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A NEW COMPARATIVE ANALYSIS OF LWR FUEL DESIGNS

G. M. O'Donnell, H. H. Scott, and R. 0. Meyer 

ABSTRACT 

In 1980, NRC published a comparative analysis of LWR fuel designs, and that report served as 
a handy reference for typical design and operating parameters for all types of fuel then in 
operation in U.S. power reactors. During the past twenty years, significant changes have been 
made in fuel designs, burnups, and analytical computer codes. The present report is an update 
of the earlier report. Typical fuel design parameters are tabulated for almost all fuel types in 
current operation, from BWR 8x8 bundles to PWR 17x17 assemblies. Cross-section diagrams 
are given for BWR fuel bundles and PWR fuel assemblies. Calculated values are plotted for 
thirteen operating parameters including fuel centerline temperature, cladding O.D. temperature, 
gap conductance, rod internal gas pressure, and cladding hoop stress. The calculated values 
are plotted as a function of fuel burnup to 65 GWd/t for a variety of power histories, covering a 
range from low to high linear heat ratings, which are constant early in life but decline later in a 
realistic manner.
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FOREWORD

The USNRC is conducting an integrated fuel program consisting of experiments and analyses.  
The goal of the program is to ensure safety as new fuel designs, materials, and higher burnup 
levels are proposed. Realistic experiments and analyses are intended to help maintain safety, 
improve agency efficiency and effectiveness, and reduce unnecessary regulatory burdens.  
This comparative analysis of LWR fuel designs is part of that overall effort.  

Jack E. Rosenthal, Chief 
Safety Margins & Systems Analysis Branch 
Office of Nuclear Regulatory Research
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A NEW COMPARATIVE ANALYSIS OF LWR FUEL DESIGNS

G. M. O'Donnell, H. H. Scott, and R. 0. Meyer 

1. Introduction 

In 1980, D. L. Acey and J. C. Voglewede published a comparative analysis of LWR fuel 
des•gns, and that report served as a handy reference for typical design and operating 
parameters for all types of fuel then in operation in U.S. power reactors.1 During the past 
twenty years, significant changes have been made in fuel designs, burnups have increased 
more than fifty percent, and computer codes to analyze fuel behavior have been improved. The 
present report, therefore, is an update of the earlier report and provides current fuel design 
information and newly calculated fuel performance parameters out to 65 GWd/t, just beyond the 
present NRC fuel burnup limit of 62 GWd/t.  

Changes in fuel rod design that affect performance calculations include smaller cladding 
diameters in BWRs corresponding to the introduction of 9x9 and 10x10 fuel bundles. Increases 
in plenum length and fill gas pressure in both BWRs and PWRs also affect the calculations.  
Several new cladding types and alloys have been introduced, but they have a minimal effect on 
calculated performance parameters except for corrosion (discussed later). These changes 
have been made to accommodate somewhat higher power levels and large burnup increases 
from around 40 GWd/t in 1980 up to 62 GWd/t (average for the peak rod) in 2000.  

The earlier study was done with a March 1980 version (Revision 1) of the GAPCON-THERMAL
2 computer code, which was representative of a number of similar codes used at that time by 
the nuclear industry for fuel thermal performance analysis.2' 3 The present study has been done 
with FRAPCON-3, which is an updated version of a code that combined the best features of 
GAPCON-THERMAL-2 and another code called FRAP-S. FRAPCON-3 has been validated out 
to 65 GWd/t burnup, and this peer-reviewed code is the code currently being used by NRC for 
auditing licensee's analyses and for research applications.4-6
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2. INPUT PARAMETERS

Figure 2-1 identifies the components of typical fuel rods, and typical fuel assembly cross 
sections are shown in Figs. 2-2 and 2-5. The shrouded fuel arrays in BWRs are usually called 
bundles whereas the open-lattice PWR fuel arrays are called assemblies.  

Typical fuel design parameters that were used as code input are shown in Table 2-1 for all 
major fuel types currently in use in the U.S. These parameters are all based on non-proprietary 
values that are available in the literature.7-9 Available non-proprietary fuel design parameters for 
a number of different fuel types are shown in Tables Al and A2 in the Appendix, and two things 
are readily apparent from these tables. First, no information is available on the BWR 1Wx0 fuel 
design except the number of fuel rods in a bundle. Second, even within a given fuel type (e.g., 
BWR 8x8), there are variations in some of the parameters between different vintages and 
manufacturers. The second observation shows that single fixed design parameters do not exist 
for each fuel type, but rather there are ranges of values.  

For our calculations, therefore, we sought typical values that were within these ranges although 
not necessarily corresponding to any specific design variant. Because design parameters were 
not available for the BWR 10x1 0 fuel type, we deduced suitable values of all the parameters 
needed for code input. The methods of selecting typical values for Table 2-1 are described 
below.  

2.1. Pitch 

The pitch was known for all of the fuel types except the 1 0x1 0. The value used was determined 
from calculations involving fuels of other array sizes. Since the 8x8 and 9x9 fuel bundles can 
be replaced with the 1 0x1 0 fuel bundles it is necessary for the outer dimensions of the bundle 
to be the same. The outer dimensions of the 8x8 and 9x9 fuel bundles were determined by 
multiplying their respective pitches by their respective array sizes minus one. One rod diameter 
was added to that value to determine the outside dimensions of the bundle. Figure 2-6 

Outside Dimension boo§50 
I Pitch I Di•m 

Fig. 2-6. Relationship between outside dimension 
of fuel bundle, fuel rod pitch and cladding diameter 

illustrates the relationship of the outside dimension of the bundle to the pitch and cladding 
diameter. The values found for the 8x8 and 9x9 were averaged together for the value used.  
Using the rod diameter for the 10x10 (how that was determined is explained later), it is possible 
to determine the pitch. The equations are shown below.  

8x8: (8-1) x 0.640 + 0.483 = 4.963
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Table 2-1. Typical Fuel Design Parameters used for Code Input 

Fuel Type BWR BWR BWR PWR PWR PWR PWR 
8x8 9x9 10x10 14x14 15x15 16x16 17x17 

Pitch (mm, in.) 16.3 14.5 13.0 14.7 14.3 12.9 12.6 
0.640 0.572 0.510 0.580 0.563 0.506 0.498 

Cladding OD (mm, in.) 12.3 10.8 10.0 11.2 10.7 9.7 9.4 

0.483 0.424 0.395 0.440 0.423 0.382 0.370 

Cladding Thickness (mm, in.) 0.813 0.711 0.660 0.737 0.711 0.635 0.610 

0.032 0.028 0.026 0.029 0.028 0.025 0.024 

Gap Thickness (mm, in.) 0.112 0.097 0.089 0.102 0.097 0.086 0.084 

0.0044 0.0038 0.0035 0.0040 0.0038 0.0034 0.0033 

Fuel Pellet and Plenum Spring Diameter (mm, in.) 10.4 9.1 8.5 9.5 9.1 8.3 8.0 

0.410 0.360 0.336 0.374 0.359 0.325 0.315 

Pellet Length (mm, in.) 11.4 

0.45 

Dish Diameter (mm, in.) 0 4.75 4.52 4.14 4.01 
0 0.187 0.178 0.163 0.158 

Dish Depth (mm, in.) 0 0.287 
0 0.0113 

Plenum Length (mm, in.) 254 
10 

Turns in the Plenum Spring 37 33 31 34 33 30 28 

Plenum Spring Wire Diameter (mm,in.) 1.27 
0.05 

Helium Fill Gas Pressure (MPa, psi) 0.69 2.41 
100 350 

Active Fuel Length (m, in.) 3.66 
144

(cont'd)
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Table 2-1. (cont'd) Typical Fuel Design Parameters used for Code Input 

