of Section 2.5.2.6 describe (1) the controlling earthquakes, (2) the selected SSE ground motion, (3) sensitivity studies, and (4) the future modification of the selected SSE spectrum.

SSAR Section 2.5.2.6 addresses the new geoscience information (new seismic sources, new magnitudes, new recurrence intervals, new ground motion models) by examining the effect of this new information on the median seismic hazard at levels of 10⁻⁵ per year. The applicant used the 1989 EPRI seismic sources and ground motion models to compare the effect of this new information on the seismic hazard at the ESP site with the seismic hazard developed for North Anna.

New Regional Earthquake Catalog

This section compiles the seismic sources surrounding the ESP site that contribute 99 percent of the seismic hazard, using both the PGA hazard results and the 1-Hz spectral velocity hazard results. The applicant used this compilation of seismic sources from the 1989 EPRI PSHA to determine whether the seismic activity rates used in the 1989 EPRI study are still adequate. The applicant examined recent seismic activity rates using earthquakes recorded in the region since 1984 and compared these rates to those used in the 1989 EPRI PSHA. The results of this comparison show that recent seismicity, recorded from 1985 to 2001, indicates that seismic activity rates have decreased for the sources contributing most to the ESP site. Therefore, the applicant used the seismic activity rates derived from the 1989 EPRI study to calculate the seismic hazard at the ESP site.

New Maximum Magnitude Information

This section describes the applicant's review of the geologic and seismologic data published since the 1986 EPRI seismic source model to determine if changes to the M_{max} values for any of the seismic source zones are needed. The applicant stated that the M_{max} used for the EPRI source models relied on an EPRI study (Ref. 195, SSAR Section 2.5) of large earthquakes occurring worldwide within SCRs. Based on its review, the applicant concluded that the range of M_{max} values assigned by the EPRI teams for the Charleston, South Carolina, seismic source is too low. For the Charleston seismic source, the applicant identified a new geologic structure as the possible source of the 1886 Charleston earthquake, referred to as the ECFS-S. For the

ECFS-S M_{max} values, the applicant decided to use the 2002 USGS values and weights. These M_{max} values range from M_{w} 6.8 to 7.5. The Charleston source M_{max} values used by the six EPRI teams for the 1989 PSHA range from M_{w} 6.5 to 8.0.

This section describes the applicant's review of the geologic and seismologic data published since the 1989 EPRI seismic source model to determine whether any new seismic sources have been postulated or whether significant changes to the characterizations of previously identified sources are needed. The applicant concluded that three changes to the 1989 EPRI seismic source characterizations were necessary, namely (1) identification of a postulated ECFS-N, (2) revision to the recurrence interval and source geometry of the Charleston seismic source, and (3) revision to the recurrence interval of the New Madrid seismic source.

As modeled, the ECFS runs along the Atlantic seaboard and consists of the ECFS-N, ECFS-C, and ECFS-S (see SER Figure 2.5.1-6). The ECFS-N is located approximately 70 miles southeast of the ESP site and was not previously included in the 1989 EPRI PSHA. For the ECFS-N, the applicant assumed a probability of existence of 0.1 and a probability of activity (given existence) of 0.1. For the ECFS-N, the applicant adopted the M_{max} parameters and weights used in the 2002 USGS national seismic hazard map for the Charleston source. The applicant selected the recurrence values and weights of 550 years (0.1), 25,000 years (0.5), and 50,000 years (0.4), respectively. The applicant stated that it assigned low weights to the probability of existence and probability of activity because the existence of the fault is not well documented and is highly uncertain. In addition, no geologic, geomorphic, or seismologic evidence indicates that the fault exists as a tectonic feature or, if it does exist, that it is active.

New data published since the original EPRI study have resulted in revisions to the recurrence interval and source geometry for the Charleston seismic source. As stated earlier, the applicant adopted the M_{max} values used by the 2002 USGS national hazard maps for the Charleston seismic source. In addition to the M_{max} values, the applicant also reduced the recurrence interval for the Charleston source from several thousand years, used by the 1989 EPRI PSHA, to 550 years. The applicant stated that it based the reduction in the recurrence interval for the Charleston seismic source on recent paleoliquefaction studies, which provide evidence of previous earthquakes in the Charleston source area. In addition to M_{max} values and recurrence intervals, the applicant used the ECFS-S as an alternative source geometry for the Charleston source. The applicant also assumed that the mean recurrence interval of 550 years applies to the M_{max} values. The applicant stated that this approach is conservative because the mean recurrence interval may not be directly associated with earthquakes as large as the assumed M_{max} values.

In RAI 2.5.2-5, the staff asked the applicant to explain how it incorporated the alternative characterization of the ECFS-S into the final PSHA. In its response, the applicant stated that it evaluated the alternative characterization of the ECFS-S, both independently and additively, to conservatively assess the maximum possible change to hazard at the North Anna ESP site from this newly postulated source. The revisions to the ECFS-S include a shorter recurrence interval (550 years) and different weights for the M_{max} (M_{w} 6.8 to 7.5). The applicant added the ECFS-S to the source models of each of the six EPRI teams for the final PSHA. SER Section 2.5.2.3.4 provides a complete description of the applicant's response to RAI 2.5.2-5 and the staff's evaluation of the applicant's response.

Control No. 11 No. 12 Personal Control No.

SSAR Section 2.5.2.6.5 states that the applicant examined the effects of the new characterization of the ECFS-N and ECFS-S fault segments by calculating the seismic hazard from these two fault segments and comparing this seismic hazard to that predicted from the 1989 EPRI seismic sources. The applicant calculated the seismic hazard from these two fault segments using the 2003 EPRI ground motion models rather than the earlier 1989 ground motion models. As shown in SSAR Figures 2.5-40 and 2.5-41, the ECFS-S fault increases the total median and mean hazard for 1-Hz spectral acceleration by several percent at the 10⁻⁵ hazard level. The ECFS-N fault segment, for which the applicant assigned a 10 percent probability of existence and activity, does not contribute to the overall hazard. For higher frequency ground motion (i.e., 10-Hz spectral acceleration), neither the ECFS-S nor the ECFS-N fault segments contribute significantly to the overall seismic hazard. SSAR Section 2.5.2.6.5 states that this results from the domination of the higher frequency ground motion by seismic sources closer than the distant ECFS. The ECFS-N fault segment is 70 miles southeast of the ESP site, and the ECFS-S is 300 miles south of the ESP site.

New Ground Motion Models

To estimate the ground motion at the ESP site from each of the seismic sources, the applicant used the new 2003 EPRI-sponsored study that compiles and evaluates 13 new ground motion attenuation models for the CEUS (Ref. 116, SSAR Section 2.5). The previous EPRI PSHA used only three ground motion attenuation models.

For lower frequency ground motion (i.e., 1-Hz spectral acceleration), the new ground motion models result in median hazard results that are about the same as the hazard results derived using the 1989 ground motion models. In contrast, the 2003 mean hazard is significantly lower than the 1989 mean hazard. In addition, for higher frequency ground motion (i.e., 10-Hz spectral acceleration), SSAR Section 2.5.2.6.5 states that both the median and mean hazards increase significantly at annual frequencies of 10-5. Figure 2.5-44 in the SSAR compares a 10-Hz seismic hazard for both the 1989 ground motion models and the 2003 ground motion models. SSAR Section 2.5.2.6.5 provides the following rationale for the higher hazard for higher frequency ground motion determined by the newer model:

A major difference between the 1989 and 2003 ground motion models is that the estimates of aleatory [random] uncertainty are larger in the 2003 study. In 1989, a standard deviation of natural log (ground motion) of 0.5 was used for all frequencies, whereas in 2003, values of 0.6 and 0.7 are common (they vary depending on magnitude, distance, and frequency). At annual frequencies of 10⁻⁵, which are sensitive to the tails of the ground motion aleatory distribution. this difference in standard deviation increases seismic hazard. This would likely be true for any CEUS location. A compensating factor at low frequencies (1 and 2.5 Hz) [1 Hz] is the use of ground motion models that reflect a two-corner source, which acts to reduce low frequency [1 Hz] ground motion estimates from those used in 1989. Thus the median 1 Hz seismic hazard is about the same for both models. The mean amplitudes using the 2003 ground motion models are closer to the median amplitudes than is the case for the 1989 models, reflecting convergence on what are reasonable models to use for ground motion estimation in the eastern US. In 1989, the ground motion models were quite diverse, with one model developed by estimating peak ground acceleration and

velocity, then using spectral amplification factors to estimate spectral amplitudes. In 2003, the available models estimate spectral amplitudes directly.

419 4 1 1 1

PSHA and Controlling Earthquakes

Using the 2003 EPRI ground motion models and adding the ECFS-S fault segment, the applicant calculated the PSHA results for the ESP site. Table 2.5-22 of the SSAR, reproduced below, compares the 1989 EPRI PSHA and the 2003 PSHA results.

Table 2.5.2-1 Updated Seismic Hazard Results at ESP Site

Frequency	Median/Mean	Updated PSHA	1989 PSHA	Difference
1 Hz	10 ⁻⁵ median	0.096 g	0.091 g	6%
	10 ⁻⁵ mean	0.134 g	0.219 g	-39%
2.5 Hz	10 ⁻⁵ median	0.316 g	0.232 g	36%
	10 ⁻⁵ mean	0.364 g	0.519 g	-30%
5 Hz	10 ⁻⁵ median	0.639 g	0.439 g	46%
	10 ⁻⁵ mean	0.735 g	0.753 g	-2%
10 Hz	10 ⁻⁵ median	1.020 g	0.660 g	55%
	10 ⁻⁵ mean	1.216 g	0.827 g	47%

As shown in Table 2.5.2-1 above, the largest difference is at 10 Hz, where the updated PSHA indicates higher ground motion amplitudes for the 10⁻⁵ median and mean by 55 percent and 47 percent, respectively. At 1 Hz, 2.5 Hz, and 5 Hz, the updated PSHA shows a higher median 10⁻⁵ hazard, but a lower mean 10⁻⁵ hazard.

Selected SSE Ground Motion

The method for determining the SSE for a site, as described in RG 1.165, is based on the use of a reference probability. The basis for the procedure in RG 1.165, as well as the determination of the reference probability, is that existing nuclear power plants do not represent an undue risk to the health and safety of the public. As such, using the existing plants as a reference, RG 1.165 recommends a procedure to determine the seismic design basis for future plants. The reference probability is the average probability of exceeding the SSE ground motion at 5 Hz and 10 Hz, using either the 1993 LLNL PSHA or the 1989 EPRI PSHA. The NRC staff calculated a reference probability level for 29 nuclear power plant sites in the CEUS; the median reference probability for these 29 sites, using median hazard results, is 10⁻⁵ per year. A similar value was obtained using both the 1993 LLNL and the 1989 EPRI PSHA level;

therefore, RG 1.165 endorses both the LLNL and the EPRI PSHA results as suitable for seismic hazard estimation for future siting.

To determine the site SSE, the applicant used the method described in RG 1.165, but with a higher reference probability. In RAI 2.5.2-1(d), the staff asked the applicant to justify this higher reference probability. The applicant cited Section B.3 in Appendix B to RG 1.165 and the following three factors to justify changing the reference probability:

- (1) The revised EPRI ground motion models (Ref. 116, SSAR Section 2.5) indicate generally higher ground motions and aleatory uncertainties at higher frequency amplitudes of interest than previous models.
- (2) The mean recurrence time for large earthquakes in the New Madrid, Missouri, region and in the Charleston, South Carolina, region has decreased since the EPRI and LLNL studies in the 1980s.
- (3) Use of the mean hazard instead of the median hazard results in a higher reference probability because mean hazard curves lie above median hazard curves.

The applicant stated that the combined effect of these three factors would increase the reference probability by a factor of at least 5. Therefore, the applicant selected a mean hazard value of $5x10^{-5}$ as its reference probability. The applicant then deaggregated the PSHA results using the new reference probability to determine the controlling earthquakes for the ESP site. The controlling earthquakes for the ESP site have a magnitude of 5.4 at 12 miles (19.31 km) and a magnitude of 7.2 at 191 miles (307.4 km). The first magnitude-distance pair is the high-frequency (i.e., 5 and 10 Hz) controlling earthquake and is consistent with an earthquake from the CVSZ. The second magnitude-distance pair is the low-frequency (i.e., 1 and 2.5 Hz) controlling earthquake and is consistent with an earthquake from the ECFS-S fault. Figures 2.5.2-1 and 2.5.2-2, reproduced from SSAR Figures 2.5-49 and 2.5-50, respectively, depict the results of the deaggregation of the PSHA results.

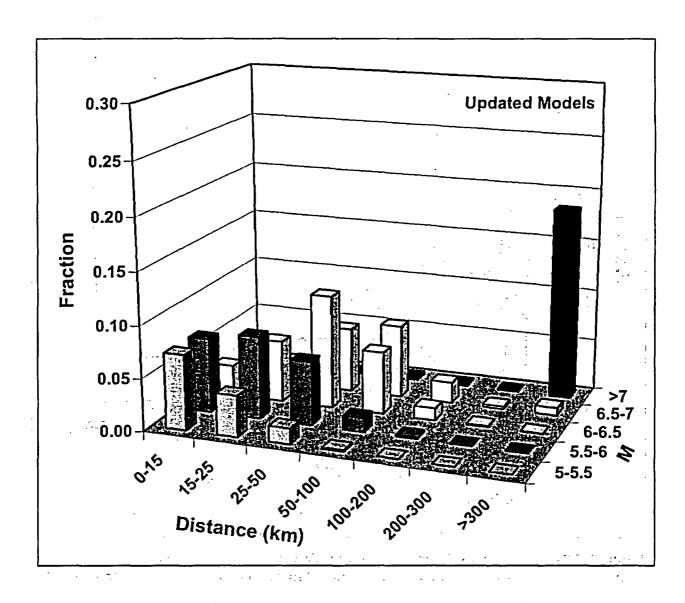


Figure 2.5.2-1 Magnitude-distance deaggregation for low frequencies (1 and 2.5 Hz) at a mean annual frequency of 5x10⁻⁵ using updated source and ground motion models

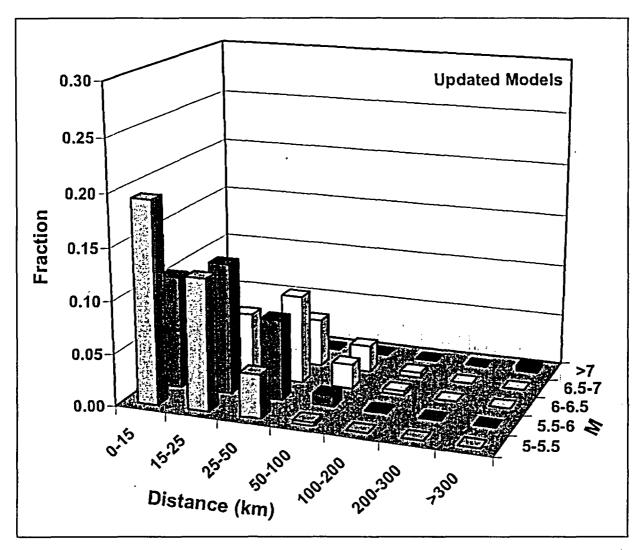


Figure 2.5.2-2 Magnitude-distance deaggregation for high frequencies (5 and 10 Hz) at a mean annual frequency of 5×10⁻⁵ using updated source and ground motion models

To determine these two controlling earthquakes, the applicant followed the procedure in Appendix C to RG 1.165, using the higher reference probability and the mean PSHA hazard results rather than the median results. Using the two controlling earthquakes, the applicant then determined two ground motion response spectra using the EPRI 2003 ground motion relationships and scaling the two spectra to the appropriate ground motion amplitudes. Figure 2.5.2-3, reproduced from SSAR Figure 2.5-48, shows the hard rock (9200 ft/s) ground motion response spectra for the two controlling earthquakes.

In addition to using the methodology described in RG 1.165 to determine the SSE ground motion, the applicant chose to use an alternative approach, described as a performance-based approach. In RAI 2.5.2-1, the staff asked the applicant to explain how the performance-based approach meets the requirements of 10 CFR 100.23, which provides the geologic and seismic siting criteria, as well as a definition of the SSE. In its response, the applicant explained how

the performance-based approach conforms to the requirements of 10 CFR 100.23. In RAI 2.5.2-9, the staff asked the applicant for further details on the performance-based approach to supplement the information provided in SSAR Section 2.5.2.6. In its response, the applicant provided further justification for the performance-based approach, including the derivation of some key relationships. Section 2.5.2.3.6 of this SER discusses this further.

Selection of Enveloping Horizontal SSE Spectrum

Initially, to determine the final SSE for the ESP site, the applicant enveloped the two controlling earthquake ground motion response spectra and the performance-based spectrum. Figure 2.5.2-3, reproduced from SSAR Figure 2.5-54A, shows these spectra. However, as a result of Open Item 2.5-2, described above in the previous SER subsection, the applicant incorporated the local site geologic properties into its determination of the final SSE. The applicant's new analysis used a rock subsurface profile that extends from the top of Zone III-IV bedrock (21 ft depth) to depths at which the shearwave velocity in the bedrock under the site reaches about 9200 ft/s (160 ft depth). The applicant used this best-estimate profile to estimate the amplification of the SSE ground motion at a control point located at the top of competent Zone III-IV rock. The applicant selected this control point at the top of Zone III-IV rock to be consistent with Section 3.7.1 of NUREG-0800, which states that the control point for sites with a thin soil layer is specified on "an outcrop or a hypothetical outcrop at a location on the top of the competent material."

The December was a substitute of the substitute

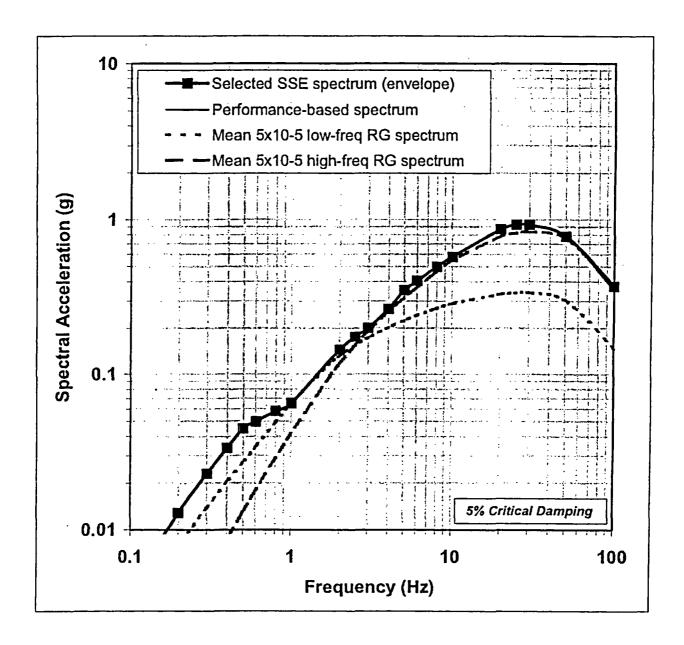


Figure 2.5.2-3 Comparison of performance-based spectrum, mean 5x10⁻⁵ scaled spectra, and selected SSE spectrum (which overlaps the performance-based spectrum and envelops the other two)

To determine the control point SSE at the top of Zone III-IV rock, the applicant (1) developed a shear wave velocity profile for the ESP site, (2) generated alternative randomized rock columns to incorporate the variability in the rock properties, (3) selected seed earthquake time histories, and (4) performed the final ground response analysis.

The applicant's shear wave velocity profile is based on its subsurface exploration for the ESP site and Virginia Power's subsurface explorations for the existing units. For these explorations, the applicant made shear wave velocity measurements mainly at 5-ft depth intervals, but sometimes at 10-ft depth intervals. The applicant also defined the material properties of density, Poisson's ratio, and the behavior of shear wave velocity and material damping as a function of strain. SSAR Section 2.5.4.7 describes the subsurface shear wave velocity and related material property information for the ESP site.

The applicant developed 50 alternative randomized rock columns by varying the material properties described above. The applicant generated 50 randomizations of the generic ESP site rock column velocity profile between elevations with shear wave velocities of 9200 ft/s and 3300 ft/s. The applicant kept the same damping value for all sublayers within any given profile but varied the damping value between one artificial rock column and the next.

Next, the applicant selected two seed time histories to match the low- and high-frequency controlling earthquake response spectra shapes (see Figure 2.5.2-3). The applicant selected these two time histories using the controlling earthquake magnitude and distance values from the database of CEUS time histories given in NUREG/CR-6728 (Ref. 9, SSAR Section 2.5).

To perform the final ground response analysis, the applicant used the two low-frequency and high-frequency input hard rock motions for each of the 50 artificial rock profiles. The applicant modeled the site using horizontal layers, each 7.5 ft thick, overlying a uniform half-space of hard bedrock (V_s at 9200 ft/s). Figure 2.5.2-4, reproduced from Figure 8 in the March 30, 2005, response to Open Item 2.5-2, shows the 50 response spectra for the high- and low-frequency time histories at the control point at the top of Zone III-IV rock (model layer 1).

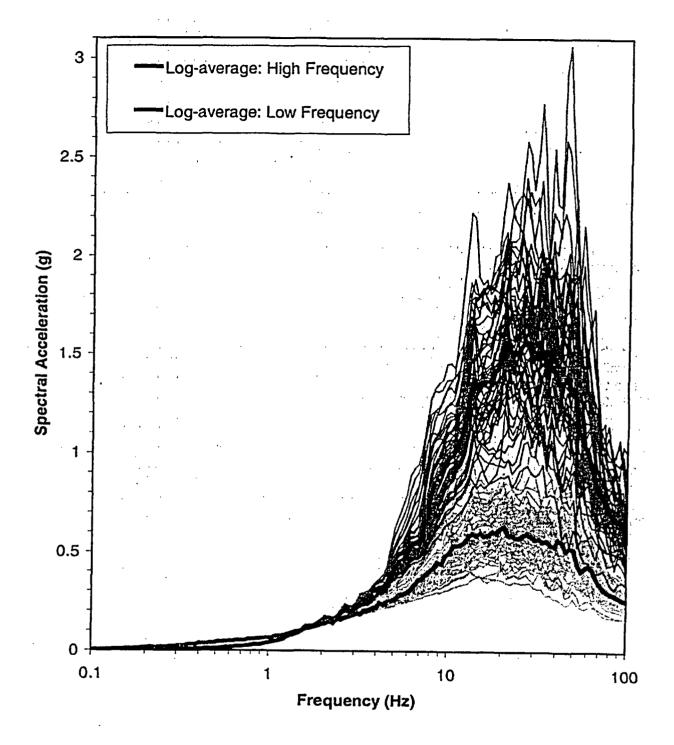


Figure 2.5.2-4 Response Zone III-IV control point (Elevation 250 ft., Layer 1) – 5% Critical Damping ARS – High Frequency (upper dark gray group) and Low Frequency (lower light gray group) time histories. Log-average of each set of 50 response spectra for the high and low frequency time histories indicated by the heavy blue and red lines, respectively.

Next, the applicant fit a smooth function through the enveloped log-average spectrum, which is shown in Figure 2.5.2-4. This smooth function is the final ESP site horizontal SSE ground motion spectrum, which the applicant has defined at the control point at the top of Zone III-IV rock. The spectral acceleration at 25 Hz for the ESP site horizontal SSE is 1.476g and the PGA at 100 Hz is 0.555g.

In order to develop the transfer function between the hard rock (V_s 9200 ft/s) at a depth of 161 ft and the control point at the top of Zone III-IV (V_s 3300 ft/s), the applicant computed the ratio of the hard rock response spectrum and the SSE spectrum at 21 frequency points. The transfer function provides the ground response of the ESP site to the hard rock input SSE motion. Figure 2.5.2-5 shows the transfer function for the ESP site. For some of the lower frequencies (0.1 to 2 Hz), the ESP site slightly de-amplifies the hard rock input ground motion, but for intermediate and high frequencies (2 to 100 Hz), the ESP site amplifies the input ground motion by as much as 1.664 at 20 Hz.

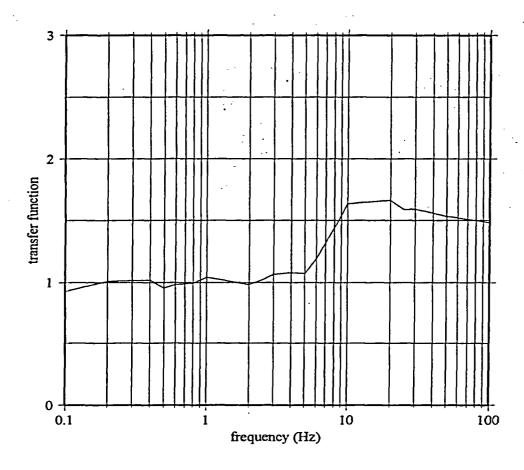


Figure 2.5.2-5 Transfer Function for ESP Site

Development of Vertical SSE Spectrum

To determine the vertical SSE spectrum, the applicant used the vertical-to-horizontal (V/H) response spectral ratios provided in NUREG/CR-6728. The vertical SSE spectrum is given by multiplying the horizontal SSE spectrum by the V/H ratios. The V/H ratios given in NUREG/CR-6728 are for generic CEUS hard rock conditions and depend on the PGA value of the horizontal SSE spectrum. For the ESP site, the V/H ratios used by the applicant are based on having a PGA between 0.2g and 0.5g. However, after incorporating the local ESP site properties to determine the final horizontal SSE spectrum (see Open Item 2.5-2), the applicant's horizontal SSE PGA value increased from 0.37g to 0.55g. Rather than using the V/H ratios given in NUREG/CR-6728 for a PGA greater than 0.5g, the applicant performed a site-specific analysis to confirm the appropriateness of the V/H ratios for a PGA between 0.2g and 0.5g. Figure 2.5.2-6, reproduced from SSAR Figure 2.5-48A, shows the final horizontal and vertical SSE ground response spectrum at the control point at the top of Zone III-IV rock.

For its analysis to confirm the NUREG/CR-6728 V/H ratios for a PGA between 0.2g and 0.5g, the applicant used site-specific shear and compressional wave profile data together with four different earthquake magnitude-distance pairs from the high-frequency (5 and 10 Hz) deaggregation. The applicant computed horizontal and vertical ground motion spectra for each of the magnitude-distance values. In addition, the applicant used site-specific data from its ESP explorations as well as older data from Dominion's site explorations for Units 1 and 2 to develop two velocity profile models. The applicant assigned weights of 0.75 and 0.25 to these two models, with the higher weight for the more recent ESP site investigation model. The applicant stated that the V/H ratios that it obtained from the site-specific analysis are about 30% lower than the V/H ratios provided in NUREG/CR-6728 for a PGA between 0.2g and 0.5g. As such, the applicant concluded that these V/H ratios (see SSAR Table 2.5-27A) are appropriate for the North Anna ESP site. Higher V/H ratios result in a higher vertical SSE spectrum. The V/H ratios used by the applicant range from 0.75 at low frequencies to 1.12 at 50 Hz.

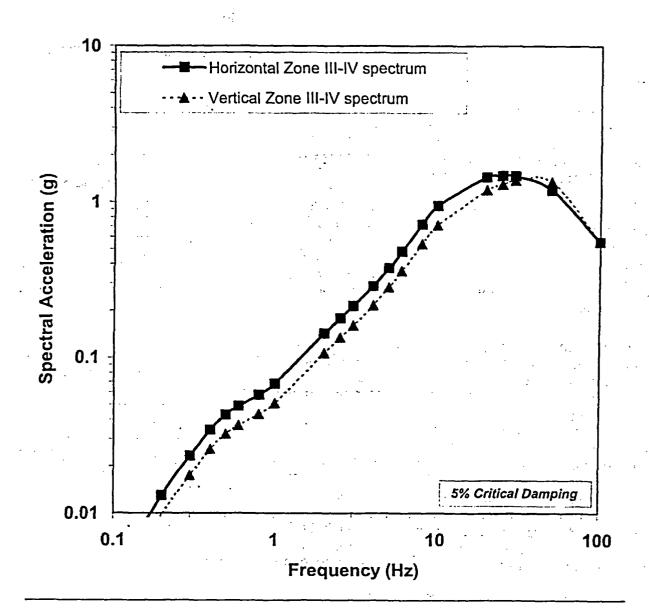


Figure 2.5.2-6 (SSAR Figure 2.5-48A) Selected Horizontal and Vertical Response Spectra for the Hypothetical Rock Outcrop Control Point SSE at the Top of Zone III-IV Material

Sensitivity Studies

The applicant performed two sensitivity studies to demonstrate the appropriateness of the final SSE shown in Figure 2.5.2-6.

The first sensitivity study uses a higher minimum magnitude value for each of the seismic source zones. Currently, the EPRI and LLNL studies use an m_b of 5.0 as the minimum magnitude for calculations, which corresponds to an M_w of 4.6. SSAR Section 2.5.2.6.8 states that there is "abundant evidence that earthquakes with M_w less than 5 do not cause damage to nuclear plant structures and equipment." An M_w of 5 corresponds to an m_b of 5.4. As such, the applicant reran the PSHA with the lower bound magnitude, m_b, set to 5.4. SSAR Table 2.5-28 shows the lower mean 5x10-5 spectral accelerations resulting from a higher minimum magnitude value. The lower frequency ground motion is similar to the recommended ground motion spectrum. However, the higher frequency ground motion (i.e., 10 Hz and above) is as much as 20 percent lower than the motion at the same frequency for the performance-based spectrum derived from using a higher minimum magnitude value. The applicant stated that this result demonstrates that the recommended ground motion spectrum incorporates substantial conservatism.

For the second sensitivity study, the applicant revised the uncertainty for the base-case ground motion model to match the uncertainty values of California ground motion models. The uncertainty for CEUS ground motion models, especially for higher frequencies (i.e., 5 Hz and above), exceeds the uncertainty reported for ground motion models based on California strong-motion data. This uncertainty, referred to as aleatory uncertainty, represents the scatter of the observed ground motion about the predicted ground motion. SSAR Section 2.5.2.6.8 states that "it is not obvious that aleatory uncertainties should be higher for ground motions in the eastern U.S. than in California." Using lower aleatory uncertainty, the applicant reran the PSHA and compared the recommended ground motion spectrum to that obtained by using the lower uncertainty. SSAR Table 2.5-28 shows the resulting ground motion spectrum using the lower aleatory uncertainty values. A comparison between this ground motion spectrum and the recommended ground motion spectrum shows that a fairly significant decrease (about 10 percent) in the selected spectrum would occur if the lower aleatory ground motion uncertainties were used in place of those reported in the 2003 EPRI ground motion study.

Future Modification of the Selected Spectrum

SSAR Section 2.5.2.6.9 describes potential modifications to the selected SSE ground motion spectrum to account for embedment and structure effects. According to the applicant, the COL application would include these modifications. The modifications to the SSE spectrum would account for horizontal and vertical spatial variation and incoherence of the ground motion, as well as scattering effects and soil-structure interaction. Horizontal spatial variation in ground motion is more prominent for structures with large plan dimensions and would reduce the input into the structure at high frequencies. SSAR Section 2.5.2.6.9 states that this occurs because the presence of large structures modifies the ground motion input to the base mat and that the modifications become significant at higher frequencies, especially above 10 Hz. The applicant concluded that the SSE spectrum is "an unrealistic input for analysis and design of structures," and, "in order to obtain a realistic design spectrum, the Engineering Design Spectrum (EDS), factors must be considered that affect the shape of the spectrum experienced by structures with

large base mats, such as those typical of nuclear power plants." The applicant referred to this "realistic design spectrum" as an engineering design spectrum (EDS).

2.5.2.1.7 Operating-Basis Earthquake

SSAR Section 2.5.2.7 describes the establishment of the operating-basis earthquake (OBE) ground motion for the ESP site. Rather than performing a detailed analysis, the applicant decided to establish the OBE earthquake spectrum as one-third of the SSE spectrum, in accordance with Appendix S to 10 CFR Part 50.

2.5.2.2 Regulatory Evaluation

SSAR Section 2.5.2 presents the applicant's determination of ground motion at the ESP site from possible earthquakes that might occur in the site region and beyond. In SSAR Section 1.8, the applicant stated that SSAR Section 2.5.2 conforms to the requirements of 10 CFR 50.34, "Contents of Applications; Technical Information," Appendix S to 10 CFR Part 50, and 10 CFR 100.23. The applicant further stated in Section 1.8 that it developed this information in accordance with the guidance presented in NUREG-0800, Revision 3, Section 2.5.2; RGs 1.70 and 1.165; and DG-1105, "Site Investigations for Foundations of Nuclear Power Plants." (RG 1.198, of the same title, issued November 2003, superseded DG-1105 since the applicant submitted the SSAR.).

In its review of the application, the staff considered the regulatory requirements of 10 CFR 52.17(a)(1)(vi) and 10 CFR 100.23(c) and (d), which require that the applicant for an ESP describe the seismic and geologic characteristics of the proposed site. In particular, 10 CFR 100.23(c) requires that an ESP applicant investigate the geologic, seismologic, and engineering characteristics of the proposed site and its environs with sufficient scope and detail to support estimates of the SSE ground motion and to permit adequate engineering solutions to actual or potential geologic and seismic effects at the proposed site. In addition, 10 CFR 100.23(d) states that the SSE ground motion for the site is characterized by both horizontal and vertical free-field ground motion response spectra at the free ground surface. Section 2.5.2 of NUREG-0800 provides guidance concerning the evaluation of the proposed SSE ground motion, and RG 1.165 provides guidance regarding the use of PSHA to address the uncertainties inherent in the estimation of ground motion at the ESP site. The staff notes that the application of Appendix S to 10 CFR Part 50 in an ESP review, as referenced in 10 CFR 100.23(d)(1), is limited to defining the minimum SSE for design.

2.5.2.3 Technical Evaluation

This section of the SER provides the staff's evaluation of the seismological, geological, and geotechnical investigations the applicant conducted to determine the SSE ground motion for the ESP site. The technical information presented in SSAR Section 2.5.2 resulted from the applicant's surface and subsurface geological, seismological, and geotechnical investigations performed in progressively greater detail as they moved closer to the ESP site. The SSE is based upon a detailed evaluation of earthquake potential, taking into account regional and local geology, Quaternary tectonics, seismicity, and specific geotechnical characteristics of the site's subsurface materials.

SSAR Section 2.5.2 characterizes the ground motions at the ESP site from possible earthquakes that might occur in the site region and beyond to determine the site SSE spectrum. The SSE represents the design earthquake ground motion at the site and the vibratory ground motion for which certain nuclear power plant SSCs must be designed to remain functional. According to RG 1.165, applicants may develop the vibratory design ground motion for a new nuclear power plant using either the EPRI or LLNL probabilistic seismic hazard analyses for the CEUS. However, RG 1.165 recommends that applicants perform geological, seismological, and geophysical investigations and evaluate any relevant research to determine whether revisions to the EPRI or LLNL PSHA databases are necessary. As a result, the staff focused its review on geologic and seismic data published since the late 1980s that could indicate a need for changes to the EPRI or LLNL PSHAs.

2.5.2.3.1 Seismicity

The staff focused its review of SSAR Section 2.5.2.1 on the adequacy of the applicant's description of the historical record of earthquakes in the region. The historical earthquake catalog used in the original EPRI analysis was complete through 1984. Therefore, in addition to reevaluating the EPRI seismicity catalog, the applicant added seismicity data for the time period from 1985 through 2001.

The staff reviewed both the original EPRI seismicity catalog and the update to the catalog. The applicant added 30 more earthquakes to the regional catalog for the ESP site. Figure 2.5.2-7 depicts the earthquake epicenters in the region surrounding the ESP site. The more recent events since 1984 are shown as solid dots. The cluster of seismicity to the south-southwest of the ESP site is from the CVSZ.

Because the applicant used the EPRI seismicity catalog, which is part of the 1989 EPRI seismic hazard study that the NRC endorsed, the staff concludes that the seismicity catalog used by the applicant is complete and accurate through 1984. The staff compared the applicant's update of the regional seismicity catalog with its own listing of recent earthquakes and did not identify any significant omissions. Accordingly, the staff concludes that the applicant accurately updated the regional seismicity.

Figure 2.5.2-7 Regional seismicity for ESP site

2.5.2.3.2 Geologic and Tectonic Characteristics of the Site and Region

The staff focused its review of SSAR Section 2.5.2.2 on the applicant's characterization of potential seismic sources in the region surrounding the ESP site. The applicant evaluated recently published studies to determine if the seismic source models used for the 1989 EPRI study needed updating. The applicant concluded that no new information would suggest potentially significant modifications to the EPRI seismic source model, with the following three exceptions:

- (1) the newly postulated ECFS
- (2) the smaller recurrence interval for the Charleston seismic source zone
- (3) the smaller recurrence interval for the NMSZ

In RAI 2.5.2-4(a), the staff asked the applicant to provide additional seismicity parameters beyond those shown in SSAR Tables 2.5-5 through 2.5-11 for the seismic sources surrounding the ESP site. In response to RAI 2.5.2-4(a), the applicant provided the recurrence parameters ("a" and "b" values) used in the EPRI study for the latitude and longitude degree cell encompassing the ESP site region. Because RG 1.165 endorsed the EPRI PSHA methodology and results, the staff used the information the applicant provided in response to RAI 2.5.2-4(a) to determine if any of the seismicity parameters should be updated. In particular, the staff asked the applicant in RAI 2.5.2-4(b) to justify its decision to not update M_{max} values assigned to the CVSZ by the 1989 EPRI ESTs considering the 1994 EPRI study, "Seismotectonic Interpretation and Conclusion from the Stable Continental Region Database." In its response to RAI 2.5.2-4(b), the applicant stated that EPRI initiated the 1994 EPRI study in the mid-1980s specifically for use by the EPRI teams in their development of the EPRI seismic source model. Each of the EPRI teams had access to the preliminary source zone geometry drawn from the 1994 EPRI study in their 1989 seismic source models. Because the M_{max} values used by the EPRI teams generally encompass the M_{max} values recommended by the 1994 EPRI study, the staff concludes that the applicant adequately characterized the seismic source zones, particularly the CVSZ, surrounding the ESP site. Section 2.5.2.1.6 of this SER summarizes the applicant's revisions to SSAR Section 2.5.2 resulting from RAI 2.5.2-4.

In RAI 2.5.2-7, the staff noted that some of the EPRI ESTs did not include the CVSZ as a specific source and asked the applicant to describe how the modern and historical seismicity of the CVSZ is distributed among either a specific source zone or a background source zone. In its response, the applicant described the source model used by each of the six EPRI teams to characterize the CVSZ. The staff reviewed each of the source models for the CVSZ that the applicant provided in its response to ensure that it had adequately characterized the seismic activity of the CVSZ. Each of the EPRI ESTs included the seismicity within the CVSZ as either a specific seismic source zone or as part of a background seismic source zone, and the staff concludes that these source models are acceptable in this respect.

Based on its review of SSAR Section 2.5.2.2 and the applicant's responses to the RAIs, as set forth above, the staff concludes that the applicant adequately investigated and characterized the regional seismic sources. The staff concludes that the 1989 EPRI seismic source models, with the exceptions noted above, remain valid for the ESP site. In addition, the staff concludes that the applicant identified those source zones that may warrant updating based on the results of its sensitivity studies which are presented in SSAR Section 2.5.2.6.

2.5.2.3.3 Correlation of Earthquake Activity with Seismic Sources

The staff focused its review of SSAR Section 2.5.2 on the applicant's efforts to correlate seismicity with known geologic features. Based on a comparison of the updated earthquake catalog to the EPRI catalog, the applicant concluded that none of the earthquakes within the site region can be associated with a known geologic structure. In addition, the applicant concluded that the updated catalog does not show a unique cluster of seismicity that would suggest a new seismic source outside of the EPRI seismic source model. Since the seismicity in the region surrounding the ESP site (see SSAR Figure 2.5-2) is not narrowly focused along any known faults or fault zones, the applicant used areal seismic source zones to characterize the seismic hazard for the ESP site. EPRI teams developed these areal source zones in the mid-1980s.

The staff compared the applicant's seismicity maps with its own and concludes that the applicant has adequately investigated the correlation of earthquake activity with known geologic sources. In particular, the staff plotted the epicenters of the most recent earthquakes surrounding the site (see SER Figure 2.5.2-4) and concurs with the applicant's conclusion that there are no new seismic sources that were not included in the 1989 EPRI seismic source model.

2.5.2.3.4 Probabilistic Seismic Hazard Analysis and Controlling Earthquakes

To evaluate the applicant's PSHA and controlling earthquakes, the staff reviewed the information presented in SSAR Sections 2.5.2.4 and 2.5.2.6. In SSAR Section 2.5.2.4, the applicant reproduced the 1989 EPRI PSHA using the 1989 seismic sources, 1989 ground motion models, and current PSHA computer program. The applicant concluded that its current PSHA computer program accurately models the 1989 EPRI results for the ESP site location.

For its PSHA, the applicant considered (1) a new regional earthquake catalog, (2) new M_{max} information, (3) new seismic source characterizations, and (4) new ground motion models. Based on PSHA sensitivity studies, which incorporate each of these four items, the applicant concluded that the more recent characterization of the Charleston seismic source recurrence interval and the new ground motion models result in significant changes to the PSHA for the ESP site.

For Revision 3 (September 2004) of Section 2.5.2 of the SSAR, the applicant repeated its deaggregation of the PSHA results to determine the controlling earthquake magnitudes and distances. Although the applicant used the same reference probability (mean 5x10⁻⁵), the most recent deaggregation uses the mean PSHA hazard results rather than the median hazard results to calculate the controlling earthquakes. Because the mean hazard curves are higher than the median curves, the applicant's use of the mean curves is conservative.

In its response to RAI 2.5.2-5, the applicant explained how it incorporated the alternative characterization of the Charleston seismic source into the final PSHA. It stated that the alternative characterization of the Charleston source was evaluated both independently and additively to conservatively assess the maximum possible change to the hazard at the North Anna ESP site from the revision to this postulated source. The revisions to the Charleston source include a shorter recurrence interval (550 years) and different weights for the M_{max} (M_w 6.8 to 7.5). The ECFS-S seismic source was added to the source models for each of the six

EPRI teams for the final PSHA. Because the applicant reduced the recurrence interval, increased the weighting of higher M_{max} values, and also included the alternate source geometry of the ECFS-S into the final PSHA, the staff concludes that the applicant conservatively updated the characterization of the Charleston seismic source. This latter modification is conservative because it amounts to counting the Charleston seismic source twice. The result of these changes to the PSHA is that the low-frequency controlling earthquake for the ESP site has a magnitude of 7.2 at a distance of 308 km.

In RAI 2.5.2-2, the staff asked the applicant to provide additional details on the 2003 EPRI ground motion evaluation that it used for the ESP PSHA. To update the ground motion attenuation models in the CEUS, EPRI sponsored a Senior Seismic Hazard Advisory Committee (SSHAC) Level 3 analysis. NUREG/CR-6372 provides the guidelines for performing such an analysis. The EPRI ground motion study used 13 different ground motion attenuation relationships grouped into four clusters. In RAI 2.5.2-2(c), the staff asked the applicant to provide the weight assigned to each of the 13 ground-motion relationships within their respective cluster. For cluster 1, EPRI gave the highest weight (0.90) to the three attenuation relationships reported by Silva et al. The staff inferred from this higher weight that these relationships must have fit the data much better than other relationships. However, the applicant did not provide plots or tables of the residuals as a function of attenuation relation. magnitude, distance, and frequency. Therefore, the staff was unable to evaluate the weighting EPRI selected for cluster 1. Similarly, for clusters 2 and 3, the ground motion experts applied higher weights to different attenuation relationships within each cluster. Neither the EPRI 2003 ground motion report nor the applicant's response to RAI 2.5.2-2 provides the rationale for these weights.

In RAI 2.5.2-2(b), the staff asked the applicant to provide additional information on the Silva et al. cluster 1 attenuation relationships. In response, the applicant provided additional documentation on these attenuation relationships. The Silva et al. cluster 1 relationships use an expression for the seismic attenuation parameter, Q, that is frequency dependent. This frequency-dependent Q value was derived from an inversion of the data from the 1988 Saguenay earthquake. This inversion solves for Q, as well as the local site attenuation parameter kappa and the stress drop, which is the difference between the initial stress before and earthquake and the final stress. The staff was unable to determine how the recordings from a single earthquake can provide well-resolved values of both crustal Q and site kappa. In addition, the Q value of 317 at 1 Hz is much lower than values found in other studies of eastern North American earthquakes. In addition, other studies have found less frequency dependence of Q in the east than in the west, which is contrary to the findings of Silva et al.

In RAI 2.5.2-2(d), the staff asked the applicant to explain the weights given to each of the four clusters. In response to RAI 2.5.2-2, the applicant stated that the expert panel members, convened for the EPRI ground motion study, were asked to subjectively evaluate how well the alternative ground motion models relied on seismological principles. The staff considers the applicant's response to RAI 2.5.2-2(d) to be somewhat indirect. The applicant provided additional information, but the details still remain abstract in terms of specific "seismological principles." The response emphasizes the ranking of model clusters and the judgments involved in balancing data consistency and adherence to seismological principles. However, the applicant provided only abstract and very general references to these seismological principles. As a result, the staff was unable to evaluate the criteria or the weights applied to the four clusters.

In Open Item 2.5-1, the staff requested clarification and further information from the applicant regarding each of the three issues outlined above. With regard to the unequal weighting for the cluster 1 attenuation relationships (RAI 2.5.2-2(a)), the applicant provided the staff with tables of statistics that compare each of the ground motion relationships and the CEUS earthquake database. For each model and ground motion frequency, the applicant determined the deviation between the median model prediction and the actual recorded motion. Using the mean and variance of the deviations, the applicant determined the weight for each model in cluster 1. In addition to the tables of statistics, the applicant also provided plots of residuals for each of the cluster 1 ground motion models and plots comparing the final overall cluster 1 model to the actual CEUS earthquake data.

With regard to the staff's concerns, described above in RAI 2.5.2-2(b), concerning the Silva et al. cluster 1 attenuation relationships, the applicant stated the following:

The model functional form, basis for parameter selection, and the results developed in Silva et al. (2002) and its predecessor, Silva et al. (1997), are the responsibility of the lead author. Of particular relevance is the interdependence between model parameters, how the parameters were determined, model sensitivity to its parameters, and reasonable ranges in parameter values, based on expert judgement and expert interpretation of the scientific literature. It is unclear if a summary justification for the results of the Silva et al. (1997 and 2002) studies would resolve the items identified that seem, ultimately, to represent differences in expert judgement.

Differences in expert judgement are often difficult to reconcile. For this very reason, the SSHAC [Senior Seismic Hazard Advisory Committee] process was developed and accepted for use by the NRC. The EPRI 2003 ground motion model was developed by implementing a SSHAC Level 3 assessment process during which the EPRI Expert Panel identified the Silva et al. relationships as ones that should be included in the assessment and evaluated. The EPRI Expert Panel considered specific parameterizations of individual ground motion relationships in determining whether or not a relationship should be included in the SSHAC Level 3 assessment process. All ground motion relationships identified as viable by the Expert Panel were evaluated using the same criteria following the SSHAC Level 3 process.

The SSHAC process does not guarantee that every scientist will agree with the assessments. It is rather intended to assure that the assessed results reflect the preponderance of current scientific views, which is the underpinning of safety decisionmaking.

Since the EPRI 2003 expert panel members gave the three Silva et al. attenuation relationships the highest overall weight (0.90) in cluster 1, the staff asked the applicant to explain whether this biased the final overall cluster 1 ground motion model towards the model functional form and parameters used by these three attenuation relationships. Specifically, the three Silva et al. attenuation relationships each have different earthquake source terms and parameters; however, these relationships have the same wave propagation travel path terms and parameters. As such, the staff asked the applicant to explain if this limited path variability

biased the overall cluster 1 ground motion model. In response to the staff's concern, the applicant stated the following:

The ground motion models in Cluster 1 considered a range of alternative stress drop models and alternative Q and path models. Collectively, these models represent alternative single-corner [shape] source spectrum models for the CEUS. In aggregate, these models provide a measure of the epistemic [modeling] uncertainty in the median ground motion based on the single-corner source spectrum models (e.g., intra-cluster variability).

The applicant also stated that, as part of the CEUS model development, EPRI evaluated whether an additional component of uncertainty for wave propagation travel path effects should be included for each of the model clusters. The individual models within each model cluster contribute to the overall cluster variability since they each use different source and path parameters. However, the EPRI (2004) report states that there may be additional variability in the modeling parameters that is not captured by the ground motion models that make up a cluster. As described above, the staff expressed concern that the path variability for cluster 1 may be too small since the three Silva et al. attenuation relationships, which have an overall weight of 0.90, each have the same travel path model terms and parameters. EPRI, as part of its ground motion assessment, compared the overall cluster 1 ground motion variability (both source and path) with the variability of different path model terms and parameters used by the different individual models. In other words, EPRI isolated the travel path variability by equally weighting each of the alternative travel path models and compared this variability to the overall variability for each of the ground motion clusters. Figure 4-6 of the EPRI (2004) ground motion report shows this travel path variability, and Figure 4-2 of the report depicts the cluster 1 variability. Comparing the variability shown in Figures 4-2 and 4-6, the applicant concluded that "these variabilities were similar, although the results in Figure 4-6 are higher, particularly at distances beyond 100 km." The applicant stated that most of the models in cluster 1 had already "considered the variability in path effects as aleatory [e.g., random scatter] variability and thus it is ultimately included in the overall probabilistic hazard analysis."

With regard to the staff's concerns, described above in RAI 2.5.2-2(d), the latest version of the EPRI ground motion report provides an expanded explanation of the seismological principles that the expert panel members used to determine the overall weight for each of the four clusters. The seismological principles considered by the expert panel members include (1) seismic source modeling, (2) crustal wave propagation, and (3) near-surface crustal effects. Based on the single criterion of seismological principles, the four ground motion clusters were weighted fairly equally (0.245, 0.221, 0.257, and 0.277). In addition to seismological principles, the expert panel members also relied on consistency with the CEUS earthquake database and the modeling of variability as criteria for determining the final overall cluster weights (0.275, 0.312, 0.196, and 0.217).

For its review of the applicant's response to Open Item 2.5-1, the staff examined the plots and tables of model residuals provided by the applicant for the cluster 1 ground motion models. The staff verified that, for the ground motion frequencies (1, 5, and 10 Hz), the three Silva et al. ground motion models do provide the smallest mean residual values (i.e., best fit to the earthquake data) compared to the other cluster 1 models. As a result, EPRI gave weights of 0.192, 0.148, and 0.560 to these three ground motion models.

To resolve the concern that these three models, which account for 90 percent of the overall cluster 1 model, do not adequately represent the variability in travel path, the staff compared Figures 4-2 and 4-6 in the EPRI (2004) ground motion report. As noted by the applicant, there is a slightly higher variability for distances beyond 100 km as shown in Figure 4-6. This result suggests that travel path variability for the overall cluster 1 model may be somewhat low. However, for source distances out to about 300 km, the differences in variability are negligible. This result implies that the overall cluster 1 model uncertainty contains a sufficient amount of travel path variability.

To resolve the concern regarding the use and application of seismological principles to assign final overall weights to each of the four cluster groups, the staff reviewed the new information provided in the latest version of the EPRI ground motion report. Based on the criterion of seismological principles, the EPRI expert panel members gave similar weights to each of the four ground motion clusters. This result implies that the EPRI expert panel members did not find significant differences among the four model clusters regarding the use of seismological principles. The staff also reviewed the seismological principles used by the expert panel members and determined that these principles are relevant and significant for ground motion estimation.

In conclusion, as described above, the applicant has adequately resolved each of the staff's concerns with regard to the development by EPRI of new ground motion models for the CEUS. Therefore, the staff concludes that the applicant's use of the EPRI (2004) ground motion attenuation models provides an adequate estimate of the ground motion for CEUS earthquakes and, as such, an adequate characterization of the seismic hazard for the ESP site.

The staff concludes that the applicant's PSHA adequately characterized the overall seismic hazard of the ESP site. As set forth above, the staff finds that the applicant's underlying assumptions and update of the previous EPRI PSHA adequately incorporate the most recent studies and evaluations of the seismic source zones surrounding the ESP site. The staff also concludes that the applicant's controlling earthquakes for the ESP site (magnitude of 5.4 at 20 km and magnitude of 7.2 at 308 km) are generally consistent with previous PSHA results for the region. In addition, the staff finds that the ground motions developed by the applicant from the controlling earthquakes are consistent with the most recent ground motion evaluations. Accordingly, the staff concludes that the applicant followed the guidance in RG 1.165 for evaluating the regional earthquake potential and determining the ground motion resulting from the controlling earthquakes. Based on the foregoing, the staff considers Open Item 2.5-1 to be resolved.

2.5.2.3.5 Seismic Wave Transmission Characteristics of the Site

The staff focused its review of SSAR Section 2.5.2.5 on the applicant's incorporation of the seismic wave transmission characteristics of the material overlying the base rock at the site into the determination of the SSE. SSAR Section 2.5.4.7 provides a description of the transmission characteristics of the site material.

In RAIs 2.5.2-1(c) and 2.5.2-8, the staff asked the applicant to explain how it factored the properties of the site-specific subsurface materials into the determination of the SSE. According to the applicant's responses, it calculated the SSE directly using the EPRI 2003 ground motion models, which assume generic hard rock conditions for all of the CEUS. The

shear wave velocity assumed by the EPRI 2003 ground motion models for the generic hard rock conditions is 9200 ft/s. The applicant stated that, since the containment (reactor) building and primary supporting safety-related structures would be founded on sound bedrock, either Zone IV or Zone III-IV rock, the generic hard rock conditions assumed by the EPRI 2003 ground motion report are a "good approximation" for the ESP site. As such, the applicant did not factor in any of the local ESP site properties for its determination of the SSE.

As set forth in the DSER, the staff considered the applicant's response above to be inadequate based on a comparison of the average bedrock Zone III-IV shear wave velocity (3300 ft/s) and the generic hard rock shear wave velocity (9200 ft/s) assumed by EPRI 2003. SSAR Figure 2.5-62 shows that the measured shear wave velocity values for the upper soil and rock layers beneath the ESP site are below that of the hard rock conditions assumed by EPRI 2003. Thus, the hard rock shear wave velocity of 9200 ft/s may not be reached at the ESP site until a considerable depth below the ground surface. In addition, 10 CFR 100.23(d)(1) states the following:

The Safe Shutdown Earthquake Ground Motion for the site is characterized by both horizontal and vertical free-field ground motion response spectra at the free ground surface.

Therefore, as further set forth in the DSER, the staff determined that the applicant's SSE did not represent the free-field ground motion at the free ground surface. Open Item 2.5-2 covered the necessity to include the local ESP site conditions into the determination of the SSE.

In response to Open Item 2.5-2, the applicant reran its analysis to determine the response of the ESP site at the free ground surface, as required by 10 CFR 100.23(d)(1). The applicant's new analysis use a rock subsurface profile that extends from the top of Zone III-IV bedrock to a depth of 160 ft under the site where the shear wave velocity reaches about 9200 ft/s. The applicant defined the top of rock layer Zone III-IV to be its control point for consistency with the guidance in Section 3.7.1 of NUREG-0800, which states the following:

For sites composed of one or more thin soil layers overlying a competent material or in case of insufficient recorded ground-motion data, the control point is specified on an outcrop or a hypothetical outcrop at a location on the top of the competent material.

The applicant used the ESP rock subsurface profile to estimate the ground motion amplification of the site and, therefore, to determine an SSE that incorporates the local site rock properties. To determine the control point SSE at the top of Zone III-IV rock, the applicant (1) developed a shear wave velocity profile for the ESP site, (2) generated alternative randomized rock columns to incorporate the variability in the rock properties, (3) selected seed earthquake time histories, and (4) performed the final ground response analysis. SER Section 2.5.2.1.6 describes each of these steps in detail.

The staff reviewed the applicant's analysis to ensure that it accurately incorporates the local site properties and conditions as well as their uncertainties. The applicant developed 50 different randomized rock columns in order to model the uncertainties in the rock properties, such as shear wave velocities, densities, and damping values. The staff also verified that the response spectra from the two earthquake time histories used by the applicant for its convolution match

the low- and high-frequency spectra from the two controlling earthquakes. As a result of the applicant's inclusion of the local site rock properties, some of the spectral acceleration values for the final SSE ground motion spectrum increased by as much as a factor of 1.67. As shown previously in Figure 2.5.2-6, these increases mainly occur at frequencies above 10 Hz. The staff concludes that the applicant's site response analysis accurately incorporates the local site properties as well as the variability in these properties. Based on the above, the staff considers Open Item 2.5-2 to be resolved.

2.5.2.3.6 Safe-Shutdown Earthquake Ground Motion

The staff focused its review of SSAR Section 2.5.2.5 on the applicant's procedure to determine the SSE. For SSAR Revision 3, issued in September 2004, the applicant used two different methods to determine the ground motion response spectra for the ESP site.

in the first type of the

Originally, the applicant used a new method to determine the site SSE, referred to as a performance-based approach. In RAI 2.5.2-1, the staff asked the applicant to explain how the performance-based approach meets the requirements of 10 CFR 100.23, which provide the geologic and seismic siting criteria as well as a definition of the SSE. In response to RAI 2.5.2-1, the applicant explained how the performance-based approach conforms with the requirements of 10 CFR 100.23. In RAI 2.5.2-9, the staff asked the applicant for further details on the performance-based approach beyond those provided in SSAR Section 2.5.2.6. In response to RAI 2.5.2-9, the applicant provided further justification for the performance-based approach, including the derivation of some of the key relationships.

After reviewing the applicant's responses to RAIs 2.5.2-1 and 2.5.2-9 regarding its performance-based approach, the staff informed the applicant that it would need to devote additional time and resources to review this new method. In a letter dated August 19, 2004, the applicant informed the staff that it would revise SSAR Section 2.5.2 to base the selected SSE on the reference probability approach, in accordance with RG 1.165. The applicant also indicated that it would retain the performance-based approach in the SSAR as "alternate and further justification for the final SSE." Since the applicant has chosen to determine the final SSE in accordance with RG 1.165, the staff decided that it will not evaluate the performance-based approach for conformance with the requirements of 10 CFR 100.23 or review the overall acceptability of the approach. Therefore, the staff did not reach any conclusion with respect to the information in the SSAR regarding the performance-based approach or the applicant's responses to RAIs 2.5.2-1 and 2.5.2-9 that pertain to the performance-based approach.

In conjunction with its decision to base the final SSE on the reference probability approach in accordance with RG 1.165, the applicant also decided to use a higher reference probability (5x10-5) than that recommended by RG 1.165 (1x10-5). In addition, the applicant chose to use the mean PSHA curves rather than the median curves. Because the mean hazard curves are higher then the median curves, the applicant's use of the mean curves is conservative. In RAI 2.5.2-1(d), the staff asked the applicant to justify the proposed higher reference probability. In response to RAI 2.5.2-1(d), the applicant stated that it used a higher reference probability because of (1) higher ground motion estimates from the 2003 EPRI ground motion models, (2) shorter recurrence intervals for the New Madrid and Charleston seismic sources, and (3) the use of the mean hazard instead of the median hazard. Each of these factors (particularly the first two) increase the overall seismic hazard level for the CEUS and specifically, for the 29 nuclear power plant sites used to determine the original reference probability. Because the

reference probability recommended in RG 1.165 (1x10⁻⁵) is based on the LLNL and EPRI PSHAs from the late 1980s, the staff concurs with the applicant's conclusion that this value is likely to be out of date and overly conservative.

To evaluate the applicant's use of a higher reference probability (5x10⁻⁵) and use of mean rather than median PSHA results, the staff performed an independent analysis to reevaluate the reference probabilities for the 29 nuclear power sites in the CEUS that were used to determine the original reference probability. For its independent analysis, the staff used the most recent 2002 USGS PSHA mean and median hazard curves to determine the probability of exceeding the SSEs for the 29 CEUS sites. The staff also applied the same 5 Hz and 10 Hz site correction factors that were used in the LLNL seismic hazard analysis, published in 1993. Although the staff has not officially endorsed the 2002 USGS PSHA results, the staff was able to verify that the reference probability proposed by the applicant (5x10⁻⁵) is sufficiently conservative. This larger reference probability value (5x10⁻⁵) implies a lower return period (20,000 yrs) for the design ground motion; however, the staff was able to verify through its analysis that this revised reference probability results in a final SSE of adequate severity that is representative of the seismic hazard for the ESP site.

Using the RG 1.165 approach, the applicant determined the ground motion response spectra for the ESP site controlling earthquakes (magnitude of 5.4 at 20 km and magnitude of 7.2 at 308 km). The applicant then enveloped these two response spectra with the performancebased spectrum to create the final SSE spectrum. The staff's acceptance of the use of the performance-based spectrum to envelope the two controlling earthquake response spectra does not imply that the staff has endorsed the performance-based approach. As described in Appendix F to RG 1.165, any smooth spectral shape that envelopes the two controlling earthquake response spectra is acceptable as the site SSE. However, as set forth in the DSER, the staff (see Open Item 2.5-2) determined that this final SSE did not meet the requirements specified in 10 CFR 100.23(d)(1), which states that "the Safe Shutdown Earthquake Ground Motion for the site is characterized by both horizontal and vertical free-field ground motion response spectra at the free ground surface." As discussed above, the applicant addressed the staff's concern by performing a detailed site response analysis that incorporates the local site properties as well as the variability in these properties. Therefore, the final ESP site SSE meets the requirements specified in 10 CFR 100.23 in that it incorporates the local site subsurface properties and represents the free-field ground motion.

To determine the vertical SSE spectrum, the applicant used the V/H response spectral ratios provided in NUREG/CR-6728. To confirm the appropriateness of these V/H ratios, the applicant performed a site-specific analysis. For the site-specific analysis, the applicant used the ESP site compressional and shear wave profile data together with four different earthquake magnitude-distance pairs to compute vertical and horizontal ground motion spectra for the Zone III-IV hypothetical rock outcrop control point. The applicant stated that the V/H ratios that it obtained from the site-specific analysis are about 30% lower than the V/H ratios provided in NUREG/CR-6728 for a PGA between 0.2g and 0.5g. As such, the applicant concluded that these V/H ratios are appropriate from the North Anna ESP site.

To verify the adequacy of the V/H SSE ratios used by the applicant, the staff evaluated the applicant's site specific analysis. For its evaluation, the staff considered the adequacy of the four magnitude-distance pairs and the compressional and shear wave velocity profiles. Regarding the magnitude-distance pairs, four earthquake magnitude-distance pairs used by the

applicant range from M = 5.1 to 6.1 with accompanying distances from 7.5 km to 75 km. For comparison, the high-frequency controlling earthquake from the CVSZ for the ESP site is M = 5.4 at 20 km. Accordingly, the staff finds that they adequately represent the range of magnitudes and distances from a local earthquake in the CVSZ. Regarding the compressional and shear wave velocity profiles; the applicant used data from both its ESP site exploration and older data from the licensee's exploration for Units 1 and 2. The applicant formed two velocity models from these two data sets, giving larger weight (75 percent) to the model based on the more recent ESP velocity data. The staff verified that these two models accurately represent the actual site properties given by the compressional and shear wave velocity profiles. The staff then compared the site-specific V/H ratios with the ratios actually used by the applicant from NUREG/CR-6728. On average, the mean V/H ratios from the site-specific analysis are approximately 30 percent lower, over the complete frequency range considered, than the V/H ratios used by the applicant from NUREG/CR-6728 for a PGA between 0.2g and 0.5g. Since the V/H ratios used by the applicant range from 0.75 to greater than 1.0 and these V/H ratios are 30 percent higher than V/H ratios from the site-specific analysis, the staff finds that they are conservative and adequate for the North Anna ESP site.

In SSAR Sections 2.5.2.6.9 and 2.5.2.6.10, the applicant alluded to future modifications of the site SSE spectrum in order to obtain an engineering design spectrum (EDS) that represents "the proper input into the large nuclear power plant structures." The applicant stated that the ESP site SSE is not suitable for the design of the SSCs of nuclear power plants because of high spectral accelerations in the high-frequency range (about 15 to 30 Hz). According to the applicant, the EDS would take into account plant-specific structural characteristics and local site conditions, as well as the ESP SSE spectrum. However, the ESP application does not include the EDS because the applicant has not selected a specific reactor design. The applicant proposed to include the EDS as part of a COL application. Because the applicant did not provide any specific recommendations or procedures for developing the EDS, the staff cannot evaluate the merits of the proposed approach.

The staff considers the SSE developed for the ESP site to be consistent with Appendix S to 10 CFR Part 50, which defines the SSE as the "vibratory ground motion for which certain structures, systems, and components must be designed to remain functional." Section 2.5.2.3.5 of this SER addresses the applicant's compliance with 10 CFR 100.23(d) with regard to the SSE. Future modifications of the SSE spectrum, if any, in an application for a COL or CP must be compatible with 10 CFR Parts 50 and 100.

2.5.2.4 Conclusions

As set forth above, the staff reviewed the seismological information submitted by the applicant in SSAR Section 2.5.2. On the basis of its review of SSAR Section 2.5.2 and the applicant's responses to the RAIs and open items, as described above, the staff finds that the applicant has provided a thorough characterization of the seismic sources surrounding the site, as required by 10 CFR 100.23. In addition, the staff finds that the applicant has adequately addressed the uncertainties inherent in the characterization of these seismic sources through a PSHA, and that this PSHA follows the guidance provided in RG 1.165. The staff concludes that the controlling earthquakes and associated ground motion derived from the applicant's PSHA are consistent with the seismogenic region surrounding the ESP site. In addition, the staff finds that the applicant's SSE was determined in accordance with RG 1.165 and Section 2.5.2 of NUREG-0800 and accurately includes the effects of the local ESP subsurface properties. The

staff concludes that the proposed ESP site is acceptable from a geologic and seismologic standpoint and meets the requirements of 10 CFR 100.23.

2.5.3 Surface Faulting

SSAR Section 2.5.3 describes the potential for tectonic fault rupture at the ESP site. The applicant concluded that the site has no potential for tectonic fault rupture since no capable tectonic sources exist within a 5-mile radius of the ESP site. SSAR Section 2.5.3.1 describes the applicant's geological, seismological, and geophysical investigations to assess the potential for surface faulting within a 5-mile radius of the ESP site. SSAR Section 2.5.3.2 describes the geologic evidence, or absence of evidence, for surface deformation. SSAR Section 2.5.3.3 describes the correlation of earthquake epicenters with faults in the vicinity of the ESP site. SSAR Section 2.5.3.4 provides the ages of the most recent deformations in the site area. Finally, SSAR Sections 2.5.3.5 through 2.5.3.8 describe tectonic structures in the site area, the absence of capable sources and Quaternary deformation, and the potential for tectonic or nontectonic deformation at the site.

2.5.3.1 Technical Information in the Application

2.5.3.1.1 Surface Faulting Investigations

Geological, Seismological, and Geophysical Investigations

According to SSAR Section 2.5.3.1, the applicant performed the following investigations to assess the potential for surface faulting at and within a 5-mile radius of the ESP site:

- compilation and review of existing data
- interpretation of aerial photography
- field reconnaissance
- review of seismicity
- discussions with current researchers in the area

Based on previous site investigations performed for the existing NAPS Units 1 and 2, the applicant concluded that (1) no evidence of surface rupture, surface warping, or the offset of geomorphic features indicative of active faulting exists, (2) no historical seismic activity has occurred in the site area, as the closest epicenter location is 30 miles away, and (3) inspections of excavations during construction and examination of soil and rock samples from borings reveal no evidence of geologically recent faulting.

The applicant performed aerial and field reconnaissance investigations within a 25-mile radius of the ESP site, and it examined and interpreted aerial photographs of all known faults within 5 miles of the site. Through these studies, the applicant verified the existence of mapped bedrock faults in the site area and assessed the presence or absence of geomorphic features that indicate potential Quaternary fault activity.

In addition to its own investigations, the applicant used USGS maps of the area, as well as a USGS compilation of all Quaternary faults, liquefaction features, and possible tectonic features

in the eastern United States, to assess the potential for surface faulting within a 5-mile radius of the ESP site.

Geologic Evidence for Surface Deformation

SSAR Section 2.5.3.2 lists the following bedrock faults that are within 5 miles of the ESP site:

- Chopawamsic fault
- Spotsylvania thrust fault
- unnamed faults "a," "b," and "c"
- Sturgeon Creek fault
- Long Branch thrust fault

All of these faults formed during the early Paleozoic Era as part of the regional Taconic orogeny and may have become reactivated during later Paleozoic orogenies (Acadian and Allegheny). The applicant stated that several of the faults may have been locally reactivated during the Triassic episode of continental rifting; however, none of these faults border Triassic basins, implying that Triassic reactivation, if any, was not significant. Figure 2.5.3-1, reproduced from SSAR Figure 2.5-56, shows these Paleozoic faults on an ESP site vicinity geologic map.

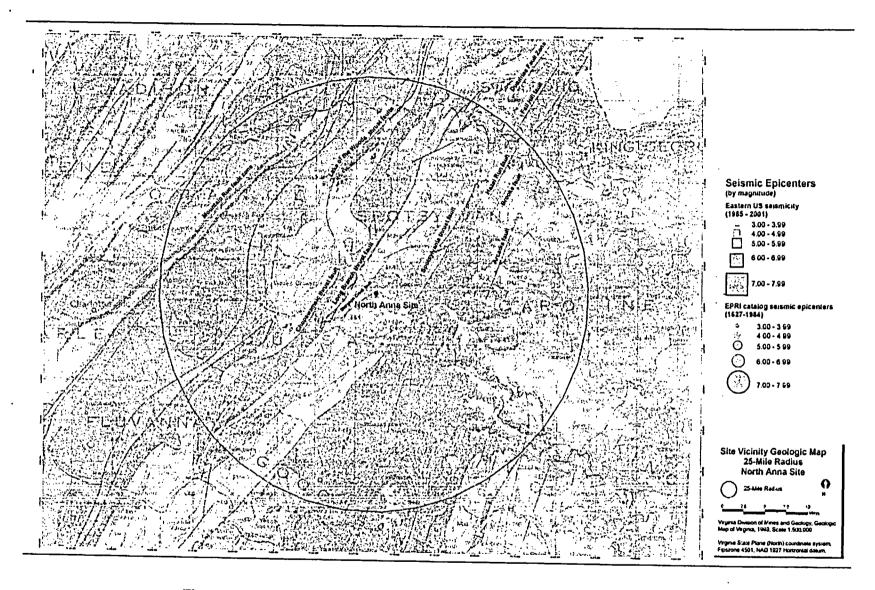


Figure 2.5.3-1 Site vicinity geologic map and seismicity (25-mile radius)

SSAR Section 2.5.3.2 states that the applicant identified no deformation or geomorphic features indicative of potential Quaternary activity in the literature or during aerial and field reconnaissance. In addition, the recent USGS compilation of all Quaternary faults, liquefaction features, and possible tectonic features in the eastern United States includes none of the faults listed above as potential Quaternary faults.

In RAI 2.5.3-1, the staff asked the applicant to provide additional detail on its field investigations and aerial reconnaissance of the site area. In response to RAI 2.5.3-1, the applicant stated that it performed aerial and field reconnaissance along faults within a 5-mile radius of the ESP site. The applicant's reconnaissance emphasized unnamed fault "a" and the Sturgeon Creek fault because of their proximity to the site. In addition, the applicant covered parts of the Spotsylvania, Chopawamsic, and Long Branch faults where these faults were mapped near local roads and/or where they potentially offset plutonic (igneous) margins or metamorphic contacts. Based on the absence of any geomorphic expression indicative of potential Quaternary deformation, the applicant concluded that none of the faults are capable. In addition, the applicant stated that all of the faults in the site area cross gently rolling topography, with relief on the order of 200 ft, and that this rolling topography formed through dissection and erosion of a once broad, continuous Miocene (5-24 ma) pediment that extended across the region. The applicant looked for potential elevation differences in the Miocene pediment gravels across each of the faults that would suggest post-Miocene vertical separation. Based on its field reconnaissance, the applicant did not observe any significant elevation differences. Therefore, the applicant concluded based on its detailed field observations and aerial reconnaissance that, for all seven faults within the site area, no evidence or criteria would suggest Quaternary activity on these structures.

Foundation excavations for the abandoned NAPS Units 3 and 4 exposed the unnamed bedrock fault "a" traversing the North Anna site. Detailed investigations of this fault show no evidence of Quaternary faulting. Therefore, the applicant concluded that this fault is not a capable tectonic source. In reviewing the applications for construction permits for abandoned NAPS Units 3 and 4, the applicant indicated that the Atomic Energy Commission (which subsequently became the NRC) accepted this position in its 1974 SER for Units 3 and 4.

In RAI 2.5.3-2, the staff asked the applicant to further support its conclusion that unnamed fault "a" does not extend beyond the ESP site, as mapped by Pavlides (Ref. 36, SSAR Section 2.5). In its response, the applicant stated that the NAPS licensee discovered fault "a" in 1973 during the foundation excavation for the abandoned NAPS Units 3 and 4 and subsequently mapped fault "a" for a distance of about 3000 ft. Virginia Power did not observe fault "a" in the foundation excavations for the existing Units 1 and 2. The applicant stated that Pavlides, who is deceased, did not provide an explanation for extending fault "a" for a total distance of about 7 miles. Subsequently, Mixon and others (Ref. 66, SSAR Section 2.5) adopted Pavlides' interpretation of the extent of fault "a." The applicant stated that Pavlides did not map any offset stratigraphic contacts in the Lake Anna area to support the mapped location of the fault. In addition, a close inspection of the original mapping by Pavlides compared to the compilation map by Mixon shows that the offsets that are apparently mapped in the stratigraphic contacts appear to be a compilation error. The applicant provided further evidence to support its original mapping of fault "a" in response to RAI 2.5.3-1.

