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Abstract 

The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of 
nuclear power plants.  Figures I–9.1 through I–9.6 of Appendix I to Section III of the Code specify design 
curves for applicable structural materials.  However, the effects of light water reactor (LWR) coolant 
environments are not explicitly addressed by the Code design curves.  The existing fatigue strain–vs.–life 
(ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance 
of pressure vessel and piping steels.  Under certain environmental and loading conditions, fatigue lives of 
austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air.  This report presents 
experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in 
LWR coolant environments.  A detailed metallographic examination of fatigue test specimens was 
performed to characterize the crack morphology and fracture morphology.  The key material, loading, and 
environmental parameters and their effect on the fatigue life of these steels are also described.  Statistical 
models are presented for estimating the fatigue ε–N curves for austenitic SSs as a function of material, 
loading, and environmental parameters.  Two methods for incorporating the effects of LWR coolant 
environments into the ASME Code fatigue evaluations are presented. 
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Foreword 

This report examines the effects of various heat treatments and product forms (cast, welded or 
wrought) on the fatigue life of austenitic stainless steels (SSs) in light water reactor (LWR) environments.  
This report is one of a series dating back more than two decades, which has become increasingly relevant 
as licensees look forward to license renewal.  This NUREG/CR report updates information presented in 
earlier reports by O. K. Chopra and his Argonne National Laboratory colleagues.  The earlier reports 
include NUREG/CR-5704, Effects of LWR Coolant Environments on Fatigue Design Curves of 
Austenitic Stainless Steels; NUREG/CR-6717, Environmental Effects on Fatigue Crack Initiation in 
Piping and Pressure Vessel Steels; and, NUREG/CR-6787, Mechanism and Estimation of Fatigue Crack 
Initiation in Austenitic Stainless Steels in LWR Environments.  The specific objective of this NUREG/CR 
is to present and discuss the effects of heat treatment on the fatigue life of stainless steels.  Secondly, this 
test program takes advantage of improvements in test technique leading to more accurate data quality. 
Research such as reported here is required to support the realistic analysis of fatigue life of reactor 
components subjected to coolant environments and of cyclic changes in strain due to dead weight, thermal 
environment, and operating stresses.   

Data from this research will be used to define the design curves in the ASME code or its equivalent.  
The data from this research and other published sources indicate that the existing code curves are non-
conservative for austenitic stainless steels 304, 316 and 316NG.  However, because of significant 
conservatism in quantifying other plant-related variables (such as the cyclic behavior, including stress and 
loading rates) involved in cumulative fatigue life calculations, the design of the current fleet of reactors is 
satisfactory, and the plants are safe to operate.  The root of the problem with the realism of the code 
curves lies not in uncertainty about the degree of environmental degradation in specific environments or 
under specific heat treatments, but in the set of air environment results which were generated almost 
30years ago and which serve as the basis for the stainless steel design curves.  The air environment results 
are now known to be non-conservative and non-representative of most of the stainless steels used in 
actual nuclear component applications.  The sources of the discrepancy reside in the specific choice of 
materials, test techniques and data analysis methods that were common practice when the database of air 
environment curves was developed more than forty years ago.  Better specimen designs, improved test 
practices, and a better understanding of degradation mechanisms have produced a revised air environment 
baseline for stainless steels - one which is lower than the baseline which is now codified.   The database 
described in this and earlier reports reinforces the NRC position that the design curves for the fatigue life 
of pressure boundary and internal components fabricated from stainless steel need revision.  Several 
groups, including Argonne authors, a group of Japanese researchers, and the staff at Bettis Atomic Power 
Laboratory have proposed methods of establishing reference curves and safety factors for evaluation of 
the fatigue life of reactor components exposed to light-water reactor coolants and operational experience.  
This report presents a useful review of each of those proposed methods.  

 

_____________________________ 
Carl J. Paperiello, Director  
Office of Nuclear Regulatory Research 
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Executive Summary 

Section III, Subsection NB, of the ASME Boiler and Pressure Vessel Code contains rules for the 
design of Class 1 components of nuclear power plants.  Figures I–9.1 through I–9.6 of Appendix I to 
Section III specify the Code design fatigue curves for applicable structural materials.  However, 
Section III, Subsection NB–3121 of the Code states that effects of the coolant environment on fatigue 
resistance of a material were not intended to be addressed in these design curves.  Therefore, the effects of 
environment on fatigue resistance of materials used in operating pressurized water reactor (PWR) and 
boiling water reactor (BWR) plants, whose primary–coolant pressure boundary components were 
designed in accordance with the Code, are uncertain.   

The current Section–III design fatigue curves of the ASME Code were based primarily on strain–
controlled fatigue tests of small polished specimens at room temperature in air.  Best–fit curves to the 
experimental test data were first adjusted to account for the effects of mean stress and then lowered by a 
factor of 2 on stress and 20 on cycles (whichever was more conservative) to obtain the design fatigue 
curves.  These factors are not safety margins but rather adjustment factors that must be applied to 
experimental data to obtain estimates of the lives of components.  They were not intended to address the 
effects of the coolant environment on fatigue life.  Recent fatigue–strain–vs.–life (ε–N) data obtained in 
the U.S. and Japan demonstrate that light water reactor (LWR) environments can have potentially 
significant effects on the fatigue resistance of materials.  Specimen lives obtained from tests in simulated 
LWR environments can be much shorter than those obtained from corresponding tests in air. 

This report presents experimental data on the effect of heat treatment on fatigue crack initiation in 
austenitic Type 304 stainless steel (SS) in LWR coolant environments.  Fatigue tests have been conducted 
on two heats of Type 304 SS under various material conditions to determine the effect of heat treatment 
on fatigue crack initiation in these steels in air and LWR environments.  A detailed metallographic 
examination of fatigue test specimens was performed, with special attention on crack morphology at the 
sites of initiation, the fracture surface, and the occurrence of striations. 

Available fatigue ε–N data for wrought and cast austenitic SSs in air and LWR environments are 
reviewed, and statistical models that describe the effects of material and loading variables, such as steel 
type, strain amplitude, strain rate, temperature, dissolved oxygen (DO) level in water, surface roughness, 
and heat treatment on the fatigue lives of austenitic SSs are developed.   

The new experimental data indicate that heat treatment has little or no effect on the fatigue life of 
Type 304 SS in air and low–DO PWR environments.  In a high–DO BWR environment, fatigue life is 
lower for sensitized SSs; the decrease in life appears to increase as degree of sensitization is increased.  
The cyclic strain–hardening behavior of Type 304 SS under various heat treatment conditions is identical, 
only the fatigue life varies in environments that differ. 

In air, irrespective of the degree of sensitization, the fracture mode for crack initiation (crack 
lengths up to ≈200 µm) and crack propagation (crack lengths >200 µm) is transgranular (TG), most likely 
along crystallographic planes, leaving behind relatively smooth facets.  With increasing degree of 
sensitization, cleavage–like or stepped TG fracture, and, occasionally, ridge structures on the smooth 
surfaces were observed.  In the BWR environment, the initial crack appeared intergranular (IG) for all 
heat treatment conditions, implying a weakening of the grain boundaries.  For all four tested conditions, 
the initial IG mode transformed within 200 µm into a TG mode with cleavage–like features.  It appears, 
however, that the size of the IG portion of the crack surface increased with the degree of sensitization.  By 
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contrast, for all samples tested in PWR environments, the cracks initiated and propagated in a TG mode 
irrespective of the degree of sensitization.  Prominent features of all fracture surfaces in the PWR case 
were highly angular, cleavage–like fracture facets that exhibited well–defined “river” patterns.  
Intergranular facets were rarely observed, but when they were found, it was mostly in the more heavily 
sensitized alloys. 

Fatigue striations normal to the crack advance direction were clearly visible beyond ≈200 µm on 
the fracture surfaces for all material and environmental conditions.  Striations were found on both the TG 
and IG facets of the samples tested in BWR conditions, or co-existing with the “river” patterns specific to 
the samples tested in the PWR environment.  Evidence of extensive rubbing due to repeated contact 
between the two mating surfaces was also found.   

The orientation of the cracks as they were initiated at the specimen surface was also a function of 
the test environment.  For air tests, cracks were initiated obliquely, approaching 45°, with respect to the 
tensile axis.  By contrast, for tests in either a BWR or PWR environment, crack initiation tended to be 
perpendicular to the tensile axis.  In all environments, the overall orientation of the crack became 
perpendicular to the tensile axis as the crack grew beyond the initiation stage.   

In air, the fatigue lives of Types 304 and 316 SS are comparable; those of Type 316NG are superior 
to those of Types 304 and 316 SS at high strain amplitudes.  The fatigue lives of austenitic SSs in air are 
independent of temperature in the range from room temperature to 427°C.  Also, variation in strain rate in 
the range of 0.4–0.008%/s has no effect on the fatigue lives of SSs at temperatures up to 400°C.  The 
fatigue ε–N behavior of cast SSs is similar to that of wrought austenitic SSs. 

Review of the available data shows that the fatigue lives of cast and wrought austenitic SSs are 
decreased in LWR environments.  The decrease depends on strain rate, DO level in water, and 
temperature.   

A minimum threshold strain is required for environmentally assisted decrease in the fatigue life of 
SSs, and this strain appears to be independent of material type (weld or base metal) and temperature in the 
range of 250–325°C.  Environmental effects on fatigue life occur primarily during the tensile–loading 
cycle and at strain levels greater than the threshold value.  Strain rate and temperature have a strong effect 
on fatigue life in LWR environments.  Fatigue life decreases logarithmically with decreasing strain rate 
below 0.4%/s; the effect saturates at 0.0004%/s.  Similarly, the fatigue ε–N data suggest a threshold 
temperature of 150°C; in the range of 150–325°C, the logarithm of life decreases linearly with 
temperature.   