Fuel Type BWR BWR BWR PWR PWR PWR PWR 
8x8 9x9 10xOA 14x14 15x15 16x16 17x17 

System Pressure (MPa, psi) 7.14 15.5 
1035 2250 

Coolant Inlet Temperature (0C, OF) 277 
__ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _530 

Coolant Flow Rate (xl 06 kg/m 2-hr, x10 6 Ib/ft2-hr) 5.57 5.38 5.13 13.00 12.76 12.57 12.47 
1.14 1.10 1.05 2.65 2.61 2.57 2.55 

Enrichment (atom %) 4.0 4.5 

Pellet density (% TD) 95 

Temperature at which pellets were sintered ýC,°F) 1599 
2911 

Limit on pellet density increase (% TD) 0.9 

Limit on pellet swelling (%) 5 

Fuel surface roughness (mm, in.) 7.6x1 04 
3x10-5 

Cladding surface roughness (mm, in.) 5.1x10-4 
2X10-5 

Initial crud thickness (mm, in.) 0 
0

2-8
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9x9: (9-1) x 0.572 + 0.424 = 5.000

(4.963 + 5.000)/2 = 4.982 

(4.982 - 0.395)/(10-1) = 0.510 

The value determined for the pitch of the 10x10 fuel bundle is thus 0.510 inches. The pitch size 
for other fuel types was taken directly from Tables Al and A2.  

2.2. Cladding Outer Diameter 

The cladding dimensions were known for all fuel types except the 10x10. Using known 
dimensions from bundles with other array sizes, an approximation was made for the 1 0x1 0 
cladding dimensions. It was assumed that the fuel volume of the bundles would be same since 
each bundle should supply the same amount of power. Knowing the outer diameter of the 8x8 
and 9x9 fuel rods and how many rods are in a typical bundle for each array size, it was possible 
to determine an approximate diameter for the 10x10 rods. Although the number of fuel rods in 
8x8, 9x9, and 10x10 fuel bundles vary, the numbers we had available at the time this estimate 
was made were 62, 79, and 92 fuel rods, respectively, in each of the bundle types. Equations 
for the 10x10 cladding outer diameter are shown below. All "rr's cancel out and are not shown.  
The length of all the rods are the same and also cancel out.  

8x8: 62 x (0.483)2 = 14.46 

9x9: 79 x (0.424)2 = 14.20 

(14.46 + 14.20)/2 = 14.33 

(14.33/92)Y2 = 0.395 

The outer diameter for the 10x10 fuel was assumed to be 0.395 inches. The cladding outer 
diameters for other fuel types were taken from known values listed in Tables Al and A2.  

2.3. Cladding Thickness, Gap Thickness, and Pellet Diameter 

We noticed that the Siemens (SNP) cladding and fuel pellet dimensions were identical for their 
BWR 9x9 fuel and their PWR 15x15 fuel. This suggested that there was just a single 
population of dimensional design parameters for BWRs and PWRs rather than two different 
populations and that we could look for trends with the combined set of dimensional values.  
Therefore, we decided to look at cladding thickness and gap thickness as a function of cladding 
OD and we found very good correlations. These plots are shown in Figs. 2-7 and 2-8. From 
these plots, we selected typical cladding thickness and gap thickness values for all of the fuel 
types including the BWR 10x10 for which there was no available information. Fuel pellet 
diameter could be determined once the gap thickness was known as well as the cladding outer 
diameter and thickness. The gap thickness and cladding thickness were subtracted from half 
of the cladding outer diameter to give the fuel pellet radius. This value was doubled for the fuel 
pellet diameter.
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2.4. Dish Dimensions

Dish dimensions were only added if the fuel was known to be dished. None of the BWR cases 
were run with dished pellets. The dimensions of the dish were based on the size of the fuel 
pellet. The diameter of the dish was assumed to be 50% of the diameter of the fuel pellet. The 
dish depth was assumed to be 2.5% of the height of the fuel pellet. This was based on 
dimensions used in the assessment section of the FRAPCON-3 manual.  

2.5. Plenum Length and Helium Fill Gas Pressure 

Plenum length and helium fill gas pressure are used as variables by fuel designers to tailor a 
particular fuel load to target burnups and power levels. Mid-range values were used as code 
input although large variationsare made in manufacturing, and these variations produce 
significant changes in end-of-life (EOL) fission gas release (FGR), EOL rod pressure, and 
plastic strain due to creep deformation (creep down). Tables 2-2 and 2-3 show typical code 
output changes for a PWR, and Tables 2-4 and 2-5 show typical changes in code output for a 
BWR. No EOL gap opening due to creep out was observed in any of the calculations.

Table 2-2. Consequence of variations in fill pressure for 
PWR 17x1 7 at 11 kW/ft with 10-in. plenum 

Fill Pressure EOL FGR EOL Pressure Max. Plastic Strain 

250 psi 8.3% 1553 psi -0.87% 

350 psi 7.3% 1848 psi -0.79% 

450 psi 6.9% 2231 psi -0.69% 

Table 2-3. Consequence of variations in plenum length for 
PWR 17xl 7 at 11 kW/ft with 350 psi fill pressure 

Plenum EOL FGR EOL Pressure Max. Plastic Strain 

6 in. 6.0% 2556 psi -0.70% 

10 in. 7.3% 1848 psi -0.79% 

14 in. 8.0% 1541 psi -0.81% 

Table 2-4. Consequence of variations in fill pressure for 
BWR 9x9 at 11 kW/ft with 10-in, plenum 

Fill Pressure EOL FGR EOL Pressure Max. Plastic Strain 

50 psi 8.4% 879 psi -0.44% 

100 psi 7.2% 945 psi -0.39% 

150 psi 6.3% 1041 psi -0.33%
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Table 2-5. Consequence of variations in plenum
BWR 9x9 at 11 kW/ft with 100 ps•i fill pressure 

Plenum EOL FGR EOL Pressure Max. Plastic Strain 

6 in. 5.4% 1279 psi -0.35% 

10 in. 7.2% 945 psi -0.39% 

14 in. 8.7% 801 psi -0.40%

Trends of EOL pressure and maximum plastic strain are as expected. The higher the fill 
pressure or the shorter the plenum, the higher will be the EOL rod pressure. Notice that the 
nominal fill pressure in combination with the shortest plenum resulted in EOL fuel rod pressures 
that are larger than the reactor system pressure. Plastic strain shows the same kind of trend.  
The cases that result in higher pressures experience less plastic strain (smaller pressure 
differential), which is negative in all cases (creep down).  