Correlation of Earthquake with Capable Tectonic Sources

SSAR Section 2.5.3.3 states that no reported historical earthquake epicenters have been associated with bedrock faults within a 25-mile radius of the ESP site vicinity. The applicant established a seismic monitoring network for NAPS and recorded very small earthquakes (microearthquakes) over a 3.5-year period from 1974 to 1977. The applicant used this monitoring program to determine if seismic activity could be associated with faults in the site area or if Lake Anna was producing reservoir-induced seismicity. The applicant concluded that the microearthquakes detected in the site area could not be associated with either faults in the site area or with the impoundment of Lake Anna. Four of the original 17 seismic monitoring stations in the network were incorporated into the VT Central Virginia Monitoring Network for the specific purpose of monitoring any changes in seismicity in the region of the NAPS. To date, no changes in local earthquake activity have been observed that would alter the conclusions regarding the lack of association of microearthquakes with faults in the site area. Microearthquakes in the site area occur at a level no greater than the spatially varying background activity found in the CVSZ.

Ages of Most Recent Deformations

SSAR Section 2.5.3.4 states that none of the seven faults within 5 miles of the ESP site exhibit evidence of Quaternary activity. All of these faults formed during the Paleozoic Era as part of the Taconic orogeny and may have been reactivated during later Paleozoic orogenies or during the Triassic continental rifting. Based on a review of the available literature and field investigations, the applicant concluded that the seven bedrock faults within 5 miles of the site are old structures that formed during the Paleozoic-age orogenies or early Mesozoic-age rifting.

Relationship of Tectonic Structures in Site Area to Regional Tectonic Structures

SSAR Section 2.5.3.5 states that the seven faults in the site area are located within the Chopawamsic belt, which is interpreted to be an island-arc that was accreted to North America during the Taconic orogeny. Following the Taconic orogeny, rocks of the Chopawamsic belt were deformed and thrust westward during the Acadian and Allegheny orogenies that occurred later during the Paleozoic Era. Extensional tectonics may have also affected the rocks in the Chopawamsic belt during the Mesozoic rifting.

Characterization of Capable Tectonic Sources

SSAR Section 2.5.3.6 states that no capable tectonic sources exist within 5 miles of the ESP site.

Designation of Zones of Quaternary Deformation Requiring Detailed Fault Investigations

SSAR Section 2.5.3.7 states that no zones of Quaternary deformation warrant detailed investigations within the site area.

Potential for Tectonic or Nontectonic Deformation at the Site

SSAR Section 2.5.3.8 states that the ESP site has a negligible potential for tectonic deformation. Since the original studies in the early 1970s, no new information has been reported to suggest the existence of any Quaternary surface faults or capable tectonic sources within the site area. In addition, the site shows no evidence of nontectonic deformation, such as glacially induced faulting, collapse structures, growth faults, salt migration, or volcanic intrusion.

2.5.3.2 Regulatory Evaluation

SSAR Section 2.5.3 describes the applicant's evaluation of the potential for surface deformation that could affect the site. In SSAR Section 1.8, the applicant stated that the information presented in SSAR Section 2.5.3 conforms with the requirements of GDC 2 of Appendix A to 10 CFR Part 50, Appendix S to 10 CFR Part 50, and 10 CFR 100.23. The applicant also stated that it developed the geological, seismological, and geophysical information used to evaluate the potential for surface deformation in accordance with the guidance presented in NUREG-0800, Revision 3, Section 2.5.3, and RGs 1.70, 1.132, 1.165, and 4.7.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 100.23(d)(2), which state that an applicant for an ESP must determine the potential for surface tectonic and nontectonic deformations. The staff notes that application of Appendix S in an ESP review, as referenced in 10 CFR 100.23(d), is limited to defining the minimum SSE for design. Section 2.5.3 of NUREG-0800 and RG 1.165 provide specific guidance concerning the evaluation of information characterizing the potential for surface deformation, including the geological, seismological, and geophysical data that the applicant must provide to establish the potential for surface deformation.

2.5.3.3 Technical Evaluation

This section of the SER provides the staff's evaluation of the seismological, geological, and geophysical investigations carried out by the applicant to address the potential for surface deformation that could affect the site. The technical information presented in SSAR Section 2.5.3 resulted from the applicant's surface and subsurface investigations performed in progressively greater detail as they moved closer to the ESP site. Through its review, the staff determined whether the applicant complied with the applicable regulations and conducted its investigations with an appropriate level of thoroughness.

In order to thoroughly evaluate the surface faulting investigations performed by the applicant, the staff sought the assistance of the USGS. The staff and its USGS advisors visited the ESP site and met with the applicant to assist in confirming the interpretations, assumptions, and conclusions presented by the applicant concerning potential surface deformation. Specific areas of review include the geological investigations (SSAR Section 2.5.3.1), evidence for surface deformation (SSAR Section 2.5.3.2), correlation of earthquake activity with capable seismic sources (SSAR Section 2.5.3.3), ages of most recent deformations (SSAR Section 2.5.3.4), site area and regional tectonic relationships (SSAR Section 2.5.3.5), characterization of capable tectonic sources (SSAR Section 2.5.3.6), Quaternary deformation in the site region (SSAR Section 2.5.3.7), and the potential for surface tectonic deformation at the site (SSAR Section 2.5.3.8).

2.5.3.3.1 Surface Faulting Investigations

The staff focused its review of SSAR Sections 2.5.3.1 through 2.5.3.8 on the adequacy of the applicant's investigations to ascertain the potential for surface deformation that could affect the site. The staff reviewed the applicant's summary of previous site investigations performed for the existing NAPS Units 1 and 2 and the abandoned NAPS Units 3 and 4, as well as recent investigations.

In RAI 2.5.3-1, the staff asked the applicant to provide additional detail on its field investigations and aerial reconnaissance of the site area. In its response, the applicant stated that it performed aerial and field reconnaissance along each of the faults within a 5-mile radius of the ESP site. The staff reviewed the evidence presented by the applicant's response to RAI 2.5.3-1, particularly the applicant's documentation of its field reconnaissance. Specifically, the staff reviewed the applicant's description of its search for evidence of Quaternary deformation for each of the faults, including the applicant's field observations across the Miocene pediment that extends across the region. The staff and its USGS consultants also visited the site area and viewed the continuous, gently inclined Miocene surface referred to in the applicant's response. The staff did not observe any significant vertical displacements that would indicate post-Miocene (5-24 ma) displacement or activity. In summary, the staff and its consultants did not observe evidence for Quaternary activity on any of these local faults and conclude that the applicant has adequately investigated the potential for surface deformation as required by 10 CFR 100.23.

In RAI 2.5.3-2, the staff asked the applicant to further support its conclusion that unnamed fault "a" does not extend beyond the ESP site as mapped by Pavlides (Reference 36, SSAR 2.5.2). In its response, the applicant stated that Virginia Power discovered fault "a" in 1973 during the foundation excavation for the abandoned NAPS Units 3 and 4 and subsequently mapped fault "a" for a distance of about 3000 ft. Virginia Power did not observe fault "a" in the foundation excavations for the existing NAPS Units 1 and 2. The applicant stated that Pavlides, who is deceased, did not provide an explanation for extending fault "a" for a total distance of about 7 miles. Subsequently, Mixon and others (Ref. 66, SSAR Section 2.5.2) adopted Pavlides' interpretation of the extent of fault "a." The applicant stated that Pavlides did not map any offset stratigraphic contacts in the Lake Anna area to support the mapped location of the fault. In addition, the applicant's inspection of the original mapping by Pavlides compared to the compilation map by Mixon showed that the offsets apparently mapped in the stratigraphic contacts appear to be a compilation error. During its field reconnaissance, the applicant found no scarps or lineaments along the extended trace of fault "a" as mapped by Pavlides. The staff notes that the NAPS licensee's trenching of the fault "a" shows that it is most likely a minor fault or bedrock shear within the Ta River metamorphic suite and that it is very unlikely that such a minor fault could be recognized or mapped over a significant distance without a significant number of exposures. The applicant provided further evidence, described above, to support its original mapping of fault "a" in response to RAI 2.5.3-1. Based on this evidence, the staff concludes that fault "a" is unlikely to extend much farther than originally mapped by the applicant.

In SSAR Table 1.9-1, the applicant identified the item "Capable Tectonic Structures or Sources" as an ESP site characteristic. This item specifies that no fault displacement potential exists within the investigative area. As described above, the staff reviewed the applicant's description

of unnamed fault "a" in SSAR Section 2.5.3.2.2 and concludes that the ESP site has no fault displacement potential.

Based on its review of SSAR Sections 2.5.3.1 through 2.5.3.8 and the applicant's responses to the RAIs, as set forth above, the staff concludes that the applicant adequately investigated the potential for surface faulting in the site area. The staff concludes that the applicant performed extensive field and aerial reconnaissance of the local faults and concurs with the applicant's assertion that no capable faults exist within the site area. The staff and its USGS consultants also visited the site area and were able to view some of these local faults. Based on its site visit and its review of SSAR Section 2.5.3, as set forth above, the staff concurs with the applicant's conclusion that there is no evidence of Quaternary folding or faulting that could be associated with these local faults.

2.5.3.4 Conclusions

In its review of the geologic and seismologic aspects of the ESP site, the staff considered the pertinent information gathered by the applicant during the regional and site-specific geological. seismological, and geophysical investigations. As a result of this review, described above, the staff concludes that the applicant performed its investigations in accordance with 10 CFR 100.23 and RG 1.165 and provided an adequate basis to establish that no capable tectonic sources exist in the site vicinity that would cause surface deformation in the site area. The staff concludes that the site is suitable from the perspective of tectonic surface deformation and meets the requirements of 10 CFR 100.23.

2.5.4 Stability of Subsurface Materials and Foundations

SSAR Section 2.5.4 presents information on the stability of subsurface materials and foundations at the ESP site. SSAR Section 2.5.4.2 describes the engineering properties of the subsurface materials, SSAR Section 2.5.4.3 summarizes both the previous subsurface investigations and ESP exploration program, SSAR Section 2.5.4.4 summarizes geophysical investigations performed at the site, SSAR Section 2.5.4.5 describes the extent of anticipated excavations, fills, and slopes, Section SSAR 2.5.4.6 describes the ground water conditions at the site, SSAR Section 2.5.4.7 provides the response of subsurface materials to dynamic loading, and SSAR Section 2.5.4.8 describes the liquefaction potential of the site. SSAR Sections 2.5.4.1, 2.5.4.9, and 2.5.4.11 refer to topics that the SSAR covers in greater detail elsewhere. Finally, SSAR Section 2.5.4.12 summarizes techniques that would be used to improve subsurface conditions.

2.5.4.1 Technical Information in the Application

2.5.4.1.1 Geologic Features

SSAR Section 2.5.4.1 refers to the description of regional and site geologic features in SSAR Sections 2.5.1.1 and 2.5.1.2. Section 2.5.1.3 of this SER contains the technical evaluation of this information.

2.5.4.1.2 Properties of Subsurface Materials

SSAR Section 2.5.4.2 describes the static and dynamic engineering properties of the ESP site subsurface materials. Section 2.5.4.2 also describes the subsurface materials, as well as laboratory test results and the engineering properties of the subsurface materials.

Description of Subsurface Materials

The applicant stated that it derived the properties of the subsurface materials encountered at the site from 140 subsurface borings made to date at both the NAPS and the ESP sites. The applicant divided the subsurface materials into five zones and described them as summarized below. Figures 2.5.4-1 and 2.5.4-2, reproduced from SSAR Figures 2.5-57 and 2.5-58, show two subsurface profiles (A-A' and B-B') that depict the layering of each of the soil and rock zones beneath the ESP site as well as the ESP borehole locations.

Zone IV Bedrock

Zone IV is composed of fresh to slightly weathered gneiss, which is a metamorphic rock that exhibits a banded texture (foliation) in which light and dark bands alternate. Gneiss is composed of feldspar, quartz, and one or more other minerals such as mica and hornblende. The top of the Zone IV (including Zone III-IV) bedrock at the ESP site ranges from an elevation of 188 to 298 ft.

Zone III Weathered Rock

The weathered rock has the same constituents as the parent rock. It is described as moderately to highly weathered rock, sometimes with unweathered seams and sometimes with a high fracture frequency. It is defined as having at least 50 percent core stone. The top of the Zone III bedrock at the ESP site ranges from an elevation of 205 to 298 ft.

Zone IIA and IIB Saprolites

Saprolites are a further stage of weathering beyond weathered rock. They have been produced by the disintegration and decomposition of the bedrock in place and have not been transported. Although classified as soils, saprolites contain the relict [remnant] structure of the parent rock, as well as some core stone of the parent rock. The ESP site saprolites in many instances maintain the foliation characteristics of the parent rock. They are classified primarily as silty sands, although there are also sands, clayey sands, sandy silts, clayey silts, and clays, depending on their degree of weathering. The fabric is anisotropic. The texture shows angular geometrically interlocking grains with a lack of void network, very unlike the well-pronounced voids found in marine or alluvial sands and silts.

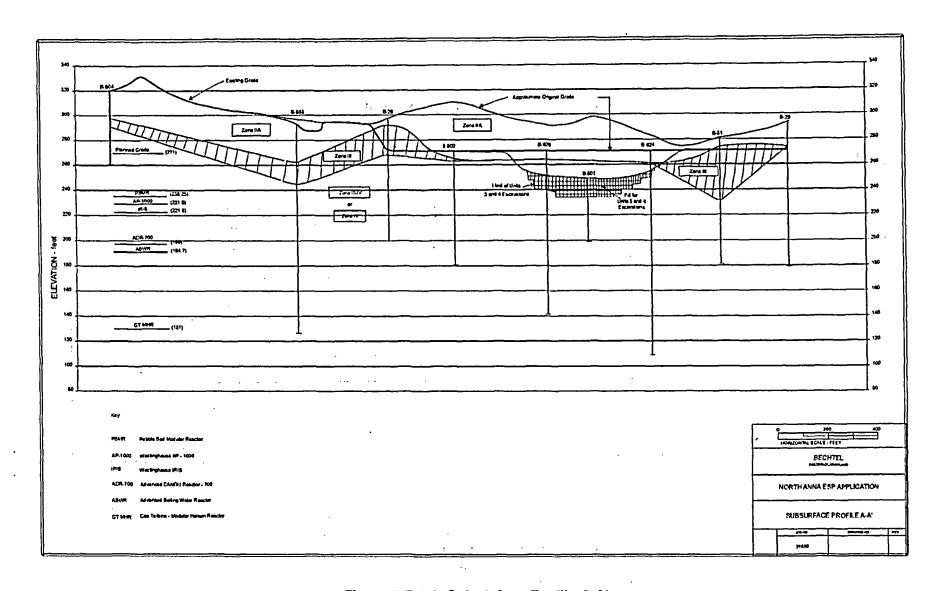


Figure 2.5.4-1 Subsurface Profile A-A'

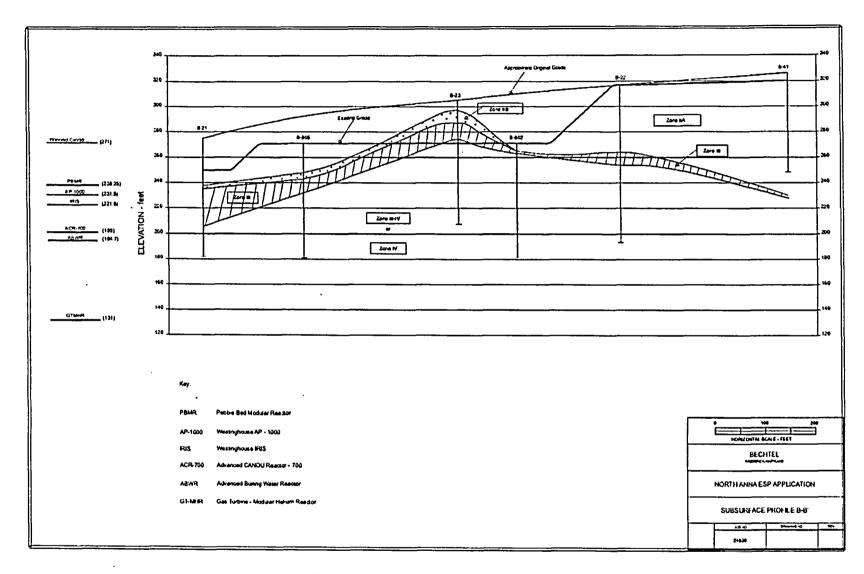


Figure 2.5.4-2 Subsurface Profile B-B'

The distribution of the Zone IIA and IIB saprolites varies throughout the site. On average, the Zone IIB saprolites represent about 20 percent of the saprolites on site and are typically very dense, silty sands with 10 to 50 percent core stone. The thickest Zone IIB deposit encountered in the borings is 37 ft. The overlying Zone IIA saprolites comprise, on average, about 80 percent of the saprolitic materials on site. About 75 percent of the Zone IIA saprolites are classified as coarse grained (sands, silty sands), while the remainder are fine grained (clayey sands, sandy and clayey silts, and clays). The saprolites typically become finer toward the ground surface. The thickest Zone IIA deposit encountered in the borings is 101 ft.

Zone I and Fill

Typically, very little Zone I residual soil exists onsite; on average, less than one percent of the soil is Zone I. The Zone I soils are either at the surface or are immediately below the fill placed during construction of the earlier units. This fill generally consists of Zone IIA soils.

Laboratory Testing

SSAR Section 2.5.4.2.4 describes the results of numerous laboratory tests of soil and rock samples performed previously, as well as the new tests performed for the ESP site investigation. The applicant performed the large majority of the tests on the Zone IIA saprolite soils for the various investigations for the SWR for the existing NAPS units; the following briefly summarizes these investigations.

Laboratory Tests for the SWR

The laboratory testing of the SWR soils focused on the strength, compressibility, and liquefaction potential of the Zone IIA saprolites. The tests include (1) cyclic triaxial tests to provide input for analysis of the liquefaction potential of the soils, (2) static triaxial shear tests including both consolidated-undrained as well as unconsolidated-undrained tests to determine shear strength parameters, (3) consolidation tests to determine the deformation behavior under various loadings, and (4) examinations of thin sections to determine the fabric, texture, and mineralogy of the saprolite. Appendix A to SSAR Section 2.5.4 presents the results of the laboratory testing of the SWR soils, which the applicant used to determine liquefaction potential, static stability, and the response of the soil to dynamic loading.

Laboratory Tests for ESP

The applicant performed laboratory testing for the ESP investigation to verify the large number of test results for previous investigations. The ESP tests focused on (1) verifying the basic properties of the Zone IIA saprolite, (2) obtaining chemical tests on the Zone IIA saprolites for corrosiveness toward buried steel and aggressiveness toward buried concrete, and (3) obtaining additional strength and elastic modulus data for the bedrock on which the main safety-related structures might be founded. Appendix B to SSAR Section 2.5.4 presents the results of the ESP laboratory tests, summarized for soil in SSAR Table 2.5-43 and for rock in SSAR Table 2.5-44. The results listed in these SSAR tables include (1) Atterberg limits (i.e., liquid, plastic, and plasticity), (2) sieve weight percentages using a #200 sieve (0.075 mm opening), and (3) soil chemistry (i.e., pH, chlorides, and sulfates). The applicant stated that the ESP laboratory test results are similar to those obtained from previous testing.

Engineering Properties

Table 2.5-45 of the SSAR presents the engineering properties of materials in subsurface Zones IIA, IIB, III, III-IV, and IV, which the applicant derived from the previous studies and from ESP field exploration and laboratory testing programs. These properties include standard geotechnical parameters such as natural moisture content, undrained shear strength, effective cohesion, effective friction angle, total unit weight, standard penetration test (SPT) blow count values, shear and compression wave velocities, elastic and shear moduli, consolidation characteristics, and static earth pressure coefficients. The following sections describe the sources and/or methods used to develop the selected properties shown in SSAR Table 2.5-45.

Rock Properties

The results given in SSAR Table 2.5-41 provide the basis for the recovery and rock quality designations (RQDs). The ESP rock strength results shown in SSAR Table 2.5-44 and the rock strengths from the investigations for the existing units form the basis for the unconfined compressive strength. The unit weight is based on the values measured in the ESP rock strength tests (SSAR Appendix 2.5.4B).

The elastic modulus values are based on the values shown in SSAR Table 2.5-44. These values agree well with those derived from the geophysical tests performed for the ESP exploration program, as described in SSAR Section 2.5.4.4.2. The shear modulus values are derived from the elastic modulus values using the Poisson's ratio values given in SSAR Table 2.5-45, which are based on the values provided in SSAR Table 2.5-44. Low- and high-strain modulus values are essentially the same for high-strength rock (i.e., for the Zone IV rock). Similarly, no strain softening is assumed for the Zone III-IV rock. The shear and compression wave velocities are based on the crosshole and downhole seismic tests performed as part of the ESP exploration program. These results, summarized in SSAR Section 2.5.4.4.2, agree with those of the geophysical tests performed for the existing units.

In RAI 2.5.4-2(a), the staff asked the applicant to describe the extent of severely weathered fracture zones in the Zone III-IV and IV rock that Virginia Power observed during the site investigation for abandoned Units 3 and 4. The applicant observed similarly fractured rock in four of the seven ESP borings. In response to RAI 2.5.4-2, the applicant provided a table that shows an RQD of less than 25 percent in nine of the borings for abandoned Units 3 and 4. The applicant noted that most of the rock thicknesses for the low RQD intervals (less than 10 percent) are only 1 to 2 ft thick. In RAI 2.5.4-2(b), the staff asked the applicant to describe the impact of these fractured rock zones on the suitability of the site to host safety-related structures. In response to RAI 2.5.4-2(b), the applicant stated the following:

As noted in these SSAR sections, any weathered or fractured zones encountered at foundation level would be excavated and replaced with lean concrete. If such zones exist below sound rock beneath the foundation, they would have no impact on the stability of the foundation, since these zones are typically only 0.5 to 1-foot thick, and are confined within an unfractured rock mass with strengths of 4,000 to 12,000 psi (compared to the maximum foundation pressure of just over 100 psi). The foundation itself would consist of a large, thick, highly-reinforced concrete mat that is so stiff that it cannot logically yield.

Multiple borings would be performed at each structure location once the building locations are chosen as part of detailed engineering. These borings would identify whether there are any thicker fracture zones beneath the foundation than those encountered in the ESP borings and in the abandoned Units 3 and 4 borings. If any thicker zones are found, analysis would be performed to identify their impact on foundation stability. If they are close enough to the foundation to potentially impact stability, they would be excavated and replace with lean concrete.

Soil Properties

Grain size curves from 13 sieve analyses of Zone IIA silty sand samples from the ESP laboratory testing program fit within the envelope of the 12 sieve analyses of Zone IIA silty sands sampled from borings near the SWR pump house. The natural moisture content of the fine-grained Zone IIA saprolite, determined from the moisture content tests performed on fine-grained Zone IIA saprolites for the past and the present (ESP) investigations, ranges from 14 to 56 percent.

The applicant estimated undrained shear strength of the fine-grained Zone IIA saprolite from SPT –values and cone penetrometer test (CPT) results, as well as from the results of 18 unconsolidated-undrained triaxial compression tests and 3 unconfined compression tests. The effective strength parameters for the fine-grained saprolite are based on the results of consolidated-undrained triaxial tests on fine-grained saprolite run for the previous ISFSI (Ref. 6, SSAR Section 2.5) and SWR investigations (Appendix A to SSAR Section 2.5.4).

The applicant stated that it would typically assume an effective angle of internal friction of the medium-dense coarse-grained saprolite (N=20 blows/ft) of about 35 degrees. However, the high silt content and the presence of low-plasticity clay minerals reduce this angle. Consolidated-undrained triaxial tests reported in Appendices 2C and 3E to the UFSAR for the existing units produced internal friction angles ranging from 23 to 33 degrees, with a median of 30.8 degrees. Thus, the applicant selected an angle of 30 degrees. The average effective cohesive component from the UFSAR Appendix 2C tests is 0.275 kps per square foot (ksf). The applicant selected a value of 0.25 ksf for the cohesive component.

Based on a large amount of testing performed after low unit weights were measured in the Zone IIA saprolites in the SWR area, the NAPS licensee concluded that there are isolated lower densities, but that these are not typical. Table 3.8-13 of the NAPS UFSAR identifies 125 pounds per cubic foot (pcf) as a design total unit weight. The 130 pcf shown in SSAR Table 2.5-45 for the Zone IIB saprolites reflects the high relative density of that material.

The applicant stated that the SPT design N-value of 20 blows/ft for the Zone IIA saprolite is conservatively based on the results reported in SSAR Table 2.5-40. Those results show median N-values for the ESP and ISFSI investigations of 21 blows/ft, with the median N-values for the existing units, abandoned Units 3 and 4, and SWR investigations ranging from 25 to 52 blows/ft.

The shear wave velocities measured in the ESP crosshole seismic tests in the Zone IIA sandy silt from a depth of 7.5 to 27 ft range from 650 to 1350 ft/s, with an average of 998 ft/s. The CPT seismic results are somewhat higher. The UFSAR has a value of 950 ft/s for the Zone IIA

saprolite. The applicant selected a value of 950 ft/s for the Zone IIA saprolite, as shown in SSAR Table 2.5-45. For the Zone IIB saprolite, the shear wave velocity derived from the low strain value of shear modulus agrees well with the results from the CPT seismic tests, at around 1600 ft/s. Section 2.5.4.7 of the SSAR gives the profile of shear wave velocity versus depth for the saprolite.

The applicant derived the high-strain (i.e., in the range of 0.25 to 0.5 percent) elastic modulus values for the coarse-grained Zone IIA saprolite and the Zone IIB saprolite using the relationship with the SPT –value given in the literature (Ref. 151, SSAR Section 2.5). In addition, the applicant derived the high-strain elastic modulus for the fine-grained Zone IIA saprolite using the relationship with undrained shear strength (also given in SSAR Ref. 151). The applicant stated that it slightly adjusted the Zone IIA coarse- and fine-grained values to obtain a common value. The applicant obtained the shear modulus (G) values from the elastic modulus values using the relationship between elastic modulus (E), shear modulus, and Poisson's ratio (v).

$$G = \frac{E}{2(1+\nu)}$$

The applicant derived the low-strain (i.e., 10^{-4} percent) shear modulus for the Zone IIA saprolite from the shear wave velocity of 950 ft/s. Similarly, the applicant derived the low-strain shear modulus (G_{max}) of the Zone IIB saprolite from the shear wave velocity of 1600 ft/s. The applicant obtained the elastic modulus values for the Zone IIB saprolite from the shear modulus values using the relationship between elastic modulus, shear modulus, and Poisson's ratio (Ref. 150, SSAR Section 2.5).

The values derived from the settlement studies performed for the SWR pump house, as detailed in Appendix 3E to the UFSAR, include the recompression ratio (total amount of settlement) and the coefficient of secondary compression (after primary consolidation). The values of unit coefficient of subgrade reaction are based on values for medium-dense sand (Zone IIA saprolite) and very dense sand (Zone IIB saprolite) provided by Terzaghi (Ref. 152, SSAR Section 2.5). The earth pressure coefficients (ratio of lateral load to vertical load) are Rankine values, assuming level backfill and a zero friction angle between the soil and the wall.

In RAI 2.5.4-4, the staff asked the applicant to explain how the total thickness of the soil layers sampled at the ESP site (105 ft) is sufficient to characterize the soil properties underlying the site. The applicant responded that the 138 borings previously performed by Virginia Power for Units 1 and 2 as well as the abandoned Units 3 and 4 characterize the soils at the North Anna site very well. The applicant stated that the soils in all of borings show the same general subsurface profile and that it used the ESP borings to show that the soil (and rock) profiles in each of the borings fit within the general subsurface profile.

Chemical Properties

The applicant performed chemical tests on selected Zone IIA samples. In addition to the tests performed for the ESP site investigation (see the results shown in SSAR Table 2.5-43), Virginia Power previously performed chemical tests on two samples from the subsurface investigation for the existing units. The six pH test results range from 5.7 to 6.9, in the mildly corrosive to neutral range. The six sulfate test results range from about 1 to 28 parts per million, indicating no aggressiveness toward concrete. Three of the chloride test results range from 100 to 170 milligrams per kilogram (mg/kg), indicating little corrosive potential toward buried steel. The fourth chloride test produced 920 mg/kg, indicating potential corrosiveness toward buried steel.

2.5.4.1.3 Exploration

SSAR Section 2.5.4.3 describes the previous subsurface investigations performed at the NAPS site as well as the ESP exploration program.

Previous Subsurface Investigation Programs

For the existing Units 1 and 2, the NAPS licensee performed 60 borings in 1968, with boring depths ranging from 20 to 150 ft. For the abandoned Units 3 and 4, Virginia Power performed 47 borings in 1971, with boring depths ranging from 40 to 175 ft. Virginia Power performed an additional 22 borings in the SWR area after 1976, as well as 9 borings in 1994 for the ISFSI. The borings used SPT sampling, Dames and Moore soil samplers, and NX-size double-tube core barrels for rock coring. SSAR Tables 2.5-30 through 2.5-37 summarize the boring locations, the elevations for each of the subsurface zones, and RQDs. Figure 2.5.4-3, reproduced from SSAR Figure 2.5-59, shows the locations of the previous borings.

In RAI 2.5.4-3, the staff asked the applicant to describe how it integrated the NAPS licensee's site investigations for the SWR and the ISFSI with its field investigations for the ESP site. The applicant responded that the SWR and ISFSI borings are as close to the ESP area as any other borings and disclosed the same subsurface profile displayed by the other borings at the North Anna site (see SER Figure 2.5.4-3). In addition, the applicant stated that it used some of the SWR and ISFSI borings, which are close to the southeast corner of the ESP footprint, noted in RAI 2.5.4-1, to help characterize the ESP area.

ESP Subsurface Investigation Program

The applicant stated that it performed the ESP subsurface investigation in 2002, covering the area proposed for the new units and the cooling towers for the new units. This investigation consisted of relatively few exploration points, compared to previous field explorations for the existing units, abandoned units, SWR, and ISFSI. According to the applicant, it designed the ESP field explorations primarily to confirm the results obtained from the previous extensive investigations. The applicant stated that it would perform additional structure-specific exploration and testing during detailed engineering, and a COL application would describe this testing. Figure 2.5.4-4, reproduced from SSAR Figure 2.5-60, shows the ESP exploration point locations.

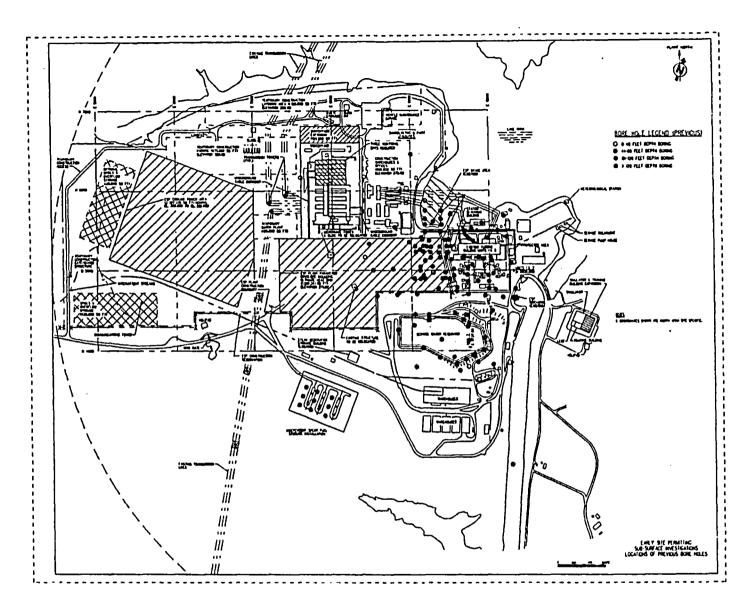


Figure 2.5.4-3 Locations of previous boreholes

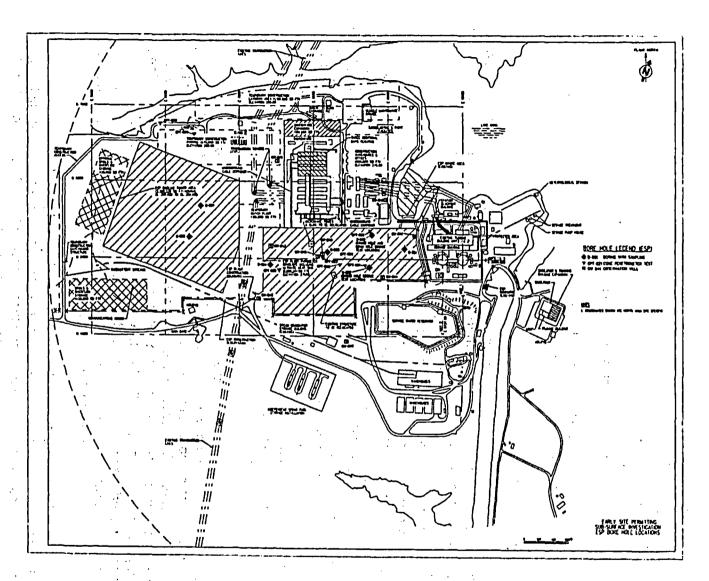


Figure 2.5.4-4 ESP borehole locations

The scope of work related to the ESP site investigation consisted of the following:

- seven exploratory borings
- nine observation wells
- eight CPTs
- two downhole seismic cone tests
- two pore pressure dissipation tests
- two sets of crosshole seismic tests
- one downhole seismic test
- a survey of all exploration points
- laboratory testing of borehole samples and cores

Appendix B to SSAR Section 2.5.4 provides details and results of the exploration program. The following summarizes the borings, observation wells (OWs), and CPTs.

Borings and Samples/Cores

According to the applicant, the seven borings drilled range from 50 to 170 ft in depth, averaging 85 ft. The 170-ft deep boring is 30 ft deeper than the deepest reactor design considered for the ESP. The applicant stated that it conducted the SPT in general accordance with American Society for Testing and Materials (ASTM) D1586 and performed rock coring in general accordance with ASTM D2113. The applicant stated that, after removal from the split inner barrel, it carefully placed the recovered rock in wooden core boxes. The onsite geologist visually described the core, noting the presence of joints and fractures and distinguishing natural breaks from mechanical breaks. The geologist also computed the percentage recovery and the RQD. Appendix B to SSAR Section 2.5.4 provides the boring logs and the photographs of the rock cores. These boring logs describe in detail the soil and rock materials encountered at different depths of the borings and also contain a record of the ground water level, the SPT blow counts, and the elevation of the top of the rock surface. The applicant used these data for the liquefaction analyses, bearing capacity calculations, and settlement analyses. The applicant stated that the soil and rock materials encountered in the ESP borings are similar to those found in the previous sets of borings conducted at the NAPS site.

In RAI 2.5.4-1, the staff asked the applicant to provide its basis for concluding that the subsurface conditions in the southeast portion of the ESP footprint (an area of about 500 ft by 1000 ft, in which there are no borings) do not materially differ from conditions in adjacent areas where borings were made. In its response, the applicant stated that the North Anna site is underlain by a consistent geologic profile, which extends to a depth of several thousand feet. The 145 borings performed throughout the North Anna site (including 7 for the ESP) indicate a consistent overall subsurface profile, with expected variations in the thickness of the various strata. As such, the applicant concluded that the southeast portion of the ESP footprint (see SER Figure 2.5.4-3) should be similar to the rest of the site.

In RAI 2.5.4-6, the staff asked the applicant to explain why it did not provide laboratory test results from the borings of subsurface materials over various depth intervals. The applicant responded that the containment (reactor) buildings for the new units would be founded on the Zone III-IV and/or Zone IV metamorphic gneiss bedrock at the North Anna site. Rock coring and testing performed by Virginia Power for Units 1 and 2 gave unconfined compressive strengths for the Zone III-IV and IV rock ranging from 1,000 to 16,300 psi with a median

strength of 6,800 psi. The applicant stated that these rock strengths are typical for this type of rock and more than sufficient to support the maximum containment (reactor) building loads of about 100 psi. The applicant added that, during logging of the rock cores in the field for the ESP investigation, it was apparent that the metamorphic rock is a strong material. The applicant stated that it performed sufficient tests on the ESP cores to verify that the rock strengths are similar to or higher than those cores tested for Units 1 and 2. The applicant determined that the median value of the unconfined compressive strengths of the Zone III-IV and IV rock from the ESP investigation is 18,400 psi.

Observation Wells

The applicant screened eight OWs with depths ranging from about 25 to 50 ft in soil and/or weathered rock. The applicant advanced boreholes for these wells with hollow stem augers. The applicant obtained samples at 5-ft intervals to provide information on an appropriate depth to set the slotted screen. The applicant screened the ninth well in rock. Each well was developed by pumping. The applicant considered the well developed when the pH and conductivity stabilized and the pumped water was reasonably free of suspended sediment. The applicant then performed permeability tests in each well in general accordance with ASTM D4044, Section 8, using the slug test method. Appendix B to SSAR Section 2.5.4 contains the details of the boring logs for the OWs, the well installation records, the well development records, and the well permeability test results. The boring logs of the OWs also describe the soil and rock seen in these borings. The applicant stated that it would use the ground water level data, as recorded in the OWs, in developing the dewatering program at the time of construction.

Cone Penetrometer Tests

The applicant stated that it advanced each of the CPTs to refusal (i.e., no further penetration), to depths ranging from 4 to 58 ft. The applicant stated that it performed the piezocone tests in general accordance with ASTM D5778. The pore pressure filter was located immediately behind the cone tip. The applicant performed pore pressure dissipation tests at a depth of 27 ft in CPT-823 and at a depth of 32.5 ft in CPT-827. Appendix B to SSAR Section 2.5.4 contains the CPT logs, shear wave arrival times, and pore pressure versus time plots, while SSAR Tables 2.5-38 and 2.5-39 summarize the CPT locations and depths.

2.5.4.1.4 Geophysical Surveys

Previous Geophysical Survey Programs

The NAPS licensee performed several geophysical studies for the investigation for the existing Units 1 and 2, including a seismic refraction survey in 1968. The seismic (compressional wave) velocities measured by Virginia Power in the relatively unweathered rock (Zone IV) range from 13,000 to 16,000 ft/s. Compressional wave velocities measured in weathered rock are around 5000 ft/s. Shear wave velocities in the Zone IV rock range from about 4000 to 8000 ft/s. The corresponding compressional wave velocities are about 8,000 to 16,000 ft/s. Unit weights range from about 140 to 170 pcf. Weston Geophysical performed seismic crosshole tests between the Unit 1 and 2 reactors and obtained shear wave velocities in the Zone IV rock between 5000 and 6000 ft/s. The UFSAR for the existing units provides a shear wave velocity for the saprolite (Zone IIA) of 950 ft/s.

Geophysical Surveys for ESP

For the ESP site geophysical investigation, the applicant performed two crosshole seismic tests, one downhole seismic test in a borehole, and two downhole seismic tests using a cone penetrometer.

Crosshole Seismic Tests

The applicant performed crosshole seismic tests immediately adjacent to borings B-802 and B-805. The applicant stated that it performed these tests in accordance with ASTM D 4428/D 4428M. The applicant used the B-802 location to obtain readings in rock, while it used the B-805 location to obtain readings in soil. The applicant performed tests in boring B-802 at 5-ft intervals in the rock at depths ranging from 27 to 90 ft; however, it only obtained shear wave velocity results at depths ranging from 27 to 45 ft. The applicant stated that severe high-frequency noise appears to have degraded the results in general, but particularly below a depth of 45 ft. The high-frequency noise obscured all of the compressional wave forms. The shear wave velocities in the rock at depths between 27 and 45 ft range from 4500 to 6000 ft/s. The applicant performed tests in borings B-805A, B, and C at 2.5- to 5-ft intervals in the soil from near the surface to a depth of 27 ft. The seismic waveforms were reasonably clear, except for the bottom interval, close to the rock interface. The shear wave velocities range from about 610 to 1380 ft/s, the compressional wave velocities range from about 1240 to 6550 ft/s, and the computed dynamic Poisson's ratios range from 0.27 to 0.49.

Downhole Seismic Tests

Since the crosshole tests in borings B-802A, B, and C yielded no compressional wave results and gave no shear wave velocity results below a depth of 45 ft, the applicant conducted downhole seismic testing in boring B-802B. Appendix B to SSAR Section 2.5.4 contains a detailed description of the results. The applicant stated that the shear wave was reasonably well defined to a depth of 45 ft, less defined from a depth of 45 to 65 ft, and not defined below a depth of 65 ft. Between 22.5 and 65 ft, shear wave velocities range from about 3400 ft/s to 6380 ft/s. Between 22.5 and 87 ft, compressional wave velocities range from about 10,000 ft/s to 16,600 ft/s. The computed dynamic Poisson's ratios range from 0.38 to 0.45.

Downhole Seismic Tests with Cone Penetrometer

The applicant performed downhole seismic tests at 5-ft intervals in CPT-822 and CPT-825. It recorded shear waves with a geophone attached near the bottom of the cone string. Appendix B to SSAR Section 2.5.4 plots shear wave arrival times versus depth. In CPT-822, the computed shear wave velocity between depths of 10 and 22 ft was about 1275 ft/s. In CPT-825, the computed shear wave velocity between depths of 6 and 30 ft was 1175 ft/s. For greater depths, between 30 and 45 ft, the computed shear wave velocity was about 1660 ft/s, and between 45 and 52 ft, it was about 2438 ft/s.

In RAI 2.5.4-5, the staff asked the applicant to explain why SSAR Table 2.5-45 does not give shear wave velocities for Zone IIB saprolite and Zone III and III-IV weathered rock. In its response, the applicant stated that SSAR Table 2.5-45 gives average shear wave velocities for Zones IIB, III, and III-IV but does not provide a range of values. In contrast, it provides both average values and a range of shear wave velocity values for Zones IIA and IV. According to

the applicant, it originally provided only average values for Zones IIB, III, and III-IV because the ESP borings did not sample these zones as abundantly as Zones IIA and IV. In response to this RAI, the applicant provided its method for determining the average shear wave velocity values for Zones IIB (1600 ft/s), III (2000 ft/s), and III-IV (3300 ft/s). In addition, the applicant used its laboratory measurements of the soil/rock properties for Zones IIB, III, and III-IV to indirectly determine the shear wave velocities. Accordingly, the applicant updated SSAR Table 2.5-45 to include the range in shear wave velocity for these three soil/rock zones.

2.5.4.1.5 Excavation and Backfill

SSAR Section 2.5.4.5 describes the extent of anticipated safety-related excavations, fills, and slope; excavation methods and stability; backfill sources and quality control; and construction dewatering impacts. The applicant stated that the construction of the proposed new units would involve a substantial amount of excavation in both soil and rock. Filling would consist almost entirely of backfilling around structures back up to plant grade. The only new permanent slope that may be created would be to the west of the SWR to accommodate the buried UHSs. if warranted by the selected design for the proposed additional units. The applicant stated that the top of the slope would be at least 200 ft from the top of the SWR embankment and, therefore, would not impact the SWR. Next, the applicant described excavation methods that it would use in soil and rock (i.e., blasting techniques and alternatives to blasting), backfill sources, and quality control. The applicant stated that structural fill would be either lean concrete or a sound, well-graded granular material. In addition, it would establish an onsite soils testing laboratory to control the quality of the fill materials and the degree of compaction. To control soil erosion, the applicant stated that it would line any sumps and ditches constructed for dewatering and slope the tops of excavations back to prevent runoff down the excavated slopes during heavy rainfall.

2.5.4.1.6 Ground Water Conditions

In SSAR Section 2.5.4.6, the applicant briefly described the ground water conditions at the ESP site and general plans for construction dewatering. Section 2.4.12 of the SSAR describes the ground water conditions at the ESP site in detail. The following summarizes the applicant's description of the ESP site ground water conditions in SSAR Section 2.5.4.6.

Nine OWs installed at the site as part of the ESP subsurface investigation program have exhibited ground water levels ranging from MSL elevations of 241 to 311 ft between December 2002 and June 2003. Based on the results of the slug tests in the wells, hydraulic conductivity values for the saprolite in which eight of the wells were screened range from 0.2 to 3.4 ft/day. The applicant estimated the hydraulic conductivity of the shallow bedrock in which one of the wells was screened to be about 2 to 3 ft/day. Ground water movement at the site is generally to the north and east, toward Lake Anna.

The applicant stated that ground water is present in unconfined conditions in both the surficial sediments and underlying bedrock at the ESP site. The ground water generally occurs at depths ranging from about 6 to 58 ft below the present-day ground surface. The design ground water level for the new units would range from 265 to 270 ft MSL in elevation. Section 2.4.12 of the SSAR derives this level.

The applicant stated that it can achieve dewatering for all major excavations using gravity-type systems. For soils, because of their relatively impermeable nature, sump-pumping of ditches would be adequate to dewater the soil. For rock, the applicant would use sump-pumping to collect water from relief drains that would be installed in the major rock excavation walls to prevent hydrostatic pressure buildup behind the walls.

2.5.4.1.7 Response of Soil and Rock to Dynamic Loading

In SSAR Section 2.5.4.7, the applicant estimated the seismic ground motion amplification/attenuation using the shear wave velocity profiles for the different subsurface materials, the variation of shear modulus and damping with strain, and the site-specific acceleration time histories. The applicant stated that the reactor containment buildings for the proposed additional units would be founded on Zone III-IV or Zone IV bedrock. However, other safety-related structures may be founded on the Zone III weathered bedrock, the Zone IIB very dense saprolitic sand, and/or the Zone IIA saprolitic sand.

Shear Wave Velocity Profile

The applicant made various measurements, summarized in SSAR Section 2.5.4.4, at the ESP site to obtain estimates of the shear wave velocity in the soil and rock. The applicant considered the Zone IV bedrock to be the base rock at a depth of 70 ft in the amplification/attenuation analysis. Table 2.5-45 of the SSAR shows an average shear wave velocity of 6300 ft/s for Zone IV. While in some locations the top of Zone III-IV or Zone IV bedrock is found close to or even above the planned plant grade, sound bedrock is relatively deep in other locations. The applicant stated that, in the case of relatively deep bedrock, some safety-related structures (excluding the reactors) may be founded on the Zone III weathered rock, Zone IIB saprolite, or Zone IIA saprolite. SSAR Figure 2.5-62, Profile (a), focuses on this situation; it shows the shear wave velocity values measured in Zone IIA saprolite for the ESP subsurface exploration program using crosshole and CPT downhole seismic testing. SSAR Figure 2.5-62 (reproduced previously as SER Figure 2.5.2-5) also shows the shear wave velocity of 950 ft/s given in the UFSAR of the existing units for the saprolite. The applicant took this as the average design value for the Zone IIA saprolite for the ESP evaluation. The design shear wave velocity versus depth profile shown in SSAR Figure 2.5-62, Profile (a), is anchored about the design value of 950 ft/s for the Zone IIA saprolite but reflects the expected increasing values with depth demonstrated in the crosshole and downhole seismic tests.

The applicant stated, as noted in SSAR Section 2.5.4.10.2, that it would improve any Zone IIA saprolites supporting safety-related structures to reduce potential settlement. In RAI 2.5.4-7, the staff asked the applicant to reconcile two conflicting statements in SSAR Sections 2.5.4.7.1 and 2.5.1.2.6. The applicant stated in SSAR Section 2.5.1.2.6 that Zone III (weathered rock) is not a suitable material for safety-related plant structures. However, the applicant stated in SSAR Section 2.5.4.7.1 that some safety-related structures (excluding the reactor containment building) may be founded on the Zone III weathered rock, Zone IIB saprolite, or improved Zone IIA saprolite. In response to RAI 2.5.4-7, the applicant noted that the statement in SSAR Section 2.5.4.7.1 is correct, and therefore it will delete the statement in SSAR Section 2.5.1.2.6. The applicant emphasized that only improved Zone IIA saprolite is appropriate for certain safety-related structures (see RAI 2.5.4-11 below). To compute the response of the improved Zone IIA saprolite to dynamic loading, the applicant computed the shear wave velocity through the improved soil based on this increase in stiffness. Profile (b) of SSAR Figure 2.5-62 shows

these computed shear wave velocities and the unimproved Zone IIA shear wave velocities. This profile also shows the shear wave velocity values interpreted in SSAR Appendix 2.5.4B from the CPT-825 downhole seismic tests at a depth of 52 ft during the ESP subsurface exploration program. The applicant interpreted the subsurface materials below a depth of 30 ft in the CPT log as a silty sand and sandy silt mix. These could be either Zone IIB saprolitic sands or Zone III weathered rock (or both). From depths between 30 and 40 ft, the design profile uses the shear wave velocity for the Zone IIB saprolite from SSAR Table 2.5-45 (1600 ft/s), which is very close to the 1650 ft/s measured in the CPT-825 downhole seismic test. From depths of 40 to 55 ft, the design profile uses the shear wave velocity for the Zone III weathered rock from SSAR Table 2.5-45 (2000 ft/s). This is close to the mean of the two CPT-825 downhole seismic velocities measured in this zone, as shown in SSAR Figure 2.5-62, Profile (b). The applicant assumed Zone III-IV to extend from depths of 55 to 70 ft. Shear wave velocity for this rock is 3300 ft/s, derived from several values measured in the downhole seismic test performed adjacent to boring B-802 and from elastic modulus values from unconfined compression tests (SSAR Section 2.5.4.2.5).

Variation of Shear Modulus and Damping with Strain

Figure 2.5.4-5, reproduced from SSAR Figure 2.5-63, shows normalized shear modulus reduction curves, which are taken from research reports referenced in SSAR Section 2.5.4.

Curve 1 in this figure represents the Zone IIA saprolite (both unimproved and improved). This modulus reduction curve is the average of (1) the 1970 Seed and Idriss (Ref. 167, SSAR Section 2.5) average curve for sand and (2) five curves (from a 1993 EPRI report (Ref. 170, SSAR Section 2.5)) that take into account several factors, including reference strain and effective vertical stress. One of the five EPRI curves is a low-plasticity clay curve to account for the cohesive component of the Zone IIA saprolite. Curve 2 in SSAR Figure 2.5-63 represents the Zone IIB saprolite and is the modulus reduction curve recommended by Seed, et al. (Ref. 168, SSAR Section 2.5) for gravels, based on tests of four different gravels and crushed stone samples. The Zone IIB saprolite contains the relict structure of the parent rock. Since this contains up to 50 percent of core rock remaining in the saprolite, the applicant stated that it would behave more like a gravel or crushed stone than a sand.

The applicant stated that solid rock does not exhibit the strain-softening characteristics of soil. Thus, the Zone III-IV rock has no modulus reduction curve. However, at some stage of weathering, rock becomes sufficiently decomposed to exhibit modulus reduction. The applicant considered Zone III moderately to severely weathered rock as falling into this sufficiently weathered state. Curve 3 in SSAR Figure 2.5-63 was developed for mudstone (a soft rock) with a shear wave velocity of 1500 ft/s (Ref. 169, SSAR Section 2.5). SSAR Section 2.5.4.7.1 shows that Zone III has a shear wave velocity of 2000 ft/s. The applicant stated that when mudstone Curve 3 is used for shear modulus input in the soil/rock column amplification/

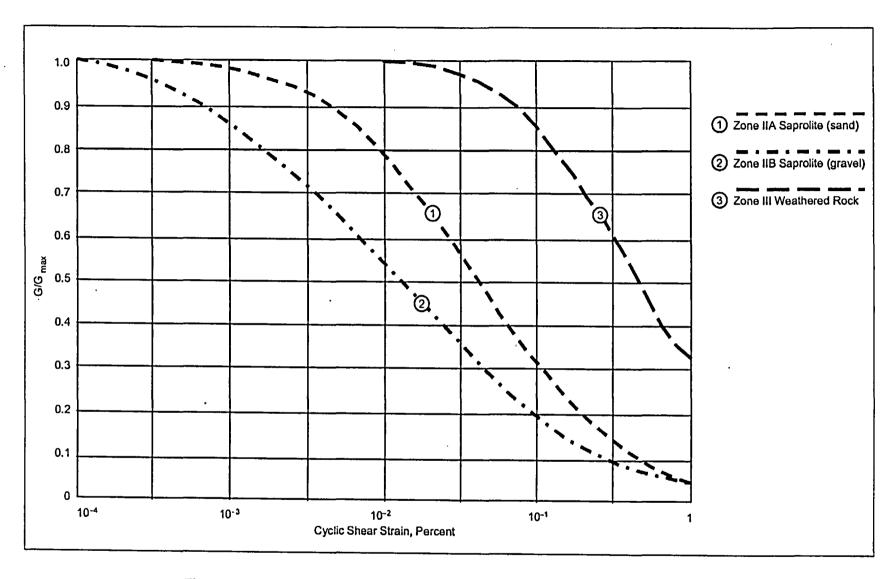


Figure 2.5.4-5 Variation of normalized shear modulus with cycle shear strain

attenuation analysis for the Zone III weathered rock, the shear modulus attenuation is significantly less than that exhibited by the sand and gravel curves.

In SSAR Section 2.5.4.7.1, the applicant stated the following:

When the specific locations of safety-related structures are determined, if structures such as the diesel generator building and/or certain tanks are founded on saprolite or weathered rock, samples of foundation soils from those locations would be tested to determine location-specific shear modulus degradation relationships.

Figure 2.5.4-6, reproduced from SSAR Figure 2.5-64, plots the variation of the equivalent damping ratio of saprolite and weathered rock as a function of cyclic shear strain.

Curve I in SSAR Figure 2.5-64 represents the Zone IIA saprolite (both unimproved and improved). The applicant stated that this damping ratio versus cyclic shear strain curve is the average of (1) the Seed and Idriss (Ref. 167, SSAR Section 2.5) average curve for sand and (2) seven curves from Reference 170 that take into account several factors including reference strain and effective vertical stress. One of these seven curves is a low-plasticity clay curve to account for the cohesive component of the Zone IIA saprolite. Curve II in SSAR Figure 2.5-64 represents the Zone IIB saprolite. The applicant used the Seed et al. (Ref. 168, SSAR Section 2.5) curve for gravels. Curve III in SSAR Figure 2.5-64 represents the Zone III weathered rock. The applicant stated that it derived this curve by comparing Curve 3 in SSAR Figure 2.5-63 with Curves 1 and 2 in SSAR Figure 2.5-63 and applying the differences proportionally to SSAR Figure 2.5-64. The applicant stated that the damping ratio of the Zone III-IV rock does not vary with cyclic shear strain. However, since this rock has some intrinsic damping properties, the applicant used a damping ratio of 2 percent.

In RAI 2.5.4-8, the staff asked the applicant to provide its basis for the selected modulus reduction and damping ratio curves for Zones IIA, IIB, and III. In its response, the applicant stated that it used the 1993 EPRI report (Ref. 170, SSAR Section 2.5), where applicable, as the basis for the shear modulus reduction and damping ratio curves.

In RAI 2.5.4-8(c), the staff asked the applicant to explain its use of a damping ratio of 2 percent for the Zone III-IV rock. In its response, the applicant stated that the damping ratio for rock varies from site to site depending on the various factors, including the mineral composition of the rock, the integrity and fissuring of the rock mass, and the level of shear deformation in the rock formation. According to the applicant, damping ratios for rock are generally between 0.5 to 4.5 percent. The applicant selected 2 percent for the Zone III-IV rock based on engineering judgment and past experience. To determine the sensitivity of the selected damping ratio, the applicant reran its analysis using damping ratios of 0.5, 1.0, and 5.0 percent. The results show only a slight difference in the peak acceleration for the different damping ratios.

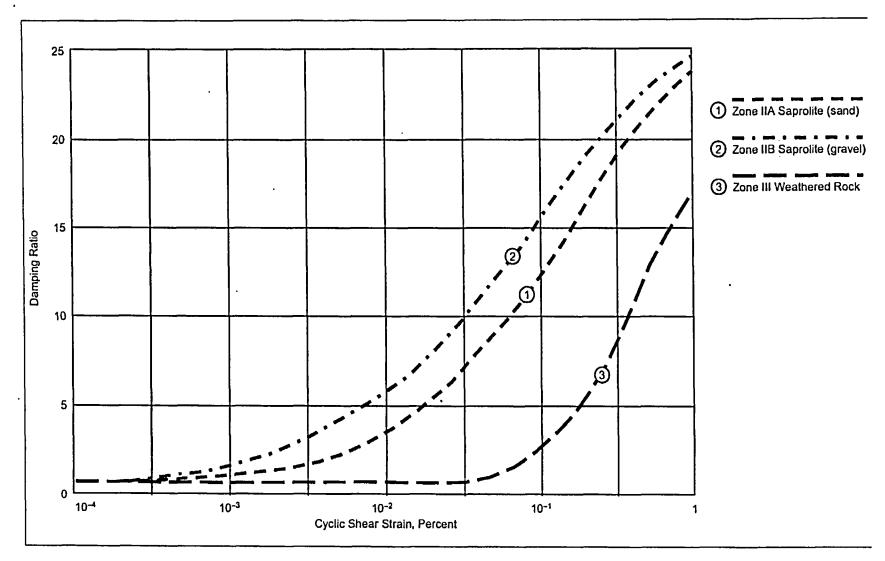


Figure 2.5.4-6 Variation of damping ratio with cyclic shear strain

Site-Specific Acceleration-Time Histories

The applicant developed two single horizontal-component acceleration time histories, which are compatible with the low- and high-frequency response spectra developed from the two controlling earthquakes and PSHA hazard curves. The applicant used these two acceleration time histories in the soil column amplification analysis described below.

In RAI 2.5.4-9(a), the staff asked the applicant to describe its method for developing the sitespecific acceleration time histories. In its response, the applicant stated that it selected two horizontal-component acceleration time histories which it then matched to the low- and highfrequency response spectra from the two controlling earthquakes. The applicant then used these spectrum-compatible time histories for the site response analysis. In RAI 2.5.4-9(b), the staff asked the applicant to further describe the method it used for the development of the soil column amplification/attenuation analysis. In its response, the applicant stated that it used the SHAKE2000 computer program to compute the site dynamic responses for the four soil and rock profiles described in SSAR Section 2.5.4.7.1. The applicant provided the input soil parameters, the depth at which the hard rock ground motion was input (70 ft), and information on the number of iterations to compute the strain-compatible modulus and damping values for the SHAKE analysis. In RAIs 2.5.4-9(c) and (d), the staff asked the applicant to further describe the four soil profiles and how the analysis accounted for the variability of the soil properties. In response to RAIs 2.5.4-9(c) and (d), the applicant provided the soil properties for each of the four profiles and described the values that were varied in the analysis. The applicant stated that the shear wave velocity (V_s) and G_{max}, which is derived from V_s, have the most impact on the amplification/attenuation analysis. The applicant showed response spectra for different levels of G_{max} (67 to 150 percent). In RAI 2.5.4-9(e), the staff asked the applicant to justify its use of the mean 10⁻⁴ uniform hazard spectrum as the input rock motion. In response to RAI 2.5.4-9(e), the applicant stated that it initially used a time history matched to the mean 10⁻⁴ uniform hazard spectrum; however, it later revised this approach to use time histories that match the low- and high-frequency response spectra calculated from the two controlling earthquakes.

Soil Column Amplification/Attenuation Analysis

The applicant used the SHAKE2000 computer program to compute the site dynamic responses for the soil and rock profiles, described in SSAR Section 2.5.4.7.1. The analysis, performed in the frequency domain, used the two acceleration time histories briefly described in the previous section and in SSAR Section 2.5.2. The analysis used (1) the low-frequency controlling earthquake time history with a peak acceleration of 0.21g and (2) the high-frequency controlling earthquake time history with a peak acceleration of 0.43g.

Table 2.5-46 of the SSAR shows the zero period acceleration (ZPA) results for the SHAKE2000 analysis for the four soil profiles, given in SSAR Section 2.5.4.7.1. The ZPA results for soil Profile 1, with 30 ft of unimproved Zone IIA saprolite, are 0.91g for the high-frequency case and 0.46g for the low-frequency case. The applicant also determined the ZPA results for the four soil profiles using a G_{max} value that was 150 percent of the average G_{max} value. Using these higher G_{max} values, the applicant obtained ZPA values of 0.99g and 0.57g for the high-and low-frequency cases, respectively. As described in SSAR Section 2.5.4.8 and below, the applicant applied these amplified accelerations in the liquefaction evaluation of soils.

2.5.4.1.8 Liquefaction Potential

Soil liquefaction is a process by which loose, saturated, granular deposits lose a significant portion of their shear strength because of pore pressure buildup resulting from cyclic loading, such as that caused by an earthquake. Soil liquefaction can occur, leading to foundation bearing failures and excessive settlements, when (1) the ground acceleration is high, (2) soil is saturated (i.e., close to or below the water table), and (3) the site soils are sands or silty sands in a loose or medium-dense condition. The applicant stated that the ESP site meets the first criterion, and the second criterion applies in many areas of the NAPS site; however, the third criterion, involving the type and density of the soil, is much less clearly applicable. According to the applicant, the Zone IIB soils are extremely dense. The Zone III weathered rock has over 50 percent core stone and has typically been sampled by rock coring. As such, neither of these materials meets the loose or medium-dense criterion, and neither has liquefaction potential. The applicant stated that any needed structural fill would be a well-compacted, well-graded crushed stone that is not liquefiable. Reasoning that neither the Zone IIB soils nor the Zone III weathered rock are susceptible to liquefaction, the applicant only discussed the liquefaction potential of the Zone IIA saprolitic soil.

The applicant stated that there is no historical evidence that Zone IIA saprolitic soils have undergone liquefaction at the ESP site. Attachment 4 to Appendix 3E to the UFSAR indicates that examination of the structure and fabric of the material "leads to the conclusion that the saprolite is not susceptible to liquefaction." Despite its apparent low potential for liquefaction, the Zone IIA saprolite at the NAPS site has been the subject of several previous liquefaction analyses. SSAR Section 2.5.4.8.2 examines these analyses in view of the accelerations assumed for the ESP. In addition, the applicant performed a liquefaction analysis, summarized below, on potentially liquefiable samples obtained from the recent ESP exploration program.

Effect of Soil Structure and Fabric on Liquefaction Potential

SSAR Section 2.5.4.8 describes the soil structure and fabric of the saprolite. The applicant stated that the fabric of the saprolite is similar to that of its parent rock, a biotitic [mineral in mica group] quartz gneiss. According to the applicant, there is a strong foliation in the saprolite and the fabric is strongly anisotropic. The applicant contrasted the highly foliated and anisotropic fabric of the saprolite with that of an alluvial- or marine-deposited sand. The applicant stated that sand shows no foliation and no interlocking of grains. In addition, a thin section of sand shows a well-developed void network unlike that of saprolite. The applicant concluded by stating that the geometric interlocking of the grains and the lack of a void network indicates that the saprolite could not liquefy. Despite this conclusion, the applicant analyzed the potential of the saprolite to liquefy under both the high-frequency and low-frequency input bedrock motions.

Acceptable Factor of Safety Against Liquefaction

According to RG 1.198 (Ref. 172, SSAR Section 2.5), a factor of safety (FS) of 1.1 against liquefaction is considered low, FSs of 1.1 to 1.4 are considered moderate, and an FS of 1.4 is considered high. The Committee on Earthquake Engineering (Ref. 173, SSAR Section 2.5) states that there is no general agreement on the appropriate margin (factor) of safety. If the design earthquake ground motion is regarded as reasonable, an FS of 1.33 to 1.35 is suggested as adequate. However, when the design ground motion is excessively conservative,

the Committee notes that engineers are content with an FS only slightly in excess of unity. The SSE at rock for the existing NAPS units has a maximum acceleration of 0.12g, amplified to 0.18g in the soil. The seismic margin maximum acceleration in soil (Ref. 174, SSAR Section 2.5) is 0.30q. The maximum ESP acceleration at hard bedrock rock is 0.39q, amplified at the unimproved soil surface to 0.99g (SSAR Table 2.5-46). Based on these results, which the applicant determined to be very conservative, the applicant considers an FS of 1.1 to be adequate for the Zone IIA soils at the ESP site.

Previous Liquefaction Analyses

Virginia Power performed a detailed liquefaction analysis at the NAPS site in December 1994 for a seismic margin assessment (Ref. 174, SSAR Section 2.5). For the analysis, Virginia Power used a maximum acceleration of 0.3g, a magnitude of 6.8, and three different approaches to assess the potential for soil liquefaction. For the first approach, Virginia Power used the Seed and Idriss simplified procedure (Ref. 175, SSAR Section 2.5), with some modifications to account for the age of the saprolites and for the overconsolidated nature of the saprolites. The resulting FSs range from 1.54 to 3.51. For the second approach, Virginia Power used a threshold strain analysis (Ref. 177, SSAR Section 2.5), with an average shear wave velocity in the saprolite of 950 ft/s, resulting in an FS just under 3.0. For the third approach, Virginia Power used the results of the 15 stress-controlled cyclic triaxial tests, described in SSAR Section 2.5.4.2.4. The FSs against liquefaction range from 1.51 to 1.99 for the SWR facilities (pump house, valve house, tie-in vault, and service water lines). Analysis of the SWR embankment gave FS values ranging from 0.91 to 3.61, with an average of more than 1.5. The applicant stated that the few values below 1 occurred in localized zones and concluded that overall FSs across the embankment are well within acceptable limits. A consistent pattern of low FSs across the foundation would indicate that significant movements of the embankments would occur.

Liquefaction Analyses Performed for ESP

Based on the deaggregation of the PSHA in SSAR Section 2.5.2, the applicant used two earthquakes in the liquefaction analysis. The low-frequency earthquake has a magnitude of 7.2 and a bedrock acceleration of 0.21g. The high-frequency earthquake has a magnitude of 5.4 and a bedrock acceleration of 0.43g. SSAR Table 2.5-46 shows the ZPA values for the four soil/rock profiles described in SSAR Section 2.5.4.7.1. Since the Zone IIB saprolite and the Zone III weathered rock are not liquefiable, the liquefaction analysis did not consider Profiles 2 and 3 in SSAR Table 2.5-46. In Profile 4, the Zone IIA saprolite is improved (i.e., this would be the profile for any safety-related structures founded on the Zone IIA saprolite). The applicant stated that the soil would be improved sufficiently to ensure that the improved soil has an FS greater than or equal to 1.1 using the SSE ground motion. In Profile 1, the Zone IIA saprolite (upper 30 ft) is not improved. Thus, the applicant considered only Profile 1 for the liquefaction analysis. As noted above, the applicant used PGA values of 0.57g and 0.99g for the liquefaction analyses, which are described below.

The applicant performed a liquefaction analysis of each sample of Zone IIA saprolite, obtained by SPT sampling during the ESP subsurface investigation, to determine the FS against liquefaction. The applicant also analyzed the CPT results following the method proposed by Youd, et al. (Ref. 178, SSAR Section 2.5). The applicant stated that, using PGA values of 0.57g and 0.99g, the analysis of the SPT results gave FS values against liquefaction of greater

than 1.1, except in one case. The applicant's analysis of the CPT results shows 5-foot thick zones in two CPTs and a 22-foot thick zone in another CPT, where the FS values against liquefaction are less than 1.1, implying that these soil zones would liquefy.

The applicant also performed a liquefaction analysis using shear wave velocity criteria incorporating the design values of shear wave velocity shown in SSAR Figure 2.5-62 and tabulated in SSAR Table 2.5-46. To correct the shear wave velocity values for overburden pressure, the applicant used the method outlined in Youd, et al. (Ref. 178, SSAR Section 2.5). The resulting values all fell into the no-liquefaction zone in Figure 9 of Reference 178. However, when the applicant used the lower bound values of the shear wave velocity, shown in SSAR Table 2.5-45, in the liquefaction analysis, most of the top 20 ft of Profile 1 fell into the liquefaction zone as shown in Figure 9 of Reference 178.

The applicant also determined the liquefaction-induced dynamic settlement using the method outlined in Tokimatsu and Seed (Ref. 179, SSAR Section 2.5). The maximum estimated dynamic settlement of the Zone IIA saprolite caused by earthquake shaking is about 5 in.

The applicant concluded the following concerning the liquefaction potential of the soils at the ESP site:

- Only the Zone IIA saprolites fall into the gradation and relative density categories where liquefaction would be considered possible.
- The structure, fabric, and mineralogy of these saprolites lower the potential for liquefaction very substantially.
- For a conventional liquefaction analysis, an FS of 1.1 is adequate, based on the conservative estimate of the ESP design seismic acceleration.
- A liquefaction analysis of the ESP SPT samples using the low- and high-frequency ESP seismic parameters gave FS values greater than 1.1 for all except one SPT result.
- A liquefaction analysis of the ESP CPT measurements using the low- and high-frequency ESP seismic parameters indicated an approximately 22-ft-thick zone and two 5-ft-thick zones where the FS against liquefaction was less than 1.1.
- A liquefaction analysis of the shear wave velocity profile indicated no liquefaction when the average shear wave velocity values were used. Using lower shear wave velocity values resulted in liquefaction of most of the top 20 ft.
- Estimated dynamic settlements caused by earthquake shaking are about 5 in.

Based on the above analysis, the applicant concluded that some of the Zone IIA saprolitic soils have a potential for liquefaction based on the low- and high-frequency ESP seismic parameters. The applicant stated that the liquefaction analysis did not take into account the beneficial effects of the fabric of the saprolitic soil. The applicant concluded by stating that, if safety-related structures are founded on the Zone IIA saprolitic soils, these soils would be improved to reduce potential settlements and to ensure that the FS against liquefaction is equal to or greater than 1.1.

In RAI 2.5.4-10, the staff asked the applicant to describe how it varied the significant soil properties and seismic input values for each of the different liquefaction analyses. In addition, the staff asked the applicant to provide a sample liquefaction analysis. In its response, the applicant stated that it based its liquefaction analyses on the work of Youd et al. (Ref. 178, SSAR Section 2.5). For each of the three different analyses, the applicant varied G_{max} , the peak earthquake acceleration, and the earthquake magnitude.

2.5.4.1.9 Earthquake Design Basis

SSAR Section 2.5.4.9 refers to SSAR Section 2.5.2.6, which derives and discusses the SSE for the ESP site in detail. Section 2.5.2 of this SER contains the staff's review of that information.

2.5.4.1.10 Static Stability

SSAR Section 2.5.4.10 describes the allowable bearing capacities for each subsurface zone as well as the estimated settlement for each zone. The applicant stated that reactor containment buildings at the ESP site would be founded on Zone III-IV or Zone IV bedrock. Depending on the location of these buildings, the top of this bedrock could occur below the level of the shallower reactor designs. In such cases, the applicant stated that it would excavate to sound bedrock and pour lean concrete up to the bottom of the reactor foundation. In some locations, the top of Zone III-IV or Zone IV bedrock is found close to or even above the planned plant grade. In such cases, safety-related structures would be founded on bedrock or on a thin layer of lean concrete or compacted structural fill on the bedrock. In other locations, sound bedrock is relatively deep. In this case, the applicant stated that safety-related structures (excluding the reactors) may be founded on the Zone III weathered rock, Zone IIB saprolite, or Zone IIA saprolite. The following sections on bearing capacity and settlement focus on this latter situation. (As noted in SSAR Section 2.5.4.10.2, the applicant stated that it would improve any Zone IIA saprolites supporting safety-related structures to reduce potential settlement.)

Bearing Capacity

Table 2.5-47 in the SSAR gives the allowable bearing capacity values for each zone. The applicant stated that it based the Zone IIA allowable bearing capacity value of 4 ksf (4000 lb/ft²) on Terzaghi's bearing capacity equations modified by Vesic (Ref. 180, SSAR Section 2.5). According to the applicant, the analysis considers the effective strength parameters for the coarse-grained material and both the undrained and effective strength parameters for the fine-grained material given in SSAR Table 2.5-45. As discussed in SSAR Section 2.5.4.10.2, settlement considerations usually dominate when this material is used for supporting

the application, the containment (reactor) buildings would not be founded on the Zone III weathered rock. The bedrock in Zones III-IV and IV has an unconfined compressive strength of 4 ksi (576 ksf) and 12 ksi (1728 ksf), respectively (SSAR Table 2.5-45). The applicant stated that allowable bearing capacities of these materials are much higher than any applied structure bearing pressure. In addition, the applicant stated that, if excavation during construction reveals any weathered or fractured zones at the foundation level, it would excavate such zones and replace them with lean concrete. The allowable values of the bearing capacity of 80 and 160 ksf for Zone III-IV and IV rock, shown in SSAR Table 2-5.47, are presumptive values based on various building codes for moderately weathered to fresh foliated rock.

In RAI 2.5.4-11, the staff asked the applicant to provide further details concerning its calculation of the bearing capacities of the soil and rock underlying the ESP site. In its response, the applicant provided a sample calculation for the staff to review. In addition, the applicant stated that the maximum bearing pressure from the containment building foundation is 15 ksf, which is only a fraction of the allowable bearing capacity of the bedrock (Zone III-IV is 80 ksf and Zone IV is 160 ksf).

Settlement Analysis

Peck et al. (Ref. 182, SSAR Section 2.5) indicates that total settlement should be limited to 2 in., and differential settlement to 0.75 in., for the large mat foundations that support major power plant structures. According to Peck, for footings that support smaller plant components, the total settlement should be limited to 1 in. and the differential settlement to 0.5 in.

Settlement of Materials in Zones IIB, III, III-IV, and IV

The applicant stated that the settlement of the materials in Zones IIB, III, III-IV, and IV is essentially elastic. The applicant analyzed a large foundation with an assumed size of 150 ft by 300 ft (e.g., a turbine building foundation) for settlement assuming a soil profile of 20 ft for Zone IIB, underlain by 30 ft of Zone III, 50 ft of Zone III-IV, and 400 ft of Zone IV. The applicant used the high-strain elastic modulus values given in SSAR Table 2.5-45 as the stiffness values. The applicant found that the foundation has an average bearing pressure of 6 ksf. The computed total settlement of this structure is less than 0.5 in.

Settlement of Zone IIA

The applicant stated that Virginia Power recorded larger settlements than expected (i.e., 4.6 in.) beneath the SWR pump house of the existing units because of the weight of the pump house and the 30 ft of embankment fill that was built up around it. This settlement occurred over a 30-month period. The in-situ soil that settled beneath the pump house consists of about 65 ft of Zone IIA, mainly micaceous sandy silt. The applicant stated that the primary cause of this fairly large settlement appears to be the 5 to 20 percent mica content of these saprolites, along with a significant portion of low-plasticity clay minerals. The applicant concluded that, although the settlement of the SWR pump house is an extreme case and resulted from several factors, the potential for excessive settlement of the Zone IIA saprolite makes this material unsuitable to support any safety-related structure without ground improvement.