The fatigue lives of wrought and cast austenitic SSs are decreased significantly in low–DO (i.e., 
<0.01 ppm DO) water.  In these environments, the composition or heat treatment of the steel has little or 
no effect on fatigue life.  However, in high–DO water, the environmental effects on fatigue life are 
influenced by the composition and heat treatment of the steel.  For a high–carbon heat of Type 304 SS, 
environmental effects were significant only for sensitized steel.  For a low–carbon heat of Type 316NG 
SS, some effect of environment was observed even for mill–annealed steel in high–DO water, although 
the effect was smaller than that observed in low–DO water.  Limited fatigue ε–N data indicate that the 
fatigue lives of cast SSs are approximately the same in low– and high–DO water and are comparable to 
those observed for wrought SSs in low–DO water.  

Statistical models for the fatigue life of austenitic SSs as a function of material, loading, and 
environmental parameters have been developed.  The functional form of the model and bounding values 
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of the important parameters are based on experimental observations and data trends.  The models are 
recommended for predicted fatigue lives ≤106 cycles. Consistent with previous work by Jaske and 
O’Donnell, the present results indicate that, even in air, the ASME mean curve for SSs is not consistent 
with the experimental data; it is nonconservative.  Results that correspond to the 50th percentile of the 
statistical model are considered to be the best fit to the experimental data. 

Two approaches are presented for incorporating the effects of LWR environments into ASME 
Section III fatigue evaluations.  In the first approach, environmentally adjusted fatigue design curves are 
developed by adjusting the best–fit experimental curve for the effect of mean stress and by setting 
margins of 20 on cycles and 2 on strain to account for the uncertainties in life associated with material 
and loading conditions.  These curves provide allowable cycles for fatigue crack initiation in LWR 
coolant environments.  The second approach considers the effects of reactor coolant environments on 
fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at 
room temperature to that in water under reactor operating conditions.  To incorporate environmental 
effects into the ASME Code fatigue evaluations, a fatigue usage factor for a specific load set, based on the 
current Code design curves, is multiplied by the correction factor.   
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 1 

1 Introduction 

Cyclic loadings on a structural component occur because of changes in mechanical and thermal 
loadings as the system goes from one load set (e.g., pressure, temperature, moment, and force loading) to 
any other load set.  For each load set, an individual fatigue usage factor is determined by the ratio of the 
number of cycles anticipated during the lifetime of the component to the allowable cycles.  Figures I–9.1 
through I–9.6 of Appendix I to Section III of the ASME Boiler and Pressure Vessel Code specify fatigue 
design curves that define the allowable number of cycles as a function of applied stress amplitude.  The 
cumulative usage factor (CUF) is the sum of the individual usage factors, and the ASME Code Section III 
requires that the CUF at each location must not exceed 1.   

The ASME Code fatigue design curves, given in Appendix I of Section III, are based on strain–
controlled tests of small polished specimens at room temperature in air.  The design curves have been 
developed from the best–fit curves to the experimental fatigue–strain–vs.–life (ε–N) data that are 
expressed in terms of the Langer equation1 of the form  

  

� 

!a  = A1(N)–n1 + A2,  (1) 

where 
  

� 

!a  is the applied strain amplitude, N is the fatigue life, and A1, A2, and n1 are coefficients of the 
model.  Equation 1 may be written in terms of stress amplitude 

  

� 

S a  instead of 
  

� 

!a , in which case stress 
amplitude is the product of 

  

� 

!a  and elastic modulus E, i.e., 
  

� 

S a  = Ε 
  

� 

!a .  The fatigue design curves were 
obtained from the best–fit curves by first adjusting for the effects of mean stress on fatigue life and then 
reducing the fatigue life at each point on the adjusted curve by a factor of 2 on strain (or stress) or 20 on 
cycles, whichever is more conservative.   

The factors of 2 and 20 are not safety margins but rather conversion factors that must be applied to 
the experimental data to obtain reasonable estimates of the lives of actual reactor components.  Although 
the Section III criteria document2 states that these factors were intended to cover such effects as 
environment, size effect, and scatter of data, Subsection NB–3121 of Section III of the Code explicitly 
notes that the data used to develop the fatigue design curves (Figs. I–9.1 through I–9.6 of Appendix I to 
Section III) did not include tests in the presence of corrosive environments that might accelerate fatigue 
failure.  Article B–2131 in Appendix B to Section III states that the owner's design specifications should 
provide information about any reduction to fatigue design curves that has been necessitated by 
environmental conditions.   

The existing fatigue ε–N data illustrate potentially significant effects of light water reactor (LWR) 
coolant environments on the fatigue resistance of carbon and low–alloy steels,3–5 as well as of austenitic 
stainless steels (SSs).4–7  Under certain environmental and loading conditions, fatigue lives of austenitic 
SSs can be a factor of 20 lower in water than in air.6 

In LWR environments, the fatigue lives of austenitic SSs depend on applied strain amplitude, strain 
rate, temperature, and dissolved oxygen (DO) in water.  A minimum threshold strain is required for 
environmentally assisted decrease in the fatigue life.7  Environmental effects on life occur primarily 
during the tensile–loading cycle and at strain levels greater than the threshold value.  Strain rate and 
temperature have a strong effect on fatigue life in LWR environments.6,7  Fatigue life decreases 
logarithmically with decreasing strain rate below 0.4%/s; the effect saturates at 0.0004%/s.  Similarly, the 
fatigue ε–N data suggest a threshold temperature of 150°C; in the range of 150–325°C, the logarithm of 
life decreases linearly with temperature.  The effect of DO on fatigue life may depend on the composition 
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and heat treatment of the steel.  Limited data indicate that, in high–DO water, the magnitude of 
environmental effects is influenced by material heat treatment.7  In low–DO water, material heat 
treatment seems to have little or no effect on the fatigue life of austenitic SSs.   

Two approaches have been proposed for incorporating the environmental effects into ASME 
Section III fatigue evaluations for primary pressure boundary components in operating nuclear power 
plants: (a) develop new fatigue design curves for LWR applications, or (b) use an environmental 
correction factor to account for the effects of the coolant environment.  In the first approach, following 
the same procedures used to develop the current fatigue design curves of the ASME Code, 
environmentally adjusted fatigue design curves are developed from fits to experimental data obtained in 
LWR environments.  Interim fatigue design curves that address environmental effects on the fatigue life 
of carbon and low–alloy steels and austenitic SSs were first proposed by Majumdar et al.8  Fatigue design 
curves based on a more rigorous statistical analysis of experimental data were developed by Keisler et al.9  
These design curves have subsequently been updated on the basis of updated statistical models.4,5 

The second approach, proposed by Higuchi and Iida,10 considers the effects of reactor coolant 
environments on fatigue life in terms of an environmental correction factor Fen, which is the ratio of 
fatigue life in air at room temperature to that in water under reactor operating conditions.  To incorporate 
environmental effects into fatigue evaluations, the fatigue usage factor for a specific load set, based on the 
current Code design curves, is multiplied by the environmental correction factor.  Specific expressions for 
Fen, based on the Argonne National Laboratory (ANL) statistical models4,5 and on the correlations 
proposed by the Ministry of International Trade and Industry (MITI) of Japan,11 have been proposed.   

This report presents experimental data on the effect of heat treatment on fatigue crack initiation in 
austenitic Type 304 SS in LWR coolant environments.  A detailed metallographic examination of fatigue 
test specimens was performed to characterize the crack morphology and fracture morphology in austenitic 
SSs in air, and boiling water reactor (BWR) and pressurized water reactor (PWR) environments.  The key 
material, loading, and environmental parameters and their effect on the fatigue life of these steels are also 
described.  Statistical models are presented for estimating the fatigue ε–N curves for austenitic SSs as a 
function of material, loading, and environmental parameters.  The two methods for incorporating the 
effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.   
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2 Experimental 

Fatigue tests have been conducted on two heats of Type 304 SS in the mill–annealed (MA) as well 
as MA plus additional heat treatment conditions.  The chemical compositions of the heats are given in 
Table 1.  Heat 10285 was heat treated at 600°C for 24 h whereas two heat treatments were used for 
Heat 30956, 0.67 h at 700°C and 24 h at 700°C.  These heat treatments correspond to EPR 
(electrochemical potentiodynamic reactivation) values of ≈16 C/cm2 for Heat 10285,12 and ≈8 and 
30 C/cm2, respectively, for Heat 30956.13   

Table 1. Composition (wt.%) of austenitic stainless steels for fatigue tests 

Material Source C P S Si Cr Ni Mn Mo 

Type 304a Supplier 0.060 0.019 0.007 0.48 18.99 8.00 1.54 0.44 

Type 304b Supplier 0.060 0.025 0.011 0.59 18.31 8.51 1.58 0.38 
a76 x 25 mm bar stock, Heat 30956.  Solution annealed at 1050°C for 0.5 h. 
b25–mm–thick plate, Heat 10285.  Solution annealed at 1050°C for 0.5 h.   

 
The metallographic examination of the sensitized alloys was carried out on 10 x 10 x 10–mm 

specimens that were ground and polished with SiC paper by successively increasing the grade of the 
paper up to #4000, and subsequently finished with 1–µm diamond paste.  Next, the samples were 
electrochemically etched in a solution of HNO3 (10%) and distilled water at 8 V for ≈15 s.  The 
examination of the microstructure was performed by scanning electron microscopy (SEM) in a JEOL 
JSM–6400 microscope.   