The trends in fission gas release are not so easy to explain, however. In the Massih gas 
release model, the saturation concentration, which must be attained at a grain boundary prior to 
release, depends on the rod internal gas pressure (this is called Pe' in equation A.7, page A.5, 
of Ref. 4). The higher the gas pressure, the higher the saturation concentration, and vice 
versa. Thus, the larger plenum volume provides the lower gas pressure, which provides the 
lower saturation concentration, which permits earlier and larger FGR. What is observed is thus 
a natural consequence of the Massih model and is believed to be real.  

2.6. Plenum Spring Dimensions 

The plenum spring dimensions used for input are based on dimensions used in the assessment 
section of the FRAPCON-3 manual. Three cases were listed in the manual for fuel rods that 
are about 12 feet long. The spring volumes in these cases were compared to the volumes of 
the plenum. The percentages of plenum volume taken by these springs were 9.95%, 4.72%, 
and 3.40%. The volume percentage used in this report is 6% (the average of the three). The 
diameter of the spring is equal to the fuel pellet diameter for this report. A constant wire 
diameter was used for all fuel types. The number of turns in the spring was used to adjust the 
volume of the spring.  

2.7. Coolant Flow Rates 

The coolant flow rates used as input were based on flow rates used in the assessment section 
of the FRAPCON-3 manual. The coolant flow rate was adjusted to give a reasonable 
temperature rise through the core at all power levels examined. The temperature rise for each 
case changes since the flow rate is constant for all power levels.  

2.8. Other Parameters 

Nominal values were used for other parameters in Table 2-1 and were kept constant for each 
reactor type (BWR and PWR) to avoid additional variability in the output.
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3. FRAPCON-3

FRAPCON-3 analyzes the thermal and mechanical performance of fuel rods during steady
state operation. Changes in power are possible but must occur slowly enough to be considered 
steady-state. FRAPCON-3 can calculate many properties such as temperatures, strain, 
swelling, densification, and fission gas release.  

FRAPCON-3 has some limitations. Some of the major limitations that apply to this study are 

1. The code has not been assessed to predict cladding strains resulting from pellet
cladding interaction.  

2. Very limited assessment has been performed for fuel rods containing gadolinia.  
3. It is not possible to model axially changing gadolinia concentrations which are common 

in modern fuel.  
4. FRAPCON-3 only models standard Zircaloy cladding and not low-tin cladding.  

3.1. MATPRO 

FRAPCON-3 uses the MATPRO materials package to enable it to calculate materials properties 
to high burnup (65 GWd/t). MATPRO calculates properties such as the thermal conductivity 
and thermal expansion of the various materials in the fuel rod at high burnup.  

3.2. Fission Gas Release 

The fission gas release models available in FRAPCON-3 are the ANS-5.4 model and the 
Massih model. The model to be used is determined from the input. For all cases in this study, 
the Massih model was used. The Massih model is new to the FRAPCON series and was 
chosen because it is the best model for grain-boundary gas release. The Massih model is used 
unless the low temperature fission gas release model predicts more of a release.  

3.3. Oxide Thickness 

The cladding oxidation model used in FRAPCON-3 is not the model used in MATPRO.  
MATPRO predictions for oxide thickness were found to be different from measured oxide 
thicknesses by a factor of four or five. The model used in FRAPCON-3 to predict oxide 
thickness is based on the EPRI-developed ESCORE model. This ESCORE model has been 
assessed against in-reactor data with reasonably accurate results.  

The oxide thickness is strongly dependent on the temperature of the metal-oxide interface.  
This temperature in turn is strongly affected by changing the mass flux of the coolant which is 
defined in the input. Therefore for an accurate oxide thickness calculation it is important to 
define a reasonable coolant mass flux. Oxide thickness is also greatly affected by the initial 
crud thickness.
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4. AXIAL POWER PROFILE AND POWER HISTORIES

4.1. Axial Power Profile 

The axial power shape changes during the lifetime of the fuel. In PWRs the power shape 
typically peaks at a lower axial position at beginning of life (BOL) and gradually changes to 
peak at higher axial positions at end of life (EOL). The result of this change is an average axial 
profile that is flat in the middle. In BWRs the peak is located in a lower axial position due to 
increased voiding at the top. Pellets enriched with gadolinia are used to flatten the axial profile 
for BWRs. Modeling the changing axial power profile on FRAPCON-3 is possible; however, for 
this report, a constant axial power profile was assumed. The constant profile was necessary to 
obtain understandable plots of the peak power node parameters. For example, plotting the 
centerline temperature of the peak power node with a constant axial power profile may show 
that the temperature rose during a burnup interval. If a changing axial profile were used, the 
peak power node may change from one step to the next. The temperature of the new peak 
node may not be as high as the temperature from the previous peak node and the plot of the 
centerline temperature would show that the temperature decreased. Plotting the peak power 
node would not show the true trend of the parameters if a changing axial power profile were 
used. The axial power profile used was derived from a burnup profile taken at EOL and is 
shown in Fig. 4-1. The same axial power profile was used for both PWRs and BWRs.  

4.2. Power Histories 

Each fuel design, except the 14x14, was given four power histories for analysis. The 14x14 
was given five power histories so that one power (9 kW/ft) would be common in the calculations 
for all the fuel designs. The power histories used are simple and within reason. All power 
histories begin at their peak power, which is held constant for awhile, and end at 65 GWd/t with 
a power of 5 kW/ft. Figures 4-2 through 4-8 show the power histories used for each fuel type.  
From the highest power to lowest power, the ramp down to 5 kW/ft begins at 20, 30, 40, and 50 
GWd/t, respectively. The power histories used were designed to provide a full range of realistic 
cases. The figures also show the time it took each case to burn up to 65 GWd/t.
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5. Calculations for BWR Mx8 Fuel 

In the following figures, calculated values for BWR 8x8 fuel are plotted as a function of burnup 

for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

* Within the first few GWd/t of burnup, a temperature peak is observed that is the 

result of fuel densification.  

Gap closure results in (a) the coming together of temperatures for fuel O.D. and 

cladding I.D. and (b) a sharp increase in gap conductance. The gap 

conductance increases again after a few time steps when the interaction 

between the pellet and cladding affects the contact conductance calculated for a 

closed gap. At this point there is also a large increase in stress, and the 

permanent strain changes directions.  

* Some of the fission gas is released in spurts according to the Massih 

model in FRAPCON-3. This effect is apparent in many of the figures.  

Shorter time steps would produce slightly different looking curves, but the 

trend of gas release and the end-of-life gas release would be about the 

same.  

0 The bumup enhancement of fission gas release is readily seen in the 

lower power cases, but it is obscured in the highest power cases by the 

magnitude of prior gas release.  