2.5.4.1.11 Design Criteria

SSAR Section 2.5.4.11 summarizes the geotechnical design criteria. In addition, various sections of the SSAR cover other applicable design criteria. SSAR Section 2.5.4.8 specifies that the acceptable FS against liquefaction of site soils should be 1.1. SSAR Section 2.5.4.10 presents bearing capacity and settlement criteria. SSAR Table 2.5-47 provides allowable bearing capacity values for the site subsurface materials. Generally acceptable total and differential settlements are limited to 2 in. and 0.75 in., respectively, for mat foundations and 1 in. and 0.5 in., respectively, for footings. SSAR Section 2.5.5.2 specifies that the minimum acceptable long-term static FS against slope stability failure is 1.5. SSAR Section 2.5.5.3 specifies that the minimum acceptable long-term seismic FS against slope stability failure is 1.1.

In RAI 2.5.4-12, the staff asked the applicant to explain why it did not provide design criteria pertaining to structural design. In its response, the applicant stated that structural criteria such as allowable wall rotation and FSs against structure sliding and overturning are not site specific and thus are not included in SSAR Section 2.5. The applicant stated that a COL application would describe these structural criteria.

2.5.4.1.12 Techniques to Improve Subsurface Conditions

SSAR Section 2.5.4.12 outlines several ground improvement techniques that would be implemented before the Zone IIA saprolitic soils could be used to support safety-related foundations. As its primary choice for reducing the settlement potential of the Zone IIA saprolitic soils, the applicant considered vibro-stone columns. According to the applicant, vibro-stone columns have several advantages, including reduction of settlement, improvement of bearing capacity, and reduction of liquefaction potential. The vibro-stone column method involves the insertion of a vibratory probe (aided by water jets or compressed air) into the base of the stratum that needs improvement. Crushed stone is poured into the annulus and is densified by the vibrator. This process results in a series of highly compacted stone columns, typically about 3 ft in diameter, spaced on about 5- to 8-ft centers.

2.5.4.2 Regulatory Evaluation

SSAR Section 2.5.4 describes the applicant's evaluation of the stability of the subsurface materials and foundations at the ESP site. In SSAR Section 1.8, the applicant stated that it developed the geological, geophysical, and geotechnical information used to evaluate the stability of the subsurface materials in accordance with the requirements of 10 CFR 100.23. The applicant applied the guidance of RS-002, RG 1.70, DG-1105 (which has been superseded by RG 1.198 since the applicant submitted the SSAR), RG 1.132; and RG 1.138, "Laboratory Investigations of Soils for Engineering Analysis and Design of Nuclear Power Plants."

In its review of SSAR Section 2.5.4, the staff considered the regulatory requirements in 10 CFR 100.23(c) and 10 CFR 100.23(d)(4). According to 10 CFR 100.23(c), applicants must investigate the engineering characteristics of a site and its environs in sufficient scope and detail to permit an adequate evaluation of the proposed site. Pursuant to 10 CFR 100.23(d)(4), applicants must evaluate siting factors such as soil and rock stability, liquefaction potential, and natural and artificial slope stability. Section 2.5.4 of RS-002 provides specific guidance concerning the evaluation of information characterizing the stability of subsurface materials,

Mary and the market of the mar

including the need for geotechnical field and laboratory tests as well as the geophysical investigations.

2.5.4.3 Technical Evaluation

This section provides the staff's evaluation of the geophysical and geotechnical investigations carried out by the applicant to determine the static and dynamic engineering properties of the materials that underlie the ESP site. The technical information presented in SSAR Section 2.5.4 resulted from the applicant's field and laboratory investigations performed for the ESP. The applicant intended its additional field and laboratory investigations to confirm the large volume of geotechnical data developed by Virginia Power for the existing units and the abandoned Units 3 and 4 within the ESP site area. The applicant used the subsurface material properties from its field and laboratory investigations to evaluate the liquefaction potential, bearing capacity, and potential for settlement.

Through its review of SSAR Section 2.5.4, the staff determined whether the applicant demonstrated the stability of the subsurface materials under both static and dynamic conditions. The staff also reviewed the applicant's field and laboratory investigations used to determine the geotechnical properties of the soil and rock underlying the ESP site. In addition, the staff observed some of the applicant's onsite borings and field explorations, performed in November and December 2002, to determine whether the applicant followed the guidance in RG 1.132.

2.5.4.3.1 Geologic Features

SSAR Section 2.5.4.1 references SSAR Sections 2.5.1.1 and 2.5.1.2 for a description of the regional and site geology. Section 2.5.1.3 of this SER presents the staff's evaluation of these two sections.

2.5.4.3.2 Properties of Subsurface Materials

The staff focused its review of SSAR Sections 2.5.4.2 and 2.5.4.3 on the applicant's description of (1) subsurface materials, (2) field investigations, (3) laboratory testing, and (4) static and dynamic engineering properties of the ESP site subsurface materials.

Normally, an applicant performs a complete field investigation and sampling program to evaluate the engineering properties and stability of the soil and rock underlying the site. However, since the applicant relied on Virginia Power's previous field and laboratory investigations for the existing and abandoned units, it used its ESP investigations to confirm previously established soil and rock properties. In RAI 2.5.4-1, the staff asked the applicant to provide its basis for concluding that the subsurface conditions in the southeast portion of the ESP footprint (an area of about 500 ft by 1000 ft, in which there are no borings) do not materially differ from conditions in adjacent areas, where borings were made. In response to RAI 2.5.4-1, the applicant stated that the North Anna site is underlain by a consistent geologic profile, which extends to a depth of several thousand feet. The applicant stated that the 145 borings performed throughout the North Anna site (including 7 borings for the ESP) indicate a consistent overall subsurface profile, with expected variations in the thickness of the various strata. As such, the applicant concluded that the southeast portion of the ESP footprint (see SER Figure 2.5.4-3) should be similar to the rest of the site. Because of the consistency of the soil and rock engineering properties across the NAPS and ESP sites, the staff has

determined that Virginia Power's past investigations, combined with the ESP applicant's explorations, are adequate to characterize the subsurface conditions in the locations where data were collected. Further, based on its review of the NAPS and ESP borings, the staff has determined that a consistent geologic profile underlies the North Anna ESP site. The staff concludes, therefore, that the uncharacterized southeast portion of the site should have subsurface conditions similar to those found at the rest of the site. Accordingly, the staff concludes that the applicant has provided an adequate description of the subsurface profile. The applicant's commitment to perform additional borings to confirm its conclusions regarding engineering properties and the stability of soil and rock underlying future plant SSCs is COL Action Item 2.5-1.

In RAI 2.5.4-3, the staff asked the applicant to describe how it integrated Virginia Power's site investigations for the SWR and the ISFSI with its field investigations for the ESP site. In its response, the applicant stated that the SWR and ISFSI borings are as close to the ESP area as any other borings and disclose the same subsurface profile displayed by the other borings at the North Anna site (see SER Figure 2.5.4-3). In addition, the applicant stated that it used some of the SWR and ISFSI borings, which are close to the southeast corner of the ESP footprint, noted in RAI 2.5.4-1, to help characterize the ESP area. Because of the consistency of the soil and rock engineering properties across the NAPS and ESP sites, the staff has determined that Virginia Power's past investigations, combined with the ESP applicant's explorations, are adequate to characterize the subsurface conditions in the locations where data were collected.

In RAI 2.5.4-4, the staff asked the applicant to explain how the total thickness of the soil layers sampled at the ESP site (105 ft) is sufficient to characterize the soil properties underlying the site. In its response, the applicant stated that the 138 borings performed previously by Virginia Power for Units 1 and 2 as well as abandoned Units 3 and 4 characterize the soils at the North Anna site very well. The applicant stated that the soils in all the borings show the same general subsurface profile and that it used the ESP borings to show that the soil (and rock) profiles in each of the borings fit within the general subsurface profile. Based on the results of the NAPS and ESP borings, the staff has determined that a consistent geologic profile underlies the North Anna ESP site. The staff concludes, therefore, that the applicant adequately sampled the soil underlying the ESP site in order to confirm the results of borings previously performed by Virginia Power.

In RAI 2.5.4-2(a), the staff asked the applicant to describe the extent of severely weathered fracture zones in the Zone III-IV and IV rock that Virginia Power observed during the site investigation for abandoned Units 3 and 4. The applicant observed similarly fractured rock in four of the seven ESP borings. In its response, the applicant provided a table that shows an RQD of less than 25 percent in nine of the borings for abandoned Units 3 and 4. The applicant noted that most of the rock for the low RQD intervals (less than 10 percent) is only 1 to 2 ft thick. In RAI 2.5.4-2(b), the staff asked the applicant to describe the impact of these fractured rock zones on the suitability of the site to host safety-related structures. In its response, the applicant stated the following:

As noted in these SSAR sections, any weathered or fractured zones encountered at foundation level would be excavated and replaced with lean concrete. If such zones exist below sound rock beneath the foundation, they

would have no impact on the stability of the foundation, since these zones are typically only 0.5 to 1-foot thick, and are confined within an unfractured rock mass with strengths of 4,000 to 12,000 psi (compared to the maximum foundation pressure of just over 100 psi). The foundation itself would consist of a large, thick, highly-reinforced concrete mat that is so stiff that it cannot logically yield.

Multiple borings would be performed at each structure location once the building locations are chosen as part of detailed engineering. These borings would identify whether there are any thicker fracture zones beneath the foundation than those encountered in the ESP borings and in the abandoned Units 3 and 4 borings. If any thicker zones are found, analysis would be performed to identify their impact on foundation stability. If they are close enough to the foundation to potentially impact stability, they would be excavated and replaced with lean concrete.

In its response to RAI 2.5.4-2, the applicant stated its commitment to excavate and replace with lean concrete any weathered or fractured zones found at the foundation level, and the staff proposes to include a condition in the ESP to require such activities (Permit Condition 2.5-1). The replacement of fractured rock with lean concrete is well understood and commonly done to enhance the strength and stability of the rock to support building loads. The excavation of weathered or fractured rock zones and their replacement with lean concrete will ensure the bearing capacity of such zones. The staff concludes that this is adequate to ensure the stability of structures that might be constructed on the proposed site.

In RAI 2.5.4-6, the staff asked the applicant to explain why it did not provide laboratory test results from the borings of subsurface materials over various depth intervals. In response to RAI 2.5.4-6, the applicant stated that the containment (reactor) buildings for the new units would be founded on the Zone III-IV and/or Zone IV metamorphic gneiss bedrock at the North Anna site. Rock coring and testing performed by Virginia Power for Units 1 and 2 gave unconfined compressive strengths for the Zone III-IV and IV rock ranging from 1,000 to 16,300 psi, with a median strength of 6,800 psi. The applicant stated that these rock strengths are typical for this type of rock and more than sufficient to support the maximum containment (reactor) building loads of about 100 psi. The applicant added that, during logging of the rock cores in the field for the ESP investigation, it was apparent that the metamorphic rock is a strong material. The applicant performed tests on the ESP cores sufficient to verify that the rock strengths are similar to or higher than those cores tested for Units 1 and 2. The applicant determined that the median value of the unconfined compressive strengths of the Zone III-IV and IV rock from the ESP investigation is 18,400 psi. Because the applicant verified through rock coring and testing during its ESP investigation that the unconfined compressive strength of the Zone III-IV and IV rock is similar to or higher that the cores tested for Units 1 and 2, the staff concludes that the applicant has adequately sampled the Zone III-IV and IV rock.

Furthermore, the staff concurs with the applicant's conclusion that the strength of the Zone III-IV and IV rock is sufficient to support the load of a containment building.

Based on its review of SSAR Sections 2.5.4.2 and 2.5.4.3 and the applicant's responses to its RAIs, as described above, the staff concludes that the applicant adequately determined the engineering properties of the soil and rock underlying the ESP site through its field and

laboratory investigations. In addition, the applicant used the latest field and laboratory methods, in accordance with RGs 1.132 and 1.138, to determine these properties. Accordingly, the staff concludes that the applicant performed field investigation and laboratory testing sufficient to determine the overall subsurface profile as well as the material properties underlying the ESP site. The staff notes that the applicant committed to perform additional investigations once it has selected the building locations. The COL (or CP) applicant would describe these additional investigations in its COL (or CP) application.

2.5.4.3.3 Relationship of Foundations and Underlying Materials

Section 2.5.4.3 in RS-002 directs the staff to compare the applicant's plot plans and the profiles of all seismic Category I facilities with the subsurface profile and material properties. Based on this comparison, the staff can determine if (1) the applicant performed sufficient exploration of the subsurface and (2) the applicant's foundation design assumptions contain adequate margins of safety. The applicant decided to defer providing this information until a CP or COL application is submitted. Submission of a COL or CP applicant's plot plans and the profiles of all seismic Category I facilities for comparison with the subsurface profile and material properties is COL Action Item 2.5-2.

2.5.4.3.4 Geophysical Surveys

The staff focused its review of SSAR Section 2.5.4.3 on the adequacy of the applicant's geophysical investigations to determine soil and rock dynamic properties. The applicant performed two crosshole seismic tests, one downhole seismic test, and two CPT seismic tests. The applicant compared the dynamic properties it obtained from these tests with the results from the previous geophysical surveys of the North Anna site performed by Virginia Power.

In RAI 2.5.4-5, the staff asked the applicant to explain why SSAR Table 2.5-45 does not provide shear wave velocities for Zone IIB saprolite and Zone III and III-IV weathered rock. In its 5. response, the applicant stated that SSAR Table 2.5-45 gives average shear wave velocities for Zones IIB, III, and III-IV but does not provide a range of values. In contrast, it gives both average values and a range of shear wave velocity values for Zones IIA and IV. The applicant stated that it provided only average values for Zones IIB, III, and III-IV because the ESP borings did not sample these zones as abundantly as Zones IIA and IV. In response to this RAI, the applicant also provided its method for determining the average shear wave velocity values for Zones IIB (1600 ft/s), III (2000 ft/s), and III-IV (3300 ft/s). Because the applicant used both crosshole and downhole seismic tests, as well as direct and indirect methods, the staff concludes that the applicant has adequately measured the shear wave velocity for each of the soil and rock zones. For those zones (IIB, III, and III-IV) for which the applicant did not obtain so many samples from the ESP borings, the applicant used its laboratory measurements of the soil/rock properties to indirectly determine the shear wave velocities. Accordingly, the staff concludes that the applicant adequately sampled the soil and rock underlying the ESP site in order to determine the consistency of its dynamic properties with those previously obtained by Virginia Power in earlier explorations.

The staff has determined that the applicant used the latest geophysical and geotechnical measurement methods and equipment in accordance with the recommendations of RGs 1.132 and 1.138 to determine the dynamic properties of the soil and rock underlying the site. Based

on its review of SSAR Section 2.5.4.4 and the applicant's response to the RAI, described above, the staff concludes that the applicant adequately determined the soil and rock dynamic properties through its geophysical survey of the ESP site.

2.5.4.3.5 Excavation and Backfill

In SSAR Section 2.5.4.5, the applicant provided a general description of (1) the extent (horizontally and vertically) of anticipated safety-related excavations, fills, and slopes, (2) excavation methods and stability, (3) backfill sources and quality control, and (4) control of ground water during excavation. The staff found this general description to be useful. However, the applicant has not selected a reactor design or location within the ESP site, and it did not provide detailed excavation and backfill plans or plot plans and profiles as outlined in Section 2.5.4 of RS-002. Therefore, the staff could not adequately evaluate the applicant's excavation and backfill plans and will await the future submittal of these plans by the ESP holder and/or as part of a COL or CP application. This is COL Action Item 2.5-3. The staff notes that, in SSAR Section 2.5.4.5, the applicant stated that it would (1) geologically map future excavations for safety-related structures and (2) evaluate any unforseen geologic features that are encountered. In addition, the applicant stated that it would notify the NRC "when any excavations for safety-related structures are open for their examination and evaluation." The staff proposes to include a condition in any ESP that might be issued requiring that the ESP holder and/or an applicant referencing such an ESP perform geologic mapping of future excavations for safety-related structures, evaluate any unforseen geologic features that are encountered, and notify the NRC no later than 30 days before any excavations for safetyrelated structures are open for NRC's examinations and evaluation. This is Permit Condition 7.

2.5.4.3.6 Ground Water Conditions

In SSAR Section 2.5.4.6, the applicant provided a general description of (1) ground water measurements and elevations and (2) construction dewatering plans. The staff found this general description to be useful. However, the applicant has not selected a reactor design or location within the ESP site and did not provide an evaluation of ground water conditions as they affect foundation stability or detailed dewatering plans as outlined in Section 2.5.4 of RS-002. Therefore, the staff could not evaluate the ground water conditions as they affect the loading and stability of foundation materials or the applicant's dewatering plans during construction, as well as ground water control throughout the life of the plant. As such, the staff will await the future submittal of these evaluations and plans as part of the COL or CP application. The need to evaluate ground water conditions as they affect foundation stability or detailed dewatering plans is **COL Action Item 2.5-4.**

2.5.4.3.7 Response of Soil and Rock to Dynamic Loading

In its review of SSAR Section 2.5.4.7, the staff focused on the applicant's shear wave velocity design profiles to determine the response of the soil and rock underlying the ESP site to dynamic loading. In addition, the staff reviewed the applicant's modeling of the variation of soil

shear modulus and damping with cyclic shear strain. Finally, the staff reviewed the applicant's site dynamic response, which was based on a soil amplification/aftenuation analysis using the four soil profiles.

In RAI 2.5.4-7, the staff asked the applicant to reconcile two conflicting statements in SSAR Sections 2.5.4.7.1 and 2.5.1.2.6. The applicant stated in SSAR Section 2.5.1.2.6 that Zone III (weathered rock) is not a suitable material for safety-related plant structures. However, the applicant stated in SSAR Section 2.5.4.7.1 that some safety-related structures (excluding the reactor containment building) may be founded on the Zone III weathered rock, Zone IIB saprolite, or improved Zone IIA saprolite. In response to RAI 2.5.4-7, the applicant stated that the statement in SSAR Section 2.5.4.7.1 is correct and that it will delete the statement in SSAR Section 2.5.1.2.6. The applicant emphasized that only improved Zone IIA saprolite is appropriate for certain safety-related structures only if it is improved (see RAI 2.5.4-11 below). Based on the applicant's clarification in its response to RAI 2.5.4-7, the staff concludes that it is appropriate to consider the construction of safety-related structures on improved Zone IIA, and Zone IIB, and Zone III materials.

In RAI 2.5.4-8, the staff asked the applicant to provide its basis for the selected modulus reduction and damping ratio curves for Zones IIA, IIB, and III materials. In response to RAI 2.5.4-8, the applicant stated that it used the 1993 EPRI report (Ref. 170, SSAR Section 2.5.2), where applicable, as the basis for the shear modulus reduction and damping ratio curves. The staff reviewed the curves that the applicant selected for each of the soil and rock zones to determine whether the applicant based its selection on appropriate criteria, such as grain size, cohesiveness, confining pressure, and shear wave velocity. The staff concludes that the shear modulus and damping curves selected by the applicant were based on appropriate criteria and are suitable for Zone IIA, IIB, and III soil and rock.

In RAI 2.5.4-8(c), the staff asked the applicant to explain its use of a damping ratio of 2 percent for the Zone III-IV rock. In response to RAI 2.5.4-8(c), the applicant stated that the damping ratio for rock varies from site to site depending on various factors, including the mineral composition of the rock, the integrity and fissuring of the rock mass, and the level of shear deformation in the rock formation. According to the applicant, damping ratios for rock are generally between 0.5 to 4.5 percent. The applicant selected 2 percent for the Zone III-IV rock based on engineering judgment and past experience. To determine the sensitivity of the selected damping ratio, the applicant reran its analysis using damping ratios of 0.5, 1.0, and 5.0 percent. The results reveal only a slight difference in the peak acceleration for the different damping ratios. Based on these results, the staff concludes that a damping ratio of 2 percent for the Zone III-IV rock is acceptable.

In RAI 2.5.4-9(a), the staff asked the applicant to describe the method that it used for the development of the site-specific acceleration time histories. In response to RAI 2.5.4-9(a), the applicant stated that it selected two horizontal-component acceleration time histories, which it then matched to the low- and high-frequency response spectra from the two controlling earthquakes. The applicant next used these spectrum-compatible time histories for the site response analysis. In RAI 2.5.4-9(b), the staff asked the applicant to further describe the method it used for the development of the soil column amplification/attenuation analysis. In response to RAI 2.5.4-9(b), the applicant stated that it used the SHAKE2000 computer program to compute the site dynamic responses for the four soil and rock profiles described in SSAR Section 2.5.4.7.1. The applicant provided the input soil parameters, the depth at which the hard

rock ground was input (70 ft), and information on the number of iterations to compute the straincompatible modulus and damping values for the SHAKE analysis. In RAIs 2.5.4-9(c) and (d), the staff asked the applicant to further describe the four soil profiles and how it accounted for the variability of the soil properties in the analysis. In response to RAIs 2.5.4-9(c) and (d), the applicant provided the soil properties for each of the four profiles and an analysis that demonstrated how it varied these properties. The applicant stated that V_s and G_{max}, which is derived from V_s, have the most impact on the amplification/attenuation analysis. The applicant showed response spectra for different levels of G_{max} (67 to 150 percent). In RAI 2.5.4-9(e), the staff asked the applicant to justify its use of the mean 10⁻⁴ uniform hazard spectrum as the input rock motion. In response to RAI 2.5.4-9(e), the applicant stated that it initially used a time history matched to the mean 10⁻⁴ uniform hazard spectrum; however, in Revision 3 to its SSAR. it revised this approach to use time histories that match the low- and high-frequency response spectra calculated from the two controlling earthquakes. Because the applicant used both the low-frequency and high-frequency time histories and four different rock/soil profiles and also accounted for the variability in the soil and rock properties, the staff concludes that the applicant accurately determined the dynamic response of the soil and rock underlying the ESP site to the input hard rock ground motion. As a result of RAI 2.5.4-9, the applicant revised portions of SSAR Sections 2.5.4.7 and 2.5.4.8.

Based on its review of SSAR Section 2.5.4.7 and the applicant's responses to the RAIs, as described above, the staff concludes that the applicant adequately determined the response of the soil and rock underlying the ESP site to dynamic loading. The staff notes the applicant's commitment in response to RAI 2.5.4-9 to perform further soil column amplification/attenuation analyses at the COL stage, once it selects specific locations for the nuclear power plant structures. This is COL Action Item 2.5-5. The applicant stated that this analysis would involve subsurface investigations to determine actual strata thicknesses and confirm the subsurface material properties at each location.

2.5.4.3.8 Liquefaction Potential

In its review of SSAR Section 2.5.4.8, the staff evaluated the applicant's liquefaction analyses. The staff's review focused on the applicant's conclusion that only the Zone IIA saprolite is susceptible to liquefaction, as well as the various liquefaction analyses and parameter inputs to these analyses. The applicant concluded that soil Profile 1, which has 30 ft of unimproved Zone IIA saprolite, is potentially susceptible to liquefaction in most of the upper portions. The applicant stated that, if safety-related structures are founded on the Zone IIA saprolitic soils, these soils would be improved to reduce any liquefaction potential.

In RAI 2.5.4-10, the staff asked the applicant to describe how it varied the significant soil properties and seismic input values for each of the different liquefaction analyses. In addition, the staff asked the applicant to provide a sample liquefaction analysis. In its response, the applicant stated that it based the liquefaction analyses on the work of Youd et al. (Ref. 178, SSAR Section 2.5). For each of the three different analyses, the applicant varied G_{max} , the peak earthquake acceleration, and the earthquake magnitude. Based on its review of the sample liquefaction analysis, the staff concludes that the applicant used the latest empirical method and adequately varied the significant soil and seismic input parameters in accordance with the guidance provided in RG 1.198, which recommends the Youd et al. method. Therefore, the applicant's liquefaction analyses are acceptable.

Based on its review of SSAR Section 2.5.4.8 and the applicant's response to RAI 2.5.4-10. described above, the staff concludes that the applicant has employed an acceptable methodology to determine the liquefaction potential of the soil underlying the ESP site. Because portions of the Zone IIA saprolite are susceptible to liquefaction, the applicant stated that, if safety-related structures are founded on the Zone II saprolitic soils, these soils would be improved to reduce any liquefaction potential. Accordingly, the staff proposes to include a condition for any ESP that might be issued requiring that the ESP holder and/or an applicant referencing such an ESP improve Zone II saprolitic soils to reduce any liquefaction potential if safety-related structures are to be founded on them. This is Permit Condition 8. The applicant described techniques for improving the Zone IIA saprolitic soils in SSAR Section 2.5.4.12.

2.5.4.3.9 Earthquake Design Basis

SSAR Section 2.5.2.6 presents the applicant's derivation of the SSE. Section 2.5.2.3.6 of this SER summarizes the staff's evaluation of the SSE.

2.5.4.3.10 Static Stability

2.5.4.3.10 Static Stability

In its review of SSAR Section 2.5.4.10, the staff focused on the applicant's determination of the bearing capacities for each of the soil and rock zones, as well as the applicant's settlement analysis. The applicant presented bearing capacities for each of the soil and rock zones and described how it obtained these results. In addition, the applicant stated that the settlement of a large foundation with an assumed size of 150 ft by 300 ft, underlain by Zone IIB, would be less than 0.5 in.

In RAI 2.5.4-11, the staff asked the applicant to provide further details concerning its calculation of the bearing capacities of the soil and rock underlying the ESP site. In its response, the applicant provided a sample calculation for the staff to review. In addition, the applicant stated that the maximum bearing pressure from the containment building foundation is 15 ksf, which is only a fraction of the allowable bearing capacity of the bedrock (Zone III-IV is 80 ksf and Zone IV is 160 ksf). During its review of the sample bearing capacity calculation, the staff determined that the applicant used the widely accepted bearing capacity formulas developed by Terzaghi (D.P. Coduto, "Foundation Design," 2nd edition, issued 2001). Accordingly, the staff concludes that the applicant adequately determined bearing capacity values for each of the soil and rock zones. In addition, the staff concludes that the bearing capacities of Zones III-IV and IV rock are sufficient to handle the load of a containment building foundation.

The first the second of the se

Based on its review of SSAR Section 2.5.4.10 as described above, the staff concludes that the applicant provided an adequate preliminary assessment of the static stability of the ESP site. However, as described in RS-002, for the staff to perform a complete review of site static stability, the staff will need a COL or CP applicant to provide an analysis of the stability of all planned safety-related facilities when the locations of the plant structures are finally specified. This analysis should include bearing capacity, rebound, settlement, and differential settlements, as well as lateral loading conditions for all safety-related facilities. Therefore, the staff concludes that the applicant's description of the static stability is adequate to provide assurance of the stability of the ESP site, but the staff needs additional information to support any finding regarding detailed structure-specific stability. The need to provide an analysis of the stability of

all planned safety-related facilities, including bearing capacity, rebound, settlement, and differential settlements under deadloads of fills and plant facilities, as well as lateral loading conditions, is **COL Action Item 2.5-6.**

2.5.4.3.11 Design Criteria

In SSAR Section 2.5.4.11, the applicant provided general geotechnical criteria, such as acceptable FSs against liquefaction, allowable bearing capacities, acceptable total and differential settlements, and acceptable FSs against slope stability failure. The applicant did not provide structural design criteria, such as wall rotation, sliding, and overturning.

In RAI 2.5.4-12, the staff asked the applicant to explain why it did not provide design criteria pertaining to structural design. In its response, the applicant stated that structural criteria, such as allowable wall rotation and FSs against structure sliding and overturning, are not site specific and thus are not included in SSAR Section 2.5. The applicant stated that a COL application would describe these structural criteria. Since 10 CFR Part 52, Subpart A, does not require the submission of such information, the staff concludes that the applicant's decision not to include structural design criteria in the ESP applicant is justified.

Based on its review of SSAR Section 2.5.4.11 and the applicant's response to the RAI, the staff concludes that the applicant adequately presented the necessary design criteria for the ESP site. The need to provide design-related criteria that pertain to structural design (such as wall rotation, sliding, and overturning) is **COL Action Item 2.5-7.**

2.5.4.3.12 Techniques to Improve Subsurface Conditions

In SSAR Section 2.5.4.12, the applicant presented a general description of the ground improvement techniques it may employ so that the Zone IIA saprolitic soils could be used to support safety-related foundations. Although this general description was useful to the staff, a COL or CP applicant should provide specific plans for each proposed ground improvement technique it plans to employ so that the staff may determine whether the chosen techniques will ensure that Zone IIA saprolitic soils will be able to support safety-related foundations. This is COL Action Item 2.5-8.

2.5.4.4 Conclusions

Based on its review of SSAR Section 2.5.4 and the applicant's responses to the associated RAIs, described above, the staff concludes that the applicant adequately determined the engineering properties of the soil and rock underlying the ESP site through its field and laboratory investigations. In addition, the applicant used the latest field and laboratory methods, in accordance with RGs 1.132, 1.138, and 1.198, to determine these properties. Accordingly, the staff concludes that the applicant performed sufficient field investigations and laboratory testing to determine the overall subsurface profile, as well as the properties of the soil and rock underlying the ESP site. Specifically, the staff concludes that the applicant adequately determined (1) the soil and rock properties through its field investigations and laboratory tests, (2) the response of the soil and rock to dynamic loading, and (3) the liquefaction potential of the Zone IIA saprolitic soils. The staff notes that the applicant

committed to perform additional field investigations once it has selected the locations for safety-related structures at the COL stage.

In SSAR Sections 2.5.4.5 (excavation and backfill), 2.5.4.6 (ground water conditions), 2.5.4.10 (static stability), 2.5.4.11 (design criteria), and 2.5.4.12 (techniques to improve subsurface conditions), the applicant did not provide information sufficient for the staff to perform a complete evaluation. In addition, the applicant did not provide any information on the relationship of the foundation and underlying materials (Section 2.5.4.3 in RS-002). Each of the these topics depends on specific information related to building location and design and will be submitted as part of any COL or CP application.

In SSAR Table 1.9-1, the applicant identified three subsurface material properties as ESP site characteristics. The first site characteristic specifies that there is no potential for liquefaction at the ESP site. The applicant demonstrated, in SSAR Section 2.5.4.1.8, that any liquefaction at the ESP site would be limited to the Zone IIA saprolites, and if any safety-related structures are founded on the Zone IIA saprolites, these soils would be improved to reduce potential settlements and to ensure an FS for liquefaction greater than or equal to 1.1. The second site characteristic specifies a minimum bearing capacity value of 15 ksf. The bearing capacities for rock of Zones III and above underlying the ESP site are greater than 15 ksf (see SSAR Table 2.5-45). Finally, the third site characteristic specifies a minimum shear wave velocity of 3500 ft/s for the material underlying the foundation. The applicant stated that the reactor containment would be founded on Zone III-IV or IV bedrock. Because the average shear wave velocity (V_s) of the Zone III-IV bedrock is slightly less (3300 ft/sec) than this postulated PPE value (3500 ft/sec), the COL or CP applicant should determine the V_s of the actual material underlying the foundation for the reactor containment to ensure that V, equals or exceeds that of the chosen design. This is COL Action Item 2.5-9. The staff has reviewed the applicant's suggested site characteristics and plant design parameters related to SSAR Section 2.5.4 for inclusion in an ESP, should the NRC issue one to the applicant. For the reasons set forth above, the staff agrees with the applicant's site characteristics and values.

2.5.5 Stability of Slopes

SSAR Section 2.5.5 presents information on the stability of permanent slopes at the NAPS site. The applicant used previous geological, geophysical, and geotechnical investigations as a basis for determining the stability of the slopes at the site. SSAR Section 2.5.5.1 describes the existing slope characteristics, SSAR Section 2.5.5.2 describes the design criteria and analyses of slope stability, SSAR Section 2.5.5.3 presents information from two sample borings on or close to the slope, SSAR Section 2.5.5.4 states that the slope does not contain compacted fill, and SSAR Section 2.5.5.5 describes a potential new slope that may be excavated at the site.

Succession and a set of the set o

The state of the s

2.5.5.1 Technical Information in the Application

2.5.5.1.1 Slope Stability Analysis and Design Criteria

Existing Slope Characteristics

SSAR Section 2.5.5.1 describes an existing 2-horizontal to 1-vertical (2h:1v), 55-ft-high slope that descends from north of the SWR down to the south of the existing excavation made for the abandoned NAPS Units 3 and 4. The slope was excavated during construction of NAPS Units 1 and 2 and is made almost entirely of cut material. Since the top of this slope is 200 ft from the top of the SWR embankment, the applicant concluded that any potential instability of the slope would have no impact on the stability of the SWR embankment. However, sloughing or collapse of the slope could impact the new units, depending on their final location.

The NAPS licensee took two slope borings, conducted for the Unit 1 and 2 investigation, close to the area of the slope. As shown in the boring profiles, the soils in the slope consist almost entirely of Zone IIA saprolites. Saprolites are a further stage of weathering beyond weathered rock. Although saprolites are classified as soils, they still contain the relict structure of the parent rock and some core stone of the parent rock. About 75 percent of the Zone IIA saprolites are classified as coarse grained (sands, silty sands), while the remainder are fine grained (clayey sands, sandy and clayey silts, and clays). The majority of the saprolites obtained from the borings in the slope area are dense silty sands.

Design Criteria and Analyses

SSAR Section 2.5.5.2 presents the design criteria for the slope, as well as an analysis of the static and dynamic (seismic) stability analysis. The design criteria used for the slope include the following minimum FSs:

- end of construction—FS=1.4
- long-term static (nonseismic)—FS=1.5
- long-term seismic—FS=1.1

The applicant inspected the slope during the ESP site investigation and found no signs of distress. In addition, a comparison of recent and old photographs of the site shows that the condition of the slope is unchanged.

For the static and dynamic analyses of the slope, the applicant used the computer program SLOPE/W, which is a commercial software product that employs limit equilibrium theory to compute the FS of earth and rock slopes. For the static analysis, the SLOPE/W program used the Bishop method of slices. The applicant assumed that the saprolite is predominantly coarse grained, with a unit weight of 125 pcf, an angle of internal friction (ϕ ') of 30 degrees, and an effective cohesion (c') of 0.25 ksf. The resulting FS for the static analysis is 1.75, which is above the minimum FS of 1.5 for long-term static stability.

For the seismic slope stability analysis, the applicant used the pseudostatic approach, which assumes that the horizontal and vertical seismic forces act on the slope in a static manner as a constant force. Since an actual seismic event would last only seconds, with the peak motions

occurring for a small portion of the total duration, the applicant concluded that the pseudostatic approach is a conservative approach. For the high-frequency earthquake, the applicant used a peak horizontal acceleration of 0.65g, which is the average peak acceleration in the top 55 ft of unimproved soil (see SSAR Table 2.5-46). Similarly, the applicant used a vertical peak acceleration of 0.32g. The applicant stated that the resulting FS is significantly less than 1.1, which is the minimum FS required for seismic slope stability. For the low-frequency earthquake, the applicant used a peak horizontal acceleration of 0.26g, which is the average peak acceleration in the top 55 ft, and a vertical acceleration of 0.13g. The computed FS for this case is slightly greater than 1.1.

As an alternative to applying the peak acceleration values for the pseudostatic analysis, the applicant chose to use horizontal accelerations of 0.15g and 0.10g and a vertical acceleration of zero. The applicant provided the following argument to support these acceleration values:

فيعمل وبالماني بالراراتيان

Seed (Reference 186), in the 19th Rankine Lecture, addressed the overconservatism intrinsic in the pseudo-static analysis. He looked at the more rational approach proposed by Newmark (Reference 187), where the effective acceleration time-history is integrated to determine velocities and displacements of the slope. He also examined dams in California that had been subjected to seismic forces, including several dams that survived the 1906 San Francisco earthquake. Based on his studies, he concluded that for embankments that consist of materials that do not tend to build up large pore pressures or lose significant percentages of their shear strength during seismic shaking, seismic coefficients of only 0.15g are adequate to ensure acceptable embankment performance for earthquakes up to Magnitude M=8.25 with peak ground accelerations of 0.75g. For earthquakes in the range of M=6.5, Seed recommends a horizontal seismic coefficient of only 0.1g with a vertical seismic coefficient of zero.

Since the fabric and interlocking angular grain structure of the Zone IIA saprolite have a low susceptibility to pore pressure buildup and liquefaction, the applicant concluded that it would not lose a significant portion of its shear strength during shaking. In addition, since the controlling earthquake magnitudes for the ESP site are 5.4 and 7.2, the applicant concluded that using the acceleration values recommended by Seed was justified. Using horizontal accelerations of 0.10g and 0.15g with a vertical acceleration of zero, the computed FSs are greater than 1.1, which is higher than the minimum FS for seismic slope stability. In summary, the applicant stated, "the Seed reductions are considered reasonable and valid, and the slope is considered to have an adequate factor of safety against failure during the ESP seismic event."

In RAI 2.5.5-1, the staff asked the applicant to provide its basis for concluding that the existing slope has a low susceptibility to liquefaction and, therefore, concluding that a horizontal acceleration of 0.1g is suitable for the slope stability analysis. In its response, the applicant stated that it revised its previous liquefaction analysis because it is now basing the SSE on the RG 1.165 approach. The applicant's revised liquefaction analysis (see SSAR Section 2.5.4.8) shows more widespread liquefaction within the Zone IIA saprolitic soils. However, since this analysis does not take into account the age, fabric, structure, and mineralogy of the saprolite, the applicant maintained that any liquefaction would not be widespread. The applicant also defended its use of 0.10g and 0.15g as the peak accelerations for the pseudostatic slope stability analysis. The applicant cited the research of Seed (Ref. 186, SSAR Section 2.5), who

18 -2 18 BE 182

concluded that, if embankments do not liquefy or lose a significant amount of strength during a seismic event, they would displace at the crest but typically not fail in the conventional sense. The applicant stated that the design high-frequency earthquake has relatively low energy (magnitude 5.4), and therefore an acceleration of 0.10g is adequate. For the low-frequency earthquake, the applicant used a value of 0.15g for the peak acceleration. The pseudostatic slope stability analyses run with 0.1g and 0.15g both give FS values greater than 1.1.

The applicant also used the pseudostatic approach recommended by Kramer (Ref. 188, SSAR Section 2.5), which uses half of the peak acceleration value rather than a set peak value based on magnitude. Using Kramer's method, for the high-frequency earthquake, the applicant used a horizontal peak acceleration value of 0.325g and a vertical peak acceleration of 0.1625g. For the low-frequency earthquake, the applicant used a horizontal peak acceleration of 0.13g and a vertical peak acceleration of 0.065g. With these peak acceleration values, the applicant found that the FS is just below 1.0 for the high-frequency ground motion and greater than 1.1 for the low-frequency ground motion. Since the FS is below 1.0 using Kramer's method, the applicant stated that it could not rule of the possibility of some liquefaction in the slope area.

Boring Logs

The applicant drilled two sample borings on or close to the existing 2h:1v slope to the north of the SWR. Figures 2.5-71 and 2.5-72 in the SSAR reproduce the logs of the two borings.

Compacted Fill

SSAR Section 2.5.5.4 states that the existing 2h:1v slope is a cut slope and does not contain fill materials in any significant quantity.

Proposed New Slope

SSAR Section 2.5.5.5 states that a new slope may be excavated to the west of the SWR to accommodate UHSs for the new units. The new slope would be approximately the same height and would have the same 2h:1v slope as the existing slope. In addition, this proposed new slope would comprise similar materials as the existing slope. Therefore, the applicant concluded that the analytical conclusions for the existing slope would apply to the new slope; the new slope would be stable under seismic and long-term static conditions.

Conclusions

In SSAR Section 2.5.5.6, the applicant stated that, based on the possibility of some liquefaction in the slope area (existing slope), as well as the marginal results that it obtained using Kramer's method (Ref. 188, SSAR Section 2.5), it would take measures to ensure the safety of the slope and the structures that may be located close to the bottom of the slope. The applicant stated that these measures could include reducing slope steepness, removing and replacing materials that could lose significant strength during the design earthquake, and ground improvement measures such as soil nailing, moving structures further from the toe of the slope, and/or providing walls/barriers to protect those structures.

2.5.5.2 Regulatory Evaluation

SSAR Section 2.5.5 presents information on the stability of permanent slopes at the ESP site. The applicant stated in SSAR Section 1.8 that it developed the information regarding slope stability in accordance with the guidance presented in Section 2.5.5 of RS-002 and RG 1.70 and that the information is intended to satisfy the requirements of 10 CFR 100.23.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 100.23, which states that the applicant for an ESP must describe the geologic and seismic conditions of the proposed site necessary to determine site suitability. Section 2.5.5 of RS-002 provides specific guidance concerning the evaluation of information characterizing the stability of slopes under SSE conditions.

2.5.5.3 Technical Evaluation

The staff's review of SSAR Section 2.5.5 focused on the applicant's analysis of the stability of an existing slope adjacent to the ESP site, the failure of which might impact future structures located close to the slope. The staff reviewed the applicant's description of the existing slope characteristics, design criteria and analyses, and proposed new slope and design modifications.

2.5.5.3.1 Slope Stability Analysis and Design Criteria

The staff focused its review of SSAR Sections 2.5.5.1 through 2.5.5.6 on the adequacy of the applicant's slope stability analysis of an existing slope adjacent to the ESP site. In addition, the staff reviewed the applicant's summary of the slope subsurface conditions, as well as its proposed new slope and potential design modifications to ensure the safety of the slope and of the structures located close to the bottom of the slope.

To perform the slope stability analysis, the applicant used three different pseudostatic approaches. For the first approach, the applicant used average peak vertical and horizontal acceleration values (0.32q and 0.65q), which resulted in FS less than 1.1. For the second approach, the applicant used the approach recommended by Seed (Ref. 186, SSAR Section 2.5), which recommends peak acceleration values based on the magnitude of the earthquake. Using the Seed approach, the applicant originally used peak vertical and horizontal acceleration values of 0.10g, in accordance with the magnitudes for the controlling earthquakes. With these lower peak accelerations, the resulting FS were greater than 1.1. which is the minimum FS acceptable for seismic slope stability. In RAI 2.5.5-1, the staff asked the applicant to provide its basis for concluding that a horizontal acceleration of 0.1g is suitable for the slope stability analysis. In response to RAI 2.5.5-1, the applicant stated that it revised the peak horizontal acceleration value to 0.15g, since the controlling earthquake using the RG 1.165 approach has a magnitude of 7.2. The pseudostatic slope stability analyses run with 0.10g and 0.15g both give FS values greater than 1.1. For the third pseudostatic approach, the applicant used the peak acceleration values recommended by Kramer (Ref. 188, SSAR Section 2.5), which are half of the average peak acceleration values (0.16g and 0.33g). Using these values the FS is below 1.0 for the high frequency controlling earthquake, implying the possibility of some liquefaction in the slope area.

The applicant concluded its response to RAI 2.5.5-1 by stating, "in recognition of the high nearsurface accelerations and the results of the liquefaction analysis, the SSAR will be revised to indicate measures that would be taken to ensure the safety of the slope and of the structures that may be located close to the bottom of the slope." The staff concurs with this decision, since two of the three pseudostatic liquefaction analysis approaches result in FS less than 1.1. The staff concludes that, for the purposes of the ESP application, the pseudostatic analyses used by the applicant are adequate to analyze the stability of the existing slope. However, because the Zone IIA saprolites are susceptible to liquefaction, and because the existing slope could change, depending on final plant design and layout, the staff concludes that the COL or CP applicant should conduct a more detailed dynamic analysis of the stability of the existing slope and any new slopes resulting from plant construction using the SSE ground motion. This is COL Action Item 2.5-10.

2.5.5.4 Conclusions

Based on its review of SSAR Section 2.5.5 and the applicant's response to RAI 2.5.5-1, described above, the staff concludes that the applicant sufficiently analyzed the stability of the existing slope for the purposes of the ESP application. Because of the susceptibility of the Zone IIA saprolites to liquefaction, the staff concludes that the COL or CP applicant should conduct a more detailed dynamic analysis of the stability of the existing slope and any new slopes using the SSE ground motion. This is COL Action Item 2.5-10. A more extensive dynamic analysis would be appropriate at the COL or CP stage, since the applicant will have determined the locations of safety-related structures relative to the existing or new slopes. In addition, the COL or CP applicant should provide plot plans and cross-sections/profiles of all of the safety-related slopes and should specify the measures that it will take to ensure the safety of the slopes and any structures located adjacent to the slopes. This is COL Action Item 2.5-11.

2.5.6 Embankments and Dams

2.5.6.1 Technical Information in the Application

In SSAR Section 2.5.6, the applicant stated that, since Lake Anna would only be used for normal (i.e., non-safety-related) plant cooling of the new units, it did not reanalyze the North Anna Dam as part of the ESP application. According to the applicant, the North Anna Dam was designed and constructed to meet the requirements for a seismic Category I structure in support of the existing NAPS units.

2.5.6.2 Regulatory Evaluation

SSAR Section 2.5.6 states that the applicant did not reanalyze the North Anna Dam since Lake Anna would only be used for normal plant cooling of the new units. As such, the applicant did not list any regulatory guidance or cite any regulations as applicable to SSAR Section 2.5.6.

Section 2.5.6 of RG 1.70 describes the necessary information and analysis related to the investigation, engineering design, proposed construction, and performance of all embankments used for plant flood protection or for impounding cooling water. Sections 2.4.4 and 2.5.5 in RS-002 provide similar information and guidance.

2.5.6.3 Technical Evaluation

Section 2.4.4 of this SER provides the staff's evaluation of potential dam failures; Section 2.5.5 of this SER provides its evaluation of slope stability.

2.5.6.4 Conclusions

Sections 2.4.4 and 2.5.5 of this SER present the staff's conclusions regarding dam failures and slope stability, respectively.

3. DESIGN

3.5.1.6 Aircraft Hazards

For an early site permit (ESP) application, the NRC staff reviews the applicant's assessment of aircraft hazards to ensure that the risks associated with aircraft hazards are sufficiently low.

3.5.1.6.1 Technical Information in the Application

In Section 2.2.2.6 of the SSAR, the applicant presented information concerning airports and airways in the site vicinity that could affect a nuclear power plant or plants that might be constructed on the proposed ESP site. The applicant evaluated this information in SSAR Section 2.2.3.2.1.

The applicant stated that three airports exist within 15 miles of the proposed ESP site. Two of the airports are paved civil fields at which one or more aircraft are based, and the other is an unpaved private field at which no aircraft are based. None of the airports has commercial operations.

The closest airport is the Lake Anna Airport, about 7 miles south-southeast of the proposed ESP site. According to the applicant, approximately 3640 operations occurred at the field in 2002. The field is occasionally used for practice takeoffs and landings. The other paved field is the Louisa County Airport, which is about 11 miles west-southwest of the proposed ESP site. Approximately 6240 operations occurred at the field in 2002. The third airport is Cub Field, which is about 10 miles south-southwest of the proposed ESP site, and has a few operations per year.

The applicant stated that none of these airports has a sufficient number of flight operations per year to rise above the threshold set forth in Section 3.5.1.6 of Review Standard (RS)-002, "Processing Applications for Early Site Permits," which would trigger a detailed evaluation of potential hazards associated with airport flight operations. Therefore, the applicant did not include a detailed evaluation of potential hazards associated with airport flight operations.

The applicant stated that one civil airway and three military training routes pass near the proposed ESP site. The centerline of the civil airway (V223) is about 5.5 miles west of the site, and the edge of the airway is about 1.5 miles from the site. No traffic data are kept for this airway. However, the applicant stated that the Federal Aviation Administration (FAA) characterizes the airway as "not heavily used" and estimates the traffic to be less than 200 aircraft per day.

The centerlines of the military training routes, which are 10 miles wide, are less than 1 mile south of the proposed ESP site. The applicant stated that the Oceana Naval Air Station in Virginia Beach controls these routes. The applicant added that, according to a knowledgeable representative of the Navy whom it had contacted, pilots using these routes are instructed to fly near the edge of the route to avoid the North Anna Power Station (NAPS) and to generally remain 3 to 4 miles from NAPS. Flights along the routes typically involve one or two aircraft, and rarely four aircraft. The applicant stated that the number of flights per year on the military routes has remained approximately constant, as evidenced by the documented total traffic for

these three routes over a 3-year period. Specifically, the annual number of flights for these three routes was 2582, 2348, and 2623 for the years 1991, 1992, and 1993, respectively.

The airways are sufficiently close to the proposed site to warrant detailed evaluations of the associated potential hazards. In the SSAR, the applicant included detailed evaluations it performed following the guidance in RS-002, Section 3.5.1.6. The applicant's analysis concluded that the probability of an aircraft crash on the proposed ESP site from flights along the V223 airway is 3.45x10⁻⁸ per year. Similarly, the applicant's analysis concluded that the probability of an aircraft crash on the proposed ESP site from flights along the military training routes is 1.56x10⁻⁸ per year.

3.5.1.6.2 Regulatory Evaluation

In SSAR Section 1.8, the applicant identified the applicable NRC regulations and guidance related to the identification and evaluation of hazards associated with aircraft hazards as Title 10, Part 100, "Reactor Site Criteria," of the *Code of Federal Regulations* (10 CFR Part 100), Subpart B; Regulatory Guide 1.70, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants," issued February 1972; and RS-002, Section 3.5.1.6. Section 2.2.3.2 of the SSAR refers to NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants"; however, RS-002 includes the portion of NUREG-0800 that is referenced. The staff agrees that the foregoing regulations and guidance apply to this portion of the review. The staff considered the regulatory requirement in 10 CFR Part 100, Subpart B, in reviewing aircraft hazards.

According to Section 3.5.1.6 of RS-002, the requirement in 10 CFR 100.20, "Factors to be Considered When Evaluating Sites," that individual and societal risks of potential plant accidents be low is met if the probability of aircraft accidents having the potential for radiological consequences greater than the 10 CFR 50.34(a)(1) exposure guidelines is less than about 10⁻⁷ per year. The probability is considered to be less than about 10⁻⁷ per year by inspection if the distances from the site meet all of the following criteria:

- 1. The site-to-airport distance, D, is between 5 and 10 statute miles, and the projected annual number of operations is less than 500 D²; or the site-to-airport distance, D, is greater than 10 statute miles, and the projected annual number of operations is less than 1000 D².
- 2. The site is at least 5 statute miles from the edge of military training routes, including low-level training routes, except for those associated with a usage greater than 1000 flights per year, or where activities (such as practice bombing) may create an unusual stress situation.
- 3. The site is at least 2 statute miles beyond the nearest edge of a Federal airway, holding pattern, or approach pattern.

If the above proximity criteria are not met, or if sufficiently hazardous military activities are identified, a detailed review of aircraft hazards should be performed. Section 3.5.1.6 of RS-002 provides guidance on performing such a review.

3.5.1.6.3 Technical Evaluation

The applicant identified three airfields near the proposed ESP site. Two of the three airfields are described as public fields, and the third is identified as a private field. As noted in Section 3.5.1.6.1 of this safety evaluation report (SER), the applicant concluded that none of the fields has a sufficiently large number of flight operations to warrant a detailed analysis of the risk to a plant constructed at the proposed ESP site.

The staff notes, however, that a landing approach holding pattern for the Louisa County Airport is relatively close to the ESP site. Depending on the speed of an aircraft on an approach to the airport, this holding pattern can be less than 2 statute miles from the ESP site. As such, it would not meet the third criterion described in Section 3.5.1.6.2 of this SER. Failure to meet this criterion would, under the guidance in RS-002, necessitate a detailed aircraft hazards review. After consulting with the FAA, the staff has determined that only about 1 percent of all landing approaches to the Louisa County Airport involve the use of this particular holding pattern. Hence, the staff has made an estimate of this hazard by taking into account the above holding pattern usage fraction, the number of annual airport operations (6240 operations per year), the effective target area (0.013 square miles (mi²)), and the crash frequency for general aviation as given in NUREG-0800, Section 3.5.1.6. On this basis, the estimated crash frequency is about 9.7x10° crashes per year.

The staff has confirmed that the applicant identified the public airfields closest to the proposed ESP site. The next closest public airfield is in Spotsylvania County, more than 20 miles from the site. The staff did not identify any additional private airfields within 10 miles of the site. Given the typical number of flight operations per year from private airfields and the size and type of aircraft that generally use private fields, the staff concludes that a detailed analysis of risk to a plant at the proposed ESP site from operations at private fields is not necessary.

The applicant identified one airway and three military training routes that pass near or over the proposed ESP and, using procedures described in RS-002, Section 3.5.1.6, separately estimated the probability of an aircraft crashing into a plant constructed at the proposed site from aircraft using the airway or military training routes. The staff has reviewed the applicant's calculations and finds them to be consistent with the procedures detailed in RS-002.

In calculating the crash probabilities, the applicant used an effective area of 0.013 mi² for safety-related structures that might be damaged by a crash sufficient to cause the potential for radiological consequences in excess of the 10 CFR 50.34(a)(1) criteria. The applicant used drawings included in the SSAR to estimate this area. The area is somewhat smaller than that listed for the power block (0.018 mi²) in the plant parameter envelope (PPE). The staff considers the area the applicant used in its calculation to be reasonable. Use of either figure for the effective area would result in a crash frequency (for all four routes) of less than 10⁻⁷ per year.

Appropriately, the applicant used the crash rates per mile of flight included in NUREG-0800 for the calculations. The staff concludes that the probability of an accident having the potential for radiological consequences in excess of the exposure criteria found in 10 CFR 50.34(a)(1) is less than about 10⁻⁷ per year.

3.5.1.6.4 Conclusions

The staff has reviewed the applicant's aircraft hazard analysis using the procedures set forth in RS-002, Section 3.5.1.6. As set forth above, the staff has independently verified the applicant's assessment of aircraft hazards at the site and concluded that the probability of an accident having the potential for radiological consequences in excess of the exposure criteria found in 10 CFR 50.34(a)(1) is less than about 10⁻⁷ per year. In addition, equivalent aircraft traffic in equal or closer proximity to plant sites reviewed in past NRC licensing actions was, after careful examination, found to present no undue risk to the safe operation of those plants. Based upon these considerations, the staff concludes that aircraft hazards do not present an undue risk to the health and safety of the public from potential construction and operation of one or more new nuclear plants on the proposed ESP site. Therefore, the staff concludes, with respect to aircraft hazards, that the proposed site is acceptable for constructing a plant falling within the applicant's PPE, and that the site meets the relevant requirements of 10 CFR Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," and 10 CFR Part 100.

11. RADIOLOGICAL EFFLUENT RELEASE DOSE CONSEQUENCES FROM NORMAL OPERATIONS

11.1 Source Terms

The U.S. Nuclear Regulatory Commission (NRC) staff reviewed the information on radiological dose consequences caused by gaseous and liquid effluents that may be released from normal operation of the plant that was provided by reference in Site Safety Analysis Report (SSAR) Section 2.3.5.1 and included in the Environmental Report Section 5.4 and Tables 3.1-9, 5.4-10, and 5.4-11 of the Dominion Nuclear North Anna, LLC (Dominion or the applicant), early site permit (ESP) application to determine whether site characteristics are such that the radiation dose to members of the public would be within regulatory requirements.

11.1.1 Technical Information in the Application

The applicant provided information on the radiological impacts on members of the public from gaseous and liquid effluents that would be generated as a normal byproduct of nuclear power operations. The applicant described the exposure pathways by which radiation and radioactive effluents can be transmitted to members of the public in the vicinity of the site. The estimates on the maximum doses to the public are based on the available data on the reactor designs being considered using the plant parameter envelope (PPE) approach in which the bounding liquid and gaseous radiological effluents were used in the evaluation. The applicant evaluated the impact of these doses by comparing them to regulatory limits.

Using the PPE approach, Dominion provided a list of fission and activation products that may be released as liquid and gaseous effluents from the postulated new units. The applicant evaluated the impacts from releases and direct radiation by considering the probable pathways to individuals, populations, and biota near the proposed new units. The applicant also calculated the highest dose from the major exposure pathways for a given receptor.

If built, the postulated new units at the North Anna ESP site would release liquid effluents into the waste heat treatment facility (WHTF) through the discharge canals used for the operating units. The applicant considered the following liquid pathways-ingestion of aquatic food; ingestion of drinking water; exposure to shoreline sediment; and exposure to water through boating, swimming, and other activities.

Dominion also considered gaseous pathways, including external exposure to the airborne

plume, external exposure to contaminated ground, inhalation of airborne activity, and ingestion of contaminated agricultural products, in its application.

The applicant calculated the dose to the maximally exposed individual (MEI) from both the liquid and gaseous effluent release pathways and calculated a collective whole body dose for the population within 50 miles (mi) of the North Anna ESP site.

11.1.2 Regulatory Evaluation NRC regulations require that applicants for an ESP address the characteristics of the proposed site that could affect the radiation dose to a member of the public from radiological effluents. In SSAR Section 1.8.1, the applicant identified the applicable NRC regulations as Title 10, Section 52.17(a)(1)(iv), of the *Code of Federal Regulations* (10 CFR 52.17(a)(1)(iv)). Specifically, this regulation states that an ESP application should describe the anticipated maximum levels of radiological effluents that each facility will produce. Furthermore, 10 CFR 100.21(c)(1) requires that radiological effluent release limits associated with normal operation from the type of facility proposed to be located at the site be met for any individual located off site. The staff reviewed this portion of the application for conformance with the applicable regulations.

11.1.3 Technical Evaluation

During normal operation, small quantities of radiological materials are expected to be released to the environment through gaseous and liquid effluents from the plant.

11.1.3.1 Gaseous Effluents

The applicant calculated the estimated dose to a hypothetical maximally exposed member of the public from the gaseous effluents using radiological exposure models based on Regulatory Guide (RG) 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," issued March 1976; RG 1.109, Revision 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," issued October 1977, and the GASPAR II computer program (NUREG/CR-4653, "GASPAR II—Technical Reference and User Guide," March 1987).

Section 2.3.5 of this safety evaluation report discusses the derivation of the atmospheric dispersion parameters used in the applicant's radiological dose assessment.

Dominion calculated the gaseous pathway doses to the MEI using the GASPAR II program at the nearest site boundary, nearest vegetable garden, nearest residence, and nearest meat cow. The applicant did not calculate doses from the milk pathway because no milk cows or goats are located within a 5-mile radius of the ESP site. Table 5.4-7 of the environmental report includes the gaseous effluent releases used to estimate dose to the MEI. These releases, which were estimated for one unit, considered the advanced boiling-water reactor (ABWR) design to have an output level of 4300 megawatt thermal (MWt), rather than the certified level of 3926 MWt. This difference resulted in a slight increase in release rate for those isotopes for which the ABWR design, as certified, was the bounding condition. Tables 5.4-3 through 5.4-5 of the environmental report include other inputs to the GASPAR II program, including meat and vegetable production rates, atmospheric dispersion factors, ground deposition factors, receptor locations, and consumption factors. Table 5.4-9 of the environmental report presents the gaseous pathway doses to the MEI calculated by the applicant. The staff performed an independent evaluation of gaseous pathway doses with similar results.

In Table 1.3-8 of the SSAR, the applicant estimated the radiological dose consequences caused by gaseous effluents that may be released from normal operation of the plant. The applicant determined the gaseous radioactive effluent concentrations based on a composite of the highest activity content of the individual isotopes it anticipated would be released from the alternative reactor designs under consideration.

The applicant also provided a bounding gaseous effluent source term to support its compliance with the gaseous effluent release concentration limits in Table 2 of Appendix B, "Annual Limits on Intakes (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage," to 10 CFR Part 20, "Standards for Protection Against Radiation."

11.1.3.2 Liquid Effluents

The applicant calculated the estimated dose to a hypothetical maximally exposed member of the public from the liquid effluents using radiological exposure models based on RG 1.109 and the LADTAP II computer program (NUREG/CR-4013, "LADTAP II—Technical Reference and User Guide," April 1986).

Dominion calculated liquid pathway doses using the LADTAP II program for various activities, including eating fish and invertebrates caught near the discharge point; drinking water from Lake Anna; and boating, swimming, and using the shoreline for recreational purposes. Table 5.4-6 of the environmental report includes the liquid effluent releases for one new unit used in the estimate of dose to the MEI. These releases considered the ABWR design to have an output level of 4300 MWt, rather than the certified level of 3926 MWt. This difference resulted in a slight increase in release rate for those isotopes for which the ABWR design was the bounding condition. Tables 5.4-1 and 5.4-2 of the environmental report include other parameters used as input to the LADTAP II program, including effluent discharge rate, dilution factor for discharge, transit time to receptor, and impoundment concentration.

The applicant calculated liquid pathway doses to the MEI, including a maximum annual dose to the total body of 0.013 milliSievert (mSv) (1.3 millirem (mrem)) for the adult. Dominion calculated the maximum annual dose to the thyroid as 0.013 mSv (1.3 mrem) for the infant and the maximum annual dose to the liver as 0.017 mSv (1.7 mrem) for the child. The staff performed an independent evaluation of liquid pathway doses with similar results. The staff concludes that the applicant has provided a bounding assessment to demonstrate its capability to comply with the regulatory requirements in 10 CFR Part 20 and Appendix I, "Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion "As Low as is Reasonably Achievable" for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents," to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities."

11.1.4 Conclusions

The applicant provided adequate information to provide reasonable assurance that it will control, monitor, and maintain radioactive gaseous and liquid effluents from the ESP site within the regulatory limits described in 10 CFR Part 20, as well as maintain them at as low as is reasonably achievable (ALARA) levels, in accordance with the effluent design objectives contained in Appendix I to 10 CFR Part 50.

As set forth above, the staff has independently verified the adequacy of the applicant's dose consequence calculations from normal operations. A combined license (COL) or construction permit (CP) applicant that references an ESP for the North Anna site should verify that the calculated radiological doses to members of the public from radioactive gaseous and liquid

effluents for any facility to be built on the North Anna site are bounded by the radiological doses included in the ESP application and reviewed by the NRC staff as described above. This includes any changes made to the input parameters used to calculate the radiological doses (i.e., meteorological data, distance to receptors, and land use data). In addition, detailed information on the solid waste management system used to process the radioactive gaseous and liquid effluents will be required. This is **COL Action Item 11.1-1.**

Based upon these considerations, the staff concludes that radiological doses to members of the public from radioactive gaseous and liquid effluents resulting from the normal operation of one or more new nuclear power plants that might be constructed on the proposed ESP site do not present an undue risk to the health and safety of the public. Therefore, the staff concludes, with respect to radiological effluent release dose consequences from normal operations, that the proposed site is acceptable for constructing a plant falling within the applicant's PPE, and that the site meets the relevant requirements of 10 CFR Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," and 10 CFR Part 100, "Reactor Site Criteria."

13. CONDUCT OF OPERATIONS

13.3 Emergency Planning

The U.S. Nuclear Regulatory Commission (NRC) evaluates emergency plans for nuclear power reactors to determine whether there is reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. An early site permit (ESP) application, pursuant to Title 10, Section 52.17(b), of the *Code of Federal Regulations* (10 CFR 52.17(b)), must identify any physical characteristics unique to the proposed site that could pose a significant impediment to the development of emergency plans. The application must also describe the contacts and arrangements the applicant has made with Federal, State, and local government agencies with emergency planning responsibilities. In addition, the application may propose major features of emergency plans, as described in Supplement 2 to NUREG-0654/FEMA-REP-1, Revision 1, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants—Criteria for Emergency Planning in an Early Site Permit Application—Draft Report for Comment" (hereafter referred to as Supplement 2), issued April 1996, or may propose complete and integrated emergency plans.

In Section 13.3 of the site safety analysis report (SSAR), the applicant presented the major features of its proposed emergency response plan pursuant to 10 CFR 52.17(b)(2)(i). Because the proposed ESP site footprint consists of a portion of the existing North Anna Power Station (NAPS) site and is located immediately adjacent to NAPS, very little distinction exists between the NAPS site and the ESP site for purposes of emergency planning. The ESP application takes advantage of the emergency planning resources, capabilities, and organization that currently exist at the NAPS site.

The ESP applicant, Dominion Nuclear North Anna, LLC (Dominion) is an indirect, wholly owned subsidiary of Dominion Resources, Inc. (Dominion Resources). Virginia Electric and Power Company (Virginia Power, formerly VEPCO), which operates the existing nuclear units on the NAPS site (i.e., North Anna Units 1 and 2), is also a wholly owned subsidiary of Dominion Resources. If the COL or CP applicant were to proceed with the development of new reactor units at the ESP site, it would enter into an arrangement with Virginia Power to coordinate and implement an integrated emergency plan, which, in effect, would extend the existing emergency planning and preparedness activities to the new reactor unit(s). The related offsite aspects of emergency planning would remain essentially unchanged.

The staff, in consultation with the Federal Emergency Management Agency (FEMA), has reviewed the applicant's proposed emergency plan, applicable portions of the North Anna Emergency Plan (NAEP), the Commonwealth of Virginia Radiological Emergency Response Plan (COVRERP), county radiological emergency response plans (RERPs), responses to requests for additional information (RAIs), and generally available reference materials in accordance with NRC Review Standard (RS)-002, "Processing Applications for Early Site Permits," issued May 2004.

Because the applicant has elected to present and seek NRC acceptance of the major features of emergency plans, the staff's evaluation addresses, in order, the three aspects of such a

submission. The following identifies each aspect and the section of this safety evaluation report (SER) in which it is discussed:

- identify physical characteristics that could pose a significant impediment to the development of emergency plans (SER Section 13.1.1)
- describe contacts and arrangements made with Federal, State, and local government agencies with emergency planning responsibilities (SER Section 13.3.2)
- propose major features of the emergency plans (SER Section 13.3.3)

The applicant identified Appendix E, "Emergency Planning and Preparedness for Production and Utilization Facilities," to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities," as applicable to the major features it proposed. Appendix E, however, applies to the "major features" option of 10 CFR 52.17(b)(2) only to the extent that it requires description of the "essential elements of advance planning that have been considered" (see Section III of Appendix E to 10 CFR Part 50). The staff has approved the applicant's identification of Appendix E as one of the regulatory requirements applicable to the staff's review of the major features proposed by the applicant. The staff's findings are set forth throughout Section 13.3.3 of this SER, and are limited to those particular portions of Appendix E that the staff considered during the course of its review of a particular major feature. More importantly, any staff finding that a proposed major feature complies with a particular requirement of Appendix E is limited to the description of the major feature approved by the staff in this SER.

Notwithstanding any staff approval of a proposed major feature in this SER, all features of the emergency plan requiring description pursuant to Appendix E, but which are not described in the ESP application, will be reviewed in the context of a combined license (COL) or operating license (OL) application. The staff will review complete and integrated emergency plans submitted in a COL or OL application to determine whether they comply with such requirements, as well as the requirements of 10 CFR 50.47, "Emergency Plans."

The staff's evaluation of the proposed major features of the applicant's emergency plans parallels the major features and planning standards in Supplement 2.

13.3.1 Significant Impediments to the Development of Emergency Plans

13.3.1.1 Technical Information in the Application

In SSAR Section 13.3.2, the applicant stated that the major features emergency plan (i.e., Section 13.3 of the SSAR) takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. In addition, SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. Hence, the SSAR relies on and refers to the information contained in these existing plans.

SSAR Section 13.3.2.1 states that the applicant used a preliminary analysis of the evacuation times, incorporating the evacuation time estimate (ETE) methods recommended in Section II of Supplement 2 to identify any physical characteristics unique to the ESP site that could pose a

significant impediment to the development of emergency plans. This estimate included seasonal recreational visitors around Lake Anna and school populations. The most recent ETE, IEM/TEC01-220, "Evacuation Time Estimates for the North Anna Power Station and Surrounding Jurisdictions," dated November 2, 2001, describes the analysis methods and results.

SSAR Section 13.3.2.1.2 states that the most recent ETE for the NAEP is based on Census 2000 data and applies to the ESP site. The total permanent resident population within the 10-mile (mi) plume exposure pathway emergency planning zone (EPZ) is 20,292. The ETE considers permanent residents, transients, and persons in special facilities, including school populations (which are the only institutional populations within the 10-mile EPZ). Emergency traffic is expected to flow away from the ESP site, and the road network can adequately accommodate anticipated vehicular traffic. SSAR Section 13.3.2.2.2.j.3 further states that the ETE results in evacuation time estimates that are based on different affected population areas and weather conditions, with estimates ranging from 85 to 105 minutes (min).

Appendix 10.8 to the NAEP incorporates the November 2001 ETE cited above. The appendix describes the methods used to obtain current population data and to produce the ETEs, and it reports the updated population figures, road network information, and ETEs. The evacuation scenarios that were modeled were based on peak season nighttime population counts (representing the worst case), and the analysis noted no significant traffic congestion in any of the scenarios evaluated.

In addition, the ETE includes maps which show various features of the 10-mile EPZ. Figure 1, "Map of the Area around North Anna Power Station," of the ETE, which identifies the transportation networks and political boundaries, shows the NAPS site and the 10-mile EPZ area. Figure 2, "Map of the Protective Action Zones for North Anna Power Station," Figure 3, "Permanent Resident Population Distribution Based on 2000 Census Data by Sector and Ring," and Figure 6, "Evacuation Roadway Network," show the political boundaries. Figures 1, 2, and 3 also show the location of the NAPS site. Figures 1, 2, 3, and 6 identify the transportation networks, topographical features, and political boundaries. Figure 2 shows evacuation subareas (i.e., protective action zones (PAZs)). Section 1.2, "Emergency Planning Zone," of the ETE states the following basis for the PAZs:

Twenty-five zones have been established for the NAPS 10-mile EPZ. To the extent feasible, the zones were selected based on existing political boundaries to enhance direction and coordination of the public in the affected area. The demarcation of the zones are roughly 2, 5, and 10 miles from the nuclear facility. This permits flexibility and selectivity in application of protective actions. Figure 2 is a map of the PAZs for NAPS. Attachment 1 contains boundary descriptions of the PAZs within the 10-mile emergency planning zones for NAPS.

เรียงทางวิหิสวัสหากเรื่องเหมือนเสียงสารปร

In RAI 13.3-9, the staff asked the applicant to specifically state whether it identified any physical characteristics unique to the proposed ESP site from the ETE or any other source or analysis that could pose a significant impediment to the development of emergency plans for the site. In its response, the applicant stated that it had not identified any physical characteristics unique to the North Anna ESP site that could pose a significant impediment to the development of emergency plans for the site and that the ETE did not identify any areas of congestion during the evacuation evaluations.

In SSAR Section 13.3.2, the applicant stated that the major features emergency plan (i.e., SSAR Section 13.3) takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. In RAI 13.3-3, the staff asked the applicant whether it wished to incorporate applicable sections of the existing NAEP into the application, to the extent that the NAEP supports the emergency planning description in the application. In its response, the applicant confirmed that it had incorporated applicable sections of the existing NAEP into the application.

In RAI 13.3-11, the staff asked the applicant to address whether the increases in population during the term of an ESP could pose a significant impediment to the development of emergency plans. In its response, the applicant stated that the ETE identified no areas of congestion and that travel time is relatively inelastic with respect to anticipated changes in road capacity. In SSAR Section 2.1.3, the applicant provided population projections and stated that any population increase is projected to be gradual over time. Planning and consideration of new roads or modifications of existing roads and intersections could offset any large influx of new permanent or transient populations within the 10-mile EPZ.

13.3.1.2 Regulatory Evaluation

In SSAR Section 13.3.1, the applicant stated that SSAR Section 13.3 presents information required by 10 CFR 52.17(b)(1) regarding the identification of potential impediments to emergency planning. In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(1), which mandate that the applicant for an ESP identify physical characteristics unique to the proposed site, such as egress limitations from the area surrounding the site, that could pose a significant impediment to the development of emergency plans. The staff further considered 10 CFR 52.18, "Standards for Review of Applications," which requires consultation with FEMA to determine whether the information required of the applicant by 10 CFR 52.17(b)(1) demonstrates that no significant impediment to the development of emergency plans exists. Supplement 2 and RS-002 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application.

Supplement 2 defines a significant impediment as a physical characteristic or combination of physical characteristics that would pose major difficulties for an evacuation or the taking of other protective actions. Such unique physical characteristics may be identified by performing a preliminary analysis of the time for evacuating various sectors and distances within the 10-mile EPZ for transient and permanent populations, noting major difficulties for an evacuation (e.g., significant traffic-related delays) or the taking of other protective actions.

According to RS-002, the applicant should address factors, such as the availability of adequate shelter facilities, local building practices and land use (e.g., outdoor recreation facilities, including camps, beaches, hunting or fishing areas), and the presence of large institutional or other special needs populations (e.g., schools, hospitals, nursing homes, prisons) when identifying significant impediments to the development of emergency plans. Any ETE or other identification of physical impediments should include the latest population census numbers and the most recent local conditions. In addition, the applicant should describe the proposed means for resolving any impediments identified.

13.3.1.3 Technical Evaluation

In SSAR Section 13.3.2.1.2, the applicant stated that the road network surrounding the NAPS site, which includes the ESP site, can adequately accommodate anticipated vehicular traffic. This conclusion is based on the most recent ETE, which uses Census 2000 data. SSAR Section 13.3.2.2.2.j.3 states that the resulting ETEs are based on different population areas and weather conditions, and range from 85 to 105 min.

In SSAR Section 13.3.2, the applicant stated, in part, that the major features emergency plan (i.e., SSAR Section 13.3) takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the ESP site. In response to RAI 13.3-3, the applicant confirmed that it had incorporated applicable sections of the existing NAEP into the application, to the extent that the NAEP supports the emergency planning descriptions in the application. This includes the ETE contained in Appendix 10.8 to the NAEP. As a result, the staff reviewed portions of the NAEP as part of its review of the ESP application and based its evaluation of the emergency planning information in the application on both SSAR Section 13.3 and relevant portions of the NAEP, including the ETE.

The ESP site footprint consists of a portion of the NAPS site and is located near the existing NAPS reactors. The boundary of the ESP site is entirely within the boundary of the existing NAPS site. The staff has not identified any significant differences between the major features proposed in the SSAR and the major features discussed in existing plans and relied on in the SSAR. The staff finds that, for purposes of identifying physical characteristics that could pose a significant impediment to developing emergency plans, there is no distinction between the existing NAPS site and the ESP site. Because the existing NAPS site includes the ESP site, the staff finds that the applicant's use of the ETE for the NAPS site in the ESP application is acceptable and appropriate.