Typical photomicrographs obtained from the sensitized alloys are shown in Fig. 1.  Etching 
revealed a partially sensitized microstructure for the MA Heat 30956 that was heat treated for 0.67 h at 
700°C.  This is most evident in the higher–magnification photomicrograph (Fig. 1b) showing that 
sensitization occurred selectively, most likely at curved, high–energy boundaries.  A somewhat more 
uniform degree of sensitization was observed in MA Heat 10285 (heat–treated for 24 h at 600°C), where 
almost all nontwin boundaries were sensitized.  Stringers, also observed in this heat, most likely were 
parts of the microstructure before the sensitization treatment.  Sensitization of Heat 30956 for 24 h at 
700°C affected all of the boundaries, especially the curved, high–energy ones; also, it appears that some 
incoherent twin boundaries were also affected (Fig. 1f). 

Smooth cylindrical specimens, with a 9.5–mm diameter and a 19–mm gauge length, were used for 
the fatigue tests (Fig. 2).  The test specimens were machined from a composite bar fabricated by electron–
beam welding of two 19.8–mm–diameter, 137–mm–long pieces of Type 304 SS bar stock on to each side 
of an 18.8–mm–diameter, 56–mm–long section of the test material, Fig. 3.  The gauge section of the 
specimens was oriented along the rolling direction for the bar and plate stock.  The gauge length of all 
specimens was given a 1–µm surface finish in the axial direction to prevent circumferential scratches that 
might act as sites for crack initiation.  
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Heat 30956, mill annealed plus heat treated 0.67 h at 700°C 

  
(a) (b) 
Heat 10285, mill annealed plus heat treated 24 h at 600°C  

  
(c) (d) 
Heat 30956, mill annealed plus heat treated 24 h at 700°C 

  
(e) (f) 

Figure 1. Typical microstructures observed by SEM, showing degree of sensitization for alloys used in 
this study: (a), (c), (e), low magnification; (b), (d), (f), high magnification. 
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Figure 2. Configuration of fatigue test specimen (all dimensions in inches). 
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Figure 3. Schematic diagram of electron–beam–welded bar for machining A302–Gr B 

fatigue test specimens. 

Tests in water were conducted in a 12–mL autoclave (Fig. 4) equipped with a recirculating water 
system that consisted of a 132–L closed feedwater storage tank, PulsafeederTM high–pressure pump, 
regenerative heat exchanger, autoclave preheater, test autoclave, electrochemical potential (ECP) cell, 
back-pressure regulator, ion exchange bed, 0.2–micron filter, and return line to the tank.  Water was 
circulated at a rate of 10–15 mL/min.  Water quality was maintained by circulating water in the feedwater 
tank through an ion exchange cleanup system.  An Orbisphere meter and CHEMetricsTM ampules were 
used to measure the DO concentrations in the supply and effluent water.  The redox and open–circuit 
corrosion potentials, respectively, were monitored at the autoclave outlet by measuring the ECPs of 
platinum and an electrode of the test material, against a 0.1–M KCl/AgCl/Ag external (cold) reference 
electrode.  The measured ECPs, E(meas) (mV), were converted to the standard hydrogen electrode (SHE) 
scale, E(SHE) (mV), by solving the polynomial expression14  

E(SHE) = E(meas) + 286.637 – 1.0032(ΔT) + 1.7447 x 10–4(ΔT)2 – 3.03004 x 10–6(ΔT)3, (2) 

where ΔT(°C) is the temperature difference of the salt bridge in a 0.1–M KCl/AgCl/Ag external reference 
electrode (i.e., the test temperature minus ambient temperature).  A description of the test facility has been 
presented earlier.6,15 
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Figure 4.  
Autoclave system for fatigue tests in water. 

 
Boiling water reactor conditions were established by bubbling N2 that contained 1–2% O2 through 

deionized water in the supply tank.  The deionized water was prepared by passing purified water through 
a set of filters that comprise a carbon filter, an Organex–Q filter, two ion exchangers, and a 0.2–mm 
capsule filter.  Water samples were taken periodically to measure pH, resistivity, and DO concentration.  
When the desired concentration of DO was attained, the N2/O2 gas mixture in the supply tank was 
maintained at a 20–kPa overpressure.  After an initial transition period, during which an oxide film 
developed on the fatigue specimen, the DO level and the ECP in the effluent water remained constant.  
Test conditions are described in terms of the DO in effluent water.   

Simulated PWR water was obtained by dissolving boric acid and lithium hydroxide in 20 L of 
deionized water before adding the solution to the supply tank.  The DO in the deionized water was 
reduced to <10 ppb by sparging it with either pure N2 or a mixture of N2 plus 5% H2.  A vacuum was 
drawn on the tank cover gas to speed deoxygenation.  After the DO was reduced to the desired level, a 
34–kPa overpressure of H2 was maintained to provide ≈2 ppm dissolved H2 (or ≈23 cc3/kg) in the 
feedwater.   

All tests were conducted at 289°C, with fully reversed axial loading (i.e., R = –1) and a sawtooth 
waveform.  During the tests in water, performed under stroke control, the specimen strain was controlled 
between two locations outside the autoclave.  Companion tests in air were performed under strain control 
with an axial extensometer.  During the test, the stroke at the location used to control the water tests was 
recorded.  Information from the air tests was used to determine the stroke required to maintain constant 
strain in the specimen gauge.  To account for cyclic hardening of the material, the stroke that was needed 
to maintain constant strain was gradually increased during the test, based on the stroke measurements 
from the companion strain–controlled tests.  The fatigue life N25 is defined as the number of cycles for 
tensile stress to decrease 25% from its peak or steady–state value.   
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Following testing, ≈10–mm–long sections that contained the fracture surface were cut from the 
gauge length.  These were further stripped of oxides by boiling in a 20 wt.% NaOH and 3 wt.% KMnO4 
solution, followed by boiling in a 20 wt.% (NH4)2C6H6O7 solution.  The samples were examined by 
SEM.  Special attention has been paid to crack morphology at the sites of initiation on the fracture 
surface, and the occurrence of striations.  Also, lateral surfaces were inspected to determine the 
morphology of lateral cracks. 
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3 Results – Effect of Heat Treatment on Fatigue Life 

3.1 Fatigue ε–N Behavior 

Several fatigue tests have been completed on two heats of Type 304 SS under various heat–
treatment conditions, and in air and simulated BWR and PWR environments at 289°C.  The results from 
these tests and data obtained earlier on MA Heat 30956 are given in Table 2.   

Table 2. Fatigue test results for Type 304 stainless steel in air and simulated BWR and PWR 
environments at 289°C 

 

Test 

No. 

 

Spec.  

No. 

 

Environ- 

menta   

Dis. 

Oxygenb 

(ppb) 

 

pH  

at RTc 

Conduct- 

ivityb 

 (µS/cm) 

ECP  

Ptb  

mV (SHE) 

ECP  

SSb  

mV (SHE) 

Ten.  

Rate 

(%/s) 

Comp.  

Rate 

(%/s)  

Stress 

Amp. 

(MPa) 

Strain 

Amp.  

(%) 

Life  

N25  

(Cycles) 

Heat 30956 MA         

1805 309-03 Air – – – – – 4.0E-3 4.0E-1 234.0 0.38 14,410 
1853 309-22 BWR 880 6.0 0.06 248 155 4.0E-3 4.0E-1 233.3 0.38 12,300 
1856 309-24 BWR 870 6.2 0.07 272 163 4.0E-3 4.0E-1 236.8 0.38 10,450 
1808 309-06 PWR 4 6.4 18.87 -693 -690 4.0E-3 4.0E-1 234.2 0.39 2,850 
1821 309-09 PWR 2 6.5 22.22 -700 -697 4.0E-3 4.0E-1 237.2 0.38 2,420 
1859 309-28 PWR 2 6.5 18.69 -699 -696 4.0E-3 4.0E-1 235.9 0.38 2,420 

Heat 30956 MA plus 0.67 h at 700°C         

1893 309-43 Air – – – – – 4.0E-3 4.0E-1 236.9 0.38 17,000 
1894 309-44 BWR 800 6.7 0.07 263 158 4.0E-3 4.0E-1 239.1 0.38 3,920 
1899 309-46 BWR 800 6.2 0.06 285 126 4.0E-3 4.0E-1 241.4 0.38 3,740 
1898 309-45 PWR 6 6.3 17.24 -677 -467 4.0E-3 4.0E-1 241.2 0.38 2,530 

Heat 30956 MA plus 24 h at 700°C         

1891 309-47 Air – – – – – 4.0E-3 4.0E-1 235.8 0.38 16,680 
1892 309-48 BWR 860 – 0.06 257 119 4.0E-3 4.0E-1 237.3 0.39 2,790 
1897 309-50 PWR 6 6.3 16.67 -629 -543 4.0E-3 4.0E-1 234.1 0.39 2,380 

Heat 10285 MA plus 24 h at 600°C         

1895 102-07 Air – – – – – 4.0E-3 4.0E-1 222.4 0.38 19,300 
1896 102-09 BWR 800 – 0.1 265 206 4.0E-3 4.0E-1 222.2 0.39 1,665 
1900 102-08 PWR 7 6.2 16.95 -522 -527 4.0E-3 4.0E-1 228.0 0.37 2,840 

aPWR = simulated PWR water with 2 ppm Li, 1000 ppm B, and ≈2 ppm dissolved H2 (or ≈23 cc/kg) in the feedwater;  
BWR = high-purity deionized water. 

bMeasured in effluent.   
cRT = room temperature.   

 
The effect of heat treatment on the fatigue life of Type 304 SS in air, BWR, and PWR 

environments is shown in Fig. 5.  Fatigue life is plotted as a function of the EPR value for the various 
material conditions.  The results indicate that heat treatment has little or no effect on the fatigue life of 
Type 304 SS in air and PWR environments.  In a BWR environment, fatigue life is lower for the 
sensitized SSs.  The decrease in life seems to increase with increasing EPR value.   