0 Rod internal gas pressure increases with the accumulation of released fission 

gas. In the higher power PWR cases, as the power drops off near the end 

of life, the reduction in the plenum temperature offsets the increasing 

moles of fission gas.
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Fig. 5-1. Fuel temperatures and stored energy for a BWR 
8x8 fuel rod with initial peak power of 7 kW/ft.  
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Fig. 5-10. Fission gas release and rod internal gas pressure for a BWR 
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5-11



40 

35 

-- at 9.5 feet 

30 -- at 6.5 feet 
•',_.Eo• 25--=at 2.5 feet 

LO 25 1

10 

U 0 
U, 0 

(I, 

15

10 

5

0 rf 
0 10 20 30 40 50 60 70 

Average Burnup (GWd/t) 

Fig. 5-11. Oxide thickness at three axial locations for a BWR 
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Fig. 5-12. Cladding hoop stress and hoop strain for a BWR 
8x8 fuel rod with initial peak power of 9 kW/ft.
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Fig. 5-13. Fuel temperatures and stored energy for a BWR 
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Fig. 5-14. Cladding temperatures and fuel surface temperature for a 
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Fig. 5-16. Fission gas release and rod internal gas pressure for a BWR 
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Fig. 5-17. Oxide thickness at three axial locations for a BWR 
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Fig. 5-19. Fuel Temperatures and stored energy for a BWR 
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Fig. 5-20. Cladding temperatures and fuel surface temperature for a 
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Fig. 5-21. Gap thickness and gap conductance for a BWR 
8x8 fuel rod with initial peak power of 13 kW/ft.
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Fig. 5-22. Fission gas release and rod internal gas pressure for a 
BWR 8x8 fuel rod with initial peak power of 13 kW/ft.
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Fig. 5-23. Oxide thickness at three axial locations for a BWR 
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6. Calculations for BWR 9x9 Fuel

In the following figures, calculated values for BWR 9x9 fuel are plotted as a function of burnup 
for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

Within the first few GWd/t of burnup, a temperature peak is observed that is the 
result of fuel densification.  

Gap closure results in (a) the coming together of temperatures for fuel O.D. and 
cladding I.D. and (b) a sharp increase in gap conductance. The gap 
conductance increases again after a few time steps when the interaction 
between the pellet and cladding affects the contact conductance calculated for a 
closed gap. At this point there-is also a large increase in stress, and the 
permanent strain changes directions.  

* Some of the fission gas is released in spurts according to the Massih 
model in FRAPCON-3. This effect is apparent in many of the figures.  
Shorter time steps would produce slightly different looking curves, but the 
trend of gas release and the end-of-life gas release would be about the 
same.  

0 The bumup enhancement of fission gas release is readily seen in the 
lower power cases, but it is obscured in the highest power cases by the 
magnitude of prior gas release.  

0 Rod internal gas pressure increases with the accumulation of released fission 
gas. In the higher power PWR cases, as the power drops off near the end of 
life, the reduction in the plenum temperature offsets the increasing moles of 
fission gas.
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Fig. 6-1. Fuel temperatures and stored energy for a BWR 
9x9 fuel rod with initial peak power of 7 kW/ft.
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Fig. 6-2. Cladding temperatures and fuel surface temperature for a 
BWR 9x9 fuel rod with initial peak power of 7 kW/ft.
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Fig. 6-3. Gap thickness and gap conductance for a BWR 
9x9 fuel rod with initial peak power of 7 kW/ft.  
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Fig. 6-4. Fission gas release and rod internal gas pressure for a BWR 
9x9 fuel rod with initial peak power of 7 kW/ft.
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Fig. 6-6. Cladding hoop stress and hoop strain for a BWR 
9xW fuel rod with initial peak power of 7 kW/ft.
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Fig. 6-7. Fuel temperatures and stored energy for a BWR 
9x9 fuel rod with initial peak power of 9 kW/ft.
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Fig. 6-8. Cladding temperatures and fuel surface temperature for a 
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Fig. 6-9. Gap thickness and gap conductance for a BWR 
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Fig. 6-10. Fission gas release and rod internal gas pressure for a BWR 
9x9 fuel rod with initial peak power of 9 kW/ft.
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Fig. 6-11. Oxide thickness at three axial locations for a BWR 
9x9 fuel rod with initial peak power of 9 kW/ft.
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Fig. 6-12. Cladding hoop stress and hoop strain for a BWR 
9x9 fuel rod with initial peak power of 9 kW/ft.
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Fig. 6-13. Fuel temperatures and stored energy for a BWR 
9x9 fuel rod with initial peak power of 11 kW/ft.
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Fig. 6-14. Cladding temperatures and fuel surface temperature for a 
BWR 9x9 fuel rod with initial peak power of 11 kW/ft.
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Fig. 6-15. Gap thickness and gap conductance for a BWR 
9x9 fuel rod with initial peak power of 11 kW/ft.
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Fig. 6-16. Fission gas release and rod internal gas pressure for a BWR 
9x9 fuel rod with initial peak power of 11 kW/ft.
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Fig. 6-17. Oxide thickness at three axial locations for a BWR 
9x9 fuel rod with initial peak power of 11 kW/ft.
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Fig. 6-18. Cladding hoop stress and hoop strain for a BWR 
9x9 fuel rod with initial peak power of 11 kW/ft.
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Fig. 6-19. Fuel Temperatures and stored energy for a BWR 
9x9 fuel rod with initial peak power of 12 kW/ft.
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Fig. 6-20. Cladding temperatures and fuel surface temperature for a 
BWR 9x9 fuel rod with initial peak power of 12 kW/ft.
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Fig. 6-21. Gap thickness and gap conductance for a BWR 
9x9 fuel rod with initial peak power of 12 kW/ft.
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Fig. 6-22. Fission gas release and rod internal gas pressure for a BWR 
9x9 fuel rod with initial peak power of 12 kW/ft.
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Fig. 6-23. Oxide thickness at three axial locations for a BWR 
9x9 fuel rod with initial peak power of 12 kW/ft.
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9x9 fuel rod with initial peak power of 12 kW/ft.
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7. Calculations for BWR 10x10 Fuel

In the following figures, calculated values for BWR 1oxl 0 fuel are plotted as a function of 
burnup for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

* Within the first few GWd/t of burnup, a temperature peak is observed that is the 
result of fuel densification.  

0 Gap closure results in (a) the coming together of temperatures for fuel O.D. and 
cladding I.D. and (b) a sharp increase in gap conductance. The gap 
conductance increases again after a few time steps when the interaction 
between the pellet and cladding affects the contact conductance calculated for a 
closed gap. At this point there is also a large increase in stress, and the 
permanent strain changes directions.  

0 Some of the fission gas is released in spurts according to the Massih 
model in FRAPCON-3. This effect is apparent in many of the figures.  
Shorter time steps would produce slightly different looking curves, but the 
trend of gas release and the end-of-life gas release would be about the 
same.  

0 The bumup enhancement of fission gas release is readily seen in the 
lower power cases, but it is obscured in the highest power cases by the 
magnitude of prior gas release.  

* Rod internal gas pressure increases with the accumulation of released fission 
gas. In the higher power PWR cases, as the power drops off near the end of 
life, the reduction in the plenum temperature offsets the increasing moles of 
fission gas.
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Fig. 7-1. Fuel temperatures and stored energy for a BWR 
1 OxI 0 fuel rod with initial peak power of 5 kW/ft.
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Fig. 7-2. Cladding temperatures and fuel surface temperature for a 
BWR 1 Ox1 0 fuel rod with initial peak power of 5 kW/ft.
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Fig. 7-3. Gap thickness and gap conductance for a BWR 
10x10 fuel rod with initial peak power of 5 kW/ft.  
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Fig. 7-4. Fission gas release and rod internal gas pressure for a BWR 
1 Ox1 0 fuel rod with initial peak power of 5 kW/ft.
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Fig. 7-5. Oxide thickness at three axial locations for a BWR 
10x10 fuel rod with initial peak power of 5 kW/ft.