In RAI 13.3-11, the staff asked the applicant to address possible changes to this determination, as it relates to the ESP site, including the duration of the ESP itself. In its response, the applicant stated that the ETE identifies no areas of congestion and that travel time is relatively inelastic with respect to anticipated changes in road capacity. Further, SSAR Section 2.1.3 provides population projections and suggests that population increase will be gradual over time. Planning and consideration of new roads or modifications of existing roads and intersections could offset any large influx of new permanent or transient populations within the 10-mile EPZ.

In response to RAI 13.3-9, the applicant stated that it had not identified any physical characteristics unique to the North Anna ESP site that could pose a significant impediment to the development of emergency plans for the ESP site, and that the ETE identified no areas of congestion during the evacuation evaluation. The ETE, which reflects Census 2000 data, considers permanent residents, transients, and persons in special facilities, including school populations. Population increases over the duration of the ESP are projected to be gradual, and new or modified roads and intersections could offset any large influx of new permanent or transient populations within the 10-mile EPZ. Accordingly, the staff finds that the applicant's conclusion that it found no significant impediments is acceptable, and no physical characteristics unique to the proposed ESP site have been identified that could pose a significant impediment to the development of emergency plans for the ESP site.

13.3.1.4 Conclusions

As discussed above, the applicant has shown through use of the ETE that no physical characteristics unique to the proposed ESP site could pose a significant impediment to the development of emergency plans. Based on its review as set forth above, the staff concludes that the information the applicant provided is consistent with the guidelines in RS-002 and Supplement 2. Therefore, the information is acceptable and meets the requirements of 10 CFR 52.17(b)(1) and 10 CFR 52.18.

13.3.2 Contacts and Arrangements with Local, State, and Federal Agencies

13.3.2.1 Technical Information in the Application

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. The applicant did not identify any significant differences between the major features of emergency plans proposed in the application and the major features discussed in existing plans and, therefore, relied on this information in the application. SSAR Section 13.3.3 lists the 19 Federal, State, and local government agencies with emergency planning responsibilities in support of NAPS. In addition, the applicant stated the following:

Dominion provided an overview of the ESP project to DEM [Commonwealth of Virginia Department of Emergency Management (VDEM)] staff members on February 20, 2003 and to risk jurisdiction coordinators of emergency management on March 24, 2003. The NRC licensing process, emergency preparedness requirements for ESP applicants, and Dominion's schedule for preparing and submitting this ESP application [for North] Anna were described at both meetings. During the discussions regarding the ESP process, no impediment to pursuing an ESP was identified by Commonwealth of Virginia or risk jurisdiction response organizations.

SSAR Section 13.3.2.2.2.a.6 provides a nearly identical statement to the above. SSAR Section 13.3.2.2.2.a.6 further states that the existing licensed facilities (i.e., North Anna Units 1 and 2) maintain, within the NAEP, letters of agreement with the U.S. Department of Energy (DOE), Commonwealth of Virginia agencies, and various local agencies.

In RAI 13.3-1, the staff asked the applicant to document its arrangements with Federal, State, and local government agencies with emergency planning responsibilities that specifically address the impacts of an additional reactor(s) at the ESP site, in particular, how these arrangements address any impact that an additional reactor(s) at the North Anna site would have on government agency emergency planning responsibilities. The staff also asked the applicant to provide acknowledgment by the agencies of these proposed expanded responsibilities (if any). In its response, the applicant provided letters of agreement from the 19 agencies with which Dominion Resources has existing agreements for the NAPS, which had been revised to specifically acknowledge the agencies' awareness of the ESP application for the NAPS site. In addition, the letters state that the existing agency arrangements would apply to a prospective additional reactor(s) at the NAPS site.

13.3.2.2 Regulatory Evaluation

In SSAR Section 13.3.1, the applicant stated that SSAR Section 13.3 presents information required by 10 CFR 52.17(b)(3) regarding descriptions of contacts and arrangements that the applicant has made with Federal, State, and local government agencies with emergency planning responsibilities.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(3), which mandate, in part, that an ESP application describe the contacts and arrangements made with Federal, State, and local government agencies with emergency planning responsibilities. Supplement 2 and RS-002 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application.

Supplement 2 states that the description of contacts and arrangements should include the name and location of the organization contacted, the title and/or position of the person(s) contacted, and the role of the organization in emergency planning. The evaluation criteria in Supplement 2, Section V, provide additional guidance, which applies to the submission of emergency plans under the major features option of 10 CFR 52.17(b)(2)(i).

According to RS-002, for an operating reactor site, the ESP application should clearly indicate the impact of applying an existing emergency preparedness program element to the expanded use of the site, including addressing any necessary changes to the program in support of a new reactor(s). For example, letters of agreement, reflecting contacts and arrangements made with State and local government agencies with emergency planning responsibilities, might need revision to reflect the anticipated presence of an additional reactor(s) at the site. Such revised letters of agreement should reflect any impact an additional reactor(s) would have on the agencies' emergency planning responsibilities and should include acknowledgment by the agencies of the proposed expanded responsibilities. The use of separate correspondence would also be acceptable. If the applicant cannot make arrangements with Federal, State, or local government agencies with emergency planning responsibilities, for whatever reason, the applicant should discuss its efforts to make such arrangements, along with a description of any compensatory measures it has taken or plans to take because of the lack of such arrangements.

13.3.2.3 Technical Evaluation

According to SSAR Section 13.3.3, the applicant conducted two meetings with the State and the risk jurisdictions (Hanover, Louisa, Orange, Spotsylvania, and Caroline Counties) to provide an overview of the ESP process for the NAPS site. The applicant further stated that, during the meetings, neither the State nor the risk jurisdiction response organizations identified any impediment to pursuing an ESP.

The applicant has provided current letters of agreement that describe the contacts and arrangements it has made with Federal, State, and local government agencies with emergency planning responsibilities and which address their receipt and understanding of the ESP application for the NAPS site. These letters adequately describe the names and locations of

¹Risk jurisdictions are counties, any part of which lie within the 10-mile EPZ.

the organizations contacted, the titles and/or positions of the persons contacted, and the roles of the organizations in emergency planning for the ESP site. The letters of agreement also describe the arrangements for the specific support that would be provided, stating that the existing arrangements would apply to a prospective additional reactor(s) at the ESP site. Accordingly, the staff finds that the revised letters of agreement provided in response to RAI 13.3-1 are acceptable. Further, the staff finds that the Dominion presentations to the State and the risk jurisdictions, combined with the revised letters, adequately reflect an understanding, acknowledgment, and agreement by offsite agencies of their specific responsibilities with respect to construction and operation of a prospective additional reactor(s) at the NAPS site under an ESP. Sections 13.3.3.2, 13.3.3.3, 13.3.3.4, 13.3.3.7, 13.3.3.10, 13.3.3.11, and 13.3.3.13 of this SER provide additional descriptions of contacts and arrangements in support of the NAPS site that are relevant to the application.

13.3.2.4 Conclusions

As discussed above, the applicant has provided an acceptable description of contacts and arrangements made with Federal, State, and local government agencies with emergency planning responsibilities. Based on its review as set forth above, the staff concludes that the information the applicant provided is consistent with the guidelines in RS-002 and Supplement 2. Therefore, the information is acceptable and meets the requirements of 10 CFR 52.17(b)(3).

13.3.3 Major Features of the Emergency Plans

13.3.3.1 Emergency Planning Zones

13.3.3.1.1 Technical Information in the Application

SSAR Section 13.3.2 states that the proposed emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. The applicant would extend the existing emergency planning and preparedness activities to include the proposed new unit(s). SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to information contained in these existing plans. There are no significant differences between the major features proposed in the application and the major features discussed in existing plans and relied on in the application.

SSAR Section 13.3.2.2.1 states that the applicant has developed the emergency plan assuming a plume exposure pathway EPZ of about 10 miles in radius (10-mile EPZ) and an ingestion pathway EPZ of about 50 miles in radius (50-mile EPZ). The 10-mile and 50-mile EPZs identified in the ESP application are the same as those in the NAEP.

SSAR Section 13.3.2.2.1 further states that the size of these areas is subject to change if warranted by later analyses, design-specific factors, and legislation or regulatory initiatives. In SSAR Section 13.3.4, the applicant stated that the possible application of analyses performed subsequent to NUREG-75/014, "Reactor Safety Study: An Assessment of Accident Risk in U.S. Commercial Nuclear Power Plants," issued October 1975 (known as the WASH-1400

report), design-specific factors, and legislative or regulatory initiatives may affect the size of the 10-mile and 50-mile EPZs.

Section 5.4.6 of the NAEP identifies Louisa and Spotsylvania Counties as directly involved in the NAEP, since they include the majority of the area within the 10-mile EPZ. NAEP Table 5.3 lists the counties and cities within the 50-mile EPZ. NAEP Section 6.3, "Protective Actions," states that no hospitals, prisons, or nursing homes currently exist within the 10-mile EPZ (shown in NAEP Figure 6.1). Appendix 10.8 to the NAEP incorporates the ETE by reference. ETE Section 1.2, "Emergency Planning Zone," describes the 25 PAZs that the NAPS licensee has established within the 10-mile EPZ. In demarcating these zones, the NAPS licensee used prominent physical features, either natural (e.g., rivers) or manmade (e.g., roads) to make the PAZs readily comprehensible to the area's residents in the event of a radiological emergency. The demarcations of the zones are roughly 2, 5, and 10 miles from the nuclear facility, which permit flexibility and selectivity in the application of protective actions.

ETE Section 4.4, "Estimates for Special Facilities," states that the only special facilities located within 10 miles of the NAPS site are the schools identified in ETE Table 7, "School Population and Transportation." ETE Table 7 lists seven schools, with a total day population of 6471. ETE Section 3.0, "ETE Data and Methodology," indicates that the applicant defined the evacuation network based on the information documented in and provided through the Dominion Resources public outreach program, which includes calendars distributed by the company and information available on the company's Web site.

13.3.3.1.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and it considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i) and 10 CFR 52.18. In addition, the staff considered the regulatory requirements in 10 CFR 50.33(g), 10 CFR 50.47(c)(2), and Sections I, III, and IV of Appendix E to 10 CFR Part 50 in its review of the size and configuration of the EPZs. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for the major features of emergency plans, including those which apply to determining the size and configuration of the EPZs.

Section III.A of Supplement 2 states that an ESP applicant choosing the option of proposing major features of the emergency plans should give special emphasis to the exact size of the EPZs. Generally, the 10-mile and 50-mile EPZs consist of an area about 10 miles and 50 miles in radius, respectively. Applicants should determine the exact size and configuration of the EPZs with respect to local emergency response needs and capabilities, since the EPZs can be

affected by conditions such as demography, topography, land characteristics, access routes, and jurisdictional boundaries.

13.3.3.1.3 Technical Evaluation

SSAR Section 13.3.2 states that the ESP emergency plan takes advantage of the existing NAEP and that the applicant would extend the NAEP to include the proposed new unit(s). As such, this extension would include the existing NAPS 10-mile and 50-mile EPZs. The ESP site footprint consists of a portion of the NAPS site and is located near the existing NAPS reactors. The boundary of the ESP site is entirely within the boundary of the existing NAPS site. Therefore, the staff finds that, for the purposes of determining the exact size and configuration of the EPZs in relation to local emergency response needs and capabilities, no distinction between the NAPS site and the ESP site exists. As such, the staff finds that use of the existing NAPS 10-mile and 50-mile EPZs for the ESP site is appropriate and acceptable. The ESP application, the NAEP (including calendars distributed to the public), and the ETE reflect the existing NAPS 10-mile and 50-mile EPZs.

SSAR Sections 13.3.2.2.1 and 13.3.4 state that the size of the EPZs may be subject to change as a result of design-specific factors and legislative or regulatory initiatives. The staff did not consider the possibility of change in the size requirements for the 10-mile and 50-mile EPZs essential to its review. Rather, the staff applied current requirements. A COL or OL applicant should address any such policy or regulatory changes, as well as design-specific matters, and the staff will determine compliance with the requirements in these areas during a COL or OL review.

As stated in NAEP Section 6.3, no hospitals, prisons, or nursing homes are located within the 10-mile EPZ. ETE Section 3.0 further states that the applicant defined the evacuation network based on information documented in calendars distributed as part of a public outreach program. The calendars provide an area map and a listing of PAZs and evacuation assembly centers (EACs), which is consistent with the information in the application and the ETE.

ETE Section 1.2 states that the PAZs established within the 10-mile EPZ use prominent physical features, either natural or manmade, to outline the PAZ boundaries. In addition, the applicant selected the PAZs based on existing political boundaries. The staff, through its review of the ETE, did not identify any 10-mile EPZ boundaries that run through the middle of schools or hospitals, or that arbitrarily carve out small portions of government jurisdictions. As such, the staff finds that the size and configuration of the 10-mile and 50-mile EPZs reflect local emergency response needs and capabilities, as they are affected by conditions such as

10 CFR 50.33(g), 10 CFR 50.47(c)(2), 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections I, III, and IV of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for the emergency planning zones, as set forth above.

13.3.3.2 Assignment of Responsibility—Organization Control (Supplement 2, Major Feature A)

13.3.3.2.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.a identifies organizations that are intended to be part of the overall emergency response organization (ERO). This section describes the primary responsibilities for the risk jurisdiction response organizations, the Commonwealth of Virginia, the Federal Government, and private sector organizations. As stated in SSAR Section 13.3.2.2.2.a.1, the elected officials of local governments have the responsibility for radiological emergency response within their jurisdictions. The existing county RERPs apply to radiological emergencies within the localities caused by events at the NAPS site and would apply to events at the ESP site. SSAR Section 13.3.2.2.2.a.5 as well as the COVRERP and county RERPs also address the emergency response functions and responsibilities. The RERPs detail the legal bases for these authorities.

SSAR Section 13.3.2.2.2.a.2 states that the Commonwealth of Virginia's organization for responding to radiological emergencies is based on normal government structures and channels of communication. The Governor, in the role of Director of Emergency Management, directs the emergency response through the State coordinator of emergency management. The State coordinator of emergency management coordinates the overall response, and the Virginia Department of Health (VDH) provides technical advice and assistance on radiological accident assessment, protective action, radiological control, and radiological monitoring.

SSAR Section 13.3.2.2.a.3 states that, in the event an emergency classification is made pursuant to the emergency action levels (EALs), Dominion would make notifications, as described in SSAR Section 13.3.2.2.2.e. Further, Dominion personnel would maintain contact with the NRC to ensure that the Federal Government has access to accurate information about and an assessment of the emergency. SSAR Section 13.3.2.2.2.c describes the details of Federal assistance.

SSAR Section 13.3.2.2.a.4 states that Dominion would obtain support from the cognizant architect/engineer, the nuclear steam supply system vendor, and other consultants and vendors, as appropriate, to respond during the emergency and recovery operations. Experienced personnel with indepth expertise in plant design, engineering, and construction would be involved to aid in solving critical technical problems. The applicant stated that a COL or CP applicant would identify these consultants and vendors, as necessary, in the COL or CP application. Private sector response may also include radiological laboratories and other facilities and organizations, as described in SSAR Section 13.3.2.2.2.c.

SSAR Section 13.3.2 states that the major features emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. NAEP Section 5.3, "Augmentation of Onsite Emergency Organization," and Section 5.4, "Coordination with Participating Government Agencies," identify specific Federal, State, and local agencies and private sector organizations

that are either directly involved in emergency response in support of the NAPS site or can be called upon to provide assistance. NAEP Figure 5.4, "Station to Support Group Interface Following LEOF Activation," shows functional interfaces.

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major features proposed in the application and the major features discussed in existing plans and relied on in the application.

The COVRERP and county RERPs identify the response organizations for the jurisdictions. Appendix 1, "Task Assignments," to the COVRERP provides a detailed listing of specific tasks that various Federal, State, and local agencies and organizations would be responsible for in a radiological emergency. Section X, Volume 1, of the "Commonwealth of Virginia Emergency Operations Plan," and Annex I-A, "Task Assignments," to Volume II of the "Commonwealth of Virginia Emergency Operations Plan—Peacetime Disasters," provide additional responsibilities. The VDEM would coordinate requests by Dominion for support services from these agencies and organizations.

Section I.A, "Authorities," of the COVRERP lists the legal bases of authority as (1) Commonwealth of Virginia Emergency Services and Disaster Law of 1973, Title 44, Chapter 3.2, Code of Virginia, as amended, and (2) Radiation Control Act, Title 32.1, Chapter 6, Article 8, Code of Virginia. The county RERPs also list these two legal bases, in addition to their respective local enabling ordinances, which provide for the development of local emergency operation plans and support organizations.

SSAR Section 13.3.2.2.2.a.6 states that the existing licensed facilities (i.e., North Anna Units 1 and 2) maintain letters of agreement with various Federal, State, and local organizations. All the organizations listed in SSAR Section 13.3.2.2.2.a.6 have submitted updated letters of agreement which acknowledge the ESP application and describe contacts and arrangements pertaining to the concept of operations for the various agencies and organizations.

13.3.3.2.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.A of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans,

including those which apply to major feature A, "Assignment of Responsibility—Organization Control."

Major feature A calls for the applicant to identify EROs, including functions and responsibilities for major elements of response, and the legal bases for State and local authorities. The application should also describe contacts and arrangements between agencies and other support organizations having a response role within the EPZs, and it should include any written letters of agreement.

13.3.3.2.3 Technical Evaluation

SSAR Section 13.3.2.2.2 identifies Federal, State, local, and private agencies and organizations that the applicant intends to be part of the overall ERO, as well as detailed functions and responsibilities for the major elements of emergency response for each agency and organization. The NAEP, COVRERP, and county RERPs supplement this information with additional details regarding specific emergency responsibilities. The staff finds that this description is adequate because it identifies the applicable response organizations and provides detailed descriptions concerning their various response capabilities.

The staff reviewed the COVRERP and county RERPs and finds that they include references to the specific acts, codes, or statutes that form the legal bases for their respective authorities. SSAR Section 13.3.2.2.2.a.6 lists the various Federal, State, and local organizations that have submitted updated letters of agreement in support of the NAPS site, which includes the ESP site. Accordingly, the staff finds that these letters of agreement are adequate. Sections 13.3.2, 13.3.3.3, 13.3.3.4, 13.3.3.7, 13.3.3.10, 13.3.3.11, and 13.3.3.13 of this SER describe contacts and arrangements pertaining to the concept of operations developed among Federal, State, and local agencies and other support organizations having an emergency response role within the EPZs.

13.3.3.2.4 Conclusions

As discussed above, the applicant has identified the EROs, including the functions and responsibilities for major elements of response, and the legal bases for State and local authorities. In addition, the applicant has described contacts and arrangements among the agencies and other support organizations having a response role within the EPZ. Based on its review, the staff concludes that the proposed major feature A is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.A of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for organization control, as set forth above.

the state of

13.3.3.3 Onsite Emergency Organizations (Supplement 2, Major Feature B)

13.3.3.3.1 Technical Information in the Application

SSAR Figure 13.3-3 illustrates the interfaces for the functional areas of emergency activity. In addition, SSAR Section 13.3.2 states that the applicant's emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. The applicant stated that it would

extend the existing emergency planning and preparedness activities to the proposed new unit(s). SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major features proposed in the application and the major features discussed in existing plans and relied on in the application.

NAEP Section 5.4, "Coordination with Participating Government Agencies," provides further details associated with the existing interfaces for functional areas of emergency activity and includes applicable group interface block diagrams in NAEP Figures 5.3 and 5.4.

SSAR Section 13.3.2.2.2.b.2 states that the existing units (i.e., North Anna Units 1 and 2) maintain agreements for police, firefighting, rescue squad, medical, and hospital services and that these agreements would apply to the ESP site. Appendix 10.1 to the NAEP contains letters of agreement with various Federal, State, and local organizations. As discussed in Section 13.3.2 of this SER, the staff asked the applicant, in RAI 13.3-1, to explain how the existing arrangements address any impact that an additional reactor(s) at the site would have on government emergency planning responsibilities. In its response, the applicant provided letters of agreement, which had been revised to specifically acknowledge an awareness by support agencies of the ESP application for the NAPS site, and to state that the existing agency arrangements would apply to a prospective additional reactor(s) at the NAPS site.

13.3.3.3. Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.A of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for the major features of emergency plans, including those which apply to major feature B, "Onsite Emergency Organizations."

Major feature B calls for the applicant to identify interfaces between and among the onsite functional areas of emergency activity, local services support, and State and local government response organizations, including the services to be provided by local agencies.

13.3.3.3 Technical Evaluation

The applicant identified the interfaces for the functional areas of emergency activity in SSAR Figure 13.3-3, which depicts a block diagram connection between the onsite station facilities

and the offsite Federal, State, and local EROs. In addition to the block diagram illustration, the applicant gave detailed descriptions throughout SSAR Section 13.3.2.2.2 of the functional interfaces and support that various Federal, State, and local entities would provide.

SSAR Section 13.3.2.2.b.2 states that the existing units (i.e., North Anna Units 1 and 2) maintain agreements for police, firefighting, rescue squad, medical, and hospital services and that these agreements would apply to the ESP site. In addition, SSAR Section 13.3.2.2.2.a.6 states that these letters of agreement are maintained within the NAEP.

The staff reviewed the NAEP and found that NAEP Section 5.4 gives further details associated with the existing interfaces for the functional areas of emergency response, including various related services that would be provided. In addition, NAEP Figures 5.3 and 5.4 provide comparable block diagrams which illustrate these functional interfaces. The staff finds that this information adequately identifies the interfaces between and among the onsite functional areas of emergency activity, local services support, and State and local government response organizations.

The staff also reviewed the existing letters of agreement in Appendix 10.1 to the NAEP, which provide additional descriptions of specific capabilities and various onsite and offsite organizational interfaces. As discussed in Section 13.3.2 of this SER, the letters of agreement were updated to reflect that the existing arrangements would apply to a prospective additional reactor(s) at the NAPS site, consistent with the application. Accordingly, the staff finds that the information given in SSAR Section 13.3.2.2.2, the NAEP, and the updated letters of agreement adequately identify the services to be provided by local agencies for handling emergencies, including a description of the arrangements for such services.

13.3.3.3.4 Conclusions

As discussed above, the applicant has identified the interfaces between and among the onsite functional areas of emergency activity, local services support, and State and local government response organizations for the ESP site. In addition, the applicant has identified the services and described the arrangements to be provided by various local agencies, and it has submitted adequate letters of agreement. Based on its review, the staff concludes that the proposed major feature B is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.A of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for the onsite ERO, as set forth above.

13.3.3.4 Emergency Response Support and Resources (Supplement 2, Major Feature C)

13.3.3.4.1 Technical Information in the Application -

SSAR Section 13.3.2.2.2.c states that circumstances prompting the implementation of an emergency response may necessitate augmentation of Dominion's resources. Dominion may request such assistance from the Federal Government, radiological laboratories, and nuclear or other facilities and organizations.

SSAR Section 13.3.2.2.2.c.1 states that the Federal Response Plan (FRP) provides the mechanism for coordinating the delivery of Federal assistance and resources to augment efforts of State and local governments overwhelmed by a major disaster or emergency. The FRP supports implementation of the Robert T. Stafford Disaster Relief and Emergency Assistance Act (42 U.S.C. § 5121, et seq.), as well as individual agency statutory authorities, and supplements other Federal emergency operations plans developed to address specific hazards. The U.S. Department of Homeland Security has primary responsibility for coordinating Federal emergency preparedness, planning, management, and disaster assistance functions, including the establishment of Federal disaster assistance policy.

In addition, the Federal Radiological Emergency Response Plan (FRERP) outlines the Federal Government's concept of operations for responding to radiological emergencies. This plan also describes Federal policies and planning considerations which form the basis for the FRERP concept of operations and agency-specific Federal response plans. The FRERP also specifies the authority and responsibility of each Federal agency that may have a significant role in such emergencies. Under the provisions of the FRERP, DOE may respond to a State or lead Federal agency request for assistance by dispatching a radiological assistance program (RAP) team. If the situation warrants more assistance than a RAP team can provide, DOE would alert or activate additional resources. These resources may include the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC) to be used as an on-scene coordination center for Federal radiological assessment activities.

NAEP Section 5.4.7, "Federal Radiological Monitoring and Assessment Center (FRMAC) Operations Plan," states that the FRMAC may be activated when a major radiological emergency exists. The Federal Government would respond when a State, other government entity with jurisdiction, or a regulated entity requests Federal support. The station emergency manager, recovery manager, or corporate response manager may request FRMAC assistance directly or through the NRC (as lead Federal agency).

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major plan features proposed in the application and those discussed in existing plans and relied on in the application.

COVRERP Section VII, "Organization," states that Federal response teams represented in the emergency operations facility (EOF), State emergency operations center (EOC), and/or other locations would support the State organization. Additional Federal assistance may be obtained through the State EOC from (or through) DOE, the NRC, and FEMA. Section I.E, "Department of Emergency Management," of Appendix 1 to the COVRERP states that VDEM would notify all other State agencies and support organizations which have emergency task assignments identified in the COVRERP. In addition, VDEM would request assistance from the Federal Government in accordance with the FRERP. Section II, "Federal Agencies," of Appendix 1 to the COVRERP provides further detailed descriptions of available Federal resources, as well as the procedures for requesting assistance. The county RERPs state that local requests for Federal assistance would be made through the State EOC. In addition, the county RERPs identify the facilities and organizations that would provide assistance in an emergency and the positions that are responsible for contacts and arrangements with other organizations.

SSAR Section 13.3.2.2.c.2 identifies the radiological count laboratory resources that are available through the Commonwealth of Virginia to respond to emergencies at the NAPS site. This section also provides estimated travel times to the NAPS site for each laboratory. If necessary, additional resources could be obtained through purchase agreements with private institutions. The following list is consistent with NAEP Section 5.3.2, "Vendor and Contractor Support":

- The University of Virginia, Charlottesville, Virginia (45 min)
- Virginia Commonwealth Laboratories, Richmond, Virginia (75 min)
- Medical College of Virginia, Richmond, Virginia (75 min)
- Newport News Shipbuilding & Drydock, Newport News, Virginia (3.5 hours)
- VDH Radiological Health Program Mobile Laboratory (60 min)

COVRERP Section VII.C states that VDEM coordinates the overall emergency response, while VDH (through the Bureau of Radiological Health (BRH)) provides technical advice and assistance on radiological exposure control and radiological monitoring. Appendix 4, "Emergency Response," to the COVRERP states in Section II, "Operational Concepts and Procedures," that, when notified, BRH initiates accident assessment to provide guidance and assistance to the local government and the State EOC. BRH would perform accident assessment, monitoring, and sample collection.

Appendix 5, "Accident Assessment," to the COVRERP states that the State Radiological Emergency Response Team (RERT) has a mobile laboratory which can be operational onsite within 3 hours of notification and is capable of 24-hour operation. The mobile lab would be positioned at one of the staging areas located near the nuclear station. Personnel from the nuclear facility or a Federal agency may supplement the RERT. Local governments would conduct radiological monitoring in accordance with their county RERPs and report the results to the EOF.

SSAR Section 13.3.2.2.2.c.4 addresses contacts and arrangements for assistance from the various response organizations. Personnel within the EOF would coordinate outside assistance, which would include interfaces with all levels of government, private sector response organizations, and other commercial nuclear operators. In addition to prearranged support, contacts and arrangements for assistance from Federal Government, radiological laboratories, and nuclear or other facilities and organizations could be requested, if circumstances prompting the implementation of an emergency response necessitated augmentation of Dominion's resources.

NAEP Section 5.3, "Augmentation of Onsite Emergency Organization," states that assistance may be requested from any organization deemed necessary to mitigate the conditions causing the emergency, and Appendix 10.1, "Letters of Agreement," to the NAEP lists participating agencies and support services, with whom emergency support services have been negotiated. Appendix 10.1 to the NAEP contains letters of agreement for two of the five listed radiological laboratory resources (i.e., the Medical College of Virginia Hospitals and Physicians/Virginia Commonwealth University (MCVH/VCU) and VDH).

The letter of agreement for the MCVH/VCU states that the "Radiation Emergency Plan—MCVH/VCU—Virginia Power" outlines its 24-hour services in greater detail.

Appendix 10.9 to the NAEP references the February 16, 2000, revision of the plan. This plan

addresses the capabilities for providing medical care for radiation emergencies in the central Virginia region and supports the Dominion Resources nuclear reactor stations in the event of occupational or major accidents; this would include the ESP site. In addition, the letter of agreement lists specific services that would be provided, upon verification of an emergency at the ESP site, and includes treatment of injured and radioactively contaminated patients, monitoring and counting equipment for the detection and analysis of radioactivity or radiation, and decontamination supplies.

The letter of agreement with VDH outlines its commitment to respond to any radiological emergency at NAPS, with VDEM serving as lead agency for the Commonwealth under the framework of the COVRERP. As reflected on the VDH Web site, the Radiological Health Program administered by VDH has an RERT equipped with field instrumentation for monitoring radiation and a mobile laboratory for performing laboratory analysis, so that a rapid assessment of a radiological incident can be made and appropriate recommendations provided to State and local officials. The Radiological Health Program maintains a 24-hour duty officer who is available to respond to any radiological incident or to request additional resources, if needed. The Radiological Health Program's emergency preparedness activities are coordinated with VDEM, which is responsible for the coordination of the State's response and the State emergency plan.

SSAR Section 13.3.2.2.2.i addresses contacts and arrangements for assistance associated with accident assessment; SSAR Section 13.3.2.2.2.I provides contacts and arrangements for medical and public health support. In addition, consistent with the application, the NAEP addresses contacts and arrangements with vendor and contractor support in NAEP Section 5.3.2, local services support in NAEP Section 5.3.3, and participating government agencies in NAEP Section 5.4. Sections 13.3.2, 13.3.3.3, 13.3.3.10, and 13.3.3.13 of this SER also describe contacts and arrangements made with emergency response support organizations.

SSAR Section 13.3.2.2.2.c identifies radiological laboratories and their general capabilities and expected availability to provide radiological monitoring and analyses services during an emergency. In RAI 13.3-4, the staff asked the applicant to clarify the listing of radiological count laboratory resources in SSAR Section 13.3.2.2.2.c.2, in regard to whether additional resources exist beyond the five listed that could be obtained on an as-needed basis. In addition, the staff asked the applicant to identify the general capabilities and expected availability to provide radiological monitoring and analyses services during an emergency in support of the ESP site for (1) the University of Virginia, Charlottesville, Virginia, (2) Virginia Commonwealth Laboratories, Richmond, Virginia, and (3) Newport News Shipbuilding & Drydock, Newport News, Virginia. In its response, the applicant stated that the listing of private institutions is a sampling of relatively nearby sources of assistance and that, if such assistance should be needed, it would be procured in a timely manner from any available source.

In addition, the applicant stated that the University of Virginia has a level-one trauma center and teaching hospital. Its Office of Environmental Health and the Radiation Safety manages all aspects of the use of radioactive materials and radiation-producing equipment. The Virginia Commonwealth Laboratories provide analytical testing services and may be called on to respond to various health and environmental emergencies in Virginia. Its Bureau of Analytical Services performs analytical testing for State regulatory, environmental, and public health programs. It also has laboratories that can analyze water, sediment, tissue, air, soil, and other

samples for the presence of metals and radiation. Finally, Newport News Shipbuilding & Dry Dock is the nation's sole designer, builder, and refueler of nuclear-powered aircraft carriers. It has the necessary staff and facilities to support radiological surveys, monitoring, and analysis functions; it has provided services to more than half of the country's nuclear utilities.

In RAI 13.3-14(a), the staff asked the applicant for more information regarding the availability and capability of laboratories referred to in the State and local emergency plans. The applicant responded to this RAI in its submittal dated October 20, 2004. The applicant stated that these capabilities are outlined in Appendix 17.5 to the VDH Radiological Health Program's plan, which addresses 24-hour availability, with the use of a large and small mobile lab in addition to fixed facilities at the Division of Consolidated Laboratory Services.

13.3.3.4.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, and IV.D of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature C, "Emergency Response Support and Resources."

Major feature C calls for the applicant to describe contacts and arrangements for requesting Federal assistance, as well as assistance from radiological laboratories and nuclear or other facilities and organizations. The application should also identify the general capabilities and expected availability of radiological monitoring and analysis services.

13.3.3.4.3 Technical Evaluation

SSAR Section 13.3.2.2.2.c describes the basic Federal emergency response plans that could be called upon to assist the licensee, as well as those of the State and local governments.

SSAR Section 13.3.2.2.2.c.3 addresses assistance from other facilities and organizations, including Dominion Resources and its subsidiaries, Virginia Power and Dominion, and the Institute of Nuclear Power Operations. The Surry Power Station in Virginia and the Millstone Power Station in Connecticut can also provide assistance. In addition, Federal agencies and various radiological laboratories, as identified in SSAR Section 13.3.2.2.2.c, can provide assistance. NAEP Sections 5.3.2, 5.3.3, and 5.4 also identify sources of assistance in an

emergency. Section 13.3.2 of this SER discusses the associated description of contacts and arrangements made with response organizations.

In RAI 13.3-14(a), the staff asked for information regarding the availability and capability of laboratories referred to in State and local emergency plans. The staff identified the consideration of this information as Open Item 13.3-1. The staff reviewed the applicant's response dated October 20, 2004, and finds it acceptable. Therefore, Open Item 13.3-1 is resolved. The staff finds that the applicant has adequately described the provisions that exist for requesting emergency response support and resources.

13.3.3.4.4 Conclusions

As discussed above, the applicant has described provisions for requesting Federal assistance, and it has identified nuclear and other facilities and organizations that can be relied on to provide assistance in an emergency, including the general capabilities and availability of radiological laboratories. In addition, the applicant has described the contacts and arrangements made with the response organizations. Based on its review, the staff concludes that the proposed major feature C is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, IV.C, IV.D, and IV.E of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for emergency response support and resources, as set forth above.

13.3.3.5 Emergency Classification System (Supplement 2, Major Feature D)

13.3.3.5.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.d states that the applicant would use an emergency classification scheme with the four classifications listed below in the event of an emergency. The applicant would use EALs to determine when and what type of protective measures should be considered within and outside the NAPS site boundary to protect health and safety. The applicant stated that the COVRERP and local government RERPs would provide an emergency classification level scheme consistent with that established by Dominion, as required by 44 CFR 350.5(a)(4). This scheme includes the following classifications:

- notification of unusual event
- alert
- site area emergency
- general emergency

SSAR Section 13.3.2 states that the emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. The applicant would extend the existing emergency planning and preparedness activities to include the proposed new unit(s). SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major features proposed in the application and the major features discussed in existing plans and relied on in the application.

COVRERP Section VII.A, "Emergency Classification Levels for Nuclear Facilities," and the county RERPs provide an emergency classification scheme which is consistent with the four classifications listed above. With regard to specific EALs, SSAR Section 13.3.2.2.2.d.1 states that the COL or CP applicant would propose site-specific EALs in its COL or CP application and that the COL or CP applicant would discuss and agree to the EALs with the Commonwealth of Virginia and local government authorities. The COL or CP applicant would then submit the EALs to the NRC for approval.

13.3.3.5.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.C of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for the major features of emergency plans, including those which apply to major feature D, "Emergency Classification System."

Major feature D calls for the applicant to establish a standard emergency classification scheme that is consistent with Appendix 1 to NUREG-0654/FEMA-REP-1. Major feature D also calls for the State and local organizations to establish an emergency classification scheme that is consistent with that proposed by the applicant.

13.3.3.5.3 Technical Evaluation

As stated in SSAR Section 13.3.2.2.2.d, the staff finds that the applicant would use an emergency classification scheme consisting of the four classifications required by 44 CFR 350.5(a)(4). Based on its review, the staff finds that these four proposed emergency classifications are consistent with those in Appendix 1 to NUREG-0654/FEMA-REP-1. The staff also finds that the emergency classification schemes established by the State in COVRERP, Section VII.A, and by the local organizations in the county RERPs are consistent with that proposed by the applicant.

13.3.3.5.4 Conclusions

As discussed above, the applicant has specified a standard emergency classification scheme, which is consistent with that set forth in Appendix 1 to NUREG-0654/FEMA-REP-1, and with those established by the State and local EROs. Based on its review, the staff concludes that the proposed major feature D is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i),

10 CFR 52.18, and Sections III and IV.C of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for the emergency classification system, as set forth above.

13.3.3.6 Notification Methods and Procedures (Supplement 2, Major Feature E)

13.3.3.6.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.e describes the bases for notifying response organizations. Reference is made to SSAR Section 13.3.2.2.2.d, which states that the initial classification and declaration of an emergency class would be in accordance with the four categories of an emergency classification scheme, which is consistent with Appendix 1 to NUREG-0654/FEMA-REP-1. The normal process for alerting, notifying, and mobilizing the ERO is multifaceted, including alarms, announcements, pagers, telephones, and online messages. The applicant would make subsequent notifications, including providing specific information pertaining to the emergency, to the Commonwealth of Virginia and the NRC and would activate the Emergency Response Data System (ERDS).² Site personnel at NAPS, including security personnel and/or personnel from the Virginia Department of Game and Inland Fisheries, would alert individuals within the NAPS exclusion area.³

In SSAR Section 13.3.2.2.2.e, the applicant further stated that the Commonwealth of Virginia and local authorities, with the assistance of the Virginia State Police (VSP), would alert the public within the 10-mile EPZ. The sounding of the alert and notification system (ANS) sirens already installed around the NAPS site is the primary method of alerting the public. The applicant stated that the existing ANS would support the new units. Other alerting methods might include telephone communications, television and radio communications via the emergency alert system (EAS) stations, public address systems, bullhorns from patrol cars, and personal contacts. The applicant also stated that written, preplanned messages would be consistent with the emergency classification level scheme in Appendix 1 to NUREG-0654/FEMA-REP-1. The messages would give instructions on the nature of the emergency and information concerning the recommended protective action, sheltering, thyroid-blocking potassium iodide (KI), or evacuation.

SSAR Section 13.3.2 states that the emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. The applicant would extend the existing emergency planning and preparedness activities to include the proposed new unit(s). SSAR

²The ERDS is a direct, near real-time electronic data link between the licensee's onsite computer system and the NRC Operations Center that provides for the automated transmission of a limited data set of selected parameters (see Section VI.1 of Appendix E to 10 CFR Part 50).

³The exclusion area refers to that area surrounding the reactor in which the reactor licensee has the authority to determine all activities, including exclusion or removal of personnel and property from the area (see 10 CFR 50.2, "Definitions"). For purposes of the NAEP, the area within 5000 feet (ft) of the former North Anna Unit 3 containment is defined as the NAPS exclusion area (see NAEP Section 6.3.2).

Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major features proposed in the application and the major features discussed in existing plans and relied on in the application.

COVRERP Section VIII.C, "Notification and Warning," states that the notification and warning process is based on the four emergency classifications (i.e., notification of unusual event, alert, site area emergency, and general emergency). Section II.B, "Procedures," of Appendix 3 to the COVRERP describes procedures for notifying State agencies and risk jurisdictions, which are then responsible for mobilizing emergency personnel according to task lists. The document also provides authority for direct notification, should the Virginia EOC be unreachable. The county RERPs describe the bases for notifying, alerting, and mobilizing emergency responders. Appendix 1 to the county RERPs contains a detailed procedure of notification and mobilization actions for emergency response personnel.

Section II.C, "Public Alerting and Warning," of Appendix 3 to the COVRERP describes procedures for public alerting and notifying. Primary responsibility for public alert and notification resides with the State. This section also describes the process for notifying transient populations and special facilities, including backup notification methods. The EAS would be the primary method of providing public instruction.

Sirens do not cover Orange County and parts of the other risk jurisdictions. Section III.G, "Alert and Warning Means," of the Orange County RERP describes the alert and notification procedures that sheriff deputy cruisers (equipped with loudspeakers) would perform, backed up by EAS broadcasts and telephone notifications. According to the RERP, State and local officials would provide instructions using EAS broadcasts. In addition, State and local officials would make special announcements to the three largest population centers by fax, telephone, and EAS broadcasts, with internal route alerting by local police.

Section VIII.D of the Louisa County RERP describes the public alert and notification methods. Primary alerting is by the emergency siren system in place for the NAPS site. Louisa County can initiate its emergency alert sirens. Local television and radio stations that are part of the EAS would provide notification and instruction. Appendix 2 to the Louisa County RERP contains the procedure for the public information officer to release emergency instructions using the EAS stations. The remaining county RERPs are similar to that for Louisa County.

NAEP Section 6.0, "Emergency Measures," Section 6.1, "Activation of the Emergency Plan," Section 6.3, "Protective Actions," and Section 7.6, "Early Warning System," provide additional information concerning the bases and methods for communicating with response organizations and the public.

13.3.3.6.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan. The

staff finds that the applicant identified the regulatory requirements and guidance applicable to the proposed major features of emergency plans for an ESP application.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.D of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in ESP applications. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature E, "Notification Methods and Procedures."

Major feature E calls for the applicant to describe the mutually agreeable bases for notifying response organizations, consistent with the emergency classification scheme in Appendix 1 to NUREG-0654/FEMA-REP-1, including the method for alerting, notifying, and mobilizing personnel. The application should also describe the administrative and physical means for notifying and promptly instructing the public within the 10-mile EPZ.

13.3.3.6.3 Technical Evaluation

SSAR Section 13.3.2.2.2.e.1 states that notifications to the Commonwealth of Virginia and risk jurisdictions would be in accordance with SSAR Section 13.3.2.2.2.d, which lists the four emergency classifications of notification of unusual event, alert, site area emergency, and general emergency. The COVRERP and county RERPs all use the same four emergency classifications, which are consistent with those in Appendix 1 to NUREG-0654/FEMA-REP-1. The staff finds that each organization has described mutually agreeable bases for the notification of response organizations and that each is consistent with the emergency classification scheme in Appendix 1 to NUREG-0654/FEMA-REP-1.

SSAR Section 13.3.2.2.2.e.2 states that the normal process for alerting, notifying, and mobilizing the EROs includes, but is not limited to, alarms, announcements, pagers, telephones, and online messages. Section II.B of Appendix 3 to the COVRERP states that the facility operator would notify local governments within the 10-mile EPZ and the Virginia EOC by the Insta-Phone. The staff finds that the COVRERP and county RERPs provide detailed notification procedures and that this information adequately describes the methods for alerting, notifying, and mobilizing emergency response personnel.

As stated in SSAR Section 13.3.2.2.2.e, the staff finds that Dominion would rely on the already-installed ANS around the NAPS site to support the new units, and the Commonwealth of Virginia and risk jurisdictions have ultimate responsibility for warning the public. While sounding the ANS sirens remains the primary method of alerting the public, other alerting methods may include telephone, television and radio (via the EAS stations), public address systems, bullhorns from patrol cars, and personal contact. The COVRERP and the county RERPs provide procedures for public alerting and notifying. The staff finds that this information adequately describes the administrative and physical means for notifying and promptly instructing the public within the 10-mile EPZ.

13.3.3.6.4 Conclusions

As discussed above, the applicant has described the mutually agreeable bases for notifying response organizations, which is consistent with that set forth in Appendix 1 to NUREG-0654/FEMA-REP-1, and includes the method for alerting, notifying, and mobilizing personnel. In addition, the applicant has described the administrative and physical means for notifying and promptly instructing the public within the 10-mile EPZ. Based on its review, the staff concludes that the proposed major feature E is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.D of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for notification methods and procedures, as set forth above.

13.3.3.7 Emergency Communications (Supplement 2, Major Feature F)

13.3.3.7.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.f states that Dominion would provide the means for prompt communications with the Commonwealth of Virginia, risk jurisdictions, and Federal Government EROs; the means to alert and activate the ESP site ERO; and arrangements for communicating with medical support facilities. The ESP site ERO would be alerted for activation by way of multiple communications methods (e.g., plant alarms and/or announcements, pagers, telephones, online messages). Dominion would maintain the capability of notifying both the Commonwealth of Virginia and the risk jurisdictions within 15 min after declaring an emergency.

NAEP Section 7.2.2.4, "Dedicated NRC Communications," states that separate telephone lines are dedicated for communications with the NRC, including the following:

- Emergency Notification System (ENS) Health Physics Network (HPN)
- Reactor Safety Counterpart Link (RSCL)
- Protective Measures Counterpart Link (PMCL)

SSAR Section 13.3.2.2.2.f.5 states that the ESP site can communicate with the hospital service described in SSAR Section 13.3.2.2.2.1. The ESP site would also be able to communicate with an ambulance by use of an ultra-high frequency (UHF) radio or mobile telephone, and the ambulance can communicate with the hospital by way of the hospital emergency and administrative radio (HEAR) system or mobile telephone.

NAEP Section 6.4.3, "Medical Transportation," states that the station can communicate with MCVH. In addition, Appendix 10.9, "Radiation Emergency Plan—MCVH/VCU—Virginia Power," to the NAEP states in Section VII.C, "In Route Communications During Transportation to MCVH," that the Department of Emergency Medicine at MCVH has three systems for communicating with incoming ambulances (i.e., the HEAR system, coronary observation radio, and cellular telephone).

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major features proposed in the application and the major features discussed in existing plans and relied on in the application.

Section II.A, "Notification and Warning," of Appendix 3 to the COVRERP describes provisions for communications between the NAPS site and the State. Insta-Phone (a dedicated hot-loop system) would serve as the primary means of notification, which would permit simultaneous notification of the Virginia EOC and the local governments within the 10-mile EPZ. Radio, commercial telephones, and facsimile machines would serve as a backup. Local governments within the 50-mile EPZ would be notified using the Virginia Criminal Information Network, with commercial telephone as backup. The county RERPs also specify these same types of communication systems.

Appendix 9, "Communications," to the COVRERP states that the primary means of communication between the Virginia EOC and the Federal EROs would be commercial telephone. The FEMA Federal national radio system or national warning system would be used as a backup. Appendix 9 to the COVRERP also describes the State methods for alerting and activating emergency response personnel.

COVRERP Section VIII.C, "Notification and Warning," states that, when notified by the NAPS site, the Virginia EOC and the local governments would take actions as outlined at Tab A to Appendix 4, "Emergency Response Procedures," and in local government RERPs. The Virginia EOC would notify BRH, other State agencies assigned emergency tasks in the COVRERP, and the affected local governments, as appropriate. Each State organization is responsible for activating its personnel in accordance with the organization's procedures and the classification level. The local government EOCs or communications centers would notify local government officials and supporting organizations, and carry out emergency responsibilities and implement procedures in accordance with the local government RERPs. The county RERPs describe procedures for activating emergency personnel. These procedures primarily describe responsibilities for activating emergency personnel, rather than specifically covering the means for activation.

Tab C to Appendix 9, "Emergency Medical Communications," to the COVRERP describes the radio communication capabilities of ambulances, hospitals, and other medical support activities that would respond to a nuclear facility. These include hospital-to-ambulance, hospital-to-hospital, and EOC-to-hospital communication methods. Additionally, VDEM command vehicles are equipped for radio communication on the Virginia medical frequencies. Communications are also available from the Louisa County Sheriff to the University of Virginia Hospital and MCVH. The Virginia EOC can also directly contact the University of Virginia and MCVH by way of radio. The county RERPs describe communication capabilities, consisting of commercial and dedicated telephone lines, as well as local government radios.

In RAI 13.3-5, the staff asked the applicant to describe the specific provisions for communications with contiguous State and local governments within the 10-mile and 50-mile EPZs and with Federal EROs. In addition, the staff asked the applicant to describe the extent to which it would use existing site communications. In its response, the applicant stated that the NAEP describes provisions for communications at the plant site as they currently exist, which include an Insta-Phone hot loop between the licensee, the Virginia EOC, and the risk jurisdiction warning points. In addition, there is a direct automatic ring-down circuit between the

licensee and the Virginia EOC, as well as both private branch exchange and off-premises exchange access to the public switched network. While existing site communications may be used to support a new unit(s) constructed at the ESP site, the applicant stated that it is premature to identify the specific extent to which these capabilities might be used in support of new units at the ESP site, since equivalent or superior means may become available as a result of technological advancements in the future. Thus, without specifying the technology at the ESP stage, the applicant stated that it would ensure that a means, compliant with regulatory requirements, would be provided for communicating with contiguous State and local governments within the 10-mile and 50-mile EPZs, as well as with Federal EROs.

13.3.3.7.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.D, and IV.E of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature F, "Emergency Communications."

Major feature F calls for the applicant to identify communication provisions with State and local governments within the EPZs, with Federal EROs, and with fixed and mobile medical support facilities. The application should also describe provisions for alerting and activating emergency personnel.

13.3.3.7.3 Technical Evaluation

Section II.A of Appendix 3 to the COVRERP states that the dedicated hot-loop Insta-Phone system would serve as the primary means of notification and would permit simultaneous notification of the Virginia EOC and the local governments within the 10-mile EPZ. Radio, commercial telephones, and facsimile machines would serve as a backup. Local governments within the 50-mile EPZ would be notified using the Virginia Criminal Information Network with commercial telephone as backup. NAEP Section 7.2.2.4 states that separate dedicated telephone lines with the NRC exist, including the ENS, HPN, RSCL, PMCL, and ERDS. In response to RAI 13.3-5, the applicant stated that existing site communications may be used to support the new units, and equivalent or superior means might also be used if they become available as a result of future technological advancements. Appendix 9 to the COVRERP states that the primary means of communications between the Virginia EOC and the Federal EROs would be commercial telephone and that the FEMA Federal national radio system or national warning system would be used as a backup. SSAR Section 13.3.2.2.2.f states that the

ESP site ERO would be alerted for activation by way of multiple communications methods (e.g., plant alarms and/or announcements, pagers, telephones, online messages).

SSAR Section 13.3.2.2.2.f.5 states that the ESP site can communicate with hospital services, as well as an ambulance, by use of an ultra-low frequency radio or mobile telephone. The ambulance can communicate with the hospital by way of the HEAR system or mobile telephone. In addition, NAEP Section 6.4.3 states that the Department of Emergency Medicine at MCVH has three systems for communicating with incoming ambulances (i.e., the HEAR system, coronary observation radio, and cellular telephone).

Because the above descriptions cover the appropriate EROs and identify primary and backup means of communications, the staff finds that the applicant provided adequate descriptions of provisions for communications with the State and local governments, with Federal EROs, and with fixed and mobile medical support facilities. In addition, the staff finds that the use of the existing site communications for the ESP site is acceptable, to the extent that it would be expanded to incorporate relevant aspects of a proposed new reactor design in a COL or OL application. The staff will determine the adequacy of such incorporation during a COL or OL review. The staff did not consider the availability of equivalent or superior means of communications as a result of future technology advancements to be required for a major features review and, as such, did not review it. A COL or OL applicant will address any such technological advancements, and the staff will determine compliance with the requirements in this area during a COL or OL review.

13.3.3.7.4 Conclusions

As discussed above, the applicant has identified communication provisions with State and local governments within the EPZs, with Federal EROs, and with fixed and mobile medical support facilities. In addition, the applicant has described provisions for alerting and activating emergency personnel. Based on its review, the staff concludes that the proposed major feature F is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.D, and IV.E of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for emergency communications, as set forth above.

13.3.3.8 Public Education and Information (Supplement 2, Major Feature G)

13.3.3.8.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.g states that Dominion would implement an emergency information program for the public and the news media. Dominion would coordinate its public information efforts with the Commonwealth of Virginia and local authorities to ensure that the public is informed by using the best means available.

SSAR Section 13.3.2.2.2.g.1 states that Dominion Resources provides information annually describing the emergency notification process and actions that should be taken in the event of an emergency to the public within the NAPS site 10-mile EPZ. This information includes the following:

- educational information on radiation
- contact points for obtaining additional information
- protective measures (e.g., evacuation routes and relocation centers, sheltering, respiratory protection, radioprotective drugs)
- special needs of the handicapped and the transient population

In addition, SSAR Section 13.3.2.2.2.g.1 states that Dominion intends to rely on the program that Virginia Power has already established for informing the public in the area surrounding the ESP site. It would coordinate its public information efforts with the Commonwealth of Virginia and local authorities to ensure that the public is informed by using the best means available (e.g., telephone books, utility bill inserts, public postings, and periodic publications, such as brochures and calendars).

SSAR Section 13.3.2.2.2.g.2 states that Dominion Resources offers an annual program to acquaint the news media with emergency plans, information concerning radiation, and points of contact for release of public information in an emergency. Dominion intends to rely on the Virginia Power program for informing the media in the area surrounding the ESP site.

SSAR Section 13.3.2 states that the emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. The applicant would extend the existing emergency planning and preparedness activities to include the proposed new unit(s). SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

NAEP Section 8.8, "Informing the Public," states that Dominion would distribute public information to ensure coverage within the 10-mile EPZ. The company would also establish a telephone system for addressing rumors, announce the telephone numbers over the EAS, and invite individuals within the 10-mile EPZ to call collect.

Appendix 8, "Public Information," to the COVRERP describes the Commonwealth's coordination with Dominion Resources regarding public information, stating that VDEM would lead the coordination efforts with Dominion on nonemergency public information and education. The State would assist local governments with their radiological information programs, as requested by the emergency services coordinator. These actions would be coordinated with the VDEM regional coordinator. The county RERPs in Louisa, Hanover, Caroline, and Spotsylvania Counties all coordinate with Dominion Resources and VDEM in disseminating such nonemergency information.

Appendix 8 to the COVRERP also indicates that Dominion would offer news media representatives annual briefings on emergency response plans and would provide them with other information regarding nuclear facilities in the Commonwealth. The county RERPs in

Louisa, Hanover, Caroline, and Spotsylvania Counties all mention local coordination in these annual briefings to the news media.

In RAIs 13.3-14(b) and 13.3-14(c), the staff asked the applicant to describe the periodic program in Orange County for informing members of the public about how they will be notified and what actions they should take during an emergency. The staff also asked the applicant to describe its program for periodic, nonemergency briefings for the media. The applicant responded to these RAIs in its submittal dated October 20, 2004. The applicant stated that, on an annual basis, the Commonwealth of Virginia provides the population within the 10-mile EPZ an emergency planning information calendar with instructions to follow in case of an emergency at the power station. The calendar includes information regarding sirens and EAS radio and television stations for the area.

The applicant further stated that the Orange County public information officer or representative would brief assembled news media hourly, on the hour, or as the situation would dictate, either in the Board of Supervisors meeting room or the adjacent hallway media briefing area, using the ingestion pathway map. The public information officer would also monitor radio newscasts and scan local newspapers to determine whether information is accurately disseminated to the public, and take necessary corrective action (see Appendix 2 to the Orange County RERP).

13.3.3.8.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance of Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.D, IV.E, and IV.F of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature G, "Public Education and Information."

Major feature G calls for the applicant to describe a program to provide information to the public and news media on a periodic basis. The program should address how the applicant would notify the public, including what actions they should take in an emergency, and the applicant's means for acquainting the news media with emergency information.

13.3.3.8.3 Technical Evaluation

As stated in SSAR Section 13.3.2.2.2.g, the NAEP, the COVRERP, and county RERPs, Virginia Power has established a program for providing information to the public and news

media for the NAPS site. Dominion would rely on this program for the area surrounding the ESP site. SSAR Section 13.3.2.2.2.g.1 lists the type of information that Dominion would provide to the public, and SSAR Section 13.3.2.2.2.g.2 describes the type of information that Dominion would provide to the news media. The staff finds that both lists are consistent with NAEP Section 8.8, which applies to the current NAPS site, as well as the COVRERP and county RERPs. In addition, Appendix 8 to the COVRERP and the county RERPs describe the coordination with Dominion Resources and with each other relating to emergency notification and public information efforts and local coordination by the counties in annual news media briefings.

In RAIs 13.3-14(b) and 13.3-14(c), the staff asked for information regarding the method for providing information to the public in Orange County and the applicant's program for periodic, nonemergency briefings of the media. The staff identified the consideration of this information as Open Item 13.3-2. The staff reviewed the applicant's responses in their submittal dated October 20, 2004, and find them acceptable. Therefore, Open Item 13.3-2 is resolved.

The staff finds that the EROs have described an adequate program to provide a coordinated dissemination of information to the public on a periodic basis, including how they will be notified and what their actions should be in an emergency. In addition, the staff finds that the organizations have an adequate program for acquainting the news media on a periodic basis with emergency plans, information concerning radiation, and points of contact for the release of public information in an emergency.

13.3.3.8.4 Conclusions

As discussed above, the applicant has described a program to provide information to the public and news media on a periodic basis and which addresses public notification and emergency actions. Based on its review, the staff concludes that the proposed major feature G is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.B, IV.D, IV.E, and IV.F of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for public education and information, as set forth above.

13.3.3.9 Emergency Facilities and Equipment (Supplement 2, Major Feature H)

13.3.3.9.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.h.1 states that Dominion would make provisions for a technical support center (TSC) located near the control room. Personnel reporting to the TSC would provide plant management and technical support to the control room staff during emergency conditions. The TSC would have technical and data displays and plant records available to assist in the detailed analysis and diagnosis of abnormal plant conditions. It would serve as the primary onsite communications center for the plant during an emergency.

SSAR Section 13.3.2.2.h.2 states that Dominion would provide for an operational support center (OSC) assembly area, separate from the control room and the TSC. SSAR Section 13.3.2.2.h.3 states that Dominion would provide for an EOF to manage the overall licensee emergency response, including coordination with Federal, State, and risk jurisdiction

officials, organization of radiological and environmental assessments, and determination of recommended public protective actions. The EOF would have technical and data displays and plant records available to assist in the diagnosis of plant conditions. The EOF would serve as the primary offsite communications center for the plant during an emergency.

SSAR Section 13.3.2:2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between the major features proposed in the application and the major features discussed in existing plans and relied on in the application. SSAR Section 13.3.2.2.2.h.4 states that the State and risk jurisdictions have established EOCs for use in directing and controlling emergency response functions. COVRERP Section II.C describes the establishment of the State EOC and its functions, noting that the State would coordinate the offsite emergency operations from the Virginia EOC (staffed 24 hours a day, 7 days a week) and respective local government EOCs. The county RERPs describe the establishment, location, and function of the local EOCs.

SSAR Sections 13.3.2.2.2.h.1 and 13.3.2.2.2.h.2 provide brief, general statements from the criteria presented in NUREG-0696, "Functional Criteria for Emergency Response Facilities—Final Report," issued February 1981, for the TSC, OSC, and EOF, but do not give specific facility- or equipment-related information.

In RAI 13.3-8, the staff asked the applicant to discuss the extent to which it intended the application to address evaluation criteria V.H.1 and V.H.2 of Supplement 2 for the TSC, OSC, and EOF, including the criteria of NUREG-0696. In addition, the staff asked the applicant to state whether Dominion intends to use the existing TSC, OSC, and EOF, which support North Anna Units 1 and 2, for the ESP site. If so, the applicant should provide information consistent with evaluation criteria V.H.1 and V.H.2 of Supplement 2. In its response, the applicant stated that the COL or CP applicant would make provisions for emergency facilities and equipment for the TSC, OSC, and EOF that would satisfy the functions described in SSAR Sections 13.3.2.2.2.h.1 through 13.3.2.2.2.h.2. The applicant noted that additional information addressing the NUREG-0696 criteria is not necessary or appropriate at the time of the ESP application and that a COL or CP application would include a description of the TSC and descriptions of the conceptual designs for an OSC and EOF. Since the TSC, OSC, and EOF details would differ based on the reactor design selected at the COL or CP stage, the applicant has not yet decided whether to use the existing facilities to support the new unit(s).

Subsequently, in its submittal dated March 3, 2005, the applicant withdrew its request that major feature H be evaluated as part of the North Anna ESP application.

13.3.3.9.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.B, and IV.E of Appendix E to 10 CFR Part 50.

Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which are applicable to major feature H, "Emergency Facilities and Equipment."

Major feature H calls for the applicant to describe a TSC, onsite OSC, and EOF, in accordance with the criteria of NUREG-0696. The following are the general guidance criteria from NUREG-0696 for these facilities:

- The TSC is an onsite facility located close to the control room that shall provide plant management and technical support to the reactor operating personnel located in the control room during emergency conditions. It shall have technical data displays and plant records available to assist in the detailed analysis and diagnosis of abnormal plant conditions and any significant release of radioactivity to the environment. The TSC shall be the primary communications center for the plant during an emergency.
- The OSC is an onsite assembly area separate from the control room and the TSC
 where licensee operations support personnel shall report in an emergency. There shall
 be direct communications between the OSC and the control room, and between the
 OSC and the TSC, so that the personnel reporting to the OSC can be assigned to duties
 in support of emergency operations.
- The EOF is a near-site support facility for the management of overall licensee emergency response (including coordination with Federal, State, and local officials), coordination of radiological and environmental assessments, and determination of recommended public protective actions. The EOF shall have appropriate technical data displays and plant records to assist in the diagnosis of plant conditions to evaluate the potential or actual release of radioactive materials to the environment.

In addition, major feature H calls for the application to describe an EOC for each offsite organization, for use in directing and controlling response functions.

13.3.3.9.3 Technical Evaluation

In SSAR Sections 13.3.2.2.2.h.1 through 13.3.2.2.2.h.2, the applicant offered a slightly revised statement of the general guidance criteria from NUREG-0696 for the TSC, OSC and EOF, when compared to that provided above. In order for the NRC staff to determine whether major feature H is acceptable, the applicant must address the adequacy of the facilities and related equipment in support of emergency response and address, with specificity, facility and equipment features, such as location, size, structure, function, habitability, communications, staffing and training, radiological monitoring, instrumentation, data system equipment, power supplies, technical data and data systems, and record availability and management. The staff identified the consideration of this information as Open Item 13.3-3. On March 3, 2005, the applicant withdrew its request that major feature H be evaluated as part of the North Anna ESP application. Based on this withdrawal, Open Item 13.3-3 is resolved.

13.3.3.9.4 Conclusions

As discussed above, the applicant has withdrawn its request that major feature H be evaluated as part of the North Anna ESP application. Based on this withdrawal, as set forth above, the staff reached no conclusion regarding the acceptability of major feature H.

13.3.3.10 Accident Assessment (Supplement 2, Major Feature I)

13.3.3.10.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.i.1 states that the existing NAPS meteorological monitoring system has the capability to collect data for making near real-time predictions of atmospheric effluent transport and diffusion. The data would be accessible in the new unit's control room, TSC, and EOF. The applicant would also make suitable meteorological information available to the State, as described in SSAR Section 13.3.2.2.2.e. SSAR Section 13.3.2.2.2.f describes communications with the State, risk jurisdictions, and Federal Government EROs.

The National Oceanic and Atmospheric Administration (NOAA) is the primary agency within the U.S. Department of Commerce responsible for providing assistance to Federal, State, and local organizations in responding to a radiological emergency under the provisions of the FRERP, as described in SSAR Section 13.3.2.2.2.c. Within NOAA, the National Weather Service is the primary source of weather data, forecasts, and warnings for the United States. Section 13.3.3.4 of this SER discusses the FRERP.

NAEP Section 7.3.3, "Meteorological Monitoring," states that the station's meteorological monitoring system provides the capability for predicting atmospheric effluent transport and diffusion. The system consists of a primary and a backup tower. Dominion Resources chose the tower locations to represent regional conditions. Instruments located at these towers provide data to the meteorological information and dose assessment system (MIDAS) via the plant computer system, which is transmitted to both the NAPS control room and Dominion Resource's weather center at Innsbrook, Virginia. NAEP Table 7.2, "Meteorological Monitoring System Parameters," lists the parameters measured, and all meteorological data are available by means of a dial-up link at meteorological operations in Richmond, Virginia.

SSAR Section 13.3.2.2.2.i.2 states that Dominion would use field monitoring to obtain offsite radiological data within the 10-mile EPZ, and Dominion would coordinate field monitoring activities from the EOF with VDH, under the provisions of the COVRERP. SSAR Section 13.3.2.2.2.i.3 states that Dominion and the State would rely on DOE for airborne radioactive plume tracking under the provisions of the FRERP, as described in SSAR Section 13.3.2.2.2.c.

NAEP Section 7.3.2, "Radiological Monitoring," also addresses the capabilities and resources for field monitoring within the 10-mile EPZ. It states that Dominion would use both fixed and portable radiation monitoring equipment to perform dose assessments. It would use air samplers and thermoluminescent dosimeters (TLDs) to obtain offsite data. In addition, the State has TLD monitoring points located around the NAPS site, which serve to verify data. NAEP Figures 7.1 and 7.2 identify dosimetry and air sampler locations within the 10-mile EPZ.

NAEP emergency plan implementing procedure (EPIP)-4.01, "Radiological Assessment Director Controlling Procedure," provides guidance for conducting dose assessment, source term determination, atmospheric diffusion factor determination, monitoring team activities, personnel monitoring and decontamination, monitoring of onsite facilities, evacuation, respiratory protection, sampling and sample analysis, and use of the MIDAS computer model. The NAPS maintains fixed laboratory equipment to support sampling analysis and monitoring, including reading TLDs. The equipment includes multichannel analyzers, proportional counters, a tritium analyzer, and whole body counters.

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

The State response organization is based on normal government structures and channels of communications. The State coordinates overall response, and BRH provides technical advice and assistance on radiological accident assessment and radiological fielding monitoring. Upon declaration of an alert (or higher) emergency class, VDEM would notify VDH, and BRH would implement its response procedures in accordance with the COVRERP. Appendix 5, "Accident Assessment," to the COVRERP states that an RERT, composed of personnel from State agencies and supplemented by personnel from the nuclear facility and Federal agencies, would perform State radiological assessment activities. The RERT would operate from the State EOC. Depending on the release parameters, the State does not anticipate full Federal participation until after the emergency phase, at which time it would rely on DOE to help develop information on the deposition of radioactive materials.

State field teams would coordinate their activities with utility and county teams and would obtain area radiation dose rates, as well as air and environmental samples. The county RERPs describe local responsibilities during a radiological emergency at NAPS. These include providing personnel and equipment, as needed, to supplement BRH field monitoring. The State has a mobile radiological laboratory to perform rapid sample assessment. The Division of Consolidated Laboratories will make available the services of additional radiological laboratories, and the State has access to Federal radiological field monitoring resources under the provisions of the FRERP. SSAR Section 13.3.2.2.2.c discusses the FRERP, with regard to locating and tracking the airborne radioactive plume. Section 13.3.3.4 of this SER discusses additional accident assessment capabilities and resources. Sections 13.3.2, 13.3.3.2, 13.3.3.4, and 13.3.3.13 of this SER describe contacts and arrangements in support of accident assessment.

In RAI 13.3-14(d), the staff asked the applicant for additional information concerning the assumptions in the application and assumptions in the COVRERP regarding reliance on DOE for airborne radioactive plume tracking. In its response dated October 20, 2004, the applicant stated the following:

Dominion and the Commonwealth of Virginia rely on the Department of Energy for airborne radioactive plume tracking under provisions of the FRERP. Under provisions of the Federal Radiological Emergency Response Plan, DOE may respond to a state or LFA [Lead Federal Agency] request for assistance by

dispatching a Radiological Assistance Program (RAP) team. The DOE Regional Coordinating Office with responsibility for the geographic area where the Dominion ESP site is situated is the Oak Ridge Operations Office in Oak Ridge. Tennessee. The DOE Radiological Assistance Plan, Region 2, includes the states of Arkansas, Louisiana, Mississippi, Missouri, Tennessee, and West Virginia: the Commonwealths of Kentucky, Virginia and Puerto Rico; and the U.S. Virgin Islands. If the situation requires more assistance than a RAP team can provide, DOE will alert or activate additional resources. These resources may include the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC) to be used as an on-scene coordination center for federal radiological assessment activities. The FRMAC is charged with defining and monitoring the radiological impact of a nuclear or radiological release. Because the effects of radiological contamination may last beyond an immediate emergency, FRMAC serves as a coordination point for radiological monitoring, assessment, evaluation, and reporting activities for the area surrounding a radiological incident, including decontamination, recovery, and long-term environmental monitoring. The FRMAC provides for the coordinated management of federal technical response activities related to a radiological emergency. It has three primary goals:

- Assisting the Commonwealth of Virginia and LFA with personnel, equipment, and technical resources, as needed.
- Collecting offsite environmental radiological data.
- Providing to the involved Commonwealth of Virginia agencies and local and federal agencies collected offsite environmental radiological data and related assessments.

A Federal Radiological Monitoring Assessment Center advance party can be expected at the site within 6 to 14 hours following the order to deploy, depending on the availability of airports near the Dominion ESP site. Richmond International Airport (RIC) is a major commercial facility and is within about an 85-minute drive from the Dominion ESP site. Smaller airports located within about an hour of the site may also be used.

13.3.3.10.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance of Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.B of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA,

the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature I, "Accident Assessment."

Major feature I calls for the applicant to describe the methods, systems, and equipment for assessing and monitoring actual or potential offsite consequences of a radiological emergency condition. The applicant should also describe the capability and resources associated with acquiring meteorological information and performing field monitoring, and contacts and arrangements with offsite organizations (including Federal and State resources).

13.3.3.10.3 Technical Evaluation

SSAR Section 13.3.2.2.2.i.1 states that the existing NAPS meteorological monitoring system has the capability to collect data for making near real-time predictions of atmospheric effluent transport and diffusion. The data would be accessible in the new unit's control room, TSC, and EOF. The applicant would make suitable meteorological information available to the State. In addition, NOAA provides assistance to Federal, State, and local organizations in responding to a radiological emergency under the provisions of the FRERP. The staff finds that this information adequately describes the contacts and arrangements for acquiring and evaluating meteorological information, including making the data available to the State.

SSAR Section 13.3.2.2.2.i.2 states that Dominion would use field monitoring to obtain offsite radiological data, and it would coordinate field monitoring activities from the EOF with VDH, under the provisions of the COVRERP. SSAR Section 13.3.2.2.2.i.3 states that Dominion and the State would rely on DOE for airborne radioactive plume tracking under the provisions of the FRERP. NAEP Section 7.3.2 states that Dominion would use both fixed and portable radiation monitoring equipment to perform dose assessment and would use air samplers and TLDs to obtain offsite data. The equipment includes multichannel analyzers, proportional counters, a tritium analyzer, and whole body counters.

The State has TLD monitoring points located around the NAPS site, which would serve to verify data from the site, and a mobile radiological laboratory to perform rapid sample assessment. The State would coordinate overall response, and BRH would provide technical advice and assistance on radiological accident assessment and radiological field monitoring. State field teams would coordinate their activities with utility and county teams and would obtain area radiation dose rates, as well as air and environmental samples. County responsibilities would include providing personnel and equipment, as needed, to supplement BRH field monitoring. The State also has access to Federal radiological field monitoring resources under the provisions of the FRERP.

In RAI 13.3-14(d), the staff asked the applicant for information on the assumptions in the application and in the COVRERP regarding reliance on DOE for airborne radioactive plume tracking. The staff identified the consideration of this information as Open Item 13.3-4. The staff reviewed the applicant's response in their submittal dated October 20, 2004, and finds it acceptable. Therefore, Open Item 13.3-4 is resolved. The staff finds that the applicant has adequately described contacts and arrangements with responsible agencies and organizations in support of accident assessment activities.

13.3.3.10.4 Conclusions

As discussed above, the applicant has described adequate methods, systems, and equipment for assessing and monitoring actual or potential offsite radiological consequences of a radiological emergency condition at the ESP site, including associated contacts and arrangements. Based on its review, the staff concludes that the proposed major feature I is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, IV.C, IV.D, and IV.E of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for accident assessment, as set forth above.

13.3.3.11 Protective Response (Supplement 2, Major Feature J)

13.3.3.11.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.j.1 states that the existing emergency assembly areas that support NAPS would also support a new reactor(s) constructed on the ESP site. If evacuation of onsite individuals is necessary, Dominion would direct evacuees to either the primary or secondary remote assembly area (RAA), depending on specific radiological and environmental conditions. SSAR Figure 13.3-4 depicts the onsite evacuation routes, RAAs, and State EACs. Evacuees would use personal vehicles for transportation. Dominion would survey evacuees for contamination following events involving a release and would decontaminate them, if necessary, before releasing them from the RAA.

In RAI 13.3-6, the staff asked the applicant to clarify the availability of transportation to emergency assembly areas for onsite individuals who do not have their personal vehicle available onsite. In its response, the applicant stated that those individuals would travel as passengers in personal vehicles driven by others, which is the approach currently implemented for the existing NAPS site.

NAEP Section 6.3.1, "Offsite Criteria for the 10 Mile Emergency Planning Zone," states that Dominion Resources has established evacuation zones, routes, and relocation centers in the event that an evacuation is recommended and publishes this information in brochures distributed by the State. NAEP Section 6.3.2, "Onsite Criteria for the Exclusion Area," states that in the event of an onsite evacuation, radiation monitoring teams would be dispatched to the appropriate RAA. Evacuees using personal vehicles would proceed to either the primary or secondary RAA. NAEP Figure 6.2, which is identical to SSAR Figure 13.3-4, identifies the RAAs.

SSAR Section 13.3.2.2.2.j.2 states that the senior Dominion representative would recommend initial offsite protective actions to the State within 15 min of declaring a general emergency, based on plant conditions. The State and risk jurisdictions would notify the public and implement the appropriate protective measures. Followup protective action recommendations (PARs) from the NAPS site would be based on current meteorological data and dose projections. The applicant stated that this guidance is based on NUREG-0654/FEMA-REP-1, Supplement 3, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants—Criteria for Protective Action Recommendations for Severe Accidents—Draft Report for Interim Use and Comment," issued

July 1996, and U.S. Environmental Protection Agency (EPA) 400-R-92-001, "Manual of Protective Action Guides and Protective Actions for Nuclear Incidents," issued May 1992.

NAEP Section 6.3, "Protective Actions," further states that, for the existing North Anna units, specific PARs are tied to plant and meteorological conditions. An EPIP, specifically designed to meet the 15-min PAR to the State, includes these recommendations. The initial PAR for any event classified as a general emergency would be to evacuate in all directions out to 5 miles. Dominion would declare a site area emergency when offsite doses are projected to exceed 0.001 Sv (0.1 rem) total effective dose equivalent (TEDE), or 0.005 Sv (0.5 rem) thyroid committed dose equivalent (CDE). A general emergency would be declared when offsite protective action guidelines (PAGs) of 0.01 Sv (1.0 rem) TEDE and/or 0.05 Sv (5.0 rem) thyroid CDE are projected to be exceeded because of a direct radiation or inhalation hazard, or when nonradiological conditions exceed general emergency EALs.

