

International Agreement Report

RELAP5/MOD3.2.2 Gamma Assessment For Down To Top Reflooding Process At VVER Like 37-Rod Bundle

Prepared by: A.S. Devkin

Russian Research Center "Kurchatov Institute" Kurchatov Square 1 123182, Moscow, Russia

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

July 2002

Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Code Application and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at www.nrc.gov/NRC/ADAMS/index.html. Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and *Title 10, Energy*, in the Code of *Federal Regulations* may also be purchased from one of these two sources.

- 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250
- The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov Facsimile: 301-415-2289

Some publications in the NUREG series that are posted at NRC's Web site address www.nrc.gov/NRC/NUREGS/indexnum.html are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42rd Street New York, NY 10036–8002 www.ansi.org 212–642–4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: This report was prepared under an international cooperative agreement for the exchange of technical information. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

International Agreement Report

RELAP5/MOD3.2.2 Gamma Assessment For Down To Top Reflooding Process At VVER Like 37-Rod Bundle

Prepared by: A.S. Devkin

Russian Research Center "Kurchatov Institute" Kurchatov Square 1 123182, Moscow, Russia

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

July 2002

Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Code Application and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission

LIST OF FIGURES	61
ABSTRACT	111
EXECUTIVE SUMMARY	IV
INTRODUCTION	1
2. TEST FACILITY DESCRIPTION	1
2.1 Circulation loop	1
2.2 Test section	1
2.3 Rod bundle	2
2.4 Measurement system	3
2.5 Test procedure	3
3. TEST SCENARIO AND INITIAL CONDITIONS	3
3.1 Test scenario	3
3.2 Starting values of main parameters	4
4. NODALIZATION SCHEME DESCRIPTION	4
5. RESULTS OF CALCULATIONS	4
6. SENSITIVITY ANALYSIS	17
6.1. Radiation heat transfer influence	17
6.2 Axial power distribution influence.	19
6.3 Radial power distribution influence	21
7. RUN STATISTICS	29
8. CONCLUSIONS	31
REFERENCES	32
Appendix A. TEST FACILITY SCHEMES.	33
Appendix B. INPUT DECK FOR BASE CASE	46

LIST OF FIGURES

Fig.1 Nodalization scheme of test section	
Fig. 2 Rods cladding temperature behavior at U. 1. December 1. 1.	5
Fig. 3 Rods cladding temperature behavior at H=1. Base case calculation and experimental data	6
Fig. 4 Rods cladding temperature behavior at $H=2$. Base case calculation and experimental data	6
Fig. 5 Pods cladding temperature behavior at $H=3$. Base case calculation and experimental data	7
Fig. 6 Rods cladding temperature behavior at H=4. Base case calculation and experimental data	8
Fig. 6 Rods cladding temperature behavior at H=5. Base case calculation and experimental data	9
Fig. 7 Rods cladding temperature behavior at H=6. Base case calculation and experimental data	10
Fig. 8 Cladding temperature of rod N19. Base case calculation and experimental data.	11
Fig. 9 Cladding temperature of rod N22. Base case calculation and experimental data.	12
Fig. 10 Cladding temperature of rod N27. Base case calculation and experimental data.	13
Fig. 11 Full pressure drop at heated zone.	
Fig. 12 Pressure drop at upper part of the bundle	15
Fig. 13 Pressure drop at lower part of the bundle	16
Fig. 14. Quenching front position. Base case and experimental data	17
Fig. 15. Radiation heat transfer between rod bundle and vessel wall influence for H=5.	18
Fig. 16. Radiation heat transfer between rod bundle and vessel wall influence for H=6	10
Fig. 17. Axial distribution influence on cladding temperature behavior for H=4	20
Fig. 18. Axial distribution influence on cladding temperature behavior for H=6	21
Fig. 19. Rod of type "B" temperature behavior. Experimental data for H=4.	22
Fig. 20. Rod of type "B" temperature behavior. Experimental and calculated data for H=6	23
Fig. 21. Rod of type "A" temperature behavior. Experimental and calculated data for H=6	25 24
Fig. 22. Rod of type "B" temperature behavior. Experimental and calculated data for H=5	25
Fig. 23. Rod of type "B" temperature behavior. Experimental and calculated data for H=4	25
Fig. 24. Quenching front position. Two-channel model results and experimental data	20
Fig. 25. Pressure drop at the heated zone. Experimental data and results of calculations with two-	
channel scheme	28
Fig. 26. Pressure drop at lower part of heated zone. Experimental data and results of calculations w	20 ith
two-channel scheme.	20
Fig. 27 CPU time during the test calculation.	29
Fig. 28 Time step behavior during the test	21
Fig. 1A. Loop scheme	
Fig. 2A. Test section scheme	33
Fig 3A. Upper plenum with current lead plate (1) and perforated plate (2)	
Fig. 4A. Rod imitator with indirect heating. $1, 8$ – copper rods 2 – thermocouples 3 – cladding	33 1
NI, Cr heater, 5 – pinch barrel, 6 – pulling wire, 7 – MgO $8 - 9$ – cone current lead	+-
Fig. 5A. Axial power profile and thermocouple arrangement along the height for the test section VI	
37.1	3- 27
Fig 6A. Transducer arrangement (a) and the power profile map (b) across the text spatian VD 27.1	
view)	top
Fig. 7A. Instrumentation for the test section KB-37 1	38
Fig 8A. Main parameters behavior during the experiment	
Table A-1	40
Table A-2	
Table A-3	
	45

ABSTRACT

The assessment of RELAP5/MOD3.2.2 Gamma for down to top reflooding at VVER like 37-rod bundle is presented. The experiment have been performed at IPPE test facility at the following parameters: upper plenum pressure- 0,246 MPa, cooling water temperature- 51°C, water velocity- 4.91 sm/s, average linear heat flux density at maximal heat production zone before water supply-1,77 kWt/m. RELAP5/MOD3.2.2Gamma assessment showed that code gives satisfactory results for all parameters behavior. The main discrepancies were get for cladding temperature behavior at level H-2.7m, where the calculated cladding temperatures exceed experimental data approximately on 75 K. Computed quenching time for this level are much higher experimental ones. For other levels accordance between experimental and RELAP data is rather good.

EXECUTIVE SUMMARY

This report presents the of RELAP5/MOD3.2.2 Gamma assessment in the prediction of reflooding process in VVER like 37-rod assembly with bottom to top water supply. The results of base case calculations showed that code gives satisfactory results for all parameters behavior. The main discrepancies were get for cladding temperature behavior at elevation 2.7m, where the calculated value exceeded the measured datum by about 75K. Computed quenching time for this elevation is much higher than experimental ones. For other levels accordance between experimental and RELAP data is rather good. Sensitivity analysis of results of calculations to input data showed that radial bundle nodding was inexpedient and it leads to less realistic results than at modeling of the bundle by one channel.

1. INTRODUCTION

One of the main processes determining the behavior of fuel element during the accidents is the reflooding process, at which one they are cooling at the expense of water supplied to reactor from emergency core cooling (ECC) system. VVER type reactors against PWR ones have ECC system, which supplies the water not only from the bottom of the core, but also from the upper plenum.

This process is very difficult for mathematical modeling, so it seems reasonable to investigate it by separate ways: firstly down-to-top reflooding, then top-to-down one and then combined process.

Such researches are carried out now in EPPE at assemblies modeling an active zone of VVER reactors. Results of these investigations could be used for thermohydraulic codes assessment. Presented work such assessment have been done for RELAP5/MOD3 (version 3.2.2 Gamma), which consist an improved reflooding process model developed at Paul Scherer Institute using the experiment carried out at 37-rod VVER like assembly with down-to-top reflooding at IPPE in 2000.

2. TEST FACILITY DESCRIPTION

2.1 Circulation loop

Principal scheme of experimental loop is shown at Fig.1A of Appendix A, which contents all necessary data for carrying out the calculations.

Water from tank (1) is supplied by centrifugal pumps (2) through the block of regulate valves with electric drive (B4) and B4(Γ) into electric heater (19) where water heats until the given temperature. Flowrate value is measured by set of two orifices, which are established sequentially on line of water supply to the test section (10). In automatic monitoring mode the given water flowrate is supported with the help of a valve electric drive B4(Γ). Distribution valves (4) established after a preheater (19) allows at an opened valve A and closed valves E and B and ball plug to route the flow to the test section (10), or to return into the tank (1) through the bypass line, which has the cooler (11) and stop valves (B6). Before the inlet of test section (10) is placed the throttle flowmeter (6), which is the indicator of switching of bang-bang valve (4) and beginning of water supply into the test section.

Separated in the upper plenum of the test section liquid collects in the tank of entrained water (7), connected by pipe with the bottom of the upper plenum. Vapor from the upper plenum passes through the special device with a developed surface, electric heater (15) where the remained non separated water evaporates, flowmeter orifice (6) and trough the vapor pressurizer (13) goes to condenser (16) and tank (1). The pressure in a system is established with the help of a steam compensator (13). Its regulation implements with the help of a valve (B9) and (B9r). If pressure exceeds given value, relief valve at compensator (13) opens.

2.2 Test section

Test section (TS) scheme is shown at Fig. 2A. It consists of vessel, upper and lower plenum. Vessel is made of hexahedral tube with inner described diameter equal 91.4 mm and wall thickness 3.3 mm. Vessel wall temperature is measured by 12 thermocouples at outer surface in four levels (692, 2038, 2732, 3500 mm from heater zone beginning) three thermocouples in level. There are three rings along the vessel for pressure tapoff.

Upper plenum intended for inertial phase separation of two phase flow coming out from the test section represents the cylindrical vessel (V=30000sm³). Gills arranged at the top of the plenum before an assigning nipple serve for additional phase separation. Separated water collects in the circular slot at the bottom of upper plenum and through the inclined opening flow off into the tank of entrained liquid. The bottom of upper plenum consists of two flanges lower of which serves for electric current supply to rod bundle and simultaneously for upper rod bundle grid modeling. Thickness of this grid is 20mm and

cross section area is near the grid area value. The nipple by an altitude of 100 mms and inner diameter 84-87mm fastens to the same flange. It models an upper part of reference VVER assembly. At the outlet of this nipple arranged the perforated plate 20mm thickness with 121 holes (109 and 12 hole 5.5mm and 3.5 mm diameter accordingly), which models the plate arranged at the outlet of the core of reference reactor. Cross section area of plate holes per one rod is near the reference reactor one. There are pipe connections in upper plenum and outlet nipple (fairlead) for thermocouples lead- in and

pressure measurement.