7-6



25000

20000 -0.1 

15000 0 

• 10000 -0 ? 

50 -0.2 
0 -0.3c 

-5000 S -0.4 

-10000 
-0.5 

0 10 20 30 40 50 60 70 

Average Burnup (GWd/t) 

Fig. 7-6. Cladding hoop stress and hoop strain for a BWR 
10x10 fuel rod with initial peak power of 5 kW/ft.
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Fig. 7-7. Fuel temperatures and stored energy for a BWR 
1Oxl0 fuel rod with initial peak power of 7 kW/ft.
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Fig. 7-8. Cladding temperatures and fuel surface temperature for a 
BWR 1 Ox1 0 fuel rod with initial peak power of 7 kW/ft.
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Fig. 7-9. Gap thickness and gap conductance for a BWR 
1 Ox1 0 fuel rod with initial peak power of 7 kW/ft.
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Fig. 7-10. Fission gas release and rod internal gas pressure for a BWR 
1 Ox1 0 fuel rod with initial peak power of 7 kW/ft.
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Fig. 7-11. Oxide thickness at three axial locations for a BWR 
10x10 fuel rod with initial peak power of 7 kW/ft.
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Fig. 7-12. Cladding hoop stress and hoop strain for a BWR 
1 Ox1 0 fuel rod with initial peak power of 7 kW/ft.
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Fig. 7-13. Fuel temperatures and stored energy for a BWR 
10x1O fuel rod with initial peak power of 9 kW/ft.
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Fig. 7-14. Cladding temperatures and fuel surface temperature for a 
BWR 1 Ox1 0 fuel rod with initial peak power of 9 kW/ft.
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Fig. 7-15. Gap thickness and gap conductance for a BWR 
1 OxI 0 fuel rod with initial peak power of 9 kW/ft.
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Fig. 7-16. Fission gas release and rod internal gas pressure for a BWR 
1 Ox1 0 fuel rod with initial peak power of 9 kW/ft.
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Fig. 7-17. Oxide thickness at three axial locations for a BWR 
1 OxI 0 fuel rod with initial peak power of 9 kW/ft.
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Fig. 7-18. Cladding hoop stress and hoop strain for a BWR 
10x1O fuel rod with initial peak power of 9 kW/ft.
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Fig. 7-19. Fuel Temperatures and stored energy for a BWR 
1 Ox1 0 fuel rod with initial peak power of 11 kW/ft.
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Fig. 7-20. Cladding temperatures and fuel surface temperature for a 
BWR 1 Ox1 0 fuel rod with initial peak power of 11 kW/ft.
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Fig. 7-21. Gap thickness and gap conductance for a BWR 
1 Ox1 0 fuel rod with initial peak power of 11 kW/ft.
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Fig. 7-22. Fission gas release and rod internal gas pressure for a BWR 
1 Ox1 0 fuel rod with initial peak power of 11 kW/ft.
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Fig. 7-23. Oxide thickness at three axial locations for a BWR 
1 0x1 0 fuel rod with initial peak power of 11 kW/ft.
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Fig. 7-24. Cladding hoop stress and hoop strain for a BWR 
1 Ox1 0 fuel rod with initial peak power of 11 kW/ft.
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8. Calculations for PWR 14X14 Fuel

In the following figures, calculated values for PWR 14X14 fuel are plotted as a function of 
burnup for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

* Within the first few GWd/t of burnup, a temperature peak is observed that is the 
result of fuel densification.  

* Gap closure results in (a) the coming together of temperatures for fuel O.D. and 
cladding I.D. and (b) a sharp increase in gap conductance. The gap 
conductance increases again after a few time steps when the interaction 
between the pellet and cladding affects the contact conductance calculated for a 
closed gap. At this point there is also a large increase in stress, and the 
permanent strain changes directions.  

0 Some of the fission gas is released in spurts according to the Massih 
model in FRAPCON-3. This effect is apparent in many of the figures.  
Shorter time steps would produce slightly different looking curves, but the 
trend of gas release and the end-of-life gas release would be about the 
same.  

* The burnup enhancement of fission gas release is readily seen in the 
lower power cases, but it is obscured in the highest power cases by the 
magnitude of prior gas release.  

* Rod internal gas pressure increases with the accumulation of released fission 
gas. In the higher power PWR cases, as the power drops off near the end of 
life, the reduction in the plenum temperature offsets the increasing moles of 
fission gas.
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Fig. 8-1. Fuel temperatures and stored energy for a PWR 
14x14 fuel rod with initial peak power of 9 kW/ft.
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Fig. 8-2. Cladding temperatures and fuel surface temperature for a 
PWR 14x14 fuel rod with initial peak power of 9 kWlft.
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Fig. 8-3. Gap thickness and gap conductance for a PWR 
14x14 fuel rod with initial peak power of 9 kW/ft.
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Fig. 8-4. Fission gas release and rod internal gas pressure for a 
PWR 14x14 fuel rod with initial peak power of 9 kW/ft.

8-5



90 

80 

70 
-- at 9.5 feet 

70 • ~at 6.5 feet ,,• 
.••,• 6050--•-at 2.5 feet .  

~60 
0 

E 50 

40 

:E30 
F.

20 

10 

0 L = 
0 10 20 30 40 50 60 70 

Average Burnup (GWd/t) 

Fig. 8-5. Oxide thickness at three axial locations for a PWR 
14x14 fuel rod with initial peak power of 9 kW/ft.
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Fig. 8-6. Cladding hoop stress and hoop strain for a PWR 
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Fig. 8-8. Cladding temperatures and fuel surface temperature for a 
PWR 14x1 4 fuel rod with initial peak power of 11 kW/ft.
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Fig. 8-9. Gap thickness and gap conductance for a PWR 
14x14 fuel rod with initial peak power of 11 kW/ft.
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Fig. 8-10. Fission gas release and rod internal gas pressure in a PWR 
14x14 fuel rod with initial peak power of 11 kW/ft.

8-11

20 

~15 

10

5 

0

0

U- I�I U.

Fission gas release 
J I-f+-Rod internal gas pressure 

S._ . • .•, A m• A

2500 

2100 

1700 Z5 

1300 • 
0.  

900 

500



160

140 
-.- at 9.5 feet 

120 = at 6.5 feet 
"----at 2.5 feet 

S100 

rn 80 

. 60 
I

40 

20 

0 
0 10 20 30 40 50 60 70 

Average Burnup (GWd/t) 

Fig. 8-11. Oxide thickness at three axial locations for a PWR 
14x1 4 fuel rod with initial peak power of 11 kW/ft.
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Fig. 8-12. Cladding hoop stress and hoop strain for a PWR 
14x14 fuel rod with initial peak power of 11 kW/ft.
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Fig. 8-13. Fuel temperatures and stored energy for a PWR 
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Fig. 8-14. Cladding temperatures and fuel surface temperature for a 
PWR 14x14 fuel rod with initial peak power of 13 kW/ft.
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Fig. 8-15. Gap thickness and gap conductance for a PWR 
14x14 fuel rod with initial peak power of 13 kW/ft.
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Fig. 8-16. Fission gas release and rod internal gas pressure for a 
PWR 14x14 fuel rod with initial peak power of 13 kW/ft.
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Fig. 8-17. Oxide thickness at three axial locations for a PWR 
14x14 fuel rod with initial peak power of 13 kW/ft.
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Fig. 8-18. Cladding hoop stress and hoop strain for a PWR 
14x14 fuel rod with initial peak power of 13 kW/ft.  
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Fig. 8-19. Fuel temperatures and stored energy for a PWR 
14x14 fuel rod with initial peak power of 15 kW/ft.
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Fig. 8-21. Gap thickness and gap conductance for a PWR 
14x14 fuel rod with initial peak power of 15 kW/ft.
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Fig. 8-22. Fission gas release and rod internal gas pressure in a PWR 
14x14 fuel rod with initial peak power of 15 kW/ft.
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Fig. 8-23. Oxide thickness at three axial locations for a PWR 
14x14 fuel rod with initial peak power of 15 kW/ft.
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Fig. 8-24. Cladding hoop stress and hoop strain for a PWR 
14x14 fuel rod with initial peak power of 15 kW/ft.  
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Fig. 8-25. Fuel Temperatures and stored energy for a PWR 
14x14 fuel rod with initial peak power of 16 kW/ft.
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Fig. 8-26. Cladding temperatures and fuel surface temperature for a 
PWR 14x14 fuel rod with initial peak power of 16 kW/ft.
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Fig. 8-27. Gap thickness and gap conductance for a PWR 
14x14 fuel rod with initial peak power of 16 kW/ft.
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Fig. 8-28. Fission gas release and rod internal gas pressure for a 
PWR 14x14 fuel rod with initial peak power of 16 kW/ft.
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Fig. 8-29. Oxide thickness at three axial locations for a PWR 
14x14 fuel rod with initial peak power of 16 kW/ft.
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9. Calculations for PWR 15X15 Fuel

In the following figures, calculated values for PWR 15X15 fuel are plotted as a function of 
burnup for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

Within the first few GWd/t of burnup, a temperature peak is observed that is the 
result of fuel densification.  

Gap closure results in (a) the coming together of temperatures for fuel O.D. and 
cladding I.D. and (b) a sharp increase in gap conductance. The gap 
conductance increases again after a few time steps when the interaction 
between the pellet and cladding affects the contact conductance calculated for a 
closed gap. At this point there is also a large increase in stress, and the 
permanent strain changes directions.  

* Some of the fission gas is released in spurts according to the Massih 
model in FRAPCON-3. This effect is apparent in many of the figures.  
Shorter time steps would produce slightly different looking curves, but the 
trend of gas release and the end-of-life gas release would be about the 
same.  

* The bumup enhancement of fission gas release is readily seen in the 
lower power cases, but it is obscured in the highest power cases by the 
magnitude of prior gas release.  

* Rod internal gas pressure increases with the accumulation of released fission 
gas. In the higher power PWR cases, as the power drops off near the end of 
life, the reduction in the plenum temperature offsets the increasing moles of 
fission gas.
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Fig. 9-1. Fuel temperatures and stored energy for a PWR 
15x15 fuel rod with initial peak power of 9 kW/ft.
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Fig. 9-2. Cladding temperatures and fuel surface temperature for a 
PWR 15x1 5 fuel rod with initial peak power of 9 kW/ft.
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Fig. 9-3. Gap thickness and gap conductance for a PWR 
15x15 fuel rod with initial peak power of 9 kW/ft.
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Fig. 9-4. Fission gas release and rod internal gas pressure for a PWR 
15x15 fuel rod with initial peak power of 9 kW/ft.
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Fig. 9-5. Oxide thickness at three axial locations for a PWR 
15x15 fuel rod with initial peak power of 9 kW/ft.
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Fig. 9-6. Cladding hoop stress and hoop strain for a PWR 
15x15 fuel rod with initial peak power of 9 kW/ft.
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Fig. 9-8. Cladding temperatures and fuel surface temperature for a 
PWR 15x1 5 fuel rod with initial peak power of 11 kW/ft.
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Fig. 9-9. Gap thickness and gap conductance for a PWR 
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Fig. 9-10. Fission gas release and rod internal gas pressure for a 
PWR 15x1 5 fuel rod with initial peak power of 11 kW/ft.
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Fig. 9-12. Cladding hoop stress and hoop strain for a PWR 
15x15 fuel rod with initial peak power of 11 kW/ft.
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Fig. 9-13. Fuel temperatures and stored energy for a PWR 
15x15 fuel rod with initial peak power of 13 kW/ft.
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Fig. 9-15. Gap thickness and gap conductance for a PWR 
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Fig. 9-16. Fission gas release and rod internal gas pressure for a 
PWR 15x15 fuel rod with initial peak power of 13 kW/ft.
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Fig. 9-17. Oxide thickness at three axial locations for a PWR 
15x15 fuel rod with initial peak power of 13 kW/ft.
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9-19



2100
110

1900 
100 

1700 90 

1500 
80 "j 

S1300 
70 >•0, 

E 1100 60,W 

900 
50 

---Centerline Temperature ' ,,.  

700 - Average Fuel Temperature 40 
.--&- Stored Energy 

500 
30 

0 10 20 30 40 50 60 70 

Average Burnup (GWd/t) 

Fig. 9-19. Fuel Temperatures and stored energy for a PWR 
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Fig. 9-20. Cladding temperatures and fuel surface temperature for a 
PWR 15x15 fuel rod with initial peak power of 15 kW/ft.
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Fig. 9-21. Gap thickness and gap conductance for a PWR 
15x15 fuel rod with initial peak power of 15 kW/ft.
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Fig. 9-22. Fission gas release and rod internal gas pressure for a 
PWR 15x15 fuel rod with initial peak power of 15 kW/ft.
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Fig. 9-23. Oxide thickness at three axial locations for a PWR 
15x15 fuel rod with initial peak power of 15 kW/ft.
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10. Calculations for PWR 16X16 Fuel

In the following figures, calculated values for PWR 16X16 fuel are plotted as a function of 
burnup for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

* Within the first few GWd/t of burnup, a temperature peak is observed that is the 
result of fuel densification.  

Gap closure results in (a) the coming together of temperatures for fuel O.D. and 
cladding I.D. and (b) a sharp increase in gap conductance. The gap 
conductance increases again after a few time steps when the interaction 
between the pellet and cladding affects the contact conductance calculated for a 
closed gap. At this point there is also a large increase in stress, and the 
permanent strain changes directions.  

Some of the fission gas is released in spurts according to the Massih 
model in FRAPCON-3. This effect is apparent in many of the figures.  
Shorter time steps would produce slightly different looking curves, but the 
trend of gas release and the end-of-life gas release would be about the 
same.  

0 The bumup enhancement of fission gas release is readily seen in the 
lower power cases, but it is obscured in the highest power cases by the 
magnitude of prior gas release.  

0 Rod internal gas pressure increases with the accumulation of released fission 
gas. In the higher power PWR cases, as the power drops off near the end of 
life, the reduction in the plenum temperature offsets the increasing moles of 
fission gas.
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Fig. 10-1. Fuel temperatures and stored energy for a PWR 
16x1 6 fuel rod with initial peak power of 9 kW/ft.
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Fig. 10-2. Cladding temperatures and fuel surface temperature for a 
PWR 16x16 fuel rod with initial peak power of 9 kW/ft.
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Fig. 10-3. Gap thickness and gap conductance for a PWR 
16x16 fuel rod with initial peak power of 9 kW/ft.
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Fig. 10-4. Fission gas release and rod internal gas pressure for a 
PWR 16x16 fuel rod with initial peak power of 9 kW/ft.
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Fig. 10-5. Oxide thickness at three axial locations for a PWR 
16x1 6 fuel rod with initial peak power of 9 kWlft.
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Fig. 10-7. Fuel temperatures and stored energy for a PWR 
16x1 6 fuel rod with initial peak power of 11 kW/ft.
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Fig. 10-8. Cladding temperatures and fuel surface temperature for a 
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Fig. 10-10. Fission gas release and rod internal gas pressure for a 
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Fig. 10-11. Oxide thickness at three axial locations for a PWR 
16x1 6 fuel rod with initial peak power of 11 kW/ft.
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Fig. 10-12. Cladding hoop stress and hoop strain for a PWR 
16x1 6 fuel rod with initial peak power of 11 kW/ft.
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Fig. 10-13. Fuel temperatures and stored energy for a PWR 
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Fig. 10-15. Gap thickness and gap conductance for a PWR 
16x16 fuel rod with initial peak power of 13 kW/ft.
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Fig. 10-16. Fission gas release and rod internal gas pressure for a 
PWR 16x16 fuel rod with initial peak power of 13 kW/ft.
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Fig. 10-17. Oxide thickness at three axial locations for a PWR 
16x16 fuel rod with initial peak power of 13 kW/ft.
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Fig. 10-18. Cladding hoop stress and hoop strain for a PWR 
16x16 fuel rod with initial peak power of 13 kW/ft.
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Fig. 10-19. Fuel Temperatures and stored energy for a PWR 
16x16 fuel rod with initial peak power of 14 kW/ft.
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Fig. 10-20. Cladding temperatures and fuel surface temperature for a 
PWR 16x16 fuel rod with initial peak power of 14 kW/ft.
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Fig. 10-22. Fission gas release and rod internal gas pressure for a 
PWR 16x1 6 fuel rod with initial peak power of 14 kW/ft.
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Fig. 10-23. Oxide thickness at three axial locations for a PWR 
16x16 fuel rod with initial peak power of 14 kW/ft.
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Fig. 10-24. Cladding hoop stress and hoop strain for a PWR 
16x16 fuel rod with initial peak power of 14 kW/ft.  
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11. Calculations for PWR 17X1 7 Fuel

In the following figures, calculated values for PWR 17X17 fuel are plotted as a function of 

burnup for the parameters listed below: 

Fuel centerline temperature 
Average fuel temperature 
Stored energy 
Fuel O.D. temperature 
Cladding I.D. temperature 
Cladding O.D. temperature 
Gap thickness 
Gap conductance 
Fission gas release 
Rod internal gas pressure 
Oxide thickness 
Cladding hoop stress 
Cladding hoop strain 

Several general observations can be made about the calculated results: 

* Within the first few GWd/t of burnup, a temperature peak is observed that is the 

result of fuel densification.  

* Gap closure results in (a) the coming together of temperatures for fuel O.D. and 

cladding I.D. and (b) a sharp increase in gap conductance. The gap 

conductance increases again after a few time steps when the interaction 

between the pellet and cladding affects the contact conductance calculated for a 

closed gap. At this point there is also a large increase in stress, and the 
permanent strain changes directions.  

"* Some of the fission gas is released in spurts according to the Massih 

model in FRAPCON-3. This effect is apparent in many of the figures.  

Shorter time steps would produce slightly different looking curves, but the 

trend of gas release and the end-of-life gas release would be about the 

same.  

"* The bumup enhancement of fission gas release is readily seen in the 

lower power cases, but it is obscured in the highest power cases by the 

magnitude of prior gas release.  

0 Rod internal gas pressure increases with the accumulation of released fission 

gas. In the higher power PWR cases, as the power drops off near the end of 

life, the reduction in the plenum temperature offsets the increasing moles of 
fission gas.
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Fig. 11-1. Fuel temperatures and stored energy for a PWR 
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Fig. 11-2. Cladding temperatures and fuel surface temperature for a 
PWR 17x17 fuel rod with initial peak power of 7 kW/ft.
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Fig. 11-3. Gap thickness and gap conductance for a PWR 
17x17 fuel rod with initial peak power of 7 kW/ft.
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Fig. 11-4. Fission gas release and rod internal gas pressure for a 
PWR 17x17 fuel rod with initial peak power of 7 kW/ft.
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Fig. 11-5. Oxide thickness at three axial locations for a PWR 
17x17 fuel rod with initial peak power of 7 kW/ft.
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Fig. 11-6. Cladding hoop stress and hoop strain for a PWR 
17x17 fuel rod with initial peak power of 7 kW/ft.
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Fig. 11-7. Fuel temperatures and stored energy for a PWR 
17x17 fuel rod with initial peak power of 9 kW/ft.
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Fig. 11-8. Cladding temperatures and fuel surface temperature for a 
PWR 17x17 fuel rod with initial peak power of 9 kW/ft.
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Fig. 11-9. Gap thickness and gap conductance for a PWR 
17x17 fuel rod with initial peak power of 9 kW/ft.
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Fig. 11-10. Fission gas release and rod internal gas pressure for a 
PWR 17x17 fuel rod with initial peak power of 9 kW/ft.
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Fig. 11-11. Oxide thickness at three axial locations for a PWR 
17x1 7 fuel rod with initial peak power of 9 kW/ft.
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Fig. 11-12. Cladding hoop stress and hoop strain for a PWR 
17x17 fuel rod with initial peak power of 9 kW/ft.
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Fig. 11-13. Fuel temperatures and stored energy for a PWR 
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Fig. 11-14. Cladding temperatures and fuel surface temperature for a 
PWR 17x17 fuel rod with initial peak power of 11 kW/ft.
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Fig. 11-15. Gap thickness and gap conductance for a PWR 
17x1 7 fuel rod with initial peak power of 11 kW/ft.
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Fig. 11-16. Fission gas release and rod internal gas pressure for a 
PWR 17x17 fuel rod with initial peak power of 11 kW/ft.
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Fig. 11-17. Oxide thickness at three axial locations for a PWR 
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Fig. 11-18. Cladding hoop stress and hoop strain for a PWR 
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PWR 17x17 fuel rod with initial peak power of 13 kW/ft.
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Fig. 11-21. Gap thickness and gap conductance for a PWR 
17x17 fuel rod with initial peak power of 13 kW/ft.
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Fig. 11-22. Fission gas release and rod internal gas pressure for a 
PWR 17x17 fuel rod with initial peak power of 13 kW/ft.
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Fig. 11-23. Oxide thickness at three axial locations for a PWR 
17x17 fuel rod with initial peak power of 13 kW/ft.
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Table Al. Non-proprietary BWR Fuel Design Parameters

Fuel Vendor GE GE SNP SNP SNP SNP GE 
Array 8x8 8x8 9x9 9x9 9x9 9x9 10x10 
Version Barrier GE-4a JP-3 JP-4,5 IX 9X 

Typical Number of Fuel 62 63 79 79 72 72 92 
Rods per Assembly 
Pitch (mm, in.) 16.26 16.26 14.52 14.52 14.45 14.45 

0.640 0.640 0.572 0.572 0.569 0.569 

Cladding OD (mm, in.) 12.27 12.52 10.76 10.76 10.95 10.95 
0.483 0.493 0.424 0.424 0.431 0.431 

Cladding ID (mm, in.) 10.64 10.80 9.25 9.25 9.68 9.68 
0.419 0.425 0.364 0.364 0.381 0.381 

Cladding Thickness (mm, in.) 0.813 0.863 0.762 0.762 0.635 0.635 
0.032 0.034 0.030 0.030 0.025 0.025 

Gap Thickness (mm, in.) 0.115 0.115 0.095 0.095 0.105 
0.0045 0.0045 0.0037 0.0037 0.0041 

Fuel Diameter (mm, in.) 10.41 10.57 9.05 9.50 9.47 
0.410 0.416 0.356 0.374 0.373 

Fuel Pellet Length (mm, in.) 10.41 10.67 10.41 
0.410 0.420 0.410 

Fuel Rod Length (m, in.) 4.20 4.09 4.04 4.16 
165.4 161.1 159.1 163.8 

Active Fuel Length (m, in.) 3.68 3.71 3.68 3.81 3.81 3.81 
145 146 145 150 150 150 

Plenum Length (m, in.) 0.241 0.356 0.243 0.243 
9.48 14.00 9.58 9.58 

Average Enrichment 2.06 2.64 2.92 
atom% 
Fuel Density (% TD) 95.0 95.0 94.5 94.5 96.3 94.5 

System Pressure (Mpa, psia) 7.14 7.14 7.07 
1035 1035 1026 

Helium fill gas pressure 207 0 414 414 
(kPa, psig) 30 0 60 60 

a. All values are from Ref. 7 except as noted
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Table A2. Non-proprietary PWR Fuel Design Parameters 
Fuel Vendor ABB SNP SNP W B&W B&W SNP W Array 14x14 14x14 14x14 14x14 15x15 15x15 15x15 15x15 Version CE ABB CE Top Rod WE Mark B Mark BW W WE 
Typical Number of Fuel 164 176 179 176 208 204 204 204 Rods per Assembly I 
Pitch (mm, in.) 14.73 14.73 14.12 14.73 14.4 14.3 14.3 14.3 0.580 0.580 0.556 0.580 0.568 0.563 0.563 0.563 Cladding OD (mm, in.) 11.17 11.17 10.59 11.17 10.92 10.72 10.76 10.72 0.440 0.440 0.417 0.440 0.430 0.422 0.424 0.422 
Cladding ID (mm, in.) 9.75 9.61 9.11 9.85 9.58 9.35 9.25 9.48 0.384 0.378 0.359 0.388 0.377 0.368 0.364 0.373 
Cladding Thickness 0.711 0.780 0.738 0.660 0.673 0.686 0.762 0.622 (mm, in.) 0.028 0.031 0.029 0.026 0.027 0.027 0.030 0.024 
Gap Thickness 0.095 0.110 0.085 0.107 0.089 0.095 0.095 (mm, in.) 0.0038 0.0043 0.0033 0.0042 0.0035 0.0038 0.0038 
Fuel Diameter 9.56 9.39 9.68 9.36 9.17 9.05 9.29 (mm, in.) 0.377 0.370 0.381 0.369 0.361 0.356 0.366 
Fuel Pellet Length 11.43 10.8 15.24 11.05 10.8 6.93 15.24 (mm, in.) 0.450 0.425 0.600 0.435 0.425 0.273 0.600 
Fuel Rod Length 3.71 3.72 3.86 3.72 3.90 3.20 3.86 3.80 (m, in.) 145.9 146.4 152.0 146.4 153.7 125.9 152.0 149.7 
Active Fuel Length 3.48 3.40 3.66 3.48 3.60 3.66 3.66 3.66 (m, in.) 137 134 144 137 142 144 a 144 144 
Plenum Length 0.218 0.185 0.298 0.160 0.173 0.208 (m, in.) 8.60 7.28 11.70 6.30 6.80 8.20 
Average Enrichment 4.1 3.5 3.13 3.46 3.58 2.65 2.92 
atom% 
Fuel Density (% TD) 95.0 94.0 94.0 95.0 95.0 95.0 94.0 95.0 
%TD 
System Pressure 15.5 15.2 13.9 15.5 15.5 (Mpa, psi) 2250 2200 2015 2250 2250 
Helium fill gas pressure 2.07-3.10 2.10 2.10 1.90-2.76 2.86 2.00 He (MPa, psig) 300-450 305 305 275-400 415 1 290 
a. All values are from Ref 7 ew'ent • •=.

(cont'd)
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Table A2 (cont'd). Non-proprietary PWR Fuel Design Parameters 

Fuel Vendor ABB B&W B&W SNP W 
Array 16x16 17x17 17x17 17x17 17x17 
Version CE Mark C Mark BW W Vantage 5 

Typical Number of Fuel 224 264 264 264 264 
Rods per Assembly 
Pitch (mm, in.) 12.9 12.8 12.6 12.6 12.6 

0.506 0.502 0.496 0.496 0.496 

Cladding OD (mm, in.) 9.70 9.63 9.50 9.14 9.14 
0.382 0.379 0.374 0.360 0.360 

Cladding ID (mm, in.) 8.43 8.41 8.28 7.87 8.00 
0.332 0.331 0.326 0.310 0.315 

Cladding Thickness 0.635 0.610 0.610 0.635 0.572 
(mm, in.) 0.025 0.024 0.024 0.025 0.0225 

Gap Thickness 0.089 0.099 0.083 0.089 0.065 
(mm, in.) 0.0035 0.0039 0.0033 0.0035 0.0026 

Fuel Diameter 8.26 8.21 8.12 7.69 7.85 
(mm, in.) 0.325 0.323 0.320 0.303 0.309 

Fuel Pellet Length 11.43 9.53 10.16 8.84 12.95 
(mm, in. ) 0.450 0.375 0.400 0.348 0.510 

Fuel Rod Length 4.09 3.88 3.85 3.86 3.87 
(m, in.) 161.0 152.7 151.5 152.0 152.3 

Active Fuel Length 3.81 3.63 3.66 3.66 3.66 
(m, in.) 150 143 144 144 144 

Plenum Length 0.254 0.242 0.163 0.184 0.188 
(m, in.) 10.00 9.50 6.40 7.26 7.41 

Average Enrichment 2.45 3.29 3.56 3.84 3.59 
atom% 
Fuel Density (% TD) 95.0 95.0 96.0 94.0 95.0 
%TD 
System Pressure 15.5 15.5 15.5 15.5 
(Mpa, psi) 2250 2250 2250 2250 

Helium fill gas pressure 2.07-3.10 3.00 2.00 He 
(MPa, psig) 300-450 435 290 1 

a. All values are from Ref. 7 except as noted
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