In RAI 13.3-7, the staff asked the applicant to describe the mechanism for recommending protective actions to the appropriate State and local authorities, including how EALs would be used to determine PARs (e.g., sheltering, evacuation, use of KI), consistent with EPA 400-R-92-001. In addition, the staff asked the applicant to describe how it would give those recommendations to the appropriate State and local authorities, and how it would give changes to, or termination of, PARs to State and local authorities. In its response, the applicant stated that, in the event of a radiological emergency, the plant staff would analyze conditions and classify the event using the EALs developed pursuant to Appendix E to 10 CFR Part 50. In most cases, the initial PAR would be made without the benefit of dose assessment results (i.e., based on plant conditions). Evacuation decisions would be based on dose projections or offsite monitoring results exceeding evacuation dose thresholds of 0.01 Sv (1 rem) TEDE or 0.05 Sv (5 rem) thyroid CDE. A recommendation by Dominion for the State to issue KI to the general public would be based on reaching a projected dose of 0.05 Sv (5 rem) thyroid CDE at or beyond the NAPS site boundary. PAR revisions would consider actions taken in response to previous PARs. Dominion would formally communicate initial PARs and any changes directly to the State EOC using a dedicated automatic ring-down circuit, with a commercial telephone as backup. The State would make a protective action decision and notify the affected populace, as described in SSAR Section 13.3.2.2.2.e.3. Dominion would discuss termination of PARs with the State before issuance to ensure that PAR termination would not adversely affect offsite response actions.

In its response to RAI 13.3-7, the applicant further stated that 10 CFR 50.47(b)(10), Supplement 3 to NUREG-0654/FEMA REP-1, and EPA 400-R-92-001 contain the current Federal guidance relating to PARs. However, the guidance in Supplement 3 may change. As such, the applicant stated that it responded to this RAI with the understanding that, in the context of the North Anna ESP application, Federal guidance may change before it would become applicable.

SSAR Section 13.3.2.2.2.j.3 states that the ETE applies to the ESP site, and that ETEs based on different affected population areas and weather conditions range from 85 to 105 min. SSAR Section 13.3.2.2.2.j.4 states that the ETE includes maps showing the site and the 10-mile EPZ, transportation networks and evacuation routes, topographical features, political boundaries, and the PAZs. In addition, population information is presented in 2-mile, 5-mile, and 10-mile ring and 16-sector format, as well as by PAZ. Section 13.3.3.6 of this SER discusses the means for

notifying the resident and transient population, while Section 13.3.1 of this SER provides additional information regarding the ETE.

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

For the NAPS site, NAEP Section 6.3.1, "Offsite Criteria for the 10 Mile Emergency Planning Zone (EPZ)," states that State and local officials are responsible for warning the public within the 10-mile EPZ and that the State Department of Police would assist them. The early warning system sirens serve as the primary method for warning the public. Other warning methods may include telephone, television and radio EAS stations, public address systems, patrol car bullhorns, and personal contact. Either the State or county would release written preplanned messages to the media, which would provide protective action instructions. The COVRERP states that the local governments have the responsibility to educate their citizens on possible radiological hazards, emergency notification, evacuation routes, assembly points, and other protective measures.

COVRERP Section VII.D.1.a states that the State and neighboring local governments would provide onsite assistance as requested and as mutually agreed to with the facility operator. Similarly, the Louisa County RERP states that the county would also provide required, mutually agreed-upon assistance.

The COVRERP and county RERPs contain maps that show the EPZ, PAZs (where evacuation or sheltering would be implemented), and evacuation routes. They also contain tables that show the population distribution in the counties and in the PAZs. The plans also list the EACs (i.e., relocation centers). Each county RERP contains information concerning the transportation of either transportation-dependent or special needs populations in their counties. State assets would be available as backup, if needed. The only institutionalized populations are those in schools in Louisa and Spotsylvania Counties. Public school buses would provide transportation from the affected school(s) to the designated EACs. In addition, the counties would use school buses to evacuate other segments of the population without access to private transportation.

For the roadways, the local sheriffs' departments are responsible for manning the traffic and access control points during and following an accident. Both the COVRERP and county RERPs list these points. Private vehicles would be the primary means of transportation during an evacuation. School buses, law enforcement vehicles, and ambulances would supplement these vehicles, as needed. The county RERPs for Caroline, Hanover, Louisa, and Spotsylvania Counties provide the means for dealing with potential impediments to using evacuation routes.

The State and local plans list the EACs, which are at least 15 miles from the ESP site. Appendix 8, "Evacuation Assembly Center Procedures," to the county RERPs provides the means for registering and monitoring evacuees at the EACs. The COVRERP and county RERPs designate evacuation as the primary protective action. Tab A of Appendix 6 to the COVRERP considers other factors, not addressed in the county RERPs, such as shelter availability, meteorological conditions, ETEs and risks, projected and actual doses, and plant

conditions. Except for Orange County, the local plans list sheltering as an option but do not provide guidance for when sheltering should be considered.

The COVRERP and county RERPs contain information concerning the use of KI by emergency workers. The COVRERP states that the State health director is responsible for authorizing emergency workers to use KI. Appendix 6 to the county RERPs provides details for implementing the KI decision for emergency workers. The COVRERP also states that individuals responsible for the care of institutionalized persons would be responsible for their protection, including the use of KI. The county RERPs do not consider the use of KI by institutionalized persons, since evacuation and sheltering actions would make KI use unnecessary.

In RAIs 13.3-14(e), (f), (g), and (h), the staff asked the applicant for additional information concerning use of the Patrick Henry High School, agreements for assistance from offsite agencies, description of measures for dealing with potential impediments to use of evacuation routes, and when sheltering should be considered. The applicant responded to these RAIs in its submittal dated October 20, 2004. The applicant stated that Patrick Henry High School is the secondary EAC for Hanover County and a primary host school for Louisa County school children. In the event that North Anna is required to send station evacuees to the school, the licensee would request permission in advance, and Dominion would provide resources to assist with the monitoring and decontamination of site evacuees.

The applicant further stated that the existing letters of agreement, which address evacuation assistance, contain the agreements for assistance from offsite agencies. Law enforcement agencies would provide traffic control on Commonwealth roads. Both VSP and Louisa County Sheriff's Office routinely train and exercise with Dominion emergency planners. In Orange County, no routes exist that would experience any significant congestion during evacuation, and appropriate actions have been identified for adverse weather conditions. In regard to sheltering, a protective action decision would be made at the State EOC after local recommendations are considered, and a conference call would be held to include all jurisdictions in the PARs.

In RAI 13.3-15, the staff asked the applicant for additional information concerning the ETE regarding road capacities and travel times, traffic control, worst-case scenario, persons without vehicles, schools, working people, evacuation confirmation, projected demography, and computer modeling of the population. In addition, the staff asked the applicant for figures or maps that showed various characteristics of the area surrounding the ESP site. In its response to this RAI, dated October 20, 2004, the applicant provided the requested figures or maps and stated, in part, the following:

- The ETEs do not explicitly depend on the implementation of the emergency response traffic control procedures outlined in the counties' RERPs. It is expected that ETEs would not increase because of their implementation.
- The ETE study required no explicit assumptions regarding the timing or implementation
 of traffic control measures by local EROs. Local emergency management agencies use
 ETEs to develop traffic control and traffic management plans to facilitate the evacuation
 process.

- Traffic controls in a network can limit user equilibrium if those traffic controls force some vehicles to take routes with longer travel times. The purpose of the traffic control points described in the counties RERPs is not to force vehicles to take a particular route with a longer travel time but to maintain reasonable traffic flow. Drivers would be generally free to choose their own route based on available routes.
- The ETE study was intended to consider general evacuation scenarios resulting from a
 radiological event at NAPS. The ETEs are intended to be based on general bad
 weather conditions. Bad weather in the area around NAPS was assumed to be
 predominately related to snow and ice. To accommodate the impact of bad weather on
 the ETEs, the speed limits were reduced by 40 percent. This effectively reduced the
 road capacities by about 25 percent.
- In regard to the assumption of a car occupancy factor of 2.5, the average household size for the five counties surrounding the NAPS is 2.56. It is assumed that families would evacuate together in most situations. Additionally, most planners estimate that to evacuate, each household would take an average of 1.3 to 1.5 vehicles (or about 2 to 2.5 people per vehicle).
- The nuclear emergency information calendars distributed in each of the counties inform the public to assist friends and neighbors without transportation. In addition, local government vehicles would transport persons without their own means of evacuation; members of the immediate family or friends (if possible) would evacuate nonambulatory persons; and those requiring transportation would be identified (before or at the time of the emergency), and transportation would be provided. It is assumed that neighbors or relatives would evacuate the majority of the population needing transportation.
- Although county RERPs identify bus routing for pickup of nonauto-owning populations, they also encourage any nonambulatory persons to evacuate with members of the immediate family or friends, if possible. Similarly, the nuclear emergency information calendars encourage people without transportation to make plans to ride with a neighbor.
- The evacuation of school children is implicitly represented in the composite traffic loading curve. The superintendent of schools would provide buses and other vehicles with drivers for assisting in an evacuation of the public and school students. If school children had not been returned to their homes before an evacuation order, they would be taken to an EAC under adult supervision.
- Schools can typically be expected to respond significantly faster than the general population. As a result of routine fire drills and other emergency drills performed at schools, response times are typically much better for school populations than for general populations. Schools have demonstrated the ability to load buses and start evacuation within 10–20 min following a warning and directions to do so from local emergency management.
- The time needed to confirm evacuation depends on the method of confirmation employed. County RERPs and the nuclear emergency information calendar provide some information on conducting such confirmation, such as placing the "We Have Been

Notified" card (from the back of the calendar) in a window or door facing the street, or tying a towel to a door or mailbox.

• The composite traffic loading curve used for the ETE analysis is based on the data collected during evacuations executed in response to large-scale chemical spills. This curve explicitly incorporates the time required for communication of the warning to the public and the time required for an individual to respond to the warning.

-1-6

- The ETE analysis used the Evacuation Simulation Model, the core component of the Oak Ridge Evacuation Modeling System, to establish the ETEs. The composite traffic loading curve used for the ETE incorporates the time required for communication of the warning to the public and the time required for an individual to respond to the warning once received. The mobilization time distribution is based on data from actual emergency evacuations and, hence, does not implicitly account for most of the common activities performed by individuals in preparation for evacuation.
- The underlying assumption regarding the applicability of the Rogers' mobilization curves in the ETE study is that public perception of radiological emergencies differs from the actual characteristic of such an event. The alarm that would be associated with social response in a radiological emergency makes the use of Rogers' mobilization curves prudent for the ETE study.

13.3.3.11.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.B, and IV.D of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature J, "Protective Response."

Major feature J calls for the applicant to describe protective actions for the 10-mile EPZ for the public and emergency workers, including evacuation routes, transportation, and handling evacuees. The application should identify guidelines for the choice of protective actions, consistent with Federal guidance, as well as the bases and mechanisms for recommending protective actions to State and local authorities. The application should describe each organization's concept for implementing protective actions and describe contacts and arrangements with offsite agencies. In addition, the applicant should prepare an ETE for the 10-mile EPZ.

13.3.3.11.3 Technical Evaluation

In SSAR Section 13.3.2.2.2.j.1, the applicant stated that onsite individuals would be evacuated, using personal vehicles for transportation, to either the primary or secondary RAA, depending on specific radiological and environmental conditions. SSAR Figure 13.3-4 shows the separate locations of the RAAs and State EAC, and the associated evacuation routes. The RAAs are located in separate directions from the ESP site, and the State EAC provides a third location. The staff finds that the RAAs and State EAC are suitable because they provide adequate alternative offsite evacuation locations in the event of inclement weather, high traffic density, and specific radiological conditions.

The staff finds that SSAR Section 13.3.2.2.j.2 adequately describes a mechanism for recommending protective actions to the appropriate State and local authorities. The application states that the senior Dominion representative would be responsible for making initial and followup PARs and that EPA 400-R-92-001 would serve as the basis for such recommendations. The staff did not consider the possibility of a change to the Federal guidance relating to PARs germane to its review of the SSAR. Rather, the staff applied current requirements. A COL or OL applicant should address any such changes, and the staff will determine compliance with the requirements in this area during a COL or OL review.

The staff found that the EACs are at least 15 mi from the ESP site and that the registration and monitoring of evacuees would be conducted in accordance with the EAC procedure, contained in the county RERPs. In addition, the staff found that the COVRERP and county RERPs designate evacuation as the primary protective action and that Tab A of Appendix 6 to the COVRERP considers other factors, such as shelter availability, meteorological conditions, ETEs and risks, projected and actual doses, and plant conditions.

The COVRERP and county RERPs state that the State and local governments would provide onsite assistance, as requested and as mutually agreed to with NAPS. The revised letters of agreement, discussed in Section 13.3.2 of this SER, address such mutually agreed-upon assistance.

The staff finds that the application, the NAEP, the COVRERP, and county RERPs provide maps (or lists) that adequately illustrate population distribution around the site, evacuation areas, evacuation routes, shelter areas, and relocation centers in host areas. The staff finds that the proposed means for notifying all segments of the resident and transient population are adequate because the primary method for warning the public is through the use of the early warning system sirens, with additional notification capabilities through the use of telephones, television and radio EAS stations, public address systems, patrol car bullhorns, and personal contact. The warnings would consist of preplanned messages, which provide specific protective action instructions. Individuals responsible for the care of institutionalized persons would also be responsible for their protection, including sheltering, evacuation, and the use of KI. The State health director would authorize the use of KI by emergency workers and institutionalized persons.

In RAIs 13.3-14(e)-(h), the staff asked for information concerning the use of Patrick Henry High School, agreements for assistance from offsite agencies, measures for dealing with potential impediments to use of evacuation routes, and consideration of sheltering. The staff identified the consideration of this information as Open Item 13.3-5. The staff reviewed the applicant's

responses in their submittal dated October 20, 2004, and find them acceptable. Therefore, Open Item 13.3-5 is resolved.

In RAI 13.3-15, the staff asked for additional information regarding issues relating to the ETE. The staff identified consideration of this information as Open Item 13.3-6. The staff reviewed the applicant's response in their submittal dated March 3, 2005, and finds it acceptable. Therefore, Open Item 13.3-6 is resolved.

The staff finds that the applicant has adequately described a range of protective actions for the plume exposure pathway EPZ for the public and emergency workers, and protective actions for the ingestion exposure EPZ. In addition, the staff finds that the guidelines for the choice of protective actions are consistent with Federal guidance and are appropriate to the locale. Section 13.3.2 of this SER discusses the associated description of contacts and arrangements made with offsite agencies with emergency planning responsibility.

13.3.3.11.4 Conclusions

As discussed above, the applicant has described a range of protective actions for the plume exposure pathway EPZ for public and emergency workers, including guidelines for the choice of protective actions that are consistent with Federal guidance, and protective actions for the ingestion exposure pathway EPZ. Based on its review, the staff concludes that the proposed major feature J is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, IV.D, and IV.E of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for accident assessment, as set forth above.

13.3.3.12 Radiological Exposure Control (Supplement 2, Major Feature K)

13.3.3.12.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.k.1 states that Dominion would maintain doses to emergency response personnel within the limits of 10 CFR Part 20, "Standards for Protection Against Radiation," under normal operating conditions, and that these personnel may, because of necessity, receive a once-in-a-lifetime exposure to contamination and radiation up to the 10 CFR Part 20 annual limits, not including accumulated occupational exposure.

SSAR Section 13.3.2.2.2.k.2 states that the existing NAPS radiological protection and onsite contamination control procedures would apply to the ESP site, or future radiological protection procedures would address these functions. SSAR Section 13.3.2.2.2.k.3 states that emergency workers at the ESP site would receive direct reading and permanent record dosimeters, and Dominion would maintain dose records in accordance with the existing NAPS radiological protection procedures or future radiological protection procedures.

The guidelines for emergency exposure limits are consistent with EPA 400-R-92-001. SSAR Section 13.3.2.2.k.4 states that approval from the emergency coordinator is necessary for planned exposures greater than the 10 CFR Part 20 annual limits. Under limited circumstances, exposure limits greater than 5 times the 10 CFR Part 20 annual limits may be allowed, but only to certain volunteers.

NAEP Section 5.2.1.1, "Station Emergency Manager," states that the station emergency manager, who ultimately reports to the recovery manager, has the responsibility for managing and directing emergency operations during the course of the emergency, including the authorization of emergency exposure limits. NAEP Section 6.4.1, "Emergency Exposure Limits," states that station emergency manager approval is necessary for planned exposures greater than the 10 CFR Part 20 annual limits. The guidelines for emergency exposure limits, which are specified in the NAPS EPIPs, are consistent with EPA dose limits for workers performing emergency services.

In RAI 13.3-10, the staff asked the applicant to clarify who authorizes exposures greater than the 10 CFR Part 20 annual limits. In its response, the applicant stated that the NAPS station emergency manager functions as the emergency coordinator for the NAPS and can authorize emergency workers to receive doses in excess of the 10 CFR Part 20 limits. In addition, the applicant stated that a COL or CP application would provide a description of the onsite emergency organization. While the applicant has made no decisions regarding organizational details for the prospective new reactors, it stated that it intends no substantial differences between the NAEP and SSAR Section 13.3.

NAEP Section 6.4.2, "Decontamination and First Aid," states that the NAPS health physics procedures and EPIPs specify levels of permissible radioactive contamination for workers and equipment. Personnel must take actions when levels for equipment or areas exceed the limits established in the health physics procedures. Any detected personnel contamination would initiate appropriate evaluation and decontamination, in accordance with these procedures. An EPIP also provides for the monitoring of vehicles and personnel at the RAAs.

SSAR Section 13.3.2.2.2.k.5 states that Dominion would provide adequate supplies for personnel decontamination and make provisions for decontamination, as specified in the existing units' radiological protection procedures or as addressed in future procedures. Health physics personnel can perform decontamination at the existing units or the ESP site, RAA, or Patrick Henry High School. SSAR Section 13.3.2.2.2.j.1 states that decontamination agents and supplies are available at the NAPS site and can be transported to the RAAs to provide decontamination capabilities. Injured and contaminated persons would be decontaminated to the extent achievable or transported to the hospital, as described in SSAR Section 13.3.2.2.2.l.

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

Appendix 6, "Radiological Exposure Control," to the COVRERP states that BRH would issue self-reading pocket dosimeters and TLDs to emergency workers who enter the affected area. In addition, pocket dosimeters, chargers, and TLDs are prepositioned in each risk and host jurisdiction. Local government has the primary responsibility for radiation exposure control, with State agencies providing technical advice and guidance. The State has accepted the EPA PAGs, and the COVRERP provides a variety of protective actions that are consistent with the PAG limits.

Radiation exposure control for emergency workers is accomplished by several means, including continuous monitoring and limiting radiation exposures. In the initial stages of an incident, BRH would use a default exposure control ratio (or dose conversion multiplier) to factor in internal exposure that is not measurable with a pocket dosimeter. BRH would adjust an initial exposure control ratio, which is based on a default accident source term, if accident assessment indicates that a change is necessary to reflect actual conditions. The emergency workers would divide the pocket dosimeter readings by the exposure control ratio to determine their reporting, turn back, and lifesaving levels. The county RERPs give specific instructions regarding the issuance of personal dosimetry.

Appendix 6 to the COVRERP provides exposure limits for emergency workers and specifies reporting, turn back, and lifesaving levels. The emergency worker exposure limits and exposure control ratio in the county RERPs are consistent with those in the COVRERP. The EOC radiological officer must authorize an emergency worker to exceed the established limits. If the assignment is critical and a replacement is unavailable, the EOC radiological officer may authorize a higher dose, up to the lifesaving level.

The State performs radiological decontamination at the EACs. Appendix 6 to the COVRERP provides general instructions relating to monitoring and decontamination of evacuees and emergency workers. In addition, Appendix 10, "Decontamination, Re-Entry, and Return," to the COVRERP specifies action levels for determining the need for decontamination and describes the means for decontamination of people, vehicles, livestock, structures, crops, soil, and any other surfaces that are contaminated with radioactive material. The county RERPs include procedures for monitoring and decontamination that are consistent with the COVRERP. The State would transport individuals who cannot be decontaminated below prescribed action levels to a medical facility that can handle radiologically contaminated patients.

In RAI 13.3-14(i), the staff asked the applicant for additional information regarding the decisionmaking guidance and authority in the State and local plans for authorizing emergency workers to exceed EPA exposure limits. In RAI 13.3-14(j), the staff also asked the applicant for additional information regarding measures to ensure that the use of the exposure control ratio does not result in emergency workers exceeding EPA exposure limits. In its response to these RAIs dated October 20, 2004, the applicant stated that VDH/BRH would provide authorization, when needed, for any state emergency worker to exceed the 0.15 Sv (15 rem) TEDE turnback level during an emergency. In addition, the applicant addressed the exposure control ratio, consistent with that described above.

13.3.3.12.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, and IV.E of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence

of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature K, "Radiological Exposure Control."

Major feature K calls for the applicant to describe an onsite radiation protection program and the means for determining and controlling radiological exposures to emergency workers and volunteers (onsite and offsite), including a decision chain for authorizing exposures in excess of EPA dose limits. The application should also describe specific action levels and the means for radiological decontamination of personnel (including personnel wounds), vehicles, equipment, supplies, and possessions.

13.3.3.12.3 Technical Evaluation

In SSAR Section 13.3.2.2.2.k.1, the applicant stated that it would maintain the emergency worker dose limits within the limits of 10 CFR Part 20 and that these limits are consistent with EPA 400-R-92-001. In addition, the existing (or future) NAPS radiological protection and onsite contamination control procedures would apply to the ESP site. The staff finds that the use of the existing NAPS radiological protection and onsite contamination procedures for the ESP site is acceptable, to the extent that they would be expanded to incorporate relevant aspects of a proposed new reactor design in a COL or OL application. The staff will determine the adequacy of such incorporation during a COL or OL review. The staff did not consider the applicability or adequacy of future radiological protection and onsite contamination procedures to be required for a major features review and, as such, did not review it. A COL or OL applicant will address any such future procedures, and the staff will determine compliance with the requirements in this area during a COL or OL review. The staff further finds that the application adequately describes the guidelines for dose limits and the onsite radiation protection program for the ESP site.

The applicant stated that emergency workers at the ESP site would receive direct reading and permanent record dosimeters, and it would maintain dose records in accordance with the existing NAPS radiological protection procedures. State and local emergency workers would also receive self-reading pocket dosimeters and TLDs, in accordance with the COVRERP and county RERPs. The State and counties would determine State and local emergency worker doses through the use of radiation exposure record forms. While the local governments have the primary responsibility for radiation exposure control, BRH would provide technical oversight and authority to permit exposures in excess of the EPA dose limits. The staff finds that this is acceptable because it adequately describes how each organization would determine the doses received by emergency personnel, including how they would acquire and distribute dosimeters.

With regard to authorizing emergency workers to incur exposures in excess of the EPA dose limits, the applicant stated in SSAR Section 13.3.2.2.2.k.4 that approval from the emergency coordinator is necessary for planned exposures greater than the 10 CFR Part 20 annual limits. NAEP Section 6.4.1 states that such approval would come from the NAPS station emergency manager, who would function as the emergency coordinator.

Both the COVRERP and county RERPs address the authority for State and local emergency workers to incur exposures in excess of the EPA dose limits. The EOC radiological officer should provide authorization to exceed the turnback level, which is determined through the use of pocket dosimeter readings and an exposure control ratio. BRH may adjust the exposure control ratio to reflect actual conditions.

For radiological monitoring and decontamination, the staff finds that the existing units' radiological protection procedures adequately address the action levels and means for the decontamination of ESP site personnel and equipment. The COVRERP and county RERPs, together, also adequately describe action levels and the specific means for decontamination. The staff did not consider the extent to which future radiological protection procedures would address radiological protection and onsite contamination control functions, as stated in SSAR Section 13.3.2.2.2.k.2, to be essential to its review and, therefore, did not evaluate this possibility.

In RAIs 13.3-14(i) and 13.3-14(j), the staff asked for information concerning guidance and authority on decisions to authorize emergency worker exposure exceeding EPA limits and measures to ensure that the use of the exposure control ratio does not cause exposures to exceed EPA limits, respectively. The staff identified the consideration of this information as Open Item 13.3-7. The staff reviewed the applicant's responses in their submittal dated October 20, 2004, and finds them acceptable. Therefore, Open Item 13.3-7 is resolved.

The staff finds that the applicant has adequately described guidelines on dose limits and an onsite radiation protection program. In addition, the staff finds that the applicant has adequately described how the EROs would acquire and distribute dosimeters, determine emergency personnel doses, authorize exposures in excess of the EPA dose limits, and conduct radiological decontamination.

13.3.3.12.4 Conclusions

As discussed above, the applicant has described the means for controlling radiological exposures to emergency workers in an emergency. Based on its review, the staff concludes that the proposed major feature K is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, and IV.E of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for radiological exposure control, as set forth above.

13.3.3.13 Medical and Public Health Support (Supplement 2, Major Feature L)

13.3.3.13.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.1 states that the applicant would make contacts and arrangements for medical services for contaminated injured individuals and that the existing arrangements for the use of the MCVH facilities in Richmond, Virginia, would apply to the ESP site. In the event of a

一直 网络大鼠鱼 医皮肤溶血剂

need for its support, Dominion would call ahead to MCVH to alert it to activate its radiation emergency plan.⁴

SSAR Section 13.3.2.2.2.I.1 further states that MCVH has developed its own radiation emergency plan, which is designed to provide medical care in the case of a radiation emergency. MCVH also supports the NAPS site in the event of occupational or major accidents, including contaminated personnel. In addition, the plan establishes a specialized area of the hospital for treatment with appropriate health physics functions and implements a coded system to alert hospital team members. The MCVH has radiation monitoring equipment, dosimetry, and protective clothing available, and, based on the quality of the facilities at MCVH, the NRC has accepted the absence of arrangements for a backup hospital. The NAEP includes the MCVH radiation emergency plan as Appendix 10.9.

SSAR Section 13.3.2 states that the emergency plan takes advantage of the emergency planning resources, capabilities, and organization that Virginia Power has already established and currently maintains at the NAPS site. The applicant would extend the existing emergency planning and preparedness activities to include the proposed new unit(s). SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

Attachment 1 to Tab D of COVRERP Appendix 4 states that Mary Washington Hospital and Riverside Hospital serve as backup hospitals for MCVH and would accept radiation exposure patients. Tab D also lists additional hospitals that have radiological response capabilities and would accept radiation exposure patients. The county RERPs also list several hospitals.

SSAR Section 13.3.2.2.2.1.2 further states that the COVRERP contains a list of public, private, and military hospitals and other medical service facilities within the Commonwealth of Virginia that can provide medical support for any contaminated or injured individual. Attachments 1 and 2 to Tab D of COVRERP Appendix 4 contain this information and include the name, location, type of facility, capacity, and radiological capabilities. The COVRERP and Sections 13.3.2, 13.3.3.4, and 13.3.3.10 of this SER address the contacts and arrangements pertaining to hospital and medical services. As discussed in Section 13.3.2 of this SER, Dominion updated the letters of agreement to reflect that the existing arrangements would apply to a prospective additional reactor(s) at the NAPS site, consistent with the application.

In RAI 13.3-14(k), the staff asked the applicant for additional information regarding a description in the COVRERP of the capabilities of local and backup hospital and medical services. In its response to this RAI dated October 20, 2004, the applicant stated that the primary hospital, MCVH, provides 24-hour emergency department coverage and that the maximum number of patients would depend on the availability of hospital facilities and beds. In addition, the backup hospital, Mary Washington Hospital, also provides 24-hour emergency department coverage.

⁴Medical College of Virginia Hospitals/Virginia Commonwealth University (MCVH/VCU), "Radiation Emergency Plan—Virginia Power," January 14, 2003

13.3.3.13.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.B, and IV.E of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of the emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature L, "Medical and Public Health Support."

Major feature L calls for the applicant to describe contacts and arrangements made for medical services for contaminated injured individuals, as well as to develop lists indicating the locations and capabilities of emergency medical services facilities.

13.3.3.13.3 Technical Evaluation

As stated in SSAR Section 13.3.2.2.2.I.1, arrangements currently exist with MCVH in Richmond, Virginia, in support of the NAPS site and include application of the MCVH plan. Section I, "Introduction," of the MCVH plan states that it is designed to provide medical care for either a major or minor radiation emergency in the central Virginia region. In addition, the MCVH plan supports Virginia Power's nuclear reactor stations in the event of occupational and/or major accidents. Section VII, "Radiation Emergency Response," of the MCVH states that the MCVH/VCU Department of Emergency Medicine area is equipped to treat as many as four contaminated patients at one time, depending upon the degree of emergency medical care needed.

Tab D to COVRERP Appendix 4 states that MCVH would act as the primary hospital for an individual who is both contaminated and injured. In addition, it provides a detailed list of backup hospitals. The county RERPs also list several hospitals. In RAI 13.3-14(k), the staff asked for information concerning the COVRERP description of local and backup hospital and medical services capabilities. The staff identified the consideration of this information as Open Item 13.3-8. The staff reviewed the applicant's response in their submittal dated October 20, 2004, and finds it acceptable. Therefore, Open Item 13.3-8 is resolved.

The staff concurs with the applicant's statement in SSAR Section 13.3.2.2.2.1.1 that the NRC has accepted the absence of arrangements for a backup hospital, based on the quality of the facilities at MCVH. For the NAPS site, the NRC concluded in Section L of Appendix B to Supplement 11 to NUREG-0053, "Safety Evaluation Report Related to the Operation of North Anna Power Station, Unit 2," issued August 1980, that VEPCO did not have arrangements for a backup hospital in the local area. However, based on the quality of the facilities at the MCVH,

the staff found that this arrangement was acceptable. The staff reviewed the current MCVH plan and finds that it includes a listing in Appendix IX of hospitals that have indicated that they have a radiological emergency response capability and would accept radiation accident victims. This list includes the name, location, type of facility, capacity, and special radiological capabilities. The MCVH plan also describes the contacts and arrangements.

The staff reviewed the existing letters of agreement in Appendix 10.1 to the NAEP and finds that the letter of agreement with MCVH provides a detailed description of contacts and arrangements between the applicant and MCVH relating to medical services in support of the NAPS site. As discussed in Section 13.3.2 of this SER, Dominion updated the letters of agreement to reflect that the existing arrangements would apply to a prospective additional reactor(s) at the NAPS site, consistent with the application.

The staff finds that the applicant has adequately described the contacts and arrangements made for local and backup hospitals, including the capability for the evaluation of radiation exposure and uptake, as well as provided lists of locations and capabilities.

13.3.3.13.4 Conclusions

As discussed above, the applicant has described the contacts and arrangements for medical services for contaminated injured individuals, including local and backup hospital and medical services having the capability for evaluation of radiation exposure and uptake. Based on its review, the staff concludes that the proposed major feature L is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.C, and IV.E of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for medical and public health support, as set forth above.

13.3.3.14 Radiological Emergency Response Training (Supplement 2, Major Feature O)

13.3.3.14.1 Technical Information in the Application

In SSAR Section 13.3.2.2.2.o the applicant stated that it intends to rely on the existing Nuclear Power Station Emergency Preparedness Training (NPSEPT) Program Guide to provide the framework for conducting specialized initial training and periodic retraining for Dominion personnel at any new unit(s) that might be constructed on the ESP site.

The NPSEPT Program Guide contains the curriculum design and describes program management, implementation, evaluation, documentation, and training for personnel designated to fill ERO positions. Emergency preparedness training that is not given by the nuclear emergency preparedness (NEP) staff is conducted pursuant to supporting department training program guidance. Procedures provide that the NEP staff verify that this departmental training is consistent with the provisions of the NPSEPT Program Guide. These training programs, taken collectively, establish the initial training and retraining provisions for the existing units' ERO positions. NEP personnel, other than those designated to develop training programs, independently verify that the training specified by the NPSEPT Program Guide is accomplished.

SSAR Section 13.3.2.2.2.o states that Dominion would incorporate specific training requirements for ERO personnel supporting a new reactor(s) into the NPSEPT Program Guide and would include specialized initial training and periodic retraining. Dominion would provide specific training for the following emergency response categories:

- response organization coordinators
- accident assessment personnel
- personnel performing radiological monitoring and analysis
- police, security, and firefighting personnel
- first aid and rescue personnel
- local support services personnel
- medical support personnel
- communicators

In addition, NAEP Section 8.3.3, "Emergency Response Personnel Training," states that personnel designated to fill interim, primary, or alternate emergency response positions would receive training in accordance with the NPSEPT Program Guide. NAEP Table 8.1, "Emergency Preparedness Training," lists select emergency response positions, along with an overview of the training provided. Dominion may award equivalency credit for training sessions based on an individual's knowledge of the subject matter.

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

Appendix 12, "Training and Exercises," to the COVRERP states that the licensee will provide site-specific emergency response training to State and local officials and to local emergency units that may be called upon to provide assistance in the event of an emergency. The licensee will invite offsite agencies to participate in annual drills held at the nuclear facility. VDEM will coordinate and provide an ongoing training program for instructing State and local personnel to perform necessary emergency functions. VDEM will offer all State and local emergency response personnel comprehensive training through the Radiological Emergency Response Preparedness Program on an annual basis. Federal agencies with radiological emergency responsibilities will provide training to State and local officials within their areas of responsibilities. The county RERPs note that the counties, in conjunction with the State, will participate in and provide training to involved organizations and individuals.

Appendix 12 to the COVRERP further states that various personnel (e.g., police, firefighters, first aid, and rescue personnel) will achieve proficiency in their primary skills through recognized ongoing training programs during their professional development. They will acquire unique radiological emergency response skills through in-house training programs and programs presented by the licensee and State agencies. State agency and local department heads will train State and county personnel responsible for the transmission of emergency information and instructions. Training will consist of notification form use, verification procedures, recordkeeping, and filing of messages. Training programs will be continuous.

In RAI 13.3-14(I), the staff asked the applicant for additional information regarding a description in the COVRERP of the program for qualifying State and local directors/coordinators of emergency response. In its response to this RAI dated October 20, 2004, the applicant stated that, as reflected in Appendix 12 to the COVRERP, VDEM provides an ongoing training program for instructing State and local personnel to perform emergency response functions. The RERP annually offers training to all State and local emergency response personnel. This program includes basic response information, as well as job-specific training. The RERP maintains a detailed database, which consists of courses completed by individuals within the last 5 years.

13.3.3.14.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III and IV.F of Appendix E to 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature O, "Radiological Emergency Response Training." Major feature O calls for the applicant to describe a radiological emergency response training program for personnel who would implement the RERPs.

13.3.3.14.3 Technical Evaluation

In SSAR Section 13.3.2.2.2.o, the applicant stated that the NPSEPT Program Guide would provide the framework for conducting specialized initial and periodic retraining for Dominion personnel at the new units. The staff reviewed NAEP Section 8.3, "Training of Station Personnel," and Section 8.4, "Training of Offsite Support Personnel," and they are consistent with the information provided by the applicant in SSAR Section 13.3.2.2.2.0. In addition, the COVRERP and the county RERPs are also consistent with SSAR Section 13.3.2.2.2.0, as well as with the NAEP.

In RAI 13.3-14(I), the staff asked the applicant for information concerning the COVRERP description of the program for qualifying State and local directors/coordinators of emergency response. The staff identified the consideration of this information as Open Item 13.3-9. The staff reviewed the applicant's response in their submittal dated October 20, 2004, and finds it acceptable. Therefore, Open Item 13.3-9 is resolved. The staff finds that the applicant has adequately described a training program for instructing and qualifying personnel who will implement radiological emergency response plans and that the description also addresses providing for specialized initial training and periodic retraining.

13.3.3.14.4 Conclusions

As discussed above, the applicant has described a radiological emergency response training program for those who may be called on to assist in an emergency, including a training program for instructing and qualifying personnel who would implement the radiological emergency response plans. In addition, the applicant has described specialized initial training and periodic retraining. Based on its review, the staff concludes that the proposed major feature O is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, and IV.F of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered for radiological emergency response training, as set forth above.

13.3.3.15 Responsibility for the Planning Effort—Development, Periodic Review, and Distribution of Emergency Plans (Supplement 2, Major Feature P)

13.3.3.15.1 Technical Information in the Application

SSAR Section 13.3.2.2.2.p states that the responsibility for the planning effort resides with the Virginia Power NEP department. The overall authority and responsibility for maintaining emergency preparedness, as well as program implementation associated with the existing NAPS site, would be extended to include the ESP site. Individuals responsible for the planning effort would be afforded training commensurate with their duties and existing knowledge, skills, and abilities. This may include site-specific training and external training from the Emergency Management Institute (EMI), National Emergency Training Center, Harvard School of Public Health, and Nuclear Energy Institute (NEI).

The Virginia Power senior vice president for nuclear operations and chief nuclear officer have the overall authority for maintaining emergency preparedness. The senior vice president for nuclear operations is responsible for program implementation, and the vice president for nuclear support services is responsible for program maintenance. The NAPS site vice president is responsible for NAPS site emergency preparedness. The director of nuclear protection services and emergency preparedness is responsible for maintaining emergency preparedness at the NAPS, developing the ESP site major features emergency plan, and coordinating the plan with other response organizations. The SSAR states that the applicant would extend responsibility for NAPS emergency preparedness to include the ESP site.

With regard to updating emergency plans and agreements, SSAR Section 13.3.2.2.2.p.4 states the following:

THE CONTRACT OF WARRING CONTRACTORS

s which is a settlew united to

Following approval of the emergency planning information in the Dominion ESP site Major Features Emergency Plan, there is no requirement to update the plan or its supporting-organization agreements until after an operating license is issued. Dominion would update the emergency planning information as necessary in a COL application. Any changes that represent a decrease in the effectiveness of the previously approved information with respect to the standards of 10 CFR 50.47(b) or requirements of 10 CFR 50, Appendix E, would be specifically identified and addressed.

SSAR Section 13.3.2.2.2.p.5 states that the COL applicant would prepare the ESP site emergency plan as part of its application. Upon issuance, the COL applicant would forward the emergency plan and approved changes to organizations and appropriate individuals with responsibility for its implementation. The COL applicant would mark revised pages to show where changes have been made, and it would date or mark the pages with a revision number associated with an effective date.

The SSAR provides a table of contents, which includes emergency planning information contained in Part 2 of the application. SSAR Table 13.3-2 provides the appropriate cross-reference to the Supplement 2 criteria.

SSAR Section 13.3.2.2 states that the ESP site is adjacent to a preexisting nuclear facility with existing State and local emergency plans. The SSAR, therefore, relies on and refers to the information contained in these existing plans. No significant differences exist between major features proposed in the application and the major features discussed in existing plans and relied on in the application.

Appendix 12, "Training and Exercises," to the COVRERP states that individuals within State agencies charged with radiological emergency response planning will undergo training to qualify them in the essential elements of radiological response planning necessary to deal with the offsite effects of an accident at a nuclear facility. Training will emphasize the development of State and local plans that meet current Federal guidelines. VDEM will supervise continuous training and will send key planners to the radiological emergency planning course at EMI.

COVRERP Section XI, "Execution," states that the State coordinator of emergency management has overall authority and responsibility for radiological emergency response planning. This includes developing and updating the plans and coordinating them with other response organizations. The county RERPs state that the county director or emergency services coordinator has overall authority and responsibility for radiological emergency response planning in the county. The counties, in conjunction with the State, will participate in, and provide training to, the county director or emergency services coordinator.

COVRERP Section XI also notes that the State coordinator of emergency management will maintain, review, update, and certify the COVRERP annually. The State will periodically review letters of agreement, at a minimum of every 2 years. Responsible officials from State agencies and local governments will recommend appropriate improvements or changes at any time to the State coordinator of emergency management. The State will forward the COVRERP, along with approved amendments, to all organizations and individuals responsible for implementation. Revised pages will be dated and marked to show where changes have been made. The COVRERP has a specific table of contents and is cross-referenced to the NUREG-0654/FEMA-REP-1 criteria. Each county will review its plan and procedures annually and will distribute them to individuals and organizations responsible for their implementation. The county RERPs have a record of changes at the beginning of the plans, with revision dates on each page. In addition, they include a specific table of contents and cross-reference to the NUREG-0654/FEMA-REP-1 criteria.

In RAI 13.3-13 and RAIs 13.3-14(m), (n), and (o), the staff asked the applicant for additional information regarding cross-references to Supplement 2, as well as a description of the training program and review/update of the RERP and agreements for Orange County. In its response

to these RAIs dated October 20, 2004, the applicant stated that VDEM provides initial training and retraining for the emergency services coordinator and other emergency services related personnel (i.e., EOC support staff). The Orange County RERP maintains a record of change, and training and exercises are conducted to assure the adequacy and update of the plan on a biennial basis. The applicant also provided a cross-reference to Supplement 2.

13.3.3.15.2 Regulatory Evaluation

SSAR Section 13.3.2.2 presents the major features of the applicant's emergency plan. The applicant stated that it prepared the information presented in SSAR Section 13.3.2.2 in accordance with 10 CFR 52.17(b)(2)(i) and Appendix E to 10 CFR Part 50, and considered the guidance in Supplement 2. SSAR Section 13.3.2.2.2 states that Supplement 2 presents planning standards and evaluation criteria applicable to a major features emergency plan.

In its review of the application, the staff considered the regulatory requirements in 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, IV.A, IV.F, and IV.G of Appendix E of 10 CFR Part 50. Under 10 CFR 52.17(b)(2)(i), an applicant for an ESP may propose major features of the emergency plans for NRC review and approval, in consultation with FEMA, in the absence of complete and integrated emergency plans. Under 10 CFR 52.18, after consultation with FEMA, the NRC will determine whether the major features of emergency plans submitted under 10 CFR 52.17(b)(2)(i) are acceptable. RS-002 and Supplement 2 provide guidance concerning the review and evaluation of emergency planning information given in an ESP application. Supplement 2 also provides specific evaluation criteria for major features of emergency plans, including those which apply to major feature P, "Responsibility for the Planning Effort: Development, Periodic Review, and Distribution of Emergency Plans."

Major feature P calls for the applicant to describe the development, review, distribution, and update of emergency plans. The application should also designate an emergency planning coordinator for each organization and identify (by title) individuals with emergency planning responsibility. In addition, the application should describe training for those responsible for the planning effort.

13.3.3.15.3 Technical Evaluation

The application describes, by title, the individuals with overall authority and responsibility for radiological emergency response planning. This description includes the development and update of plans and coordination with other response organizations. SSAR Section 13.3.2.2.2.p identifies the director of nuclear protection services and emergency preparedness as the person responsible for emergency planning for the ESP site. The COVRERP identifies the State coordinator of emergency management, and the county RERPs identify either the county director or emergency services coordinator.

For the applicant, training includes site-specific training and external training from organizations such as EMI, the National Emergency Training Center, the Harvard School of Public Health, and NEI. State emergency planners will receive continuous training on the essential elements of radiological response planning and will be sent to the radiological emergency planning course at EMI. County planners will receive training from the county, in conjunction with the State.

SSAR Section 13.3.2.2.2.p.5 states that the COL applicant will forward approved plan changes to appropriate organizations and individuals and mark and date updates. COVRERP Section XI indicates that the State updates its plan annually and periodically reviews the letters of agreement (at least every 2 years). The State and local governments can make recommended updates at any time and will forward them to all organizations and individuals responsible for implementation. Local governments will review the county RERPs annually and distribute the updated plans and procedures. The COVRERP and county RERPs, which contain a table of contents, will be dated and marked to show where changes have been made.

In Section 13.3.2.2.2.p.4 of the SSAR, the applicant stated that no requirement exists to update the emergency plan or its supporting organization agreements until after an operating license is issued. The regulations in 10 CFR 52.79(d) currently do not require such updating in a COL application. Therefore, a COL application could propose an emergency plan incorporating emergency preparedness information approved in an ESP without updating. Nonetheless, to the extent that emergency preparedness information approved in an ESP is no longer current when a COL application incorporating that information by reference is submitted pursuant to 10 CFR 52.79. "Contents of Applications: Technical Information." that information will need to be updated. The staff will not approve emergency plans proposed in a COL application under 10 CFR 52.79(d) if such plans are based upon obsolete or superceded information. The nature and depth of the staff review of the updated information may vary depending on the nature of the update. In all cases, any changed information would be subject to challenge in the COL proceeding. While updating of previously approved emergency preparedness information is not currently required, the Commission has proposed to add a provision in 10 CFR Part 52. "Early Site Permits: Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," to require such updating, as discussed in the Notice of Proposed Rulemaking for 10 CFR Part 52 (Federal Register, Vol. 68, p. 40026). The staff will determine compliance with the requirements in this area during a COL application review based on the regulations in effect at that time. In addition, the applicant stated in SSAR Section 13.3.2.2.2.p.4 that "[a]ny changes that represent a decrease in effectiveness of the previously approved information with respect to the standards of 10 CFR 50.47(b) or requirements of 10 CFR 50. Appendix E. would be specifically identified and addressed." The staff did not consider this information essential to its review and, therefore, did not evaluate it.

In RAI 13.3-13 and RAIs 13.3-14(m)–(o), the staff asked for information concerning cross-references to Supplement 2, as well as a description of the training program and review/update of the RERP and agreements for Orange County. The staff identified the consideration of this information as Open Item 13.3-10. The staff reviewed the applicant's responses in their submittal dated October 20, 2004, and finds them acceptable. Therefore, Open Item 13.3-10 is resolved. The staff finds that the applicant has adequately described the responsibilities for emergency plan development, review and distribution, and for the training of emergency planners.

13.3.3.15.4 Conclusions

As discussed above, the applicant has described the responsibilities for plan development and review and for distributing and updating emergency plans. In addition, the applicant has identified those responsible for the planning effort and has described the training that they receive. Based on its review, the staff concludes that the proposed major feature P is consistent with the guidelines in RS-002 and Supplement 2. Therefore, this feature is

acceptable and meets the requirements of 10 CFR 52.17(b)(2)(i), 10 CFR 52.18, and Sections III, and IV.A, IV.F, and IV.G of Appendix E to 10 CFR Part 50, insofar as it describes the essential elements of advanced planning that have been considered related to the responsibility for the planning effort, including the development, periodic review, and distribution of emergency plans, as set forth above.

13.6 Industrial Security

The NRC staff reviewed the physical security aspects of the ESP application to determine whether site characteristics are such that adequate security plans and measures can be developed.

13.6.1 Technical Information in the Application

In Section 13.6 of the SSAR, the applicant stated that it would extend the protected area of the existing Units 1 and 2 at NAPS to accommodate any new units constructed on the ESP site. The applicant stated that the site characteristics are such that the applicable NRC regulations, guidance documents, and orders can be met. The applicant based this conclusion on the size of the NAPS site, which is sufficiently large to provide adequate distances between vital areas and the probable location of a security boundary.

In RAI 13.6-1, the staff asked the applicant to describe how the ESP plant parameter envelope (PPE) and surrounding terrain features will provide at least 360 ft of distance (as specified in Regulatory Guide (RG) 4.7, Revision 2, "General Site Suitability Criteria for Nuclear Power Stations," issued April 1998) between vital equipment/structures and physical protection components (e.g., protected area barriers and isolation zones). In its response, the applicant stated that the protected area and related isolation zone would be constructed to comply with the requirements of 10 CFR 73.55(c), and that the protected area barrier would be of sufficient size to support the security response strategy timelines.

Section 13.6 of the SSAR states that Dominion has a security program in place for the existing units and notes that the program complies with the NRC's "Order for Interim Compensatory Measures," dated February 25, 2002, regarding waterborne threats. The SSAR further concludes that Dominion anticipates that it will continue to meet those requirements in the event that it adds new units to the site. Section 13.6 also states that the COL application would address final design features for the new units' power blocks and supporting buildings, as appropriate, to ensure adequate site security. Finally, SSAR Section 13.6 concludes that no security hazards are created from nearby hazardous material facilities.

Section 2.2.2.7 of the SSAR describes pipelines that are of potential concern.

13.6.2 Regulatory Evaluation

In Sections 1.8 and 13.6 of the SSAR, the applicant identified 10 CFR 100.21(f) and 10 CFR 73.55, "Requirements for Physical Protection of Licensed Activities in Nuclear Power Reactors Against Radiological Sabotage," as the applicable regulations and noted that RG 4.7, Revision 2, provides applicable guidance. The staff reviewed this portion of the application for

conformance with the applicable regulations, and considered the corresponding regulatory guidance as identified above.

The NRC regulations require that applicants for an ESP address characteristics of the proposed site that could affect security. Specifically, 10 CFR 52.17, "Contents of Applications," requires that site characteristics comply with 10 CFR Part 100, "Reactor Site Criteria"; 10 CFR 100.21(f) states that site characteristics must be such that applicants can develop adequate security plans and measures. In RG 4.7, Revision 2, the NRC provides amplifying guidance and notes that 10 CFR 73.55 describes physical protection requirements for nuclear power plants.

Review Standard (RS)-002, "Processing Applications for Early Site Permits," notes that the NRC staff has provided guidance to the first three prospective ESP applicants in three substantially identical letters (ADAMS Accession No. ML030980003 for the Dominion application). RS-002 adds that these letters should be used for review guidance for the ESP applications to which they apply. Specifically, the Dominion letter requested that the ESP application discuss certain characteristics as they relate to implementing a physical security plan for a postulated facility. In addition, the letter stated that the applicant should consider the interim compensatory measures (ICMs) imposed on power reactors by Order dated February 25, 2002, and the design-basis threat for reactors which was issued by Order dated April 29, 2003. However, RS-002 also notes that the NRC's security orders referenced in the letter are, by their nature, subject to modification depending on changes in the terrorist threat. The security orders do not form part of the licensing basis of the ESP and are not imposed as conditions of prospective permits. The security review of ESP applications is based on the requirements of 10 CFR Part 100 and 10 CFR Part 73, "Physical Protection of Plants and Materials," or other applicable existing regulations.

13.6.3 Technical Evaluation

The staff reviewed the application and responses to its RAIs and examined aspects of the application during an onsite visit. The proposed ESP site is located on the shore of Lake Anna in Louisa County, Virginia, near two licensed nuclear power reactors (North Anna, Units 1 and 2) owned by Virginia Electric and Power Company, an affiliate of the applicant. The NAPS site is defined by a 5000-ft radius circle originating from the center of the partially constructed, but now abandoned, North Anna Unit 3 (see Figure 1.2-4, note 3, in the application). The ESP PPE (site footprint) that bounds the prospective location for any new nuclear power reactors that might be constructed on the proposed ESP site is located directly west of the existing NAPS protected area and no closer than 800 yards to the site boundary.

Using the criteria set forth in 10 CFR 100.21(f), the staff identified and considered various characteristics of the site that could affect the establishment of adequate security plans and measures. The staff considered pedestrian land approaches, vehicular land approaches, railroad approaches, water approaches, potential "high-ground" adversary advantage areas, nearby road transportation routes, nearby hazardous materials facilities, nearby pipelines, and culverts that could provide a pathway into the protected area.

With respect to pedestrian approaches, the staff found that various figures in the application (e.g., Figure 1.0-1) identify the applicant's PPE (within which all safety-related structures would be located if one or more reactors were to be constructed there). In RAI 13.6-1, the staff asked

the applicant to identify its plans to address the guidance in RG 4.7, Revision 2, which specifies that an applicant provide a minimum of 360 ft between protected area barriers and vital areas to allow for appropriate barriers, detection equipment, isolation zones, and vehicle barriers to protect vital equipment. In its response, the applicant stated that protected area barriers would be separated from vital area barriers, and be of sufficient size to support the security response strategy timelines. The staff concluded that the distance from planned locations of vital equipment and structures (which might be located anywhere in the PPE (ESP site footprint) because a design is not specified at the ESP stage) to the planned protected area boundary can be made sufficiently large so that holders of a COL or construction permit (CP) could appropriately locate delay barriers, isolation zones, detection equipment, and vehicle barriers to protect vital equipment and structures.

With respect to water approaches, the staff noted that vital equipment for the existing NAPS units is sufficiently far from Lake Anna that restrictions to lake access are not required. The need for such restrictions for any new units would depend on the design of the units and their location on the ESP footprint (PPE). The site configuration would not present any significant impediments to development of such restrictions.

With respect to vehicular land and railroad approaches, the staff identified existing roads, rail spurs, and site terrain features. The staff concluded that the location of existing roads and site terrain features does not preclude the establishment of adequate vehicle control measures to (1) prevent the use of a land vehicle to gain unauthorized proximity to vital areas and (2) protect against a vehicle bomb. The staff based its conclusion on the fact that the location of the existing vehicle checkpoint, which could be used for vehicular control to the ESP site, has adequate standoff distance from the PPE to mitigate vehicle-bomb overpressure effects. Further, the staff confirmed during a site visit that the terrain features on all borders of the site are amenable to the implementation of a vehicle barrier system.

With respect to threats posed by deliberate vehicle explosions on nearby transportation routes. the staff noted that, in SSAR Section 2.2.3.1.1, the applicant analyzed a gasoline tanker explosion involving 8500 gallons of gasoline detonated on Virginia Highway 652 at a point 1.5 miles from the proposed site. The staff performed an independent calculation for the tanker explosion and found different results than the applicant's because the applicant did not take into account the 240 percent (mass) equivalence for substances subject to vapor-phase explosions (see RG 1.91, Revision 1, "Evaluations of Explosions Postulated to Occur on Transportation Routes Near Nuclear Power Plants," issued February 1978). Nevertheless, the staff's analysis reached the same conclusion as the applicant, that such an event would not result in an overpressure of greater than 1 pound per square inch (psi) at the site boundary. The pressure threshold for human eardrum rupture is 5 psi, which is the first point of human incapacitation (see U.S. Army Technical Manual 5-1300, "Structures to Resist the Effects of Accidental Explosions," issued November 1990). A peak positive overpressure of 1 psi is a conservative threshold below which no significant damage would be expected for systems, structures, and components of concern (RG 1.91, Revision 1). The applicant did not identify any other hazardous materials transported on the nearby roadways.

With respect to nearby hazardous materials facilities and nearby pipelines, the staff found that the distances to those facilities and pipelines and the materials identified associated with them are of such a nature that they do not pose an impediment to the development of adequate security plans or measures.

The staff examined the overall site terrain with respect to features (including existing manmade features, such as culverts, as well as natural features) that potential adversaries could use to their advantage. The features that exist at the ESP site do not preclude the establishment of adequate security plans and measures.

Considering RG 4.7, special measures may be needed to support the security response strategy timelines requirements of 10 CFR 73.55(c). Since the exact locations and design of barriers is not known at the ESP stage, the staff identified a COL action item for the COL or CP applicant to provide specific designs for protected area barriers to support the security response strategy timelines. This is COL Action Item 13.6-1.

13.6.4 Conclusions

As set forth above, the staff examined the site characteristics with respect to their potential to affect the establishment of adequate security plans and measures. The staff examined pedestrian, vehicle, and water approaches, including existing culverts, nearby hazardous materials facilities, nearby pipelines, nearby railroad lines, and other transportation routes, as well as terrain features. Based on the above evaluation, the staff concludes that the ESP site characteristics would allow an applicant for a COL or CP to develop adequate security plans and measures for a reactor(s) that it might construct and operate on the ESP site.

15. ACCIDENT ANALYSES

15.1 <u>Technical Information in the Application</u>

In Chapter 15, "Accident Analyses," of the site safety analysis report (SSAR), the applicant analyzed and provided the radiological consequences of design-basis accidents (DBAs) to demonstrate that new nuclear units could be sited at the proposed early site permit (ESP) site without undue risk to the health and safety of the public, in compliance with the requirements of Title 10, Section 52.17, "Contents of Applications," of the Code of Federal Regulations (10 CFR 52.17) and 10 CFR Part 100, "Reactor Site Criteria." The applicant did not identify a particular reactor design to be considered for the proposed ESP site. Instead, the applicant developed a set of reactor DBA source term parameters using surrogate reactor characteristics. The applicant used these parameters in conjunction with site characteristics for accident analysis purposes to assess the suitability of the proposed ESP site. These plant parameters collectively constitute a plant parameter envelope (PPE).

The applicant developed a PPE using seven reactor designs—five water-cooled reactors and two gas-cooled reactors—though it used source terms for only two of these designs as inputs to its DBA analyses. The water-cooled reactors included in the PPE were (1) a version of the Westinghouse Advanced Plant 1000 (AP1000), (2) the certified General Electric Advanced Boiling-Water Reactor (ABWR), (3) the Atomic Energy of Canada Advanced CANDU Reactor (ACR-700), (4) the General Electric Economic and Simple Boiling-Water Reactor (ESBWR), and (5) the Westinghouse-led International Reactor Innovative and Secure (IRIS) reactor. The ACR-700 is light-water cooled but heavy-water moderated. The two gas-cooled reactors were (1) the General Atomics Gas Turbine Modular Helium Reactor (GT-MHR) and (2) the Pebble Bed Modular Reactor (PBMR). The applicant stated that the PPE values are not intended to be limited to these reactor designs but rather to provide a broad overall outline of a design concept and to include other potential reactor designs if they fall within the parameter values provided in the PPE.

In selecting DBAs for dose consequence analyses, the applicant focused on two light-water reactors (LWRs), the certified ABWR and a version of the AP1000,¹ to serve as surrogates. The applicant stated that it selected these two reactor designs because they are (or are based on) previously certified standard designs and have recognized bases for postulated accident analyses. Using source terms developed from these two designs, the applicant performed and provided radiological consequence analyses for the following DBAs:

- pressurized-water reactor (PWR) main steamline break
- PWR feedwater system pipe break
- locked rotor accident
- reactor coolant pump shaft break
- PWR rod ejection accident

the control of the co

¹ As discussed later in this section, the applicant referenced a version of the AP1000 design available at the time it submitted its ESP application. Westinghouse subsequently revised the AP1000 design before the U.S. Nuclear Regulatory Commission (NRC) staff's issuance of a final safety evaluation report (SER) for the AP1000 design certification.

- boiling-water reactor (BWR) control rod drop accident
- failure of small lines carrying primary coolant outside containment
- PWR steam generator tube failure
- BWR main steamline break
- PWR and BWR loss-of-coolant accidents (LOCAs)
- fuel-handling accident

The applicant presented the dose consequence assessment results in SSAR Chapter 15. Table 15.4-1, "Summary of Design Basis Accident Doses," provides a summary of the postulated radiological consequences of the DBAs identified above at the proposed exclusion area boundary (EAB) and the low population zone (LPZ). The table also demonstrates that any potential doses would be within the radiological dose consequence evaluation factors set forth in 10 CFR 50.34(a)(1). The applicant provided the accident-specific source terms (release rates of radioactive materials from the ESP footprint (PPE values) to the environment) and resulting site-specific dose consequences for each DBA in Tables 15.4-2 through 15.4-27 of the SSAR.

In Request for Additional Information (RAI) 15.4-1, the staff noted that Westinghouse has revised its atmospheric dispersion factors (χ /Q values) in the AP1000 design control document (DCD) since the applicant submitted the North Anna ESP application, and it asked whether the applicant planned to use the updated values in revising its application. The applicant responded that it elected not to update the ESP application to incorporate the latest χ /Q values in the AP1000 design certification. The applicant further stated that site-specific doses would be updated, as necessary, in any combined license (COL) or construction permit (CP) application, after a specific reactor design is selected.

In RAIs 15.4-2 and 15.4-3, the staff noted that SSAR Section 15.4 provides total effective dose equivalent (TEDE) values for the ABWR design, while the ABWR design is certified with the thyroid and whole body doses specified in 10 CFR Part 100. The staff asked the applicant to compare these doses. In its response, the applicant stated that it would revise the SSAR to include the thyroid and whole body doses from the ABWR DCD, in addition to the estimated TEDE values. The applicant incorporated this information into its application.

In RAI 15.4-4, the staff asked the applicant to provide references and explain the methodology it used to determine time-dependent activity releases for each DBA. The applicant provided the requested references. In its response, the applicant stated that the respective DCDs present the methodologies used for calculating time-dependent releases for the ABWR and AP1000. The staff finds the methodologies used in the respective DCDs to be acceptable.

In RAI 15.4-5, the staff asked the applicant to provide, for each DBA, the doses it used for the EAB and the LPZ for the AP1000 and the ABWR, as well as the ratios of site-specific χ/Q values to design certification χ/Q s used. In its response, the applicant stated that it would revise the dose tables in SSAR Section 15.4 to show the χ/Q values and doses from the AP1000 and ABWR DCDs, in addition to the ratios of site-specific χ/Q values to design certification χ/Q values. The applicant incorporated this information into its application.

In RAI 15.4-6, the staff asked the applicant to clarify whether the 0- to 2-hour EAB doses presented in the SSAR are for the 2-hour period with the greatest EAB doses and, if they are not, to provide the doses for the 2-hour period with the greatest EAB doses. In its response,

the applicant stated that the greatest EAB dose occurs during the first 2 hours of the accident for all AP1000 accidents evaluated in SSAR Chapter 15, except for a LOCA. As indicated in Section 15.6.5.3.8.1 of the AP1000 DCD, the period from 1 to 3 hours yields the greatest EAB dose for a LOCA. The applicant incorporated this information into its application.

The second of the second second

15.2 Regulatory Evaluation

In SSAR Section 1.8 and in SSAR Chapter 15, the applicant identified the following applicable NRC regulations and guidance regarding reactor accident radiological consequence analyses:

- 10 CFR 52.17
- 10 CFR Part 100
- 10 CFR 50.34, "Contents of Applications; Technical Information"
- Regulatory Guide (RG) 1.3, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors," issued June 1974
- RG 1.25, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors," issued March 1972
- RG 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants," issued November 1982
- RG 1.183, "Alternative Radiological Source Terms for Evaluating Design Basis
 Accidents at Nuclear Power Reactors," issued July 2000
- NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants," issued July 1981
- TID-14844, "Calculation of Distance Factors for Power and Test Reactor Sites," issued March 1962

The staff reviewed SSAR Section 1.8 and Chapter 15 for conformance with the applicable regulations, and considered the corresponding guidance, as identified above. In its evaluation, the staff used the dose consequence evaluation factors found in 10 CFR 50.34(a)(1) that are a factor in determining the acceptability of the site in accordance with 10 CFR 52.17(a)(1).

The regulations at 10 CFR 52.17(a)(1) require that ESP applications contain an analysis and evaluation of the major structures, systems, and components of the facility that bear significantly on the acceptability of the site under the radiological consequence evaluation factors identified in 10 CFR 50.34(a)(1). In addition, the ESP site characteristics must comply with the requirements of 10 CFR Part 100. The regulations at 10 CFR 50.34(a)(1)(ii)(D) require the following for a postulated fission product release based on a major accident:

- An individual located at any point on the boundary of the exclusion area for any 2-hour period following the onset of the postulated fission product release would not receive a radiation dose in excess of 25 rem TEDE.
- An individual who is located at any point on the boundary of the LPZ and who is exposed to the radioactive cloud resulting from the postulated fission product release (during the entire period of its passage) would not receive a radiation dose in excess of 25 rem TEDE.

Because the applicant has not selected a reactor design to be constructed on the proposed ESP site, the applicant used a PPE approach to demonstrate that it meets these requirements. A PPE is a set of plant design parameters that are expected to bound the characteristics of a reactor(s) that may be constructed at a site, and it serves as a surrogate for actual reactor design information. As discussed in NRC Review Standard (RS)-002, "Processing Applications for Early Site Permits," and in Chapter 1 of this SER, the staff considers the PPE approach to be an acceptable method for assessing site suitability. For the purposes of this analysis, the applicant proposed a fission product release from the PPE (ESP footprint) to the environment, and the staff reviewed the applicant's dose evaluation based on this release.

15.3 Technical Evaluation

The applicant evaluated the suitability of the site under the radiological consequence evaluation factors identified in 10 CFR 50.34(a)(1) using bounding reactor accident source terms and dose consequences as a set of PPE values based on two surrogate designs, as well as site-specific χ/Q values based on the ESP footprint. The following paragraphs describe the staff's review of each aspect of this evaluation.

15.3.1 Selection of DBAs

The applicant selected the DBAs listed in Section 15.1 of this SER, based on the proposed AP1000 reactor design and the certified ABWR reactor design, indicating that it chose these two reactor designs because they have (or are based on) previously certified standard designs and have recognized bases for postulated accident analyses. The staff finds that the applicant selected DBAs which are consistent with the DBAs listed and analyzed in NUREG-0800 and RG 1.183. Therefore, the staff finds that the applicant provided an acceptable DBA selection for evaluating the compliance of the proposed ESP site with the dose consequence evaluation factors specified in 10 CFR 50.34(a)(1). The applicant stated that, because of their greater potential for inherent safety, the DBAs of the other reactors being considered for the proposed ESP site are expected to be bounded by those DBAs analyzed in the proposed AP1000 and certified ABWR DCDs. While the staff has not reviewed these designs other than the proposed AP1000 and certified ABWR in detail, it believes that conclusions drawn regarding the site's acceptability based on the AP1000 and ABWR designs are likely to be valid for the other reactor designs that the applicant is considering. At the time of any COL or CP application that might be filed with respect to construction and operation of a reactor at the North Anna ESP site, the applicant will confirm, and the staff will evaluate, whether the analyses considered here bound the design proposed in the COL or CP application.

15.3.2 Design-Specific (Assumed) x/Q Values

To support its accident analyses based on the ABWR as a surrogate design, the applicant used the assumed χ/Q values in the certified ABWR DCD. In evaluating the AP1000, the applicant used those χ/Q values in the proposed AP1000 DCD that were under review by the staff at the time the North Anna ESP application was submitted. Westinghouse subsequently revised the χ/Q values in the AP1000 DCD. Consequently, the assumed χ/Q values and the calculated design-specific doses used in the North Anna ESP application may differ from those associated with a certified AP1000 DCD. However, the staff determined that the PPE values for the assumed χ/Q values associated with the AP1000 design used by the applicant in its accident analyses are reasonable and, therefore, that they are adequate for the purpose of demonstrating that a reactor with design characteristics similar to an AP1000 could be sited at the proposed ESP site. Section 15.4 of the SSAR lists the χ/Q values the applicant used for the version of the AP1000 and the certified ABWR that it considered.

In Table 1.3-1 of the SSAR, the applicant also listed a set of design-specific assumed χ/Q values, some of which neither the applicant nor the staff used in their radiological consequence evaluations. The staff finds that the χ/Q values in Table 1.3-1, with the exception of those used in the applicant's dose assessments in Chapter 15 of the SSAR, are not needed to assess the suitability of the proposed site. Therefore, the staff did not review them.

15.3.3 Site-Specific χ/Qs

The staff reviewed the applicant's site-specific χ/Q values and performed an independent evaluation of atmospheric dispersion in accordance with the guidance provided in Section 2.3.4 of RS-002. The staff finds the χ/Q values to be acceptable, as described in Section 2.3.4 of this SER. The staff intends to include these site-specific χ/Qs in any ESP that the NRC may issue for the North Anna ESP site.

15.3.4 Source Terms and Radiological Consequence Evaluations

To evaluate the suitability of the site using the radiological consequence evaluation factors in 10 CFR 50.34(a)(1), the applicant provided the bounding reactor accident source terms as a set of PPE values based on (1) the surrogate AP1000 and 4386 megawatt thermal (MWt) ABWR designs (as explained below) and (2) the site-specific χ /Qs based on the ESP footprint. The source terms are expressed as the timing and release rate of fission products to the environment from the proposed ESP site. The dose consequences are then derived from the source terms using established methods.

The AP1000 source terms are based on the guidance provided in RG 1.183. The methodologies and assumptions used by Westinghouse, the AP1000 vendor, in its radiological consequence analyses are consistent with the guidance provided in RG 1.183. The resulting doses calculated for the AP1000 design using assumed site parameters meet the dose consequence evaluation factors specified in 10 CFR 50.34(a)(1) (i.e., 25 rem TEDE). The methodologies and assumptions used by General Electric, the ABWR vendor, in its radiological consequence analyses for the ABWR design are consistent with the guidance provided in RGs 1.3 and 1.25. The ABWR source terms are based on the guidance in TID-14844. The resulting doses for the ABWR reactor design using assumed site parameters meet the dose

consequence evaluation factors specified in 10 CFR 100.11, "Determination of Exclusion Area, Low Population Zone, and Population Center Distance," which are 300 rem to the thyroid and 25 rem to the whole body. While the requirements of 10 CFR 100.11 are not applicable to ESPs, the staff notes that the final rule at Appendix A, "Design Certification Rule for the U.S. Advanced Boiling Water Reactor," to 10 CFR Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants," states the following:

The Commission has determined that with regard to the revised design basis accident radiation dose acceptance criteria in 10 CFR 50.34, the ABWR design meets the new dose criteria, based on the NRC staff's radiological consequence analyses, provided that the site parameters are not revised.

Therefore, the staff concludes that the certified ABWR design, in conjunction with assumed site parameters, meets the dose consequence evaluation factors specified in 10 CFR 100.11, as well as those specified in 10 CFR 50.34(a)(1).

In its site-specific DBA radiological consequence analyses, the applicant scaled the ABWR source terms and the resulting doses from the power level, certified under Appendix A to 10 CFR Part 52, of 4005 MWt to 4386 MWt for its version of the ABWR. The applicant used a linear scaling method. Because the fission product release rate is directly proportional to the fission product inventory if mitigating processes remain the same, and because the fission product inventory is directly proportional to reactor power, the staff finds this scaling methodology to be acceptable for the purposes of this evaluation.

In determining the potential radiological consequence doses resulting from DBAs at the proposed site, the applicant used the site-specific atmospheric dispersion factors (χ /Q values) in conjunction with the DBA radiological consequence doses and its postulated χ /Q values provided in the SSAR of the certified ABWR (SSAR/ABWR) and the proposed AP1000 DCD. The certified ABWR and the proposed AP1000 designs met the radiological consequence evaluation factors identified in 10 CFR 50.34 (a)(1) with their postulated χ /Q values.

The χ/Q values indicate the atmospheric dilution capability. Smaller χ/Q values are associated with greater dilution capability, resulting in lower radiological doses. The radiological consequence doses are directly proportional to the χ/Q values. The applicant provided the site-specific χ/Q values used in its radiological consequence analyses in Table 1.9-1 of the SSAR, and the staff discussed and evaluated their χ/Q values in Section 2.3.4 of this SER.

The applicant used the atmospheric dispersion computer code (PAVAN) to derive its site-specific χ /Q values and the staff has revised Section 2.3.4 of this SER to indicate that a copy of the input files used by the applicant to execute PAVAN can be found in the applicant's response to RAI 2.3.4-1. The staff described the PAVAN code calculations for the North Anna site in more detail in Section 2.3.4 of this SER.

The applicant used the ratios of the site-specific χ /Q values to those postulated in the SSAR/ABWR and AP1000 DCD to determine and demonstrate that the radiological consequence doses at the proposed site meet the requirements of 10 CFR 50.34. The estimated site-specific χ /Q values for the proposed site are lower than those postulated in the SSAR/ABWR and AP1000 DCD. The certified ABWR and the proposed AP1000 designs met the radiological consequence evaluation factors identified in 10 CFR 50.34 (a)(1) with their

postulated χ /Q values. Accordingly, the resulting DBA radiological consequence doses at the proposed site are lower than those provided in the SSAR/ABWR and AP1000 DCD and, therefore, meet the requirements of 10 CFR 50.34.

The staff believes that accepting the radiological consequences of the DBAs at the proposed site based on the AP1000 and ABWR designs are likely to be valid for the other reactor designs the applicant is considering. Whether or not the final reactor design selected by the applicant at the North Anna ESP site is in fact bounded by the acceptance made here would be subject to review during the staff's consideration of any COL or CP application. In accordance with 10 CFR 52.79(a)(1), at the COL stage, the staff will evaluate whether the design of the facility falls within the parameters specified in an ESP, should one be issued for the North Anna ESP site.

The staff has verified the design-specific source terms the applicant provided and finds them to be consistent with those evaluated by the staff as part of the design certification reviews. Further, the staff finds that the references provided by the applicant and the methodology it used to determine timing and release rate of fission product source terms to the environment (and consequent dose consequences) from the proposed ESP site are acceptable. Therefore, the staff finds the source terms from the PPE (ESP footprint) themselves to be reasonable and acceptable. The staff intends to include the site-specific χ /Q values as site characteristics listed in Appendix A, in any ESP that the NRC might issue for the North Anna site.

In response to RAI 15.4-6, the applicant stated that the greatest EAB dose occurs during the first 2 hours of the DBAs, except for the AP1000 LOCA. In view of the accident progression sequences for the designs used in the DBA dose assessment, the staff agrees with this conclusion.

Based on its evaluation of the applicant's analysis methodology and inputs to that analysis, the staff finds that the applicant's conclusion that the dose consequences for the chosen surrogate designs comply with the dose consequence evaluation factors of 10 CFR 50.34(a)(1) is correct.

Table 15.3-1 identifies the following site χ /Q values as appropriate for inclusion in any ESP that the staff might issue for the North Anna ESP site.

Table 15.3-1 Staff's Proposed Short-Term (Accident Release) Atmospheric Dispersion Site Characteristics (Site-Specific x/Q Values)

	LOCATION AND TIME INTERVAL	X/Q VALUE	
_	0–2 hour EAB	2.26x ⁻⁴ s/m ³	
	0–8 hour LPZ	2.05x ^{-s} s/m ³	
	8–24 hour LPZ	1.36x⁻⁵ s/m³	
	1-4 day LPZ	5.58x ⁻⁶ s/m ³	
	4-30 day LPZ	1.55x ⁻⁶ s/m ³	

RS-002 calls for the staff to perform a confirmatory radiological consequence calculation. However, the design-related inputs to the applicant's dose calculation were directly extracted from design documentation previously submitted to and reviewed by the NRC in connection with design certification applications. Because the applicant simply used the ratio of the site-specific χ /Q values to the postulated design χ /Q values, the staff did not consider an independent calculation to be useful or necessary and, therefore, did not perform one.

15.4 Conclusions

As set forth above, the applicant submitted its radiological consequence analyses using the site-specific χ /Q values and PPE source term values and concluded that the proposed site meets the radiological consequence evaluation factors identified in 10 CFR 50.34(a)(1).

Based on the reasons set forth above, the staff finds that the applicant's PPE values for source terms that it included as inputs to the radiological consequence analyses are reasonable. Further, the staff finds that the applicant's site-specific χ/Q values and dose consequence evaluation methodology are acceptable.