The cyclic stress response of the various materials in air, BWR, and PWR environments at 289°C is 
shown in Fig. 6.  As expected, the cyclic strain–hardening behavior of Type 304 SS under various heat 
treatment conditions is identical, only the fatigue life varies in the environments. 
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Figure 5.  
The effect of material heat treatment on fatigue 
life of Type 304 stainless steel in air, BWR, 
and PWR environments at 289°C, ≈0.38% 
strain amplitude, sawtooth waveform, and 
0.004%/s tensile strain rate.  
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(c) (d) 

Figure 6. Cyclic stress response of Heat 30956, (a) MA, (b) MA + 0.67 h at 700°C, and (c) MA + 24 h at 
700°C; and Heat 10285, (d) MA + 24 h at 600°C, in air, BWR, and PWR environments at 
289°C. 
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3.2 Fatigue Crack and Fracture Surface Morphology 

A detailed metallographic evaluation of the fatigue test specimens was performed to characterize 
the crack and fracture morphology of the various heats under various heat treatment conditions.  Figure 7 
shows low– and high–magnification crack initiation sites on the fracture surfaces of the sensitized 
Type 304 SS tested in air.  It can be observed that, apparently irrespective of the degree of sensitization, 
the fracture mode for crack initiation (i.e., crack lengths up to ≈200 µm) and crack propagation (i.e., crack 
lengths >200 µm) is transgranular (TG), most likely along crystallographic planes, leaving behind 
relatively smooth facets.  With increasing degree of sensitization, cleavage–like or stepped TG fracture 
(e.g., Figs. 7c and d), and occasionally ridge structures on the smooth surfaces (e.g., Figs. 7e and f) were 
observed.   

An effect of a simulated normal–water chemistry BWR environment, Fig. 8, was to cause 
intergranular (IG) crack initiation, implying a weakening of the grain boundaries.  In the BWR 
environment, the initial crack appeared IG under all heat–treated conditions.  Photomicrographs of the 
fracture surface of the more heavily sensitized steel, e.g., Heat 30956 MA + 24 h at 700°C (Figs. 8g and 
h) and especially Heat 10285 MA + 24 h at 600°C (Figs. 8e and f), are good examples of smooth IG 
fracture.  Furthermore, by comparing the four material conditions, it appears that the extent of IG fracture 
increases with the degree of sensitization, at least through the MA + 24 h at 600°C condition, whereas 
MA + 24 h at 700°C appears to have a somewhat more mixed IG and TG morphology.  Also, one effect 
of the BWR environment (Figs. 8a–h) was to cause IG crack initiation, implying a weakening of the grain 
boundaries.  Nevertheless, for all four conditions tested, initial IG mode transformed within <200 µm into 
a TG mode with cleavage–like features.  By contrast, for all samples of Type 304 SS tested in PWR 
environments (Fig. 9), cracks initiated and propagated in a TG mode irrespective of the degree of 
sensitization.  Prominent features of all fracture surfaces are highly angular, cleavage–like fracture facets 
that exhibit well–defined “river” patterns.  Intergranular facets were rarely observed, mostly in the more 
heavily sensitized alloys.  These observations suggest brittle behavior throughout the testing period. 

Fatigue striations normal to the crack advance direction were clearly visible beyond ≈200 µm on 
the fracture surfaces of all materials under all environmental conditions, as documented in Figs. 10–13.  
For example, for the MA Heat 30956 samples tested in BWR water (Fig. 10), striations were easily 
discernible on the facets irrespective of the steps, cleavage–like features, or river patterns.  Similar 
striations were also observed on the fracture surface of MA Heat 30956 heat–treated 0.67 h at 700°C 
irrespective of the testing environment (Fig. 11).  Striations were found on both the TG and IG facets of 
the samples tested under BWR conditions, or co-existing with the “river” patterns specific to the samples 
tested in the PWR environment.  Evidence of extensive rubbing due to repeated contact between the two 
mating surfaces (Figs. 11a and b) was also found.   

Figure 12 shows fatigue striations observed on the fracture surface of MA Heat 10285 heat–treated 
24 h at 600°C.  In spite of the wide coverage with rubbing and fretting marks, striations are clearly 
observed on some facets.  Figures 12e and f show striations on one IG facet in a sample tested in PWR 
conditions. The fracture surfaces of MA Heat 30956 heat–treated 24 h at 700°C are presented in Fig. 13.  
Low– and high–magnification photomicrographs are presented of fatigue striations on faceted, stepped 
TG, and cleavage–like fracture surfaces. 
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Air Environment 
Heat 30956 mill annealed plus heat treated 0.67 h at 700°C 

  
(a) (b) 
Heat 10285 mill annealed plus heat treated 24 h at 600°C 

  
(c) (d) 
Heat 30956 mill annealed plus heat treated 24 h at 700°C 

  
(e) (f) 

Figure 7. Photomicrographs showing sites of crack initiation on fracture surfaces of Type 304 SS 
specimens tested in air: (a), (c), (e), low magnification; (b), (d), (f), high magnification. 
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Simulated BWR Environment 
Heat 30956 mill annealed  

  
(a) (b) 

Heat 30956 mill annealed plus heat treated 0.67 h at 700°C 

  
(c) (d) 
Heat 10285 mill annealed plus heat treated 24 h at 600°C 

  
(e) (f) 
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Heat 30956 mill annealed plus heat treated 24 h at 700°C 

  
(g) (h) 

Figure 8. Photomicrographs showing sites of crack initiation on fracture surfaces of Type 304 SS 
specimens tested in simulated BWR environment: (a), (c), (e), (g) low magnification; (b), (d), (f), 
(h) high magnification. 

Simulated PWR Environment 
Heat 30956 mill annealed  

  
(a) (b) 

Heat 30956 mill annealed plus 0.67 h at 700°C 

  
(c) (d) 
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Heat 10285 mill annealed plus 24 h at 600°C 

  
(e) (f) 

Heat 30956 mill annealed plus 24 h at 700°C 

  
(g) (h) 

Figure 9. Photomicrographs showing the sites of crack initiation on the fracture surfaces of Type 304 SS 
specimen tested in simulated PWR environment: (a), (c), (e), (g) low magnification; (b), (d), (f), 
(h) high magnification. 

Simulated BWR environment 

  
(a) (b) 

Figure 10. (a) Low– and (b) high–magnification photomicrographs showing striations at select locations 
on fracture surfaces of MA specimen of Heat 30956 in simulated BWR environment. 



 

 16 

Heat 30956 mill annealed plus 0.67 h at 700° C 
Air Environment  

  
(a) (b) 

Simulated BWR Environment 

  
(c) (d) 

Simulated PWR Environment 

  
(e) (f) 

Figure 11. Low– (a), (c), (e) and high–magnification (b), (d), (f) photomicrographs showing striations at 
select locations on fracture surfaces of MA specimens of Heat 30956 heat–treated for 0.67 h 
at 700°C in air, BWR, and PWR environments. 
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Heat 10285 mill annealed plus 24 h at 600° C 
Air Environment  

  
(a) (b) 

Simulated BWR Environment 

  
(c) (d) 

Simulated PWR Environment 

  
(e) (f) 

Figure 12. Low– (a), (c), (e) and high–magnification (b), (d), (f) photomicrographs showing striations at 
select locations on fracture surfaces of MA specimens of Heat 10285 heat–treated for 24 h at 
600°C in air, BWR, and PWR environments. 
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Heat 30956 mill annealed plus 24 h at 700°C  

Air Environment  

  
(a) (b) 

Simulated BWR Environment 

  
(c) (d) 

Simulated PWR Environment 

  
(e) (f) 

Figure 13. Low– (a), (c), (e) and high–magnification (b), (d), (f) photomicrographs showing striations at 
select locations on fracture surfaces of MA specimens of Heat 30956 heat–treated for 24 h at 
700°C in air, BWR, and PWR environments. 
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Photomicrographs of the crack morphology of Type 304 SS under all test and environmental 
conditions are presented in Fig. 14.  In all cases, the tensile axis is vertical, parallel to the plane of each 
picture.  In general, for air tests the cracks are more likely to be oblique, approaching 45° with respect to 
the tensile axis.  By contrast, the cracks that form in either BWR or PWR environments tended to be 
perpendicular to the tensile axis. 

Air BWR PWR 

   
Mill Annealed 

   
Mill Annealed + 0.67 h at 700°C 

   
Mill Annealed + 24 h at 600°C 

   
Mill Annealed + 24 h at 700°C 

Figure 14. Photomicrographs of the crack morphology of Type 304 SS under all test and environmental 
conditions. 
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The results of the metallographic evaluations of the fatigue test specimens may be summarized as 
follows.  In air, cracking was initiated as TG, oblique with respect to the tensile axis.  In BWR 
environments, cracking was initiated as IG, normal to the tensile axis.  By contrast, in PWR environments 
cracking was initiated as TG, but still normal to the tensile axis.  Cracking propagated as TG irrespective 
of the environment. 

The crack and fracture morphology in Type 316NG SS specimens (Heat D432804) from earlier 
tests was also evaluated for comparison.  Figure 15 shows, at low and high magnification, crack initiation 
sites on the fracture surfaces of Type 316NG specimens tested in air.  Note that the cracks were initiated 
and propagated in TG mode, most likely along crystallographic planes, leaving behind highly angular, 
cleavage–like or stepped surface features.  Figures 15c and d show striations on some highly angular 
facets.   

In a high–DO BWR environment, Fig. 16a–c, cracking was also initiated and propagated in TG 
mode, with riverlike patterns on the facets.  Within 200 µm of the initiation site, fatigue striations were 
observed on some facets (Figs. 16b and c).  Similarly, for specimens tested in a low–DO PWR 
environment (Fig. 16d), crack initiation and crack propagation are TG, with cleavage–like fracture facets 

Air 

  
(a) (b) 

  
(c) (d) 

Figure 15. Photomicrographs showing crack initiation site at (a) low and (b) high magnification, and (c) 
and (d) striations at select locations in Type 316NG SS tested in air. 
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that exhibit river patterns.  The higher magnification photomicrographs (at a location also seen in  
Fig. 16d) show fatigue striations within 200 µm of the initiation site.  Evidence of rubbing due to repeated 
contact between the two mating surfaces can also be observed in Fig. 16f.   

BWR Environment PWR Environment 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 16. Photomicrographs showing crack initiation site and striations at select locations in 
Type 316NG SS tested in (a–c) BWR and (d–f) PWR environment. 
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Figure 17 presents photomicrographs that show the crack morphology in Type 316NG SS in three 
environments.  In all cases, the tensile axis is vertical, parallel to the plane of each picture.  The general 
appearance is that, for air tests, the cracks are more likely to be oblique, approaching 45° with respect to 
the tensile axis.  By contrast, the cracks that formed in BWR environment appeared mixed, both oblique 
and normal to the tensile direction, while the cracks that formed in a PWR environment appeared mostly 
perpendicular to the tensile axis. 

  
Air 

  
BWR Environment 

  
PWR Environment 

Figure 17. Photomicrographs showing the morphology of lateral cracks formed in Type 316NG SS in 
three test environments. 
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4 Fatigue ε–N Data 

The relevant fatigue ε–N data for austenitic SSs in air include the data compiled by Jaske and 
O'Donnell16 for developing fatigue design criteria for pressure vessel alloys, the JNUFAD* database from 
Japan, and the results of Conway et al.17 and Keller.18  In water, the existing fatigue ε–N data include the 
tests performed by General Electric Co. (GE) in a test loop at the Dresden 1 reactor,19 the JNUFAD 
database, studies at Mitsubishi Heavy Industries, Ltd. (MHI),20–25 Ishikawajima–Harima Heavy  
Industries Co. (IHI),26,27 and Hitachi28,29 in Japan, and the present work at ANL.4–7,30–32 

4.1 Air Environment 

In an air environment, the fatigue life of Type 304 SS is comparable to that of Type 316 SS; the 
fatigue life of Type 316NG is slightly higher than that of Types 304 and 316 SS, particularly at high 
strain amplitudes.  The results also indicate that the fatigue life of austenitic SSs in air is independent of 
temperature from room temperature to 427°C.  Although the effect of strain rate on fatigue life seems to 
be significant at temperatures above 400°C, variations in strain rate in the range of 0.4–0.008%/s have no 
effect on the fatigue lives of SSs at temperatures up to 400°C.33   

The results indicate that the Code mean curve used to develop the current Code design curve for 
austenitic SSs does not accurately represent the available fatigue data.6,16  At strain amplitudes <0.5%, the 
mean curve predicts significantly longer lives than those observed experimentally.  The difference 
between the Code mean curve and the best–fit of the available experimental data is due most likely to 
differences in the tensile strength of the steels.  The Code mean curve represents SSs with relatively high 
strength; the fatigue ε–N data obtained during the last 30 years were obtained on SSs with lower tensile 
strengths.  Furthermore, because, for the current Code mean curve, the value of applied stress at a fatigue 
life of 106 cycles is greater than the monotonic yield strength of austenitic SSs in more common usage, 
the current Code design curve for austenitic SSs does not include a mean stress correction.  Studies on the 
effect of residual stress on fatigue life34 indicate an apparent reduction of up to 26% in strain amplitude in 
the low– and intermediate–cycle regime for a mean stress of 138 MPa.   

4.2 LWR Environment 

The fatigue lives of austenitic SSs are decreased in LWR environments.  The decrease depends 
primarily on applied strain amplitude, strain rate, and temperature.  The results presented in Section 3.1 
indicate that the effect of the DO content of the water is influenced by material heat treatment.  The 
critical parameters that influence fatigue life, and the threshold values of these parameters for 
environmental effects to be significant are summarized below.    

4.2.1 Strain Amplitude 

A slow strain rate applied during the tensile–loading cycle (i.e., up–ramp with increasing strain) is 
primarily responsible for environmentally assisted reduction in fatigue life.  Slow rates applied during 
both tensile– and compressive–loading cycles (i.e., up– and down–ramps) do not cause further decrease in 
fatigue life than that observed for tests with only a slow tensile–loading cycle.30–32 Nearly all of the 
existing fatigue ε–N data have been obtained under loading histories with constant strain rate, 
temperature, and strain amplitude.  Actual loading histories encountered during service of nuclear power 

                                                        
* M. Higuchi, Ishikawajima–Harima Heavy Industries Co., Japan, private communication to M. Prager of the Pressure Vessel Research Council, 

1992.   
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plants are far more complex.  Exploratory fatigue tests have been conducted with waveforms in which the 
slow strain rate is applied during only a fraction of the tensile loading cycle.23,25  The results indicate that 
a minimum threshold strain is required for environmentally assisted decrease in the fatigue lives of SSs 
(Fig. 18).  The threshold strain Δεth appears to be independent of material type (weld or base metal) and 
temperature in the range of 250–325°C, but it tends to decrease as the strain amplitude is decreased.25  
The threshold strain may be expressed in terms of the applied strain range Δε by the equation  

Δεth/Δε = – 0.22 Δε + 0.65.  (3) 

The results suggest that the threshold strain Δεth is related to the elastic strain range of the test, and does 
not correspond to the strain at which the crack closes.  For fully reversed cyclic loading, the crack 
opening point can be identified as the point where the curvature of the load–vs.–displacement line 
changes before the peak compressive load is reached.  In the present study, evidence of a crack opening 
point was observed for cracks that had grown relatively large, i.e., only near the end of life. 
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Figure 18.  
Results of strain rate change tests on 
Type 316 SS in low–DO water at 325°C.  Low 
strain rate was applied during only a fraction of 
tensile loading cycle.  Fatigue life is plotted as 
a function of fraction of strain at high strain rate 
(Refs. 23, 25). 

4.2.2 Hold–Time Effects 

Environmental effects on fatigue life occur primarily during the tensile–loading cycle and at strain 
levels greater than the threshold value.  Consequently, loading and environmental conditions during the 
tensile–loading cycle, e.g., strain rate, temperature, and DO level, are important for environmentally 
assisted reduction of the fatigue lives of SSs.  Information about the effect of hold periods on the fatigue 
life of austenitic SSs in water is very limited.  In high–DO water, the fatigue lives of Type 304 SS tested 
with a trapezoidal waveform (i.e., hold periods at peak tensile and compressive strain)19 are comparable 
to those tested with a triangular waveform.26   

 4.2.3 Strain Rate 

Fatigue life decreases with decreasing strain rate.  In low–DO PWR environments, fatigue life 
decreases logarithmically with decreasing strain rate below ≈0.4%/s; the effect of environment on life 
saturates at ≈0.0004%/s (Fig. 19).6,7,20–32  Only a moderate decrease in life is observed at strain rates 
>0.4%/s.  A decrease in strain rate from 0.4 to 0.0004%/s decreases the fatigue life by a factor of ≈10.   
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For some SSs, the effect of strain rate may be less pronounced in high–DO water than in low–DO 
water (Fig. 20).  For example, for Heat 30956 of Type 304 SS, strain rate has no effect on fatigue life in 
high–DO water, whereas life decreases linearly with strain rate in low–DO water (Fig. 20a).  For Heat 
D432804 of Type 316NG, some effect of strain rate is observed in high–DO water, although it is smaller 
than that in low–DO water (Fig. 20b).  These results and the effect of DO on fatigue life are discussed 
further in the next section.  The effect of strain rate on the fatigue life of cast austenitic SSs is the same in 
low– and high–DO water and is comparable to that observed for the wrought SSs in low–DO water.23,24 

4.2.4 Dissolved Oxygen 

In contrast to the behavior of carbon and low–alloy steels, the fatigue lives of austenitic SSs are 
decreased significantly in low–DO (i.e., <0.01 ppm DO) water.  The effect of environment in low–DO 
water is not influenced by the composition or heat treatment condition of the steel.  The fatigue life 
continues to decrease with decreasing strain rate and increasing temperature.6,7,22–27   
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Figure 19. Dependence of fatigue lives of austenitic stainless steels on strain rate in low–DO water 

(Refs. 6,7). 

102

103

104

105

10-5 10-4 10-3 10-2 10-1 100

!0.38%

!0.25%

F
a
ti
g
u
e
 L

if
e
 (

C
y
c
le

s
)

Strain Rate (%/s)

Type 304 SS (Heat 30956)
288°C

Open Symbols: <0.005 ppm DO
Closed Symbols: !0.7 ppm DO

Strain Amplitude

 

102

103

104

105

10-5 10-4 10-3 10-2 10-1 100

!0.4%

!0.25%

F
a
ti
g
u
e
 L

if
e
 (

C
y
c
le

s
)

Strain Rate (%/s)

Type 316NG SS (Heat D432804)
288°C

Open Symbols: <0.005 ppm DO
Closed Symbols: >0.2 ppm DO

Strain Amplitude
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Figure 20. Dependence of fatigue life of Types (a) 304 and (b) 316NG stainless steel on strain rate in 
high– and low–DO water at 288°C (Ref. 7). 
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In high–DO water, the fatigue lives of austenitic SSs are either comparable to22,24 or, in some cases, 
higher6 than those in low–DO water, i.e., for some SSs, environmental effects may be lower in high– than 
in low–DO water.  The results presented in Section 3.1 and Fig. 20a and 20b, indicate that, in high–DO 
water, environmental effects on the fatigue lives of austenitic SSs are influenced by the composition and 
heat treatment of the steel.  For example, for high–carbon Type 304 SS, environmental effects are 
insignificant for the MA material (Fig. 20a), whereas for sensitized material the effect of environment is 
the same in high– and low–DO water (Fig. 5).  For low–carbon Type 316NG SS some effect of strain rate 
is observed in high–DO water although it is smaller than that in low–DO water (Fig. 20b).   

The studies at ANL indicate that, for fatigue tests in high–DO water, conductivity of water and ECP 
of steel are important parameters that must be maintained constant.  During laboratory tests, the time to 
reach stable environmental conditions depends on the autoclave volume, DO level, flow rate, etc.  In the 
ANL test facility, fatigue tests on austenitic SSs in high–DO water required a soaking period of 5–6 days 
for the ECP of the steel to stabilize.  The steel ECP increased from zero or a negative value to above 
150 mV during this period.  The results shown in Fig. 20a for MA Heat 30956 of Type 304 SS in high–
DO water (closed circles) were obtained on specimens that were soaked for 5–6 days before the test.  The 
same material tested in high–DO water after soaking for only 24 h showed significant reduction in fatigue 
life. The results shown in Fig. 20b for Heat 432804 of Type 316NG SS in high–DO water were obtained 
on specimens that were soaked for only a day and therefore the ECP of the steel may not have stabilized.   

To determine the possible influence of the shorter soak period, additional tests were conducted on 
another heat of Type 316NG (Heat P91576); these specimens were soaked for ≈10 days before testing to 
achieve stable values for the ECP of the steel.  The results are shown in Fig. 21.  Unlike the data obtained 
earlier on Heat D432804 (diamond symbols), the results for Heat P91576 (triangle symbols) indicate that 
the fatigue life of this heat is the same in low– and high–DO water.  Most likely the microstructure of 
Heat P91576 differs from that of Heat D432804, making it more susceptible to environmental effects in 
high–DO water.  To further investigate the effect of material microstructure on fatigue life, a specimen of 
Heat P91576 was solution annealed in the laboratory and tested in high–DO water at 289°C.  The fatigue 
life of the solution–annealed specimen (inverted triangle symbol in Fig. 21) is a factor of ≈2 higher than 
that of the MA specimens.  These results are consistent with the data presented in Section 3.1.  In high–
DO water, material heat treatment has a strong effect on the fatigue life of austenitic SSs.   

In low–DO water, the fatigue lives of cast SSs are comparable to those of wrought SSs.22,24  
Limited data suggest that the fatigue lives of cast SSs in high–DO water are approximately the same as 
those in low–DO water.6 
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Figure 21.  
Dependence of fatigue life of two heats of 
Type 316NG SS on strain rate in high– and 
low–DO water at 288°C (Ref. 5).   
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4.2.5 Water Conductivity 

The effect of the conductivity of water and the ECP of the steel on the fatigue life of austenitic SSs 
is shown in Fig. 22.  In high–DO water, fatigue life is decreased by a factor of ≈2 when the conductivity 
of water is increased from ≈0.07 to 0.4 µS/cm.  Note that environmental effects appear more significant 
for the specimens that were soaked for only 24 h.  For these tests, the ECP of steel was initially very low 
and increased during the test.   
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Figure 22.  
Effects of conductivity of water and soaking 
period on fatigue life of Type 304 SS in 
high–DO water (Ref. 4).   

 

4.2.6 Temperature 

The change in fatigue lives of austenitic SSs with test temperature at two strain amplitudes and two 
strain rates is shown in Fig. 23.  The results suggest a threshold temperature of 150°C, above which the 
environment decreases fatigue life in low–DO water if the strain rate is below the threshold of 0.4%/s.  In 
the range of 150–325°C, the logarithm of fatigue life decreases linearly with temperature.  Only moderate 
decrease in life is observed in water at temperatures below the threshold value of 150°C.   
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Figure 23. Change in fatigue lives of austenitic stainless steels in low–DO water with temperature 

(Refs. 5–7, 22–27). 
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Fatigue tests have been conducted at MHI in Japan on Type 316 SS under combined mechanical 
and thermal cycling.23  Triangular waveforms were used for both strain and temperature cycling.  Two 
sequences were selected for temperature cycling: an in–phase sequence, in which temperature cycling was 
synchronized with mechanical strain cycling; and a sequence in which temperature and strain were out of 
phase, i.e., maximum temperature occurred at minimum strain level and vice versa.  The results are 
shown in Fig. 24, with the data obtained from tests at constant temperature.   

For the thermal cycling tests, fatigue life should be longer for out–of–phase tests than for in–phase 
tests, because applied strains above the threshold strain occur at high temperatures for in–phase tests, 
whereas they occur at low temperatures for out–of–phase tests.  An average temperature is used in Fig. 24 
for the thermal cycling tests. The results from thermal cycling tests agree well with those from constant–
temperature tests (open circles).  The data suggest a linear decrease in the logarithm of life at 
temperatures above 150°C.   
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Figure 24.  
Fatigue life of Type 316 stainless steel 
under constant and varying test 
temperature (Ref. 23). 

 

4.2.7 Material Heat Treatment 

The results presented in Section 3.1 (Fig. 5) indicate that, although heat treatment has little or no 
effect on the fatigue life of austenitic SSs in low–DO and air environments, in a high–DO environment, 
fatigue life may be longer for nonsensitized or slightly sensitized SS.   

These results are consistent with the data obtained at MHI on solution–annealed and sensitized 
Types 304, 316, and 316NG SS (Figs. 25 and 26).  In low–DO (<0.005 ppm) water at 325°C, a 
sensitization annealing has no effect on the fatigue lives of Types 304 and 316 SS (Fig. 25).  However, in 
high–DO (8 ppm) water at 300°C, the fatigue life of sensitized Type 304 SS is a factor of ≈2 lower than 
that of the solution–annealed steel (Fig 26a).  A sensitization anneal appears to have little or no effect on 
the fatigue life of Type 316NG SS in high–DO water at 288°C (Fig. 26b).  Fatigue lives of solution–
annealed and sensitized Type 316NG SS are comparable. 
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Figure 25. Effect of sensitization annealing on fatigue life of Types (a) 304 and (b) 316 stainless steel 
in low–DO water at 325°C (Refs. 22, 24).  WQ = water quenched. 
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Figure 26. Effect of sensitization anneal on the fatigue lives of Types (a) 304 and (b) 316NG stainless 
steel in high–DO water (Refs. 20, 26).  WQ = water quenched. 

4.2.8 Flow Rate 

It is generally recognized that flow rate most likely has a significant effect on the fatigue life of 
materials because it may cause differences in local environmental conditions in the enclaves of the 
microcracks formed during early stages in the fatigue ε–N test.  Information about the effects of flow rate 
on the fatigue life of pressure vessel and piping steels in LWR environments has been rather limited.  
Recent results indicate that, under typical operating conditions for BWRs, environmental effects on the 
fatigue life of carbon steels are a factor of ≈2 lower at high flow rates (7 m/s) than at low flow rates 
(0.3 m/s or lower).35,36  However, the effect of flow rate on the fatigue life of austenitic SSs has not been 
evaluated.  Because the mechanism of fatigue crack initiation in austenitic SSs in LWR environments 
appears to be different from that in carbon and low–alloy steels, the effect of flow rate on fatigue life of 
SSs may also differ.   
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4.2.9 Surface Finish 

Fatigue life is sensitive to surface finish.  Cracks can initiate at surface irregularities that are normal 
to the stress axis.  The height, spacing, shape, and distribution of surface irregularities are important for 
crack initiation.  Fatigue tests have been conducted on Types 304 and 316NG SS specimens that were 
intentionally roughened in a lathe, under controlled conditions, with 5-grit sandpaper to produce 
circumferential cracks with an average surface roughness of 1.2 µm.  The results are shown in Figs. 27a 
and b, respectively, for Types 316NG and 304 SS.  For both steels, the fatigue life of roughened 
specimens is lower than that of the smooth specimens in air and low–DO water environments.  In high–
DO water, the fatigue life of Heat P91576 of Type 316NG is the same for rough and smooth specimens.  
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Figure 27. Effect of surface roughness on fatigue life of (a) Type 316NG and (b) Type 304 stainless 
steels in air and high–purity water at 289°C.   

4.2.10 Cast Stainless Steels 

Available fatigue ε–N data6,22,24,32 indicate that, in air, the fatigue lives of cast CF–8 and CF–8M 
SSs are similar to that of wrought austenitic SSs.  It is well known that the Charpy impact and fracture 
toughness properties of cast SSs are decreased significantly after thermal aging at temperatures between 
300 and 450°C.37–39  The cyclic–hardening behavior of cast austenitic SSs is also influenced by thermal 
aging.6  At 288°C, cyclic stresses of steels aged for 10,000 h at 400°C are higher than those for unaged 
material or wrought SSs.  Also, strain rate effects on cyclic stress are greater for aged than for unaged 
steel, i.e., cyclic stresses increase significantly with decreasing strain rate.  The available fatigue ε–N data 
are inadequate to establish the effect of thermal aging on the fatigue life of cast SSs.  Thermal aging may 
or may not affect the fatigue life.22,24,32   

In LWR coolant environments, the fatigue lives of cast SSs are comparable to those observed for 
wrought SSs in low–DO water.  Limited data suggest that the fatigue lives of cast SSs in high–DO water 
are approximately the same as those in low–DO water.6  The results also indicate that thermal aging for 
10,000 h at 400°C decreases the fatigue lives of CF8M steels.   

The reduction in life in LWR environments depends on strain rate (Fig. 28).  Effects of strain rate 
are the same in low– and high–DO water.  For unaged material, environmental effects on life do not 
appear to saturate even at strain rates as low as 0.00001%/s.22,24  Also, the fatigue lives of these steels are 
relatively insensitive to changes in ferrite content in the range of 12–28%.22,24  Existing data are too 
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sparse to define the saturation strain rate for cast SSs or to establish the dependence of fatigue life on 
temperature in LWR environments; the effects of strain rate and temperature are assumed to be similar to 
those for wrought SSs.   
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Figure 28. Dependence of fatigue lives of CF–8M cast SSs on strain rate in low–DO water at various 

strain amplitudes (Refs. 6,22,24,32). 
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5 Estimating Fatigue Life of Austenitic Stainless Steels 

Several models have been developed for estimating fatigue lives of austenitic SSs in LWR 
environments, and the models are based on roughly the same database.  Although the formulation, 
threshold, and saturation values of the key parameters that influence fatigue life differ, differences in the 
estimates of fatigue life based on these models for specific loading and environmental conditions are 
insignificant.  Any one of these models may be used to estimate fatigue life of austenitic SSs.   

5.1 ANL Statistical Model 

A statistical model based on the existing fatigue ε–N data has been developed at ANL for 
estimating the fatigue lives of wrought and cast austenitic SSs in air and LWR environments.  The model 
assumes that the fatigue life in air is independent of temperature and strain rate.  Separate models have 
been developed for Type 304 or 316 SS and Type 316NG SS.  In air at temperatures up to 400°C, the 
fatigue data for Types 304 and 316 SS are best represented by the equation: 

ln(N) = 6.703 – 2.030 ln(εa – 0.126),   (4) 

and for Type 316NG, by the equation  

ln(N) = 7.433 – 1.782 ln(εa – 0.126).  (5) 

The critical parameters that influence fatigue life and the threshold values of these parameters for 
environmental effects to be significant have been summarized in the previous section.  In LWR 
environments, the fatigue life of austenitic SSs depends on strain rate, DO level, and temperature.  The 
functional forms for the effects of strain rate and temperature were based on the data trends shown in 
Figs. 19 and 23, respectively. For both wrought and cast austenitic SSs, the model assumes threshold and 
saturation values of 0.4 and 0.0004%/s, respectively, for strain rate, and a threshold value of 150°C for 
temperature.   

The influence of DO level on the fatigue life of austenitic SSs is not well understood.  As discussed 
in Section 3.1, the fatigue lives of austenitic SSs are decreased significantly in low–DO water, whereas in 
high–DO water they are either comparable or, for some steels, higher than those in low–DO water.  In 
high–DO water, the composition and heat treatment of the steel may influence the magnitude of 
environmental effects on austenitic SSs.  Until more data are available to clearly establish the effects of 
DO level on fatigue life, the effect of DO level on fatigue life is assumed to be the same in low– and 
high–DO water and for wrought and cast austenitic SSs. 

The least–squares fit of the experimental data in water yields a steeper slope for the ε–N curve than 
the slope of the curve obtained in air.  These results indicate that environmental effects are more 
pronounced at low than at high strain amplitudes.  Differing slopes for the ε–N curves in air and water 
environments would add complexity to the determination of the environmental correction factor Fen, 
discussed later in this paper.  In the ANL statistical model, the slope of the ε–N curve is assumed to be the 
same in LWR and air environments.  In LWR environments, fatigue data for Types 304 and 316 SS are 
best represented by the equation: 

ln(N) = 5.675 – 2.030 ln(εa – 0.126) + T' ˙ ! ' O', (6) 



 

 34 

and that of Type 316NG, as  

ln(N) = 7.122 – 1.671 ln(εa – 0.126) + T' ˙ ! ' O', (7) 

where T', ˙ ! ', and O' are transformed temperature, strain rate, and DO, respectively, defined as follows: 

T' = 0 (T < 150°C)  
T' = (T – 150)/175 (150 ≤ T < 325°C)  
T' = 1 (T ≥ 325°C) (8) 

˙ !  = 0 ( ˙ !  > 0.4%/s)  
˙ !  = ln( ˙ ! /0.4) (0.0004 ≤ ˙ !  ≤ 0.4%/s)  
˙ !  = ln(0.0004/0.4) (ε◊  < 0.0004%/s) (9) 

O' = 0.281 (all DO levels). (10) 

These models are recommended for predicted fatigue lives of ≤106 cycles.  Equations 6 and 8–10 
should also be used for cast austenitic SSs such as CF-3, CF-8, and CF–8M.  As noted earlier, because the 
influence of DO level on the fatigue life of austenitic SSs may be influenced by the material heat 
treatment, the statistical model may be somewhat conservative for some SSs in high–DO water.   

5.2 Japanese MITI Guidelines 

The guidelines proposed by the Japanese Ministry of International Trade and Industry (MITI), for 
assessing the decrease in fatigue life in LWR environments, have been presented by Higuchi et al.40  The 
reduction in fatigue life of various pressure vessel and piping steels in LWR environments is expressed in 
terms of an environmental fatigue life correction factor Fen, which is the ratio of the fatigue life in air at 
ambient temperature to that in water at the service temperature.  For austenitic SSs, Fen is expressed in 
terms of strain rate ˙ !  (%/s), temperature T (°C), and strain amplitude εa (%) as follows: 

ln(Fen) = (C – ˙ ! *) T*,  (11) 

where  

C = 1.182 (BWR) 
C = 3.910 (PWR)  (12) 

˙ ! * = ln( ˙ ! ) (0.0004 ≤ ˙ ! )  
˙ ! * = ln(0.0004) ( ˙ !  < 0.0004%/s).  (13) 

T* = 0.000813 T (BWR)  
T* = 0.000782 T (PWR, T ≤ 325°C)  
T* = 0.254 (PWR, T > 325°C)  (14) 

Fen = 1 (εa ≤ 0.11%). (15) 

The fatigue life in water is determined by dividing the life in air at ambient temperature by Fen.  The 
fatigue life N in air is expressed in terms of the strain amplitude εa as  

ln(N) = 6.871 – 2.118 ln(εa – 0.110). (16) 
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5.3 Model Developed by the Bettis Laboratory 

A model based on available fatigue ε–N data, has been developed by the Bettis Laboratory.41 In this 
model, the Smith–Watson–Topper (SWT) equivalent strain parameter42 is used to predict the fatigue life 
of austenitic SSs in LWR environments under prototypical temperatures and loading rates.  The model 
indicates that the fatigue life of Type 304 SS in water depends on the temperature, strain rate, applied 
strain amplitude, and water oxygen level.  For low–DO water, the fatigue life can be reduced by as much 
as a factor of 13 at high temperatures and low strain rates.  The Bettis model for predicting fatigue life N 
in LWR environments is of the following form:  

  

� 

N = A ! "SWT # "0( )b
! P + 1#P( ) !e#kZ

m

[ ] , (17) 

where A, b, P, k, ε0, and m are model constants, and the SWT parameter 
  

� 

!SWT  is given by  

  

� 

!SWT = !a( )c "
#max

E
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% 
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' 

( 
) 

1*c

,  (18) 

in which maximum stress 
  

� 

!max  is the sum of the cyclic stress amplitude σa and mean stress σmean (i.e., = 
σa + σmean), E is the elastic modulus, and c is a constant determined from fatigue tests in air, in some of 
which a mean stress had been imposed.  The effects of temperature T (K) and strain rate   

� 

˙ !  (s–1) are 
incorporated into the model by using the Zener–Hollomon parameter Z, given by 

  

� 

Z = ˙ ! " e

Q

RT ,  (19) 

where R is the gas constant and Q is the fitted value of the activation energy.  The model constants were 
determined from the existing fatigue ε–N data in water.41  The values are as follows:* 

A = 1.185 x 10–2  (wrought SSs, other than 316NG, in PWR water) 
A = 1.185 x 10–2  (wrought SSs, other than 316NG, in BWR water) 
b = – 2.097  
ε0 = 9.068 x 10–4 mm/mm 
P = 0.109  (wrought SSs and welds)  
c = 0.7 
k = 149.0  (in PWR water) 
k = 383.7  (in BWR water) 
Q = 147.15 kJ/mol (35.17 kcal/mol) 
R = 8.314 J/mol K (1.987 cal/mol K) 
m = – 0.2233. 

The cyclic stress amplitude σa (MPa) corresponding to a given strain amplitude εa (mm/mm), is obtained 
from the cyclic stress–vs.–strain curves in air, given by 

σa = (175 – 0.342 T +7.10 x 10–4 T2) + (24010 – 4.54 x 10–2 T2 + 156 σmean) εa,  (20) 

                                                        
* T. R. Leax and D. P. Jones, Development of a Water Environment Fatigue Design Curve for Austenitic Stainless Steels, presented to ASME 

Subgroup on Fatigue Strength of Subcommittee Design, Sept. 24, 2002. 



 

 36 

where T is the temperature (°C), and σm is the mean stress (MPa).  This cyclic stress–strain curve is valid 
for stresses above the proportional limit.  Below the proportional limit, the stress amplitude is simply the 
product of the elastic modulus and strain amplitude.  The fatigue ε–N curve at zero mean stress can be 
obtained from Eqs. 17–20 by substituting a value of zero for σmean in Eqs. 18 and 20.   
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6 Incorporating Environmental Effects into Fatigue Evaluations 

The effects of LWR coolant environments may be incorporated into the ASME Section III fatigue 
evaluations by either developing a new set of environmentally adjusted fatigue design curves or by using 
a fatigue life correction factor Fen to adjust the current ASME Code fatigue usage values for 
environmental effects.  For both approaches, the magnitude of key loading and environmental parameters 
that influence fatigue life must be known.  Estimates of fatigue life based on the two approaches may 
differ because of differences between the ASME mean curves used to develop the current design curves 
and the best–fit curves to the existing data that are used to develop the environmentally adjusted curves.  
However, either method provides an acceptable approach to account for environmental effects. 

6.1 Fatigue Design Curves 

A set of environmentally adjusted fatigue design curves may be developed from the best–fit of 
stress–vs.–life curves to the experimental data in LWR environments by following the procedure that was 
used to develop the current ASME Code fatigue design curves.  The stress–vs.–life curve is obtained from 
the ε–N curve, e.g., stress amplitude is the product of strain amplitude and elastic modulus.  The best–fit 
experimental curves are first adjusted for the effect of mean stress.  As mentioned earlier the current 
ASME Code fatigue design curve for austenitic SSs does not include a mean stress correction below 
106 cycles because, for the current Code mean curve, the fatigue strength at 106 cycles is greater than the 
monotonic yield strength of these steels.  The best–fit curve in a specific environment is corrected for 
mean stress effects with the modified Goodman relationship given by:  
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where 
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 is the adjusted value of stress amplitude, and 
 
!

y
 and 
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u
 are yield and ultimate strengths of the 

material, respectively.  Equations 21 and 22 assume the maximum possible mean stress and typically give 
a conservative adjustment for mean stress, at least when environmental effects are not significant.  The 
fatigue design curves are then obtained by lowering the adjusted best–fit curve by a factor of 2 on stress 
or 20 on cycles, whichever is more conservative, to account for differences and uncertainties in fatigue 
life that are associated with material and loading conditions.  

 
!S
a

 

For environmentally adjusted fatigue design curves, a minimum threshold strain is defined, below 
which environmental effects are insignificant.  The Pressure Vessel Research Council steering committee 
for Cyclic Life Environmental Effects* has endorsed this threshold value and proposed a ramp for the 
threshold strain: a lower strain amplitude below which environmental effects are insignificant, a slightly 
higher strain amplitude above which environmental effects decrease fatigue life, and a ramp between the 
two values. The two strain amplitudes are 0.10 and 0.11% for austenitic SSs (both wrought and cast).   

                                                        
* Welding Research Council Progress Report, Vol. LIX No. 5/6, May/June 1999. 
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An example of fatigue design curves for austenitic SSs in LWR environments at 289°C is shown in 
Fig. 29.  Because the fatigue life of Type 316NG is superior to that of Types 304 or 316 SS at high strain 
amplitudes, the design curves in Fig. 29 may be somewhat conservative for Type 316NG SS.  
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Figure 29. Fatigue design curves developed from statistical model for austenitic 
stainless steels in LWR environments at 289°C under service 
conditions where all threshold values are satisfied. 

6.2 Fatigue Life Correction Factor 

The effects of reactor coolant environments on fatigue life have also been expressed in terms of a 
fatigue life correction factor Fen, which is defined as the ratio of life in air at room temperature to that in 
water at the service temperature.  Values of Fen can be obtained from the statistical model, where:  

ln(Fen) = ln(NRTair) – ln(Nwater).  (23) 

The fatigue life correction factor for austenitic SSs, based on the ANL model, is given by 

Fen = exp(1.028 – T' 

� 

˙ ! ' O'),  (24) 

where the constants T', 

� 

˙ ! ', and O' are defined in Eqs. 8–10.  Fen based on the MITI guidelines is given in 
Eqs. 11–15.  To incorporate environmental effects into a Section III fatigue evaluation, the fatigue usage 
for a specific stress cycle, based on the current Code fatigue design curve, is multiplied by the correction 
factor.   
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7 Summary 

Fatigue tests have been conducted on two heats of Type 304 SS under various material conditions 
to determine the effect of heat treatment on fatigue crack initiation in these steels in air and LWR 
environments. A detailed metallographic examination of fatigue test specimens was performed, with 
special attention to crack morphology at the sites of initiation, the fracture surface, and the occurrence of 
striations.   

The results indicate that heat treatment has little or no effect on the fatigue life of  
Type 304 SS in air and low–DO PWR environments.  In a high–DO BWR environment, fatigue life is 
lower for sensitized SSs; life continues to decrease as the degree of sensitization is increased.  The cyclic 
strain–hardening behavior of Type 304 SS under various heat treatment conditions is identical, only the 
fatigue life varies in different environments. 

In air, irrespective of the degree of sensitization, the fracture mode for crack initiation (crack 
lengths up to ≈200 µm) and crack propagation (crack lengths >200 µm) is transgranular (TG), most likely 
along crystallographic planes, leaving behind relatively smooth facets.  With increasing degree of 
sensitization, cleavage–like or stepped TG fracture, and occasionally ridge structures on the smooth 
surfaces were observed.  In the BWR environment, the initial crack appeared intergranular (IG) for all 
heat–treatment conditions, implying a weakening of the grain boundaries. For all four conditions tested, 
the initial IG mode transformed within 200 µm into a TG mode with cleavage–like features.  It appears, 
however, that the size of the IG portion of the crack surface increased with the degree of sensitization.  By 
contrast, for all of the samples tested in PWR environments, the cracks initiated and propagated in a TG 
mode irrespective of the degree of sensitization.  Prominent features of all fracture surfaces in the PWR 
case were highly angular, cleavage–like fracture facets that exhibited well–defined “river” patterns.  
Intergranular facets were rarely observed, but when they were found, it was mostly in the more heavily 
sensitized alloys. 

Fatigue striations normal to the crack advance direction were clearly visible beyond ≈200 µm on 
the fracture surfaces for all material and environmental conditions.  Striations were found on both the TG 
and IG facets of the samples tested in BWR conditions, or co-existing with the “river” patterns specific to 
the samples tested in the PWR environment.  Evidence of extensive rubbing due to repeated contact 
between the two mating surfaces was also found.   

The orientation of the cracks as they initiated at the specimen surface was also a function of the test 
environment.  For air tests, cracks initiated obliquely, approaching 45°, with respect to the tensile axis.  
By contrast, for tests in either BWR or PWR environment cracks tended to initiate perpendicular to the 
tensile axis.  In all environments, the overall orientation of the crack became perpendicular to the tensile 
axis as the crack grew beyond the initiation stage.   

In air, the fatigue lives of Types 304 and 316 SS are comparable; those of Type 316NG are superior 
to those of Types 304 and 316 SS at high strain amplitudes.  The fatigue lives of austenitic SSs in air are 
independent of temperature in the range from room temperature to 427°C.  Also, variation in strain rate in 
the range of 0.4–0.008%/s has no effect on the fatigue lives of SSs at temperatures up to 400°C.  The 
fatigue ε–N behavior of cast SSs is similar to that of wrought austenitic SSs. 

Review of the available data show that the fatigue lives of cast and wrought austenitic SSs are 
decreased in LWR environments; the decrease depends on strain rate, DO level in water, and temperature.   
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A minimum threshold strain is required for environmentally assisted decrease in the fatigue life of 
SSs, and this strain appears to be independent of material type (weld or base metal) and temperature in the 
range of 250–325°C.  Environmental effects on fatigue life occur primarily during the tensile–loading 
cycle and at strain levels greater than the threshold value.  Strain rate and temperature have a strong effect 
on fatigue life in LWR environments.  Fatigue life decreases logarithmically with decreasing strain rate 
below 0.4%/s.  The effect saturates at 0.0004%/s.  Similarly, the fatigue ε–N data suggest a threshold 
temperature of 150°C; in the range of 150–325°C, the logarithm of life decreases linearly with 
temperature.   

The fatigue lives of wrought and cast austenitic SSs are decreased significantly in low–DO (i.e., 
<0.01 ppm DO) water.  In these environments, the composition or heat treatment of the steel has little or 
no effect on fatigue life.  However, in high–DO water the environmental effects on fatigue life are 
influenced by the composition and heat treatment of the steel.  For a high–carbon heat of Type 304 SS, 
environmental effects were significant only for the sensitized steel. For a low–carbon heat of Type 
316NG SS, some effect of environment was observed even for MA steel in high–DO water, although the 
effect was smaller than that observed in low–DO water.  Limited fatigue ε–N data indicate that the fatigue 
lives of cast SSs are approximately the same in low– and high–DO water and are comparable to those 
observed for wrought SSs in low–DO water.  

Statistical models for the fatigue life of austenitic SSs as a function of material, loading, and 
environmental parameters have been developed.  The functional form of the model and bounding values 
of the important parameters are based on experimental observations and data trends.  The models are 
recommended for predicted fatigue lives of ≤106 cycles. Consistent with previous work by Jaske and 
O’Donnell, the present results indicate that even in air the ASME mean curve for SSs is not consistent 
with the experimental data.  The ASME curve is nonconservative.  The results that correspond to the 50th 
percentile of the statistical model are considered to be the best fit to the experimental data. 

Two approaches are presented for incorporating the effects of LWR environments into ASME 
Section III fatigue evaluations.  In the first approach, environmentally adjusted fatigue design curves are 
developed by adjusting the best–fit experimental curve for the effect of mean stress and by setting 
margins of 20 on cycles and 2 on strain to account for the uncertainties in life associated with material 
and loading conditions.  These curves provide allowable cycles for fatigue crack initiation in LWR 
coolant environments.  The second approach considers the effects of reactor coolant environments on 
fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at 
room temperature to that in water under reactor operating conditions.  To incorporate environmental 
effects into the ASME Code fatigue evaluations, a fatigue usage factor for a specific load set, based on the 
current Code design curves, is multiplied by the correction factor. 
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