Lower plenum represents a cylindrical vessel by inner diameter of 120 mm and altitude of 185 mm.

For heat losses reducing vessel and plenums are isolated 20mm thickness high-temperature isolator (heat conduction coefficient equals to 0.05 Wt/(m K), heat capacity - 992 Kj/(kg K), density – 144 kg/m³ at temperatures 123÷1523 K). There are four thermocouples at the outer surface of the isolator at different locations along the vessel for heat losses control.

2.3 Rod bundle

Rod bundle models the VVER assembly and consists of rod bundle of 37 rod imitators with indirect heating with heated zone length 3530mm.

Rod imitator (Fig. 4A) consists of stainless steel cladding with outer diameter 9.1mm and inner diameter 7.9mm inside, which are placed nichrome heater and six chromel-alumel thermocouples with isolated junction.

There are three types of rod imitators: in imitators of A type thermocouples placed at six locations along the length (one thermocouple for one level), in imitators of B and C type they are located in pairs at three locations (Fig.5A). Electric isolation used in all imitators is oxide magnium.

Heater is made from nichcrome rod of variable cross section at the ends of that are welded copper current supplyes. Average along al 37 rods length axial nonuniformity is equal Kz=1.60.

Main characteristics of imitator are presented at tables A1, A2, A3 of Appendix A. Rod bundle was maked up from imitators, which has identical characteristics. Relative scatter of rod power for 37 rods is less than 10%.

Besides upper grid there are 15 grids along the rod bundle, distance between which is 225mm. The rods in bundle replaced at triangular spasing with pitch equal to 12.75mm.

Cross sectional area in the narrowest part is 3328 mm^2 . There are thermocouples in the cells and at the grids.

Table 1 shows the main geometrical characteristics of the test section

The initial geometrical conditions for the test are the following:

inner circumscribed diameter of the vessel - 91.4mm,

inner vessel width across fields - 81.8mm,

average for 37 rods rod diameter - 9.14mm.

Table 1

Cross section area				D hydralics	D heated	
Support grid A-A	Rod bundle B-B	Grid C-C	Grid-current supply Д-Д	Perforated plate E-E	B-B	B-R
mm ²	mm ²	mm ²	mm ²	mm ²	mm	mm
2719	3328	2719	2438	2695 (121 holes)	9,95	12,53

2.3 Measurement system

Test loop and assembly model are arranged by necessary amount of sensors and control system to measure the following parameters: inlet and outlet test section pressures and temperatures, water temperature and massflow at test section inlet, vapor temperature and massflow at its outlet, rod cladding and vessel wall temperatures, pressure drops at heated part of test section and tank of entrained liquid. Measurement scheme is presented at Fig.7A of Appendix A.

The Total parameters measurement error in the test was compounded as: pressure -0.5%; flowrate -2.0%; pressure drop -1.0%; power -1.0%; temperature -1.0%.

2.5 Test procedure

• Loop for reflooding investigation is filled with water from tank (1) with use of centrifugal pumps (2) and blowed out to reduce air.

• Using block of regulation valves (12) necessary flowrate through the test section established. Water heating at the inlet of test section realized by switching on electrical heater (19). Nominal pressure in the loop is supported by valve B9(r). Then power stepwise increased. At different power levels parameters required for pressure drop measurement and verifying mass and energy balance were registered.

• Electrical power reduced to zero. With using bang-bang valve water flow trough the test section stopped and water flow directs to tank (1).

• Drainage valves opened and water flows out from the test section, tang of entrained liquid and vapor compensator (13). The remained liquid level was near the beginning of heater zone of rod bundle.

- Heater (15) switched on for heating-up pipeline before vapor flowmeters.
- Temperature at the inlet of test section checked.
- Information gathering computer system and power control system switched on.
- Test section power increased until ~40÷50% of nominal value.
- Test section power increased until nominal value in automatic mode.
- After reaching of specified temperature (any rod cladding temperature) began water supply to the test section and power decreased according to specified curve. Valve B14 closed.
- Switching on of water flowrate trough the test section (beginning of reflooding process) is controlled by flowmeter indication at line of water supply.
- Parameters supporting during the process in given limits carried out in automatic (power) and manual mode (flowrate, pressure, inlet temperature).
- Test stopped when all thermocouples fixed the rewetting of all rods and power switched out.

3. TEST SCENARIO AND INITIAL CONDITIONS

Second Russian Standart Reflooding Problem is the reflooding experiment from down to top of 37-rods bundle of full length scale VVER like rod assembly with fixed cooling water supply.

3.1 Test scenario

The initial conditions of test section was the following: lower plenum and lower rods (unheated part) part were filled with water 50°C and other part and upper plenum - with saturated vapor.

• Power increasing for given value and rods heating to start temperature.

- After reaching of starting temperature power decreasing began and switched on water supply to the test section.
- Test stopped at rod temperatures reached saturation temperature.

3.2 Starting values of main parameters

- Upper plenum pressure 0,246 MPa;
 Cooling water temperature 51°C;
- Cooling water temperature 51°C;
 Water velocity 4.91 sm/s;
- Average linear heat flux density at maximal heat production zone before water supply -1,77 kWt/m.

Reproducibility of such characteristics as maximal cladding temperature and quenching time in identical tests was near 1%.

Heat losses defined in special steady-state tests describes by formula: $Q_{\text{loss}}=4,7\cdot10^3(\overline{T}_{\kappa}-T_{o})$ kWt, where $(\overline{T}_{\kappa}-T_{o})$ – difference between average along the vessel length temperature and air one.

4. NODALIZATION SCHEME DESCRIPTION

Heat production in different rod simulators reviewing (Table A1) allows to come to conclusion, that despite of some scatter of axial distribution for different rods it seems quite reasonable to model all 37-rod bundle as the set of identical rods with average on all 37 rods axial heat distribution. Thus test section was modeled as one channel of "pipe" type devided into 15 parts along the length. Two heat structures connected with this channel modeled 37 heated rods (heat production equals zero at upper subvolume) and vessel wall. Upper plenum was modeled by two volumes "branch" type, which modeled upper perforated plate and upper volume where phase separation occurred. Down volume was connected with heat structure, modeled perforated plate. Inlet water temperature and its flowrate were set in the elements "tmdpjun" and "tmdpvol", connected with lower plenum modeled with element "branch" type.

5. Results of calculations

Calculations have been performed by RELAP5/MOD3.2 Gamma, which contents PSI reflooding model. At initial conditions there were established fixed distribution of vapor and heat structures temperatures – 2.46Mpa and 400K. The power bringed to test section began to increase and at time 139s inlet flowrate increased from zero up to 0.16kg/s. Power was changed according to experimental curve. Figs. 2-7 shows the results of calculations for three "A" type rods : NoNo 19,22 and 27, for which were made the detailed cladding temperature measurements along the length .Table 2 shows the coordinates of thermocouples location.

Thermocouple location, mm						
Section/Rod	19	22	27			
H=1	57	117	184			
H=2	513	690	698			
H=3	1100	1215	1222			
H=4	-	2212	2203			
H=5	2704	2734	2722			
H=6	3505	3501	3477			

Table 2

It is clear that the coordinates of thermocouples location some differed for on section and naturally their indications would be different too. But this difference is too small, as thermocouples locates near the end of plate zone of heat distribution. For more larger difference could play role their radial position. So the rod 19 is placed in the middle of bundle, rod 22 in the outer row near the vessel wall and rod 27 is placed in the second row from the center.

Fig.1 Nodalization scheme of test section

Fig. 6 Rods cladding temperature behavior at H=5. Base case calculation and experimental data

Fig. 7 Rods cladding temperature behavior at H=6. Base case calculation and experimental data

Fig. 8-11 shows the same data but separately for each rod. The analysis of these data shows that accordance between them is rather good especially for down and middle part of rod bundle (until H=4). For upper section especially for H=5 code gives lower temperatures, but more longer duration of reflooding process. Specially clear it is visible at Fig. 11, at which quenching front position during the test is presented. It is clear that front velocity propagation is very well predicted for lower part of the bundle, but for upper part the descripancies between calculated and experimental values becomes larger. It must be noted that the experimental data for this part have significant scatter from 30s to 150s.

Fig. 11-13 shows pressure drop data along the test section: for down part of heated zone, upper part and total pressure drop for heated zone. One can see that total pressure drop predicted well enough, and for lower part calculated values are some lower experimental ones after 180s. Upper part pressure drops at first 300 s have different signs with closed rates of pressure drop increasing. Apparently the experimental data for this parameter is not correct and it is lowered approximately at 4kPa.

Fig. 9 Cladding temperature of rod N22. Base case calculation and experimental data

Fig. 10 Cladding temperature of rod N27. Base case calculation and experimental data.

COB

Fig. 11 Full pressure drop at heated zone

Fig. 12 Pressure drop at upper part of the bundle

CIQ

Fig. 13 Pressure drop at lower part of the bundle

Fig. 14. Quenching front position. Base case and experimental data

6. SENSITIVITY ANALYSIS

6.1. Radiation heat transfer influence

It seems reasonable that radiation heat transfer between different rod is inessential, as their temperatures differ from each other too small during the process. However radiation could play role in outer rods row and vessel wall. For checking such influence the calculations have been performed with taking into consideration the radiation heat transfer. Rod bundle in this calculation was modeled as for base case by one channel multiplicity 37 and heat structure, which changed with radiation heat with vessel wall. The results of this calculations are presented at Fig. 15-16.

Fig. 15. Radiation heat transfer between rod bundle and vessel wall influence for H=5.

6.2 Axial power distribution influence

Fig. 17-18 show the results of calculations, performed with different variation factor along the bundle for H=4 and H=6. For these calculations were chosen such variations factors, which corresponded to rods with its maximal and minimal values of all bundle rods. Maximal difference was got for H=4, but as one could see from Fig. 17-18 this difference is too small and discrepancies between experimental data and computed couldn't be explained by this factor.

6.3 Radial power distribution influence

Analysis of experimental data presented for example at fig. 7, shows that for upper bundle part radial position of the rod plays significant role. For example the earliest quenching takes place at the rods placed at the outer rod row. Quenching of the rods placed in the second from the vessel wall row occurred some later. The analogous results for type "B" rod presented at fig. 19.

Fig. 19. Rod of type "B" temperature behavior. Experimental data for H=4

For taking into account radial parameter the calculations have been performed with using modified nodalization scheme, in which whole rod bundle was divided into two parts: zone with all rods of outer row and the zone with the rest rods. Radiation heat transfer was taken into account for transfer between outer rods row and vessel wall, and radiation between outer rods and inner was neglected. Fig. 20 shows the results of these calculations for upper section type "B" rods.

CIT

Fig. 20. Rod of type "B" temperature behavior. Experimental and calculated data for H=6

Fig. 21 shows the analogous data for type "A" rods. One can see that though two groups cladding behavior are practically coincided, in a general way their behavior some change and quenching of upper part of the rods occurs some earlier than for case of bundle modeling with one channel. Fig. 22-23 shows the results for "A" group rods at H=5 and H=4.

018

Fig. 21. Rod of type "A" temperature behavior. Experimental and calculated data for H=6

Fig. 22. Rod of type "B" temperature behavior. Experimental and calculated data for H=5

Fig. 23. Rod of type "B" temperature behavior. Experimental and calculated data for H=4

One can see from Fig. 21 radial dividing reduces quenching time for upper section (H=6), difference between temperatures behavior being practically neglecting. Difference from experimental and calculated data remained essential.

For section H=5 was obtained qualitatively incorrect behavior cladding temperature for both rod rows: more earlier quenching of inner rods. For both rows was obtained earlier quenching than for base case calculation. And for this case quenching times were obtained larger than experimental ones also.

For H=4 (Fig. 23) using two-channel model changed the results insignificant.

Fig. 24 shows the results of quenching front propagation with two-cannel model using. Apparently from this figure quenching of bundle lower part occurred some later, than in experiment and in base case calculation. For upper part calculations wit two-channel model gave earlier quenching, than for base case and as a rule inner part quenching occurred earlier than quenching of outer part.

Fig. 25-26 shows the results of calculations of pressure drop on the bundle for base case and twochannel model. One can see pressure drop behavior for two-channel model characterized considerable oscillations not fixed in the experiment and accordance between calculated results and experimental data are less than for base case.

Fig. 25. Pressure drop at the heated zone. Experimental data and results of calculations with twochannel scheme

7. RUN STATISTICS

•

Fig. 27-28 illustrate code efficiency where time step variation and CPU time during the calculation are presented. Grind time is evaluated as

CPU/(C*DT)= 0,000228, where C= 18 - volumes number, DT = 95992 - time steps number, CPU = 395 s - CPU time.

29

L

1_

Fig. 27 CPU time during the test calculation

Fig. 28 Time step behavior during the test

8. CONCLUSIONS

The calculations down to top reflooding process at 37-rod bundle with code RELAP5/MOD3 (version 3.2.2 Gamma) showed that code gives satisfactory results for all parameters behavior. The main discrepancies were get for cladding temperature behavior at elevation 2.7m, where the calculated value exceeded the measured datum by about 75K. Computed quenching time for this elevation is much higher than experimental ones. For other levels accordance between experimental and RELAP data is rather good.

Sensitivity analysis of results of calculations to input data showed that radial bundle nodding was inexpedient and it leads to less realistic results than at modeling of the bundle by one channel.

REFERENCES

1. Lozhkin V.V., Sudnitzyn O.A., Kulikov B.I., etc. Experimental and Theoretical Investigation of heat transfer at simulating of loss of coolant accidents with bottom-up reflooding on 37-rod assembly model of VVER. IPPE Report / N 9648, 1998.

1___

Appendix A. TEST FACILITY SCHEMES

Fig. 1A. Loop scheme

1- tank, 2 – pumps, 3,9 –steam generators, 4 –toggle valve, 5 - connectors, 6 – flowmeter orifices, 7 – entrained liquid tank, 10 – test section, 11- cooler, 13 – steam pressurizer, 15 – electric heater, 18 – downcomer model, 19 - preheater.

Fig. 2A. Test section scheme

1- vessel; 2 – lower plenum; 3 – upper plenum; 4 – separator; 5 – louver; 6 – plate connected with current lead.; 5 – louver; 6 – plate connected with current lead.

Fig 3A. Upper plenum with current lead plate (1) and perforated plate (2)

Fig. 4A. Rod imitator with indirect heating. 1, 8 – copper rods, 2 – thermocouples, 3 – cladding, 4 – NI, Cr heater, 5 – pinch barrel, 6 – pulling wire, 7 – MgO, 8 - 9 – cone current lead.

- A, B, C, imitator types; К vessel; И insulation;
- - wall mounting thermocouples;
- - fluid thermocouples;
- a distance from the bottom of the heated zone*(rough values);
- a distance from the bottom of the heated zone to the bottom of a grid spacer (measured before the tests).
- * the correct values specified in Table A-2.

b)

Fig 6A. Transducer arrangement (a) and the power profile map (b) across the test section KB-37.1 (top view)

- $\begin{array}{c}
 19\\
 \hline
 19\\
 \hline
 0,998\\
 \hline
 45\\
 \end{array}$
- rod number,
- type and identification of a rod;
- rod number,
- relative power;
- hydraulic cell number;
- •4 wall thermocouple, thermocouple number in the rod;
- (5) fluid thermocouple, number of thermocouples in a cell along the height;
- grid thermocouple;
- $(\mathbf{k} \cdot \mathbf{\hat{H}})$ vessel and insulation thermocouples;
- - conductive probe.

Fig. 7A. Instrumentation for the test section KB-37.1

I.

L....

Fig 8A. Main parameters behavior during the experiment

Rod	Nu mbe r of Tc	Inac tive Tc	Identifica tion	d ^{max}	d	R _{passp.}	R _{meas.}	Kzi	K _{Ni}	K _{ZH} = K _Z *K	
1	6		B-38	9.16	9.1 2	0.569	0.567	1.592	0.986	1.57	0.98
16	6		A-40	9.12	9.1 1	0.566	0.561	1.589	0.996	1.58	0.9 9
34	5	5	C-12	9.13	9.1 2	0.575	0.575	1.620	0.972	1.57	0.98
2	4	1,3	A-49	9.13	9.1 1	0.552	0.552	1.570	1.012	1.59	0.99
5	6		B-35	9.14	9.1 1	0.560	0.559	1.572	1.000	1.57	0.98
10	6		C-30	9.25	9.2 3	0.564	0.564	1.660	0.991	1.64	1.03
23	6		B-29	9.15	9.1 4	0.569	0.568	1.676	0.984	1.65	1.03
29	6		A-31	9.16	9.1 4	0.562	0.558	1.684	1.001	1.69	1.05
35	6		C-33	9.16	9.1 4	0.563	0.560	1.593	0.998	1.59	0.99
6	6		C-48	9.11	9.1 0	0.575	0.572	1.585	0.977	1.55	0.97
17	6		C-6	9.19	9.1 9	0.580	0.573	1.521	0.975	1.48	0.93
30	5	6	B-14	9.16	9.1 2	0.561	0.560	1.597	0.998	1.59	1.00
7	6		C-45	9.13	9.1 2	0.562	0.557	1.596	1.003	1.60	1.00
11	6		B-47	9.14	9.1 2	0.558	0.554	1.569	1.009	1.58	0.99
24	6		B-32	9.18	9.1 6	0.569	0.558	1.689	1.001	1.69	1.06
12	6		A-19	9.14	9.1 3	0.575	0.576	1.522	0.970	1.48	0.92
18	6		A-7	9.15	9.1 3	0.573	0.573	1.655	0.975	1.61	1.01
25	6		C-18	9.14	9.1 3	0.598	0.589	1.578	0.949	1.50	0.94
19	6		A-1	9.13	9.1 2	0.560	0.560	1.571	0.998	1.57	0.98
26	6		B- 2	9.15	9.1 4	0573.	0.527	1.565	1.060	1.66	1.04

Table A-1 Bundle KB 37.1. Imitator test results

20	G		<u></u>	0.14	0.4		0.500				T
	0		C-3	9.14	9.1 3	0.512	0.506	1.582	1.104	1.75	1.09
13	6		B-17	9.15	9.1 2	0.592	0.590	1.586	0.947	1.50	0.94
31	6		C-21	9.17	9.1 4	0.574	0.567	1.509	0.986	1.49	0.93
27	6		A-34	9.15	9.1 4	0.534	0.527	1.573	1.060	1.67	1.04
14	3	2,3, 4	C-24	9.20	9.1 8	0.574	0.570	1.667	0.980	1.63	1.02
32	6		C-27	9.17	9.1 7	0.569	0.570	1.645	0.980	1.61	1.01
21	6		B-23	9.18	9.1 7	0.566	0.562	1.530	0.994	1.52	0.95
8	6		A-46	9.14	9.1 2	0.558	0.552	1.584	1.012	1.60	1.00
36	6		A-25	9.33	9.1 9	0.562	0.557	1.662	1.003	1.67	1.04
33	6		C-36	9.15	9.1 4	0.555	0.551	1.690	1.014	1.71	1.07
28	5	2	B-20	9.12	9.1 7	0.551	0.548	1.665	1.020	1.70	1.06
15	6		C-39	9.12	9.1 1	0.568	0.561	1.599	0.996	1.59	1.00
9	4	3,4	B-44	9.20	9.1 7	0.562	0.558	1.584	1.001	1.59	0.99
3	3	2,3, 5	C-9	9.13	9.1 2	0.568	0.565	1.614	0.989	1.60	1.00
37	6		B-26	9.14	9.1 3	0.549	0.545	1.501	1.025	1.54	0.96
22	6		A-22	9.15	9.1 2	0.557	0.55	1.638	1.003	1.64	1.03
4	4	1,3	C-42	9.17	9.1 5	0.549	0.544	1.594	1.027	1.64	1.02
Avera	age val	ues			9.14		0.559	1.601		1.60	

.

+----

Table A-2 Thermocou	ple arrangement in	Bundle KB-37/1
---------------------	--------------------	----------------

		Therr	nocoup	ole									
Rod Type	Rod	1		2		3		4		5		6	
	Í	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°
A-1	19	57	186	513	225	1110	184			2704	300	3505	0
A-7	18	180	298			1194	182	2226	120	2725	46		
A-19	12	197	267	688	222	1215	196	2207	128	2727	108	3486	0
A-22	22	117	240	690	103	1215	20	2212	200	2734	164	3501	0
A-25	36	193	280	704	330	1233	120	2226	90	2741	70	3500	0
A-31	29	188	140	694	65	1217	290	2207	160	2725	25	3483	0
A-34	27	184	290	698	200	1222	115	2203	306	2722	142	3477	0
A-40	16	150	110	659	350	1187	273	2195	164	2721	70	3490	0
A-46	8	154	260	666	90	1190	356	2184	220	2706	108	3468	0
A-49	2		-	682	110			2192	208	2710	120	3467	0

		Thern	nocoup	le					-				
Rod	Rod	1		2		3		4		5		6	
ıype		l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°
B-2	26	942	68	945	230	2063	194	2067	48	3362	197	3365	0
B-14	30	774	296	775	102	2048	242	2048	68	3313	195		
B-17	13	773	184	773	342	1998	268	1997	103	3306	170	3306	0
B-20	28	793	350			2026	40	2027	230	3349	183	3348	0
B-23	21	779	247	779	62	2013	15	2014	197	3334	179	3333	0
B-26	37	820	252	819	60	2022	86	2023	275	3323	188	3325	0
B-29	23	779	338	780	140	2012	185	2010	10	3326	188	3326	0
B-32	24	792	62	790	238	2021	178	2022	8	3341	180	3341	0
B-35	5			764	125	1993	138	1991	325	3317	183	3316	0
B-38	1	756	334	757	138	2010	286	2010	100	3326	195	3325	0
B-44	9	756	290	756	95			1965	6	3306	0		_
B-47	11	741	125	741	304	2024	276	2024	98	3335	175	3335	0

		Thern	nocoup	le									
Rod	Rod	1		2		3		4		5		6	
1,100		l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°	l,mm	φ°
C-3	20	1435	330	1437	150	2001	80	2000	250	2748	186	2746	0
C-6	17	1513	250	1514	78	2023	270	2023	70	2736	180	2737	0
C-9	3	1487	85			1990	335	1987	170			2692	0
C-12	34	1517	210	1518	22	2027	330	2026	165			2729	0
C-18	25	1414	184	1414	338	1971	218	1971	32	2731	178	2730	0
C-21	31	1488	245	1491	64	2000	248	2001	80	2718	162	2718	0
C-24	14	1232	248							2461	50	2461	-10
C-27	32	1505	298	1505	132	2014	280	2015	113	2733	220	2732	0
C-30	10	1527	290	1524	95	2039	214	2038	46	2759	200	2760	0_
C-33	35	1495	130	1493	307	2012	224	2012	46	2736	168	2736	0
C-36	33	1511	160	1510	348			2018	55	2737	175	2739	0
C-39	15	1488	82	1487	254	2004	285	2003	115	2729	170	2730	0
C-42	4		<u> </u>	1517	232	2020	235	2022	75	2737	185		- p
C-45	7	1476	105	1476	275	1987	20	1987	205	2715	176	2715	0
C-48	6	1487	85	1484	270	2004	12	2003	190	2728	170	2727	0

N	Rod	Туре	Zone Nu	ımber													
	1		1			2			3			4			5		
			L	Ø	Kz	L	Ø	Kz	L	Ø	Kz	L	Ø	Kz	L	Ø	Kz
1	19	A-1	695	3.85	0.657	525	3.23	0.934	1056	2.49	1.571	524	3.3	0.894	730	3.95	0.624
2	18	A-7	785	3.9	0.576	501	3.00	0.973	1011	2.30	1.655	496	3.00	0.973	740	3.85	0.591
3	12	A-19	774	3.58	0.642	494	3.05	1.022	997	2.50	1.522	494	3.05	1.022	776	3.80	0.659
4	22	A-22	768	3.80	0.626	492	3.10	0.941	1005	2.35	1.638	508	3.10	0.941	757	3.85	0.61
5	36	A-25	768	3.80	0.609	494	3.00	0.977	1003	2.30	1.662	507	3.10	0.915	759	3.85	0.593
6	29	A-31	751	3.80	0.617	501	3.20	0.87	1013	2.30	1.684	503	3.10	0.927	762	3.85	0.601
7	27	A-34	835	3.75	0.671	487	3.05	1.015	952	2.45	1.573	487	3.10	0.982	777	3.80	0.654
8	16	A-40	747	3.75	0.635	495	3.00	0.992	1023	2.37	1.589	505	3.10	0.929	760	3.80	0.618
9	8	A-46	757	3.75	0.633	485	3.00	0.989	1023	2.37	1.584	504	3.05	0.956	761	3.80	0.616
10	2	A-49	769	3.75	0.643	493	3.00	1.005	1003	2.40	1.570	500	3.05	0.972	765	3.80	0.626
11	26	B-2	770	3.8	0.667	499	3.2	0.940	1043	2.48	1.565	516	3.3	0.884	702	3.84	0.653
12	30	B-14	763	3.75	0.638	494	3.00	0.997	1008	2.37	1.597	498	3.10	0.933	767	3.80	0.621
13	13	B-17	765	3.85	0.616	499	3.00	1.015	1019	2.40	1.586	501	3.10	0.95	745	3.85	0.616
14	28	B-20	786	3.85	0.620	484	3.20	0.898	995	2.35	1.665	502	3.15	0.927	764	3.80	0.637
15	21	B-23	747	3.85	0.645	498	3.10	0.995	1020	2.50	1.530	501	3.10	0.995	764	3.85	0.645
16	37	B-26	802	3.90	0.642	475	3.10	1.016	998	2.55	1.501	482	3.05	1.049	783	3.80	0.676
17	23	B-29	741	3.90	0.583	498	3.15	0.893	1026	2.30	1.676	510	3.10	0.923	756	3.80	0.614
18	24	B-32	760	3.85	0.603	485	3.20	0.873	1020	2.30	1.689	501	3.10	0.93	765	3.85	0.603
19	5	B-35	736	3.75	0.644	503	3.05	0.974	1026	2.40	1.572	507	3.10	0.942	758	3.80	0.627
20	1	B-38	733	3.75	0.625	495	3.05	0.945	1037	2.35	1.592	504	3.05	0.945	761	3.75	0.625
21	9	B-44	732	3.75	0.633	501	3.00	0.989	1032	2.37	1.584	504	3.10	0.926	760	3.80	0.616
22	11	B-47	759	3.70	0.660	493	3.05	0.971	1013	2.40	1.569	498	3.10	0.940	767	3.75	0.643
23	20	C-3	765	3.9	0.676	520	3.35	0.917	1037	2.55	1.582	538	3.45	0.864	670	4	0.643
24	17	C-6	749	3.90	0.625	495	3.10	0.989	1022	2.50	1.521	510	3.05	1.022	754	3.80	0.658
25	3	C-9	770	3.82	0.611	495	3.05	0.958	1000	2.35	1.614	510	3.00	0.99	755	3.80	0.617
26	34	C-12	757	3.7	0.626	499	2.95	0.985	1009	2.3	1.620	500	3.00	0.952	765	3.8	0.593
27	25	C-18	692	3.70	0.61	517	2.90	0.992	1056	2.30	1.578	536	3.00	0.927	730	3.75	0.593
28	31	C-21	762	3.80	0.653	495	3.10	0.982	1008	2.50	1.509	503	3.00	1.048	762	3.80	0.653
29	14	C-24	750	3.80	0.611	514	3.10	0.918	1001	2.30	1.667	515	3.10	0.918	748	3.80	0.611
30	32	C-27	754	3.8	0.618	499	3.1	0.929	1011	2.33	1.645	497	3.1	0.927	762	3.8	0.618
31	10	C-30	754	3.80	0.608	503	3.10	0.914	1010	2.30	1.660	497	3.05	0.944	766	3.80	0.608
32	35	C-33	738	3.80	0.609	500	3.00	0.978	1027	2.35	1.593	502	3.00	0.978	763	3.80	0.609
33	33	C-36	745	3.9	0.588	495	3.2	0.873	1025	2.3	1.69	504	3.1	0.93	761	3.85	0.603
34	15	C-39	758	3.75	0.639	486	3.05	0.996	1021	2.37	1.599	502	3.10	0.935	763	3.80	0.622
35	4	C-42	775	3.80	0.636	480	3.05	0.987	1010	2.40	1.594	505	3.10	0.956	762	3.85	0.620
36	6	C-48	748	3.75	0.623	500	3.0	0.973	1017	2.35	1.585	508	3.0	0.973	756	3.75	0.623
37	7	C-45	747	3.75	0.638	495	3.05	0.964	1023	2.37	1.596	508	3.10	0.933	758	3.80	0.621

Таблица А-3. Bundle 37.1. Axial power profile

Appendix B. INPUT DECK FOR BASE CASE

```
= Reflooding for 37 rod assembly
 * O=48 KWT
0000100 new transnt
0000105 1. 2.
0000201 \ 0.5 \ i.0e{-}08 \ 0.001 \ 0003 \ 500 \ 500 \ 10000
0000202 50.0 1.0e-08 0.20 0003 50 5000 1000
0000203 130.0 1.0e-09 0.005 0003 200 5000 1000
0000204 200.0 1.0e-09 0.005 0003 2000 5000 1000
0000205 270.0 1.0e-09 0.005 0003 2000 5000 1000
0000206 280.0 1.0e-09 0.002 0003 2000 5000 1000
0000207 400.0 1.0e-08 0.005 0003 2000 5000 1000
20800001 cputime 0
20800002 dt
            0
0000401 time 0 ge null 0 0.0 l
0000402 time 0 ge null 0 130.0 1
÷
                            *
         volume data cards
                             *
×
*
* water tank
0020000 "tank" tmdpvol
0020101 1.0
           1.0 0.0 0.0 90.0 1. 0, 0, 10
0020200 103
0020200 103
0020201 0.00 2.46000e5 324.15 *
* junction no. 4 (lower plenum to core)
*===========
* V inlet =4.91 sm/c,G= 580 kg/h =0.16 kg/s
0010000 "jun 1" tmdpjun
0010101 002000000 006000000 0.0113
0010200 1 402
0010201 0.0 0.0
                  0.0 0.0
0010203 1000.0 0.16 0.0 0.0 *
*crdno name type
0060000 in branch
*crdno jun.no ctrlw
0060001 1
           1
*crdno area length volume h.ang v.ang elev rgh dhyd tlpvbfe
0060101 0.0113 0.185 0.0 0.0 90. 0.185 4.0-5 0.0 0010000
```

*crdno ebt pressure quale 0060200 002 2.460e5 0.0 *crdno from floss rloss efvcahs to area * Area for 37 rod 0061101 006010000 004000000 0.003328 0.0 0.0 0001100 *crdno flowf flowg in.vel 0061201 0.0 0.0 0.0 *_____ * core * 0040000 "core" pipe 0040001 15 * vol area 0040101 0.003328 1 0040102 0.003328 2 0040103 0.003328 3 0040104 0.003328 4 0040105 0.003328 5 0040106 0.003328 6 0040107 0.003328 7 0040108 0.003328 8 0040109 0.003328 9 0040110 0.003328 10 0040111 0.003328 11 0040112 0.003328 12 0040113 0.003328 13 0040114 0.003328 14 0040115 0.003328 15 * junctions areas 0040201 0.00271871 * 0040202 0.0027187 2 * 0040203 0.00271873 * 0040204 0.00271874 * 0040205 0.0027187 5 * 0040206 0.00271876 * 0040207 0.0027187 7 * 0040208 0.00271878 * 0040209 0.0027187 9 * 0040210 0.002718710 * 0040211 0.002718711 * 0040212 0.002718712 * 0040213 0.0027187 13 * 0040214 0.002718714 * * L total =3.53m ===== 0040301 0.255 1 * 2 * 0040302 0.255 3 * 0040303 0.255 0040304 0.25 4 * 0040305 0.25 5 * 6 * 0040306 0.25 7 * 0040307 0.25 0040308 0.25 8 * 9 * 0040309 0.25 10 * 0040310 0.25

*

```
0040311 0.25
              11 *
0040312 0.255
              12 *
0040313 0.255
               13 *
0040314 0.255
               14 *
0040315 0.237
               15 *
0040601 90.0
               15
0040801 0.0
              9.07e-3.15
0040901 0.1
             0.1 14
*
     pvbfe
0041001 01100 15
     fvcahs
0041101 001000 14
0041201 102
               2.46000e5
                         1.0 0.0 0.0 0 1
0041202 102
               2.46000e5
                         1.0 0.0 0.0 0 2
0041203 102
               2.46000e5
                         1.0 0.0 0.0 0 3
0041204 102
               2.46000e5
                         1.0 0.0 0.0 0 4
               2.46000e5
0041205 102
                         1.0 0.0 0.0 0 5
0041206 102
               2.46000e5
                         1.0 0.0 0.0 0 6
0041207 102
               2.46000e5
                         1.0 0.0 0.0 0 7
0041208 102
               2.46000e5
                         1.0 0.0 0.0 0 8
0041209 102
               2.46000e5
                         1.0 0.0 0.0 0 9
0041210 102
               2.46000e5
                         1.0 0.0 0.0 0 10
0041211 102
               2.46000e5
                         1.0 0.0 0.0 0 11
0041212 102
               2.46000e5
                         1.0 0.0 0.0 0 12
0041213 102
               2.46000e5
                         1.0 0.0 0.0 0 13
0041214 102
               2.46000e5
                         1.0 0.0 0.0 0 14
0041215 102
               2.46000e5
                         1.0 0.0 0.0 0 15
0041300 0
0041301 0.0 0.0 0.0 14
** upper plenum
*crdno name type
2040000 out branch
*crdno jun.no ctrlw
2040001 1
           1
*crdno area
            length volume h.ang v.ang elev rgh dhyd tlpvbfe
2040101 2438.0e-6 0.1 0.0 0.0 90. 0.1 0.0 0.0 0010000
    section D-D/37
*2040101 65.89e-6 0.225 0.0 0.0 90. 0.225 0.0 0.0 0010000
*crdno ebt pressure tempf
2040200 002 2.46000e5 1.0
*crdno from
           to
                   area floss rloss
                                   efvcahs
2041101 004010000 204000000 2826.0e-6 0.1 0.1 0101000
*crdno flowf flowg in.vel
2041201 0.0
            0.0 0.0
```

```
*
*_____
×
** upper plenum
*crdno name type
2060000 in branch
*crdno jun.no ctrlw
2060001 2 1
*crdno area length volume h.ang v.ang elev rgh dhyd tlpvbfe
2060101 0.0 0.460 30.0e-3 0.0 90. 0.460 0.0 0.0 0010000
*
         Total volume/37
*2060101 0.0 0.460 0.8108e-3 0.0 90. 0.460 0.0 0.0 0010000
*crdno ebt pressure tempf
2060200 002 2.46000e5 1.0
* 109 holes D=5.3mm + 12 holes D=3.5 mm
  =2403.5 \text{ mm2} + 115.4 \text{ mm2} = 2519 \text{ mm2},
2061101 204010000 206000000 2519.00e-6 0.1 0.1 0100000
* Outlet pipe D=60 mm, A= 2826mm2
2062101 206010000 010000000 2826.0e-6 0.1 0.1 0100000
*crdno flowf flowg in.vel
2061201 0.0 0.0 0.0
2062201 0.0 0.0 0.0
*_____
*
0100000 "u p" tmdpvol
0100101 1.0e6 1. 0. 0. 90. 1. 0. 0. 10
0100200 102
0100201 0.0 2.46000e5 1.0
**
  *
                         *
*
      heat slab structure
                             *
*
                         *
*
*crdno no.h.s no.m.p geo s.s.flg left reffl bvi no.ax.p
10016000 15 6 2 1 0. 402 1 8
10016100 0
           1
*crdno intvl rt.cor intvl rt.cor
              ????
10016101 1
          1.25e-3 1 3.85e-3 1 3.95e-3 2 4.55e-3
×
*crdno comp intvl comp intvl
    NIHROM MGO
                       INCONEL
*10011201 2 2 3 4
                       4 5
```

* m	go nił	irom	mgo	s-steel		
10016201	3 1	2 2	3 3	4 5		
*						
*						
10016301	0.0	1				
10016301	1.0	י ר				
10016302	1.0	4 5				
10016303	0.0	2				
*						
10016400	-1					
*						
10016401	373.00	373.00	373.00	373.00	373.00	373.00
10016402	373.00	373.00	373.00	373.00	373.00	373.00
10016403	373.00	373.00	373.00	373.00	373.00	373.00
10016404	373.00	373.00	373.00	373.00	373.00	373.00
10016405	373.00	373.00	373.00	373.00	373.00	373.00
10016406	373.00	373.00	373.00	373.00	373.00	373.00
10016407	373.00	373.00	373.00	373.00	373.00	373.00
10016408	373.00	373.00	373.00	373.00	373.00	272.00
10016400	272 00	272.00	272.00	373.00	373.00	373.00
10010409	373.00	373.00	373.00	373.00	373.00	373.00
10016410	373.00	373.00	373.00	373.00	373.00	373.00
10016411	373.00	373.00	373.00	373.00	373.00	373.00
10016412	373.00	373.00	373.00	373.00	373.00	373.00
10016413	373.00	373.00	373.00	373.00	373.00	373.00
10016414	373.00	373.00	373.00	373.00	373.00	373.00
10016415	373.00	373.00	373.00	373.00	373.00	373.00
*						
10016501	0 0	0 19.4	35 1			
10016502	0 0	0 19.4	35 02			
10016503	0 0	0 19.4	35 03			
10016504	0 0	0 1 9.2	5 04			
10016505	0 0	0 1 9.2	5 05			
10016506	0 0	0 1 9.2	5 06			
10016507	0 0	0 192	5 07			
10016508	0 0	0 192	5 08			
10016509	0 0	0 192	5 00			
10016510		0 102	5 10			
10016511	0 0	0 102	5 10			
10016512		0 1 9.2	5 11			
10010312		0 19.2	5 12 25 12			
10010515		0 19.4	33 IS 25 IA			
10016514	0 0	0 19.4	35 14			
10016515	0 0	0 19.4	35 15			
2	00.10.10.1	00 0		0.00-		
10016601	0040100	00 0	119	9.287 1		
10016602	0040200	00 0	119	9.287 2		
10016603	0040300	00 0	119	9.287 3		
10016604	0040400	00 0	119	9.2685 4		
10016605	0040500	0 00	11	9.2685 5		
10016606	0040600	0 00	1 1 9	9.361 6		
10016607	0040700	0 00	1 1 9	9.361 07		
10016608	0040800	00 0	110	9.361 08		
10016609	0040900	00 0	110	9.361 09		
10016610	0041000	00 0	1 1 0	9 3684 10		
10016611	0041100	00 0	1 1 0	0.3684 11		
10016612	0041200	$\alpha \alpha \alpha$	11	2.300 + 11		
10010012	0041200			7.3411 14 0.2277 12		
10010013	0041300			9.34/7 13		
10016614	0041400	00 0		9.3277 14		
10016615	0041500	0 00	11	8.769 15		
*						
10016701	10002 ().044	0 0 1			
10016702	10004 ().044	0 0 2			

50

•

-

```
10016703 10006 0.044
                    0 0 3
10016704 10008 0.0744 0 0 4
10016705 10010 0.0744 0 0 5
10016706 10012 0.11467 0 0 6
10016707 10014 0.11467 0 0 7
10016708 10016 0.11467 0 0 8
10016709 10018 0.11467
                     0 0 9
10016710 10020 0.07388
                     0 0 10
                     0 0 11
10016711 10022 0.07388
                      0 0 12
10016712 10024 0.0442
10016713 10026 0.0442
                      0 0 13
10016714 10028 0.0442
                     0 0 14
10016715 10030 0.00
                     0 0 15
10016901 12.53e-3 20. 20. 0 0 0 0 1.0 15
* shroud
*crdno no.h.s no.m.p geo s.s.flg left reffl bvi no.ax.p
10121000 15 6 2 1 45.0-3 * 402 0 8
*
10121100 0
             1
*crdno intvl rt.cor
10121102 3
             68.3e-3
*crdno comp intvl comp intvl
 Ssteel
10121201 11
             2
10121202 12
                  * isolator
             5
10121301 0.0
               2
10121302 0.0
               5
10121400 -1
10121401 373.00 373.00 373.00 373.00 373.00
                                           373.00
               373.00 373.00 373.00 373.00
10121402 373.00
                                           373.00
              373.00 373.00 373.00 373.00
10121403 373.00
                                           373.00
10121404 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121405 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121406 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121407 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121408 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121409 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121410 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121411 373.00
              373.00 373.00 373.00 373.00
                                           373.00
10121412 373.00
              373.00 373.00 373.00 373.00
                                           373.00
10121413 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121414 373.00 373.00 373.00 373.00 373.00
                                           373.00
10121415 373.00
               373.00 373.00 373.00 373.00
                                          373.00
10121501 004010000 0
                       1 1 0.251 1
10121502 004020000 0 1 1 0.251 2
10121503 004030000 0 1 1 0.251 3
```

10121504	004040000 0 1 1 0.2505 4	
10121505	004050000 0 1 1 0.2505 5	
10121506	004060000 0 1 1 0.253 6	
10121507	004070000 0 1 1 0.253 /	
10121508	004090000 0 1 1 0.253 8	
10121510	004100000 0 1 1 0.2532 10	
10121511	004110000 0 1 1 0.2532 11	
10121512	004120000 0 1 1 0.252112	
10121513	004130000 0 1 1 0.252113	
10121514	004140000 0 1 1 0.252114	
10121515	004150000 0 1 1 0.237 15	
~		
10121601	700 0 2701 1 0 251 1	
10121001	-700 0 3701 1 0.251 1	
10121602	-700 0 3701 1 0.251 2	
10121604	-700 0 3701 1 0.2505 4	
10121605	-700 0 3701 1 0.2505 5	
10121606	-700 0 3701 1 0.253 6	
10121607	-700 0 3701 1 0.253 7	
10121608	-700 0 3701 1 0.253 8	
10121609	-700 0 3701 1 0.253 9	
10121610	-700 0 3701 1 0.2532 10	
10121011	700 0 3701 1 0.2532 11	
10121612	-700 0 3701 1 0.2521 12	
10121614	-700 0 3701 1 0 2521 14	
10121615	-700 0 3701 1 0.237 15	
*		
*		
10121701		
10121702		
10121703		
10121704		
10121706		
10121707	100 0.0 0 0 7	
10121708	100 0.0 0 0 8	
10121709	100 0.0 0 0 9	
10121710	100 0.0 0 0 10	
10121711		
10121712		
10121713		
10121715		
*		
10121801	3.4e-3 20. 20. 0 0 0 0 0 1.0 15	
10121901	3.4e-3 20. 20. 0 0 0 0 0 1.0 15	
*		
* 109 ha	oles	
* upper pla	ate	
*crdno no	b.h.s no.m.p geo s.s.flg left reffl bvi no.ax.p)
10122000	1 3 2 1 2.65-3 * 402 0 8	

*

52

.

•

÷....

```
10122100 0 1
*crdno intvl rt.cor
             5.29e-3 * var11 * to obtain need mass of metal
10122101 2
*10122101 2
            3.65e-3 * var10
×
*crdno comp intvl comp intvl
    Ssteel
10122201 11
            2
10122301 0.0
             2
10122400 -1
10122401 373.00 373.00 373.00
10122501 204010000 0 1 1 10.9 1 * 0.1*109
10122601 0 0 0 1 10.9 1
10122701 0 0.0 0 0 1
10122801 3.4e-3 20. 20. 0 0 0 0 1.0
                                1
10122901 3.4e-3 20, 20, 0 0 0 0 1.0
                                 1
×
*
  heat structure thermal property data
20100200 tbl/fctn 1 1 * nihrom
20100300 tbl/fctn 1
                 1 * MG-O
20100400 tbl/fctn 1
                 1 * Steel
                1 * Isolator
20101200 tbl/fctn 1
*
   thermal conductivity tables
```

*------1-----1------1------1 * ISOLATOR *-----1-----1-----1-----1------1 20101201 293.0 0.05 20101202 2700.0 0.05 *-----1-----1-----1-----1------1 * ISOLATOR *-----1-----1-----1-----1------1 20101251 300. 1.428e5 20101252 2700. 5.50e6 *------1-----1-----1-----1 *-----1-----1-----1-----1-----1

* NICHROME 5 THERMAL CONDUCTIVITY (W/M-K) (004) [HEATERS] *-----1-----1------1

20100201 293.0 12.5	
20100202 373.0 13.8	
20100203 473.0 15.6	
20100204 573.0 17.2	
20100205 673.0 19.0	
20100206 873.0 22.6	
20100212 2700 0 25 0	
* NICUDOME 5. LEAT CADACITY (1/42. K)	
* NICHROME 5 HEAT CAPACITY (J/M/5-K)	
20100251 200 2 66-6	
20100251 300. 3.0000	
20100252 400. 3,9666	
20100255 500 4.1660	
20100254 600. 4.34e6	
20100255 /00. 4.4666	
20100256 800. 4.68e6	
20100257 900. 4.83e6	
20100258 1000. 5.04e6	
20100259 1100. 5.18e6	
20100260 1200. 5.30e6	
20100261 1700. 5.50e6	
20100262 2700. 5.50e6	
*11111	
*11111	
* MAGN.OXIDE THERMAL CONDUCTIVITY (W/M-K) (005) [INSULATOR]	
*11111	
20100301 293.0 1.7	
20100302 473.0 2.75	
20100303 573.0 2.6	
20100304 673.0 2.5	
20100305 873.0 2.52	
20100306 1073.0 2.90	
20100307 1173.0 3.20	
20100308 2573.0 3.2	
*1	
* MAGN, OXIDE HEAT CAPACITY (I/M3-K)	
*11111	
20100351 293 2 87e6	
20100352 373 3.04e6	
20100352 575. 5.0400	
20100354 573 3 2006	
20100355 673 3 24=6	
20100335 073. 5.2460	
20100350 775. 5.2960	
20100357 875. 5.3460	
20100358 975. 5.4466	
20100359 1073. 3.5366	
20100360 1173. 3.6366	
20100361 1573. 3.63e6	
20100362 2573. 3.63e6	
*]]]]]	
*	==
* S-steel	
* thermal conductiviti (w/m*k) (004)	
20100401 323.0 14.9	
20100402 373.0 15.6	
20100403 473.0 17.2	
20100404 673.0 20.4	
20100405 873.0 23.7	
20100406 1073.0 27.4	
20100407 1273.0 31.0	

•

م م ا

```
20100408 1573.0
                 31.0
20100409 2573.0
                 31.0
*_____
                     heat capacity (j / m^{**}3 * k) (004)
20100451 323.0
                 3.763e6
20100452 373.0 3.855e6
20100453 473.0 4.029e6
20100454 673.0 4.264e6
20100455 873.0 4.680e6
20100456 1073.0
               4.985e6
20100457 1273.0
                 5.340e6
20100458 1573.0
                 5.340e6
20100459 2573.0
                5.340e6
*_____
* s-steel
*_____
20101100 tbl/fctn, 1, 1
*----- thermal conductivity table
20101101 2.731500e+02 1.298051e+01
20101102 1.199817e+03 2.510604e+01
*----- volumetric heat capacity table
20101151 2.850000e+02 3.453703e+06, 3.350000e+02 3.769201e+06
20101152 3.664833e+02 3.830413e+06, 4.220389e+02 3.964814e+06
20101153 4.775944e+02 4.099214e+06, 5.331500e+02 4.233615e+06
20101154 5.887056e+02 4.334415e+06, 6.442611e+02 4.435081e+06
20101155 6.998167e+02 4.502416e+06, 8.109278e+02 4.636816e+06
20101156 1.366483e+03 5.376019e+06
*
*****
*
     power table 100 *
*****
*
20210000 power 0 1.0 1.0e3 * Total power
20210001 0.0 0.00
                *
                       0.
20210002 1.0 0.13
20210004 3.0 0.38
                   *
20210005 4.0 0.55
                   *
                   *
20210006 5.0 0.79
20210007 7.0 1.27
                   *
20210008 8.0 1.59
                   *
20210009 9.0 1.95
                   ×
20210010 11.0 2.77
                   *
20210011 13.0 3.81
                   *
20210012 14.0 4.37
                   *
20210013 16.0 5.63
                   *
                   *
20210014 21.0 9.68
                   *
20210015 22.0 10.66
                   *
20210016 24.0 12.76
20210017 25.0 13.85
                   *
20210018 26.0 15.05
                   ×
                  *
20210019 27.0 16.27
20210020 29.0 19.03
                  *
                   *
20210021 30.0 20.25
                  *
20210022 31.0 21.65
                   *
20210023 32.0 23.2
20210024 34.0 26.64
                  ×
                  *
20210025 35.0 27.99
                  *
20210026 37.0 31.59
20210027 38.0 33.44
```

20210028 41 0 20 44	×
20210028 41.0 39.44	
20210029 42.0 41.87	*
20210030 45.0 48.38	*
20210031 54.0 66.83	*
20210032 60 0 75 21	*
20210032 66 0 94 00	*
20210033 66.0 84.00	-1-
20210034 67.0 85.38	*
20210035 69.0 88.50	*
20210036 71.0 91.85	*
20210037 72 0 93 55	*
20210038 74 0 07 08	*
20210038 74.0 97.08	ц.
20210039 75.0 98.99	Ŷ
20210040 77.0 102.99	*
20210041 82.0 114.31	*
20210042 83.0 116.92	*
20210043 84 0 119 56	*
20210044 99 0 121 4	×
20210044 88.0 131.4	
20210045 89.0 134.58	<u> </u>
20210046 90.0 137.22	*
20210047 94.0 148.15	*
20210048 95.0 148.16	*
20210049 98 0 148 08	*
20210049 98.0 148.08	
20210030 99.0 148.07	т
20210051 100.0 147.9	*
20210052 101.0 148.	*
20210053 102.0 147.8	*
20210054 124.0 147.85	*
20210055 125 0 147 64	*
20210055 125.0 147.04	*
20210030120.0147.80	*
20210057 129.0 147.91	*
20210058 130.0 147.72	*
20210059 131.0 146.48	*
20210060 132.0 143.31	*
20210061 133 0 141 95	*
20210062 134 0 141 27	*
20210062 134.0 141.37	4.
20210063 135.0 140.56	*
20210064 142.0 135.15	*
20210065 143.0 134.60	*
20210066 144.0 133.56	*
20210067 145 0 133 74	*
20210007 145.0 135.74	
20210008 150.0 150.56	т
20210069 151.0 130.68	*
20210070 157.0 127.97	*
20210071 170.0 122.89	*
20210072 180.0 119.68	*
20210073 251 0 105 9	*
20210073 231.0 103.9	ت
20210074 270.0 103.61	î.
20210075 290.0 101.32	*
20210076 320.0 98.01	*
20210077 340.0 96.68	*
20210078 350 0 95 72	*
*	
CONTROL V	ARIABLES
20507100 lev4 sum	1.0 0.0 0
20507101 0.0 0.243	voidf 004010000
	10101 00 1010000
-20507102 = 0.255 y	voidf 004020000
20507102 0.255 v 20507103 0.278 v	voidf 004020000
20507102 0.255 20507103 0.278 20507104 0.222	voidf 004020000 voidf 004030000
20507102 0.255 20507103 0.278 20507104 0.232	voidf 004020000 voidf 004030000 voidf 004040000
20507102 0.255 20507103 0.278 20507104 0.232 20507105 0.268	voidf 004020000 voidf 004030000 voidf 004040000 voidf 004050000

.

----ل

```
20507107
            0.255 voidf 004070000
20507108 0.255 voidf 004080000
20507109 0.248 voidf 004090000
20507110 0.322 voidf 004100000
20507111 0.182 voidf 004110000
20507112 0.272 voidf 004120000
20507113 0.255 voidf 004130000
20507114 0.231 voidf 004140000
            0.237 voidf 004150000
20507115
20507200 flf1 mult 2438.0e-6 0.0 0
20507201 rhofj 204010000
20507202 velfj 204010000
20507203 voidfj 204010000
20507300 flfi mult 3328.0e-6 0.0 0
20507301 rhofj 006010000
20507302 velfj 006010000
20507303 voidfj 006010000
20507400 flg mult 2438.0e-6 0.0 0
20507401 rhogj 204010000
20507402 velgj 204010000
20507403 voidgj 204010000
*---- 1---- 2---- 3---- -4---- ---- 5---- ----6---- ----7
×
20507500 dp1 sum 1.0e-3 0.0 0
20507501 0.0 1. p 004010000
20507502 -1.0 p 004150000
20507600 dp2 sum 1.0e-3 0.0 0
20507601 0.0 1. p 004080000
20507602 -1.0 p 04150000
20507700 dp3 sum 1.0e-3 0.0 0
20507701 0.0 1. p 004010000
20507702 -1.0 p 004080000
20507800 dp4 sum 1.0e-3 0.0 0
20507801 0.0 1. p 006010000
20507802 -1.0 p 004010000
20507900 dp5 sum 1.0e-3 0.0 0
20507901 0.0 1. p 204010000
20507902 -1.0 p 206010000
20508000 inflow integral 1.0 0.0 0
20508001 cntrlvar 73
20508100 oflowf integral 1.0 0.0 0
20508101 cntrlvar 72
20508200 oflowg integral 1.0 0.0 0
20508201 cntrlvar 74
```

* Core heat *_____* *crd no name type scale init flag 20508300 h_core sum 1.0 0.0 1 *crd no al var code 20508301 0.0 1.0 q 004010000 20508302 1.0004020000 q 20508303 1.0 004030000 q 20508304 1.0 004040000 q 20508305 1.0 004050000 q 20508306 1.0 004060000 q 20508307 1.0 004070000 q 20508308 1.0 004080000 q 20508309 1.0 q 004090000 20508310 1.0 q 004100000 20508311 1.0 004110000 q 20508312 1.0 004120000 q 20508313 1.0 004130000 q 20508314 1.0 004140000 q 20508315 1.0 004150000 q *_____ Core heat calculated from cntrlvar *_____* name type scale init flag *crd no 20508400 h_core sum 1.0 0.0 1 *crd no a0 a1 var code 20508401 0.0 0.04433 cntrlvar 2 20508402 0.04433 cntrlvar 4 20508403 0.04433 cntrlvar 6 0.00005 cntrlvar 6 0.1065 cntrlvar 8 0.1065 cntrlvar 10 0.07975 cntrlvar 12 0.07975 cntrlvar 14 0.07975 cntrlvar 16 20508404 20508405 20508406 20508407 20508408 20508409 0.07975 cntrlvar 18 20508410 0.103 cntrlvar 20 0.103 cntrlvar 22 20508411 0.043 cntrlvar 24 20508412 20508413 0.043 cntrlvar 26 20508414 0.043 cntrlvar 28 *_____* 20505700 mass4 sum 2438.0e-6 0.0 1 0 20505701 0.0 0.251 rho 004010000 20505702 0.251 rho 004020000 20505703 0.251 rho 004030000 20505704 0.2505 rho 004040000 20505705 0.2505 rho 004050000 20505706 0.253 rho 004060000 20505707 0.253 rho 004070000 20505708 0.253 rho 004080000 20505709 0.253 rho 004090000 20505710 0.2532 rho 004100000 20505711 0.2532 rho 004110000 20505712 0.2521 rho 004120000 20505713 0.2521 rho 004130000 20505714 0.2521 rho 004140000 20505715 0.237 rho 004150000

*---- 1---- 2---- 3---- 4---- 5---- 6---- 7 *_____ 20500100 heat1 function 1.0 1.0 1 × cccg0nn no table 20500101 htvat 0016001 036 *_____ 20500200 heat2 mult 1.0 1.0 1 no table 20500201 cntrlvar 1 cntrlvar 41 *____ 20500300 heat1 function 1.0 1.0 1 cccg0nn no table 20500301 htvat 0016002 036 *_____ 20500400 heat2 mult 1.0 1.0 1 no table 20500401 cntrlvar 003 cntrlvar 41 * _____ *_____ 20500500 heat1 function 1.0 1.0 1 cccg0nn no table * 20500501 htvat 0016003 036 *_____ 20500600 heat2 mult 1.0 1.0 1 * no table 20500601 cntrlvar 005 cntrlvar 41 * *_____ *_____ 20500700 heat1 function 1.0 1.0 1 cccg0nn no table 20500701 htvat 0016004 036 *_____ 20500800 heat2 mult 1.0 1.0 1 × no table 20500801 cntrlvar 007 cntrlvar 41 * *_____ *_____ 20500900 heat1 function 1.0 1.0 1 * * cccg0nn no table 20500901 htvat 0016005 036 *_____ 20501000 heat2 mult 1.0 1.0 1

* * no table 20501001 cntrlvar 009 cntrlvar 41 * * *_____ *_____ 20501100 heat1 function 1.0 1.0 1 × cccg0nn no table 20501101 htvat 0016006 036 *_____ 20501200 heat2 mult 1.0 1.0 1 ÷ no table 20501201 cntrivar 011 cntrivar 41 * *_____ *_____ 20501300 heat1 function 1.0 1.0 1 * cccg0nn no table 20501301 htvat 0016007 036 * *_____ 20501400 heat2 mult 1.0 1.0 1 * no table 20501401 cntrlvar 013 cntrlvar 41 * *_____ *_____ 20501500 heat1 function 1.0 1.0 1 * cccg0nn no table 20501501 htvat 0016008 036 *_____ 20501600 heat2 mult 1.0 1.0 1 no table 20501601 cntrlvar 015 cntrlvar 41 × *_____ *_____ 20501700 heat1 function 1.0 1.0 1 cccg0nn no table 20501701 htvat 0016009 036 *_____ 20501800 heat2 mult 1.0 1.0 1 × * no table 20501801 cntrlvar 017 cntrlvar 41 * *_____ *_____ 20501900 heat1 function 1.0 1.0 1

```
*
       cccg0nn no table
20501901 htvat 0016010 036
*_____
20502000 heat2 mult 1.0 1.0 1
*
        no table
20502001 cntrlvar 019 cntrlvar 41
*
                  *
*_____
*_____
20502100 heat1 function 1.0 1.0 1
*
       cccg0nn no table
20502101 htvat 0016011 036
*
*_____
20502200 heat2 mult 1.0 1.0 1
      no table
20502201 cntrlvar 21 cntrlvar 41
×
*_____
20502300 heat1 function 1.0 1.0 1
*
       cccg0nn no table
20502301 htvat 0016012 036
*_____
20502400 heat2 mult 1.0 1.0 1
* no table
20502401 cntrlvar 023 cntrlvar 41
               *
*_____
*_____
20502500 heat1 function 1.0 1.0 1
       cccg0nn no table
20502501 htvat 0016013 036
*_____
20502600 heat2 mult 1.0 1.0 1
 no table
20502601 cntrlvar 025 cntrlvar 41
                   *
*_____
*_____
20502700 heat1 function 1.0 1.0 1
×
       cccg0nn no table
20502701 htvat 0016014 036
*_____
20502800 heat2 mult 1.0 1.0 1
×
*
        no table
20502801 cntrlvar 027 cntrlvar 41
                   *
```

*_____ *_____ 20502900 heat1 function 1.0 1.0 1 * cccg0nn no table 20502901 htvat 0016015 036 *_____ 20503000 heat2 mult 1.0 1.0 1 no table 20503001 cntrlvar 029 cntrlvar 41 * *_____ *_____ 20504100 heat function 1.0 1297.3 1 * scale ini value flag 20504100 heat function 1.0 3.902e3 1* Qmax/Kz*l=1.77/1.601*3.53 * 4 no table 20504101 time 00 100 *_____ × * 20203600 reac-t 20203601 293.0 1.0 20203602 373.0 1.0088 20203603 473.0 1.0177 20203604 573.0 1.0177 20203605 673.0 1.035 773.0 1.035 20203606 20203607 873.0 1.035 20203608 973.0 1.027 20203609 1073.0 1.0177 20203610 1273.0 1.0177 20203611 1473.0 1.035 *_____ 20504200 heat function 1.0 6.739e2 1 20504200 heat function 1.0 3.902e3 1 * no table 20504201 time 0 100 *_____ 20504300 R function 0.1407 0.1407 1 20504301 time 0 36 × *_____ *_____ 20504400 R2 mult 1.0 0.00648 1 20504401 cntrlvar 43 cntrlvar 43 *_____ 20504500 heatt function 1.0 1297.3 1 20504501 time 0 100 * *_____ *

```
20530100 T1 sum 1.0 0.0 0
20530101 0.0 1. httemp 001600106
20530102 -1.0 cntrlvar 233
20530200 T2 sum 1.0 0.0 0
20530201 0.0 1. httemp 001600206
20530202 -1.0 cntrlvar 233
*
20530300 T3 sum 1.0 0.0 0
20530301 0.0 1. httemp 001600306
20530302 -1.0 cntrlvar 233
*
*
20530400 T4 sum 1.0 0.0 0
20530401 0.0 1. httemp 001600406
20530402 -1.0 cntrlvar 233
20530500 T5 sum 1.0 0.0 0
20530501 0.0 1. httemp 001600506
20530502 -1.0 cntrlvar 233
20530600 T6 sum 1.0 0.0 0
20530601 0.0 1. httemp 001600606
20530602 -1.0 cntrlvar 233
20530700 T7 sum 1.0 0.0 0
20530701 0.0 1. httemp 001600706
20530702 -1.0 cntrlvar 233
*
20530800 T8 sum 1.0 0.0 0
20530801 0.0 1. httemp 001600806
20530802 -1.0 cntrlvar 233
×
×
20530900 T9 sum 1.0 0.0 0
20530901 0.0 1. httemp 001600906
20530902 -1.0 cntrlvar 233
×
*
20531000 T10 sum 1.0 0.0 0
20531001 0.0 1. httemp 001601006
20531002 -1.0 cntrlvar 233
*
*
20531100 T11 sum 1.0 0.0 0

        20531101
        0.0
        1.
        httemp
        001601106

        20531102
        -1.0
        cntrlvar
        233

20531200 T12 sum 1.0 0.0 0
20531201 0.0 1. httemp 001601206
20531202 -1.0 cntrlvar 233
×
×
```

```
20531300 T13 sum 1.0 0.0 0
20531301 0.0 1. httemp 001601306
20531302 -1.0 cntrlvar 233
×
20531400 T14 sum 1.0 0.0 0
20531401 0.0 1. httemp 001601406
20531402 -1.0 cntrlvar 233
20531500 T15 sum 1.0 0.0 0
20531501 0.0 1. httemp 001601506
20531502 -1.0 cntrlvar 233
********************** Vessel wall**********
20520100 TK1 sum 1.0 0.0 0
20520101 0.0 1. httemp 012100402 * zone 1
20520102 -1.0 cntrlvar 233
20520200 TK2 sum 1.0 0.0 0
20520201 0.0 1. httemp 012100402 *zone 1
20520202 -1.0 entrivar 233
20520300 TK3 sum 1.0 0.0 0
20520301 0.0 1. httemp 012100402 * zone 1
20520302 -1.0 cntrlvar 233
*
20520400 TK4 sum 1.0 0.0 0
20520401 0.0 1. httemp 012100902 * zone 2
20520402 -1.0 cntrlvar 233
20520500 TK5 sum 1.0 0.0 0
20520501 0.0 1. httemp 012100902 * zone 2
20520502 -1.0 cntrlvar 233
20520600 TK6 sum 1.0 0.0 0

        20520601
        0.0
        1.
        httemp
        012100902 *zone 2

        20520602
        -1.0
        cntrlvar 233

20520700 TK7 sum 1.0 0.0 0
20520701 0.0 1. httemp 012101102 * zone 3
20520702 -1.0 cntrlvar 233
20520800 TK8 sum 1.0 0.0 0
20520801 0.0 1. httemp 012101102 * zone 3
20520802 -1.0 cntrlvar 233
20520900 TK9 sum 1.0 0.0 0
20520901 0.0 1. httemp 012101102 * zone 3
20520902 -1.0 cntrlvar 233
```

```
20521000 TK10 sum 1.0 0.0 0
20521001 0.0 1. httemp 012101402 *zone 4
20521002 -1.0 cntrlvar 233
20521100 TK11 sum 1.0 0.0 0
20521101 0.0 1. httemp 012101402 * zone 4
20521102 -1.0 cntrlvar 233
20521200 TK12 sum 1.0 0.0 0
20521201 0.0 1. httemp 012101402 * zone 4
20521202 -1.0 cntrlvar 233
×
*_____
* Isolation
20521300 Tiz1 sum 1.0 0.0 0
20521301 0.0 1. httemp 012100406
20521302 -1.0 cntrlvar 233
20521400 Tiz2 sum 1.0 0.0 0

        20521401
        0.0
        1.
        httemp
        012100906

        20521402
        -1.0
        cntrlvar
        233

20521500 Tiz3 sum 1.0 0.0 0
20521501 0.0 1. httemp 012101106
20521502 -1.0 cntrlvar 233
20521600 Tiz4 sum 1.0 0.0 0
20521601 0.0 1. httemp 012101506
20521602 -1.0 cntrlvar 233
20522000 Tin sum 1.0 0.0 0
20522001 0.0 1. tempf 006010000
20522002 -1.0 cntrlvar 233
20522100 Tout sum 1.0 0.0 0
20522101 0.0 1. tempg 206010000
20522102 -1.0 cntrlvar 233
20522200 Gin sum 133200. 0.0 0 **37
20522201 0.0 1. mflowj 006010000
20522300 G_gout sum 133200. 0.0 0
20522301 0.0 1. cntrlvar 74
20522400 POWER sum 0.037 0.0 0 ** 37 rod,KWT
20522401 0.0 1. cntrlvar 41
20522500 PIN sum 1.0e-3 0.0 0
20522501 0.0 1. p 006010000
```
```
*
20522600 Pout sum 1.0e-3 0.0 0
20522601 0.0 1. p 206010000
20522700 mmmm sum 1.0 0.0 0
20522701 0.0 1. mflowj 006010000
20522800 Tg1 sum 1.0 0.0 0 *H=762
20522801 0.0 1. tempg 004040000
20522802 -1.0 cntrlvar 233
20522900 Tg2 sum 1.0 0.0 0 * H=1527
20522901 0.0 1. tempg 004070000
20522902 -1.0 entrlvar 233
*
*
20523000 Tg3 sum 1.0 0.0 0 *H= 2037
20523001 0.0 1. tempg 004090000
20523002 -1.0 cntrlvar 233
*
×
20523100 Tg4 sum 1.0 0.0 0 *H= 2802
20523101 0.0 1. tempg 004120000
20523102 -1.0 cntrlvar 233
*
20523200 Tg5 sum 1.0 0.0 0 *H= 3567
20523201 0.0 1. tempg 004150000
20523202 -1.0 cntrlvar 233
* temperature in containment
20270000 temp
202700010.0310.0202700021.0e6310.0
*_____
20270100 htc-t 0 1.0 1.0
20270101 -1.0 300.0
20270102 10000.0 300.0
*crdno name c.c.typ s.fac in.v. in.flag
20523300 T_CEL function 1.0 1.0 0
*crdno var code table
20523301 time 0 584
*
                       *
20258400 reac-t
20258401 0.0 273.0
```

. end of problem

US NUCLEAR REGULATORY COMMISSION	1. REPORT NUMBER
NHC FORM 335 (2-89)	(Assigned by NRC, Add Vol., Supp., Rev.,
BIBLIOGRAPHIC DATA SHEET	anu Augendum numbers, ii dhy.)
(See instructions on the reverse)	
2. TITLE AND SUBTITLE	NUREG/IA-0207
RELAP5/MOD3.2.2 GAMMA ASSESSMENT FOR DOWN TO TOP REFLOODING PROCESS	
AT VVER LIKE 37-ROD BUNDLE	MONTH YEAR
	July 2002
	4. FIN OR GRANT NUMBER
5. AUTHOR(S)	6. TYPE OF REPORT
A S. Devkin	technical
	7. PERIOD COVERED (Inclusive Dates)
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Com	nission, and mailing address; if contractor,
provide name and mailing address.)	
Nuclear Safety Institute	
Russian Research Center	
"Kurchatov Institute"	
123182, WOSCOW, HUSSIA	or Region, U.S. Nuclear Regulatory Commission,
and mailing address.)	
Division of System Analysis and Regulatory Effectiveness	
Office of Nuclear Regulatory Research	
U. S. Nuclear Regulatory Commission	
Washington, DC 20555-0001	······
10. SUPPLEMENTARY NOTES	
11 ABSTRACT (200 words or less)	
The assessment of RELAP5/MOD3.2.2 Gamma for down to top reflooding at VVER like 37-root	bundle is presented. The
experiment have been performed at IPPE test facility at the following parameter s. upper piertum pressure 0,240 km a, cooling water temperature- 51N, water velocity- 4.91 sm/s, average linear heat flux density at maximal heat p roduction zone before water supply-1,77 kWt/m. RELAP5/MOD3.2.2Gamma assessment showed that code gives satisfactory results for all parameters behavior. The main discrepancies were get for cladding temperature b ehavior at level H-2.7m, where the	
are much higher experimental ones. For other levels accordance between experimental and RELAP data is rather good.	
12 KEY WORDS/DESCRIPTORS // ist words or phrases that will assist researchers in locating the report.)	13. AVAILABILITY STATEMENT
	unlimited
reflood, HELAPS, VVEH	14. SECURITY CLASSIFICATION
	(This Page)
	unclassified
	15. NUMBER OF PAGES
	16. PRICE

.

£...

Federal Recycling Program

1

•

RELAP5/MOD3.2.2 GAMMA ASSESSMENT FOR DOWN TO TOP REFLOODING PROCESS AT VVER LIKE 37-ROD BUNDLE

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300