Therefore, the staff concludes that the proposed distances to the EAB and the LPZ outer boundary of the proposed ESP site, in conjunction with the fission product release rates to the environment provided by the applicant as PPE values, are adequate to provide reasonable assurance that the radiological consequences of the DBAs will be within the dose consequence evaluation factors set forth at 10 CFR 50.34(a)(1) for the proposed ESP site. This conclusion is subject to confirmation at the COL or CP stage that the design of the facility specified by the COL or CP applicant falls within the ESP PPE values.

The staff further concludes that (1) the applicant has demonstrated that the proposed ESP site is suitable for power reactors with source term characteristics bounded by those of the 4386 MWt ABWR and AP1000 without undue risk to the health and safety of the public and (2) the applicant complies with the requirements of 10 CFR 52.17 and 10 CFR Part 100.

17. EARLY SITE PERMIT QUALITY ASSURANCE MEASURES

17.0 Introduction

Dominion Nuclear North Anna, LLC (Dominion or the applicant), supplied information on quality assurance (QA) measures applied the to early site permit (ESP) activities the applicant and its principal contractors conducted. The staff of the U.S. Nuclear Regulatory Commission (NRC) conducted an inspection of the applicant's QA measures on November 17–21, 2003. Subsequently, the staff performed an in-office technical review to evaluate whether the applicant and its principal contractors had applied adequate QA measures. Specifically, the staff conducted a review to determine whether the applicant adequately applied the guidance in Section 17.1.1, "Early Site Permit Quality Assurance Controls," of Review Standard (RS)-002, "Processing Applications for Early Site Permits," to demonstrate the integrity and reliability of data that were obtained during ESP activities.

Under Title 10, Section 52.18, of the Code of Federal Regulations (10 CFR 52.18), "Standard for Review of Applications." the staff evaluates ESP applications in accordance with the applicable regulations of 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities," and its appendices, as well as 10 CFR Part 100, "Reactor Site Criteria," as they apply to construction permits. The current regulations do not require ESP holders or applicants to implement a QA program compliant with the requirements of Appendix B, "Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants," to 10 CFR Part 50. However, the applicant is expected to implement QA measures equivalent in substance to the measures described in Appendix B to 10 CFR Part 50 to provide reasonable assurance that the information derived from ESP activities that could be used in the design and/or construction of systems, structures, and components (SSCs) important to safety would support satisfactory performance of such SSCs once in service. Therefore, the staff evaluated quality measures for activities associated with the applicant's generation of site-related information that could be an input to the design of future SSCs to ensure that these measures could provide reasonable assurance of the integrity and reliability of the information; assuming these measures were equivalent in substance to the criteria of Appendix B to 10 CFR Part 50.

In accordance with 10 CFR 52.79(a)(1), if an application for a combined license (COL) references an ESP, it must contain information sufficient to demonstrate that the design of the facility falls within the site parameters specified in the ESP. Therefore, the ESP applicant must provide reasonable assurance of the reliability and integrity of data contained in or supporting the ESP application, which in turn supports any future COL or construction permit (CP) application.

Conformance with the QA measures described in RS-002, Section 17.1.1, provides reasonable assurance that the applicant used adequate QA measures to support its ESP application. The staff focused its review on whether the applicant's QA measures adequately addressed the guidance in Section 17.1.1 of RS-002 for each applicable area, as determined by the applicant (e.g., organization and QA program). The staff performed much of its evaluation in an inspection conducted in November 2003 and documented in Inspection Report 05200008/2003001 (ADAMS Accession No. ML040150170). For any area the applicant determined was not applicable, the staff verified that the ESP activities did not rely on QA measures associated with that area. The review focused on the applicant and its primary

contractor, Bechtel. Inspection Report 05200008/2003001 includes details on the subcontractors involved in the Dominion ESP activities. Section 17.7 of this report discusses the adequacy of the QA measures applied by these subcontractors.

In Chapter 17, "Quality Assurance," of the site safety analysis report (SSAR), the applicant submitted the description of the QA measures it applied to ESP activities. Chapter 17 of the SSAR includes the ESP Application Development Quality Assurance Manual, Revision 2 (hereafter referred to as the QA Manual). The QA Manual delineates the QA plan for the development of an ESP application. The applicant developed this manual using guidance from the American Society of Mechanical Engineers (ASME) NQA-1-2000, "Quality Assurance Requirements for Nuclear Facility Applications," published in 2000. As discussed in Inspection Report 05200008/2003001, the applicant used elements of the operating QA program for the existing North Anna Units 1 and 2, which are located adjacent to the ESP site, to simplify the QA process for ESP application development. Use of detailed implementing procedures from the operating plant QA program for ESP activities obviated the need to develop new guidance for applicable ESP activities. The applicant's QA Manual provides details about the QA process for developing an ESP application and specifies the use of the processes in place that meet the requirements of Dominion's current QA program.

17.1 Organization

17.1.1 Technical Information in the Application (Organization)

The applicant supplied information on the ESP organization in SSAR Section 17.1, which includes the QA Manual. The QA Manual describes the organization, programs, and procedural requirements of the Dominion Quality Assurance Program and states that they are intended to ensure compliance with the criteria of Appendix B to 10 CFR Part 50.

The QA Manual states that a QA program will outline the organization, programs, and procedural requirements necessary to ensure that the application is developed in a quality manner and, as appropriate, in accordance with the requirements of Appendix B to 10 CFR Part 50. In this manual, the applicant described an ESP organization consisting of five groups, including the Early Site Permit Project, Nuclear Operations, Nuclear Engineering, Nuclear Support Services, and Nuclear Oversight. An organization chart outlines the overall structure and lines of authority. The manual sets forth each group's role and responsibilities, as well as the roles and responsibilities of first-line supervisors, management, and QA organization. Inspection Report 05200008/2003001 provides additional information on the staff's review of the applicant's QA organization.

17.1.2 Regulatory Evaluation (Organization)

While the NRC does not require an ESP applicant to develop an organization compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's organization. In Section 2 of its QA Manual, the applicant stated that its design controls would ensure that the application is developed in a quality manner and, as appropriate, in accordance with the requirements of Appendix B to 10 CFR Part 50.

Paragraph 17.1.1.1 in Section 17.1.1 of RS-002 outlines the QA measures that constitute an acceptable organization, including (1) an organization description and charts of the lines, interrelationships, and areas of responsibility and authority for all organizations performing quality-related activities, including the applicant's organization and those of its principal contractors, (2) the relative location of the QA organization, degree of independence from the organization performing the ESP activities, and authority of the individuals assigned the responsibility for performing QA functions, and (3) the organizational provisions that exist for ensuring the proper implementation of QA controls.

17.1.3 Technical Evaluation (Organization)

17.1.3.1 Dominion

The staff reviewed the Dominion QA Manual. In Section 2, the QA Manual describes the organizational responsibilities for ESP activities and those QA measures Dominion implemented. Section 2 states that the Nuclear Oversight Group is responsible for independently planning and performing activities to verify the development and effective implementation of nuclear management QA programs for activities associated with ESP development. As discussed in Inspection Report 05200008/2003001, the staff reviewed the training records of all involved management personnel. These management personnel all appear to have received appropriate training. Section 2 of the QA Manual also states that the Vice President of Nuclear Support Services has the overall responsibility for implementing the QA program for the ESP organization. The QA Manual provides specific guidance on resolving issues through the levels of management and details the roles and responsibilities of the QA organization.

As discussed in Inspection Report 05200008/2003001, the staff conducted interviews with key applicant personnel involved in ESP activities. From the interviews, the staff determined that these personnel were knowledgeable about their roles and responsibilities. Nuclear oversight personnel report through a management chain completely separate from ESP application development and product management. The staff found the guidance for organizational roles and responsibilities adequate for conducting ESP activities.

As described in Inspection Report 05200008/2003001, the applicant developed procedures specific to ESP activities not covered by the current QA program procedures for the existing operating units.

17.1.3.2 Bechtel

Dominion selected Bechtel as the primary contractor for ESP application activities. Bechtel designed its Nuclear Quality Assurance Manual (NQAM) to meet the requirements of Appendix B to 10 CFR Part 50. Bechtel used the NQAM to develop the quality assurance program plan (QAPP) specific to the Dominion ESP application effort. The NQAM contains detailed organization charts and personnel responsibilities. Bechtel's project quality assurance manager (PQAM) directed and controlled the project QA program. The PQAM was tasked with assuring that the QA actions Bechtel performed throughout the project organization were accomplished in accordance with the quality program criteria. The PQAM has organizational independence, reporting directly to the President of Bechtel's Nuclear Global Business Unit

(GBU). The GBU President has overall responsibility for the adequacy and implementation of the Bechtel nuclear QA program. The staff found Bechtel's guidance for organizational roles and responsibilities adequate for conducting ESP activities.

17.1.4 Conclusion (Organization)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that the applicant has implemented an acceptable organization. The staff considered the regulatory guidance of Section 17.1.1 of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.2 Quality Assurance Program

17.2.1 Technical Information in the Application (QA Program)

The applicant supplied information on the QA program in SSAR Section 17.1, which includes the QA Manual. The QA Manual states that the objective of the Dominion Quality Assurance Program for the ESP application is to comply with the criteria in Appendix B to 10 CFR Part 50, as amended, and with the QA program requirements in Dominion's implementing procedures, which Inspection Report 05200008/2003001 discusses in greater detail.

The QA Manual states that the Dominion Quality Assurance Program applies to those ESP activities that can affect, either directly or indirectly, the safety-related site characteristics or analysis of those characteristics. In addition, this program applies to engineering activities used to characterize the site or analyze that characterization. The program defines the quality-related activities associated with developing the ESP application. Specifically, the QA Manual states that the Dominion Quality Assurance Program provides written policies, standards, procedures, and instructions covering engineering, design, procurement, periodic surveillance, and supporting tests for the development of the application.

The QA Manual states that nuclear oversight personnel report through a line of management completely separate from ESP application development, production management, and influences. The Nuclear Oversight Group must conduct audits in accordance with the Dominion Quality Assurance Program and perform other duties as directed by the Director of Nuclear Oversight. The QA Manual specifies the qualification criteria for nuclear oversight personnel.

17.2.2 Regulatory Evaluation (QA Program)

While the NRC does not require an ESP applicant to have a QA program compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's QA program. RS-002, paragraph 17.1.1.2, outlines the QA measures that constitute an acceptable level of control for ESP activities. The QA program should include (1) a scope of QA measures adequate to ensure that appropriate quality controls are applied to all site characterization data related to the design and analysis of SSCs important to safety that might be constructed on the proposed site, (2) provisions to

ensure proper definition of QA measures, and (3) provisions to ensure the adequacy of personnel qualifications.

17.2.3 Technical Evaluation (QA Program) The second secon

In this section of the safety evaluation report (SER), the staff documents its evaluation of the applicant and primary contractor's overall QA program description. The staff provides a detailed review and evaluation of each applicable portion of the program in the following sections of this SER.

17.2.3.1 Dominion

Contract to the second

The staff reviewed the QA Manual, which delineates the Dominion Quality Assurance Program for the development of an ESP application and outlines the organization, programs, and procedural requirements for the applicant's QA program. The applicant developed the manual The second se using guidance from ASME NQA-1-2000.

To simplify the QA process, the applicant invoked portions of the current QA program for ... Dominion's existing operating units. However, the operating Dominion Quality Assurance Program specifically excludes construction activities. The QA Manual provides details for construction-related QA processes that can be interchanged with appropriate sections of the operating QA program. The staff found the applicant's methodology for a QA program, which is based on the implementation of ASME NQA-1-2000 and applicable operating QA guidance, to be adequate for conducting ESP activities.

The applicant developed procedures specific to the ESP project to control ESP activities not adequately addressed in the operational program procedures. As discussed in Inspection Report 05200008/2003001, the staff found the procedures adequate for conducting ESP activities.

Inspection Report 05200008/2003001 also discusses the staff's review of the training and qualification program documents for all involved QA personnel; this review found no deficiencies.

17.2.3.2 Bechtel

The Bechtel NQAM identifies Bechtel's requirements for the development of quality program projects, such as the Dominion ESP application. Bechtel stated that it designed the QA policies contained in the NQAM to meet the requirements of Appendix B to 10 CFR Part 50. To this end, the NQAM incorporates QA policies corresponding to each criterion in Appendix B to 10 CFR Part 50. Bechtel used the NQAM to develop a QAPP specific to the Dominion ESP application QA effort.

The stated purpose of the QAPP is to establish the quality program interface between the Bechtel NQAM and Dominion's specific requirements relevant to the ESP application development activities. The QAPP specifically identifies the QA policies applicable to the Dominion ESP project, as well as the requirements contained in the Dominion QA Manual. Bechtel developed the NQAM for the full scope of its services, while the QAPP specifically identifies QA policies applicable to Bechtel's scope of work on the Dominion ESP project. Bechtel applied the requirements of the QA program established in the QAPP in a graded manner, commensurate with the importance to safety of the activities being performed.

The staff reviewed the QAPP and QAPM and found that the documents cover all aspects of an adequate QA program, establish a clear link between the Dominion and Bechtel QA programs, and explain how the relationship worked. Modifications to the QA policies, as appropriate, reflected unique project or applicant requirements. The documents also stipulate that the reporting of defects or noncompliance to the NRC must be in accordance with 10 CFR Part 21, "Reporting of Defects and Noncompliance." The staff therefore finds the Bechtel Quality Assurance Program to be adequate for conducting ESP activities.

As discussed in Inspection Report 05200008/2003001, the staff also reviewed the training and qualification program documents for all involved QA personnel and found no deficiencies.

17.2.4 Conclusion (QA Program)

As set forth above, the staff reviewed the QA measures implemented by the applicant and its primary contractor and concludes that these measures form an acceptable QA program. The staff considered the regulatory guidance of Section 17.1.1 of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.3 Design Control

17.3.1 Technical Information in the Application (Design Control)

The applicant supplied information on design control in SSAR Section 17.1, which includes the QA Manual. The manual states that the Nuclear Design Control Program (NDCP) delineates procedures, responsibilities, processes, and standards related to design control. The applicant based its procedures for design controls, analysis, and reviews on the applicable documents referenced in the Nuclear Design Control Manual (NDCM) and included in American National Standards Institute (ANSI) N45.2.11-1974, "Quality Assurance Requirements for Nuclear Power Plants," published in 1974, as modified in the Dominion QA procedures (see Inspection Report 05200008/2003001).

The QA Manual states that the NDCP provides for verifying or checking the adequacy of design through the performance of design review or suitable testing. The NDCP establishes measures for review of the selection and suitability of the application of materials, parts, equipment, and processes essential to safety-related or safety-significant functions. These measures require the use of valid and applicable industry standards and specifications.

The QA Manual states that quality measures are assured through all levels of the design control program by the design control organization, station, and corporate support organization. The applicant's procedures (discussed in Inspection Report 05200008/2003001) require that the applicant document and correct any nonconforming condition it identifies, in accordance with the corrective action process.

The QA Manual states that the NDCP delineates procedures to assure that the design basis, regulatory requirements, codes, and standards are correctly translated into specifications. drawings, procedures, or instructions for those items classified as safety related. Further, design changes, including field changes, are subject to design control measures commensurate with those applied to the original design and the applicable, specified design requirements.

As discussed in Inspection Report 05200008/2003001, Dominion's engineering standard establishes the interface between the company and its contractors for design activities. The standard requires that the preparation, review, and approval of design documents follow the licensee's program requirements.

In Request for Additional Information (RAI) 17.1-1, the staff asked the applicant to describe the QA measures it used to authenticate and verify any data important to safety that it retrieved from Internet Web sites that support information in the SSAR that could affect the design, construction, or operation of SSCs important to safety. In its response, the applicant provided a table identifying all the Internet Web sites it used as a source of information for the SSAR. A column in the table identifies whether the applicant used the information from an Internet Web site to support information in the SSAR that could affect the design, construction, or operation of SSCs important to safety. Another column describes the measures used to authenticate and verify data retrieved from Internet Web sites that support information in the SSAR that could affect the design, construction, or operation of SSCs important to safety.

17.3.2 Regulatory Evaluation (Design Control)

While the NRC does not require an ESP applicant to implement design controls compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's design controls. RS-002, paragraph 17.1.1.3, describes the QA measures that constitute an acceptable level of design control. Acceptable design controls should include (1) the scope of activities that could affect design and construction activities for SSCs important to safety that might be constructed on the site. (2) a definition of the organizational structure, activity, and responsibility of the positions or groups responsible for design activities important to safety (if any), (3) provisions to carry out design activities important to safety in a planned, controlled, and orderly manner, (4) provisions for interface control between functional units of the applicant's organization, (5) provisions to verify the technical adequacy of design documents applicable to ESP activities that could affect SSCs important to safety, and (6) provisions to control design changes applicable to ESP activities that could affect SSCs important to safety (if any).

17.3.3 Technical Evaluation (Design Control) 17.3.3.1 Dominion

The staff reviewed the Dominion procedures describing design control measures for design verification, computer software control, engineering drawings, design calculations, personnel training, design deviations, internal and external design control communications, design documentation, organizational responsibilities, field changes, and revisions.

The QA Manual delineates the QA plan for developing an ESP application and describes personnel roles and responsibilities for those involved in the project. The manual states that the NDCP delineates procedures to assure that design bases, regulatory requirements, codes, and standards are correctly translated into specifications, drawings, procedures, or instructions. The Dominion nuclear and engineering standards (discussed in Inspection Report 05200008/2003001) further describe the design control program. As stated in the QA Manual, the procedures for design controls, analysis, and review included, as part of their basis, ANSI N45.2.11-1974, as modified in the Dominion QA procedures (discussed in Inspection Report 05200008/2003001). Based on the training and procedural guidance, the staff found the guidance for design control to be adequate for conducting ESP activities. The staff verified the adequacy of Dominion's design control process by reviewing applicable procedures as discussed in Inspection Report 05200008/2003001.

Dominion's QA procedures (discussed in Inspection Report 05200008/2003001) describe the NDCP and the overall design control attributes, qualification of nuclear oversight personnel, and measures established to assure that regulatory requirements are met. The NDCP constitutes a detailed program for preparing, reviewing, maintaining, and approving procedures and standards to ensure compliance and consistency with Criterion V, "Instructions, Procedures, and Drawings," of Appendix B to 10 CFR Part 50. The NDCP also provides for verification and/or independent review of the adequacy of design through design reviews, use of alternate calculational methods, or testing. Additionally, the staff found that the NDCP adequately addresses control of design changes and organizational interfaces. For these reasons, the staff found the guidance of the NDCP to be consistent with Section 17.1.1 of RS-002.

The staff evaluated the applicant's response to the RAI concerning the QA measures the applicant used to authenticate and verify data retrieved from Internet Web sites that support information in the SSAR affecting the design, construction, or operation of SSCs important to safety. In its response to the RAI, the applicant listed all Internet Web sites referenced in the SSAR, identified whether the referenced data supported information in the SSAR that could affect the design, construction, or operation of SSCs important to safety, and described the method used to authenticate or verify the data. In all cases, the applicant requested that the respective Internet Web site organization authenticate or verify a hard copy of the data. The staff found this method of authenticating Internet Web site data to be acceptable. The staff stated that it would verify the completion of the applicant's requests for authentication as part of its inspection program before developing the final safety evaluation report. The staff identified this item as Confirmatory Item 17.3-1.

The staff conducted a followup inspection of Confirmatory Item 17.3-1 on February 8, 2005, at the primary contractor's office in Frederick, Maryland. The staff determined, through review of supporting documentation, that the applicant had provided adequate quality assurance measures to authenticate and verify data retrieved from Internet Web sites that support information in the SSAR that could affect the design, construction, or operation of SSCs important to safety. Specifically, Bechtel either (1) obtained letters certifying the authenticity of the data from the organizations posting the data on the Internet, or (2) performed an engineering review of the data to verify their reasonableness. Qualified individuals performed these engineering reviews based on their experience with similar data and compared the data to similar data obtained from other sources. Based on this inspection, the staff concludes that Confirmatory Item 17.3-1 is resolved.

Dominion established the ESP workscope and quality requirements for Bechtel in a Dominion purchase order (PO), as discussed in Inspection Report 05200008/2003001. The PO included a detailed description of Bechtel's workscope, including identification of specific sections of the ESP application for which Bechtel was responsible for performing design control activities supporting analyses, evaluations, and procurement. The PO also described Bechtel's responsibilities for ensuring that personnel involved with the project were trained and knowledgeable about the QA design control requirements.

Dominion specified that materials and services supplied by Bechtel were related to nuclear safety and that Bechtel should implement a quality control and assurance program that complied with the requirements of Appendix B to 10 CFR Part 50 and ANSI N45.2.11-1974. Bechtel implemented the ESP project quality requirements specified in the project-specific QAPP. The Bechtel QAPP invoked the quality policies contained in the Bechtel QA manual applicable to the ESP project.

As discussed in Inspection Report 05200008/2003001, the staff reviewed Bechtel procedures describing design control measures in the areas of design verification, computer software control, engineering drawings, design calculations, personnel training, design deviations, internal and external design control communications, design documentation, organizational responsibilities, and field changes and revisions. The staff found that the Bechtel procedures clearly stated the requirements for the preparation, review, approval, and control of design criteria, in accordance with ANSI N45.2.11-1974 and/or ASME NQA-1-2000. Additionally, Bechtel procedures regarding engineering control define the requirements for the preparation and control of ESP project and task design criteria, including the standards, codes, regulations, and design bases used for the project. The staff verified that the procedures provided the means to coordinate and communicate design criteria changes (including revision control) throughout any affected project discipline group. The procedures also specified internal document management requirements, including record retention.

As discussed in Inspection Report 05200008/2003001, the staff reviewed Section 3.2 of the QAPP and Bechtel's implementing procedures to verify that controls exist for design control interfaces among Bechtel personnel both internally and externally (i.e., with other contractors). The procedures define responsibilities for personnel internal and external to the organization, including communication, documentation, and distribution of design control criteria. This includes control of design input and development, special analysis, and approvals. Bechtel also defined responsibilities regarding actions to verify traceability and the appropriateness of information before it is used in any design document.

Section 3.3 of the QAPP and the Bechtel implementing procedures describe responsibilities and requirements for verifying the design work performed internally, including nongeneric computer software verification requirements. The staff confirmed that Bechtel had defined requirements for the performance and documentation of design verification on SSCs important to safety for the ESP. The staff verified that procedural controls and descriptions existed for design verification, either by interdisciplinary design review, independent off-project design review by technical staff, or individual critical design review. Once selected, the procedures specify that Bechtel document the verification method and justify and document design deviations.

Section 3.4 of the QAPP describes design change controls. The staff verified that the procedures specify requirements to control changes to the design of SSCs important to safety, after the initial design is complete, and include requirements for the review and independent verification of such changes. As discussed in Inspection Report 05200008/2003001, additional controls in Bechtel's implementing procedures specify engineering responsibilities and requirements for initial, as well as revised or changed, documents and drawings affecting the ESP project. For these reasons, the staff finds the design controls Bechtel described in the QAPP to be adequate for the conduct of ESP activities.

17.3.4 Conclusion (Design Control)

As set forth above, the staff reviewed the QA control measures employed by the applicant and its primary contractor and concludes that they have implemented acceptable design controls. The staff considered the regulatory guidance of Section 17.1.1 of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.4 Procurement Document Control

17.4.1 Technical Information in the Application (Procurement Document Control)

The applicant supplied information on procurement document control in SSAR Section 17.1, which includes the QA Manual. The manual stated that the applicant based its procedures for design controls, analysis, and reviews on the applicable documents referenced in the NDCM, including ANSI N45.2.11-1974, as modified by Dominion's QA procedures.

The QA Manual states that administrative procedures describe the program for completing procurement documents, including review, approval, document control, and change control. Dominion's procedures require that the applicant establish administrative procedures to ensure that procurement documents reference all actions required by a supplier, in accordance with the applicable codes, specifications, and drawings. The applicant must prepare, review, and approve procurement documents, as delineated in the procedures.

The QA Manual requires that procurement documents incorporate the design-basis, technical, and quality requirements, including the applicable regulatory requirements, specifications, codes and standards, test and inspection requirements, and instructions for special processes.

For development of the ESP application, the manual states that activities subject to this criterion were limited to the procurement of vendor services.

17.4.2 Regulatory Evaluation (Procurement Document Control)

While the NRC does not require an ESP applicant to implement procurement document controls compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's procurement document controls. RS-002, paragraph 17.1.1.4, outlines the QA measures that constitute an acceptable level of procurement document controls. These controls should include (1) provisions to ensure

that applicable technical requirements and QA controls are included or referenced in procurement documents related to ESP activities that could affect SSCs important to safety, and (2) provisions for the review and approval of procurement documents for ESP activities that could affect SSCs important to safety.

17.4.3 Technical Evaluation (Procurement Document Control)

17.4.3.1 Dominion

The QA Manual delineates the QA plan for procurement document control. The manual states that administrative procedures describe the program for completing procurement documents, including review, approval, document control, and change control. The applicant also established administrative procedures to ensure that procurement documents reference all actions required by a supplier, in accordance with applicable codes, specifications, and drawings. The procedures also ensure that procurement documents incorporate design-basis, technical, and quality requirements, including applicable regulatory requirements. As discussed in Inspection Report 05200008/2003001, the applicant based the procedures implementing this section on Dominion's QA procedures, which contain relevant standards, requirements, or guides. In addition, the staff verified that the applicant had adequate implementation procedures for control of procurement documents, as discussed in Inspection Report 05200008/2003001.

17.4.3.2 Bechtel

Bechtel procured engineering services and support from four subcontractors, including Tetra Tech NUS, Inc., MACTEC Engineering and Consulting, Inc., Risk Engineering, Inc., and William Lettis & Associates, Inc. The staff reviewed the procurement documents for these subcontractors to ensure adequate implementation of procurement document control. Section 17.7 of this SER discusses the specific details of the procurement controls Bechtel applied to each of these suppliers.

As discussed in Inspection Report 05200008/2003001, the applicant established workscope and quality requirements for Bechtel. The PO for Bechtel's services implemented the ESP project quality requirements given in the project-specific QAPP. The Bechtel QAPP invoked the quality policies contained in the Bechtel QA manual that applied to the ESP project. In accordance with specifications contained in the PO, Dominion approved the QAPP. For procurement document control, the QAPP states that Bechtel should use the NQAM. Policy No. Q-4.1, "Preparation of Procurement Documents," of the NQAM provides guidance for the preparation, review, approval, and control of procurement documents.

As discussed in Inspection Report 05200008/2003001, the Dominion PO contained a detailed description of Bechtel's workscope, including identification of specific sections of the ESP application for which Bechtel was to perform supporting analyses, evaluations, and investigations. Dominion specified that materials and services supplied by Bechtel were nuclear safety related and required that Bechtel implement a quality control and assurance program that complied with the requirements of Appendix B to 10 CFR Part 50 and ANSI N45.2.11-1974. Additionally, Dominion specified that the requirements of 10 CFR Part 21 be applied to the Bechtel PO. As discussed in Inspection Report 05200008/2003001, the staff

reviewed the Dominion safety-related vendor list and verified that Bechtel was listed as an active safety-related vendor, qualified to supply design and engineering services for major projects, including the ESP project. The staff did not note any deficiencies in this area.

17.4.4 Conclusion (Procurement Document Control)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they have implemented an acceptable level of procurement document control which meets the guidance of Section 17.1.1 of RS-002 and helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.5 Instructions, Procedures, and Drawings

17.5.1 Technical Information in the Application (Instructions, Procedures, and Drawings)

The applicant supplied information on instructions, procedures, and drawings in SSAR Section 17.1.1, which includes the QA Manual. As discussed in Inspection Report 05200008/2003001, the Dominion QA procedures list the standards, requirements, or guides which serve as the basis for the procedures, drawings, and instructions the applicant used to implement this section of the QA Manual.

The QA Manual states that the applicant established, approved, implemented, and maintained detailed written procedures to control development of the ESP application. Administrative procedures describe the requirements for developing, reviewing, approving, and controlling procedures, instructions, and drawings used for testing, as well as for design development, administrative, and other activities performed in support of application development. These requirements include references, prerequisites, precautions, limitations, manufacturers' specifications, check-off lists, and acceptance criteria.

The QA Manual states that changes to procedures or instructions require that the specific procedure or instruction be revised before the applicant implements the change. The revision process must have the same level of review as the original procedure or instruction. The QA Manual also states that the design control process governs drawing changes.

17.5.2 Regulatory Evaluation (Instructions, Procedures, and Drawings)

While the NRC does not require an ESP applicant to have instructions, procedures, and drawings compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's instructions, procedures, and drawings. RS-002, paragraph 17.1.1.5, details the QA measures that constitute an acceptable level of control for instructions, procedures, and drawings. Such controls should include provisions for (1) ensuring that ESP activities that could affect SSCs important to safety are prescribed by and accomplished in accordance with instructions, procedures, or drawings, and (2) including quantitative and qualitative acceptance criteria in instructions, procedures, and drawings related to ESP activities that could affect SSCs important to safety.

17.5.3 Technical Evaluation (Instructions, Procedures, and Drawings)

17.5.3.1 Dominion

Section 7, "Document Control," of the QA Manual describes the measures that the applicant established for control of procedures, instructions, and drawings to provide for the review, approval, issues, and changes thereto. The QA Manual requires that changes be approved by the same organization that performed the initial review and approval, though that approval may be delegated. Section 7 also requires that the applicant process, distribute, and control all procedures; dispose of obsolete copies; and maintain records of all procedure holders. Further, Section 7 requires that the applicant maintain an index of procedures, as well as the latest version of each. Section 7 also states that the station administrative procedures should address the measures for procedure control; Inspection Report 05200008/2003001 discusses the Dominion QA procedures that contain requirements, standards, and guides that serve as the basis for its implementing procedures. These procedures state that Dominion complied with Regulatory Guide (RG) 1.33, Revision 2, "Quality Assurance Program Requirements (Operation)," with exceptions and clarifications noted. The staff reviewed the administrative procedures and found the guidance adequate for the control of instructions, procedures, and drawings.

The method to control ESP project procedures, set forth in ESP-002, "Procedure Control," in the QA Manual, includes responsibilities. The document states that the manager for the ESP project identifies the necessary procedures and guidelines. This method requires that all ESP procedures be subject to an independent review and provides the approval authority. It also states that procedures must be maintained consistent with ESP-002, as well as with NDCP procedures and engineering standards, which contain provisions for including quantitative and qualitative acceptance criteria.

As discussed in Inspection Report 05200008/2003001, Dominion's procedure for implementing the NDCM details the NDCP and addresses the review and revision of procedures and standards, including methods of and reasons for changes to these procedures.

In addition, Dominion's QA procedures set forth expectations for procedure use and state that all procedure users in the Nuclear Business Unit (NBU) are responsible for verifying that only the latest approved documents are used to perform work activities, as discussed in Inspection Report 0500008/2003001. Procedures also provide instructions for distribution to ensure that users have the latest approved version of a procedure available at the job site.

The procedures also address compliance, requiring that NBU employees strictly adhere to procedures, that users ensure that procedures are approved and appropriate for the specific tasks or evolutions to be performed, and that users verify a procedure before its use to ensure that it is the current and approved revision. There are also requirements that, if an activity requires a written procedure, the procedure must be used to perform that activity.

The procedures also contain requirements for developing and revising procedures and for removing superseded procedures from use. The procedures describe intent versus nonintent changes and explain the approval authority for each. They also describe how changes are implemented, including consideration of work in progress when a change becomes effective. In

addition, they describe how hard-copy procedures, if maintained, are distributed, and they address the Electronic Procedure Distribution System (EPDS), a computer program used for the electronic distribution of procedures. Applicant staff stated that Dominion maintained and distributed all ESP procedures electronically. The NRC staff found that the applicant's measures for instructions, procedures, and drawings meet the guidance in Section 17.1.1 of RS-002. Additionally, in the course of reviewing the instructions, procedures, and drawings related to ESP activities, the staff verified that they were adequate for the task being performed and were properly controlled.

As discussed in Inspection Report 05200008/2003001, the NRC staff reviewed a sample of the original ESP procedures at the Innsbrook Records Management Center. The staff found that these procedures had approval signatures consistent with Dominion's requirements.

17.5.3.2 Bechtel

As discussed in Inspection Report 05200008/2003001, the Bechtel procedures provide requirements for the preparation, application, control, maintenance, and compilation of data in the controlled document database. The procedures state that all engineering department procedures (EDPs) must be prepared under the direction of the Engineering Committee and issued for review and comment by the cognizant Manager of Engineering, as well as by other managers, to allow a cross-functional review. The Bechtel Corporate Manager of Engineering has the approval authority. The Manager of Quality Assurance/Quality Services must review the EDPs.

As discussed in Inspection Report 05200008/2003001, the staff reviewed engineering department instructions (EDPIs), which Bechtel uses to modify EDPs for specific projects or to develop a project-specific procedure when no EDP exists. Applicable Bechtel procedures (1) require approval of procedure revisions in the same manner as specified for new procedures, (2) contain requirements for control and distribution of procedures, and (3) specify that procedure users must ensure that copies downloaded or printed from the corporate database are the latest revision. The procedures also state that the Bechtel Document Management Center maintains the original procedures, and that project engineers are responsible for identifying applicable EDPs and EDPIs. The staff found Bechtel's measures for instructions, procedures, and drawings adequate for the conduct of ESP activities.

17.5.4 Conclusion (Instructions, Procedures, and Drawings)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented an acceptable level of control for instructions, procedures, and drawings. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.6 Document Control

17.6.1 Technical Information in the Application (Document Control)

The applicant supplied information on document control in SSAR Section 17.1, which includes the QA Manual. The QA Manual states that the applicant established and documented administrative measures describing controls for review, approval, and issuance of documents such as procedures, instructions, and drawings. These requirements also address changes to documents before their release. The manual requires that changes be approved by the same organization that performed the original review and approval. However, this responsibility may be delegated to other qualified, responsible organizations. The manual also requires that the applicant incorporate approved changes into procedures and drawings and other appropriate documents associated with the change. This method helps to ensure that procedures, drawings, and instructions, as well as changes to them, are processed, distributed, and controlled and that obsolete copies are discarded.

17.6.2 Regulatory Evaluation (Document Control)

While the NRC does not require an ESP applicant to implement document control procedures compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's document controls. RS-002, paragraph 17.1.1.6, describes the QA measures that constitute an acceptable level of document control. Acceptable document controls should include provisions to ensure that documents related to ESP activities that could affect SSCs important to safety, including changes, are reviewed for adequacy, approved for release by authorized personnel, and distributed and used at the location where the prescribed activity will be performed.

17.6.3 Technical Evaluation (Document Control)

Each section of this SER describes (or references relevant discussion in Inspection Report 05200008/2003001) the specific documents the staff reviewed and discusses their adequacy. The staff considered the scope of the documents to be adequate for the ESP activities that the applicant conducted. The staff reviewed documents that the applicant had reviewed and approved for issuance to ensure that the process was followed. Based on these considerations and reviews, the staff concludes that the applicant and its primary contractor had adequate controls in place to ensure the proper revision of a document.

17.6.4 Conclusion (Document Control)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented acceptable document controls. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

and the second of the second o

17.7 Control of Purchased Material, Equipment, and Services

17:7.1 Technical Information in the Application (Control of Purchased Material, Equipment, and Services)

The applicant supplied information on the control of purchased material, equipment, and services in SSAR Section 17.1, which includes the QA Manual. The manual stated that Dominion QA procedures contain standards, requirements, or guides that provide the basis for the procedures implementing this section.

The QA Manual stated that the applicant's administrative procedures describe the requirements for controlling purchased material, equipment, and services, including commercial-grade items, for use in safety-related applications. It also states that the applicant evaluates suppliers before contract award, except in specified emergency conditions. Surveillance of suppliers during fabrication, inspection, testing, and shipment of materials, equipment, and components must be planned and performed in accordance with written procedures to ensure conformance with applicable PO requirements. Administrative procedures describe the requirements for controlling purchased material, equipment, and services. The applicant must identify, document, and correct any nonconforming conditions consistent with its corrective action process.

17.7.2 Regulatory Evaluation (Control of Purchased Material, Equipment, and Services)

While the NRC does not require an ESP applicant to implement control of purchased material, equipment, and services compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's control of purchased material, equipment, and services. RS-002, paragraph 17.1.1.7, provides the QA measures that constitute an acceptable level of control of purchased material, equipment, and services. Such controls should include (1) provisions for the control of purchased material, equipment, and services related to ESP activities that could affect SSCs important to safety which apply to selecting suppliers and assessing the adequacy of quality, and (2) provisions to ensure the onsite availability of documented evidence of the conformance to procurement specifications of material and equipment related to ESP activities that could affect SSCs important to safety before their installation or use.

17.7.3 Technical Evaluation (Control of Purchased Material, Equipment, and Services)

Section 17.4.3.2 of this SER provides a detailed discussion of the controls of purchased material, equipment, and services that Dominion applied to its primary contractor. This section of the SER focuses on the additional subcontractors that were engaged in the North Anna site ESP activities. The following sections discuss the scope of activities and the QA measures applied to those activities.

17.7.3.1 Risk Engineering, Inc.

Bechtel subcontracted to Risk Engineering, Inc. (REI), to support Bechtel's ESP efforts in performing probabilistic seismic hazard and/or sensitivity analyses for the North Anna site. As discussed in Inspection Report 05200008/2003001, Bechtel's service requisition for REI's work

specified that REI provide its QA manual for Bechtel approval. Additionally, the service requisition specified that all work be performed under a QA program, in accordance with the criteria of Appendix B to 10 CFR Part 50 and in compliance with the requirements of 10 CFR Part 21. The staff found that REI maintained a QA manual and software quality assurance plan (SQAP), both of which REI submitted to Bechtel. Further, the staff found that Bechtel project management and QA personnel reviewed and accepted the REI QA manual and SQAP. Additionally, the staff noted that Bechtel performed supplier audits of REI in November 2002 and June 2003. Based on a review of its QA program and supplier audits, Bechtel added REI to its list of evaluated suppliers and identified REI as a supplier with a QA program consistent with the specifications of ANSI N45.2.11-1974.

As discussed in Inspection Report 05200008/2003001, the staff reviewed the QA measures employed by REI to determine whether they were acceptable and met the guidance of Section 17.1.1 of RS-002. Additionally, the staff held discussions with REI management to ensure that REI implemented QA measures properly. Based on its review of associated documents, the staff concludes that the QA measures were acceptable and appropriately implemented for use in the control of activities performed by REI related to Dominion's ESP application.

17.7.3.2 William Lettis & Associates, Inc.

As discussed in Inspection Report 05200008/2003001, the staff reviewed Bechtel's service requisition for work to be performed by William Lettis & Associates, Inc. (Lettis). The requisition outlined Bechtel's request for technical services from Lettis for the collection and evaluation of data that formed the basis of SSAR Sections 2.5.1 through 2.5.3.

Bechtel requested technical services in the form of field and office studies designed to meet the guidance of Appendix D to RG 1.165, "Identification and Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion," for identifying and characterizing seismic source zones in the region around the North Anna site. The studies also address investigation of the potential for active tectonic deformation (permanent ground displacement) at and in the vicinity of the site, in accordance with Appendix D to RG 1.165. The service requisition also outlines the applicable codes and standards. In addition, Bechtel's service requisition required the subcontractor to perform work in accordance with all the latest relevant and applicable regulatory guides and NRC guidance.

The staff noted that Bechtel's service requisition required Lettis to (1) integrate Bechtel's Quality Assurance Program requirements into its work processes and, before starting work, submit a summary workplan and schedule confirming an understanding of the work, (2) ensure that all Lettis personnel performing ESP work undergo QA training by Bechtel, (3) check for proper implementation of the QA requirements as work progressed, (4) allow Bechtel or Dominion access to its facilities and records for QA inspection and audit purposes, (5) identify and document all deviations from the requirements of the service requisition, and (6) identify 10 CFR Part 21 requirements.

The staff reviewed the QA measures employed by Lettis to determine whether they constituted an acceptable program and met the guidance of Section 17.1.1 of RS-002. Based on its review, as discussed above, the staff concludes that the QA measures were acceptable for use in the control of activities performed by Lettis related to Dominion's ESP application.

17.7.3.3 Tetra Tech NUS, Inc.

As discussed in Inspection Report 05200008/2003001, Bechtel's service requisition for work to be performed by Tetra Tech NUS, Inc. (Tetra Tech), limited the scope of work performed by Tetra Tech to the preparation of certain portions of the ESP environmental report. Because Bechtel identified this work as non-safety related, the quality requirements specified in the service requisition mandated only that Tetra Tech have a QA program compatible with the provisions and requirements of International Organization for Standardization (ISO) 9001. The staff reviewed the Tetra Tech scope of work and concluded that because the workscope was limited to developing the environmental report, it did not require QA controls equivalent in substance to the criteria of Appendix B to 10 CFR Part 50. The staff did not perform an additional review of Tetra Tech's QA measures.

17.7.3.4 MACTEC Engineering and Consulting, Inc.

Bechtel subcontracted to MACTEC Engineering and Consulting, Inc. (MACTEC), to obtain geological testing support. As discussed in Inspection Report 05200008/2003001, Bechtel's technical specification for work to be performed by MACTEC mandated that the MACTEC Quality Assurance Program meet the requirements of Appendix B to 10 CFR Part 50 and comply with the criteria of 10 CFR Part 21.

As discussed in Inspection Report 05200008/2003001, the staff found that, consistent with the requirements of the Bechtel technical specification, MACTEC developed a project-specific workplan to identify the scope of work activities and quality requirements and applied the MACTEC quality assurance program description (QAPD).

The staff noted that the MACTEC QA organization was independent of the organization performing field or lab work and reported directly to the senior project principal engineer and project manager. The staff found that the MACTEC QAPD and workplan provided adequate measures for the control of MACTEC work activities to ensure the integrity and reliability of site geological test data.

MACTEC used the services of five additional suppliers to complete the scope of work outlined in the Bechtel technical specification. These suppliers performed work activities associated with surveying, drilling, geologic testing, and laboratory analyses. The MACTEC project principal engineer, the project manager, and a representative from the QA organization reviewed the work instructions MACTEC provided to these subcontractors. Additionally, in discussions with the staff, the MACTEC project principal engineer stated that all subcontractors performing site work were trained on the MACTEC QA program and the requirements of 10 CFR Part 21.

In general, field and laboratory testing activities must be conducted in accordance with recognized testing methods from the American Society for Testing and Materials (ASTM) or the U.S. Environmental Protection Agency (EPA). The applicant described deviations from these testing methods in Appendix B, "Geotechnical Tests," to Section 2.5.4 of the ESP application.

The staff reviewed the QA measures employed by MACTEC to determine whether they were acceptable and met the guidance in Section 17.1.1 of RS-002. Based on its review, as

discussed above, the staff concluded that the QA measures were acceptable for use in the control of activities performed by MACTEC related to the Dominion ESP application.

As described below, the staff reviewed the workscope and QA measures applicable to each of the five MACTEC subcontractors.

17.7.3.4.1 Applied Research Associates

Applied Research Associates (ARA) provided geological testing support for the performance of cone penetrometer and seismic characterization testing. As discussed in Inspection Report 05200008/2003001, the staff found that the MACTEC project workplan stated that cone penetrometer testing and seismic downhole testing must be performed in general accordance with ASTM D-5778-95, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils," and ASTM D-4428/D-4428M-00, "Standard Test Methods for Crosshole Seismic Testing." In addition to these ASTM standard tests, the staff noted that ARA also developed an operating procedure that included guidance for equipment field verification procedures, testing instructions, and requirements for test records.

The staff noted that MACTEC work instructions applicable to ARA activities stated that work was to be performed in accordance with ASME NQA-1-2000. The MACTEC principal project engineer stated to the staff that MACTEC had previously reviewed ARA for compliance with ASME NQA-1-2000 to support cone penetrometer work at the Savannah River Site. Additionally, MACTEC stated that it had reviewed the ARA technical capability and personnel qualifications during the vendor procurement process.

Based on a review of the MACTEC work instructions governing ARA work activities, discussions with MACTEC personnel, and the basis for qualification of ARA as a supplier of ESP-related services, the staff found that MACTEC implemented adequate measures to provide reasonable assurance that the data collected by ARA were accurate and reliable.

17.7.3.4.2 Grumman Geophysics

Grumman Geophysics (Grumman), located in Columbus, Ohio, conducted crosshole and downhole seismic testing at the North Anna site as a subcontractor to MACTEC. As noted in Inspection Report 05200008/2003001, the MACTEC workplan specified that crosshole testing be performed in accordance with ASTM D-4428/D-4428M-00. In Appendix B to Section 2.5.4 of the SSAR, MACTEC identified specific deviations from the ASTM D-4428/D-4428M-00 test methods.

Grumman performed downhole seismic testing in accordance with the Grumman Standard Operating Guideline A.0, "Downhole Seismic Testing." As discussed in Inspection Report 05200008/2003001, the staff reviewed Grumman's standard operating guideline for this work and determined that it provided adequate instructions for the performance of downhole seismic testing.

The MACTEC work instructions for the Grumman workscope stated that the work was to be done under a QA program compliant with ASME NQA-1-2000. MACTEC personnel stated to the staff that Grumman was qualified as a supplier for the ESP project based on a previous contract with MACTEC under the vendor procurement process, as well as a review of past

work, personnel qualifications, and equipment information. The MACTEC senior principal project engineer also stated that MACTEC provided continuous oversight of the Grumman field activities.

Based on a review of MACTEC work instructions governing Grumman activities and MACTEC's oversight of Grumman field activities, the staff found that MACTEC implemented adequate measures to provide reasonable assurance that the data collected by Grumman were accurate and reliable.

17.7.3.4.3 Stantec Consulting

MACTEC subcontracted to Stantec Consulting (Stantec), located in Richmond, Virginia, to perform topographical surveys to locate geologic boreholes and exploration points. As discussed in Inspection Report 05200008/2003001, MACTEC personnel stated that Stantec was qualified as a supplier based, in part, on a review of Stantec's QA program, technical procedures, equipment, calibration methods, and personnel qualifications. The staff reviewed a sampling of survey results and verified that survey data were certified by a Stantec land surveyor licensed by the Commonwealth of Virginia.

Based on a review of MACTEC work instructions governing Stantec activities and the use of survey personnel licensed by the Commonwealth of Virginia, the staff found that MACTEC implemented adequate measures to provide reasonable assurance that the survey data collected by Stantec were accurate and reliable.

17.7.3.4.4 Bedford Well Drilling

MACTEC subcontracted to Bedford Well Drilling (Bedford), located in Bedford, Virginia, to drill boreholes and install casings for crosshole seismic work. Although Bedford was a licensed contractor in the Commonwealth of Virginia, it did not maintain a QA program that complied with the criteria of Appendix B to 10 CFR Part 50 or ASME NQA-1-2000. However, the MACTEC principal project engineer stated that MACTEC provided continuous surveillance of the site activities conducted by Bedford.

The staff reviewed the work conducted by Bedford and found that, given the limited nature of the work activities and the oversight provided by MACTEC, the activities performed by Bedford were adequately controlled for the purposes of the ESP site characterization studies.

17.7.3.4.5 Severn Trent Laboratory

MACTEC subcontracted to Severn Trent Laboratory (Severn Trent) for soil chemistry testing services. MACTEC specified that laboratory testing be accomplished in accordance with the requirements of EPA Testing Standard SW-846, Revision 1, "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods" (see Inspection Report 05200008/20030010). As discussed in Inspection Report 05200008/2003001, MACTEC qualified Severn Trent as a supplier for ESP services based, in part, on the performance of a MACTEC procurement process QA audit conducted in April 2002. Although the audit was associated with work at the Savannah River Site, the MACTEC senior principal project engineer stated to the staff that the North Anna ESP workscope was similar to the work performed at the Savannah River site.

Based on a review of the scope of laboratory testing activities and the results of the MACTEC vendor audit, the staff found that activities performed by Severn Trent were adequately controlled for the purposes of the ESP site characterization studies. These controls offered reasonable assurance of the accuracy and reliability of the ESP data provided by Severn Trent.

17.7.4 Conclusion (Control of Purchased Material, Equipment, and Services)

As set forth above, the staff reviewed the QA measures employed by the applicant and its contractors and concludes that they have implemented acceptable controls for purchased material, equipment, and services. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.8 Identification and Control of Materials, Parts, and Components

17.8.1 Technical Information in the Application (Identification and Control of Materials, Parts, and Components)

The applicant supplied information on the identification and control of materials, parts, and components in SSAR Section 17.1, which includes the QA Manual. The manual stated that the applicant would not procure or use any safety-related materials, parts, or components. For this reason, the applicant stated that this criterion did not apply to the development of an ESP application.

In RAI 17.1-2, the staff asked the applicant to explain why the identification and control of materials, parts, and components criterion does not apply to the development of the ESP application. Alternatively, if this QA measure were to apply to the ESP application, the staff asked the applicant to describe the QA measures it and its primary contractor would use. In its response, the applicant stated that, under Dominion's overall direction, several companies were involved in the preparation of the ESP application. The quality requirements imposed on the various companies differed depending on their scope of work. The applicant determined that the identification and control of materials, parts, and components was not applicable to the ESP project because no safety-related materials, parts, or components would be procured within the project scope. The applicant stated the same reason for not invoking this requirement for Bechtel's work. The staff noted that Bechtel invoked the complete requirements of Appendix B to 10 CFR Part 50 on all of the subcontractors it used on the ESP project for work important to safety.

17.8.2 Regulatory Evaluation (Identification and Control of Materials, Parts, and Components)

While the NRC does not require an ESP applicant to implement an identification and control of materials, parts, and components program compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's identification and control of materials, parts, and components. RS-002, paragraph 17.1.1.8, provides the QA measures that constitute an acceptable level of

identification and control of materials, parts, and components. Such controls should include provisions to (1) identify and control materials, parts, and components related to ESP activities that could affect SSCs important to safety, and (2) ensure that incorrect or defective items are not used in ESP activities that could affect SSCs important to safety.

17.8.3 Technical Evaluation (Identification and Control of Materials, Parts, and Components)

Neither the applicant nor its primary contractor invoked QA measures for the identification and control of materials, parts, and components. The staff concluded, based on its review of the applicant's response to RAI 17.1-2 and observations during the inspection, that the applicant and Bechtel did not conduct activities important to safety requiring the identification and control of materials, parts, and components.

17.8.4 Conclusion (Identification and Control of Materials, Parts, and Components)

As set forth above, the staff reviewed the applicant and its contractor's need for these QA measures and concludes that, based on the scope of work for the ESP project, the identification and control of materials, parts, and components is not required.

17.9 Control of Special Processes

17.9.1 Technical Information in the Application (Control of Special Processes)

The applicant supplied information on the control of special processes in SSAR Section 17.1, which includes the QA Manual. The manual states that the safety-related scope of the development of the ESP application would not involve the use of special processes. For this reason, the applicant stated that this criterion does not apply to the development of an ESP application.

In RAI 17.1-2, the staff asked the applicant to explain why the control of special processes does not apply to the development of the ESP application. Alternatively, if this QA measure does apply to the ESP application, the staff asked the applicant to describe the QA measures it and its primary contractor used. In its response, the applicant stated that, under Dominion's overall direction, several companies were involved in the preparation of the ESP application. The quality requirements imposed on the various companies differed depending on their scope of work. Dominion determined that control of special processes was not applicable because the project scope did not include any safety-related construction activities. The applicant stated the same reason for not invoking this requirement for Bechtel's work. The staff noted that Bechtel invoked the complete requirements of Appendix B to 10 CFR Part 50 on all subcontractors it used on the ESP project for safety-related work.

17.9.2 Regulatory Evaluation (Control of Special Processes)

While the NRC does not require an ESP applicant to implement control of special processes compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's control of special processes. RS-002, paragraph 17.1.1.9, provides the QA measures that constitute an acceptable level of

control of special processes. Acceptable control of special processes should include provisions to (1) ensure the acceptability of special processes used for ESP activities that could affect SSCs important to safety, and (2) ensure that qualified personnel using qualified procedures and equipment perform special processes related to ESP activities that could affect SSCs important to safety.

17.9.3 Technical Evaluation (Control of Special Processes)

Neither the applicant nor its primary contractor invoked QA measures for control of special processes. The staff concluded, based on its review of the applicant's response to RAI 17.1-2 and observations during the inspection, that the applicant and Bechtel did not conduct activities important to safety requiring control of special processes.

17.9.4 Conclusion (Control of Special Processes)

As set forth above, the staff reviewed the need for QA measures by the applicant and its contractors and concludes that, based on the scope of work for the ESP project, control of special processes is not required.

17.10 Inspection

17.10.1 Technical Information in the Application (Inspection)

The applicant supplied information on controls for inspection in SSAR Section 17.1, which includes the QA Manual. As discussed in Inspection Report 05200008/2003001, the manual states that the Dominion QA procedures contain the standards, requirements, or guides which form the basis for the procedures implementing this section.

The QA Manual states that administrative procedures describe the requirements for the inspection of relevant ESP activities. The manual notes that inspection procedures for those activities affecting quality must be established, as appropriate, before work commences. Written procedures must be developed as needed to include inspection hold points.

The QA Manual identifies procedures for examinations, measurements, or tests that require witnessing at inspection holdpoints. The inspection performed at a holdpoint must be specific in nature. It must include quality characteristics and acceptance/rejection criteria, or it must specify qualitative criteria, such as operability checks, compliance with procedural steps, or cleanliness instructions. The inspection must be documented by signature or initials on the written procedure form.

The QA Manual states that the inspection program requires that appropriate inspectors be assigned for the activity being inspected. An inspector may be a member of the organization performing the activity. However, the inspector must be qualified and must not be the person performing the activity or the supervisor directly responsible for the activity.

17.10.2 Regulatory Evaluation (Inspection)

While the NRC does not require an ESP applicant to implement inspection controls compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's controls for inspection. RS-002, paragraph 17.1.1.10, provides the QA measures that constitute an acceptable level of inspection control. Acceptable inspection controls should include (1) provisions for the inspection of activities affecting the quality of ESP activities that could affect SSCs important to safety, including the items and activities to be covered, (2) organizational responsibilities and qualifications for individuals or groups performing inspection of ESP activities that could affect SSCs important to safety, and (3) provisions for inspection personnel to be independent of the performance of the activity being inspected.

17.10.3 Technical Evaluation (Inspection)

17.10.3.1 Dominion

Section 11, "Inspection," of the QA Manual describes the measures that the applicant established for inspection of activities affecting quality. As discussed in Inspection Report 05200008/2003001, Section 11 of the QA Manual invokes the requirements of Dominion's existing QA procedures for the current operating units. The staff found that the Dominion Quality Assurance Program conformed to the criteria of Appendix B to 10 CFR Part 50 and complied with the regulatory positions of the RGs listed in the Dominion QA procedures. The staff found that nuclear oversight personnel, independent of the ESP activities performed, conducted the inspection activities. The personnel appeared to be adequately trained and qualified. Based on staff discussions with the nuclear oversight personnel who conducted the inspections, the staff concluded that the activities inspected appeared to have been adequately observed and documented.

17.10.3.2 Bechtel

The Bechtel QAPP invokes the requirements of the NQAM. Policy No. Q-10.1, "Plant Site Inspections," of the NQAM identifies the requirements and responsibilities for plant site inspection activities performed to verify quality. The policy applies to inspections performed at the ESP site by the Bechtel Quality Control Group for work in which Bechtel is responsible for quality verification inspection. Policy No. Q-7.6, "Subcontractor Control," of the NQAM describes Bechtel's surveillance of subcontractors who perform their own quality verification inspection. Bechtel stated that it designed the NQAM policies to meet the requirements of Appendix B to 10 CFR Part 50. Based on staff discussions with Bechtel personnel who had conducted inspections, the staff concluded that these personnel were knowledgeable of inspection requirements and appeared to be adequately trained and qualified. In addition, the staff found that Bechtel inspection personnel were independent of the ESP activities they inspected. The staff found no deficiencies in Bechtel's oversight and inspection of subcontractor activities.

17.10.3.2.1 MACTEC

--- E:

In accordance with the project workplan, MACTEC provided oversight and surveillance for site activities. As discussed in Inspection Report 05200008/2003001, the staff reviewed QA checklists documenting the MACTEC QA surveillances performed to assure that MACTEC field activities complied with applicable procedures, codes, and standards. The QA surveillance checklists pertained to observations of MACTEC field activities conducted November 21–22, 2002, and December 11–12, 2002.

The staff determined that MACTEC completed the checklists for each section of MACTEC Work Plan No. 1, issued on November 22, 2002. The checklists addressed the salient aspects of each section of the plan. For example, the workplan addressed field requirements associated with planning and permitting. The surveillance checklist required verification of weather conditions and preparation of required permits before the start of field activities. The staff noted that the checklist associated with QA program documentation required verification that 10 CFR Part 21 requirements are available to project personnel. The staff also noted that MACTEC did not identify any deficiencies during the surveillance activities.

The staff also found that the MACTEC QA organization was independent of the organizations performing laboratory or field work.

17.10.4 Conclusion (Inspection)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented an acceptable level of control for inspection. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.11 Test Control

17.11.1 Technical Information in the Application (Test Control)

The applicant supplied information on test controls in SSAR Section 17.1, which includes the QA Manual. As discussed in Inspection Report 05200008/2003001, the manual states that the Dominion QA procedures contain the standards, requirements, or guides on which the procedures implementing this section are based.

The QA Manual states that administrative procedures describe the requirements for test control in safety-related applications. Written test procedures must control testing done in support of the ESP application development. The manual states that these test procedures will include or reference (1) the requirements and acceptance limits contained in applicable design and procurement documents, (2) test prerequisites, such as the availability of adequate and appropriate equipment and calibrated instrumentation; trained, qualified, and licensed or certified personnel; the completeness of the item to be tested; suitable and controlled environmental conditions; and provisions for data collection and storage, (3) instructions for

performing the test, (4) inspection points, as appropriate, and (5) acceptance and rejection criteria.

17.11.2 Regulatory Evaluation (Test Control)

While the NRC does not require an ESP applicant to implement test controls compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's test controls. RS-002, paragraph 17.1.1.11, provides the QA measures that constitute an acceptable level of test control. Acceptable test controls should include provisions to ensure (1) that tests performed related to ESP activities that could affect SSCs important to safety are appropriately controlled to provide confidence that these SSCs will perform adequately in service, and (2) that prerequisites are provided in written test procedures and that test results are documented and evaluated for ESP activities that could affect SSCs important to safety.

17.11.3 Technical Evaluation (Test Control)

The staff found that the Bechtel QAPP established the quality control interface between the Dominion QA program and the Bechtel NQAM. Dominion also established policies for test control in the QA Manual and used the guidance contained in ASME NQA-1-2000. The Bechtel NQAM further delineates these policies. The staff reviewed reports of testing accomplished by subcontractors and found that they appear to have performed the testing in accordance with the policies established in the Bechtel NQAM. As discussed below, the applicant's test controls, and those of its primary contractor and subcontractors, meet the guidance in Section 17.1.1 of RS-002.

17.11.3.1 Dominion

Section 12, "Test Control," of the QA Manual states that written test procedures control testing in support of the ESP application development. The section also states that the test procedures include test prerequisites, requirements, and acceptance limits contained in applicable design and procurement documents; instructions for performing the test; appropriate inspection points; acceptance and rejection criteria; prerequisites regarding the use of trained and qualified personnel to perform the test; provisions for data collection and storage; and methods for documenting or recording test results. Instrumentation used for testing must be in a calibration program, further described in Section 17.12 of this SER. During the inspection, the staff reviewed test procedures for content, acceptance and rejection criteria, and test results. The staff did not note any deficiencies.

17.11.3.2 Bechtel

Policy No. Q-11.1, "Testing Requirements," of the Bechtel NQAM applies to the ESP project, as stated in the Bechtel QAPP. The policy identifies the requirements and responsibilities for the control of tests and safety-related items and systems. Bechtel stated that the test control policies contained in the NQAM were intended to meet the requirements of Appendix B to 10 CFR Part 50 and ASME NQA-1-2000. ASME NQA-1-2000 requires test prerequisites for applicable procedures. The Bechtel policy states that tests must be performed consistent with written procedures that incorporate or reference test requirements, acceptance limits, and the

measuring and test equipment to be used. The policy further mandates that components, systems, and equipment be tested in accordance with applicable design documents, test procedures, codes, standards, or other specified supplier requirements. Additionally, the policy provides requirements for personnel qualification, test methods, and review and documentation of test results and deviations. The staff did not note any deficiencies.

The staff reviewed a sample of the documentation for testing performed in support of the ESP project by Bechtel and its subcontractors. The sample included a review of geotechnical field investigations and laboratory reports, seismic source characterization models, cone penetrometer tests, soil and rock sample laboratory tests, and probabilistic seismic hazard assessments. The staff did not note any deficiencies.

17.11.4 Conclusion (Test Control)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented acceptable test controls. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.12 Control of Measuring and Test Equipment

17.12.1 Technical Information in the Application (Control of Measuring and Test Equipment)

The applicant supplied information on the control of measuring and test equipment (M&TE) in SSAR Section 17.1, which includes the QA Manual. As discussed in Inspection Report 05200008/2003001, the manual states that the Dominion QA procedures contain the standards, requirements, or guides which form the basis for the procedures implementing this section.

The QA Manual states that administrative procedures describe the requirements for the control of M&TE used in the measurement, inspection, maintenance, and monitoring of safety-related applications. The QA Manual notes that a program, established and documented in the administrative procedures, describes the calibration technique and frequency, maintenance, and control of all M&TE that are used in the measurement, inspection, maintenance, and monitoring of safety-related SSCs. The manual states that it does not intend to imply a need for special calibration and control measures of rulers, tape measures, levels, and other basic tools, if normal commercial practices provide adequate accuracy. Controls for M&TE include the transportation, storage, and protection of the equipment; the handling of associated documents giving the status of all items under the calibration system, such as maintenance history, calibration test data, and individual log sheets assigned to each device; and the permanent marking of each device by a unique number.

The QA Manual states that M&TE used on safety-related systems or equipment are calibrated using reference standards for which calibration has a known, valid relationship to nationally recognized standards or accepted values of natural physical constants. Stickers must be

affixed on a conspicuous surface identifying, at a minimum, the date of the last calibration and next calibration due date.

In addition, the QA Manual states that, when M&TE used in activities affecting quality is found to be out of calibration, the applicant will evaluate and document the validity of previous tests and the acceptability of devices previously tested. All previous tests and measurements performed during the current or preceding calibration cycle must be redone if the evaluation so indicates.

17.12.2 Regulatory Evaluation (Control of M&TE)

While the NRC does not require an ESP applicant to implement controls of M&TE compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's control of M&TE. RS-002, paragraph 17.1.1.12, details the QA measures that constitute an acceptable level of control of M&TE. Acceptable control of M&TE should include provisions to ensure that tools, gauges, instruments, and other measuring and testing devices are properly identified and controlled and are calibrated and adjusted at specified intervals.

17.12.3 Technical Evaluation (Control of M&TE)

17.12.3.1 Dominion

Section 17.2.12 of the Bechtel QAPP and Section 13 of the QA Manual state that the applicant established administrative procedures that describe its control of M&TE. As discussed in Inspection Report 05200008/2003001, Dominion's administrative procedures further describe requirements and programmatic controls for M&TE. The QAPP and QA Manual note that controls were established for M&TE transportation, storage, and protection of equipment. Dominion established additional controls for documentation of maintenance history, calibration test data, and log sheets assigned to each device. Section 13 of the QA Manual further states that M&TE is to be used on safety-related equipment, or systems will be calibrated using reference standards for which calibration has a known relationship to nationally recognized standards, such as the National Institute of Standards and Technology. The staff found the guidance for control of M&TE adequate for the conduct of ESP activities. Based on a review of the applicant's administrative controls for M&TE, the staff determined that the applicant implemented adequate measures to provide reasonable assurance that it would properly control M&TE.

17.12.3.2 Bechtel

Policy No. Q-12.1, "Control of Measuring and Test Equipment," of the Bechtel NQAM applies to the ESP project, as stated in the Bechtel QAPP, and defines the responsibilities for the maintenance and control of M&TE. The policy applies to the calibration and control of M&TE used by Bechtel personnel, suppliers, and subcontractors to conduct tests, make measurements, and record inspection and test results. The policy states that control of M&TE must conform to the requirements of ANSI N45.2, Section 12, or ASME NQA-1-2000, Supplement 12S-1. The policy requires that the calibration procedures define the calibration method, means of identification, recalibration frequency of the M&TE, and issuance of tools,

gauges, and test equipment used. Additionally, the policy discusses the evaluation of M&TE found to be outside calibration limits, calibration against certified equipment having known relationships to nationally recognized standards, and documentation of M&TE usage in test records.

As discussed in Inspection Report 05200008/2003001, the staff reviewed the policies, requirements, and controls established in the procedures noted above as they apply to M&TE. The staff also reviewed a sample of calibration records related to the performance of geologic tests, seismic test activities, and laboratory testing completed in support of the ESP project. Based on the review of Bechtel's administrative controls and sample of calibration records, the staff determined that Bechtel implemented adequate measures to provide reasonable assurance that it properly controlled M&TE.

17.12.4 Conclusion (Control of M&TE)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented acceptable control of M&TE. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.13 Handling, Storage, and Shipping

and the first of the second of

17.13.1 Technical Information in the Application (Handling, Storage, and Shipping)

The applicant supplied information on the controls for handling, storage, and shipping in SSAR Section 17.1, which includes the QA Manual. As discussed in Inspection Report 05200008/2003001, the manual states that the Dominion QA procedures contain the standards, requirements, or guides that form the basis for the procedures implementing this section. The manual states that administrative procedures describe the requirements for control of handling, storage, and shipping of equipment for safety-related applications.

The QA Manual also states that Dominion has established measures in its administrative procedures to provide adequate methods for use by qualified personnel for the classification, packaging, cleaning, preservation, shipping, storage, and handling of material and equipment. These measures, prepared in accordance with design and specification requirements, define responsibilities, levels of cleanliness, tagging, and storage levels for categorized items. The procedures must also control cleaning, handling, storage, packaging, shipping, and preservation of materials, components, and systems to preclude damage, loss, or deterioration by environmental conditions, such as temperature or humidity. Materials verification and vendor surveillance inspectors verify implementation of these measures.

The QA Manual notes that the operational QA program includes some activities described in this section that may not be needed for ESP application development. However, the manual adds that handling, storage, and potential shipping of soil samples taken during site geotechnical investigations are examples of safety-related activities for the ESP program that are subject to this criterion.

17.13.2 Regulatory Evaluation (Handling, Storage, and Shipping)

While the NRC does not require that an ESP applicant implement controls for handling, storage, and shipping compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's controls for handling, storage, and shipping. RS-002, paragraph 17.1.1.13, provides the QA measures that constitute an acceptable level of handling, storage, and shipping control. Such controls should include provisions to control the handling, storage, shipping, cleaning, and preservation of items related to ESP activities that could affect SSCs important to safety, in accordance with work and inspection instructions, to prevent damage, loss, and deterioration by environmental conditions, such as temperature or humidity.

17.13.3 Technical Evaluation (Handling, Storage, and Shipping)

Dominion identified soil core samples as the sole type of sample material within the scope of this criterion. MACTEC, one of Bechtel's subcontractors, retrieved the soil core samples, which were stored and maintained onsite. The following sections detail the QA measures these organizations applied for the handling and storage of the soil core samples.

17.13.3.1 Dominion

Section 14 of the QA Manual, "Handling, Storage, and Shipping," states that Dominion established measures in its administrative processes for classifying, packaging, cleaning, preserving, shipping, storing, and handling materials and equipment. The section further states that these procedures define responsibilities, levels of cleanliness, tagging, and storage levels. They also provide for measures to preclude damage, loss, or deterioration by environmental conditions. As discussed in Inspection Report 05200008/2003001, the section also notes that the Dominion QA procedures contain standards, requirements, or guides that form the basis for implementing the procedures.

The staff found that these procedures note the establishment of such measures and that inspectors verify their implementation. The procedures state that Dominion complied with RG 1.38, Revision 2, "Quality Assurance Requirements for Packaging, Shipping, Receiving, Storage, and Handling of Items for Water-Cooled Nuclear Power Plants," with specified clarifications and exceptions.

As discussed in Inspection Report 05200008/2003001, Dominion's applicable lower-tier administrative procedures specify responsibilities for materials handling, provide specific requirements and guidelines for packaging and for storage areas, and provide storage environments in terms of Levels A through D. Dominion stored the ESP materials at the most stringent level (A), in accordance with the procedures. This storage level maintains materials that are exceptionally sensitive to environmental conditions and therefore require special protection against temperature and humidity changes, physical damage, and airborne contamination. Such storage must be in a fire-resistant, weathertight, well-ventilated building or enclosure, which is (1) not subject to flooding,(2) temperature and humidity controlled, and (3) ventilated via filters.

The staff inspected the storage facilities for the soil samples at the North Anna site. These materials were kept in a dedicated Level A facility (i.e., a locked cage). The temperature, airflow, and humidity appeared to be consistent with a facility subjected to stringent climate control. The applicant stored the soil samples in sturdy wooden crates or in sealed glass jars kept in compartmented boxes. The staff did not note any deficiencies in the applicant's storage arrangements.

17.13.3.2 MACTEC

As discussed in Inspection Report 05200008/2003001, the MACTEC workplan contains instructions for handling core materials and samples before storage or testing. It requires that (1) disturbed soil sampling be performed in accordance with ASTM D1586-99, "Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils," (2) undisturbed sampling be performed in accordance with ASTM D1587-00, "Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes," and (3) sample handling follow ASTM D4220-95, "Standard Practices for Preserving and Transporting Soil Samples." The workplan also provides additional instructions on specific measures for sample handling.

The staff reviewed the core and soil sample inventory log and found samples to be uniquely identified. During a check of several log entries against stored samples, the staff found no inconsistencies. The staff noted that several of the inventory sheets indicated that samples were prepared and checked by the same person, while others were apparently not checked. While this practice increases the chance of an error, the staff did not note any performance issues caused by this practice.

Based on observation of the storage area, a visual check of the samples, and review of the inventory sheets, the staff concluded that the applicant had properly stored and inventoried the samples and met the guidance in Section 17.1.1 of RS-002.

17.13.4 Conclusion (Handling, Storage, and Shipping)

As set forth above, the staff reviewed the QA measures employed by the applicant and its subcontractors and concludes that they implemented acceptable controls for handling, storage, and shipping. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.14 Inspection, Test, and Operating Status

17.14.1 Technical Information in the Application (Inspection, Test, and Operating Status)

The applicant supplied information on controls for inspection, test, and operating status in SSAR Section 17.1, which includes the QA Manual. The manual states that the applicant's administrative procedures and station operating procedures describe the requirements for inspection, test, and operating status of items and/or equipment for safety-related applications.

The QA Manual states that the administrative and station operating procedures establish measures for identifying and documenting the inspection and test status for items to prevent missing specified inspections and tests. These measures also define the three general categories of inspection and test status for items—accept, reject, or hold. They provide for status identification by stickers, tags, record cards, test records, checklists, or logs. Station procedures must control the application and removal of the various status tags, stickers, and other indicators. Specific test procedures control testing that supports the ESP project.

17.14.2 Regulatory Evaluation (Inspection, Test, and Operating Status)

While the NRC does not require an ESP applicant to implement controls for inspection, test, and operating status compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's controls for inspection, test, and operating status. RS-002, paragraph 17.1.1.14, provides the QA measures that constitute an acceptable level of controls for inspection, test, and operating status. Such controls should include provisions to indicate the inspection, test, and operating status of items related to ESP activities that could affect SSCs important to safety to prevent inadvertent use or bypassing of inspection and tests.

17.14.3 Technical Evaluation (Inspection, Test, and Operating Status)

17.14.3.1 Dominion

Section 15, "Inspection, Test, and Operating Status," of the QA Manual states that the applicant established measures in administrative and station operating procedures regarding the identification and documentation of inspection and test status items to prevent inadvertent bypassing of specified instructions and tests. The manual defines measures in three general categories and provides for status identification by stickers, tags, record cards, test records, checklists, or logs. Additionally, the manual states that the applicant identifies the operating status of items and/or equipment through records, checklists, or operational tagging systems maintained to indicate the status and authority to operate the item and/or equipment. Testing to support the ESP project is controlled by specific contractor test procedures. Section 17.11 of this SER also discusses test control. Based on its review of ESP administrative procedures and station operating procedures, the staff found the applicant's controls for inspection, test, and operating status to be adequate.

17.14.3.2 Bechtel

Policy No. Q-10.1 (discussed in Section 17.10 of this SER) of the Bechtel NQAM applies to the ESP project, as stated in the Bechtel QAPP. The policy defines the requirements and responsibilities for site quality verification. The policy states that procedures or instructions shall provide for the identification of personnel responsibilities, recordkeeping, inspection results, frequency of test documentation, and special process controls. Policy No. Q-11.1 (discussed in Section 17.11 of this SER) and Policy No. Q-15.1, "Control of Nonconformances," which describes the requirements for identifying nonconforming items, detail the additional QA controls in this area. Section 17.15 of this SER provides more details regarding QA controls for nonconforming materials, parts, or components.

As discussed in Inspection Report 05200008/2003001, the staff reviewed the policies noted above, as well as applicable administrative procedures, to verify that Bechtel established adequate QA controls in this area. Based on a review of applicable policies and procedures, the staff found the Bechtel guidance for inspection, test, and operating status adequate for the conduct of ESP activities.

17.14.4 Conclusion (Inspection, Test, and Operating Status)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented acceptable controls for inspection, test, and operating status. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.15 Nonconforming Materials, Parts, or Components

17.15.1 Technical Information in the Application (Nonconforming Materials, Parts, or Components)

The applicant supplied information on controls for nonconforming materials, parts, or components in SSAR Section 17.1, which includes the QA Manual. The QA Manual states that the applicant's administrative procedures describe the requirements for control of nonconforming materials, parts, or components for safety-related applications. Because of the scope of ESP activities, the applicant did not expect to receive any parts, materials, or components from offsite sources. However, the controls govern soil and site characterization samples and their storage and shipment, if necessary. Specifically, the administrative procedures require that the individual who discovers a nonconformance must identify, describe, and document it on a deviation report or a discrepant shipment report.

The QA Manual states that when a nonconforming item is identified, it is placed in the hold area established in the storeroom or other segregated location, if practical, and identified with a hold tag to prevent its inadvertent use. If material is classified as "reject," the hold tag must remain attached to the material/component until loaded for departure from the site and can only be removed by authorized personnel in accordance with approved procedures.

The QA Manual states that audits and inspections ensure the implementation and verification of the procedures for the control of nonconformances.

17.15.2 Regulatory Evaluation (Nonconforming Materials, Parts, or Components)

the CANAL A SECTION AND AN ADMINISTRATION OF THE SECTION OF THE SE

While the NRC does not require that an ESP applicant implement controls of nonconforming materials, parts, or components compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's control of nonconforming materials, parts, or components. RS-002, paragraph 17.1.1.15, provides the QA measures that constitute acceptable provisions for addressing nonconforming materials, parts, or components control. Such controls should

include provisions to control the use or disposition of nonconforming materials, parts, or components related to ESP activities that could affect SSCs important to safety.

17.15.3 Technical Evaluation (Nonconforming Materials, Parts, or Components)

17.15.3.1 Dominion

The applicant established a process for nonconforming materials, parts, or components, outlined in the QA Manual. As discussed in Inspection Report 05200008/2003001, a Dominion implementing QA procedure details the process for controlling nonconformances observed during receipt, inspection, storage, fabrication, erection, installation, initial and/or acceptance testing, or initial operation. The procedure provides for the preparation and issuance of deviation reports and discrepant shipment reports, in accordance with prescribed procedures. The procedure states that, when the applicant identifies a nonconforming item, it is placed in a hold area with a hold tag to prevent its inadvertent use. The procedure also provides guidance for the disposition of rejected material or material placed on hold. The staff found the guidance for nonconforming materials, parts, or components to be adequate for the scope of ESP activities.

17.15.3.2 Bechtel

In developing the QAPP, Bechtel determined that certain quality policies contained in the Bechtel NQAM do not apply to the ESP project, including the control of supplier and subcontractor nonconformances; identification and control of materials, parts, and components; control of special processes; control of status items; control of nonconformances; significant reportable deficiencies; and construction/site services QA records.

Bechtel personnel stated that its nonconformance quality policies address hardware procurement nonconforming conditions. Bechtel personnel noted that it would address deviations in ESP project engineering services from procurement specifications under the other processes that apply to the ESP project, such as the supplier deviation disposition process, the engineering error report process, or the corrective action request process. The staff reviewed these other deviation reporting processes and found that Bechtel had implemented sufficient measures to provide reasonable assurance that it could identify and correct nonconformances in procured engineering services.

As discussed in Inspection Report 05200008/2003001, the staff reviewed the scope of the QAPP, including quality-related activities determined not to apply to the ESP project, and found that the QAPP was consistent with the Dominion QA Manual. The quality elements covered by the Bechtel QAPP were also consistent with the scope of work outlined in Dominion's PO for Bechtel. Additionally, the staff found that the QAPP controls were reasonable and consistent with the guidelines contained in Section 17.1.1 of RS-002. Therefore, the staff determined that the procurement of engineering services from Bechtel complied with the Dominion QA Manual requirements and was consistent with the procurement controls specified in the Dominion NDCM procedures.

17.15.4 Conclusion (Nonconforming Materials, Parts, or Components)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented an acceptable level of control for nonconforming materials, parts, or components. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.16 Corrective Action

17.16.1 Technical Information in the Application (Corrective Action)

The applicant supplied information on its Corrective Action Program in SSAR Section 17.1, which includes the QA Manual. The manual states that the applicant would control the Corrective Action Program in accordance with Dominion QA procedures.

The QA Manual states that Dominion establishes corrective action measures as an integral part of the processing and resolution of nonconformances and failures in service. These measures assure that significant adverse quality conditions are identified, documented, their cause determined, and the necessary corrective actions taken to preclude repetition of the adverse quality conditions. It further states that the monitoring effort of the staff and the audits conducted by the Nuclear Oversight Group ensure the verification of the proper implementation of corrective action measures and closeout of corrective action documentation. The applicant uses deviation reports and audit findings to report adverse conditions significant to quality, the cause of the conditions, and the initiation of corrective action to the appropriate levels of both offsite and onsite management. If further corrective action is required, the applicant relies on the appropriate management program for performing, tracking, and closing the issue.

The QA Manual states that the Nuclear Engineering Group maintains a program to evaluate complex design concerns that may lead to adverse quality conditions. The potential problem reporting (PPR) system allows for detailed, multidisciplinary reviews of complex design concerns that may yield deviation reports. Many design concerns cannot be determined to be adverse to quality until a detailed design review is performed. The PPR process controls this activity as part of the NDCP.

The QA Manual states that nuclear oversight and inspection personnel have the authority, and the responsibility, to stop work in progress when it is not being done in accordance with approved procedures or when it may jeopardize safety or equipment integrity.

17.16.2 Regulatory Evaluation (Corrective Action)

While the NRC does not require an ESP applicant to implement a corrective action program compliant with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's corrective action program. RS-002, paragraph 17.1.1.16, provides the QA measures that constitute an acceptable corrective action program. This program should include provisions to ensure that conditions

adverse to quality are promptly identified and corrected. For significant conditions adverse to quality, those provisions should preclude recurrence.

17.16.3 Technical Evaluation (Corrective Action)

17.16.3.1 Dominion

The applicant established a corrective action program. As discussed in Inspection Report 05200008/2003001, the QA Manual outlines the process, which is controlled in the Dominion QA procedures. These procedures detail the requirements for identifying, screening, documenting, resolving, and tracking discrepancies associated with the development of the ESP application. They also detail the process for identifying and determining the operability and reportability of conditions potentially adverse to quality and operability.

The staff noted that the Dominion engineering staff maintains a program to evaluate design concerns that could lead to adverse quality conditions. The PPR system, which is described in the NDCM procedures, allows for detailed, multidisciplinary reviews of complex design concerns that may yield a deviation report. The PPR system is not a corrective action or commitment tracking system. Instead, it provides a means to analyze and review complex technical concerns that may be significant and may become issues. As outlined in the procedure, other processes handle corrective actions and commitment tracking. The NRC staff found that the applicant's procedures governing corrective actions met the guidance in Section 17.1.1 of RS-002. Inspection Report 0520008/2003001 details specific examples of identified problems and the resultant corrective actions for ESP activities. The staff found that the applicant followed the guidance in the governing procedures and documents and adequately implemented corrective actions.

17.16.3.2 Bechtel

Bechtel's ESP-specific QAPP states that the NQAM would guide its Corrective Action Program. The manual states that corrective action applies to significant conditions adverse to quality, as described in Criterion XVI of Appendix B to 10 CFR Part 50; ANSI N45.2, Section 17; and ASME NQA-1-2000. In addition, the QAPP states that, if Bechtel personnel performing work identify a condition adverse to quality in existing Dominion procedures or documentation, they must document such a condition on a deviation report form, in accordance with Dominion procedures, and report it to Dominion for further evaluation and disposition. The staff concluded that Bechtel personnel implemented the corrective action program outlined in the QAPP.

17.16.4 Conclusion (Corrective Action)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented an acceptable corrective action program. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.17 Quality Assurance Records

17.17.1 Technical Information in the Application (Quality Assurance Records)

The applicant supplied information on QA record controls in SSAR Section 17.1, which includes the QA Manual. The manual states that the Dominion QA procedures contain the requirements for the retention and storage of QA records. The administrative procedures establish and document the requirements and responsibilities for QA record transmittal, retention, and maintenance subsequent to the completion of work at the power station.

The QA Manual states that elements of the operating QA program must be used to ensure quality in the ESP project. Section 18 of the QA Manual, which addresses QA records, states that the administrative procedures document the requirements and responsibilities for record transmittal, retention, and maintenance. Dominion primarily used the existing administrative procedures for its current operating units, although the applicant did implement several administrative procedures specific to the ESP as part of its ESP project manual. As discussed in Inspection Report 0520008/2003001, the QA Manual also refers to the Dominion QA procedures as the source of requirements and commitments for retention and storage of QA records.

These procedures contain the requirements and responsibilities for QA records transmittal, retention, and maintenance. They list examples of QA records applicable to the operating nuclear power plants and state that records were maintained in accordance with NRC regulations, commitments to ANSI N45.2.9-1974, "Requirements for Collection, Storage and Maintenance of Quality Assurance Records for Nuclear Power Plants," and administrative requirements. These procedures contain statements of commitment to standards. requirements, or guides, and they refer to RG 1.88, "Collection, Storage, and Maintenance of Nuclear Power Plant Quality Assurance Records." This RG (which the NRC has withdrawn because the ANSI standards endorsed by the RG have been incorporated into ASME NQA-1-1983, "Quality Assurance Program Requirements for Nuclear Facilities," and subsequently endorsed by RG 1.28, Revision 3, "Quality Assurance Program Requirements (Design and Construction)") endorsed the requirements and guidelines for records collection, storage, and maintenance in ANSI N45.2.9-1974, subject to certain clarifications and exceptions. Dominion's procedures also describe record retention measures, including maintaining proper indices, establishing a filing system, and constructing and securing records facilities to prevent destruction of records by fire, flooding, theft, and deterioration through environmental conditions, such as temperature and humidity.

17.17.2 Regulatory Evaluation (Quality Assurance Records)

While the NRC does not require an ESP applicant to control QA records compliant with the criteria of Appendix B, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's QA records. RS-002, paragraph 17.1.1.17, provides the QA measures that constitute an acceptable level of QA record control. Acceptable control of QA records should include provisions for the identification, retention, retrieval, and maintenance of quality records.

17.17.3 Technical Evaluation (Quality Assurance Records)

17.17.3.1 Dominion

During the inspection, a records management supervisor stated that permanent records submitted as "QA" were kept until and unless the Records Management Group was instructed to discard them. The staff observed the records to be retrievable through reference to a file number and vault location.

As discussed in Inspection Report 0520008/2003001, Dominion procedures include a lower-tier operating procedure for records management. This procedure establishes methods, responsibilities, and requirements for creation, collection, storage, maintenance, and disposition of records generated during operations, maintenance, and support of Virginia Power's nuclear power plants. It also describes personnel responsibilities for records management. The procedure contains requirements for (1) quality and legibility of records, (2) storage and maintenance of records, including the transmittal of completed records to Records Management within 30 days, (3) correction of records, (4) preparation of records for archival storage in a controlled environment, and (5) periodic media inspections to allow detection of unexpected degradation of records.

Applicable Dominion procedures refer to the nuclear-required records lists (NRRLs) for retention requirements. The staff reviewed a sample of these lists. For each record type, the NRRL lists the controlling Dominion procedure, the retention period, the retaining organization, and applicable regulations or other external documents (e.g., ANSI N45.2.9-1974).

Dominion procedures also contain requirements for records storage vaults and invoke ANSI N45.2.9-1974, with exceptions as specified in the procedures. They contain specific requirements for vaults and their contents. The staff conducted an inspection of the Innsbrook Technical Center Vital Records Vault, and found it to have limited access, and to be climate controlled and well ventilated. The vault appeared to be clean, and the staff noted no obvious evidence of environmental problems. Based on a review of the document control process, procedures, and storage vault, the staff found that the applicant's control of QA records meets the guidance of Section 17.1.1 of RS-002.

17.17.3.2 Bechtel

The staff reviewed records retention requirements for the applicant's primary ESP contractor, Bechtel. Bechtel's NQAM Policy No. Q-17.1 provides requirements for design and procurement records retention and turnover. This document states that Bechtel will turn QA records over to Dominion progressively as it completes tasks. The policy commits to ANSI N45.2.9-1974 and ASME NQA-1-1983, Supplement 17S-1, for maintenance and control of records. Once Bechtel turns the records over to its client, the policy states that Bechtel is not required to keep the copies it retains under controlled conditions, consistent with ANSI standards.

As discussed in Inspection Report 0520008/2003001, Policy No. Q-17.2 provides requirements for supplier and subcontractor records. It states that procurement documents will specify access for Bechtel and client staff to the end of the retention period, which is specified in the

Bechtel records retention requirements as the end of the contract plus 6 years. Requirements include document types to be turned over, either at job completion or at the time of issue.

As is also discussed in Inspection Report 0520008/2003001, Bechtel's administrative procedures set forth requirements for processing, controlling, distributing, and maintaining supplier documents. They require that supplier documents received by Bechtel be controlled through Bechtel's InfoWorks database. The staff found Bechtel's control of QA records adequate for the scope of ESP activities conducted.

17.17.4 Conclusion (Quality Assurance Records)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented an acceptable level of control for quality assurance records. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 helps to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.18 Audits

17.18.1 Technical Information in the Application (Audits)

The applicant supplied information on audits in SSAR Section 17.1, which includes the QA Manual. As discussed in Inspection Report 0520008/2003001, the manual states that the Dominion QA procedures contain the standards, requirements, or guides which form the basis of the procedures implementing this section.

The QA Manual states that administrative procedures describe the requirements for audits, which are performed on a formal, preplanned audit schedule. Under these procedures, the applicant periodically reviews and revises the audit system as necessary to ensure coverage commensurate with current and planned activities. The applicant may perform additional audits as deemed necessary by management. The quality status and safety importance of the activities being performed determines the scope of the audit. Trained personnel who do not have direct responsibilities in the area being audited conduct the investigation in accordance with preplanned and approved audit plans or checklists.

The Nuclear Oversight Group conducts periodic internal and external audits. It conducts internal audits to determine the adequacy of programs and procedures and whether they are meaningful and in compliance with the overall QA program. External audits determine the adequacy of vendor and contractor Appendix B programs. Audits must be performed in those areas where the requirements of Appendix B are being implemented.

The QA Manual states that the applicant's management responds to all audits and initiates corrective action when indicated. The applicant documents followup of applicable areas through inspections, review, reaudits, or other appropriate means to verify implementation of assigned corrective action.

17.18.2 Regulatory Evaluation (Audits)

While the NRC does not require an ESP applicant to control audits in accordance with the criteria of Appendix B to 10 CFR Part 50, Section 17.1.1 of RS-002 contains guidance for the staff to use in evaluating an ESP applicant's control of audits. RS-002, paragraph 17.1.1.18, provides the QA measures that constitute an acceptable level of audit control. Acceptable audits should include (1) provisions for audits to verify compliance with all aspects of QA measures and to determine the effectiveness of these measures, and (2) responsibilities and procedures for conducting, documenting, and reviewing the results of audits (including designating management levels to review and assess audit results).

17.18.3 Technical Evaluation (Audits)

The staff reviewed all audits and the requisite audit reports that cover Dominion's ESP activities. Inspection Report 05200008/2003001 contains details of this review.

17.18.3.1 Dominion

The QA Manual delineates the QA plan for the development and conduct of audits for ESP activities. The applicant performed internal audits of selected aspects of the ESP activities with a frequency commensurate with safety significance. Nuclear oversight personnel conducted periodic internal and external audits on a formal, preplanned audit schedule.

Nuclear oversight personnel conducted internal audits to determine the adequacy of programs and procedures to ensure compliance with the overall QA program. Audits were scheduled and conducted using existing operational procedures. As discussed in Inspection Report 0520008/2003001, the staff reviewed the Dominion internal auditing procedures and found them to be adequate.

Dominion's Nuclear Oversight Group also conducted external audits to determine the adequacy of the contractors' QA programs. Areas reviewed included, but were not limited to, activities associated with the preparation, review, approval, and control of design and design changes; procurement documents; instructions, procedures, and drawings; and indoctrination and training programs. Nuclear oversight personnel reported the results of each audit in writing to the Project Manager, the Vice President for Nuclear Support Services, the Senior Vice President for Nuclear Operations, and the Chief Nuclear Officer. Where corrective action measures were indicated, the Nuclear Oversight Group conducted documented followup to verify implementation of the assigned corrective action.

As discussed in Inspection Report 0520008/2003001, the staff interviewed Dominion QA personnel who conducted audits of ESP activities and reviewed personnel training and qualification records. In addition to routine individual and continuous training, personnel performing ESP specific activities received training. The staff reviewed the compliance of Dominion personnel with applicable procedural guidance and requirements for training and qualification, and verified the adequacy of the procedure. In addition, the staff reviewed training records and personnel qualifications. The staff did not note any deficiencies.

The applicant listed Bechtel on the Dominion safety-related vendor list as a supplier qualified to provide design and engineering services for major projects, including the ESP project. As discussed in Inspection Report 0520008/2003001, the applicant based its designation of Bechtel as a qualified supplier, in part, on two supplier audits that it had conducted within the year preceding submission of the ESP application. Specifically, the joint Nuclear Utility Procurement Issues Committee (NUPIC) conducted an audit during November 2002, and Dominion conducted a vendor programs audit during July 2003. The NUPIC audit verified continued satisfactory implementation of the Bechtel Nuclear Quality Program in meeting the intent of Appendix B to 10 CFR Parts 50 and 21.

As is also discussed in Inspection Report 0520008/2003001, the staff reviewed Bechtel's audit planning. The staff found that documents specifying audit plans were sufficient in detail to meet Bechtel's procedure requirements and that Bechtel performed audits as scheduled.

The staff reviewed Bechtel procedures for audits and found that Bechtel met procedural requirements for auditing design and construction phase project activities at least annually or once within the life of the project, whichever is shorter. Applicable procedures included requirements for auditor qualifications, audit implementation guidance, audit report documentation, and audit followup and closeout guidance. The staff found that these procedures had been met.

The staff reviewed Bechtel procedures for qualification of auditors and found that the auditor qualification requirements are equivalent in substance to the criteria of Appendix B to 10 CFR Part 50 and consensus standards. The procedures detail topics such as training audit participation, examination, and maintenance of auditor qualifications.

Based on a review of the NUPIC, Dominion, and primary contractor audits, the staff found that ESP audit activities were of sufficient scope and depth to provide reasonable assurance of the applicant and contractors' qualifications to perform safety-related work. In particular, the staff noted that audit activities included a review of significant quality attributes, such as design and software control, procurement activities, training, record retention, and corrective action. The staff determined that deficiencies identified during these audit activities were adequately resolved.

17.18.4 Conclusion (Audits)

As set forth above, the staff reviewed the QA measures employed by the applicant and its primary contractor and concludes that they implemented acceptable audit controls. The staff considered the regulatory guidance of Section 17.1.1of RS-002 in their review of this portion of the application. The guidance in RS-002 help to provide reasonable assurance that information derived from ESP activities that could be used in the design and/or construction of SSCs important to safety would support satisfactory performance of such SSCs once in service.

17.19 Conclusions

Based on its review and evaluation of the QA measures contained or referenced in the SSAR, as set forth above, the staff concludes the following:

- The organizations and persons performing QA functions have the independence and authority necessary to effectively carry out QA measures without undue influence from those directly responsible for costs and schedules.
- The QA procedures and measures, when properly implemented, are equivalent in substance to the criteria of Appendix B to 10 CFR Part 50 and conform to the guidance in RS-002, Section 17.1.1.
- The applicant applied QA measures to all ESP activities that established information regarding (1) the design and construction of SSCs important to safety which might be constructed on the proposed site, or (2) the establishment of site characteristics for comparison to the values of site parameters postulated in a certified design or to serve as design inputs for a custom design. The measures provide adequate confidence that information provided in the ESP application and accepted by the NRC is reliable and, when used as input for the design or construction of SSCs important to safety, would not adversely impact their ability to perform satisfactorily in service. Therefore, the staff concludes that the applicant implement acceptable QA measures fore the ESP activities.

18. REVIEW BY THE ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

The Advisory Committee on Reactor Safeguards (ACRS) completed its review of the application from Dominion Nuclear North Anna, LLC, for an early site permit (ESP) for the North Anna ESP site and the U.S. Nuclear Regulatory Commission (NRC) staff's safety evaluation report (SER) for this application. The ACRS ESP subcommittee began its detailed review of the North Anna ESP application and the staff's draft safety evaluation report (DSER) in December 2004. The ACRS ESP subcommittee met with representatives from Dominion and the staff on March 2, 2005. The ACRS held its full committee meeting on the North Anna ESP DSER on March 3, 2005. The discussions during these meetings focused on the open items from the DSER. On the basis of its review, the ACRS issued an interim letter report, dated March 11, 2005, which addresses the portions of the North Anna ESP application that concern safety. The staff responded to the interim letter report in its letter dated June 3, 2005 (ADAMS Accession No. ML051260009). This report captures the actions that the staff has taken in response to the comments and recommendations identified by the ACRS in its interim report of March 11, 2005, as described in the staff's response letter of June 3, 2005. The staff issued its FSER after the resolution of open items discussed in the DSER and after receipt of the ACRS interim letter report to the Commission related to its review.

During its meeting with the ACRS on July 6, 2005, the staff discussed the resolution of open items and the responses to ACRS comments on the major elements of the ESP review. At the 524th meeting of the ACRS, the full Committee considered the staff's FSER, as well as Dominion's North Anna ESP application, and issued its final letter report to the NRC Chairman on July 18, 2005. That letter report is included as Appendix E to this report.

In its final letter report dated July 18, 2005, the ACRS concurred with the NRC staff's conclusions concerning Dominion's ESP application and concluded that the proposed site, subject to the permit conditions recommended by the staff, can be used for up to two nuclear power units each of up to 4300 MW thermal without undue risk to public health and safety.

19. CONCLUSIONS

In accordance with Subpart A, "Early Site Permits," of Title 10, Part 52, "Early Site Permits," Standard Design Certifications, and Combined Licenses for Nuclear Power Plants," of the Code of Federal Regulations (10 CFR Part 52), the staff of the U.S. Nuclear Regulatory Commission reviewed the site safety analysis report and emergency planning information included in the early site permit (ESP) application submitted by Dominion Nuclear North Anna, LLC, for the North Anna ESP site. On the basis of its evaluation and independent analyses as discussed in this safety evaluation report (SER), the staff concludes that the North Anna ESP site characteristics comply with the requirements of 10 CFR Part 100, "Reactor Site Criteria." with the limitations and conditions proposed by the staff in this SER for inclusion in any ESP that might be issued. Further, for the reasons set forth in this SER, the staff concludes that, taking into consideration the site criteria contained in 10 CFR Part 100, a reactor, or reactors, having characteristics that fall within the parameters for the site, and which meets the terms and conditions proposed by the staff in this SER, can be constructed and operated without undue risk to the health and safety of the public. For the same reasons, the staff also concludes that issuance of the requested ESP will not be inimical to the common defense and security or to the health and safety of the public. If issued, the North Anna ESP may be referenced in an application to construct or to construct and operate a nuclear power reactor, or reactors, with a total generating capacity of up to 8600 megawatts (thermal) at the ESP site, subject to the terms and conditions of the permit.

Appendix A

Permit Conditions, COL Action Items, Site Characteristics, and Bounding Parameters

A.1 Permit Conditions Table A-2
Definition
Section 2.4 - Hydrology
Section 2.5 - Geology, Seismology, and Geotechnical Engineering
A.2 COL Action Items Table A-4
Definition
Section 2.1 - Introduction
Section 2.2 - Nearby Industrial, Transportation, and Military Facilities
Section 2.3 - Meteorology
Section 2.4 - Hydrology
Section 2.5 - Geology, Seismology, and Geotechnical Engineering
Section 11.1 - Radiological Effluent Release Dose Consequences from Normal Operations A-8
Section 13.6 - Industrial Security
A.3 Site Characteristics Table A-9
Definition
Section 2.1 - Introduction
Section 2.3 - Meteorology
Section 2.4 - Hydrology
Section 2.5 - Geology, Seismology, and Geotechnical Engineering
A.4 Bounding Parameters Table
Definition
Definition
Figure 1 The proposed facility boundary for the ESP site
Figure 2 Selected Horizontal and Vertical Response Spectra for the Hypothetical Rock
Outcrop Control Point SSE at the Top of Zone III-IV Material

A.1 Permit Conditions

<u>Permit Condition</u>: The Commission's regulation in 10 CFR § 52.24 authorizes the inclusion of limitations and conditions in an ESP. A permit condition is not needed when an existing NRC regulation requires a future regulatory review of a matter to ensure adequate safety during design, construction, or inspection activities for a new plant. The staff is proposing that the Commission include eight permit conditions, which are set forth below, to control various safety matters.

Permit Condition No.	SER Section	Description
		2.1 - Introduction
The NRC staff proposes to include a condition in any ESP that might be issued in connection with this applied to govern exclusion area control. This permit condition would require that approvals called for by State law among other matters, agreements providing for shared control of the North Anna ESP exclusion area, be cannot and the agreements executed before construction of a nuclear power plant begins under a construction per COL referencing the ESP.		
2	2.1.2	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application requiring that the ESP holder obtain the right to implement the site redress plan before initiating any activities authorized by 10 CFR 52.25.
		2.4 - Hydrology
3	2.4.1	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application requiring that an applicant referencing such an ESP in an application for a fourth proposed unit use a dry cooling tower system during normal operation.

Permit Condition No.	SER Section	Description ::	
4	2.4.13	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application requiring that an applicant referencing such an ESP design any new unit's radwaste systems with features to preclude any and all accidental releases of radionuclides into any potential liquid pathway.	
		2.5 - Geology, Seismology, and Geotechnical Engineering	
5	2.5.1	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application requiring that the ESP holder and/or an applicant referencing such an ESP replace weathered or fractured rock at the foundation level with lean concrete before initiation of foundation construction.	
6	2.5.1	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application prohibiting the ESP holder or an applicant referencing such an ESP from using an engineered fill with high compressibility and low maximum density, such as saprolite.	
	2.5.4	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application requiring that the ESP holder and/or an applicant referencing such an ESP perform geologic mapping of future excavations for safety-related structures, evaluate any unforseen geologic features that are encountered, and notify the NRC no later than 30 days before any excavations for safety-related structures are open for NRC's examination and evaluation.	
8	2.5.4	The NRC staff proposes to include a condition in any ESP that might be issued in connection with this application requiring that the ESP holder and/or an applicant referencing such an ESP improve Zone II saprolitic soils to reduce any liquefaction potential if safety-related structures are to be founded on them.	

.

and the second second

Mr.

en de la composition La composition de la

and the control of th

A.2 COL Action Items

COL Action Items: The combined license (COL) action items set forth in the SER and incorporated herein identify certain matters that shall be addressed in the final safety analysis report (FSAR) by an applicant who submits an application referencing the North Anna ESP. These items constitute information requirements but do not form the only acceptable set of information in the FSAR. An applicant may depart from or omit these items, provided that the departure or omission is identified and justified in the FSAR. In addition, these items do not relieve an applicant from any requirement in 10 CFR Parts 50 and 52 that govern the application. After issuance of a construction permit (CP) or COL, these items are not controlled by NRC requirements unless such items are restated in the preliminary safety analysis report or FSAR, respectively.

The staff identified the following COL action items with respect to individual site characteristics in order to ensure that particular significant issues are tracked and considered during the review of a later application referencing any ESP that might be issued for the North Anna ESP site.

Action Item No.	SER Section	Subject To Be Addressed	Reason for Deferral
		2.1 - Introduction	
2.1-1	2.1.1	A COL or CP applicant should provide latitude, longitude, and Universal Transverse Mercator coordinates for new units.	Exact unit locations not known at ESP stage.
2.1-2	2.1.2	A COL or CP applicant should make arrangements with the appropriate local, State, Federal, or other public agencies to provide for control of the portions of Lake Anna and the WHTF that are within the exclusion area.	Such arrangements not required at ESP stage.
		2.2 - Nearby Industrial, Transportation, and Military Facil	lities
2.2-1	2.2.2	A COL or CP applicant should perform an evaluation of industrial hazards, if any, associated with this site.	No hazard present, but zoning could allow them during ESP term.
2.2-2	2.2.3	A COL or CP applicant should assess design-specific interactions between the existing and new units and, if necessary, propose measures to account for such interactions	New unit design and specific location not known at ESP stage

Action Item No.	SER Section	Subject To Be Addressed	Reason for Deferral
		2.3 - Meteorology	
2.3-1	2.3.2	A COL or CP applicant should, as part of detailed engineering, assess the potential impact of the dry cooling towers on the design and operation of the new facility.	Cooling tower location and design not known at ESP stage
2.3-2	2.3.4	A COL or CP applicant should assess dispersion of airborne radioactive materials to the control room.	Control room location and design not known at ESP stage.
2.3-3	2.3.5	A COL or CP application should verify specific release point characteristics and specific locations of receptors of interest used to generate the long-term (routine release) atmospheric dispersion site characteristics.	Exact release points and receptor locations not known at ESP stage.
:	:	2.4 - Hydrology	
2.4-1	2.4.1	A COL or CP application should provide the NRC for review the layout of intake and discharge tunnels and the construction techniques to be used before commencement of construction activities.	The feasibility of the use of the existing discharge tunnel from the abandoned units is not known at the ESP stage.
2.4-2	2.4.1	A COL or CP applicant should develop a plant shutdown protocol for proposed Unit 3 when water surface elevation in Lake Anna falls to 242 ft MSL	Future uses and therefore low-level frequency not known at ESP stage. Water surface elevation of 73.8 m (242 ft) MSL is the applicant-proposed shutdown level for the new units.
2.4-3	2.4.1	A COL or CP applicant should show that the combined cooling water flow rate for the new units does not exceed 2540 cfs.	Maximum additional water available for use by the new units is limited by the water budget calculation.
2.4-4	2.4.2	A COL or CP applicant should show that the ESP site is graded such that any flooding caused by local intense precipitation will be discharged to Lake Anna even in the event that any and all active drainage systems may be blocked and unable to function.	Detailed design of the plants, including the site grade are beyond the scope of an ESP review.

Action Item No.	SER Section	Subject To Be Addressed	Reason for Deferral
2.4-5	2.4.2	A COL or CP applicant should show that all safety-related structures are located at elevations above the maximum water surface elevation produced by local intense precipitation, or that adequate flood protection measures are in place to ensure their safety.	Certain locations within the ESP site area can be at the flood elevation of the site in response to local intense precipitation. It is not feasible to determine flooding protection needs at the ESP stage in response to local intense precipitation because final site grade and drainage patterns are not yet known.
2.4-6	2.4.4	A COL or CP applicant should demonstrate that the UHS reservoirs are designed so as to satisfy the NRC's regulations.	Detailed engineering design of underground UHS reservoirs, should they be needed, to preclude uplift due to buoyancy is not within the scope of ESP review.
2.4-7	2.4.4	A COL or CP applicant should demonstrate that the UHS storage basins provide storage sufficient to meet 30-day emergency cooling water needs accounting for any and all losses including but not limited to seepage, evaporation, and icing for the selected plants, if the selected plant designs includes a UHS. Programmatic provisions should be provided for plant shutdown when the liquid water volume in the UHS storage basin is inadequate.	Detailed engineering design of underground UHS reservoirs, should they be needed, to ensure adequate capacity is not within the scope of ESP review.
2.4-8	2.4.8	A COL or CP applicant should address whether Lake Anna or the WHTF will be used for safety-related water withdrawals.	The ESP water budget analysis relies on independent UHS reservoirs only, but need for a UHS is not known at the ESP stage.
2.4-9	2.4.10	A COL or CP applicant should adequately address the issue of slope embankment protection during design of the intake structure.	Safety of intake structure from slope embankment failure is a part of intake structure design, which is beyond the scope of an ESP review.

Action Item No.	SER Section	Subject To Be Addressed	Reason for Deferral
2.4-10	2.4.11	A COL or CP applicant should identify the most restrictive cooling water needs to account for the frequency of low-flow conditions and related minimum water elevation in Lake Anna and propose corresponding	Technical specifications for safe shutdown of the plant due to low water conditions are based on consideration
• •	* * * * * * * * * * * * * * * * * * *	actions.	of the details of the design of the normal cooling water heat sink that are not available at the ESP stage.
		2.5 - Geology, Seismology, and Geotechnical Information	on
2.5-1	2.5.1	A COL or CP applicant should perform additional borings to identify any weathered or fractured rock beneath the new foundations.	Exact unit locations not known at ESP stage.
2.5-2	2.5.4	A COL or CP applicant should submit plot plans and the profiles of all seismic Category I facilities for comparison with the subsurface profile and material properties.	Exact unit locations and design not known at ESP stage.
2.5-3	-2.5.4	An ESP holder and/or a COL or CP applicant should submit excavation and backfill plans for NRC review.	Exact unit locations and design not known at ESP stage.
2.5-4	2.5.4	A COL or CP applicant should assess groundwater conditions as they affect foundation stability or detailed dewatering plans.	Exact unit locations and design not known at ESP stage.
2.5-5	2.5.4	A COL or CP applicant should perform additional soil column amplification /attenuation analyses.	Exact unit locations not known at ESF stage.
2.5-6	2.5.4	A COL or CP applicant should provide analysis of the stability of all planned safety-related facilities, including bearing capacity, rebound, settlement, and differential settlements under deadloads of fills and plant facilities, as well as lateral loading conditions.	Exact unit locations and design not known at ESP stage.
2.5-7	2.5.4	A COL or CP applicant should provide design-related criteria pertinent to structural design.	Exact unit locations and design not known at ESP stage.
		and the second of the second o	1
•			
٠.		A-7	•

Action Item No.			Reason for Deferral	
2.5-8	2.5.4	A COL or CP applicant should provide specific plans for each proposed ground improvements technique it plans to employ so that the staff may determine whether the chosen techniques will ensure that Zone IIA saprolitic soils will be able to support safety-related foundations.	Exact unit locations and design not known at ESP stage.	
2.5-9	2.5-4	A COL or CP applicant should determine the average shear-wave velocity of the material underlying the foundation for the reactor containment and verify that it is equal to or exceeds that of the chosen design.	Site average shear-wave velocity of the Zone III-IV bedrock slightly less than design value provided at ESP stage.	
2.5-10	2.5.5	A COL or CP applicant should conduct a more detailed dynamic analysis of the stability of the existing slope and any new slopes using the safeshutdown earthquake (SSE) ground motion.	Locations of safety-related structures relative to the existing or new slopes not known at ESP stage.	
2.5-11	2.5.5	A COL or CP applicant should provide plot plans and cross sections/profiles of all safety-related slopes, and specify the measures that it will take to ensure the safety of slopes and any structures located adjacent to the slopes.	Locations of safety-related structures relative to the existing or new slopes not known at ESP stage.	
	1	1.1 - Radiological Effluent Release Dose Consequences from Nor	mal Operations	
11.1-1	11.1.4	A COL or CP applicant should verify that the calculated radiological doses to members of the public from radioactive gaseous and liquid effluents for any facility to be built on the North Anna site are bounded by the radiological doses included in the ESP application and reviewed by the NRC.	Specific details of how the new facility will control, monitor, and maintain radioactive gaseous and liquid effluents not known at ESP stage.	
		13.6 - Industrial Security		
13.6-1	13.6	A COL or CP applicant should provide specific designs for protected area barriers.	Exact locations and design of barriers not known at ESP stage.	

A.3 Site Characteristics

<u>Site Characteristics</u>: Based on site investigation, exploration, analysis and testing, the applicant initially proposes a set of site characteristics. These site characteristics are specific physical attributes of the site, whether natural or man-made. Site characteristics, if reviewed and approved by the staff, are specified in the ESP. The staff proposes to include the following site characteristics in any ESP that might be issued for the North Anna site.

Site Characteristic	Value	Definition
•		
	2.1 - Introduction	
Exclusion Area Boundary	The perimeter of a 5000 ft radius circle from the center of the abandoned Unit 3 containment	The area surrounding the reactor, in which the reactor licensee has the authority to determine all activities including exclusion or removal of personnel and property from the area
Low Population Zone	6 mile radius circle centered at the Unit 1 containment building	The area immediately surrounding the exclusion area which contains residents
Population Center Distance	8 miles	The minimum allowable distance from the reactor to the nearest boundary of a densely populated center containing more than about 25,000 residents

Site Characteristic		Value	Definition
		2.3 - Meteorology	
Ambient Air Tempera	ture and Humidity		
Maximum Dry-Bulb Temperature	2% annual exceedance	90 °F with 75 °F concurrent wet- bulb	The ambient dry-bulb temperature (and coincident wet-bulb temperature) that will be exceeded 2% of the time annually
	0.4% annual exceedance	95 °F with 77 °F concurrent wet- bulb	The ambient dry-bulb temperature (and coincident wet-bulb temperature) that will be exceeded 0.4% of the time annually
	100-year return period	109 °F	The ambient dry-bulb temperature that has a 1% annual probability of being exceeded (100-year mean recurrence interval)
Minimum Dry-Bulb Temperature	99% annual exceedance	18 °F	The ambient dry-bulb temperature below which dry-bulb temperatures will fall 1% of the time annually
	99.6% annual exceedance	14 °F	The ambient dry-bulb temperature below which dry-bulb temperature will fall 0.4% of the time annually
	100-year return period	-19 °F	The ambient dry-bulb temperature for which a 1% annual probability of a lower dry-bulb temperature exists (100-year mean recurrence interval)

Site Cha	racteristic	Value	Definition
Maximum Wet-Bulb Temperature	0.4% annual exceedance	79 ° F	The ambient wet-bulb temperature tha will be exceeded 0.4% of the time annually
taris (for the second	1	88 ° F	The ambient wet-bulb temperature that has a 1% annual probability of being exceeded (100-year mean recurrence interval)
Basic Wind Speed	,	*	· · · · · · · · · · · · · · · · · · ·
3-s Gust		96 mi/hr	The 3-s gust wind speed at 33 ft above the ground that has a 1% annual probability of being exceeded (100-year mean recurrence interval)
Design-Basis Tornado			
Maximum Wind Speed		260 mi/h	Maximum wind speed resulting from passage of a tornado having a probability of occurrence of 10 ⁻⁷ per year
Translational Speed		52 mi/hr	Translation component of the maximum tornado wind speed
Rotational Speed	10 mm	208 mi/hr	Rotation component of the maximum tornado wind speed
Radius of Maximum Ro	•	150 ft	Distance from the center of the tornado at which the maximum rotational wind speed occurs
	1.	•	
	en e	A-11	

Site Characteristic	Value	Definition
Maximum Pressure Drop	1.5 lbf/in²	Decrease in ambient pressure from normal atmospheric pressure resulting from passage of the tornado
Maximum Rate of Pressure Drop	0.76 lbf/in²/s	Rate of pressure drop resulting from the passage of the tornado
Winter Precipitation		
100-Year Snowpack	30.5 lbf/ft²	Weight of the 100-year return period snowpack (to be used in determining extreme winter precipitation loads for roofs)
48-Hour Probable Maximum Winter Precipitation	20.75 in. of water	Probable maximum precipitation during the winter months (to be used in conjunction with the 100-year snowpack in determining extreme winter precipitation loads for roofs)
Ultimate Heat Sink Ambient Air Temperature and	Humidity	
Meteorological Conditions Resulting in the Minimum Water Cooling During Any 1 Day	78.9 °F wet-bulb temperature with coincident 87.7 °F dry-bulb temperature	Historic worst 1-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures
Meotorological Conditions Resulting in the Minimum Water Cooling During Any Consecutive 5 days	77.6 °F wet-bulb temperature with coincident 80.9 °F dry-bulb temperature	Historic worst 5-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures resulting in minimum water cooling
Meteorological Conditions Resulting in the Maximum Evaporation and Drift Loss During Any Consecutive 30 Days	76.3 °F wet-bulb temperature with coincident 79.5 °F dry-bulb temperature	Historic worst 30-day daily average of wet-bulb temperatures and coincident dry-bulb temperatures

Site Characteristic	Value	Definition
Meteorological Conditions Resulting in the Maximum Water Freezing in the UHS Water Storage Facility	322 °F degree-days below freezing	Historic maximum cumulative degree- days below freezing
Short-Term (Accident Release) Atmospheric Di	spersion	
0–2 hr χ/Q Value @ EAB	2.26 × 10 ⁻⁴ s/m ³	The 0–2 hour atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the EAB
0-8 hr x/Q Value @ LPZ	2.05 × 10 ⁻⁵ s/m ³	The 0–8 hour atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ
8–24 hr x/Q Value @ LPZ	1.36 × 10 ⁻⁵ s/m ³	The 8–24 hour atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ
1-4 day _X /Q Value @ LPZ	5.58 × 10 ⁻⁶ s/m ³	The 1–4 day atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ
4–30 day _X /Q Value @ LPZ	1.55 × 10 ⁻⁶ s/m ³	The 4–30 day atmospheric dispersion factor to be used to estimate dose consequences of accidental airborne releases at the LPZ

A CONTRACTOR OF THE SECOND SEC

Site Characteristic	Value	Definition
Annual Average Undepleted/No Decay x/Q Value @ EAB	3.7 x 10 ⁻⁶ s/m ³	The maximum annual average EAB undepleted/no decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26 Day Decay x/Q Value @ EAB	3.7 x 10 ⁻⁸ s/m ³	The maximum annual average EAB undepleted/2.26 day decay χ/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00 Day Decay x/Q Value @ EAB	3.3 x 10 ⁻⁸ s/m ³	The maximum annual average EAB depleted/8.00 day decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average D/Q Value @ EAB	1.2 x 10 ⁻⁸ 1/m ²	The maximum annual average EAB D/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/No Decay X/Q Value @ Nearest Resident	2.4 x 10 ⁻⁶ s/m ³	The maximum annual average resident undepleted/no decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26 Day Decay x/Q Value @ Nearest Resident	2.4 x 10 ⁻⁶ s/m ³	The maximum annual average resident undepleted/2.26 day decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual

Site Characteristic	Value	Definition
Annual Average Depleted/8.00 Day Decay x/Q Value @ Nearest Resident	2.1 x 10 ⁻⁶ s/m ³	The maximum annual average resident depleted/8.00 day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average D/Q Value @ Nearest Resident	7.2 x 10 ⁻⁹ 1/m ²	The maximum annual average resident D/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/No Decay x/Q Value @ Nearest Meat Animal	1.4 x 10 ⁻⁶ s/m ³	The maximum annual average meat animal undepleted/no decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26 Day Decay χ/Q Value @ Nearest Meat Animal	1.4 x 10 ⁻⁶ s/m ³	The maximum annual average meat animal undepleted/2.26 day decay x/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00 Day Decay x/Q Value @ NearestMeat Animal	1.2 x 10 ⁻⁶ s/m ³	The maximum annual average meat animal depleted/8.00 day decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual

Site Characteristic	Value	Definition
Annual Average D/Q Value @ Nearest Meat Animal	3.1 x 10 ⁻⁹ 1/m ²	The maximum annual average meat animal D/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/No Decay χ/Q Value @ Nearest Veg. Garden	2.0 x 10 ⁻⁶ s/m ³	The maximum annual average vegetable garden undepleted/no decay χ/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Undepleted/2.26 Day Decay x/Q Value @ Nearest Veg. Garden	2.0 x 10 ⁻⁶ s/m ³	The maximum annual average vegetable garden undepleted/2.26 day decay χ/Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average Depleted/8.00 Day Decay	1.8 x 10 ⁻⁶ s/m³	The maximum annual average vegetable garden depleted/8.00 day decay χ /Q value for use in determining gaseous pathway doses to the maximally exposed individual
Annual Average D/Q Value @ Nearest Veg. Garden	6.0 x 10 ⁻⁹ 1/m ²	The maximum annual average vegetable garden D/Q value for use in determining gaseous pathway doses to the maximally exposed individual

Site Characteristic	Value	Definition					
2.4 - Hydrology							
Hydrology							
Proposed Facility Boundaries	Appendix A, Figure 1 (FSER Figure 2.4.14-1) shows the proposed facility boundary using its corners numbered 1-8 and also lists the geographical coordinates of these points in Virginia State Plane Coordinate System using NAD 83 Datum. The coordinates are expressed in feet.	ESP site boundary map					
Minimum Lake Water Level	242ft MSL	Low water surface shutdown elevation for operation of NAPS Units 1 and 2, and of proposed Unit 3					
Maximum Elevation of Ground Water	82.3 m (270ft) MSL or 1 ft below the free surface, whichever is higher	The maximum elevation of ground water at the ESP site					
Flood Elevation	82.3 m (270ft) MSL	Maximum flood level at the ESP site due to a PMF in Lake Anna's watershed, simultaneous failure of upstream storage reservoirs, and coincident wind-wave action.					
Local Intense Precipitation	46.61 cm (18.35in)/hour and 15.42 cm (6.1 in) in 5 minutes	Maximum potential rainfall at the immediate ESP site.					
Frazil and Anchor Ice	The ESP site has the potential for formation of frazil and anchor ice.	Accumulated ice formation in a turbulent flow condition.					
		e e e e e e e e e e e e e e e e e e e					

Site Characteristic	Value	Definition
Maximum Ice Thickness	43.4 cm (17.1 in) thick	Ice sheet thickness at Lake Anna (based on maximum cumulative degree-days below freezing of 178.8 °C (321.8 °F))
Maximum Cumulative Degree-Days Below Freezing	178.8 °C (322 °F)	A measure of severity of winter weather conditions conducive to ice formation (computed using air temperature data from Piedmont Research Station)
Hydraulic Conductivity	1.0 m/d (3.4 ft/d)	Ground water flow rate per unit hydraulic gradient.
Hydraulic Gradient	0.03 m/m (0.03 ft/ft)	Slope of ground water surface under unconfined conditions or slope of hydraulic pressure head under confined conditions.

Site Characteristic		Value	Definition	
	2.5 - Geology, Se	ismology, and Geotechnical Engin	eering	
Basic Geologic and Sei	smic Information			
Capable Tectonic Structu			No fault displacement potential within the investigative area	
Vibratory Ground Motio	n ·			
Design Response Spectra		Appendix A, Figure 2 (FSER Figure 2.5.2-6)	Site Specific response spectra	
Stability of Subsurface	Materials and Foundation	IS		
Zone III Weathered Rock (205ft - 298ft)	Minimum Bearing Capacity	16 ksf	Allowable load-bearing capacity of layer supporting plant structures	
	Shear Wave Velocity	2000 ft/sec	Propagation of shear waves through foundation materials	
Zone III - IV	Minimum Bearing Capacity	80 ksf	Allowable load-bearing capacity of layer supporting plant structures	
· · · · · · · · · · · · · · · · · · ·	Shear Wave Velocity	3300 ft/sec	Propagation of shear waves through foundation materials	
Zone IV Bedrock (188ft - 298ft)	Minimum Bearing Capacity	160 ksf	Allowable load-bearing capacity of layer supporting plant structures	
		6300 ft/sec	Propagation of shear waves through foundation materials	
and the second s				

The transfer of the second

A.4 Bounding Parameters

<u>Plant Parameter Envelope</u>: A plant parameter envelope (PPE) sets forth postulated values of design parameters that provide design details to support the NRC staff's review of an ESP application. A controlling PPE value, or bounding parameter value, is one that necessarily depends on a site characteristic. As the PPE is intended to bound multiple reactor designs, the actual design selected in a combined license (COL) or construction permit (CP) application referencing an ESP would be reviewed to ensure that the design fits within the bounding parameter values. Otherwise, the COL or CP applicant would need to demonstrate that the design, given the site characteristics in the ESP, complies with the Commission's regulations. Should an applicant reference an ESP for a design that is not certified, the applicant would need to demonstrate that the design's characteristics fall within the bounding parameter values.

Bounding Parameters	Value	Definition
	· · · · · · · · · · · · · · · · · · ·	
·	2.4 - Hydrology	
Maximum Cooling Water Flow Rate - Unit 3	2540 cfs	Total cooling water flow rate through the condenser (also the rate of withdrawal from Lake Anna and return to the WHTF)
Maximum Cooling Water Temperature Rise	18°F	Temperature rise across the condenser (temperature of water out minus the temperature of water in) when the lake level is ≤ 244 MSL
Maximum Inlet Temperature	95°F	Maximum temperature of water incoming into condenser when the lake level is ≤ 244 MSL
Minimum Site Grade	82.6 (271 ft) MSL	Finished site grade

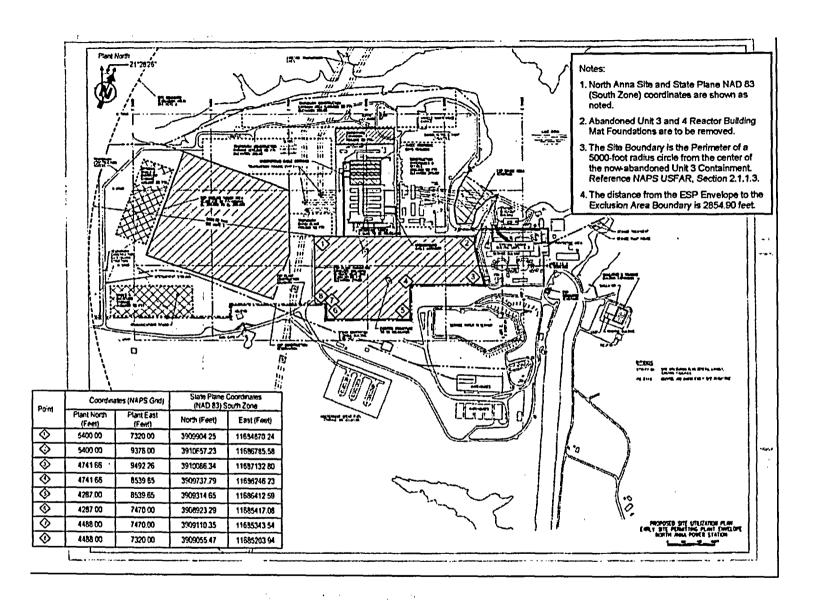


Figure 1 (Figure 2.4.14-1) The proposed facility boundary for the ESP site

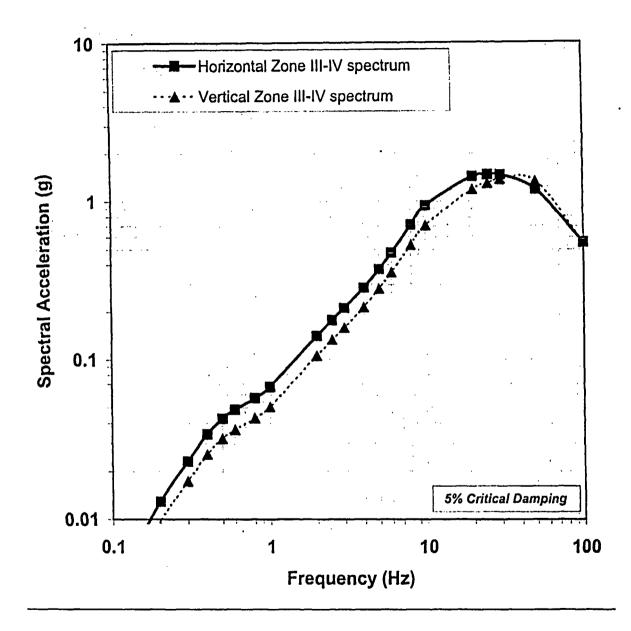


Figure 2 (Figure 2.5.2-6 (SSAR Figure 2.5-48A)) Selected Horizontal and Vertical Response Spectra for the Hypothetical Rock Outcrop Control Point SSE at the Top of Zone III-IV Material

APPENDIX B

CHRONOLOGY

This appendix contains a chronological listing of routine licensing correspondence between the staff of the U.S. Nuclear Regulatory Commission (NRC) and Dominion Nuclear regarding the review of the North Anna early site permit application under Project No. 719 and Docket No. 52-008.

Revisions to the North Anna Early Site Permit Application

Rev.	Date	Accession Number
0	September 25, 2003	ML032731517
1	October 2, 2003	ML032731517
2	July 15, 2004	ML042010010
3	September 7, 2004	ML042590082
4	May 12, 2005	ML051450310
5	July 31, 2005	ML052150226

^{*}Revision 0 and Revision 1 of the application are contained in the same ADAMS package. Revision 1 of the application provides changes to Revision 0 to remove proprietary information from the application.

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
	ML051520461	Revised Schedule for the North Anna Early Site Permit Application Review 14 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources Services, Inc	05200008
12/31/1998	ML041280589	12/31/98-North Anna Early Site Permit Application Response to RAI 2.3.3-1, Meteorological Data 1997, Pages 1 - 169. 169 Page(s)	Graphics incl Charts and Tables	Dominion	NRC/Docume nt Control Desk	05200008
12/31/1998	ML041280588	12/31/98-North Anna Early Site Permit Application Response to RAI 2.3.3-1, Meteorological Data 1996, Pages 1 - 157. 157 Page(s)	Graphics incl Charts and Tables	Dominion	NRC/Docume nt Control Desk	05200008
12/31/1998	ML041280590	12/31/98-North Anna Early Site Permit Application Response to RAI 2.3.3-1, Meteorological Data 1998, Pages 1 - 169. 169 Page(s)	Graphics incl Charts and Tables	Dominion	NRC/Docume nt Control Desk	05200008
03/31/2002	ML041110822	03/31/02-Response to Request for Additional Information RAI 13.3-2 consisting of redacted versions of emergency plans. 14 Page(s)	Emergenc y Preparedn ess- Emergenc y Plan	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author - Affiliation(s)	Addressee Affiliation(s)	Docket Number
09/16/2002	ML022740172	09/16/02-North Anna Early Site Permit Project Quality Assurance Plan. 35 Page(s)	Letter, Quality Assurance Program	Dominion Energy Co, Dominion Generation	NRC/NRR/N RLPO	05000338, 05000339, PROJ0719
01/21/2003	ML030140458	01/21/03-Early Site Permit Project Manager Reassignment For North Anna. 5 Page(s)	Letter	NRC/NRR/NR LPO	Dominion Generation	05000338, 05000339, PROJ0719
04/04/2003	ML030350519	04/04/03-Pre-Application Review of Dominion North Anna Early Site Permit Project Quality Assurance Plan. 15 Page(s)	Letter	NRC/NRR/NR LPO	Dominion Generation	PROJ0719 , PROJ0720

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
04/08/2003	ML030940235	04/08/03-April 1, 2003 - Meeting Summary Regarding Public Meetings on North Anna ESP Review Process, Mineral, VA. 6 Page(s)	Meeting Summary	NRC/NRR/NR LPO	Atomic Energy of Canada, Ltd, Dominion Energy Co, Dominion Generation, Dominion Nuclear Connecticut, Inc, Enercon Services, Inc, Framatome ANP, Inc, Greenpeace, Louisa County, VA, Nuclear Control Institute, Nuclear Energy Institute (NEI), Nuclear Information & Resource Service (NIRS),	PROJ0719
		·			Public	

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
05/06/2003	ML030980003	05/06/03-Letter to J. Hegner providing guidance on how security measures should be addressed in Dominion Energy's application for early site permit at North Anna Site.	Letter	NRC/NRR/NR LPO	Dominion Energy Co	PROJ0719
,		6 Page(s)				
06/02/2003	ML031480470	06/02/03-Letter to J. Hegner, re: "Alternative Energy Sources".	Letter	NRC/NRR/NR LPO	Dominion Energy Co	PROJ0719
		7 Page(s)		4 10 10 2		·
06/11/2003	ML042310215	06/11/03 - E-Mail - Draft North Anna ESP Application Table of Contents. 12 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008, PROJ0719
07/03/2003	ML032160433	07/03/03-North Anna Early Site Permit Project Correspondence Distribution Request.	Letter	Dominion Resources, Inc	NRC/NRR/N RLPO	PROJ0719
		2 Page(s)	1			
07/09/2003	ML042310212	07/09/03 - E-Mail - Response to NRC Inquiry during recent North Anna ESP Site Visit.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008, PROJ0719
		3 Page(s)			· · · · · · · · · · · · · · · · · · ·	1
33						·
		B-5			· .	•

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
08/08/2003	ML042310210	08/08/03 - E-Mail - Disposition of Comments on Certain North Anna ESP Sections. 3 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008, PROJ0719
08/08/2003	ML042050279	08/08/03-E-mail dated 8/8/03 regarding Dominion Energy plans regarding Certain Sections of its ESP Application. 3 Page(s)	E-Mail	Dominion	NRC/NRR/D RIP/RNRP	05200008, PROJ0719
09/25/2003	ML042590086	09/25/03-North Anna Early Site Permit Application. 22 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk, NRC/NRR	05200008, PROJ0719
09/25/2003	ML032731511	09/25/03-Letter transmitting North Anna Early Site Permit Application, Revision 1. 5 Page(s)	Letter, License- Application for Constructi on Permit DKT 50	Dominion Nuclear Connecticut, Inc	NRC/Docume nt Control Desk, NRC/NRR	05000338, 05000339, 05200008, PROJ0719

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
09/25/2003	ML042010015	09/25/03-Letters Accompanying North Anna Early Site Permit Application. 13 Page(s)	Letter, License- Application for Constructi on Permit DKT 50	Dominion, Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk, NRC/NRR	05200008, PROJ0719
09/25/2003	ML051450315	Transmittal of Revision 4 to North Anna Early Site Permit Application. 29 Page(s)	Letter, License- Application for Constructi on Permit DKT 50	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk, NRC/NRR	05200008, PROJ0719
	ML032731602	09/30/03-North Anna Early Site Permit Application, Revision 0, Site Safety Analysis Report, Figures 2.5-46 through 2.5-72. 27 Page(s)	Final Safety Analysis Report (FSAR), License- Application for Constructi on Permit DKT 50	Dominion Nuclear Connecticut, Inc	NRC/Docume nt Control Desk, NRC/NRR	05000338, 05000339, 05200008, PROJ0719
···· .		B-7				,.

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
10/09/2003	ML032600005	10/09/03-Receipt of Application for Early Site Permit For the North Anna Site.	Letter	NRC/NRR/DRI P	Dominion Energy Co	PROJ0719
		7 Page(s)				
10/14/2003	ML032690007	10/14/03-Summary of Meeting Held on September 3, 2003, on Quality Assurance Inspections For The North Anna Early Site Permit Application.	Meeting Summary	NRC/NRR/DRI P	Dominion Energy Co	05000338, 05000339, PROJ0719
		9 Page(s)				
10/22/2003	ML042310298	10/22/03 - E-Mail from Dominion Nuclear - Govt. Official List - Adjusted. 5 Page(s)	E-Mail	Dominion Generation	Bechtel Corp, Dominion Generation, NRC	05200008
10/23/2003	ML032740017	10/23/03-Enclosure 1 - Staff's Schedule for Safety and Environmental Review for North Anna ESP Application. 1 Page(s)	Template	NRC/NRR/DRI P	Dominion Energy Co	05000338, 05000339, 05200008
10/23/2003	ML032740025	10/23/03-Response Letter - Acceptance of Dominion Nuclear North Anna, LLC Application for an ESP For the North Anna Site.	Letter	NRC/NRR/DRI P	Dominion Energy Co	05000338, 05000339, 05200008
		8 Page(s)				

Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
ML042310292	11/03/03 - E-Mail from Dominion Nuclear re:ODEC Point of Contact.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
	2 Page(s)	,			
ML033530342	11/03/03-Letter to J. Dyer from E. Grecheck re: North Anna ESP Application - Service of ESP Application and Notice of Availability.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk, NRC/NRR	05200008
	1 Page(s)			; ;	
ML041190477	11/05/03-E-Mail dated 11/05/03 Conveying MCVH/VCU/Dominion Radiation Emergency Plan.	E-Mail, Emergenc y	Dominion Energy Co	NRC/NRR/D RIP	05200008
	50 Page(s)	ess- Emergenc y Plan, Memorand			
ML041190476	11/05/03-E-mail dated 11/05/03 Conveying North Anna Evacuation Time Estimate. 43 Page(s)	E-Mail, Evacuation Time Estimate/R eport (ETE)	Dominion Generation	NRC/NRR/D RIP	05200008
140	Company of the second of the second	3.00		1.7.40	
	Number ML042310292 ML033530342 ML041190477 ML041190476	Number ML042310292 11/03/03 - E-Mail from Dominion Nuclear re:ODEC Point of Contact. 2 Page(s) ML033530342 11/03/03-Letter to J. Dyer from E. Grecheck re: North Anna ESP Application - Service of ESP Application and Notice of Availability. 1 Page(s) ML041190477 11/05/03-E-Mail dated 11/05/03 Conveying MCVH/VCU/Dominion Radiation Emergency Plan. 50 Page(s) ML041190476 11/05/03-E-mail dated 11/05/03 Conveying North Anna Evacuation Time Estimate. 43 Page(s)	Number Includes Est. Page Count Type ML042310292 11/03/03 - E-Mail from Dominion Nuclear re:ODEC Point of Contact. 2 Page(s) ML033530342 11/03/03-Letter to J. Dyer from E. Grecheck re: North Anna ESP Application - Service of ESP Application and Notice of Availability. 1 Page(s) ML041190477 11/05/03-E-Mail dated 11/05/03 Conveying MCVH/VCU/Dominion Radiation Emergency Plan. 50 Page(s) ML041190476 11/05/03-E-mail dated 11/05/03 E-Mail, Emergency Plan, Memorand a ML041190476 11/05/03-E-mail dated 11/05/03 Conveying North Anna Evacuation Time Estimate. 43 Page(s) E-Mail, Emergency Preparedness-Emergency Plan, Memorand a E-Mail, Emergency Plan, Memorand a	Number Includes Est. Page Count Type Affiliation(s) ML042310292 11/03/03 - E-Mail from Dominion Nuclear re:ODEC Point of Contact. 2 Page(s) ML033530342 11/03/03-Letter to J. Dyer from E. Grecheck re: North Anna ESP Application - Service of ESP Application and Notice of Availability. 1 Page(s) ML041190477 11/05/03-E-Mail dated 11/05/03 Conveying MCVH/VCU/Dominion Radiation Emergency Plan. 50 Page(s) ML041190476 11/05/03-E-mail dated 11/05/03 Conveying North Anna Evacuation Time Estimate. 43 Page(s) E-Mail, Emergenc y Plan, Memorand a E-Mail, Emergenc y Plan, Memorand a E-Mail, Evacuation Time Estimate/R eport (ETE)	Number Includes Est. Page Count Type Affiliation(s) Affiliation(s) ML042310292 11/03/03 - E-Mail from Dominion Nuclear re:ODEC Point of Contact. 2 Page(s) ML033530342 31/03/03-Letter to J. Dyer from E. Grecheck re: North Anna ESP Application - Service of ESP Application and Notice of Availability. 1 Page(s) ML041190477 Conveying MCVH/VCU/Dominion Radiation Emergency Plan. ML041190476 11/05/03-E-Mail dated 11/05/03 Conveying MCVH/VCU/Dominion Radiation Emergency Plan. ML041190476 2079 Conveying North Anna Evacuation Time Estimate. 43 Page(s) Affiliation(s) Affiliation(s) Affiliation(s) Affiliation(s) E-Mail Dominion Conversion NRC/NRR/D E-Mail E-Mail, Emergency Plan, Memorand and NRC/NRR/D E-Mail, Evacuation Time Estimate/Report (ETE)

. . .

. . .

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
11/06/2003	ML033421011	11/06/03-North Anna Early Site Permit Project Correspondence Distribution Request.	Letter	Dominion Resources, Inc	NRC/Docume nt Control Desk	05200008
		2 Page(s)				
12/04/2003	ML042510389	12/04/03 - E-mail - Draft questions for N. Anna site audit.	E-Mail	NRC	Dominion Nuclear North Anna, LLC	05200008
 	ļ ·	2 Page(s)				
12/17/2003	ML042440887	12/17/03 email from T. Banks forwarding Dominion procedures for controlling brush along transmission line rights-of-way.	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC	05200008
L		2 Page(s)				
12/17/2003	ML033580291	12/17/03-North Anna Early Site Permit Application Reference Information. 118 Page(s)	Letter, Report, Technical	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
01/12/2004	ML040230690	01/12/04-Federal Consistency Certification Under Coastal Zone Management Act, Virginia Coastal Resources Management Program, North Anna Early Site Permit Application. 1 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk, State of VA, Dept of Environmenta I Quality	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
01/12/2004	ML040150170	01/12/04-Dominion Nuclear North Anna inspection of applicant and contractor quality assurance activities involved with preparation of application for an early site permit. 53 Page(s)	Inspection Report, Letter	NRC/RGN- II/DRS/EB	Dominion Resources, Inc	05200008
01/13/2004	ML040140614	01/13/04- December 8, 2003- Summary of Public Scoping Meeting with Dominion Nuclear to Support Review of the North Anna Early Site Permit Application. 7 Page(s)	Meeting Summary	NRC/NRR/DRI P/RLEP	Dominion Nuclear North Anna, LLC	05200008
01/13/2004	ML041190479 -	E-mails Conveying Draft Requests For Additional Information (Packages 1-4) to Dominion Regarding North Anna ESP Application. 33 Page(s)	E-Mail	NRC/NRR/DRI P	Dominion Energy Co	05200008
01/13/2004	ML042310179	01/13/04 - E-Mail from Michael Scott re: Draft Requests For Additional Information for North Anna ESP Review. 7 Page(s)	E-Mail, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
01/30/2004	ML042510373	01/30/04 - E-mail - Docketing of Documents. 4 Page(s)	E-Mail	NRC	Dominion Nuclear North Anna, LLC	05200008
02/02/2004	ML042310175	02/02/04 - E-Mail from Michael Scott re: Preliminary Questions - Package #2. 4 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008
02/13/2004	ML042440017	02/13/04- E-mail from T. Banks regarding possible bald eagle nests on Contrary Creek near the North Anna ESP site. 1 Page(s)	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC	05200008
02/26/2004	ML040570166	02/26/04-Enclosure - Revised Review Schedule for Dominion ESP Application. 1 Page(s)	Letter, Schedule and Calendars	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
02/26/2004	ML042310167	02/26/04- E-Mail from Michael Scott re: Preliminary Questions - Package #3. 7 Page(s)	E-Mail	NRC/NRR/DRI P/RLEP	Dominion Generation	05200008
02/26/2004	ML040570185	02/26/04-Revised Date For Transmitting Environmental Requests For Additional Information. 5 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/08/2004	ML040300452	03/08/04-Request for Additional Information Letter No. 1 - Dominion Nuclear North Anna, LLC ESP Application for the North Anna ESP Site (MC1127) 12 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P	Dominion Resources, Inc	05200008
03/12/2004	ML040720580	03/12/04-Request for Additional Information (RAI) Regarding Environmental Portion of Early Site Permit (ESP) Application for North Anna Site (TAC No. MC1128).	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RLEP	Dominion Resources, Inc	05200008
03/17/2004	ML042320168		E-Mail	Dominion	NRC/NRR/D RIP/RNRP	05200008
03/17/2004	ML041740371	E-Mails from Dominion Regarding Revising North Anna ESP Application and Regarding RAI. 4 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008

•

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/18/2004	ML042310172	03/18/04-E-Mail from Michael Scott re: Revised Draft Requests for Additional Information for the North Anna ESP Review. 5 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008
03/19/2004	ML040910433	03/19/04-Transmittal of North Anna Early Site Permit Application, Lake Anna Modeling Calculations.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
03/25/2004	ML040480124	03/25/04-Request For Additional Information Letter No. 2 - Dominion Nuclear North Anna, LLC ESP Application for the North Anna ESP Site. 9 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P	Dominion Resources, Inc	05200008
03/30/2004	ML041280591	03/30/04-North Anna Early Site Permit Application Response to RAI 2.3.3-1, Air Quality - Meteorological Operations, Summary of Meteorological Observations. 14 Page(s)	Graphics incl Charts and Tables	Dominion	NRC/Docume nt Control Desk	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/31/2004	ML040980485	03/31/04-North Anna, Early Site Permit Application Revised Approach for Unit 4 Normal Plant Cooling. 7 Page(s)	Letter	Dominion Nuclear Connecticut, Inc	NRC/Docume nt Control Desk	05200008
04/13/2004	ML042310164	04/13/04 - E-Mail from Michael Scott re: Draft Request For Additional Information Package 4.	E-Mail	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008
04/13/2004	ML041110812	04/13/04-North Anna Early Site Permit	Letter	Dominion	NRC/Docume	05200008
€4.	TORUM!	Application Partial Response to Request for Additional Information No. 1. 42 Page(s)	1 44 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Nuclear North Anna, LLC	nt Control Desk	
04/14/2004	ML042320164	04/14/04- E-Mail from Joseph Hegner of Dominion re: Revising the North Anna ESP Application.	E-Mail	Dominion	NRC/NRR/D RIP/RNRP	0520000
u, Wir	a separation of the second	2 Page(s)			en en	
04/14/2004	ML041050879	04/14/04-New Environmental Project Manager for the Review of the Early Site Permit (ESP) Application for the North Anna Site.	Letter	NRC/NRR/DRI P/RLEP	Dominion Resources, Inc	0520000
	1	2 Page(s)			. 1	
	-	B-15		· L		

. -

.

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
04/15/2004	ML040840202	04/15/04-Request For Additional Information Letter No. 3 - Dominion Nuclear North Anna, LLC Early Site Permit Application for the North Anna ESP Site (TAC No. MC1127). 11 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
05/03/2004	ML042310187	05/03/04 - E-Mail re: Draft Requests for Additional Information Package 5. 9 Page(s)	E-Mail, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Nuclear North Anna, LLC	05200008
05/06/2004	:ML042310185	05/06/04 - E-Mail re: Draft Requests For Additional Information Package 6. 9 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008
05/07/2004	ML041400016	05/07/04-North Anna - Early Site Permit Application Final Response to Request for Additional Information No. 1. 8 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
05/12/2004	ML041190447	05/12/04-Request For Additional Information Letter No. 4 - Dominion Nuclear North Anna, LLC, Early Site Permit Application for the North Anna ESP Site (TAC No. MC1127) 13 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P	Dominion Resources, Inc	05200008
05/17/2004	ML042440879	05/17/04- email from T. Banks forwarding Dominion's response to environmental RAIs for the North Anna ESP. 1 Page(s)	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC	
05/17/2004	ML041450041	05/17/04-Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application Response to Request for Additional Information Regarding Environmental Portion of ESP Application. 95 Page(s)	Letter, Request for Additional Information (RAI)	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
05/26/2004	ML042310182	05/26/04 - E-Mail re: Draft Requests For Additional Information Package 7. 7 Page(s)	E-Mail, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
06/01/2004	ML041480188	06/01/04-Request for Additional Information Letter No. 5 - Dominion Nuclear North Anna Early Site Permit Application for the North Anna ESP Site. 10 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
06/01/2004	ML041400498	06/01/04-Request For Additional Information Letter No. 6 - Dominion Nuclear North Anna, LLC ESP Application for the North Anna ESP Site (TAC No. MC1127).	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
06/02/2004	ML041540413	E-Mails Conveying Draft RAI Packages 5,6,7 Regarding North Anna ESP Application. 25 Page(s)	E-Mail, Request for Additional Information (RAI)	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
06/03/2004	ML042400485	06/03/04-Enclosure 2, Revisions to SSAR Section 1.8 in Response to RAI 1.8-1. 35 Page(s)	- No Document Type Applies	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
06/03/2004	ML050660242	Dominion (North Anna) ESP - NRC RAI letter No. 7. 9 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources Services, Inc	05200008
06/03/2004	ML041410109	06/03/04-Request For Additional Information Letter No. 7 - Dominion Nuclear North Anna, LLC ESP Application for the North Anna ESP Site (TAC No. MC1127). 9 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
06/11/2004	ML041750020	06/11/04-North Anna Early Site Permit Application Response to Request for Additional Information No. 2 and Corrected Seismic Hazard Deaggregation Results.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
06/14/2004	ML041670414	06/14/04-E-mail from J. Lee, NRC, to T. Banks, Dominion, re June 7, 2004 Telcon re MACCS2 code. Acknowledges receipt of 2 MACCS2 output files and the AP1000 Table 7.4.	E-Mail	NRC	Dominion	05200008
·		410 Page(s) B-19	1		5. P. C	

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
06/22/2004	ML041400188	06/22/04-Letter to D. Christian, Dominion, re: ESP Template. 7 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
06/22/2004	ML041700114	06/22/04-Revised Early Site Permit Environmental Review Schedule. 10 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
06/23/2004	ML041830193	06/23/04-Summary of Telephone Call Between the U.S. Nuclear Regulatory Commission & Dominion Concerning Clarification of Response to Request for Additional Information (RAI) Pertaining to the North Anna Early Site Permit Application (TAC NO. MC1128). 9 Page(s)	Meeting Summary, Note to File incl Telcon Record, Verbal Comm	NRC/NRR/DRI P/RLEP	Dominion Nuclear North Anna, LLC	05200008
06/23/2004	ML041740376	06/23/04-North Anna Power Station 2004 Emergency Planning Information Calendar. 15 Page(s)	- No Document Type Applies	Caroline County, VA, Dominion, Hanover County, VA, Louisa County, VA, Spotsylvania County, VA	NRC/NRR/D RIP/RNRP	05000338, 05000339, 05200008

Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
ML041770579	06/24/04-Issuance of Environmental Scoping Summary Report Associated with the Staff's Review of the Application by Dominion Nuclear North Anna, LLC for an Early Site Permit for the North Anna ESP Site.	Letter	NRC, NRC/NRR/DRI P/RLEP	Dominion Energy Co	05200008
g Marinton	'42 Page(s)		; 	, 	
ML041890324	06/28/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Response to Virginia Department of Environmental Quality Comment Letter.	Letter	Dominion, Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	¹ 05200008
Madania e	67 Page(s)			· · ·	f + 1++
ML042310575	07/08/04-Dominion Nuclear Response to RAI Letter No. 3 for North Anna ESP. 114 Page(s)	Graphics incl Charts and Tables, Letter, Photograp	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
ML042800292	North Anna, LLC, North Anna Early Site Permit Application Response to Request for Additional Information No. 3.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
	ML041770579 ML041890324 ML042310575	ML041770579 06/24/04-Issuance of Environmental Scoping Summary Report Associated with the Staff's Review of the Application by Dominion Nuclear North Anna, LLC for an Early Site Permit for the North Anna ESP Site. 42 Page(s) ML041890324 06/28/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Response to Virginia Department of Environmental Quality Comment Letter. 67 Page(s) ML042310575 07/08/04-Dominion Nuclear Response to RAI Letter No. 3 for North Anna ESP. 114 Page(s) ML042800292 North Anna, LLC, North Anna Early Site Permit Application Response to Request	ML041770579 06/24/04-Issuance of Environmental Scoping Summary Report Associated with the Staff's Review of the Application by Dominion Nuclear North Anna, LLC for an Early Site Permit for the North Anna ESP Site. 42 Page(s) ML041890324 06/28/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Response to Virginia Department of Environmental Quality Comment Letter. 67 Page(s) ML042310575 07/08/04-Dominion Nuclear Response to RAI Letter No. 3 for North Anna ESP. 114 Page(s) ML042800292 North Anna, LLC, North Anna Early Site Permit Application Response to Request North Anna, LLC, North Anna Early Site Permit Application Response to Request	ML041770579 06/24/04-Issuance of Environmental Scoping Summary Report Associated with the Staff's Review of the Application by Dominion Nuclear North Anna, LLC for an Early Site Permit for the North Anna ESP Site. 42 Page(s) ML041890324 06/28/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Response to Virginia Department of Environmental Quality Comment Letter. 67 Page(s) ML042310575 07/08/04-Dominion Nuclear Response to RAI Letter No. 3 for North Anna ESP. 114 Page(s) ML042800292 North Anna, LLC, North Anna Early Site Permit Application Response to Request NRC, NRC/NRR/DRI P/RLEP NRC, NRC/NRR/DRI P/RLEP	NRC Dominion Scoping Summary Report Associated with the Staff's Review of the Application by Dominion Nuclear North Anna, LLC for an Early Site Permit for the North Anna ESP Site. 42 Page(s) Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Response to Virginia Department of Environmental Quality Comment Letter. S7 Page(s) O7/08/04-Dominion Nuclear Response to RA! Letter No. 3 for North Anna ESP. Site Symbol Symb

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
07/09/2004	ML041770093	07/09/04-Additional Information Needed with Regard to RAI Letter No. 2 - Dominion Nuclear North Anna, LLC ESP Application for the North Anna ESP Site. 7 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
07/12/2004	ML041970396	07/12/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Response to Requests for Additional Information Regarding Environmental Portion of ESP Application. 62 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
07/13/2004	ML041970029	07/13/04-E-mail from Dominion to NRC Forwarding to Request for Additional Information Regarding - North Anna ESP - From: Maggie McClure To: Jack Cushing, Dated July 13, 2004. 64 Page(s)	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC	05200008
07/15/2004	ML041980455	07/15/04- E-mail from Dominion with Attached Cover Letter for Submission of a Revision to the North Anna ESP Application. 10 Page(s)	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk, NRC/NRR/D RIP/RLEP	05200008

Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
07/15/2004	ML042330680	07/15/04- E-mail - RAI 3 e-mail.	E-Mail	Dominion Nuclear North	NRC	05200008
	T	2 Page(s)		Anna, LLC		
07/15/2004	ML042330747	07/15/04-E-mail-Outgoing Dominion Correspondence to NRC - NAPS ESP Application, Rev. 2 (SN04-434).	E-Mail	Dominion Nuclear North Anna, LLC	NRC	05200008
		2 Page(s)				76° 150
07/15/2004	ML042330750	07/15/04-Outgoing Dominion Correspondence to NRC - NAPS ESP Application, Rev. 2 (SN04-434).	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
, <u>:</u>		8 Page(s)				
07/15/2004	ML042010010	07/15/04-Dominion Nuclear North Anna, LLC, Early Site Permit Application, Revision 2.	Letter .	Dominion, Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008 PROJ071
		9 Page(s)				# :
07/27/2004	ML042380120	07/27/04 - E-Mail-W-9 for Dominion Nuclear North Anna, LLC.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	0520000
		3 Page(s)				
07/30/2004	ML042010023	07/30/04-North Anna Early Site Permit Application, Revision 2, Part 2, Page 2-2- 397 through Page 2-2-492.	Final Safety Analysis	Dominion Nuclear North Anna, LLC	NRC	0520000 PROJ07
		96 Page(s)	Report (FSAR).			

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
07/30/2004	ML042010017	07/30/04-North Anna Early Site Permit Application, Revision 2, Cover Sheet through Part 2, Page 2.5.4A-66. 491 Page(s)	License- Application for Constructi on Permit DKT 50	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719
07/30/2004	ML042010019	07/30/04-North Anna Early Site Permit Application, Revision 2, Final Report, "Results of Geotechnical Exploration and Testing," through Figure 2.5-4B-1.	Report, Technical	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719
07/30/2004	ML042010029	07/30/04-North Anna Early Site Permit Application, Revision 2, Part 2, Page 2-3-1 through Quality Assurance Manual. 109 Page(s)	Final Safety Analysis Report (FSAR), Manual, Quality Assurance Program	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
07/30/2004	ML042010027	07/30/04-North Anna Early Site Permit Application, Revision 2, Part 2, Page 2-2- 523 through Page 2-2-549. 27 Page(s)	Drawing, Final Safety Analysis Report (FSAR), Graphics incl Charts and Tables, Map	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719
07/31/2004	ML042010026	07/31/04-North Anna Early Site Permit Application, Revision 2, Part 2, Page 2-2- 493 through Page 2-2-522. 30 Page(s)	Drawing, Final Safety Analysis Report (FSAR), Graphics incl Charts and Tables, Map	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719
07/31/2004	ML042010032	07/31/04-North Anna Early Site Permit Application, Revision 2, Part 3, Page 3-3-1 through Part 4.	Environme ntal Report	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719
		B-25			1	

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
07/31/2004	ML042010031	07/31/04-North Anna Early Site Permit Application, Revision 2, Part 3 - Environmental Report through Page 3-2- 255.	Environme ntal Report	Dominion Nuclear North Anna, LLC	NRC	05200008, PROJ0719
		272 Page(s)				
08/02/2004	ML042370224	08/02/04-North Anna ESP - Response to RAI No. 4, (SN 04-318).	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
		145 Page(s)	<u> </u>			
08/02/2004	ML042260478	08/02/04-Enclosure 2: Revisions to SSAR Section 2.3 and ER Section 2.7 for Responses to RAIs 2.3.1-1 (revised), 2.3.1-2, 2.3.1-3, 2.3.1-4, 2.3.1-5, 2.3.1-6, and 2.3.2-2. 57 Page(s)	Final Safety Analysis Report (FSAR), Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/02/2004	ML042250143	08/02/04-North Anna Early Site Permit Application Response to Request for Additional Information No. 4. 88 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/03/2004	ML042370208	08/03/04-E-mail-Outgoing Dominion Correspondence to NRC - North Anna ESP - Response to RAINo. 4 (SN 04-318).	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC	05200008
		2 Page(s)				
		98 - A				-
	: · ·	B-26	A Control of the Control		•	

Document Date	Accession Number	Title/Description _ Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
08/04/2004	ML042450006	08/04/04 drawing of intake structure for North Anna ESP, sent in an email from J. Hegner, Dominion.	Drawing	Dominion Nuclear North Anna, LLC	NRC	05200008
		1 Page(s)	1	, 		
08/05/2004	ML042240436	08/05/04-North Anna Early Site Permit Application Response to Request for Additional Information No. 5. 111 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/05/2004	ML042370444	08/05/04 - E-Mail - Outgoing Dominion Correspondence to NRC (First Part) - North Anna ESP Response to RAI No. 5 (SN-04-347).	E-Mail, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
08/05/2004	ML042370448	08/05/04 - E-Mail - Outgoing Dominion Correspondence to NRC (Second Part) - North Anna ESP Response to RAI No. 5 (SN-04-347).	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
08/05/2004	ML042290305	08/05/04-E-mail-NORTH ANNA ESP EP RAI 5 Page(s)	E-Mail	NRC	Dominion Nuclear North Anna, LLC	05200008
		5 Page(s) B-27				

. . . .

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
08/10/2004	ML042290083	08/10/04-Dominion Nuclear North Anna. LLC, North Anna Early Site Permit Application, Transmittal of Documents in Response to NRC Requests for Additional Information.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/10/2004	ML042370455	08/10/04 - E-Mail - Outgoing Dominion Correspondence to NRC - North Anna ESP - Transmittal of Documents in Response to NRC RAIs (SN-04-481).	E-Mail, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
08/10/2004	ML042440681	08/10/04- email from J. Cushing, NRC, asking for further information on spent fuel transportation analyses related to the North Anna ESP. 2 Page(s)	E-Mail	NRC/NRR/DRI P/RLEP	Dominion	05200008
08/10/2004	ML042240409	08/10/04-North Anna, Early Site Permit Application Response to Request for Additional Information No. 6. 65 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
08/11/2004	ML042370342	08/11/04 - E-Mail - Outgoing Dominion Correspondence to NRC - NAPS ESP - Response to RAI No. 6 (SN-04-348).	E-Mail, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
08/17/2004	ML042310737	08/17/04-Summary of Telephone Calls Between the U.S. Nuclear Regulatory Commission and Dominion Pertaining to the Environmental Review of the North Anna Early Site Permit Application (TAC NO. MC1128).	Meeting Summary	NRC/NRR/DRI P/RLEP	Dominion Nuclear North Anna, LLC	05200008
*		8 Page(s)	, ., .			
08/19/2004	ML042440365	08/19/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Supplemental Response to Request for Additional Information No. 5.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/19/2004	ML042440355	08/19/04-Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application Supplemental Response to Request for Additional Information No. 4. 43 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

And the second s

Contract to the second

and the second s

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
08/19/2004	ML042370348	08/19/04 - E-Mail - Outgoing NRC Correspondence Serial No. 04-438: North Anna ESP Application Response to July 9, 2004, Request for Additional Information and RAI 2.5.2-9.	E-Mail, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008 -
08/19/2004	ML042390471	08/19/04-Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application Response to July 9. 2004 Request for Additional Information and RAI 2.5.2-9.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/20/2004	ML042400482	08/20/04-North Anna Early Site Permit Application Response to Request for Additional Information No. 7. 29 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/20/2004	ML042370452	08/20/04 - E-Mail - Dominion Second Responses to NRC RAIs 4 and 5. 81 Page(s)	E-Mail, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
08/20/2004	ML042360260	08/20/04-Dominion response to RAI package 7. 63 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
08/23/2004	ML042360251	08/23/04-E-mail-Outgoing NRC Correspondence Serial No. 04-354: Response to Request for Additional Information No. 7. 2 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC	05200008
08/23/2004	ML042430538	08/23/04 - E-mail from J. Wilson to T. Banks Regarding Telcon Summary. 2 Page(s)	E-Mail	NRC	Dominion	05200008
08/23/2004	ML042390256	08/23/04-E-mail from James Wilson re: Telecon Summary. 11 Page(s)	E-Mail	NRC/NRR	Dominion Nuclear North Anna, LLC	05200008
08/23/2004	ML042460290	08/23/04- e-mail from J. Wilson, NRC, forwarding a 08/17/04 telecon summary to Dominion Nuclear North Anna, LLC. 2 Page(s)	E-Mail	NRC/NRR	Dominion	05200008
08/23/2004	ML042430556	08/23/04 - E-mail from T. Banks to J. Wilson Regarding Telecon Summary. 2 Page(s)	E-Mail	Dominion	NRC	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
09/07/2004	ML042590082	09/07/04-Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application Revision 3. 9 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
09/16/2004	ML042640344	09/16/04-Email from Dominion RE: Dominion response to NRC conference call - RADTRAN runs. 202 Page(s)	E-Mail	Dominion	NRC	05200008
09/17/2004	ML042590004	09/09/04 - Summary of Meeting with Dominion, SERI and Exelon Regarding Reviews of EP Aspects of Their Respective ESP Applications. 10 Page(s)	Meeting Summary	NRC/NRR/DRI P/RNRP	Dominion Nuclear North Anna, LLC, Exelon Generation Co, LLC, Exelon Nuclear, System Energy Resources, Inc	05200007, 05200008, 05200009

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
09/22/2004	ML042670291	09/22/04 E-mail from Dominion re: Lake Anna State Park Attendance Data. 11 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	Battelle Memorial Institute, Pacific Northwest National Lab, NRC	05200008
09/23/2004	ML042680127	Email from Dominion Confirming 2001 Lake Anna - Lake Level and North Anna Temperature Data - 2001. 3 Page(s)	E-Mail, Environme ntal Impact Statement, Graphics incl Charts and Tables	Dominion	Dominion, NRC	05200008
09/23/2004	ML042720017	09/23/04 E-mail from Dominion re North Anna 2001 Lake Level. 4 Page(s)	E-Mail, Graphics incl Charts and Tables	Dominion	NRC	05200008
10/01/2004	ML042390205	10/01/04-Request For Withholding Information From Public Disclosure for 8/10/2004, Response to Request for RAI. 7 Page(s)	Proprietary Information Review	NRC/NRR/DRI P/RNRP	Dominion Nuclear North Anna, LLC	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
10/04/2004	ML042790235	10/04/04-North Anna Early Site Permit Application Response to August 2004 Request for Additional Information. Enclosure 3 - Virginia Department of Conservation and Recreation Park Visitor and Boat Launch Data Sheets. 37 Page(s)	Graphics incl Charts and Tables	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
10/04/2004	ML042790226	10/04/04Transmittal of North Anna Early Site Permit Application Response to August 2004 Request for Additional Information, and Enclosure 2, "Environmental Study of Lake Anna and the Lower North Anna River, Annual Report for 2001," Cover through Page 26.	Environme ntal Report, Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
10/05/2004	ML042800346	10/05/04 E-mail from V. Hull of Dominion regarding Response to August 2004 Request for Additional Information - North Anna Early Site Permit/Application. 111 Page(s)	E-Mail, Environme ntal Report, Letter	Dominion	Battelle Memorial Institute, Pacific Northwest National Lab, NRC	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
10/08/2004	ML041380189	Dominion Resources Services, Inc., Withholding From Public Disclosure, North Anna ESP Application. 8 Page(s)	Letter, Proprietary Information Review	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
10/13/2004	ML042880521	10/13/04 - E-Mail, re: 2 Requests for Withholding Information From Public Disclosure for North Anna ESP Application. 17 Page(s)	E-Mail, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
10/20/2004	ML050660244	Dominion (North Anna) ESP - Dominion Nuclear North Anna letter re: supplemental response to RAI No. 7. 14 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
10/20/2004	ML042950468	North Anna Early Site Permit Application, Supplemental Response to RAI No. 7. 14 Page(s)	Final Safety Analysis Report (FSAR), Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
10/21/2004 ML043220479	10/21/2004-E-Mail re: Outgoing NRC Correspondence Serial No. 04-354A: Supplemental Response to RAI No. 7 - North Anna Early Site Permit Application.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008	
		16 Page(s)				
10/28/2004	ML043100322	Email from Jack Cushing, NRC to Tony Banks (Dominion) forwarding RAI for S-3.	E-Mail, Letter	NRC	Dominion	05200008
		2 Page(s)	 			
10/29/2004	ML043030707	Supplemental Request for Additional Information (RAI) Regarding the Environmental Portion of the Early Site Permit (ESP) Application for the North Anna Site (TAC NO. MC1128). 6 Page(s)	Letter	NRC/NRR/DRI	Dominion Resources, Inc	05200008
11/08/2004	ML042590085	Request For Additional Information - Dominion Nuclear North Anna, LLC ESP Application for the North Anna ESP Site (MC1127). 8 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
11/12/2004	ML043080347	Revised Early Site Permit Environmental Review Schedule of the Dominion Early Site Permit Application.	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
	:	6 Page(s)		;		
11/18/2004	ML043240229	North Anna Early Site Permit Application Response to October 29, 2004 RAI on Uranium Fuel Cycle Impacts. 5 Page(s)	Letter	Dominion Nuclear Connecticut, Inc	NRC/Docume nt Control Desk	05200008 :
12/02/2004	ML043370460	Notice of Availability of the Draft Environmental Impact Statement for Early Site Permit (ESP) at the North Anna ESP Site(Tac No MC1128). 14 Page(s)	Federal Register Notice, Letter	NRC/NRR/DRI P/RLEP	Dominion Nuclear North Anna, LLC	05200008
12/03/2004	ML043070126	Potential Open Items for the DSER For The North Anna ESP Application. 8 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008
12/09/2004	ML043450334	Email from Spencer Spemmes regarding North Anna ESP Figure 3.1-2. 4 Page(s)	E-Mail	Dominion Resources, Inc	NRC	05200008

Document	Accession	Title/Description	Document	Author	Addressee	Docket
Date	Number	Includes Est. Page Count	Type	Affiliation(s)	Affiliation(s)	Number
12/20/2004	ML043560205	12/20/2004 - E-Mail re: Draft Safety Evaluation Report for the North Anna Early Site Permit Application. 4 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion, Exelon Corp, Framatome ANP, Inc, General Atomics, General Electric Nuclear Energy Owners Group, Greenpeace, Nuclear Control Institute, Nuclear Energy Institute (NEI), Nuclear Information & Resource Service (NIRS), Public Citizen, Inc, ShawPittman, LLP, Union of Concerned	

Document	Accession	Title/Description Includes Est. Page Count	Document	Author	Addressee	Docket
Date	Number		Type	Affiliation(s)	Affiliation(s)	Number
12/20/2004	ML043070296	Cover Letter: Draft Safety Evaluation Report for the North Anna ESP Application 5 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources, Inc	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
01/11/2005	ML050120082	01/11/2005-E-Mail re: Fwd: Draft Safety Evaluation Report for the North Anna Early Site Permit Application. 4 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion, Entergy Nuclear Operations, Inc, Exelon Corp, Framatome ANP, Inc, General Atomics, General Electric Co, Greenpeace, Nuclear Control Institute, Nuclear Information & Resource Service (NIRS), Public Citizen, Inc, ShawPittman, LLP, Union of Concerned Scientists, US	
·					Dept of Energy (DOE),	

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
01/12/2005	ML050110239	Draft Safety Evaluation Report for the North Anna Early Site Permit Application.	Letter	NRC/NRR/DRI P/RNRP	- No Known Affiliation, Advanced	05200008
		10 Page(s)			Technologies	
	,		<u> </u>	ļ	& Labs	
				Ì	International,	
				ł	Inc, Dominion	
		i i	Į.	ļ	Nuclear North	
		1.			Anna, LLC,	
	· ·	·	}		Dominion	
					Resources, Inc, Enercon	
	, '	,	1.		Services, Inc,	
					Exelon Corp.	
					Exelon	:
			1 .	1	Generation]
		} ·		ľ	Co, LLC,]
!	Ì	1	İ		Framatome	
		· · · · · · · · · · · · · · · · · · ·	1		ANP, Inc,	_
,					Greenpeace,	•
					Louisa	i
	<u> </u>		\		County, VA,	
	1				Louisa	
. :	1		1		County, VA,	
l.		÷	1		Library, NRC,]
{	}				Nuclear	}
1	1:		1		Control	1
1	i				Institute,	
L					Nuclear -	1

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
01/18/2005	ML050210193	01/18/2005-E-Mail re: Siting Study. 3 Page(s)	E-Mail	Dominion	NRC/NRR/D RIP/RNRP	05200008
01/25/2005	ML050450302	Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application Response to Draft Safety Evaluation Report Open Item 2.5-1.	Letter	Dominion, Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
01/27/2005	ML050320346	E-mail to Dominion (Tony Banks) - North Anna Rescheduled Meeting on Draft EIS. 2 Page(s)	E-Mail	NRC/NRR/DRI P/RLEP	Dominion	05200008
01/28/2005	ML050390343	North Anna Early Site Permit Project Correspondence Distribution Request. 2 Page(s)	Letter	Dominion Nuclear North Anna, LLC, Dominion Resources, Inc	NRC/Docume nt Control Desk	05200008
01/31/2005	ML050320090	01/31/2005 - E-Mail re: Dominion Response to DSER Open Item 2.5-1. 11 Page(s)	E-Mail, Legal- Affidavit, Letter	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
02/07/2005	ML050410133	02/07/2005-E-Mail re: Information to Support Upcoming Meeting to Discuss North Anna ESP DSER. 37 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008
02/09/2005	ML050420122	02/09/2005 - E-Mail re: Directions to North Anna	E-Mail	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008

.. ...

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
02/10/2005	ML050530387	02/10/2005-E-Mail re: Upcoming Public Meetings Regarding North Anna Early Site Permit Application. 4 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion, Entergy Operations, Inc, Exelon Corp, Framatome ANP, Inc, General Electric Co, Greenpeace, NRC, Nuclear Energy Institute (NEI), Nuclear Information & Resource Service (NIRS), Public Citizen, Inc, ShawPittman, LLP, Union of Concerned Scientists, US Dept of Energy	05200008
					(DOE), Westinghous e Electric Co	

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
02/17/2005	ML050880319	02/17/05 - Public Meeting on DEIS for the Early Site Permit at the North Anna Site, U.S. Nuclear Regulatory Commission, February 17, 2005. 29 Page(s)	Meeting Briefing Package/H andouts, Slides and Viewgraph s	NRC/NRR/DRI P	Dominion Nuclear North Anna, LLC	05200008
02/18/2005	ML050490430	North Anna Early Site Permit Application Draft Safety Evaluation Report Open Item 2.5-2. 7 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
02/18/2005	ML050530385	02/18/2005-E-Mail re: 04-785A: Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application DSER Open Item 2.5-2.	E-Mail, Letter	Dominion, Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008
02/18/2005	ML050590053	02/18/2005 - E-Mail re: 04-785A - Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application Draft Safety Evaluation Report Open Item 2.5-2. 10 Page(s)	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008

The second secon

Document	Accession	Title/Description Includes Est. Page Count	Document	Author	Addressee	Docket
Date	Number		Type	Affiliation(s)	Affiliation(s)	Number
02/22/2005	ML050660369	02/22/2005-E-Mail re: Fwd: Upcoming Public Meetings Regarding North Anna Early Site Permit Application. 5 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion, Entergy Operations, Inc, Exelon Corp, Framatome ANP, Inc, General Atomics, General Electric Co, Greenpeace, NRC, Nuclear Control Institute, Nuclear Energy Institute (NEI), Nuclear Information & Resource Service (NIRS), Public Citizen, Inc, ShawPittman, LLP, Union of Concerned Scientists, US	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
02/22/2005	ML050530390	02/22/2005 - E-Mail re: Fwd: Upcoming Public Meetings Regarding North Anna Early Site Permit Application.	E-Mail	NRC/NRR/DRI P/RNRP	Dominion, Entergy Operations,	05200008
,	·	5 Page(s)			Inc, Exelon Corp, Framatome ANP, Inc,	
;					General Electric Co, Greenpeace,	
					NRC, Nuclear Energy Institute	
1		情が、アンド 現実に対象がある。 Output によっては、これでは、これでは、 Output によっては、これでは、 Output になっては、これでは、		· (*)	(NEI), Nuclear Information & Resource	
					Service (NIRS), Public	-
; ;					Citizen, Inc, ShawPittman, LLP, Union of Concerned Scientists, US Dept of	
٠,	4 5 .				Energy (DOE), Westinghous e Electric Co	e.

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/01/2005	ML050620206	03/01/05 E-mail from T. Banks Re: Dominion NA ESP DEIS Comments. 22 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC	05200008
03/01/2005	ML050630411	Comment (423) of Eugene S. Grecheck re NUREG-1811, Draft Environmental Impact Statement For An Early Site Permit (ESP) At The north Anna ESP Site.	General FR Notice Comment Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
03/01/2005	ML050610241	North Anna Early Site Permit Application, Comments on NUREG-1811, Draft Environmental Impact Statement For an Early Site Permit (ESP) at the North Anna ESP Site.	Environme ntal Impact Statement, Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
03/03/2005	ML050630261	03/03/05 E-mail from Tony Banks Regarding North Anna ESP DGIF Correspondence. 6 Page(s)	E-Mail	Dominion Nuclear North Anna, LLC	NRC	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/03/2005	ML050630210	Enclosure 3-Dominion Nuclear North Anna LLC North Anna Early Site Permit application Responses To Draft Safety Evaluation Report Open Items. 86 Page(s)	Drawing, Graphics incl Charts and Tables, Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
03/03/2005	ML050830177	North Anna Early Site Permit Application Responses to Draft Safety Evaluation Report Open Items. 90 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
03/03/2005	ML050660238	03/03/2005 - E-Mail re: Dominion Response to DSER Open Items. 92 Page(s)	E-Mail, Letter	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008
03/03/2005	ML050660365	03/03/2005 - E-Mail re: Jay Lee Request.	E-Mail	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008
03/07/2005	ML050730343	03/07/2005-E-Mail re: Re: Problem w/EIE Submission to NRC. 2 Page(s)	E-Mail	NRC/NRR/DRI P/RNRP	Dominion Generation	05200008
03/07/2005	ML050730346	03/07/2005-E-Mail re: Re: Problem w/EIE Submission to NRC.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
		3 Page(s)				
. 119		B-49				

.

The state of the s

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/10/2005	ML050730341	3/10/2005-E-Mail re: Participants on 3/9/05 Conference Call.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
]		2 Page(s)				
03/16/2005	ML050800305	03/16/2005 - E-Mail re: Industry Participants on 3/15/05 Seismic Call.	E-Mail	Dominion Generation	NRC/NRR/D RIP/RNRP	05200008
		2 Page(s)				
03/18/2005	ML050840226	3/18/05 - Supplemental Request for Additional Information (RAI) Regarding the Environmental Portion of the Early Site Permit (ESP) Application for the North Anna Site (TAC No. MC1128). 14 Page(s)	Letter, Request for Additional Information (RAI)	NRC/NRR/DRI P	Dominion Resources Services, Inc	05200008
03/20/2005	ML050880299	03/20/2005 Summary of Public Meeting Held to Support the Environmental Review for the North Anna Early Site Permit Application. 21 Page(s)	Meeting Agenda, Meeting Briefing Package/H andouts, Meeting Summary, Note	NRC/NRR/DRI P/RLEP	Dominion Nuclear North Anna, LLC	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/23/2005	ML050880325	03/23/2005 - E-Mail re: Applicant Participants on 3/22/05 Seismic Call. 2 Page(s)	E-Mail	Dominion, Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RNRP	05200008
03/23/2005	ML051230400	E-mail from Dominion forwarding Dominion's CZMA certification letter to Virginia. 20 Page(s)	Environme ntal Impact Statement	Dominion Nuclear North Anna, LLC	NRC/NRR/D RIP/RLEP	05200008
03/24/2005	ML050890236	E-Mail from Dominion forwarding supplying names of people on March 24, 2005, conference call. 2 Page(s)	E-Mail	Dominion	NRC/NRR/D RIP/RLEP	05200008
03/29/2005	ML051010190	03/29/2005 - E-Mail re: Dominion Participant on 3/29/05 Conference Call re DSER. 2 Page(s)	E-Mail	Dominion	NRC/NRR/D RIP/RNRP	05200008
03/30/2005	ML051020430	North Anna Early Site Permit Application Responses to Draft Safety Evaluation Report Open Items.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
		103 Page(s)				
 74			· · · · · · · · · · · · · · · · · · ·			

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
03/31/2005	ML051010197	03/31/2005-E-Mail re: Outgoing NRC Correspondence Serial No. 05-194: Responses to Draft Safety Evaluation Report Open Items - North Anna Early Site Permit Application. 105 Page(s)	E-Mail, Letter, Report, Miscellane ous	Dominion	NRC/NRR/D RIP/RNRP	05200008
03/31/2005	ML050920010	03/31/05 - Summary of a Telephone Call Between the U.S. Nuclear Regulatory Commission and Dominion Concerning the Request for Additional Information (RAI) Pertaining to the North Anna Early Site Permit Application (TAC No. MC1128).	Meeting Summary, Note, Request for Additional Information (RAI)	NRC/NRR/DRI P/RLEP	Dominion Nuclear North Anna, LLC	05200008
04/07/2005	ML051010143	E-Mail from and response to Ms. Gunter (Dominion) Requesting Assistance in finding the meeting Transcript. 4 Page(s)	E-Mail, Environme ntal Impact Statement	Dominion Generation	NRC/NRR	05200008
04/12/2005	ML051040415	Email from Ms. Bennett (Dominion) forwarding response to request to document commitments made to Virginia regarding the striped bass. 11 Page(s)	E-Mail, Letter	Dominion	NRC	05200008

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
04/12/2005	ML050810087	North Anna Early Site Permit (ESP) Quality Assurance Assessment and Closure of Confirmatory Item.	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources Services, Inc	05200008
		7 Page(s)				
04/12/2005	ML051090376	North Anna Early Site Permit Application, Response to Supplemental Request for Additional Information.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
		9 Page(s)]
04/13/2005	ML051100321	North Anna Early Site Permit Application, Response to Supplemental Request for Additional Information.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008
		13 Page(s)		to see].
04/14/2005	ML051090196	E-Mail from Ms. Bennett (Dominion) forwarding response to RAI (1,2,3) dated March 28, 2005.	E-Mail, Environme ntal Impact	Dominion	NRC/NRR	0520000
<u> </u>		15 Page(s)	Statement		,	n.
05/02/2005	ML051230129	North Anna Early Site Permit Application, Response to Draft Safety Evaluation Report Open Item 2.1-1.	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	0520000
		6 Page(s)				
			:	<u> </u>	::	·
,			•	:	•	
<i>* *</i>	• . • • •	B-53		•	7.*	

.

.

Document Date	Accession Number	Title/Description Includes Est. Page Count	Document Type	Author Affiliation(s)	Addressee Affiliation(s)	Docket Number
05/02/2005	ML051370159	05/02/05 - E-Mail re: 05-194A: Dominion Nuclear North Anna, LLC, North Anna Early Site Permit Application, Response to Draft Safety Evaluation Report Open Item 2.1-1.	E-Mail, Letter	Dominion	NRC/NRR/D RIP/RNRP	05200008
05/06/2005	ML051040453	Status of the North Anna Early Site Permit Application Review. 6 Page(s)	Letter	NRC/NRR/DRI P/RNRP	Dominion Resources Services, Inc	05200008
05/12/2005	ML051450312	Transmittal of Revision 4 to North Anna Early Site Permit Application. 7 Page(s)	Letter	Dominion Nuclear North Anna, LLC	NRC/Docume nt Control Desk	05200008

APPENDIX C References

American National Standards Institute (ANSI) ----, ANSI A58.1, "Minimum Design Loads for Buildings and Other Structures," 1982. ----, ANSI N45.2.11, "Quality Assurance Requirements for Nuclear Power Plants," 1974. ----, ANSI N45.2, "Quality Assurance Program Requirements for Nuclear Facilities," 1977.A ----, ANSI N45,2.9, "Requirements for Collection, Storage, and Maintenance of Quality Assurance Records for Nuclear Power Plants," 1974. American National Standards Institute and American Nuclear Society (ANSI/ANS) ----, ANSI/ANS-2.8, "American National Standard for Determining Design Basis Flooding at Power Reactor Sites," 1992. American Society of Civil Engineers and Structural Engineering Institute (SEI/ASCE) ----, SEI/ASCE 7-02, "Minimum Design Loads for Buildings and Other Structures," 2002. American Society of Mechanical Engineers (ASME) ----, ASME NQA-1-1983, "Quality Assurance Requirements for Nuclear Facility," 1983 ----. ASME NQA-1-2000, "Quality Assurance Requirements for Nuclear Facility Applications," 2000. American Society for Testing and Standards (ASTM) ----, ASTM D4220-95, "Standard Practices for Preserving and Transporting Soil Samples," January 1, 2000. ----, ASTM D1586-99, "Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils," January 10, 1999. um and mullion i ----, ASTM D1587-00, "Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes," August 10, 2000. ----, ASTM D-4428/D-4428M-00, "Standard Test Methods for Crosshole Seismic Testing," January 10, 2000. ----, ASTM D-5778-95 (2000), "Standard Test Method for Performing Electronic Friction Cone

and Piezocone Penetration Testing of Soils," January 1, 2000.

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

----, "2001 ASHRAE Handbook - Fundamentals," July 2001.

Commonwealth of Virginia Emergency Response Plans

Caroline County Radiological Emergency Response Plan, March 2002. (ADAMS Accession No. ML0411108220).

Commonwealth of Virginia Radiological Emergency Response Plan (COVRERP), March 2002. (ADAMS Accession No. ML0411108220).

Hanover County Radiological Emergency Response Plan, March 2002. (ADAMS Accession No. ML0411108220).

Louisa County Radiological Emergency Response Plan, March 2002. (ADAMS Accession No. ML0411108220).

Orange County Radiological Emergency Response Plan, March 2002. (ADAMS Accession No. ML0411108220).

Spotsylvania County Radiological Emergency Response Plan, March 2002. (ADAMS Accession No. ML0411108220).

Dominion Nuclear North Anna, LLC

- ----, March 31, 2004, Letter from Eugene S. Grecheck, Dominion Nuclear North Anna, LLC, to NRC, Subject: North Anna Early Site Permit Application: Revised Approach for Unit 4 Normal Plant Cooling. (ADAMS Accession No. ML040980485).
- ----, August 19, 2004, Letter from Eugene S. Grecheck, Dominion Nuclear North Anna, LLC, to NRC, Subject: Dominion Nuclear North Anna, LLC North Anna Early Site Permit Application Supplemental Response to Request for Additional Information No. 4. (ADAMS Accession No. ML042440355).

Electric Power Research Institute (EPRI)

- ----, "Seismic Hazard Methodology for the Central and Eastern United States," Volumes 5-10, EPRI: Palo Alto, California, July 1986.
- ----, 1008910, "CEUS Ground Motion Project: Model Development and Results," EPRI: Palo Alto, California, August 2003.
- ----, TR-102293, "Guidelines for Determining Design Basis Ground Motions," Volumes 1-5, Electric Power Research Institute: Palo Alto, California. 1993.

Johnston, A. C., et al. TR-102261-V1, "The Earthquakes of Stable Continental Regions: Volume 1 - Assessment of Large Earthquake Potential," EPRI: Palo Alto, California, 1994.

Federal Emergency Management Agency (FEMA)

Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. § 5121 (October 30, 2000), http://www.fema.gov/library/stafact.shtm.

International Organization of Standards (ISO)

----, ISO 9001-2000, "Quality Management Systems - Requirements," December 13, 2000.

National Climatic Data Center (NCDC)

- ----, "Eastern Piedmont, Virginia, Divisional Normals—Precipitation, Period 1971-2000," Climatography of the United States, No. 85. NCDC: Asheville, North Carolina, June 15, 2002.
- ----, "Eastern Piedmont, Virginia, Divisional Normals—Temperature, Period 1971-2000," Climatography of the United States, No. 85. NCDC: Asheville, North Carolina, June 15, 2002.
- ----, "Engineering Weather Data CDROM," Version 1.0. NCDC: Asheville, North Carolina, December 23, 1999.
- ----, "Richmond, Virginia, 2002 Local Climatological Data, Annual Summary with Comparative Data," NCDC: Asheville, North Carolina, 2002.
- ----, "Severe Thunderstorm Climatology, Total Threat," National Severe Storms Laboratory, August 29, 2003, http://www.nssl.noaa.gov/hazard/totalthreat.html (November 30, 2004). (ADAMS Accession No. ML043380034).
- ----, "Solar and Meteorological Surface Observational Network (SAMSON) for Eastern U.S. CDROM," NCDC: Asheville, North Carolina, September 1993.
- ----, Storm Event Database, "Storm Events for Virginia, 01/01/1950 through 04/30/2004," http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~ShowEvent~526500 (September 10, 2004). (ADAMS Accession No. ML043380024).
- ----, Storm Event Database, "Storm Events for Virginia, 01/01/1950 through 07/31/2003," http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms (November 30, 2004). (ADAMS Accession No. ML043380029).

Jones, K., et al., Technical Report 2002-01, "The Development of a U.S. Climatology of Extreme Ice Loads," National Climatic Data Center: Asheville, North Carolina, December 2002.

and the graph of the configuration of the

National Hurricane Center

Beven, J. and H. Cobb. "Tropical Cyclone Report, Hurricane Isabel, 6-19 September 2003," National Hurricane Center: Miami, Florida, January 2004, http://www.nhc.noaa.gov/2003isabel.shtml?text (December 2, 2004). (ADAMS Accession No. ML043380299).

National Oceanic and Atmospheric Administration (NOAA)

- ----, Hydrometeorological Report No. 51, "Probable Maximum Precipitation Estimates. United States East of the 105th Meridian," NOAA: Washington, D.C., June 1978.
- ----, Hydrometeorological Report No. 52, "Application of Probable Maximum Precipitation Estimates United States East of the 105th Meridian," NOAA: Washington, D.C., August 1982.
- ----, Hydrometeorological Report No. 53, "Seasonal Variation of 10-Square-Mile Probable Maximum Precipitation Estimates. United States East of the 105th Meridian," NOAA: Washington, D.C., April 1980.
- ----, "What was the highest tsunami?" Frequently Asked Questions, Tsunami Research Program, http://www.pmel.noaa.gov/tsunami/Faq/x005_highest (November 15, 2004).

Korshover, J., NOAA Technical Memorandum ERL ARL-55, "Climatology of Stagnating Anticyclones East of the Rocky Mountains, 1936–1975," NOAA Environmental Research Laboratories: Silver Spring, Maryland, March 1976.

Landreneau, D., NOAA Technical Memorandum NWS SR-206, "Atlantic Tropical Storms and Hurricanes Affecting the United States: 1899-2002," Scientific Services Division: Fort Worth, Texas, June 2003.

Southeast Regional Climatic Center

- ----, "Charlottesville, Virginia, Period of Record Monthly Climate Summary, Period of Record: 08/05/1948 to 03/31/2004," http://cirrus.dnr.state.sc.us/cgi-bin/sercc/cliMAIN.pl?va1593 (November 30, 2004). (ADAMS Accession No. ML043380051).
- ----, "Louisa, Virginia, Period of Record Monthly Climate Summary, Period of Record: 08/01/1948 to 03/31/2004," ">http:
- ----, "Partlow, Virginia, Period of Record Monthly Climate Summary, Period of Record: 06/01/1952 to 12/31/1976," http://cirrus.dnr.state.sc.us/cgi-bin/sercc/cliMAIN.pl?va6533 (November 30, 2004). (ADAMS Accession No. ML043380046).

U.S. Army Corps of Engineers

- ----, EM 1110-2-1100 (Revision 1), "Coastal Engineering Manual," Department of the Army: Washington, D.C., July 2003.
- ----, "HEC-1 Download," U.S. Army Corps of Engineers Hydrologic Engineering Center, 1998, http://www.hec.usace.army.mil/software/legacysoftware/hec1/hec1-download.htm (September 1, 2004).
- ----, "Ice Jam Database," http://www.crrel.usace.army.mil/ierd/ijdb/ (August 2, 2004).

----, "Major Dams of the United States," http://nationalatlas.gov/damsm.html (July 27, 2004).
----, "National Inventory of Dams," http://crunch.tec.army.mil/nid/webpages/nid.cfm (September 15, 2004).
----, Technical Manual 5-1300, "Structures to Resist the Effects of Accidental Explosions," Department of the Army: Washington, D.C., November 19, 1990.

U.S. Atomic Energy Commission (AEC)

- ----, "Safety Evaluation Report of the North Anna Power Station, Units 3 and 4," Supplement 3, AEC: Washington, D.C., February 1974.
- ----, TID-14844, "Calculation of Distance Factors for Power and Test Reactor Sites," AEC: Washington, D.C., March 1962. (ADAMS Accession No. ML021750625).

U.S. Census Bureau

----, "Census 2000 Data for the State of Virginia," <www.census.gov/census2000/states/va.html>

U.S. Code of Federal Regulations

- ----, Title 10, Energy, Part 20, "Standards for Protection Against Radiation."
- ----, Title 10, Energy, Part 21, "Reporting of Defects and Noncompliance."
- ----, Title 10, Energy, Part 50, "Domestic Licensing of Production and Utilization Facilities."
- ----, *Title 10, Energy*, Part 52, "Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants."
- ----, Title 10, Energy, Part 73, "Physical Protection of Plants and Materials."
- ----, Title 10. Energy, Part 100, "Reactor Site Criteria."
- ----, *Title 44, Emergency Management and Assistance*, Part 350, "Review and Approval of State and Local Radiological Emergency Plans and Preparedness."

U.S. Environmental Protection Agency (EPA)

- ----, EPA 400-R-92-001, "Manual of Protective Action Guides and Protective Actions for Nuclear Incidents," EPA: Washington, D.C., May 1992.
- ----, Testing Standard SW-846, Revision 1, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA: Washington, D.C., December 1996.

Holzworth, C., *AP-101*, "Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution throughout the Contiguous United States," EPA, Office of Air Programs: Research Triangle Park, North Carolina, January 1972.

U.S. Geological Survey

- ----, "Beaverdam, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1989.
- ----, "Belmont, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1989.
- ----, "Brokenburg, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1989.
- ----, "Buckner, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1989.
- ----, "Lahore, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1977.
- ----, "Lake Anna East, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1989.
- ----, "Lake Anna West, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1983.
- -----, "Mineral, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1973.
- ----, "Online 1-Meter Aerial Imagery of the Lake Anna, Virginia Region," (Imagery data collected in March and April, 1994) US Geological Survey: Reston, Virginia, http://terraserver-usa.com (2004).
- ----, "Peak Streamflow for the Nation, USGS 01670400 NORTH ANNA RIVER NEAR PARTLOW, Virginia,"
- http://nwis.waterdata.usgs.gov/nwis/peak?site_no=01670400&agency_cd=USGS&format=htm (August 11, 2004).
- ----, "Peak Streamflow for the Nation, USGS 01671000 NORTH ANNA RIVER NEAR DOSWELL. Virginia."
- http://nwis.waterdata.usgs.gov/nwis/peak?site_no=01671000&agency_cd=USGS&format=htm (August 11, 2004).
- ----, "Pendleton, Virginia 7.5 Minute Quadrangle, topographic map," US Geological Survey: Reston, Virginia, 1989.

- Bollinger, G. A., Bulletin 2017, "Specification of Source Zones, Recurrence Rates, Focal Depths, and Maximum Magnitudes for Earthquakes Affecting the Savannah River Site in South Carolina," U.S. Geological Survey: Reston, Virginia, 1992.
- Crone, A. J. and R. L. Wheeler, Open-File Report 00-260, "Data for Quaternary Faults, Liquefaction Features, and Possible Tectonic Features in the Central and Eastern United States, East of the Rocky Mountain Front," U.S. Geological Survey: Reston, Virginia, 2000. http://pubs.usgs.gov/of/2000/ofr-00-0260/
- Frankel, A. D., et al., Open-File Report 02-420 "Documentation for the 2002 Update of the National Seismic Hazard Maps," U.S. Geological Survey: Reston, Virginia, 2002. http://pubs.usgs.gov/of/2002/ofr-02-420/OFR-02-420.pdf
- Mixon, R. B., et al., Geologic Investigations Series Map I-2607, "Geologic Map of the Fredericksburg 30' x 60' Quadrangle, Virginia and Maryland," U.S. Geological Survey: Reston, Virginia, 2000. http://pubs.usgs.gov/of/2002/of02-437/
- Trapp, H., Jr. and M.A. Horn, "Ground Water Atlas of the United States, Segment 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia," *Hydrologic Investigations Atlas 730-L*, U.S. Geological Survey: Reston, Virginia, 1997.
- Weems, R. E., Open-File Report 98-374, "Newly Recognized En Echelon Fall Lines in the Piedmont and Blue Ridge Provinces of North Carolina and Virginia, With a Discussion of Their Possible Ages and Origins,." U.S. Geological Survey: Reston, Virginia, 1998.

U.S. Nuclear Regulatory Commission (NRC)

Draft Regulatory Guides

- ----, Draft Regulatory Guide DG-1101, "Site Investigations for Foundations of Nuclear Power Plants," NRC: Washington, D.C., February 28, 2001 (ADAMS Accession No. ML010510162).
- ----, Draft Regulatory Guide DG-1105, "Procedures and Criteria for Assessing Seismic Soil Liquefaction at Nuclear Power Plant Sites," NRC: Washington, D.C., March 31, 2001 (ADAMS Accession No. ML010650295).
- ----, Draft Regulatory Guide DG-1109, "Laboratory Investigations of Soils for Engineering Analysis and Design of Nuclear Power Plants," NRC: Washington, D.C., August 31, 2001 (ADAMS Accession No. ML012420328)

NUREG-Series Reports

----, NUREG-0053, "Safety Evaluation Report related to the operation of North Anna Power Station, Unit 2," NRC: Washington, D.C., August 1980.

----, NUREG-75/014, "Reactor Safety Study: An Assessment of Accident Risk in U.S. Commercial Nuclear Power Plants," NRC: Washington, D.C., October 1975.

- ----, NUREG-0654/FEMA-REP-1, Revision 1, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants," Washington, D.C., November 1980.
- ----, NUREG-0654/FEMA-REP-1, Revision 1, Supplement 2, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants Criteria for Emergency Planning in an Early Site Permit Application Draft Report for Comment," NRC: Washington, D.C., April 1996.
- -----, NUREG-0654/FEMA-REP-1, Revision 1, Supplement 3, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants Criteria for Protective Action Recommendations for Severe Accidents Draft Report for Interim Use and Comment," NRC: Washington, D.C., July 1996.
- ----, NUREG-0696, "Functional Criteria for Emergency Response Facilities Final Report," NRC: Washington, D.C., February 1981.
- ----, NUREG-0737, "Clarification of TMI Action Plan Requirements," NRC: Washington, D.C., October 1980.
- ----, NUREG-0800, Revision 3, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants," NRC: Washington, D.C., July 1981.
- ----, NUREG-0917, "Nuclear Regulatory Commission Staff Computer Programs for Use with Meteorological Data," NRC: Washington, D.C., July 1982.
- ----, NUREG-1811, "Draft Environmental Impact Statement for an Early Site Permit (ESP) at the North Anna ESP Site," NRC: Washington, D.C., November 2004.
- ----, NUREG/CR-2858, "PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials from Nuclear Power Stations," NRC: Washington, D.C., November 1982.
- ----, NUREG/CR-2919, "XOQDOQ Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," NRC: Washington, D.C., September 1977.
- ----, NUREG/CR-3759, "Lightning Strike Density for the Contiguous United States from Thunderstorm Duration Records," NRC: Washington, D.C., May 1984.
- ----. NUREG/CR-4013, "LADTAP II Technical Reference and User Guide," April 1986.
- ----. NUREG/CR-4653, "GASPAR II Technical Reference and User Guide," March 1987.
- ----, NUREG/CR-6372, "Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts," NRC: Washington, D.C., November 1997.

Regulatory Guides

- ----, Regulatory Guide 1.3, Revision 2, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors," NRC: Washington, D.C., June 1974. (ADAMS Accession No. ML003739601).
- ----, Regulatory Guide 1.5, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Steam Line Break Accident for Boiling Water Reactors," NRC: Washington, D.C., March 1971. (ADAMS Accession No. ML003739923).
- ----, Safety Guide 23, "Onsite Meteorological Programs," NRC: Washington, D.C., February 1972. (ADAMS Accession No. ML020360030).
- ----, Safety Guide 23, Proposed Revision 1, "Onsite Meteorological Programs," NRC: Washington, D.C., September 1980.
- ----, Safety Guide 24, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Pressurized Water Reactor Radioactive Gas Storage Tank Failure," NRC: Washington, D.C., March 1972.
- ----, Regulatory Guide 1.25 (Safety Guide 25), "Assumptions Used for Evaluating the Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors," NRC: Washington, D.C., March 1972. (ADAMS Accession No. ML003769781).
- ----, Regulatory Guide 1.27, Revision 2, "Ultimate Heat Sink for Nuclear Power Plants," NRC: Washington, D.C., January 1976. (ADAMS Accession No. ML003739969).
- ----, Regulatory Guide 1.28, Revision 3, "Quality Assurance Program Requirements (Design and Construction)," NRC: Washington, D.C., August 1985. (ADAMS Accession No. ML003739981).
- ----, Regulatory Guide 1.29, Revision 3, "Seismic Design Classification," NRC: Washington, D.C., September 1978. (ADAMS Accession No. ML003739983).
- ----, Regulatory Guide 1.33, Revision 2, "Quality Assurance Program Requirements (Operation)," NRC: Washington, D.C., February 1978. (ADAMS Accession No. ML003739995).
- ----, Regulatory Guide 1.38, Revision 2, "Quality Assurance Requirements for Packaging, Shipping, Receiving, Storage, and Handling of Items for Water-Cooled Nuclear Power Plants," NRC: Washington, D.C., May 1977. (ADAMS Accession No. ML003740057).
- ----, Regulatory Guide 1.59, Revision 2, "Design Basis Floods for Nuclear Power Plants," NRC: Washington, D.C., August 1977. (ADAMS Accession No. ML003740388).
- ----, Regulatory Guide 1.70, Revision 3, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants LWR Edition," NRC: Washington, D.C., November 1978. (ADAMS Accession Nos. ML003740072, ML003740108, & ML003740116).

- ----, Regulatory Guide 1.76, "Design Basis Tornado for Nuclear Power Plants," NRC: Washington, D.C., April 1974. (ADAMS Accession No. ML003740273).
- ----, Regulatory Guide 1.77, "Assumptions Used for Evaluating a Control Rod Ejection Accident for Pressurized Water Reactors," NRC: Washington, D.C., May 1974. (ADAMS Accession No. ML003740279).
- ----, Regulatory Guide 1.78, Revision 1, "Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release," NRC: Washington, D.C., December 2001. (ADAMS Accession No. ML013100014).
- ----, Regulatory Guide 1.88, Revision 2, "Collection, Storage, and Maintenance of Nuclear Power Plant Quality Assurance Records," NRC: Washington, D.C., October 1976.
- ----, Regulatory Guide 1.91, Revision 1, "Evaluations of Explosions Postulated to Occur on Transportation Routes Near Nuclear Power Plants," NRC: Washington, D.C., February 1978. (ADAMS Accession No. ML003740286).
- ----, Regulatory Guide 1.102, Revision 1, "Flood Protection for Nuclear Power Plants," NRC: Washington, D.C., September 1976. (ADAMS Accession No. ML003740308).
- ----, Regulatory Guide 1.109, Revision 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," NRC: Washington, D.C., October 1977. (ADAMS Accession No. ML003740384).
- ----, Regulatory Guide 1.111, Revision 1, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," NRC: Washington, D.C., July 1977. (ADAMS Accession No. ML003740354).
- ----, Regulatory Guide 1.112, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors," NRC: Washington, D.C., May 1977. (ADAMS Accession No. ML003740361).
- ----, Regulatory Guide 1.113, Revision 1, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," NRC: Washington, D.C., April 1977. (ADAMS Accession No. ML003740390).
- ----, Regulatory Guide 1.125, Revision 1, "Physical Models for Design and Operation of Hydraulic Structures and Systems for Nuclear Power Plants," NRC: Washington, D.C., October 1978. (ADAMS Accession No. ML003739388).
- ----, Regulatory Guide 1.132, Revision 1, "Site Investigations for Foundations of Nuclear Power Plants," NRC: Washington, D.C., March 1979. (ADAMS Accession No. ML003740350).
- ----, Regulatory Guide 1.138, "Laboratory Investigations of Soils for Engineering Analysis and Design of Nuclear Power Plants," NRC: Washington, D.C., April 30, 1978. (ADAMS Accession No. ML003740184).

- ----, Regulatory Guide 1.145, Revision 1, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants," NRC: Washington, D.C., February 1983. (ADAMS Accession No. ML003740205).
- ----, Regulatory Guide 1.165, "Identification and Characterization of Seismic Sources and Determination of Safe-Shutdown Earthquake Ground Motion," NRC: Washington, D.C., March 1997. (ADAMS Accession No. ML003740084).
- ----, Regulatory Guide 1.183, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," NRC: Washington, D.C., July 2000. (ADAMS Accession No. ML003716792).
- ----, Regulatory Guide 1.198, "Procedures and Criteria for Assessing Seismic Soil Liquefaction at Nuclear Power Plant Sites," NRC: Washington, D.C., November 2003. (ADAMS Accession No. ML033280143).
- ----, Regulatory Guide 4.2, Revision 2, "Preparation of Environmental Reports for Nuclear Power Stations," NRC: Washington, D.C., July 1976. (ADAMS Accession No. ML003739519).
- ----, Regulatory Guide 4.4, "Reporting Procedure for Mathematical Models Selected to Predict Heated Effluent Dispersion in Natural Water Bodies," NRC: Washington, D.C., May 1974. (ADAMS Accession No. ML003739535).
- ----, Regulatory Guide 4.7, Revision 2, "General Site Suitability Criteria for Nuclear Power Stations," NRC: Washington, D.C., April 1998. (ADAMS Accession No. ML003739894).

NRC Letters

----, May 6, 2003, Letter from James E. Lyons, NRC to Joseph D. Hegner, Dominion Energy, Inc., Subject: Nuclear Regulatory Commission (NRC) Guidance on Addressing Security Measures in the early site permit (ESP) at the North Anna site. (ADAMS Accession No. ML030980003).

Other NRC Documents

- ----, "Order for Interim Safeguards and Security Measures for North Anna Power Station, Units 1 & 2," February 25, 2002. (ADAMS Accession No. ML020510635).
- ----, NRR Review Standard, RS-002, "Processing Applications for Early Site Permits," NRC: Washington, D.C., May 3, 2004. (ADAMS Accession No. ML040700236).
- ----, "Dominion Nuclear North Anna, LLC, NRC Inspection of Applicant and Contractor Quality Assurance Activities Involved with Preparation of the Application for an Early Site Permit, Report 05200008/2003001," January 12, 2004. (ADAMS Accession No. ML040150170).

Virginia Electric and Power Company

- ----, "North Anna Independent Spent Fuel Storage Installation Final Safety Analysis Report," Revision 3, Virginia Electric and Power Company: Richmond, Virginia, June 25, 2002.
- ----, "North Anna Power Station Units 1 & 2 Updated Final Safety Analysis Report Revision 38," Virginia Electric and Power Company: Richmond, Virginia, September 24, 2002.
- ----, "North Anna Power Station Emergency Plan," Revision 28, Virginia Electric and Power Company: Richmond, Virginia, July 1, 2003.
- ----, "Supplemental Geologic Data," Virginia Electric and Power Company: Richmond, Virginia, August 17, 1973. (PDR Microform Address 50406-76).

Other References

Corporate Authors

Bechtel Corporation, *Bechtel Nuclear Quality Assurance Manual*, Revision 4, November 1, 2002 (ADAMS Accession No. ML042290099).

Dominion Energy, Inc., Bechtel Document Number 24830-001-GQP-GAQ-00001-001, "Quality Assurance Program Plan (QAPP)," North Anna Early Site Permit Project, 2003. (ADAMS Accession No. ML042290094).

Dominion Virginia Power and Teledyne Brown Engineering Services, "Radiological Environmental Monitoring Program, 2001 Annual Report, North Anna Power Station," Dominion Virginia Power: Richmond, Virginia, 2001.

Flow Science, Incorporated., "Flow-3D User's Manual," Flow Science, Inc.: Santa Fe, NM, 2003.

Innovative Emergency Management, Inc., IEM/TEC01-220, "Evacuation Time Estimates for the North Anna Power Station and Surrounding Jurisdictions," IEM, Inc. Baton Rouge, November 2, 2001.

Medical College of Virginia Hospitals/Virginia Commonwealth University (MCVH/VCU), "Radiation Emergency Plan-Virginia Power," MCVH/VCU: Richmond, Virginia, February 16, 2000. (ADAMS Accession No. 041190477).

Platts, "POWERmap," Platts: Boulder, Colorado, 2004.

Individual Authors

Bakun, W. H. and M. G. Hopper, "The 1811-1812 New Madrid, Missouri, and the 1886 Charleston, South Carolina Earthquakes," *Bulletin of the Seismological Society of America*, Vol. 94, No. 1, pp. 64-75, 2004.

Bierschwale, J. G. and K. H. Stokoe, Geotechnical Engineering Report GR-84-15, "Analytical Evaluation of Liquefaction Potential of Sands Subjected to the 1981 Westmoreland Earthquake," Civil Engineering Department, University of Texas: Austin, Texas, 1984.

Bouwer, H. and R. C. Rice, "A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells," Water Resources Research, Vol. 12, No. 3, pp. 423-428, 1976.

Bowles, J. E., Foundation Analysis and Design, Third Edition, McGraw-Hill Book Company: New York, 1982.

Bradford, S., "Numerical simulation of surf zone dynamics," Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, No. 1, 2000.

Chow, V. T., Handbook of Applied Hydrology, McGraw-Hill: New York, 1964.

Chow, V. T., Open Channel Hydraulics, McGraw-Hill: New York, 1959.

Chapman, M. C., and F. Krimgold, Seismic Hazard Assessment for Virginia, Virginia Tech Seismological Observatory, Department of Geological Sciences: Blacksburg, Virginia, February 1994.

Chapman, M. C., et al., "A Statistical Analysis of Earthquake Focal Mechanisms and Epicenter Locations in the Eastern Tennessee Seismic Zone," Bulletin of the Seismological Society of America, Vol. 87, No. 6, pp. 1522-1536, 1997.

Committee on Earthquake Engineering, National Research Council. Liquefaction of Soils During Earthquakes. National Academy Press: Washington, D.C., 1985.

Davie, J. R. and M. R. Lewis, "Settlement of Two Tall Chimney Foundations," Proceedings, Second International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, June 1988.

Heaps, N. S., "Vertical structure of current in homogenous and stratified waters," Ed. K. Hutter, Hydrodynamics of Lakes, pp. 153-207, Springer Verlag: New York, 1984.

Hirt, C. and B. Nichols, "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," Journal of Computational Physics, Vol. 39. pp. 201-255, 1981.

Ho, E. and E. E. Adams, "Final Calibration of the Cooling Lake Model for North Anna Power Station," Report No. 295, Ralph M. Parsons Laboratory, Aquatic Science and Environmental Engineering, Department of Civil Engineering, Massachusetts Institute of Technology: Cambridge, MA, August 1984.

the third section to the term of gasting expansion in the

Hosler, C., "Low-Level Inversion Frequency in the Contiguous United States," Monthly Weather Review, pp. 319–339, September 1961.

- Johnston, A. C., "Seismic Moment Assessment of Earthquake in Stable Continental Regions III. New Madrid 1811-1812, Charleston 1886 and Lisbon 1755," *Geophysical Journal International*, Vol. 126, pp. 314–344, 1996.
- Kramer, S. L., *Geotechnical Earthquake Engineering*. Prentice-Hall, Inc.: Upper Saddle River, NJ, 1996.
- Linsley Jr., R. K., M. A. Kohler, and J.L.H. Paulhus, *Hydrology for Engineers*, Third Edition, McGraw-Hill: New York, 1982.
- Lockridge, P. A., L. S. Whiteside and J. F. Lander, "Tsunamis and Tsunami-Like Waves of the Eastern United States," *The International Journal of the Tsunami Society*, Vol. 20, No. 3, 2002. http://epubs.lanl.gov/tsunami/ts203.pdf
- Marple, R. T. and P. Talwani, "Evidence for a Buried Fault System in the Coastal Plain of the Carolinas and Virginia Implications for Neotectonics in the Southeastern United Sates," *Geological Society of America Bulletin*, Vol. 112, No. 2, pp. 200–220, February 2000.
- Marple, R. T. and P. Talwani, "Evidence for Possible Tectonic Upwarping Along the South Carolina Coastal Plain from an Examination of River Morphology and Elevation Data," *Geology*, Vol. 21, pp. 651–654, 1993.
- Martin, J. R. And R. J. Fragaszy, "Soil Failure/Liquefaction Susceptibility Analysis for North Anna Power Station Seismic Margin Assessment," Report by Geotechnics for Virginia Power Company, December 1994. (PDR Microform Address 92748:019 92748:085).
- Newmark, N. M., "Effects of Earthquakes on Dams and Embankments," *Geotechnique*, Volume 15, No. 2, 1965.
- Obermeier, S. F. and W. E. McNulty, "Paleoliquefaction Evidence for Seismic Quiescence in Central Virginia During the Late and Middle Holocene Time [abs]," *Eos Transactions of the American Geophysical Union*, Vol. 79, No. 17, p S342, 1998.
- Pavlides, L. "Early Paleozoic Composite Melange Terrane, Central Appalachian Piedmont, Virginia and Maryland Its Origin and Tectonic History," *Geological Society of America Special Paper 228*, pp. 135–193, 1989.
- Pazzaglia, F. J., "Stratigraphy, Petrography, and Correction of Late Cenozoic Middle Atlantic Coastal Plain Deposits Implications for Late-stage Passive-margin Geologic Evolution," *Geological Society of America Bulletin*, Vol. 105, pp. 1617–1634, 1993.
- Peck, R. B., W. E. Hanson, and T. H. Thornburn, *Foundation Engineering*, Second Edition, John Wiley and Sons, Inc.: New York, 1974.
- Pilgrim, D. H. and I. Cordery, "Chapter 9: Flood Runoff," D. R. Maidment (Ed.) *Handbook of Hydrology*, McGraw-Hill: New York, 1992.

- Pratt, T. L., C. Coruh, and J. K. Costain, "A Geophysical Study of the Earth's Crust in Central Virginia Implications for Appalachian Crustal Structure," *Journal of Geophysical Research*, Vol. 93, pp. 6649–6667, 1988.
- Ramsdell, Jr., V. J., "Technical Evaluation Report on Design Basis Tornadoes for the North Anna ESP Site," Pacific Northwest National Laboratory: Richland, Washington, November 9, 2004. (ADAMS Accession No. ML043370303).
- Savy, J. B. et al., UCRL-ID-115111, "Eastern Seismic Hazard Characterization Update," Lawrence Livermore National Laboratory: Livermore, CA, June 1993.
- Seed, H. B., "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams," *Geotechnique*, Volume 29, No. 3, 1979.
- Seed, H. B. and I. M. Idriss, *Ground Motions and Soil Liquefaction During Earthquakes*, Earthquake Engineering Research Institute, Oakland, CA, 1982.
- Seed, H. B., and I. M. Idriss, Report No. UCB/EERC-70/10, "Soil Moduli and Damping Factors for Dynamic Response Analyses," University of California: Berkeley, California, December 1970.
- Seed, H. B., et al., Report No. UCB/EERC-84/14, "Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils," University of California: Berkeley, California, September 1984.
- Sun, J. I., R. Golesorkhi, and H. B. Seed, Report No. UCB/EERC-88/15, "Dynamic Moduli and Damping Ratios for Cohesive Soils," University of California: Berkeley, California, August 1988.
- Talwani, P. and W. T. Schaeffer, "Recurrence Rates of Large Earthquakes in the South Carolina Coastal Plain Based on Paleoliquefaction Fata," *Journal of Geophysical Research*, Vol. 106, No. B4, pp. 6621–6642, 2001.
- Terzaghi, K., "Evaluation of Coefficients of Subgrade Reaction," *Geotechnique*, Volume 5, 1955.
- Tokimatsu, K. and H. B. Sneed, "Evaluation of Settlements on Sands Due to Earthquake Shaking," ASCE Journal of Geotechnical Engineering, Volume 113, No. 8, August 1997.
- Vesic, A. S., "Bearing Capacity of Shallow Foundations," Ed. H. F. Winterkorn and H-Y Fang, Foundation Engineering Handbook, Van Nostrand Reinhold Company: New York, 1975.
- Wilson, B. W., "Seiches," Advances in Hydoscience, Vol. 8, Academic Press: New York, 1972.
- Yakhot, V. and L. M. Smith, "The Renormalization Group, the e-Expansion and Derivation of Turbulence Models," *Journal of Scientific Computing*, Vol. 7. pp. 35-61, 1972.
- Youd, T. L. et al., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction of Soils," *ASCE Journal of Geotechnical and Environmental Engineering*, Volume 127, No. 10, October 2001.

APPENDIX D

PRINCIPAL CONTRIBUTORS

Name Responsibility

Anand, Raj Project Management Araguas, Christian Project Management

Bagchi, Goutam Hydrology
Campe, Kazimieras Site Hazards
Harvey, Robert B. Meteorology

Klementowicz, Stephen Normal Radiological Dose Analyses

Lee, Jay

Munson, Cliff

Geology and Seismology

Musico, Bruce

Pichumani, Raman

Accident Analyses

Geology and Seismology

Emergency Planning

Geotechinical Engineering

Prescott, Paul Quality Assurance
Scott, Michael Project Management
Segala, John Project Management
Sosa, Belkys Project Management

Tardiff, Albert Security

<u>Contractors</u> <u>Technical Area</u>

Federal Emergency Management Agency
Pacific Northwest National Laboratory
U.S. Geologic Survey

Emergency Planning
Hydrology, Meteorology, and Site Hazards
Geology and Seismology

APPENDIX E

REPORT BY THE ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

UNITED STATES
NUCLEAR REGULATORY COMMISSION
ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
WABHINGTON, DC 20565 - 0001

ACRSR-2141

July 18, 2005

The Honorable Nils J. Diaz Chairman U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

SUBJECT:

DOMINION NUCLEAR NORTH ANNA, LLC, EARLY SITE PERMIT

APPLICATION AND THE ASSOCIATED NRC FINAL SAFETY EVALUATION REPORT

. __.

Dear Chairman Diaz:

During the 524th meeting of the Advisory Committee on Reactor Safeguards, July 6-8, 2005, we met with representatives of the NRC staff and Dominion Nuclear North Anna, LLC (Dominion) and discussed the final safety evaluation report of the Dominion application for the North Anna early site permit (ESP). Our reviews of the application and the staff's safety evaluation report were conducted to fulfill the requirement of 10 CFR 52.23, which states that the ACRS shall report on those portions of an early site permit application that concern safety. We had the benefit of the documents referenced.

CONCLUSIONS

- The proposed site, subject to the permit conditions recommended by the NRC staff, can be used for up to two nuclear power units each of up to 4300 MW_{th} without undue risk to the public health and safety.
- The staff's final safety evaluation report of the Dominion early site permit application will
 contribute to the documentary basis for the mandatory public hearing concerning the
 proposed early site permit.

DISCUSSION

Dominion has submitted a first-of-a-kind application for an early site permit pursuant to the requirements of Subpart A, "Early Site Permits," of 10 CFR Part 52. The proposed site is entirely within the current North Anna Power Station site about 40 miles north-northwest of Richmond, Virginia. Years ago, this site was approved for four units, but only two units (3-loop Westinghouse pressurized water reactors) were constructed. Both of these units are now operating.

The Dominion application is to locate up to two nuclear power units on the proposed site. Each unit is to have a power of up to 4300 $\rm MW_{th}$. The Dominion application is based on a set of conservative, enveloping parameters defined to allow flexibility in the selection of reactor technology should a decision be made in the future to actually develop the site.

Nature of the Proposed Site

The vicinity of the proposed site is rural in nature. There are no significant industrial, transportation, or military facilities within five miles of the site center. The major water sources available to the site are the North Anna river and an artificial lake adjacent to the site. The dam for this lake is under the control of the applicant. The applicant has recognized that water availability may be insufficient for two water-cooled units and proposes air cooling for one unit on the proposed site. The staff proposes that this be made a permit condition.

Population in the Vicinity of the Site

The permanent population around the site is quite low. The nearest population center, Mineral, Virginia, has a population of less than 500. The nearest significant cities are Fredericksburg (projected year 2065 population 20,950) at a distance of 22 miles, Charlottesville (year 2000 population 45,069) at 36 miles, and Richmond (year 2000 population 197,790) at 40 miles. The applicant used methods found acceptable by the staff to show that projected populations in the vicinity of the site through the year 2065 will still be within acceptable limits.

Geology and Seismicity of the Site

The proposed site will have reactors founded on hard rock. Dominion has undertaken a thorough effort to update geologic and seismic information concerning the site and has made use of methods that are new since the construction of reactors now operating on the North Anna site to characterize the proposed site. The staff has approved these analyses as they have been amended in four revisions of the initial application. Because of the hard rock foundations, reactors on the site would be subject to significant seismically-induced accelerations at frequencies in excess of 10 Hz. Dominion originally proposed to use a new "performance-based" method described in its application to derive a safe shutdown earthquake spectrum that bounds what was determined by the staff using its own methods. The staff has not endorsed the proposed performance-based applicant's methods. Dominion has ultimately elected to use the staff's method as identified in Regulatory Guide 1.165. The staff concurs with conclusions reached by the applicant.

Meteorology

The applicant has done a thorough examination of historical meteorological data to set design constraints for such things as maximum rainfall, wind velocities, snow pack and temperature extremes. The staff has found these findings to be acceptable. The design constraints posed by the proposed site meteorology are not severe in comparison to design parameters for candidate reactor technologies considered in the development of the early site permit application.

Potential Radionuclide Releases

For the studies of radiological source terms at the proposed site, Dominion has selected two advanced reactors that could be located on the site. These example plants (AP1000 and the Advanced Boiling Water Reactor) have very low predicted core damage frequencies relative to those predicted for the extant plants on the North Anna site. Dominion has used staff-approved methods to deduce that consequences of radionuclide release at the proposed site will be less than considered in the applications for the design certifications of the example plants. The staff has verified these conclusions with its own evaluations.

Emergency Plans

The applicant has elected to submit for review just the "major features" of emergency planning for the proposed site as is allowed by the regulations. The staff has found these major features to be acceptable and concludes that the proposed site does not pose significant impediments to the development of adequate emergency plans should a decision be made to develop the site.

The staff has identified a number of items that are treated either as permit conditions or as actions that must be addressed at the combined license (COL) stage. The staff has developed criteria to identify permit conditions. Permit conditions are recommended by the staff when:

- evaluations of the site rest on an assumption that can be justified only after a site permit has been issued.
- a physical attribute exists for the site that is not acceptable for the design of systems, structures and components important to safety, or
- evaluations can be completed only after some future act has taken place.

We conclude that these are appropriate criteria for the imposition of permit conditions.

The staff has prepared a high-quality, detailed, yet readable, safety evaluation report on the Dominion application. All open items have been resolved. The staff concludes that the site is adequate for the proposed use subject to eight permit conditions.

The staff has also identified 30 items that need to be considered in conjunction with reviews of a COL application should the early site permit be granted and a decision to develop the site be made.

We concur with the staff's conclusions concerning the Dominion application for an early site permit. This first use of the early site permit process has revealed several areas where the process can be refined and streamlined. We look forward to working with the staff to improve the early site permit process.

Sincerely,

/RA/

Graham B. Wallis Chairman

References:

- U.S. Nuclear Regulatory Commission, Final Safety Evaluation Report, "Safety Evaluation of Early Site Permit Application in the Matter of Dominion Nuclear North Anna, LLC, for the North Anna Early Site Permit, June 16, 2005.
- North Anna Early Site Permit Application, Revision 3, September 2004, NRC Docket No. 51-008.
- U.S. Nuclear Regulatory Commission, Review Standard, RS-002, "Processing Applications for Early Site Permit Applications", May 3, 2004.
- Memorandum from Luis A. Reyes, NRC Executive Director for Operations, to Graham B. Wallis, Chairman, ACRS, Subject: Interim Letter: Draft Safety Evaluation Report on North Anna Early Site Permit Application, dated June 3, 2005.
- U.S. Nuclear Regulatory Commission, Regulatory Guide 1.165, "Identification and Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion," dated March 1997.

NRC FORM 335 (9-2004) NRCMD 3.7	U.S. NUCLEAR REGULATORY COMMISSION	REPORT NUMBER (Assigned by NRC, A and Addendum Numl	dd Vol., Supp., Rev.,
BIBLIOGRA	PHIC DATA SHEET		
(See instr	NUREG-1835		
2. TITLE AND SUBTITLE		3. DATE REPO	RT PUBLISHED
Safety Evaluation Report for an		MONTH	YEAR
Early Site Permit (ESP) at the		0005	
North Anna ESP Site		September 4. FIN OR GRANT NU	2005
5. AUTHOR(S)		6. TYPE OF REPORT	
		Tech	
		7. PERIOD COVERED	(Inclusive Dates)
PERFORMING ORGANIZATION - NAME AND ADDRE provide name and mailing address.) Division of Regulatory Improvement Progra	SS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Comm	ission, and mailing address	il contractor,
Office of Nuclear Reactor Regulation			İ
U.S. Nuclear Regulatory Commission			
Washington, D.C. 20555-0001			
 SPONSORING ORGANIZATION - NAME AND ADDRE and mailing address.) 	SS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or	Region, U.S. Nuclear Regu	latory Commission,
Same as above			
10. SUPPLEMENTARY NOTES Docket No. 52-008, Project No. 719			
11. ABSTRACT (200 words or less)			
site safety analysis report and emergency Dominion Nuclear North Anna, LLC (Domi 2003, Dominion submitted the ESP applic of Title 10, Part 52, "Early Site Permits; St the Code of Federal Regulations. The North Anna ESP site is located approexisting nuclear power reactors operated I LLC, is a subsidiary of Dominion Resource application to construct and operate one of generating capacity of up to 8600 megawa submitted in conjunction with the ESP application will need to be addressed at the combor more new nuclear reactors on the North	nents the U.S. Nuclear Regulatory Commission (NRC) planning information included in the early site permit inion or the applicant), for the North Anna ESP site. By ation for the North Anna ESP site in accordance with sandard Design Certifications; and Combined Licenses eximately 40 miles north-northwest of Richmond, Virgin by Virginia Electric and Power Company, which, like Des, Inc. In its application, Dominion seeks an ESP that or more additional nuclear power reactors at the ESP statts (thermal). This SER presents the results of the statication. The staff has identified, in Appendix A to this bined license or construction permit stage, should an an Anna ESP site. Appendix A to this SER also identified Commission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose, should an ESP be issued to the accommission impose.	(ESP) application solution (ESP) application solution (ESP) application solution (ESP) and is adjacent to could support a fusite, with a total nucliff's review of inform SER, certain site-rapplicant desire to so the proposed per solution (ESP) applicant desire to so the proposed per solution (ESP) applicant desire to so the proposed per solution (ESP) applicant desire to so the proposed per solution (ESP) applicant desire to so the proposed per solution (ESP) applicant desire to so the proposed per solution (ESP) applicant desire to so the proposed per solution (ESP) applicant desired (ESP) applican	submitted by ember 25, Site Permits," of to two lorth Anna, uture clear nation related items construct one
12. KEY WORDS/DESCRIPTORS (List words or phrases that	will assist researchers in locating the report.)		ITY STATEMENT
Early Site Permit (ESP)			nlimited
Combined License (COL)			CLASSIFICATION
Permit Conditions COL Action Items		(This Page)	classified
Site Characteristics		(This Report)	AGOSINEU
Bounding Parameters			classified
North Anna ESP Site		15. NUMBER	
		16. PRICE	

Federal Recycling Program

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS