
NUREG/GR-0020

Embedded Digital System
Reliability and Safety
Analyses

University of Virginia

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555-0001

,+oR 01
0,bo

,0 l".b ' ir p

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
www.nrc.gov/NRC/ADAMS/index.html.
Publicly released records include, to name a few,
NUREG-series publications: Federal Register notices;
applicant, licensee, and vendor documents and
correspondence, NRC correspondence and internal
memoranda; bulletins and information notices;
inspection and investigative reports; licensee event
reports: and Commission papers and their
attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Internet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: Office of the Chief Information Officer,

Reproduction and Distribution
Services Section

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
www.nrc.gov/N RC/NUREGS/indexnum.html
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was
accessed, the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and non
NRC conference proceedings may be purchased from
their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from

American National Standards Institute
11 West 42"o Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series
are not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and
Atomic and Safety Licensing Boards and of
Directors' decisions under Section 2.206 of NRC's
regulations (NUREG-0750).

DISCLAIMER: This publication was prepared with the support of the U.S. Nuclear Regulatory Commission (NRC)
Grant Program. This program supports basic, advanced, and developmental scientific research for a public
purpose in areas related to nuclear safety. The grantee bears prime responsibility for the conduct of the
research and exercises judgement and original thought toward attaining the scientific goals. The opinions,
findings, conclusions, and recommendations expressed herein are therefore those of the authors and do not
necessarily reflect the views of the NRC.

NUREG/GR-0020

Embedded Digital System
Reliability and Safety
Analyses

Manuscript Completed: November 2000
Date Published: February 2001

Prepared by
L.M. Kaufman, B.W. Johnson

University of Virginia
Department of Electrical Engineering
Center for Safety-Critical Systems
Thornton Hall
Charlottesville, VA 22904

J.A. Calvert, NRC Project Manager

Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code K6907

ABSTRACT

The migration from analog to digital systems in the instrumentation and control (I & C) within a nuclear

power plant has increased the complexity of the instrumentation. The I & C systems being developed are computer

based consisting of embedded digital hardware and software components. These embedded systems perform many

varying and highly complex functions that are integral to the safety-critical requirements of a nuclear power plant.

The need to understand the effects of various failure modes, including common cause failures and common mode

failures, in these systems is becoming increasingly important because the failure of an I & C system could lead to risk

significant events.

In order to understand the effects of common cause and common mode failures on a system, a survey of

existing definitions and applications of these definitions as they apply to digital embedded systems was performed.

From this survey, it was found that the definitions and analysis treated the hardware and the software as independent

entities. However when embedded digital systems are in actual operation, there is tight integration of the hardware

and software components; that is, the function realized by a such system cannot be partitioned between hardware and

software but must be analyzed in a unified manner. In addition to addressing the limitations of the existing common

cause and common mode failure definitions, a detailed assessment of existing modeling techniques to assess their

effects is also presented.

DISCLAIMER

This publication was prepared with the support of the U.S. Nuclear Regulatory Commission (NRC) Grant Program.
This program supports basic, advanced, and developmental scientific research for a public purpose in areas related to
nuclear safety. The grantee bears prime responsibility for the conduct of the research and exercises judgement and
original thought toward attaining the scientific goals. The opinions, findings, conclusions, and recommendations
expressed herein are therefore those of the authors and do not necessarily reflect the views of the NRC.

iii

CONTENTS
I Introduction ... 1

1.1 Quantitative Differences Among the Dependability Metrics ... 3
1.2 The University of Virginia Dependability Analysis Methodology .. 9

1.2.1 Design Tim e Line .. 9
1.2.2 Dependability Analysis Modeling Methodology (Kaufman, 1997) 10
1.2.3 Application of Dependability Analysis: A Hierarchical Approach 12

1.3 Docum ent Organization .. 14

2 Background ... 14
2.1 De fense in De pth ... 16
2.2 Redundancy ... 16

2.2.1 Hardware Redundancy ... 17
2.2.2 Software Redundancy ... 18
2.2.3 Tim e Redundancy .. 19
2.2.4 Inform ation Redundancy .. 19
2.2.5 Redundancy Lim itations ... 19

2.3 Diversity .. 19
2.3.1 Hum an Diversity .. 20
2.3.2 Design Diversity .. 20
2.3.3 Software Diversity .. 20
2.3.4 Functional Diversity ... 20
2.3.5 Signal Diversity ... 21
2.3.6 Equipm ent Diversity ... 21
2.3.7 Diversity Limitations ... 21

2.4 Robustness .. 21
2.5 Em bedded Digital System s ... 22

3 Probability Risk Assessment (PRA) and Digital Embedded Systems ... 22
3.1 Dependability M odeling and A nalysis .. 23

3.1.1 M arkov M odels (Karlin, 1975; Cassandros, 1993) .. 24
3.1.1.1 Application of Markov Models to Digital Embedded Systems 25
3.1.1.2 Advantages and Disadvantages of Modeling Digital Embedded

System s with M arkov M odels ... 25
3.1.2 Fault Trees ... 26

3.1.2.1 Static Fault Trees ... 26
3.1.2.2 Dynam ic Fault Trees (D ugan et al, 1992) .. 27
3.1.2.3 Application of Fault Trees to Digital Embedded Systems 27
3.1.2.4 Advantages and Disadvantages of Modeling Digital Embedded

System with Fault Trees .. 29
3.1.3 Petri Nets (Murata, 1989; Peterson, 1981; Cassandros, 1993) 29

3.1.3.1 Application of Petri Nets to Digital Embedded Systems 30
3.1.3.2 Advantages and Disadvantages of Modeling Digital Embedded

System s with Petri N ets .. 31
3.2 Hybrid M od eling ... 32

3.2.1 D ata Flow (Choi, 1997) .. 32
3.2.2 Applications of the Data Flow Methodology to Embedded Systems 33
3.2.3 Advantages and Disadvantages of Modeling Digital Embedded

System s with D ata Flow .. 33
3.2.4 Dynamic Flowgraphs (Garrett, Yau, Guarro and Apostolakis, 1995;

Garrett, Guarro and Apostolakis, 1995) ... 34
3.2.5 Application of Dynamic Flowgraphs to Digital Embedded Systems 34
3.2.6 Advantages and Disadvantages of Modeling Digital Embedded Systems

with Dynam ic Flowgraphs .. 34
3.2.7 Comparison of Data Flow and Dynamic Flowgrapgh Modeling 35

3.3 Param eter Estim ation (Kaufm an, 1997) .. 35
3.3.1 Failure Rate .. 35
3.3.2 Repair Rate .. 36
3.3.3 Fault Coverage ... 36

4 Com m on M ode and Com m on Cause Failures ... 37
4.1 Com m on-M ode Failure ... 37
4.2 Comm on Cause Failure ... 38

v

4.3 CMF and CCF Comparison .. 39
4.4 Limitations of Existing CMF and CCF Definitions with Regards to Embedded Digital Systems 40
4.5 Recommendations for Modeling Embedded Digital Systems for CMFs and CCFs 40

Appendix ACoverage Modeling (Kaufman, 1997; Kaufman and Johnson, 1998) ... 42

1 Introduction ... 42
1.1 Axiomatic Models of Fault Coverage .. 43

1.1.1 Error Handling Without Time Limitations .. 43
1.1.1.1 Permanent Effective Error Model (Dugan and Trivedi, 1989) 43
1.1.1.2 CAST Fault Coverage Model (Corn et al, 1977) ... 44
1.1.1.3 CARE III Fault Coverage Model (Stiffler and Bryant, 1982) 44

1.1.2 Error Handling With Time Limitations ... 45
1.1.2.1 ARIES Fault Coverage Model (Makam and Avizienis, 1982) 45
1.1.2.2 Modified CARE Ill Model (Stiffler and Bryant, 1982) 47
1.1.2.3 Extended Stochastic Petri Net (ESPN) Fault Coverage Model

(Dugan and Trivedi, 1989; Trivedi et al, 1984) ... 47
1.1.3 Limitations of Axiomatic Coverage Models...............................47

1.2 Empirical Models for Fault Coverage Parameter Estimation ... 48
1.2.1 Fault Coverage (Constantinescu, December 1995; Powell et al, 1993;

Powell et al, 1995; Smith et al, 1995; Smith et al, 1997; Wang et al, 1994) 48
1.2.1.1 Powell et al Empirical Models (Powell et al, 1993; Powell et al, 1995) 51
1.2.1.2 Partitioned Space Sampling (Stratified Sampling) 51
1.2.1.3 No-Reply Problem ... 54

1.2.2 Cukier et al Model (Cukier et al, 1997) ... 54
1.2.2.1 Classical Statistical Approach ... 54
1.2.2.2 Bayesian Approach ...55

1.2.2.2.1 C alcuaton of Moments... 56
1.2.2.2.2 Pearson Distribution System (Johnson and Kotz, 1970)

for Use as a Posterior Distribution ... 57
1.2.2.3 Comparison of Approaches ... 57

1.2.3 Fault Expansion Model (Smith et al, 1995; Smith et al, 1997) 58
1.2.3.1 Wang et al Empirical Model (Wang et al, 1994) ... 58
1.2.3.2 Smith et al Empirical Model (Smith et al, 1995; Smith et al, 1997) 60

1.2.4 Constantinescu Empirical Model (Constantinescu, December 1995) 62
1.2.4.1 Multi-Stage Sampling for a 3-D Space .. 63
1.2.4.2 Stratified Sam pling ... 64
1.2.4.3 Combined Multi-Stage and Stratified Sampling ... 64

1.2.5 Limitations of Empirical Models for Coverage Estimation .. 65
1.3 Physical M od els .. 65
1.4 C onclusions ... 66

R eferences .. 68

G lossary .. 74

vi

LIST OF FIGURES
Figure Page

Figure 1: The University of Virginia Methodology ... 1
Figure 2: Continuous time Markov model of a simplex system without repair .. 4
Figure 3: Continuous time Markov models of systems without repair .. 6
Figure 4: Sensitivity of reliability to coverage and redundancy for four architectures .. 7
Figure 5: Reliability comparison between a triplex and a quadraplex system ... 8
Figure 6: Analysis skew illustration ... 10
Figure 7: Modeling hierarchy (Kaufman, 1997) ... 11
Figure 8: Parameter estimation hierarchy (Kaufman, 1997) .. 12
Figure 9: Hierarchical relationship during system design (Richards, 1993) ... 13
Figure 10: Three-universe model (Johnson, 1989; Laprie, 1985) ... 15
Figure 11: Fault characteristics (Nelson, 1982) ... 16
Figure 12: Redundancy schemes (Johnson, 1989) .. 17
Figure 13: Passive hardware redundancy example .. 17
Figure 14: Active hardware redundancy example .. 18
Figure 15: Data flow description and data flow with fault injection .. 32
Figure 16: TMR system using majority voting ... 33
Figure 17: Timeline of the CCF and CMF definitions .. 37
Figure A-i: Permanent effective error model (Dugan and Trivedi, 1989) ... 43
Figure A-2: CAST fault coverage model (Dugan and Trivedi, 1989) .. 44
Figure A-3: CARE mT1 single-error fault model (Conn et al, 1977) .. 45
Figure A-4: ARIES fault model (Dugan and Trivedi, 1989) .. 46

vii

LIST OF TABLES
Table Page

Table 1: Comparative analysis of axiomatic models .. 2
Table 2: Algorithmic models used during experimental analysis ... 3
Table 3: Sensitivity of Dependability M etrics to Coverage for a Simplex System ... 5
Table 4: Sensitivity of Dependability M etrics to Coverage ... 7
Table 5: M arkov M odel Software Tools .. 25
Table 6: Static Fault Tree Software Tools ... 27
Table 7: Dynamic Fault Tree Software Tools .. 28
Table 8: Petri Net Software Tools .. 30

viii

EXECUTIVE SUMMARY

The migration from analog to digital systems in the instrumentation and control (I & C) within a nuclear

power plant has increased the complexity of the instrumentation. The I & C systems being developed are computer

based consisting of embedded digital hardware and software components. These embedded systems perform many

varying and highly complex functions that are integral to the safety-critical requirements of a nuclear power plant.

The need to understand the effects of various failure modes, including common cause failures (CCF) and common

mode failures (CMF), in these systems is becoming increasingly important because the failure of an I & C system

could lead to risk significant events.

In order to understand how common cause and common mode failures can affect a system, a survey of

existing definitions and applications of these definitions as they apply to digital embedded systems was performed

and can be found in Section 4: Common Mode and Common Cause Failures. From this survey, it was found that the

definitions and analysis treated the hardware and the software as independent entities. However when embedded

digital systems are in actual operation, there is tight integration of the hardware and software components; that is, the

function realized by a such system cannot be partitioned between hardware and software but must be analyzed in a

unified manner and this problem is discussed in detail in Section 4.4: Limitations of Existing CMF and CCF

Definitions with Regards to Embedded Digital Systems. In addition to addressing the limitations of the existing

common cause and common mode failure definitions, a detailed assessment of existing modeling techniques to assess

their effects is also presented.

Typical modeling techniques used to assess safety and reliability include Markov models, Petri nets and

traditional and dynamic fault trees. Each approach is discussed in Section 3.1: Dependability Modeling and Analysis.

In these techniques, the models require various parameters that reflect system behavior. In order to estimate these

parameters for embedded systems, the integrated action and interaction between the hardware and the software

components must be captured. By modeling the embedded system using hardware description languages (HDL), the

behavior of both the software and the hardware can be jointly examined; that is, a behavioral model can be developed

that encompasses the interaction between the software and the hardware components encountered in actual operation.

Using this HDL model, a series of fault injection experiments (see Section 1.2.2: Dependability Analysis Modeling

Methodology (Kaufman, 1997)) can be performed to estimate various parameters.

The fault injection experiments perturb the correct operational environment for the embedded system by

corrupting the information that is being processed. As a result of the fault injection experiment, the effects that faults

have on the system can be analyzed. The quantitative parameter that is associated with how faults affect a system is

coverage. Coverage is a conditional probability that estimates the likelihood that a system will continue to operate

correctly or fail in a safe manner under the presence of a fault given that it was operating correctly prior to the fault

ix

occurrence. A detailed discussion of the various aspects of coverage modeling and estimation can be found in

Appendix A: Coverage Modeling.

At the present time, this research effort is focusing on the methodology required to develop safety and

reliability models using fault injection and the application of such modeling in parallel with system design. It is

believed that by performing safety and reliability analysis jointly during the design cycle, potential problems can be

identified early in the process and corrected in a more cost efficient manner. Currently, software development is not a

focus issue of this research. It is assumed the software being tested is appropriate for the given application and its

development adheres to current software practices for verification and validation. Hence, this research focuses on the

methodology required for modeling safety and reliability for embedded digital systems.

The results from this stage of the research include the following observations:

* the existing definitions for common cause and common mode failures are inconsistent in their terminol

ogy

"* the existing definitions for common cause and common mode failures treat hardware and software inde

pendently

"* the accuracy of the safety and reliability models depends upon the realism of the parameters

"* recognition of the need to estimate model parameters for the embedded system

By continuing research in the following areas, it is believed that a flexible methodology for determining the safety

and reliability of embedded digital systems will be realized.

Future Research:

"* develop a methodology for accurate safety and reliability modeling of the dependencies between hard

ware and software in embedded digital systems

"* incorporate the effects of common mode and cause failures in modeling and the estimation of the

parameters for the models

integration of commercial-off-the-shelf components in design and safety and reliability modeling

x

Acronyms

CCF: common cause failure

CMF: common mode failure

COTS: commercial off the shelf

GSPN: generalized stochastic Petri net

HDL: hardware description language

I & C: instrumentation and control

SPN: stochastic Petri net

xi

1. Introduction

The migration from analog to digital systems for instrumentation and control (I & C) within a nuclear power

plant has increased the complexity of the instrumentation. The I & C systems being developed are computer-based

consisting of embedded digital hardware and software components. These systems are performing many varying and

highly complex functions that are integral to the safety-critical requirements of a nuclear power plant, and the failure

of an I & C system could lead to risk significant events. In order to prevent such situations from arising, there is a

great need for these systems to be dependable; that is, these systems must provide a specified quality of service. It is

the system designer's responsibility for demonstrating that a given system is dependable (Carter, 1987). Hence, there

is a definite need for dependability analysis to be performed during the design phase. At the University of Virginia,

the dependability analysis is performed concurrently with system development as depicted in Figure 1.The

Dependability Analysis

Axiomatic Modeling

Markov Fault Petri
Models Trees Nets

P

A Parameter Assessment
Embedded System 1 ER

T%-: [1A IExperimental Analysis

Statistical Analysis

Figure 1: The University of Virginia Methodology

advantages of such concurrency are that if it can be determined during design that the system does not meet its

dependability requirements, then design modifications can be made early in the design cycle to minimize cost. A

detailed discussion of the benefits associated with performing dependability analysis concurrently with system design

I

Hybrid Approach
Algorithmic Simulation

Models Models

Dynamic
Flowgraph Hardware

Methodology Description
- - - Languages
Data Flow

L
E
L

can be found in Section 1.2.1: Design Time Line.

Dependability analysis itself provides a measure of the quality of service that a particular system delivers

(Laprie, 1985) and the system model provides the ability to assess the various dependability metrics. Among the

metrics that are typically used to characterize dependability are reliability, availability and safety (Laprie, 1985;

Laprie, 1992). Reliability is defined as the conditional probability that a system performs correctly for a time interval,

given that it was performing correctly at the beginning of the interval. Reliability is typically reported as the

probability that a system functions correctly for a given time period. Availability is the probability that a system is

operating correctly at a given instance of time. Availability is typically reported in terms of the maximum allowable

downtime that is permitted for a component or a system. Safety is the probability that a system is either operating

correctly or in the presence of a fault, it discontinues its operations in a well-defined, safe manner (Jallote, 1994;

Johnson, 1989). Safety can be described as the number of allowable unsafe events permitted in a given period of time.

It is the calculation of these metrics that can substantiate whether or not a system is dependable; that is, a system is

deemed to be dependable if these metrics meet or exceed requirements. The calculation of these metrics requires

system modeling and analysis, which is both quantitative and qualitative in nature.

The system model typically is a qualitative system representation; that is, it represents system interactions

and behavior as interpreted by the analyst. The three primary types of axiomatic models, which are analytical

representations of a system, used for dependability modeling as shown in Figure 1 are summarized in Table 1. A

Table 1: Comparative analysis of axiomatic models

Markov Models Petri Nets Fault Trees

Features (Kaarin, 1975; (Mura 1989;ynam

Cassandros, 1993) Peterson, 1981; Traditional Du nam19
Cassandros, 1993) (Dugan et al 1992)

System represents the e represents the sys- logical • logical representa

representation system in terms of tem in terms of representation of tion of the interre
the system states conditions and the lationships
and transitions events interrelationships between a critical

between the states 0 easy to represent between a critical event and its
concurrency and event and its underlying

contention underlying cause(s) cause(s)
- represents certain

sequence depen

dent failures

Typical - failure rate - failure rate - failure probability - coverage
parameters * repair rate e repair rate - failure rate - failure rate

- coverage * coverage ° coverage
- failure probability

Distributions ° exponential exponential any distribution - exponential
of timed • Weibull - Weibull
events

2

Table 1: Comparative analysis of axiomatic models

Markov Models Petri Nets Fault Trees
Features (Kaarlin, 1975; (Murata, 1989; Cassandros, 1993) Peterson, 1981; Tradtonal Dynamic

Cassandros, 1993) (Dugan et al, 1992)

Closed form differential conversion to combinational logic combinational logic
solution equations Markov model (Boolean algebra) (Boolean algebra)

and conversion to
Markov model

Qualitative not applicable reachability: cutset based cutset based
analysis determines if a analysis analysis

system can ever
reach a certain state

detailed discussion of these modeling techniques can be found in Section 3: Probability Risk Assessment (PRA) and

Digital Embedded Systems.

The analysis of such models provides a quantitative basis for the various dependability metrics. This

analysis also demonstrates the differences among the various metrics and identifies the parameters required for

solution of a given model. The gathering of data for certain parameters is experimentally obtained using algorithmic

and simulation based models (The University of Virginia's hybrid approach). The data flow and dynamic flowgraph

methodology (Garrett, Yau, Guarro and Apostolakis, 1995; Garrett, Guarro and Apostolakis, 1995) provide an

algorithmic based approach that can be used in conjunction with hardware description languages (HDLs) to simulate

the system behavior and functionality in the presence of faults. A summary of these algorithmic models is given in

Table 2 and a detailed discussion of these techniques is presented in Section 3.2: Hybrid Modeling.

Table 2: Algorithmic models used during experimental analysis

Features Data Flow Dynamic Flowgraph

Dependability analysis Can be mapped with any model Requires multi-valued fault tree
axiomatic model

Simulation capabilities Allows for fault injection Allows for fault injection

Primary application parameter estimation design verification, fault and
failure analysis and test vector
generation analysis

1.1 Quantitative Differences Among the Dependability Metrics

The system model provides the basis for any quantitative dependability analysis. This analysis provides for
estimation of the various dependability metrics and it also demonstrates their differences. For example, the

differences between the reliability and the safety metrics for a given system can be analyzed using a continuous time

3

Markov model (Karlin and Taylor, 1975).

A simplex system, which is a system containing only a single component, that cannot be repaired is depicted

in Figure 2. In this model, there are three possible states that the system can be in at a given time:

0
W(-C) C

fLyzt M~odule 0 utý

FUS FS

Figure 2: Continuous time Markov model of a simplex system without repair

(1) Operational: state 0 representing a system that is functioning correctly;

(2) Failed-safe: state FS representing a system whose failure is detected allowing it to fail in a safe man

ner;

(3) Failed-unsafe: state FUS representing a system whose failure goes undetected allowing it to fail in an

unsafe manner.

The concepts of safe and unsafe are highly dependent upon the application and they directly impact a given system's

model. The parameters required by this model are: (1) the failure rate, X and (2) the fault coverage, C. The failure rate

is the rate at which failures occur and this information can be readily obtained from data collection or the Mil-Spec

Handbook. Coverage is a conditional probability that if a fault occurs, it is detected and the system can recover.

Conversely, an uncovered fault leads to immediate system failure regardless of the system's state. The estimates that

are used for the coverage parameter are not as easily obtained as the failure rate. Rather, the coverage estimate is

typically made from experimentally testing a system under various fault conditions to determine if the system

recognizes the fault and recovers and, if available, from existing data. Using these parameters, the safety and the

reliability of the simplex system can be calculated using techniques presented in either (Johnson, 1989) or

(McCormick, 1981).

For the model in Figure 2, the metrics are

Safety: S(t) = Po(t) +pFs(t) = C +(I - C)e-•'t (1)

that is, safety is statistically defined as the probability of being in any state other than the failed unsafe state.

Reliability: R(t) = po(t) = e-X1 (2)

4

that is, reliability is statistically defined as the probability of being in any operational state for a specified time

interval. For any continuous time Markov model, the sum of the probabilities of being in any of the model states is

one; that is, for the simplex system without repair

P(t) = PO(t) +pFs(t)+pFu(t) = 1. (3)

Additionally, the analytical differences between safety and reliability for any system are demonstrated in Equation (1)

and Equation (2).

The system safety is the sum of the probabilities of being either in the operational or the failed safe states,

however, reliability is simply the probability of being in the operational state for a specified time interval. It must be

noted that for more complex systems the number of operational states is greater than one, and the probability of being

in such states must be reflected in the expressions for both reliability and safety. Hence, the probability associated

with a system failing safe is greater than or equal to the probability associated with system reliability regardless of its

configuration; that is,

S(t) > R(t) (4)

In assessing both the reliability and safety for the simplex system, the sensitivity of the metrics to the parameters must

be examined. Since the component failure rate is more readily available than the coverage, the sensitivity of both the

reliability and the safety for the simplex system without repair to the coverage parameter needs further investigation.

Assuming that the component failure rate is X = 10 failures per day and that the mission time is t = 100

days, the effects of various coverage values on the simplex system is shown in Table 3. This table demonstrates that

Table 3: Sensitivity of Dependability Metrics to Coverage for a Simplex System

C R(l) S(t)

0.9 0.9048374180 0.9904837418

0.99 0.9048374180 0.9990483742

0.999 0.9048374180 0.9999048374

0.9999 0.9048374180 0.9999904837

0.99999 0.9048374180 0.9999990484

0.999999 0.9048374180 0.9999999048

the reliability of the simplex system is not affected by coverage, which is indicated in Equation (2). However, the

5

system safety increases with coverage, which follows from Equation (1). In order to better demonstrate the effects of

the coverage parameter on these metrics, examination of additional systems is required.

In Figure 3, the continuous time Markov models for a duplex, a triplex and a quadraplex system without

2X(1-C 0 ~C3241-C 0A

1 XC 2X41-C 2 2XC

FU 1-C) FS EU 41C 1 FS),c

11ýd Moduleý-ý

Moue IOutput Module te

Duplex System output

TQriplex System

4241-C 0
1C4XC Mdl

241-0 2C*
X C

Mdl

Quadraplex System

Figure 3: Continuous time Markov models of systems without repair

repair are shown. The numbered states in each model correspond to operational states that are reached after a covered

fault has been encountered. Assuming that the component failure rate is still X = 104 failures per day and the

mission time is t = 100 days, the effects of various coverage values on these three architectures are presented in

Table 4. For each of these systems, both the reliability and the safety increase as the coverage increases. As expected,

the system safety exceeds the system reliability for each configuration. Similarly, the overall system reliability and

safety increases with component redundancy until the number of components increases from three to four. Rather,

both the safety and the reliability for the system decrease when the redundancy increases from a triplex to a

quadraplex system. This phenomena is graphically depicted in Figures 4 and 5.

In Figure 4, the sensitivity to the dependability metrics to the coverage parameter and redundancy is

demonstrated for all four system configurations. From this graphic, it is apparent that the system reliability increases

6

I I

- SIMPLEX
mI DUPLEX
CI-TRIPLEX
El Q UADRAPLEX

2 3 4 5 6

COVERAGE

Figure 4: Sensitivity of reliability to coverage and redundancy for four architectures

Table 4: Sensitivity of Dependability Metrics to Coverage

Duplex

R(t)

0.9890154300 0.9

0.9899014981 0.9

0.9899901991 0.9!

0.9899990197 0.9'

0.9899999018 0.9

0.9899999900 0.9

S(t)

970064320

997005084

999700994

999800994

999997010

999998010

Tliplex

R(t) S(t)

0.997017200 0.998017919

0.999700568 0.999801525

0.999969167 0.9999801501

0.999996029 0.999997013

0.999999716 0.999999801

0.999999985 0.999999990

Quadraplex

R(t)

0.99602588

0.99960204

0.99996020

0.99999601

0.99999960

0.99999996

S(t)

0.99602588

0.99960205

0.99996022

0.99999603

0.99999962

0.99999998

as the number of components increases to three. However, there is additional resolution required to determine the
effect of adding a fourth component. This phenomena is shown in Figure 5.

The graphics in Figure 5 demonstrate that the system reliability (and the same is true for safety) actually
decreases as the number of redundant components increases from three to four. Hence, it is shown that by simply
adding redundant components to a design does not improve system dependability. Rather, the metrics that comprise
dependability can actually decrease in value as the number of redundant components exceeds three. Additionally, the

7

1
0 � KJi1J!L1ILiiii[HI liii

I-

-j

Il

0 99

0.98

0.97
0.96

0.95

0.94
0.93

0.92
0.91

0.9

I II

0.9

0.99

0.999

0.9999

0.99999

0.999999

I I

*11

CD

0
s

CD

..

C,

CD

C"

St.

x

(1)
CD

[OTRIPLEX
* QUADRAPLEXJ

w0.99999 ' .

0.99998 . p

0.99997

0.99996 ,,

0.99995 ,
0.910.920.930.940.95 0.96

STRIPLEX
_QUADRAPLEX

COVERAGE

COVERAGE

~0.999
0.998 I TRIPLEX

0.997 EQUADRAPLEX

0.996

0.995
0.910.920.930.940.95 0.96

COVERAGE

00

0.999999
0.999998
0.999997
0.999996 ------

0.999995
0.999994 00

0.910.920.930.909096

-J

cc

0.9999998 I
0BTRIPLEX

0.9999996 r QUADRAPLEX

0.9999994
0.910.920.930.940.95 0.96

COVERAGE

sensitivity of the metrics to the coverage parameter is highlighted; that is, the analysis of dependability metrics is

sensitive to both redundancy and coverage. Therefore, it is imperative that consideration must be given both to the

amount of redundancy that is contained in the design of an embedded digital system and the required level of

coverage that is needed to meet the required level of dependability.

Hence, the application of dependability analysis to embedded digital systems during the design phase is
extremely important. This concurrency allows for dependability information, to be available to the designer in a

timely manner so that the appropriate design decisions can be made to ensure that a sufficient level of coverage can

be obtained to achieve the required level of dependability. The subtleties of implementing such an analysis are quite

complex and require careful planning. Such planning requires integration of both the design and dependability

modeling so that the system developer can be aware of any potential difficulties as they arise and make appropriate

design modifications. Hence, a defined dependability analysis methodology is required.

1.2 The University of Virginia Dependability Analysis Methodology

In order to maximize the benefits obtainable from dependability analysis, careful consideration must given
to its application. If the analysis can be performed in parallel with system design as shown in Figure 1, then a myriad

of useful information can be obtained. For example, such an analysis might demonstrate the need for certain design
changes at an early stage in the design cycle, or it could demonstrate that commercial off the shelf (COTS)

components are an acceptable design choice, both of which can mitigate cost. Obviously, the analysis is sensitive to

the model that is used and great care must be taken in selecting the appropriate model. For embedded digital systems,

such models must consider both hardware and software and their interaction. In performing an effective and
comprehensive dependability analysis, the design time line, the modeling methodology and its application must be

carefully defined.

1.2.1 Design Time Line

In demonstrating whether or not a system meets its dependability requirements, such analysis should ideally

be performed in parallel with the design cycle. Often, the development of a system is partitioned so that one group is

responsible for developing the system and another group is responsible for determining whether or not the system

meets dependability specifications and requirements. In Figure 6, the Traditional Design Timeline illustrates this

dilemma.

Initially, the system developers design and construct the first system, Model 1, and then the dependability

analysis is performed. However before the dependability analysis is completed for the first system, the second design

iteration for the system, Model 2, will typically have commenced. This phenomena often forces designers to neglect

9

Analysis Analysis Analysis

Dependability Dependability Dependability
Model 1 Model 2 Model 3

Design Design Design Design ...
Model I Model 2 Model 3 Model 4

Traditional Design Timeline

Anal sis Analysis Analysis Analysis

Dependability Dependability Dependability Dependability
Model 1 Model 2 Model 3 Model 3

t t f t
Design _ , Design Design - Design ...
Model 1 Model 2 Model 3 Model 4

Ideal Design Timeline

Figure 6: Analysis skew illustration

the dependability concerns from the first design iteration, and this information lag is inherent throughout the entire

design process. This approach can prove to be disastrous when applied to safety-critical system design. Dependability

analysis performed late in the design cycle can reveal shortcomings of early design decisions whose modification

could be prohibitively expensive. Likewise, failure to address these shortcomings could be potentially fatal. If the

dependability analysis is performed in parallel with the system design, as indicated by the Ideal Design Timeline in

Figure 6, then dependability concerns can be accommodated throughout the entire design cycle; that is as the

dependability analysis identifies concerns, then the designers can correct for such problems.

By performing dependability analysis in parallel with the design, the analysis of certain features of

embedded digital systems can be better defined. The interaction of hardware and software in these systems is very

complex, and at times the separation between the two is lost. If this interaction is examined in parallel with the

design, then potential risks from this interaction can be determined early in the design cycle and the appropriate

modifications to either the hardware or the software can be made in a more timely and cost efficient manner. Hence,

there is a definite need for dependability analysis and modeling to be performed in parallel with the design of

embedded digital systems, especially for systems used in safety-critical applications.

1.2.2 Dependability Analysis Modeling Methodology (Kaufman, 1997)

In performing dependability analysis, great care must be given in selecting the appropriate model. There are

three primary types of models used in dependability analysis:

10

L. axiomatic models: analytical models that are used to model structure and the dependability and/or

performance behavior of a system (Arlat et al, 1993).

2. empirical models: statistical models that are used to model complex and detailed descriptions of a

system's parameter(s) using data collected from physical models.

3. physical models: prototypes that actually implement the hardware and/or the software of an actual

system.

There is a hierarchical relationship among these models and this relationship is shown in Figure 7. The highest level

Axiomatic Models I
Dependability Metrics I
Parameter Estimation 1I I

Analytical Expert Worst Empirical Models Physical Models
Models Opinion Case I I

Statistical Prototype
"Analysis --- I I

IData
Traditional VRT

Figure 7: Modeling hierarchy (Kaufman, 1997)

model available is the axiomatic model. The parameters required by axiomatic models can include: (1) failure rates;

(2) repair rates; and (3) coverage. The parameters used within the various axiomatic models are obtained in several

ways. They can be estimated by assuming a worst case scenario, using expert opinion, or from other analytical

models. If a more accurate parameter estimate is required and a detailed behavioral and structural description of a

system is available, then empirical and physical models of the system can be constructed.

Empirical models allow for specific analysis of parameters using a simulation approach (Arlat et al, 1993).
This approach can use either a statistical analysis or a physical model. Statistical analysis involves simulation-based
testing of the empirical model to estimate fault coverage. In simulation-based modeling, a model is exercised
repeatedly so that data can be collected to calculate the statistics of interest. The parameter estimation is based upon
the data collected for a given set of fault injection (Arlat et al, 1990, Arlat et al, 1991; Daehn, 1991; Segall et al, 1988)

experiments. This process is shown in Figure 8.

I1

Complete Fault Set

Sampling Strategy

VRT Random

Sampled Fault List I
Fault Injection

Error Latency Fault Latency Coverage

Figure 8: Parameter estimation hierarchy (Kaufman, 1997)

Fault injection is simply a technique for testing a system with respect to a class of inputs, that is faults, to

determine how they affect the system. One of the difficulties in fault injection is determining the set of faults that

should be injected. Since exhaustive testing of all possible faults that a system may encounter during its lifetime is

impractical, a statistically valid sample must be selected to create a fault list. This statistically valid sample is a

representative sample of the entire fault space that can be generated by random sampling or by using a variance

reduction technique (VRT). Once the sampled fault list is generated, these faults are then deliberately injected into the

system. The effects of the faults on the system's behavior can be observed to determine if they are properly handled

by the system or to determine if an unsafe system failure occurs. For Figure 1 on page 1, fault injection is achieved

using the hybrid approach; that is, faults are deliberately injected into simulation models and their subsequent effects

are determined using algorithmic models. The data generated from these experiments provides fault and error latency

and coverage estimates.

1.2.3 Application of Dependability Analysis: A Hierarchical Approach

Throughout system design, there are various levels of abstraction that define the system at a particular

instance of time. These different levels of abstraction are identified in Figure 9. In this figure, a hierarchical based

approach is presented to define the level of detail required by a given model. There are three levels of model

abstraction defined that provide various levels of modeling information. Throughout system design, the various

modeling levels can be combined to provide for overall dependability analysis and to determine which components

12

Figure 9: Hierarchical relationship during system design (Richards, 1993)

pose the greatest problems to overall system dependability.

The architectural level provides the highest level of system information. This model level explains the
desired system behavior and demonstrates the interaction of various high-level components. When little information

is available about a given component, then this level of modeling may be all that is available. Typically, the level of
detail available for COTS components is limited, and as a result, the modeling of COTS components may only be

realizable at the architectural level; that is, the manufacturers do not make low-level model information, such as the
actual hardware schematic or the software, available. If it can be demonstrated during architectural system modeling

and analysis that a component does not pose a risk to the overall system safety at a very early design stage, then there

would be no need for further detailed modeling of such a component. Hence, COTS components could be used. If

however the overall system safety is sensitive to the potential risk associated with a particular component, then a

more detailed description of this component is required. Depending upon the level of detail that is ultimately required

by such an analysis, a COTS component may be infeasible because of the limited knowledge available regarding its

low-level design. In this case, an application specific component will need to be designed.

The specifications, which are derived from the system's requirements, provide the information that is used to

develop the architectural level. At the algorithmic level, the actual design of the embedded digital system is

performed. At this design level, component selection is made and the functional interaction among the various

13

components is defined. A complete understanding of both the behavior and the function of the various components is

required. The final level of model abstraction is the logic level, which is where the actual implementation of the

system occurs. At this level, detailed knowledge of the logic components required to implement the various functions

is required.

By performing system development in this hierarchical modeling manner, it allows for the inclusion of

information from these various design abstractions in a single, unified model. The benefit of such an approach is that

the required level of modeling detail of the various system components is directly defined by the dependability

analysis being performed. For each of these levels of abstraction, a fault list exists and fault injection can be

performed. Hence, dependability analysis can be performed either at each level or across varying levels of the design

abstraction in parallel with the design, as discussed in Section 1.2.1: Design Time Line. This type of analysis provides

the designer with information regarding the potential risks associated with the various components at the various

levels of abstraction. Such information is very beneficial in making design choices; that is, this information could

have significant impact on deciding whether or not to use COTS hardware and software or application specific

components.

1.3 Document Organization

The organization of the document is as follows. In Section 2: Background, the various design methods used

for achieving dependability are introduced and their application to embedded digital systems is defined. In Section 3:

Probability Risk Assessment (PRA) and Digital Embedded Systems, the available dependability modeling and

analysis techniques for embedded digital systems are presented. Section 4: Common Mode and Common Cause

Failures presents an overview of existing definitions for common mode and common cause failures and the

limitations applying of the existing common mode and common cause failure definitions to embedded digital

systems. In Appendix A: Coverage Modeling, a detailed overview of the various coverage modeling techniques are

presented.

2. Background

In order to understand the concept of reliability and safety modeling, there are some fundamental definitions

that must be presented. Among these are fault, error and failure (Johnson, 1989; Laprie, 1985). There is a cause and

effect relationship among these terms and this relationship is depicted in the three-universe model, as shown in Figure

10. In this model, a fault occurs in the physical universe. The fault itself is a physical defect, imperfection or flaw that

occurs within some hardware or software component (Johnson, 1989). An example of a fault could be a broken

ground connection in a printed circuit board or an infinite loop in a computer program. The manifestation of a fault is

14

Physical Informational External
Universe Universe Universe

Fault Error Failure

Figure 10: Three-universe model (Johnson, 1989; Laprie, 1985)

an error, which occurs in the informational universe. An error is any deviation from correctness or accuracy. It can be
represented by parity errors or by typographical mistakes. Finally, the third universe is the external universe that
contains failures. A failure is simply the nonperformance of some expected action. Hence, a failure is the result of
both a fault and an error. An example of a failure would be a quarter toll machine accepting dimes as payment in full.

It is the cause and effect relationship among the components of the three-universe model that implies two
important parameters: fault latency and error latency. Fault latency is simply the amount of time between the
occurrence of a fault and its resulting error. Similarly, error latency is the amount of time between the occurrence of

an error and its resulting failure.

In explaining the three-universe model, the causes of faults are described as are their differences with errors
and failures. In order to completely understand the characteristics of faults, which is required for accurate
dependability modeling, additional fault attributes must be examined. There are five major characteristics that are
critical in describing faults: cause, nature, duration, extent, and value (Nelson, 1982). These characteristics are shown

in Figure 11.

The fault cause is broken down into its four primary types. The fault nature simply specifies the type of fault
present. The fault duration defines the length of time in which a fault is active. A permanent fault is active
indefinitely; a transient fault appears and disappears within a short period of time; an intermittent fault appears and
disappears repeatedly. The fault extent defines whether or not a fault is local to a given piece of hardware and/or
software or if it affects the hardware and/or software globally. Finally, the fault value is either determinant, which
means the fault value remains unchanged throughout a given time interval, or it is indeterminate, which means its

value can change over time.

In order to achieve high levels of reliability and safety in a system, it is paramount that the number of faults
that manifest themselves as errors and failures must be minimized. In order to achieve this minimization, certain
design considerations must be weighed and implemented. Among the various design methods that are used to achieve

dependability are defense in depth, redundancy, diversity and robustness.

15

Fault Characteristics

I
Cause Duration

II i i_ I
Specification External Permanent Transient

Mistakes Disturbances

Implementation Component Intermittent

Mistakes Defects

Extent

Local Global An.

Figure 11: Fault characteristics (Nels

Value

Determinate Indeterminate

Nature

Hardware Software

alog Digital

on, 1982)

2.1 Defense in Depth

Defense in depth approaches safety by implementing multiple protective echelons in a concentric nature

within the design; that is, system safety is achieved by separating safety features such that the failure of one echelon

does not disable the safety systems contained within other echelons. Hence, defense in depth assumes independence

of the echelons (NUREG/CR-6303). The purpose of defense in depth is to compensate for potential human and

system failures by providing successive barriers to prevent system failure (DOE-STD-3009-94) using redundancy

and/or diversity. If a failure occurs that affects multiple echelons, then the independence assumption is no longer

valid.

2.2 Redundancy

Redundancy is the addition of information, resources or time beyond what is needed for normal system

operation.The four types of redundancy techniques are hardware redundancy, software redundancy, time redundancy

and information redundancy as shown in Figure 12.

16

I

REDUNDANCY

PRecovery
Consistency

Ative HBlocks Checking
Active

N Version Capability
Programming Checking

Recomputation
Error for Error

Correcting Correction

Error Codes
Detecting

Codes
Permanent Transient

Fault Fault
Detection Detection

Figure 12: Redundancy schemes (Johnson, 1989)

2.2.1 Hardware Redundancy

Hardware redundancy is the addition of extra hardware for the purpose of detecting or tolerating faults
(Johnson, 1989). There are three basic forms of hardware redundancy: passive, active and hybrid. Passive techniques

use the principle of fault masking, which simply prevents faults from resulting in errors. Such approaches are
designed to achieve dependability without requiring any action by either the operator or the system. Most passive

hardware redundancy approaches implement the concept of majority voting as shown in Figure 13. In this approach,

Input I Module I

Input 2 Module 2 Voter Output

Input N Module N

Figure 13: Passive hardware redundancy example

N is selected as an odd number so that a majority voting arrangement can be used. Hence, passive techniques do not

require fault detection or system reconfiguration.

Active hardware redundancy requires fault detection, fault location and fault recovery. Fault masking cannot

17

Hardware 5ottware Information
TT----J_

Time

be achieved with this approach; that is, this approach does not attempt to prevent faults from manifesting themselves

as errors within the system. Hence, active approaches are used in applications that can tolerate momentary erroneous

results. An example of this approach can be found in Figure 14. In this example, duplication with comparison is

Module 1 •Output

Input Comparator Agree or Disagree

•IModule 2

Figure 14: Active hardware redundancy example

implemented. The basic concept of this approach is the development of two identical pieces of hardware, performing

the same computations in parallel, and comparing the results of the computations. If a disagreement arises between

the outputs, then an error message is generated.

The fundamental concept of hybrid hardware redundancy is to combine the attractive features of both the

active and passive approaches. Fault masking is used to prevent the system from producing erroneous results, and

fault detection, fault location and fault recovery are used for system reconfiguration in the event of a fault occurrence.

2.2.2 Software Redundancy

Software redundancy can be achieved in many ways, including consistency checks, capability checks and N

version programming. A consistency check uses a priori knowledge about information to verify its correctness; that

is, it is a check for consistency between actual results and expected results. A consistency check can be implemented

in either hardware or software, but it is typically a software feature (Johnson, 1989). An example of consistency

checking is that the generation of a memory address within a computer should never lie outside the address range of

available memory.

Capability checks demonstrate whether or not a system possesses its expected capabilities; that is, it is the

verification of an expected capability or feature. An example of capability checking is a simple computer memory

test. A processor can write specific information to specific memory locations and then read the information stored in

those locations to verify that the data is properly stored and retrieved.

The concept of N-version programming (Chen and Avizienis, 1971) is to design and to code the various

software components N times and to compare the N results. Each of the N components is designed and coded by

separate groups of programmers from the same set of specifications. It is hoped that by developing N independent

18

software designs, the same mistakes will not be made by the N different groups of programmers. However, the Knight
and Leveson experiment (Knight and Levenson, 1986) suggests that the assumptions that the same errors will not be
made may prove to be untrue; that is, different programmers are apt to make the same mistakes. Hence, there may not
be complete independence among the various programs.

2.2.3 Time Redundancy

Tune redundancy uses additional time to perform functions to reduce the need for additional hardware. Time
redundancy is used in systems where time is less critical than the cost of additional hardware. The basic concept of
time redundancy is the repetition of computations in such a manner to allow for fault detection. It can be used to
distinguish between permanent and transient faults.

2.2.4 Information Redundancy

Information redundancy is the addition of extra information to allow for fault detection or fault masking.
Typical examples of information redundancy are error detecting and error correcting codes that are formed by the
addition of redundant information to data words. It consists of codes and codewords, where in general, a code is a
means of representing information via a set of well-defined rules.

2.2.5 Redundancy Limitations

The implementation of these four redundancy techniques is very dependent upon the application.
Additionally, all types of redundancy assume component independence; that is, each component, either hardware or
software, acts independently in the system while performing its task. However, the simultaneous failures of the
redundant components violate this independence assumption. It has been shown in (Dugan, 1992) that such
correlation among the components greatly affects their availability and decreases the benefit of a redundant system.
As a result of such failures, system safety features that axe used for system protection can be defeated and the benefits
provided by redundancy are mitigated. Additionally, it is demonstrated in Section 1.1: Quantitative Differences
Among the Dependability Metrics that the system dependability metrics are sensitive to both redundancy and to the
coverage parameter. Therefore, it is imperative that consideration must be given both to the amount of redundancy
that is contained in the design of an embedded digital system and the required level of coverage that is needed to meet

the required level of dependability.

2.3 Diversity

The principle of diversity is to provide several ways of detecting and responding to a significant event by

19

using different logic, algorithms, or means of actuation. In achieving these responses and detections, the

independence of different subsystems is assumed. Typically, diversity can be implemented in one of the six following

ways: human diversity; design diversity; software diversity; functional diversity; signal diversity; and equipment

diversity (NUREG/CR-6303).

2.3.1 Human Diversity

Considering the effect of humans during the different stages of building a safety system, it has been

determined that human diversity is very helpful. Typically, human diversity is implemented by having separate

designers and redundant divisions of maintenance personnel to reduce the possibility of replicating same error. It is

hoped that this division will lessen the possibilities of a human ernor creating a catastrophic situation. However, it has

been demonstrated that humans are apt to make the same mistakes, and as a result, the same errors have been

replicated in separate designs.

2.3.2 Design Diversity

In design diversity, different design approaches in both hardware and software are implemented. By using

different designs approaches, it is hoped that the same errors that can be produced from common influences will not

be introduced in the various designs. From using different designs, it is hoped that each design will be independent in

nature having different failure modes. However, a factor that weakens this argument is that different designs can still

use similar approaches or elements, and as a result, there is not complete independence among the designs.

2.3.3 Software Diversity

Software diversity implies that the use of different programs designed and implemented by different

designers will not repeat the same errors, which is analogous to the concept of N-version programming. Again, it is

shown experimentally in (Knight and Levenson, 1986) that the assumptions that the same errors will not be made

may prove to be untrue. As a result, different programs designed and implemented by different designers may not be

totally independent.

2.3.4 Functional Diversity

In functional diversity, systems use multiple subsystems to perform different physical functions. These

various subsystems are designed to isolate their functionality so that the failure of one subsystem does not affect

another subsystem. Even though these subsystems perform different functions, the combination of these subsystems

may have overlapping safety effects to prevent system failure. The implementation of functional diversity can be

useful if a combination of the functionally diverse systems can mitigate the effects of failure; that is, they prevent the

20

occurrence of a catastrophic event in the case of a fault occurrence. It is imperative in implementing functional
diversity that each subsystem is completely independent, else the failure of one subsystem could affect another

subsystem and possibly compromise system safety.

2.3.5 Signal Diversity

Signal diversity uses different sense parameters to initiate a protective action. Sense parameter are generated
within a system and are monitored to determine if the system is operating correctly. These parameters are assumed to
be independent such that any one of the parameters may indicate an abnormal condition. The isolation of these

parameters is paramount, else the assumption of independence is not valid.

2.3.6 Equipment Diversity

Equipment diversity is the use of different equipment to perform similar safety functions. Such equipment
must be sufficiently unalike so that its vulnerability to common failures is decreased. The use of different
manufactures' equipment does not guarantee diversity as they may use the same COTS components. For example,
most computers use Intel microprocessors. If two personal computers (PCs) using the industry standard architecture
(ISA) manufactured by different companies both use the same Intel microprocessor, then equipment diversity cannot

be implemented because both PCs contain the same COTS microprocessors.

The use of diverse computer equipment may have an effect on software diversity. For example, the use of
different computer architectures among machines to implement equipment diversity forces the use of diverse
compilers, linkers and support software. Hence if properly applied, then hardware diversity can necessitate the use of

software diversity.

2.3.7 Diversity Limitations

Each of the six major types of diversity assume independence in their implementation. However, certain
innate features of each of the diversity methods demonstrates that this independence assumption may be violated.
Hence, system safety features that are used for system protection can be defeated if the independence assumption is
violated, which is also the same problem that plagues redundancy.

2.4 Robustness

A robust system combines elements of redundancy, diversity and defense in depth to achieve safety and
reliability. The underlying premise upon which each of these methods is based is independence. Each method
assumes component independence; that is the failure of one component does not affect other components in the

21

system. However, certain failures classes exist which nullify the assumption of independence (National Research

Council, 1997). For example, a failure in a computer memory device could be a stuck bit; that is, one of the binary

digits would always have a value of either 0 or 1 and would never change. If this failed device were storing

information, then the executing software could be affected by this condition when it retrieved the information from

this memory device. Hence, the assumption of independence among components is no longer valid because a fault in

digital hardware manifests itself in the software that is executing on the hardware. This type of fault condition is

becoming more commonplace today with the proliferation of embedded digital hardware and software systems.

2.5 Embedded Digital Systems

In developing the various schema for designing dependable systems, hardware and software are typically

viewed independently. However, today's design trends are to implement systems that perform very complex

functions, and by using software in conjunction with hardware, such systems are easier to implement. These systems

are called embedded digital systems; that is, an embedded digital system combines digital hardware and software for

functionality. By integrating digital hardware and software, it has become easier to implement complex functions that

are used in a wide variety of applications. In addition to being used for nuclear I & C, they are also used in life-critical

applications, such as aircraft flight control and hospital monitoring devices, where a failure could be catastrophic and

could result in loss of life. Embedded digital systems are also used in areas such as banking and the stock market

where a failure could result in loss of opportunity, and possibly, in loss of money. Hence, the use of embedded digital

systems is pervasive throughout modem society.

However, the inherent attributes of an embedded digital system make it increasingly difficult to implement

them and to validate and to verify that the system meets functional requirements and specifications; that is, the

increased complexity of embedded digital systems leads to complex designs that are difficult to analyze. There are

existing techniques to perform dependability analyses for software and hardware independently, however, minimal

research has been performed in modeling software and hardware together. With the proliferation of digital embedded

digital systems throughout all aspects of life, there is a definite need for a dependability modeling and analysis

methodology for such systems.

3. Probability Risk Assessment (PRA) and Digital Embedded Systems

In broad terms, a PRA entails (Kaplan and Garrick, 1981)

1. qualitatively identifying accident scenarios: What can go wrong?

2. quantifying the likelihood of these scenarios: What is the likelihood?

3. assessing the qualitative consequences of the scenarios: What are the consequences?

22

This general definition is not limited to any particular form of modeling or application. Rather, PRA is a methodology

that can potentially be used in many different applications encompassing a myriad of modeling techniques and tools.

One emerging area in the application of a PRA is in the modeling of digital embedded systems, and in particular,

digital I & C systems.

For a digital embedded system, there are multiple issues that must be addressed in the development of a
PRA, including various questions that need to be answered. Among these questions are the following:

1. What can fail in either the hardware or the software or both?

2. What failure modes can occur?

3. What are the likelihoods or rates of occurrence of the failures?

4. What are the consequences to the digital system's performance with the occurrence of a fault?
The solutions to such questions provides information that can be used in the digital embedded system PRA or in

higher level PRAs, such as that for a nuclear power plant. In order to obtain solutions to these and other questions,

system level dependability modeling and analysis needs to be performed.

3.1 Dependability Modeling and Analysis

Dependability modeling and analysis of digital embedded digital systems requires the development of
axiomatic, empirical and physical models (see Figure 7). Axiomatic models provide quantitative analysis for the
dependability metrics and empirical and physical models provide the parameter estimates required by the axiomatic
models. The axiomatic models can be used in a hierarchical manner in parallel with system design. By analyzing the
systems in parallel with design, the system safety and reliability can be determined at the various levels of design
abstraction. As a result of such analysis, the sensitivity of the dependability metrics to various components can be
identified early in the design cycle. The benefit of such information can have significant impact on the final system
design. For example, design decisions regarding the use of COTS versus application specific components can be

made as a result of this analysis.

Typically, little if any detailed modeling information is available for COTS components. Hence, the level of
modeling abstraction for such a component is limited. If it can be demonstrated that system dependability is not
sensitive to the COTS component, that is the COTS failure does not impact the overall system dependability at the
level of abstraction for which modeling information is available, then such a component can be incorporated in the
design. However if it is demonstrated the system dependability is sensitive to the failure of a COTS component and a
lower level of modeling abstraction is required, then an application specific component would be required in the
design to alleviate this problem. Obviously, the selection of the dependability analysis and modeling methodology is

23

critical in this assessment. The various analysis and modeling techniques that are typically used in dependability

analysis include Markov models, fault trees, Petri nets and dynamic flowgraphs.

3.1.1 Markov Models (Karlin, 1975; Cassandros, 1993)

Markov modeling is a technique used for calculating various system dependability metrics, including safety

and reliability. It defines a system in terms of the various states in which the components can be at a particular

instance of time and it reflects the possible transitions between these various states. The statistical basis for this model

is that of a Markov process whose fundamental premises, which are referred to as the memoryless property, are

(Cassandros, 1993)

1. all past state information is irrelevant; that is, state memory is not needed

2. the length of time that the current process has been in a given state is irrelevant; that is, state age

memory is not needed

As a result of the second aspect of the memoryless property, the inter-event times, that is times at which the system

transitions between various states, are exponentially distributed. If the second aspect of the memoryless property is

relaxed, then the inter-event times are no longer constrained to be exponentially distributed; that is, the state

transitions can occur at any time and the inter-event times can possess arbitrary distributions. Such a process is called

semi-Markov.

A given system can be represented by a number of different states which defines the system in terms of the

functional capabilities of its components at different instances of time; that is, the state that a given system is in at a

particular instance of time reflects which components are operational and which have failed. These states can reflect

the condition of either hardware or software or a combination of such components. The state transition parameters

that are typically required by such a dependability model are

1. X: the failure rate of a particular component; the component of interest is usually denoted by a subscript.

2. Ig: the repair rate of a particular component; the component of interest is usually denoted by a subscript.

3. C: the coverage factor (please see Appendix A for a detailed explanation).

The dependability metrics, as discussed in Section 1: Introduction, are determined by determining the probability that

the system is in a particular state. In order to derive these solutions in closed forms, a series of differential equations

must be solved. The solution of these equations can be quite rigorous, and as a result, several software tools have

24

been developed. A summary of some of the available software tools can be found in Table 5.

Table 5: Markov Model Software Tools

Manufacturer Application Considerations

CARE III COSMIC Cannot model repair.

CARMS DAINA Solves Markov, semi-Markov and
nonlinear Markov models.

MARKOVI Decision Systems
Associates

SURE cosmic Calculates upper and lower bounds for
semi-Markov models.

REST NASA Provides estimate in terms of bounds

PC Availability

HARP

SHARPE Duke University

3.1.1.1 Application of Markov Models to Digital Embedded Systems

Markov models have been used to analyze computer networks (Bateman et al, 1989) and programmable
electronic systems (PES) used in industry to protect and control processes (Stavrianidis, 1993). The availability
modeling of a Fiber Distributed Data Interface (FDDI) computer network is presented in (Bateman et al, 1989).
Models for both two and three-ring wiring concentrator networks are analyzed. In (Stavrianidis, 1993), multiple,
common PES architectures are analyzed to determine what hardware failures affect their overall reliability.

3.1.1.2 Advantages and Disadvantages of Modeling Digital Embedded Systems with Markov Models

Markov models can be used to represent hardware, software and their combined interactions in a single
model to provide various information. For example, a Markov model can determine the probability of a system being
in a particular state at a particular time and it can provide estimates for both safety and reliability. The behavior of
system components is represented as states and the various transitions between the states represent the failure and the

repair rates for the various components.

In developing Markov model representations for system analysis, the state space required expands
exponentially with the complexity of a system. Hence for certain models, closed form solutions cannot be obtained
because of this state space explosion. If a Markov process is used, then all failure and repair rates must be assumed to
be exponentially distributed. If different distributions are required for any of the transition rates, then the models are
significantly more difficult to solve; that is, the complexity of the resulting differential equations is considerably

25

greater.

3.1.2 Fault Trees

Fault trees are modeling techniques which have been extensively used in risk and reliability analysis. From a

system design perspective, fault tree analysis provides a logical framework for understanding the ways in which a

system can fail. A fault tree is not a tree in the graphical sense, rather it is a logical representation of the

interrelationships between a potential critical event and its underlying cause(s). Fault tree analysis provides the

probability that system failure will occur, that is the critical event, and the listing of all the combination of all events,

that is the underlying causes, that will ultimately lead to system failure. Hence, it illustrates the behavioral

relationship among the system's various components and how the combination of failures among these various

components can ultimately result in system failure. The parameters that are needed to solve for a closed form solution

are typically

1. probability of component failure

2. C: the coverage factor (please see Appendix A for a detailed explanation).,

In the continued refinement of fault tree analysis techniques, two type of fault trees have developed: static and

dynamic.

3.1.2.1 Static Fault Trees

A static fault tree is the dual of a reliability block diagram (RBD) (Johnson, 1989; Modarres, 1993). An

RBD is a success-oriented network that describes the function of a system in terms of its reliability. In such a

network, both series and parallel systems can be represented. Systems that contain a combination of series and

parallel components are represented using an appropriate combination of these relationships. A fault tree provides the

logical representation of the dual of reliability, unreliability, for such systems, and it too assumes independence

among the components. The series functionality for failure in a fault tree is represented by the logical AND and the

parallel functionality for failure is represented by the logical OR. Additionally, static fault trees can model other

logical representations. For a more detailed list of static fault tree gates, the reader is advised to consult (Modarres,

1993). Using these symbols, the cause and effect relationship between the basic fault event and the top event, system

failure, can be realized.

The only sequence dependencies that can be modeled using static fault trees are those that can be

represented by a Priority AND. For this gate, an output occurs only if the input faults occur in a specific sequence.

Since this gate represents the only sequencing of faults that a static fault tree can model, the applicability of static

1. Not all fault tree analysis tools support coverage.

26

fault trees is limited; that is, static fault trees cannot fully describe the behavior of systems that can fail due to
complex sequencing of faults. There are various software tools available that can provide this analysis and a list of
some of these tools can be found in Table 6.

Table 6: Static Fault Tree Software Tools

Manufacturer Application Considerations
BRAVO JBF Associates Commercial version of SAPHIRE
CAFTA+ SAIC Supports sensitivity analysis

CARE ImI COSMIC

ETA-Il SAIC Performs analysis via CAFTA+
Formal-FTA Formal Software Supports Monte Carlo simulation
FTRAN Rex Thompson & Partners Supports Monte Carlo simulation
IMPORTANCE National Energy Software

Center

RESULTS il Management Sciences

RKP606 Innovative Timely Solutions

SAPHIRE Idaho National Laboratory

TRACE COSMIC Supports Monte Carlo simulation

3.1.2.2 Dynamic Fault Trees (Dugan et al, 1992)

Certain sequence dependent failures cannot be modeled using static fault trees; that is, failures which result
from the ordering of specific events cannot be modeled using static fault trees. Some of these dependencies, which
can be modeled using Markov models, have been represented with special gates that complement the existing static
fault tree gates. Hence, dynamic fault trees extend the applicability of static fault trees.

Among the sequence dependencies that can be modeled using dynamic fault trees are functional
dependencies and sparing. Functional dependencies are considered to be the occurrence of some event, called the
trigger event, that causes a set of dependent components to become unusable. Sparing involves the sequencing of
events associated with the replacement of a failed component with either a hot, warm or cold spare. The software
tools available that can provide this analysis are listed inTable 7.

3.1.2.3 Application of Fault Trees to Digital Embedded Systems

Historically, fault tree analysis was introduced in 1962 at Bell Telephone Laboratories in connection with a
safety evaluation of the launching system for the Minuteman missile. Subsequently, this technique has been refined
by many people and it has been applied to various industries, including aerospace, medical, and nuclear. In particular,

27

Table 7: Dynamic Fault Tree Software Tools

Manufacturer Application Considerations

DIFTree University of Virginia, Supports dynamic gates and static gates;

USA provides a sensitivity analysis

GALILEO University of Virginia, Supports dynamic gates and static gates

USA

fault trees have been used to successfully analyze various aspects of nuclear power plant safety, such as the 1975

Reactor Safety Study (United States Atomic Energy Commission, 1975). In addition, both static and dynamic fault

trees can be used to analyze a variety of embedded system applications, including robot systems (Harpel et al, 1997;

Khodabandehloo, 1996), rail interlock systems (Min et al, 1994), cardiac pacemakers (Mojdehbakhsh et al, 1994),

avionics subsystems (Shimeall et al, 1991), flight control systems (Shimeall et all, 1991) general computer systems

(Dugan et al, 1992; Dugan et al, 1994; Kaufman et al, 1999) and I&C systems in nuclear power plants (Khobare et al,

1998).

(Khodabandehloo, 1996) presents static fault tree analyses of a hydraulic pick-and-place robot and operator

robot interaction in a welding cell. These analyses consider hardware, software and robot-operator interactions using

both fault trees and event trees. The fault tree analysis helps in identifying the problem areas to help in reducing

failures. In (Harpel et al, 1997), a robot system is also analyzed using static fault trees. In particular, an analysis of the

robot's digital control system is performed that includes the effects of coverage. The resulting analysis for various

robot configurations is obtained with and without the coverage parameter. From this analysis, the sensitivity of the

system's reliability to coverage is effectively demonstrated. In (Shimeall et al, 1991), the micro-processor based flight

control system software of an A-6E aircraft is analyzed using fault trees to identify which conditions can lead to an

unsafe situation, the inadvertent firing of a live missile during practice flights.

In (Mojdehbakhsh et al, 1994), fault trees are used to model the software safety requirements of a cardiac

pacemaker. Fault trees are used in this application to validate and to verify the software requirements. A fault tree

analysis technique is applied to determine the reliability of the mission avionics subsystem of the Advanced System

integration Demonstration (ASID) project in (Shimeall et al, 1991). In this analysis, multiple independent sub-trees

are identified and solved separately to reduce the complexity of the fault trees. The solutions for each of these sub

trees are integrated in the final fault tree to provide a single system reliability estimate.

Fault trees can be used to provide a comparative analysis of different reliable architectures which use both

hardware and software, such as distributed recovery blocks, recovery block and N-version programming (Dugan et al,

1994). In (Dugan et al, 1992), the functions and hardware associated with an avionics system are analyzed using

dynamic fault trees to derive system reliability. Similarly, static fault tree analysis is used to prove that

microprocessor based fail safe system is a feasible option in (Min et al, 1994). This analysis establishes the safety

28

concerns in a rail interlock system, thus allowing the identification of the situations under which the safety assurance
relay is to be released. In (Kaufman et al, 1999), the reliability of an embedded control system for the Kuiper
Airborne Observatory's oscillating secondary mirror is obtained using dynamic fault trees. Even though software
failure information is not available for this system, the sensitivity analysis provided by the fault tree allowed for the
identification of the software components that are most problematic to the overall system reliability.

In (Khobare et al, 1998), a programmable digital comparator system found in nuclear power plant I&C
systems, which consists of a triplicated microcomputer system, is analyzed using static fault tree. This system has
replaced a large number of alarm meters by generating the contacts that are used in various safety related functions.
On the generation of a command signal, which is derived using 2 out of 3 voting, the control rods fall under gravity.
The operation of this system is derived from the embedded system; that is, its operation results from the interaction of
the software and the hardware. Although there is a provision to take into account software reliability during the
analysis, software failure rates are still being determined and reliability values are as yet to be determined with the

desired level of confidence.

3.1.2.4 Advantages and Disadvantages of Modeling Digital Embedded System with Fault Trees

Static and dynamic fault trees can represent hardware, software and their interaction in embedded systems.
Static fault trees are limited in their application because certain functional and sequence dependencies cannot be
modeled. Dynamic fault trees overcome this limitation with the addition of logic gates that model such dependencies,
The analysis from either type of fault tree provides only the likelihood of system failure and the combination of
component failures that can trigger system failure. Fault trees do not provide any state information or timing.
Additionally, fault trees cannot sufficiently model repair because the introduction of feedback to the model can create
an inconsistency that prevents solving for the top event probability.

3.1.3 Petri Nets (Murata, 1989; Peterson, 1981; Cassandros, 1993)

Petri nets are graphical representations of the interaction between system components that represent their
dynamic behavior. They are closely related to finite state automata (Cassandros, 1993; Kohavi, 1978; Rosen, 1995) in
that they both manipulate events according to a set of specific rules. Petri nets visually demonstrate the relationship
between system components, including both hardware and software. Over the years, the concept of a Petri net has
been extended to incorporate timing, stochastic processes and information flow.

The Petri net concept has been extended to incorporate timing information and these models are called'
Timed Petri nets. Timed Petri nets allow the inclusion of timing information of real time systems to be included in the
scope of the modeling (Leveson et al, 1987). Hence, the sequencing and scheduling of system behavior can be
modeled. Stochastic Petri nets (SPNs) and generalized stochastic Petri nets (GSPNs) allow for additional timing

29

information and probabilistic information to be modeled to better represent the dynamic behavior of a system.

Colored Petri nets (CPNs) produce information flow models to provide a convenient way of representing a system's

functional behavior (Rao et al, 1996; Rozenberg, 1990).

The graphical techniques that are used in all types of Petri nets allow systems to be analyzed for various

properties, including

1. reachability: can a system ever reach a certain state, and if so, what event occurrences place a system in

this state.

2. recoverability: if a system reaches a certain unsafe state, can the system successfully recover?

Hence, all Petri nets qualitatively demonstrate system safety. The information that can be processed from Petri nets

can be obtained using existing software tools and a sampling of the available software tools can be found in Table 8.

Table 8: Petri Net Software Tools

Manufacturer Application Considerations

Artifex Artis Srl, Italy Supports Petri nets with time

CPN-AMI MASI Laboratory, University of Supports place/transition nets and colored

Paris, France Petri nets

DSPNexpress GMD-FIRST Supports stochastic Petri nets

Technical University of Berlin,
Germany

EDS Petri Net Tool Defense Research Agency Supports Petri nets with time, place/

(Famborough) UK transition nets and stochastic Petri nets

MISS-RdP ISI, Toulouse, France Supports Petri nets with time, place/

transition nets and stochastic Petri nets

WebSPN University of Catania, Italy Supports stochastic Petri nets and non
Markov model Petri nets

3.1.3.1 Application of Petri Nets to Digital Embedded Systems

Timed Petri nets allow for the modeling of systems which depend heavily on timing information, such as

communication systems (Berthismieu et al, 1991), real time systems, such as flexible manufacturing systems (FMS)

(Peng et al, 1993) and aircraft flight control systems (Shimeall et al, 1991). In (Berthismieu et al, 1991) a

communications protocol operation is modeled to reduce errors due to loss of messages and time-out values. This

model illustrates the use of timed Petri nets to evaluate critically time-dependent properties. The FMS (Peng et al,

1993) consists of manufacturing cells and a material handling mechanism, controlled by computer hardware and real

time software, which requires a control program to satisfy the timing requirements for different functions. The

controlling hardware-software system is modeled by a modified timed Petri net and the controlled mechanical portion

30

is modeled by an activity diagram. In (Shimeall et al, 1991), the micro-processor based flight control system software
of an A-6E aircraft is analyzed using timed Petri nets to identify which conditions are required for missile launches in
both combat and practice runs.

GSPNs and SPNs can be used in performance evaluation of multiprocessor systems (Marsan et al, 1984; Jin
et al, 1995). The multiprocessor systems in (Marsan et al, 1984) have performance constraints due to overhead
introduced by the supervisory program, contention for use of resources and concurrent process synchronization.
Hence, early analysis is essential in order to avoid conflicts at later stages. GSPNs and SPNs can model timing related
features of computer systems, such as concurrency and synchronization. Other features such as communication and
interaction between different processors can also be accommodated (Marsan et al, 1984). The SPN model in (Jin et al,
1995) is for a system that consists of plural workstations and a database server. The model takes into account the
CPUs and the processes running on them. SPNs have also been used to diagnose computer systems (Shedler et al,
1993). These computer systems are composed of hardware components, operating system software and application
programs. The system is designed as a fault tolerant computer system with spare system units for repair and the
availability of the system can be evaluated.

Petri nets can be combined with other types of analysis techniques, such as a failure modes and effects
analysis (FMEA), to provide requirements analysis. This method has been applied to real time embedded control
systems in the Hughes aircraft company (Goddard, 1996). Safety analysis begins at the conceptual design stages and
goes on to perform preliminary hazard avoidance and analysis and requirements analysis.

3.1.3.2 Advantages and Disadvantages of Modeling Digital Embedded Systems with Petri Nets

Petri nets provide a graphical representation of system behavior. This behavioral representation can include
both hardware, software and the interaction of these components. From this model, the system safety can be
demonstrated using simulation without the need for an analytical solution. If stochastic Petri nets are used, then the
timing requirements and the probabilities associated with the transitions between states can be incorporated in the
model to better represent the actual system behavior. Since Petri nets are simulation based, they do not need analytical
representations for the system behavior. Hence, they cannot provide the probabilities associated with being in a
particular state nor can they provide closed form solutions for reliability or safety. In order to provide such
quantitative information, very complex differential equations must be derived and solved. Such equations can be
generated by translating the Petri net to a Markov model, which may or may not provide a closed form solution.
Additionally, Petri nets can be difficult to analyze if the system under consideration creates large reachability graphs
(Leveson et al, 1987; Goddard, 1996); that is, if the system complexity creates a large reachability graph, the visual
analysis is limited and the ability to obtain quantitative solutions poses the same difficulties associated with a Markov

model.

31

3.2 Hybrid Modeling

Hybrid modeling consists of using simulation and algorithmic models to determine various parameters

required by dependability models. In lieu of building physical prototypes, the functional and behavioral aspects of a

digital embedded system can be simulated in software using HDLs. In order to determine the effects of faults on the

system, a series of fault injection experiments (see Section 1.2.2) can be performed on the simulated system. The

effects of the injected faults can be analyzed using algorithmic models such as data flow (Choi, 1997) and dynamic

flowgraphs (Garrett, Yau, Guarro and Apostolakis, 1995; Garrett, Guarro and Apostolakis, 1995) to derive

parameters for the dependability models.

3.2.1 Data Flow (Choi, 1997)

The data flow technique provides ability to model a system using a data flow representation which is a

mapping of the flow of data through the system. The system can be modeled based on its behavioral description using

a HDL. The data flow approach models the informational flow obviates the need to distinguish between the hardware

and software components to allow for unified modeling of the hardware/software system.

Additionally, the data flow representation also allows for fault injection by deliberately corrupting the value

using a construct or component written in a HDL which performs the fault injection. For example, consider a system

consisting of a sensor providing a processor with a value to be incremented and then dispatched as depicted in Figure

10 10 1

10 1 10 1

OUT 11

(a) data flow description 9 OUT

(b) data flow description with fault injection

Figure 15: Data flow description and data flow with fault injection

32

15. The behavioral description of the system is in (a) and a depiction of a fault injected in the processor is shown in

(b) where the value going to the output is 9 instead of 11. Using the data flow construct, the system behavior can
easily be represented in diagrammatic form allowing for the incorporation of fault injection. Through the use of
HDLs, tags can be created on the data values, which mark them as faulty or non-faulty, detected or undetected, and
this information can be collected and post processed to determine the effects of the faults on the system, and
subsequently, various model parameters.

3.2.2 Applications of the Data Flow Methodology to Embedded Systems

In (Choi, 1997), the concepts of data flow methodology were applied to various triple-modular redundant
(TMR) systems using majority voting (Johnson, 1989) as shown in Figure 16. In these examples, the functional

Input Voter Output

Figure 16: TMR system using majority voting

separation between the voter hardware and software components was varied, to determine the effects on system
dependability, and in particular, the coverage parameter associated with the voter. The data flow methodology
provided the ability to model this functional separation using a behavioral description of the system, and with fault
injection, it also provided the data required for estimating voter coverage for the various configurations.

3.2.3 Advantages and Disadvantages of Modeling Digital Embedded Systems with

Data Flow

Data flow modeling uses a behavioral description of an embedded system that is generated with a HDL.
Using this behavioral representation, fault injection experiments can be performed to determine parameters required
by any dependability model. Since there is no dependability modeling capabilities within the data flow methodology
itself, it can be used with any of the three axiomatic models described in Section 3.1: Dependability Modeling and

Analysis.

The use of HDLs in developing the behavioral model mitigates the need for testing a physical prototype,
which can provide substantial costs savings, and such a model can easily modified to reflect design changes.
Additionally, the behavioral description alleviates the need to distinguish between hardware and software
components in the dependability analysis; that is, the embedded system can be modeled to include the implicit
dependencies between the hardware and the software components.

33

3.2.4 Dynamic Flowgraphs (Garrett, Yau, Guarro and Apostolakis, 1995; Garrett,

Guarro and Apostolakis, 1995)

Dynamic flowgraph methodology (DFM), which is derived from logic flowgraph methodology (Guarro and

Okrent, 1984), is an integrated approach to modeling and analyzing the behavior of software driven embedded

systems for the purpose of reliability and safety assessment. DFM follows the fault tree approach but it incorporates

the dynamic behavior of embedded systems; that is, it incorporates timing information. It utilizes a modeling

framework in which system models are developed in terms of the causal relationships between physical variables and

temporal characteristics of the execution of software. DFM produces a self-contained system model from which

many fault trees can be derived using an algorithmic technique.

DFM is based on multi-valued parameter discretization and logic. Hence, the analytical insight of fault trees

derived from this methodology is not limited by the constraints of binary logic used in conventional fault tree

analysis. The DFM can produce timed fault trees in which timing relations between key system and parameter states

are systematically and formally taken into account. Hence, the fundamental goals of this methodology are the

identification of how certain postulated events occur and the identification of an appropriate testing strategy based

upon an analysis of the system's functional behavior.

3.2.5 Application of Dynamic Flowgraphs to Digital Embedded Systems

DEM has been used to analyze combustion module system experiments (Yau et al, Final Report, 1995),

digital flight control systems (Yau et al, 1995) and various systems in nuclear reactors (NUREG/CR-6465).

Specifically, the safety-critical portion of a laminar soot process experiment system in a combustion module system

(Yau et al, Final Report, 1995) is modeled using the DFM. In (Yau et al, 1995), the digital flight control system of the

Titan II space launch vehicle is modeled using the DFM. In (NUREG/CR-6465), the applicability of DFMs to

analyzing digital control systems found in advance reactors is presented. In these models, there is no distinction made

between the software and the hardware elements being modeled. As a result, certain hardware features are

represented as software characteristics.

3.2.6 Advantages and Disadvantages of Modeling Digital Embedded Systems with

Dynamic Flowgraphs

DEM takes into account the dynamic nature of embedded systems and allows for an analysis of the

combined hardware and software components. It provides the ability to perform both inductive and deductive

analyses, which can provide detailed insight on the overall system safety. However, it makes no distinguishing

separation between digital hardware and software; that is, it classifies digital hardware as software during analysis.

34

The generated fault trees incorporate timing information, which demonstrates the dynamic behavior of a system, but

they use multi-valued logic for analysis. Multi-value logic can be difficult to understand and it can create a complex

solution space that can be difficult to solve.

3.2.7 Comparison of Data Flow and Dynamic Flowgrapgh Modeling

The similarities between data flow modeling and the DFM lie in their system modeling techniques; that is,

they both depict the flow of information through a system. However, the two methodologies differ in the applications

because DFM focuses on design verification, fault and failure analysis and test vector generation analysis and data

flow is a methodology that allow for the derivation of specific parameter information. DFM is an analytical modeling

tool which uses timed multi-valued fault trees to obtain system failure and behavior information through prime

implicants of the fault tree. Data flow modeling, however, focuses on deriving information pertaining to how faults

effect system behavior. Once this information is derived and parameter estimates made, than any of the modeling

techniques presented in Section 3.1: Dependability Modeling and Analysis can be used to derive the system

dependability metrics.

3.3 Parameter Estimation (Kaufman, 1997)

Regardless of the method used to determine the various dependability metrics, the quality of these metrics

depends upon the accuracy of the parameters used. Typically, the parameters of most interest for dependability

modeling are failure rate, repair rate and coverage. The estimates for these parameters can be found in a myriad of

ways, including simulation based approaches as discussed in Section 3.2: Hybrid Modeling. However, great care

must be taken to ensure accuracy of these estimates.

3.3.1 Failure Rate

The failure rate, X, is the expected number of failures per a given time period (Shooman, 1968). For

example, if a computer fails on average once every 10,000 hours, its failure rate is 1/10,000 failures per hour. The

failure rate of a system can be obtained through either analytical or statistical models. Analytical modeling examines

the failures of actual devices by applying appropriate models. The most common analytical technique used for

electrical components is based upon the United States Department of Defense MIL-HDBK-217 (United States

Department of Defense). From this handbook, the failure rate of many items, such as integrated circuits and printed

circuit boards, can be estimated or predicted by using the supplied models and specifying the required parameters.

Component failure rates can also be determined using statistical models. This type of modeling is achieved

by collecting data from components that have been in service for a very long period of time. This approach can only

35

be used in limited situations. Alternatively, system prototypes can be built and tested to obtain failure rate

information, however, there are many limitations to prototype testing. Prototypes can be costly to construct, and the

time for construction and testing may not fit in the design cycle. Also, depending on the failure rate, experimental

testing may be impractical because of the time required to obtain the number of required data points.

3.3.2 Repair Rate

The repair rate, g, is the expected number of repairs per unit time (Johnson, 1989). For example, repair

technicians might be able to fix a failed computer system at a rate of two every hour. Hence, the system repair rate is

two repairs per hour. System repair rates are typically determined using experimental data collected over a period of

time. As an example, consider a constructed system that has faults injected into it and that these faults manifest

themselves as failures. Repair technicians with varying skill levels and qualifications are sent to repair the system.

The data from their work is collected and the repair rates can then be calculated. It should be noted that in order to

accurately estimate the repair rate, a sufficient number of faults must be injected into the system (Johnson, 1989).

3.3.3 Fault Coverage1

Fault coverage, C, is the conditional probability that a system recovers given that a fault has occurred

(Bouricius et al, 1969). The impact of the fault coverage parameter on the dependability metrics is well documented

in (Arnold, 1973; Bouricius et al, 1969; Dugan and Trivedi, 1989; Johnson, 1989) and in Section 1: Introduction of

this document. Hence, there is a definite need for an accurate estimate of this parameter. Of all of the dependability

parameters mentioned, coverage is the most difficult to estimate. There are very few analytical methods available to

estimate coverage. Those methods that do exist require very specific parameters that are difficult, if not impossible, to

know a priori. Since exhaustive testing is often impractical, fault coverage estimation is typically performed by using

a statistical model which requires data points that are generated via system simulation (Law and Kelton, 1991).

This statistical approach begins with selecting a random fault from the entire fault set of the system. This

fault is either injected into a system prototype or model and then the prototype or model is monitored to determine the

effects of the fault. The number of fault injection experiments (Arlat et al, 1990; Arlat et al, 1991; Daehn, 1991;

Segall et al, 1988) that must be performed is directly related to the required fault coverage of a given system.

In order to achieve a high degree of fault coverage, a large number of injection experiments must be

performed. If the desired coverage estimate cannot be met due to resource limitations, then the system must be

redesigned so that the designer can show that the system has the required level of dependability. Hence, there is a

need for a means to estimate a given system's coverage factor so that the designer can demonstrate that the system

1. See Appendix A for a detailed coverage modeling discussion.

36

meets the required level of dependability via metrics such as reliability, safety and availability.

4. Common Mode and Common Cause Failures

Certain uncovered failures can defeat system redundancy, diversity and defense in depth and nullify the

assumption of independence (National Research Council, 1997). These failures, which can be called multiple

independent failures, can be caused by severe environmental conditions, design errors, calibration errors, and/or

functional deficiencies (Dhillon, 1983). Such failures are known as common-mode and common-cause failures and

these failure must be identified during the dependability analysis. A timeline depiction of the evolution of these

failure definitions can be found in Figure 17.

Watson &Smith, Hoertner Colombo& Nahman; Dhillon &Anude;
Gangloff Hagen I Keller Paula Billington &Allen Davis NRC II I I I I I I

Watson& Henley& I Watson Johnson, I Dhillon &Viswlanath, Lala &HarperI Voas, Ghosh,
Edwards I Hiromntsu I I I Siu &Mosleh I Lala, Harper kAlger Dhillon &Andde Charron,Kas I II I I

II I I I I I I I I I i I i I
I I I I I I I I I I I I I I

1975 1979 1981 1985 1987 1989 1991 1993 1995 1997

Figure 17: Timeline of the CCF and CMF definitions

4.1 Common-Mode Failure

The evolution of common-mode failure (CMF) definitions demonstrates the distinctions that have been

historically made between hardware and software assessment. The vast majority of CMF definitions were developed

to explain failure phenomena in hardware systems. For example in (Gangloff, 1975), CMFs are defined as any

instance where multiple hardware units or components fail due to a single cause. This definition, however, omits

important information, such as the time of failure and the mode of failure. (Watson and Edwards, 1979) define CMFs

as the result of an event which, because of dependencies, causes a coincidence of failure states of components in two

or more separate channels of a redundant system preventing the system from performing its intended function. This

definition takes into account the time of failure, but it still does not include any failure modes. (Colombo and Keller,

1987; Lala and Harper, 1994) incorporate all aspects of failure, such as time of occurrence, type of cause, and mode

of failure, by defining CMFs as multiple, concurrent, and dependent failures of identical equipment that fails in the

37

same mode. In (National Research Council, 1997), a CMF definition is presented that defines this identical

equipment failing in the same mode as the stuck open mode or the fail as-is mode. In this definition, a stuck open

failure mode refers to a failure caused by a break in an input, output, or intermediate logic line in a digital circuit and

a fail as-is condition indicates the failure of modules in a manner such that they maintain their value when the fault

occurred. In (Johnson, 1989), a CMF occurs when two or more identical modules are affected by a fault in exactly the

same way at exactly the same time, when there exists at least one input combination for which the outputs of two

modules are erroneous. The lone CMF definition from a software perspective is a failure which occurs when two or

more software versions fail in exactly the same way for the same input (Voas, J., A. Ghosh, F. Charron, and L.

Kassab).

Recently, there have been attempts to identify CMFs in terms of the embedded hardware/software system. In

(Davis, 1995), the causal relationship between hardware and software failures is examined. A time delay in the

propagation of a fault and error from a software unit to a hardware unit or the converse defines this causal

relationship. Hence, CMFs are related failures of redundant or separate equipment embracing all such causal

relationships. The equipment may fail due to severe environments, design errors, calibration and maintenance errors,

hardware and software, operating systems, and consequential failures.

As these definitions for CMFs evolved, efforts were made to describe common-mode faults, which cause

CMFs, to aid in defining design methodologies in safety-critical systems. A common-mode fault is defined as one

that affects multiple fault containment regions (FCRs) simultaneously or nearly simultaneously (NASA, 1992). A

FCR is a collection of components, either software and/or hardware, that operates correctly regardless of any

arbitrary logical or electrical fault outside the region; that is, faults inside an FCR cannot propagate outside the FCR

and faults outside the FCR cannot affect it (Lala et al, 1991).

4.2 Common Cause Failure

Another type of failure that needs to be identified during dependability analysis is common-cause failure

(CCF). As is true for the CMF definitions, these definitions have evolved with a primary interest in explaining

hardware failure conditions. In (Watson and Edwards, 1979), CCFs are defined as multiple failures, potential or real,

attributable to a common-cause. This CCF definition is very similar to the CMF definition in (Gangloff, 1975).

Similarly, (Watson and Smith, 1980) defined CCFs as the multiple failures of identical, redundant components that

fail in the same mode within a critical time period, and result in complete system failure; that is, all failures are

attributable to a common cause, which fails each of the multiple components directly. In (Henley and Hiromitsu,

1981), they studied the underlying events that created CCFs are analyzed. From this analysis, the basic common

cause events as the common-mode events of the cause. In general, CCFs are defined as the simultaneous, independent

38

failure of two or more components due to a shared cause or a single event that renders all the components unavailable

and causes system or mission failure (Billington and Allen, 1992; Dhillon and Anude, 1994; Dhillon and Viswanath,

1991; Hagen, 1980; Nahman, 1992; National Research Council, 1997; Paula, 1990; Siu and Mosleh, 1989; Watson,

1986).

4.3 CMF and CCF Comparison

The distinction between CMF and CCF is often misunderstood due to the overlapping of their definitions, as

is seen from (Gangloff, 1975) and (Watson and Edwards, 1979). There are some well known cases which have been

analyzed to differentiate between these failure types and an overview of some of the more prominent failures can help

to delineate between these failure types. Three examples cases of CCF are the Browns Ferry fire, the Rancho Seco

plant reactor shutdown and the Three Mile Island incident (Hagen, 1980) and they are presented to highlight these

failure modes. For CMFs, a nuclear power plant failure is presented (Hagen, 1980).

The Browns Ferry fire was initiated by a small lighted candle that shut down the reactor. A fire in the cable

room disabled many electrical power and control circuits. In the Rancho Seco plant, a burned out push button lamp

precipitated a sequence of events that shut down the reactor. During the lamp replacement, the operator dropped it

into a monitoring assembly that had been removed for inspection. This carelessness created an electrical short, which

cut power to two-thirds of the instrumentation and control process, causing a pressure transient to trip the reactor. The

common failure of auxiliary feedwater valves was instrumental in initiating coolant loss accident at Three Mile

Island.

An example of a CMF is a system in which, after almost 4.5 years of partial commercial operation, a design

error was revealed when a package of diodes in a rod drive system failed during a required trip of the nuclear reactor.

This failure coupled with the protection and control functions caused all other control rod systems to fail. Hence, the

designed redundancy was negated. Some functional diversity which was present in the design did shut down the

system (Hagen, 1980).

In light of these examples and the aforementioned definitions, a question arises as to whether CMFs should

be classified under CCFs or vice versa. One approach is to call failures of redundant components due to the same

cause and present at the same time as CMFs, and subsequently distinguish the CMFs as: (1) CCFs, which are failures

of functionally independent redundant components caused by an external basic event; (2) causal or secondary

failures, which are failures of redundant components that originate as an independent failure which then propagates

via secondary effects resulting in additional failures; and (3) failures of redundant components caused by a single

component failure and propagated via functional dependencies (Hoertner, 1982). In contrast, CMFs can be

characterized as a subset of CCFs, characterized by multiple items failing in the same mode (Dhillon and Anude,

39

1994).

Another approach to classifying CCFs and CMFs is to consider both as being on the same hierarchical level.

Using this assumption, both can be defined to be the possibility of system or mission failure involving multiple item

failure, which may occur due to a common cause. The loss of system functions, or multiple, redundant paths, or

components due to an underlying common mechanism, fault or phenomena can be attributed to either CCFs or CMFs

(Watson, 1986).

4.4 Limitations of Existing CMF and CCF Definitions with Regards to
Embedded Digital Systems
The majority of existing CMF definitions make a distinction between hardware and software components of

a system. The existing definition for CMFs in terms of embedded digital system is based upon causality, which

assumes that there is a time lag in propagation of faults and errors from a software unit to a hardware unit or vice

versa. In today's complex systems, the interaction between hardware and software is virtually indistinguishable. The

time delay for fault and error propagation between hardware and software in modem embedded digital systems is

typically immeasurable. Hence, it is hard to attribute system failure to the occurrence of either a hardware or a

software fault. Additionally, these existing definitions can be contradictory, and as a result, they are difficult to apply.

Hence, there is a definite need for coherent CMF and CCF definitions in terms of embedded system analysis.

4.5 Recommendations for Modeling Embedded Digital Systems for CMFs

and CCFs

For embedded digital systems, the need to model CMFs and CCFs is an intrinsic part of performing accurate

dependability analysis. In performing dependability analysis, careful attention must be given to the modeling

technique used. The various axiomatic models have certain characteristics that may or may not lend themselves to

modeling CMFs and CCFs.

Since timing is an important issue in characterizing CMFs and CCFs, the axiomatic modeling technique

used must support this parameter. Markov models do not include timing information, that is the time at which failures

occur cannot be modeled, but they do allow for the sequencing of events to be modeled, which can be used to

represent both CCF and CMF. However, these resulting models can be quite complex, and as a result, it may be very

difficult, if not impossible, to obtain a closed form solution. Additionally, these models require certain parameters,

such as the failure rates for CMFs among components, that are difficult, if not impossible to calculate. Hence

obtaining an accurate closed form solution for this model may not be realizable. Since Petri nets are statistically

equivalent to Markov models, they have the same limitations in applicability to modeling CMFs and CCFs.

40

It has been shown in (Yau et al, Final Report, 1995; Yau, Guarro and Apostolakis, 1995) that dynamic

flowgraphs can be used to model CMFs and CCFs in software, and by extension, such failures in embedded hardware

and software systems. The difficulties with this modeling technique is the use of multi-valued logic. Multi-valued

logic can be quite complex, and as a result, difficult to understand. Similarly, it has been shown in (Kaufman et al,

1999) that fault trees can also be used to model embedded digital systems. By using dynamic fault tree structures,

sequencing of events and their functional dependencies are modeled. These type of modeling constructs can also be

applied to CMFs and CCFs. However, static fault trees do not incorporate timing, which limits their applicability.

Hence, a mixture of existing modeling techniques might provide the best modeling environment for incorporating the

affects of CCFs and CMFs in dependability modeling. Depending on which dependability model(s) is (are) selected,

the accuracy of the parameters required for solution directly impacts the quality of the solution. Therefore, it is

imperative that accurate parameter estimations be made. The proposed methodology for accurate estimation of the

parameters required for safety and reliability modeling of the dependencies between hardware and software in

embedded digital systems is the hybrid approach mentioned in Figure 1 on page 1 and defined in Section 3.2: Hybrid

Modeling.

In the hybrid modeling approach, behavioral prototypes of the embedded digital system will be constructed

using HDLs. The effects of various failures, including CCFs and CMFs, will be determined using error injection

experiments. The error injection experiments will perturb the correct operational environment for the embedded

system by corrupting the information that is being processed and their effects on the system will be quantified. The

quantitative parameter that is associated with how these errors effect a system is coverage. Using the coverage

parameter and other parameters obtained form these experiments, it is believed that accurate estimates for safety and

reliability can be made for embedded digital systems from their axiomatic models, regardless of the modeling

technique used, and these estimates can be applied to the system PRA.

41

APPENDIX A Coverage Modeling (Kaufman, 1997; Kaufman and Johnson,

1998)

1. Introduction

Using the fault characteristics and the cause and effect relationship between faults, errors and failures as

presented in the three-universe model, fault coverage models can be developed. Since a small change in coverage can

result in great variations in dependability metrics, it is imperative that an accurate estimate of fault coverage be made.

There are both mathematical and qualitative expressions for fault coverage. The mathematical definition is that fault

coverage, C, is the conditional probability that a system recovers given that a fault has occurred (Bouricius et al,

1969). It is written as

C = P(fault processed correctly I fault existence). (A. 1)

Qualitatively, coverage is a measure of the system's ability to detect, locate, contain and recover from the presence of

a fault. There are four primary types of fault coverage available: (1) fault detection coverage; (2) fault location

coverage; (3) fault containment coverage; and (4) fault recovery coverage. Thus, the term fault processed correctly

implies at least one of the four coverage types. A more detailed description of the fault coverage types follows.

Fault detection coverage is the system's ability to detect a fault. For example, a typical system requirement is

that a certain percentage of all faults must be detected. The fault detection coverage is then a measure of the system's

ability to meet the desired fault detection requirement. Fault location coverage measures a system's ability to locate

the cause of faults. A typical system requirement is that faults within replaceable components must be located. Hence,

fault location coverage is a measure of the success with which such faults are located. Fault containment coverage

measures a system's ability to contain faults within a predefined boundary. For example, if a fault in a sub-system is

detected and located, then preventing the effects of the fault from propagating in the system is a measure of fault

containment coverage. Finally, fault recovery coverage measures the system's ability to automatically recover from

faults and to maintain the correct operation. If a system is required to possess a high fault recovery coverage, then it

must also possess high fault detection, fault location and fault containment coverages (Johnson, 1989).

The type of coverage required is highly application specific. For example, fail-safe systems require specific

knowledge of the fault detection coverage. Conversely, highly-reliable systems that use sparing techniques (Johnson,

1989) require knowledge of the fault recovery coverage. Regardless of the type of coverage information that is

required by a system, the methodology used to estimate the coverage parameter is the same. Throughout the

remainder of this paper, fault coverage is defined to mean any of the four fault coverage categories that are required

for a given application.

42

Fault coverage is examined in two distinct ways: (1) coverage modeling and (2) parameter estimation. As its

name implies, fault coverage modeling is a development of a model for the response of a component to the

occurrence of a fault. Parameter estimation is needed for values that are required by coverage models. The parameters

can be estimated by inserting faults into a given system prototype or model and collecting the required data.

1.1 Axiomatic Models of Fault Coverage

Axiomatic modeling of fault coverage is a behavioral representation of a system's response to faults. These

models are embedded in the overall system model, and the actual number of coverage models required is a function

of the system under test. There have been numerous refinements to the axiomatic fault coverage models and the

various models that have been developed are presented in the following sections. These models are categorized into

two sections: error handling without time limitation and error handling with time limitations.

1.1.1 Error Handling Without Time Limitations

The initial iteration of fault coverage models ignores any type of interference that could occur during error

handling, and typically consist of various forms of Markov and semi-Markov models. In these models, it is assumed

that the time spent in states handling errors is negligible with respect to the time spent in states where errors are not

present.

1.1.1.1 Permanent Effective Error Model (Dugan and Trivedi, 1989)
The model, shown in Figure A. 1, depicts the effect of a fault and its resulting error. The fault coverage for

D t Locate C g Recover , e

(Success

1 td 1e - er

Figure A. 1: Permanent effective error model (Dugan and Trivedi, 1989)

the system is given by

C = ced X cel x c,,, (A.2)

where Ced is the error detection probability, cel is the error location probability, and cr is the error recovery

probability. Since this model only handles permanent faults and ignores transient faults, it has very limited

43

applicability to real systems.

1.1.1.2 CAST Fault Coverage Model (Conn et al, 1977)

CAST, shown in Figure A.2, combines transient fault restoration and permanent fault recovery. Faults occur

at a rate). + ,, which is the sum of the permanent and the transient fault rates respectively. Once a fault occurs, the

detection state is entered with an error detection probability of Ced. If the errors are not detected, then system failure

occurs. However if the errors are detected, then transient recovery is attempted. The transient recovery probability is

1 -1, where I is the transient leakage. If the transient recovery fails, then permanent recovery is attempted. In

permanent recovery, the fault cause is located with probability cf, and the system recovers with probability cSr. If

permanent recovery is successful, then N- I modules remain. If it is unsuccessful, then system failure occurs. The n

subscript associated with all of the system parameters simply denotes the number of active components.

N x +- C edn

MdlsDetection Failure

Transient In ,•Permanent C nc s

Recovery W- Recovery ý oue

Figure A.2: CAST fault coverage model (Dugan and Trivedi, 1989)

1.1.1.3 CARE III Fault Coverage Model (Stifler and Bryant, 1982)

The CARE Em single-error model, shown in Figure A.3, is a generalized fault model realizing intermittent or

permanent faults. In this model, state A represents the activation of an error. State B represents the error latency,

where (x, and Pca are the transition rates between states A and B. State P represents the effects of the error polluting

the system and occurs from state A at rate p. State D represents error detection, which can only occur if the error is

active (state A) or it is polluting the system (state P). The rate at which an active error is detected before it can become

latent or pollute the system is A, and the rate at which an error that is polluting the system becomes detected is cedede.

If the error that is polluting the system is not detected, the error results in a failure, which is state F, at a rate of

(1 - ced)ed from state P. The probability of exit from state A to State D is given by

C= A ,CdP = A+ CdP (A.3)
A+p A+p A+p

44

Figure A.3: CARE III single-error fault model (Conm et al, 1977)

In order to model permanent errors, gzp and %3 must be set to zero, which is the rate at which an effective error goes

latent and vice versa; else, this model represents intermittent errors.

1.1.2 Error Handling With Time Limitations

In order for coverage models to be robust, consideration must be given to the lifetime of the fault and/or

error. If the transient lifetime is considered, which in reality is a major concern, the models described in Appendix A

Section 1.1.1: Error Handling Without Time Limitations have very little applicability in developing accurate fault

coverage estimation. The following models consider transient lifetime.

1.1.2.1 ARIES Fault Coverage Model (Makam and Avizienis, 1982)
The ARIES model, shown in Figure A.4, includes permanent, transient and intermittent faults. In this model,

there are three possible exits: (1) system crash; (2) normal processing; and (3) permanent fault recovery. Obviously,

the system crash exit occurs when the error introduced by a fault causes system failure. The probability of a fault

resulting in immediate system failure is 1 - csr. The fault recognition and attempted recovery probability is ffrt i'

where i denotes the recovery phase. The number of allowable recovery phases is fixed. If during a given recovery

phase the system fails, then the system crash exit is taken with probability PFi. If during a recovery phase the system

recovers from a transient error, then the normal processing exit is taken with probability PRi. Finally, if all recovery

phases are entered and successful, then the permanent fault recovery exit is taken.

The ARIES fault coverage probability is

45

Figure A.4: ARIES fault model (Dugan and Trivedi, 1989)

C = transient restoration probability + permanent error recovery
NP (A.4)

= 1 PRj + Csr . x (Coverage of Permanent Recovery Procedure)

i=1

If the transient lifetime is long, then successful recovery may not have a fixed probability and the expression for PRi

must be modified.

If the transient lifetimes are exponentially distributed random variables (rv) and the duration of each

recovery phase is a constant, the expression for transient restoration becomes

PRi = Pr[Phase i entered] x Pr[Phase i successful]

x Pr[transient gone before phase i begins] (A.5)

= csr, X ERj X (1 - exp(-(T 1 + T2 + ... + T- , 1)/D))

where the transient error lifetimes have a mean D with various durations, Ti, and ERi is the probability of an effective

recovery procedure for phase i. This expression can be generalized for non-exponentially distributed error lifetimes

as

PRc = csr,_, x ER, x FD(Tj + T2 + ... + T,_ 1), (A.6)

where FD represents the generalized distribution. If required, this type of generalization can be applied to the

recovery phase.

46

1.1.2.2 Modified CARE II Model (Stiffler and Bryant, 1982)
In (Stiffler and Bryant, 1982), a transient error model is discussed in which transient lifetimes are assumed

to be exponentially distributed. The duration of each recovery phase is assumed to be independent and identically

distributed (iid), which is more restrictive than the ARIES model. However, it allows a random number of recovery

phases, and like ARIES, it accommodates general distributions for the recovery phase. The CARE III model has been

further refined to include transient, intermittent or permanent faults (errors), the effect of transient lifetimes and it can

be solved for both the Markov and the semi-Markov case.

1.1.2.3 Extended Stochastic Petri Net (ESPN) Fault Coverage Model (Dugan and Trivedi, 1989; Trivedi et al,
1984)
The ESPN model combines both local and global timing. This model includes the limited recovery time

associated with real systems, and the ability to determine the effects of near-coincident errors (McGough, 1983) that

can occur during attempted recovery. The only near-coincident errors of interest are those whose occurrence can

interfere with the current recovery. It is conservatively assumed that the occurrence of a near-coincident fault will

result in system failure.

Since a stochastic Petri net is used, the various fault distributions can be generalized. If all faults are

exponentially distributed rv, then the Petri net can be converted to a Markov model and solved accordingly. If the

failure rates are not exponentially distributed, then in some cases the resulting model is semi-Markov and in other

cases simulation is required.

1.1.3 Limitations of Axiomatic Coverage Models

As the development of axiomatic coverage models evolved, their ability to accurately model complex failure

recovery mechanisms, such as the duration of an error with consideration given to its lifetime, expanded. In all of

these models, however, there is one common thread: the model transition probabilities are unknowns. But these

models are useful in determining which parameters are important, so that those gathering data know what data to

collect.

It is impossible to know without actually testing a system the values of the various transition probabilities. In

some circumstances, it may be impossible to ascertain the exact values. If feasible, a series of fault injection

experiments can be performed on a physical model to try to obtain estimates for some of these transition probabilities.

Since testing the system for all possible faults is intractable, some type of sampling of the complete fault set for a

system is required. Unless some empirical analysis is performed, such an estimation cannot be made. Expert opinion

can be used to generate an abridged fault set, but it impossible to demonstrate that such a fault set is complete to

guarantee an accurate coverage estimate. Similarly, expert opinion can be used to simply predict the various model

recovery and failure rates and the accuracy of such predictions is highly subjective. Additionally, each fault detection

47

and recovery mechanism that resides in the system can require its own fault coverage model. Hence, the size and the

complexity of a given axiomatic model increases relative to the size and the complexity of the system under test.

1.2 Empirical Models for Fault Coverage Parameter Estimation

The use of empirical models for fault coverage estimation requires detailed statistical analysis that must

address four important questions (Powell et al, 1995):

(1) How can the fault coverage value be accurately estimated?

(2) How can any error in the estimate be quantified?

(3) How are fault samples selected?

(4) How can accurate estimates for fault coverage be obtained in a reasonable time?

As previously discussed, empirical models are used to estimate parameters used by axiomatic model.

Empirical modeling relaxes many of the assumptions and restrictions, such as parameter estimation, present in

axiomatic models. Parameter estimation requires that the system fault space be sampled in some random fashion to

provide a representative sample of the entire fault set. Using the data collected from this sampled set, statistical

analysis is performed to analyze the accuracy of the resulting estimated parameters. It is shown in (Arlat et al, 1993)

that this technique can be used for predicting the system's expected fault coverage. There are numerous sampling

strategies available, including techniques that attempt to reduce the variance of the estimate. This type of sampling is

referred to as a variance reduction technique (VRT).

The purpose of VRTs is to increase the accuracy of the parameter estimate so that the required number of

sample points can be further reduced. VRTs exploit some attribute of the system to increase the accuracy of the

parameter estimate(s). Importance sampling, multi-stage sampling, stratified sampling and regression analysis are all

examples of VRTs (Cochran, 1977; Hammersley and Handscomb, 1964).

1.2.1 Fault Coverage (Constantinescu, December 1995; Powell et al, 1993; Powell et al,

1995; Smith et al, 1995; Smith et al, 1997; Wang et al, 1994)

The mathematical model used to describe a fault processing event is

C = P(fault processed correctly fault existence)

= PYIx(YIX) (A.7)

Px. y(X, Y)

Px(X)

where X=-faults existence, and Ysfault processed correctly. Since coverage is based upon a series of fault

48

occurrences, that is a fault existence and its subsequent correct processing, the conditional probability in Equation

Equation (A.7) can be considered to represent a series of discrete events. Hence, the expected value of the conditional

probability for coverage can be modeled as

E[YIX= x]= , y.P(Y=yIX= x)
•,Ye a (A.8)

= X Y'Pylx(YIX)
x, ye 1

where Q is the system's complete fault space. Typically, a fault processing event is considered as a Bernoulli rv

defined as

{ 1 V covered faults with probability pylx(ylx)

0= V uncovered faults with probability 1- Pylx(ylx) (A.9)

During testing, there is a possibility of no-reply, which is the inability to obtain measures from some elements in a

sample (Cochran, 1977). Such problems arise when certain faults remain hidden when introduced to a system or it

may be impossible to introduce a specific fault. In the preceding model, no-reply faults are not included. To remove

this source of possible statistical error, the indicator function given in Equation (A.9) is redefined as:

I V covered faults
Yi = c(xi)= 0 V uncovered faults (A.10)

V no-reply

and the analysis either counts the faults as covered, uncovered or discards the experiment. Substituting the expression

for y found in Equation (A.9) into Equation (A.8) yields

E[YIX= x]= I YPylx(ylx)
X'Ye a (A. 11)
PY1x(YIX)

=C

Similarly, the variance of the conditional probability for coverage is

Var[YIX= x] = E[Y2IX= x]- (E[YIX= x])2 (A.12)
= C(1 - C)

Obviously, neither the pmf associated with a fault's existence nor the joint pmf associated with a fault's existence and

49

recovery is known a priori. As a result, a fault coverage experiment is necessary to determine a coverage value.

Theoretically, coverage can be determined by injecting the entire sample of N faults, which are assumed to

be independent, from the fault space into a given system and calculating the ratio of properly handled faults, d,

against the number of injected faults; that is (Daehn, 1991),

C = d (A.13)

The expression d, is analogous to that found in Equation (A.9); that is, the number of properly handled faults in a

fault injection experiment can be modeled as a summation of a series of Bernoulli trials. Hence,

N

d = Yi, (A. 14)

i=1I

where y, is the Bernoulli rv as defined in Equation (A.9) for the ith fault injection experiment and Equation (A.13)

can be rewritten as

N

C Y Yi (A.15)
i=1

Since it is impractical to inject every fault into a system, an experiment must be developed to provide an unbiased

estimate of coverage by limiting the number of fault injection experiments.

By limiting the number of fault injection experiments to n, the coverage point estimate is

C.=1 = yi, (A.16)

r I

which is an unbiased estimator if the equally likely constraint is valid (Hammersley and Handscomb, 1964).

Assuming that a large sample size exists, the central limit theorem (CLT) can be applied to approximate the estimator.

Assuming that the estimator is Gaussian, it can be shown that its variance is

02
Var{Cy.} = 2- = _ (A.17)

C,ý n

Since the fault coverage and the variance of y are unknown, the point estimate C:. and the variance estimate Gy, are

used in Equation (A.17) (Stiffler and Bryant, 1982) to yield

50

^ Y2 Cy,(1l C >')

C,, = n (A.18) n
Under these conditions, a two-sided 100y% confidence interval can be defined. The lower bound of the confidence

interval, which is the most conservative estimate of fault coverage, is of most interest and is defined in (Papoulis,

1991) as

CY'.= C - =^Y C),- .) (A. 19)

where ý. is the confidence coefficient for a Gaussian distribution.

This statistical approach is the basis for many empirical models, which are reviewed in subsequent sections.

In these models, VRTs are applied to provide variance reduction via various sampling techniques.

1.2.1.1 Powell et al Empirical Models (Powell et al, 1993; Powell et al, 1995)
Since exhaustive testing to determine coverage is seldom possible, fault coverage estimation is performed

on a representative sample of the entire fault space. There are two approaches for performing this random sampling:

sampling from the complete fault space, and sampling from subspace partitions or classes of the complete fault list,

which is commonly referred to as stratified sampling.

Representative sampling (Law and Kelton, 1991) consists of sampling with replacement from a group of n

faults and is applicable to non-partitioned sampling. Its unbiased coverage estimator and variance are

I _ PX, ¥(Xi, Yi)

CY= i Px (xY i--) (A.20)
i= I

2
If the sample selection is chosen such that px(Xi) = Px, Y(xi, Yi), then the estimate for the mean found in Equation

(A.20) is equivalent to the point estimate found in Equation (A.16). Similarly, the variance for this estimate is given

by Equation (A.17) and the lower side of the confidence interval is given by Equation (A.19).

1.2.1.2 Partitioned Space Sampling (Stratified Sampling)
Rather than sampling from the entire fault list, the sampling can occur from partitioned classes (Cochran,

1977; Hammersley and Handscomb, 1964; Law and Kelton,1991). By definition, the classes form M disjoint subsets

such that

51

M

E = _ E, such that for every i, j, i #j, Eq -)Ej = 0. (A.22)
)=1

where E is the entire fault list. The coverage factor as expressed in Equation (A.8) can be rewritten as

M

C= y p-yx(YIx)
)j IX,) E E,

M

= I Y• YIpX(ylxj))pxx(xjlX)

j=]X ,•E, (A.23)
M

= XPxjlx(xjlx) I YPylxj(YlXj)

M

= , Pxjx(XjlX)c(Xj) where c(Xj) = y PyIx,(ylxj)
j=I xE)E

Using this partitioned sampling space, two different sampling techniques can be implemented: the naive estimator

and stratified sampling.

The naive estimator samples an equal number of faults from each class. For each sample, the coverage

estimate for each class i is

M
1 d

Cna = di= - (A.24) n n
i=1

The estimator's variance is

M

Var{ Cna 1 1 (C(X) - C2 (X-)). (A.25)

j=l

If all fault occurrences are not equally probable, then this estimator is biased. It can be shown that

M

E{Cna} = (Xj) = M c(X,), (A.26)

j=1

hence this technique provides a naive estimator.

The covariance between the coverage, CE , and the fault occurrence probability, px(Xj) , for each class is

M
Sc, = M C (cxj) - C (xj)) -(xl~j)-M,(.7

j=

from which it can be proven that

52

c(Xj) = C-MScp. (A.28)

Depending on the sign of the covariance, the fault coverage estimator can be either pessimistic or optimistic. This

result is proven with actual examples in (Powell et al, 1993; Powell et al, 1995).

In stratified sampling (Cochran, 1977; Hamnmersley and Handscomb, 1964; Law and Kelton, 1991), a

number of samples, nj, for each class, Ej, is pre-selected and a representative sample of size ni = nj is taken for

each class. The coverage factor now applies to the class rather that the complete sample space and is expressed as

di c~i = -- , (A.29)

ni

The coverage and variance estimates are

M

CSE = , PXix(XiuX) C.(X), (A.30)
i=1

M

Var{Cst,} - Y pxix(xilx)Var{c(Xj)}. (A.31)

Similarly, the variance of the class coverage estimator is given by

Var{c(Xi)} = -(c(Xi)-C 2 (X,)). (A.32)
ni- I

From these variance expressions, it can be seen that the variance depends upon the class sample size. To

minimize the system coverage factor's variance, Var{ Csu} , each class' sample size must be defined as

ni = Px,jx(xjIx)n. (A.33)

This type of sample size allocation is referred to as a stratified sample with representative allocation. Using the

expressions found in Equation (A.29), (A.30) and (A.33), the system coverage estimator can be expressed as

"d
CstR - (A.34) n

which is equivalent to that for the naive estimator. The variance, however, differs. If the expression nj is substituted

into (A.31) and (A.32), the resulting variance is

= !.1 1M2
Var{ Cs,, = 1C - n M Px,;x(xlx)C2(Xi). (A.35)

i=

Hence, the precision of representative stratification is not sensitive to the covariance between the coverage and the

53

fault activity occurrence probability for each class. As a result, there is an appreciable gain in precision for coverage

estimation and this is substantiated with examples from (powell et al, 1993; Powell et al, 1995) This gain in precision

is demonstrated via the improvement in the confidence interval obtained by using the variance provided by Equation

(A.35) in Equation (A.19). However, the fault activity occurrence probability is an unknown, and as a result, it is

difficult for representative stratification to be used accurately.

1.2.1.3 No-Reply Problem

To accommodate the no-reply problem, a posteriori stratification is introduced. This method uses available

system information in considering different stratification techniques. Since structural information is circuit

dependent, the selected stratification technique is viable only for the circuit under test. Hence, this methodology

cannot be extended to a general application.

1.2.2 Cukier et al Model (Cukier et al, 1997)

The Cukier et al model is an extension of the work performed by Powell et al. In this work, fault coverage is

modeled in terms of the uncovered faults. This non-coverage estimate, C, using representative sampling is

C = N (A.36)

where d are the number of uncovered faults and N is the number of fault injection experiments performed. The

expression for non-coverage shown in Equation (A.36) is analogous to the expression for coverage shown in

Equation (A.13). Similarly, the coverage expression for partitioned space sampling, which is shown in Equation

(A.23), can be expressed in terms of non-coverage as

M

C= , PxjIx(Xj1X)C(Xj) (A.37)
j=l •

Two distinct approaches for non-coverage estimation can be made using either classical statistical methods or

Bayesian techniques.

1.2.2.1 Classical Statistical Approach

The upper 100y% confidence limit estimator for C is defined as

P[C< C-t(X)J C] = Y (A.38)

In modeling non-coverage for an ultra-dependable system, it is shown in (Powell et al, 1996) that approximated

estimations using the classical statistical approach are not valid. Hence, approximations cannot be used when

54

developing non-coverage estimators based upon Equation (A.38).

To allow for the multiple classes during the fault injection experiments and to minimize Equation (A.37), the

upper 100y% confidence limit estimator for C for M classes is given by the solution of

1li- Xc,(l _J1)nXv { M},CiE [0, 1 (A.39)

1.2.2.2 Bayesian Approach

In Bayesian theory, non-coverage, C, and the class non-coverages, C,, are considered as rv. The upper

100y% confidence limit is defined by the distribution of the rv; that is

P[C-<Ct(X)IX] = y - x (A.40)

In order to obtain the confidence limit defined in Equation (A.40), the posterior distribution of C is required. For

representative sampling, this posterior distribution is

f-(cIX = x) (A.41)

and for stratified sampling, the posterior distribution of the non-coverage classes is simply

f,(ciXi = xi) (A.42)

In order to solve for the posterior distribution, an appropriate choice of the prior distribution for the non-coverage

classes is required.

A beta prior distribution is used for two primary reasons: (1) the number of uncovered faults in each

partition is binomially distributed and a beta prior distribution ensures that the prior and the posterior distributions are
both from the same family; and (2) when the parameters of the beta distribution equal one, the obtained distribution is

uniform over the interval [0, 1], which means that all values of ci have the same weight. The beta prior distributions

for C, are

-kci= .Tc- I(- il

f(ki' li) for 0:< ci -<1, ki > 0, 1i > 0 (A.43)

where 03(ki, 1i) is a beta function with parameters ki and Ii (Abramowitz and Stegun, 1972).

Since the number of uncovered faults in each partition, X,, is binomially distributed, then

fx,(xulCi= ci)= n (J (1 -c i)nix, (A.44)
(i

55

and the posterior distribution for C, is (Aitchison and Dunsmore, 1975)

7k',- k I -ci1r- I

where ki' = x +ki' and Ii' = ni -xi +1..

The posterior distribution for C is found by combining the posterior distributions of the various Ci. In

(Constantinescu, December 1995), it is shown that an analytical expression for the posterior of C is too complicated

for more than three classes. Thus, the posterior distribution for C can only be obtained using approximation. When a

distribution cannot be exactly calculated, it is possible to theoretically exhibit all of the properties of a distribution in

terms of its moments (Stuart and Ord, 1987). Similarly, distributions that have a finite number of lower order

moments in common approximate each other (Stuart and Ord, 1987). The calculation of moments can be achieved

using either the moment generating function (Papoulis, 1991; Stuart and Ord, 1987) or assuming independence

among the classes. Once the moments have been calculated, the posterior distribution can be determined from the

Pearson distribution system (Johnson and Kotz, 1970).

1.2.2.2.1 Calculation of Moments

The moment generating function of Ci, assuming s Beta distribution 03(k',, I'), is

0- = -,F(ki';ki'+ lI';t) (A.46)
C,

where -F(ki,;ki'+ li';t) is the confluent hypergeometric function (Abramowitz and Stegun, 1972) and

0 - = F(ki';ki"+ li';Pit) (A.47)

Since the moment generating function of a sum of rv is equivalent to the product of the moment generating function

of the various rv (Johnson and Kotz, 1969), then

M

Ct= H "F(ki';ki' + li';pi,) (A.48)
i=

which is derived based upon Equation (A.23). The nth derivative of the moment generating function of C for t = 0

defines the nth moment of C. Assuming that the powers of C, are independent, then simpler expressions for the

moments of C can be obtained. The rth central moment of the beta distribution, 13(k',, Il,), using this independence

assumption is

56

E[(X-p.x)r] = (k'i, ri,) k'i(k'i+ l)...(k'i+r- 1) (A.49) O3(k'i, rI'd - (k'li + rI'd(k'J. + I'i + I)... (k'i + ri+ r- 1)(.9

1.2.2.2Pearson Distribution System (Johnson and Kotz, 1970) for Use as a Posterior Distribution
The Pearson distribution system is a family of seven distributions and are summarized in Table H. . The

Table H.1: Pearson Distribution System (Johnson and Kotz, 1970)

seven distributions are represented in a planar plot of their skewness and kurtosis coefficients. From this planar plot,

the family to which a given data set belongs is determined. The Pearson distribution pdf, fAx), satisfies a differential

equation of the form

_ pa+x (A.50)
fdx pbo + pb1x+pb2x2

The shape of the distribution is dependent on the values of the four parameters, which can be determined by the first

four moments of the distribution f(x). For a detailed summary of this relationship, the reader is advised to see

(Abramowitz and Stegun, 1972; Aitchison and Dunsmore, 1975; Cukier, 1996; Cukier et al, 1997; Johnson and Kotz,

1970; Powell et al, 19%; Stuart and Ord, 1987).

1.2.2.3 Comparison of Approaches

The classical statistical and the Bayesian approach are compared for two hypothetical systems, system 1 and

system 2 (Cukier et al, 1997), using stratification and simple sampling. It is assumed that the prior distribution for the

Bayesian estimation is uniform; that is, the parameters of the beta distribution are equal to one. Initially, the moments

used for the Bayesian analysis are calculated using both moment generating functions and the independence

assumption.

The initial testing uses homogenous allocation, which requires sampling a predetermined number from each

class, and representative allocation, which requires sampling the same number of faults from each class. During this

testing the number of fault injection experiments that are performed is varied to determine the validity of the

Bayesian approach and to compare it to the classical statistical approach.

During testing, it is shown that only the moment generating function when used with representative

57

beta distribution Type V inverse Gaussian distribution

symmetrical form of the function defined Type VI cumulative Pareto distribution
in Type I representing income

gamma distribution Type VII r distribution

no common statistical distributions are of
this type; the values required for the CDF
are intractable

allocation produces valid results for system 1; that is. the posterior distribution is of Type I. Both estimation methods

are valid for system 2 when used with representative sampling. Hence, the comparison is performed using the

Bayesian method is derived via moment generating functions and using representative sampling. When simple

sampling is considered, the Bayesian estimations are more conservative. Using stratification, it is shown that the

Bayesian estimation is less conservative than the classical statistical methods. However, this conservatism decreases

as the number of fault injection experiments increases.

1.2.3 Fault Expansion Model (Smith et al, 1995; Smith et al, 1997)

Another method for sampling the complete fault space is fault expansion. In fault expansion, the fault space

is subdivided into mutually exclusive subsets defined as

E. = X ilXi2'" xiE 51)

where Ei is the ijh equivalent fault set. xij is the jth element of the ith fault set and IEiJ is the set cardinality. All

equivalent fault sets are disjoint and their union is the complete fault set.

The fault expansion process consists of randomly selecting a fault and determining the set of equivalent

faults. All members of Ei are removed from the fault space and fault injection is performed using only one fault. The

evaluation of the xik fault is described mathematically as

{v= I Vcovered faults

=c(x,3) =0~OVuncovered faults (A.52)

where z, is the ih sample of the z rv which describes the result of the fault injection experiment for the equivalent

fault set E, . The expected value for coverage is

SEl IEI

EZIX = ,, Zpzix(ZIX) I IzijPzx(ZgijX,) = C, (A.53)
xE• E i= lj= I

which is similar to Equation (A.8). There have been two VRTs developed using fault expansion and they are the

Wang et al empirical model (Wang et al, 1994) and the Smith et al empirical model (Smith et al, 1997).

1.23.1 Wang et al Empirical Model (Wang et al, 1994)

If fault sampling occurs for the entire fault space, the total number of covered faults after m injections is

simply

58

m

CM= I j,, (A.54)
i=l

Using the binomial distribution for Cr, the 1007% one-sided confidence interval (Cochran, 1977; Trivedi, 1982) for

the coverage estimate is

m

P(mŽm~~c C (?l) Ci(drnJ=j.., (A.55)
J $=

where y is the confidence coefficient and dcc is the desired coverage value. It is very difficult to solve Equation

(A.55) for dcc given an arbitrary value of m.

For a system with coverage near one, a Poisson distribution is a good approximation to the binomial

distribution. In this case, it can be shown that dcc is given by (Trivedi, 1982)

dcc = 1 - ' Xdeg; , (A.56) 2 2

where X 2 satisfies P(Y>Xdeg -) =I -y and Yis chi-square distributed with deg = 2(k-sin+ 1) degrees of

freedom. In testing, it is determined that for coverages approaching one, the value of cm is extremely close if not

equal to m. To ensure that the lower limit for the confidence interval is met or exceeded, the value of m must be

extremely large. To reduce the required sample size and to meet the lower confidence interval requirement, fault

expansion (Smith et al, 1995; Smith et al, 1997) is used

In sampling using fault expansion, there are two cases of interest: the infinite and the finite fault population.
For the infinite population, it is shown in (Smith et al, 1995) that the best estimate for fault coverage occurs when all
fault classes are of equal size. The resulting lower one-sided confidence interval for this coverage estimate is identical
to that found in Equation (A.55). Since there is no appreciable variance reduction, fault expansion is not
recommended. However, fault expansion is very helpful for the finite population case.

Assuming that the fault population is finite the exact coverage factor is given by Equation (A.13). Since it is
impractical to inject all N faults, the value for D must be estimated. It is proven that the one-sided confidence interval
for the lower limit on the estimate of D, that is D, using the binomial distribution is

P(Cfi2cfilDFL) = db) 1-I , (A.57)
r~C1 lb fj+ l)(r9+ IJ

59

where b is the equivalence class size, N is the finite fault population size, fi is the total number of injections, dc, is

the lower limit on coverage and -y is the confidence coefficient.

From Equation (A.57), it can be determined that dc, is a function of b/N and fi. In analyzing this equation,

it is proven that the size of the population classes greatly affects the analysis. If the equivalence classes are

significantly large, the impact of fault expansion is maximized. This result implies that unlike in the infinite

population case, the size of the fault classes need not be equivalent; instead, it is desirable that the equivalent fault

classes for covered faults should be considerably larger than those for uncovered faults.

1.23.2 Smith et al Empirical Model (Smith et al, 1995; Smith et al, 1997)

If all sample measurements are covered, then the variance found in Equation (A.18) is zero. Hence, no

confidence interval can be calculated. To overcome this limitation, a more conservative variance estimate is needed.

By converting one covered fault injection experiment into an uncovered experiment, the variance estimate is always

non-zero and more conservative in nature; that is, the calculated variance will exceed the actual value. This modified

variance estimate of y is

-2 n
G 2 -- (A.58)

and the resulting confidence interval for the lower bound is

CY n (A.59)
Fn rn

where u is selected depending upon the desired confidence level. This lower bound is consistent with other

analyses of the all covered case (Miller et al, 1992).

The point estimate mean for CZ, is

Sz ilr il n

-- = zilEI, (A.60)

Ji=1

where

"m= 1EII (A.61)

i= l

Assuming that the sample size is sufficiently large, then the CLT can be applied, and the resulting point estimate for

60

Cz. is

CZ. = zipi, (A.62)
i=1I

where pi = Evi/m, pi = I and pi is the probability that a fault lies in class i. The resulting variance is
i= I

n

-2 (zi--CZ.) 2pPi (A.63)
i=!I

Similarly, the variance reduction is derived assuming there exists one uncovered fault set.

Assuming that the first class E, is uncovered, the uncovered probability p, is

E1 (A.64)

and the point estimate as described in Equation (A.62) becomes

Cz= zp+)zipi = m , (A.65) m
i=2

and the variance becomes

a. m2 (A.66)

By assuming that the covered and the uncovered probabilities are of the following form

PC = -m Y

ie ucovmed fa<s
P- = Jn E. IEil=

i e unove fauft

Equation (A.66) can be rewritten as

m2 (A.68)

As long as IE-I <(um)/n, where 2 is the number of uncovered fault injection experiments, the variance is reduced. If

the average uncovered fault class size is smaller than the average set size, then fault expansion provides variance

reduction.

61

As is true for the random sampling case, a conservative estimation must be made for the all covered case. It

is again conservatively estimated that one of the covered fault injection experiments is assumed to be uncovered to

prevent a zero variance. To minimize the increase in variance, JEJ in Equation (A.68) is set equal to one. The

resulting variance estimate is

rn- M (A.69)
M {ij=I

The variance reduction ratio for Cz, as it relates to the original CY, point estimate is

a El(n l2nlEVIm E3)
or= 2.m n2 IE -I (A.70)

y n y m2 Yj n- Yj

n
2

which is a measure of statistical improvement that results from utilizing fault expansion. For the all covered case, the

resulting variance reduction ratio is

CF. = (m - 1)n2 _n
vr . - l"n2 = - if(m > 1)and(n , 1). (A.71)

1.2.4 Constantinescu Empirical Model (Constantinescu, December 1995)

In this model, multi-stage, stratified and combined multi-stage and stratified random sampling (Cochran,

1977) are used. Multi-stage sampling allows the use of a multidimensional event space. The number of dimensions is

equivalent to the number of factors that affect coverage. This event space consists of the cross products of all possible

fault locations, types, times of occurrence, durations and system workloads. Due to practical considerations, a 3-D

space is used consisting of the cross products of three 1-D subspaces. These subspaces include fault location, fault

occurrence times and system input values. The population is divided into consecutive subunits, and random sampling

is performed on these newly created subunits. The coverage model found in Equation (A.16) is re-written to

accommodate a multi-dimensional sample space as

Ell [E.I
I ... I Y i,,,• i....

C - "= 1 i (A.72)

i11 fl1JE11
S= I

62

Obviously, the number of fault locations is finite by nature. Faults can occur at any time, but time can be
subdivided into a finite number of small intervals. The input space, however, is not as easily defined. As system
complexity increases, the number of input values becomes extremely large. To overcome this problem, stratification
is used to manage the vast input space by subdividing it into smaller, more manageable subspaces called strata. The
sum of the strata equals the original population. Each stratum is sampled s-independently. By combining both multi
stage and stratified sampling techniques, the effectiveness of sampling increases (Cochran, 1977; Wadsworth, 1990).

1.2.4.1 Multi-Stage Sampling for a 3-D Space
Multi-stage sampling requires random selection of members from the original population followed by

consecutive random sampling from the subunits. The three sampling stages for simulated fault injection and for
physical fault injection performed in 3-D space are found in Table H.2. Regardless of the sampling order that is used,

Table H.2: Fault Injection Sampling Stages

Simulated Fault Injection Physical Fault Injection

Stage I Select several input values at random from the Randomly select the locations for fault
1-D input space injection for all previously selected inputs and

injection times
Stage 2 Select several fault injection times at random Select several input values at random from the

from the 1-D fault occurrence time space for 1-D input space
each input

Stage 3 Randomly select the locations for fault Select several fault injection times at random
injection for all previously selected inputs and from the 1-D fault occurrence time space for
injection times each input

the formulae for coverage and general multi-stage sampling are applicable. Unbiased estimates for the mean and

variance (Constantinescu, January 1995) are

Iwi Iw..I

r1-I wl j=I!

and

k " " .i iN , , .

Var(C) = 'I li= 1 ji, .i_..i.=1 k (A.74)

k=1I

k W= I I 1Wi (j W '3 jln- 1)

63

where is the sample size and JEkI is the population size at stage k for n sampling stages. The confidence level is

as defined in Equation (A. 19) and the indicator function is modeled in terms of a multi-dimensional space. Theorem

proofs for these estimates can be found in (Constantinescu, 1994).

1.2.4.2 Stratified Sampling

In many situations, the amount of system input data needed is too large to explicitly input all data

combinations. By using stratification to divide the input space into strata, the maximum number of possible inputs is

greatly reduced. Typically, the maximum number of inputs grouped in a stratum is determined by the largest random

number that can be practically generated, and by the type of inputs, binary or analog. For the 3-D event space for

coverage, the original event space, E, is subdivided into several smaller subspaces.

Assuming the point estimate is Gaussian, the unit population, E, be subdivided into m subpopulations. If

independent random sampling is performed in every stratum, then the unbiased estimate of the mean is

m Cs7- AEP c
i=(A.75)

pE;(st) =-ESTj
E

where ST stands for stratified. An unbiased variance estimate is

m

Var(CsT) = • PE2(sO Var(Ci) (A.76)

i=1

Theorem proofs for these estimates can be found in (Constantinescu, 1994).

1.2.4.3 Combined Multi-Stage and Stratified Sampling

Coverage estimator equations for combined multi-stage and stratified sampling are obtained from the

simpler expressions found in theorems 1-6 and corollary 1 in (Constantinescu, December 1995). For example, the

appropriate sampling order for simulated fault injection is stratification followed by multi-stage sampling. The

weight of stratum j is

n

fl EST),

fE(SO) = for i = 1, 2. n. (A.77)

.XflEST,
j = li= I

The resulting confidence limits on the coverage can be found by substituting Equation (A.76) using the stratum

weights derived in Equation (A.77) into Equation (A.19).

64

1.2.5 Limitations of Empirical Models for Coverage Estimation

Empirical models approach coverage estimation by implementing various VRTs. In the Powell et al method,

the variance reduction is achieved using stratified sampling and two-stage sampling. However, the conditional

probabilities that are required for this estimate need to be measured. These measurements can be extremely difficult,

if not impossible, and the problems associated with estimating these probabilities are demonstrated by the wide range

of coverage estimations shown in (Powell et al, 1993; Powell et al, 1995). In two-stage sampling, the results

demonstrated that better coverage estimation can be achieved than for stratified sampling. However, for both of these

methods, it is concluded that the coverage estimate is system dependent.

In the Wang et al model, fault expansion is used to provide variance reduction. In this model it is assumed
that the binomial representation for coverage approximates a Poisson distribution, which is then used to calculate a
single sided confidence level. In the model presented by Smith et al, they applied the CLT to determine the
confidence interval associated with the coverage estimation, because it is assumed that the sample size is sufficiently
large (Papoulis, 1991). Similarly in the Constantinescu method, his point estimates for the various sampling

techniques discussed assumes that the point estimates are Gaussian. As a result, these assumptions limit the broad
applicability of these methods. If the underlying distribution for the point estimate is not Gaussian or Poisson, then

none of these approximations are appropriate.

The coverage estimation model by Cukier et al is a refinement of the Powell et al model using uncovered
fault information to develop a Bayesian estimate. This model requires the conditional probabilities from the Powell et

al model, which are difficult if not impossible to measure, for calculating both the moments and the Pearson
parameters in the Bayesian approach. Additionally, it is assumed that the prior distribution for the coverage estimate

is beta with parameters one. If however the prior distribution is not beta or the beta parameters differ, then the
calculation of the posterior distribution is in error. Finally, this model also shows some dependence on the system

being modeled; that is, the ability to derive a coverage estimate can be system dependent.

1.3 Physical Models

Physical models represent the actual system and involve the development of prototypes realized in either
software or hardware. Additionally, these models can be realized at multiple levels of abstraction such as the
transistor, gate, circuit or system level, allowing for hierarchical modeling. Ideally, all parameters can be measured at
the these various levels, but there is no accepted way to keep the faults modeled consistently throughout the various
levels of hierarchy. Nevertheless, the parameter estimates' measure should be consistent and should improve as the

level of modeling descends to the lowest level, which is the transistor level.

The feasibility of constructing and testing hardware prototypes depends upon both the time available and the

65

cost of production. If only time is a concern, then a sample system can be constructed and tested in a harsh (that is,

failure rate accelerated) environment. If cost is a concern, then software based prototypes can be built. The obvious

problem here is the time required to simulate the models.

These software models can be tested just like an actual sample system using fault injection. For both of these

techniques, an unbiased subset of the overall fault space must be used for fault injection. As discussed in Section

1.1.3: Limitations of Axiomatic Coverage Models, the selection of a fault list subset that is of sufficient size to

provide an accurate fault coverage estimate requires an empirical model. If this analysis is not performed, then the

selection of the list of faults to be tested is highly subjective and it may not provide a statistically meaningful result.

1.4 Conclusions

Fault coverage can be examined in two distinct ways: (1) fault coverage modeling and (2) parameter

estimation. Fault coverage modeling consists of creating an axiomatic model that represents faulty component

behavior within a given system. One drawback of this approach is that the size and the complexity of a system model

would dramatically increase because of the state space required to represent all possible fault scenarios. Additionally,

the parameters that these axiomatic models require, such as the transition rates between the various states, are not

known a priori. As a result, these values are approximated from other analytical models or expert opinion, and the

resulting fault coverage is simply an approximation with undefined confidence intervals. To overcome these

problems, empirical and physical models are used.

Empirical models are statistical models that use data collected from physical models. Using fault injection

with physical models, data pertaining to the various dependability parameters, including fault coverage, is collected

and parameter estimation can be made from the empirical models. Dependability testing must be incorporated during

the design cycle, and via fault injection, the various dependability parameters, including fault coverage, can be

estimated for a given confidence interval from the empirical models using VRTs.

Fault coverage estimation is typically achieved via point estimation and Bayesian techniques. Point

estimation, assuming that a large enough data set exists, can use the CLT, which implies a Gaussian distribution, from

which a two-sided confidence interval can be calculated. Special attention is given to the lower bound because it is

the most pessimistic estimate. Additionally, a coverage point estimate can be obtained if coverage is assumed to be

binomially distributed. This distribution can be estimated by a Poisson distribution from which a single-sided

confidence interval can be extracted. In all of these methods, various sampling schemes are implemented to provide

variance reduction for the coverage estimates.

The limitation of these approaches is that the empirical models base their parameter estimates upon an a

priori selection for the distribution of the point estimate, and in the case of Bayesian techniques, the coverage

66

estimate is based upon an a priori selection of the prior distribution. As discussed in Section 1.1.9: Limitations of

Empirical Models for Coverage Estimation, this a priori selection of the various distributions limits the applicability

of these existing empirical models. Additionally, some of these models are system dependent, which further limits

their applicability.

67

References

1. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables, Dover Publications, New York, 1972.

2. Aitchison, J. and I. R. Dunsmore, Statistical Prediction Analysis, Cambridge University Press, Cambridge,

England, 1975.

3. Arlat, J., M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins and D. Powell, "Fault
Injection for Dependability Validation: A Methodology and Some Applications," IEEE Transaction on
Software Engineering, vol. 16, no. 2, pp. 166-181, February, 1990.

4. Arlat, J., A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, "Fault Injection and Dependability Evaluation
of Fault Tolerant Systems," IEEE Transactions on Computers, vol. 42, no. 8, pp. 913-923, August 1993.

5. Arlat, J., Y. Crouzet and J.-C. Laprie, "Fault Injection for the Experimental Validation of Fault Tolerance,"
Proceedings of the Esprit Conference, pp. 791-805, November, 1991.

6. Arnold, T. F., "The Concept of Coverage and Its Effect on the Reliability Model of Repairable Systems,"
IEEE Transaction on Computers, vol. 22, March, 1973.

7. Bateman, K. A. and E. R. Cortes, "Availability Modeling of FDDI Networks," Proceedings of Annual

Reliability and Maintainability Symposium, pp. 389-395, 1989.

8. Berthismieu, B. and M. Diaz, "Modeing and Verification of Time Dependent Systems using Time Petri
Nets", IEEE Transactions on Software Engineering, vol. 17, no. 3, pp. 259-273, March 1991.

9. Billington, R., and R. Allen, Reliability Evaluation of Engineering Systems: Concepts and Techniques,
Plenum Press, pp. 352-359, 1992.

10. Bouricius, W. CL, W. C. Carter and P. R. Schneider, "Reliability Modeling Techniques for Self-repairing
Computer Systems," Proceedings of the 24th ACM Annual Conference, pp. 295-309, March, 1969.

11. Carter, W. C. and J. Abraham, "Design and Evaluation Tools for Fault Tolerant Systems," Proceedings of the

A1AA Computers in Aerospace Conference, 1987.

12. Cassandras, C. G, Discrete Event Systems: Modeling and Performance Analysis, Aksen Associates Inc. and
Richard D. Irwin Inc., Boston, Massachusetts, 1993.

13. Chen, L. and A. Avizienis, "N-version programming: A Fault Tolerant Approach to Reliability of Software
Operation," IEEE Transactions on Computers, vol. C-20, no. 11, pp. 1322-133 1, November 1971.

14. Choi, C. Y., Dependable System Hardware/Software Codesign using Data Flow Models, Doctoral

Dissertation, University of Virginia, 1997.

15. Cochran, W. G, Sampling Techniques, John Wiley and Sons, New York, 1977.

16. Colombo, A. G., and A. Z. Keller, editors, Reliability Modeling and Applications: Proceedings of the ISPRA
Course, held at Joint Research Centre, Ispra, Italy, D. Reidel Publishing Company, pp. 1-32, 1987.

17. Conn, R. B., P.M. Merryman and K.L. Whitelaw, "CAST - A Complimentary Analytic-Simulative
Technique for Modeling Fault Tolerant Computing Systems," Proceedings of the AIAA Computers and

Aerospace Conference, November 1977.

18. Constantinescu, C.,"Statistical Techniques for Estimating Fault Coverage Probabilities," Technical Report,
Duke University, 1994.

19. Constantinescu, C., "Estimation of the Coverage Probabilities by 3-Stage Sampling," Proceedings of the
Annual Reliability Symposium, pp. 132-136, January, 1995.

20. Constantinescu, C., "Using Multi-Stage and Stratified Sampling for Inferring Fault Coverage Probabilities,"

IEEE Transactions on Reliability, vol. 44, no. 4, pp. 632-639, December 1995.

21. Cukier, M., "Estimation of the Coverage of Fault Tolerant Systems," Doctoral Dissertation, National

68

Polytechnic Institute of Toulouse, France, LAAS-Report no. 96290, July 1996.
22. Cukier, M., J. Arlat and D. Powell, "Frequentist and Bayesian Estimations with Stratified Fault Injection,"

Proceedings of the DCCA-6, pp. 38-57, March 1997.
23. Daehn, W., "Fault Injection Using Small Fault Samples," Journal of Electronic Testing: Theory and

Applications, vol. 2, pp. 191-203, 1991.
24. Davis, C., "Common Mode Failures in Information Systems," SciTech Journal, July-August 1995.
25. Dhillon, B. S., Reliability Engineering in Systems Design and Operation, Van Nostrand Reinhold Company,

pp. 70-71, 1983.
26. Dhillon, B. S., and 0. C. Anude, 0. C., "Common-cause Failure Analysis of a Redundant System with

Repairable Units," International Journal of Systems Science, vol. 25, no. 3, pp. 527-540, March 1994.
27. Dhillon, B. S., and H. C. Viswanath, "Reliability Analysis of a Non-identical Parallel System with

Common-cause Failures," Microelectronics and Reliability, vol. 31, no. 2-3, pp. 429-41, 1991.
28. DOE-STD-3009-94
29. Dugan, J. B., "Correlated Hardware Failures in Redundant Systems," Dependable Computing for Critical

Applications 2 (J. F. Meyer and R. D. Schlichting eds.), Springer Verlag, New York, pp. 157-174, 1992.
30. Dugan, J. B., S. Doyle, F. A. Patterson-Hine, "Simple Models of Hardware and Software Fault Tolerance,

Proceedings of Annual Reliability and Maintainability Symposium, pp. 124-129, 1994.
31. Dugan, J. B. and K. S. Trivedi, "Coverage Modeling for Dependability Analysis of Fault-Tolerant Systems,"

IEEE Transaction on Computers, vol. 38, no. 6, pp. 775-787, June, 1989.
32. Dugan, J. B., S. J. Bavuso and M. A. Boyd, "Dynamic Fault Tree Models for Fault Tolerant Computer

Systems," IEEE Transaction on Reliability, vol. 41, no. 3, pp. 363-376, June, 1992.
33. Gangloff, W. C., "Common-mode Failure Analysis," IEEE Transactions on Power Apparatus and Systems,

vol. PAS-94, no. 1, pp. 27-30, January - February 1975.
34. Garrett, C., M. Yau, S. Guarro and G. Apostolakis, "Assessing the Dependability of Embedded Software

Systems using the Dynamic Flowgraph Methodology," Dependable Computing for Critical Applications 4 (J. F. Meyer and R. D. Schlichting eds.), Springer Verlag, New York, pp. 161-184, 1995.
35. Garrett, C., M. Yau, S. Guarro and G Apostolakis, "The Dynamic Flowgraph Methodology for Assessing

the Dependability of Embedded Software Systems," IEEE Transaction on Systems, Man and Cybernetics,
vol 25, no. 5, pp. 824-840, May 1995.

36. Goddard, P. L., "A Combined Analysis Approach to Assessing Requirements for Safety Critical Real-time
Systems", Proceedings of Annual Reliability and Maintainability Symposium, pp. 110-115, 1996.

37. Guarro, S. and D. Okrent, "The Logic Flowgraph: A New Approach to Process Failure Modeling and
Diagnosis for Disturbance Analysis Applications," Nuclear Technology, vol. 67, 00. 11-22, pp. 348-359.

38. Gulati, R. and J. B. Dugan, "A Modular Approach for Analyzing Static and Dynamic Fault Trees,"
Proceedings of Annual Reliability and Maintainability Symposium, pp. 57-63, 1997.

39. Hagen, E. W., "Common-mode/Common-cause Failure: A Review," Nuclear Engineering and Design, vol.
59, pp. 423-431, 1980.

40. Hammersley, J. M. and D.C. Handscomb, Monte Carlo Methods, Methuen and Company Ltd., London,
1964.

41. Harpel, B. M., J. B. Dugan, I. D. Walker, J. R. Cavallaro. "Analysis of Robots for Hazardous
Environments", Proceedings of Annual Reliability and Maintainability Symposium, pp. 111-116, 1997.

42. Henley, E. J., and K. Hiromitsu, Reliability Engineering and Risk Assessment, Prentice-Hall, pp. 120-127,
385-390, 1981.

69

43. Hoertner, H., "Problems of Failure with Respect to Systems Reliability," Nuclear Engineering and Design,

vol. 71, no. 3, pp. 387-389, 1982.

44. Jallote, P., Fault Tolerance in Distributed Systems, FTR Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

45. Jin, Q., Y. Sugasawa, "Representation and Analysis of Behavior for Multiprocessor Systems by using

Stochastic Petri Nets", Mathematical and Computer Modeling, vol. 22, no. 10-12, pp 109-116, 1995

46. Johnson, B. W., Design and Analysis of Fault Tolerant Digital Systems, Addison Wesley, New York, 1989.

47. Johnson, N. L. and S. Kotz, Distributions in Statistics - Discrete Distributions, John Wiley and Sons, New

York, 1969.

48. Johnson, N. L. and S. Kotz, Distributions in Statistics - Continuous Univariate Distributions -1, John Wiley

and Sons, New York, 1970.

49. Kaplan, S. and B. J. Garrick, "On the Quantitative Definition of Risk," Risk Analysis, vol. 1, no. 1, pp. 11

27, March 1981.

50. Karlin, S. and H. M. Taylor, A First Course in Stochastic Processes, Second Edition, Academic Press, New

York, 1975.

51. Kaufman, L. M., Dependability Analysis for Ultra-Dependable Systems using Statistics of the Extremes,

Doctoral Dissertation, University of Virginia, 1997.

52. Kaufman, Lori M. and Barry W. Johnson, "The Importance of Fault Detection Coverage in Safety Critical

Systems," Proceedings of the Twenty-Sixth Water Reactor Safety Information Meeting, Volume 2, U.S.

Nuclear Regulatory Commission, NUREG/CP-0166, October 1998, pp. 5-28.

53. Kaufman, L. M., R. Manian, K. Vemuri, and J. B. Dugan, "System-Reliability Analysis of an Embedded

Hardware/Software System using Fault Trees," Proceedings of the Reliability and Maintainability

Symposium, January 1999, pp. 135-141.

54. Knight, J. C. and N. G Leveson, "An Experimental Evaluation of the Assumption of Independence in Multi

Version Programming," IEEE Transactions on Software Engineering, vol. SE-12, no. 1, pp. 96-109, January

1986.

55. Khobare, S. K, S. V. Shrikhande, Umesh Chandra and G Govindraj, "Reliability Analysis of Microcomputer

Circuit Modules and Computer-based Control Systems Important to Safety of Nuclear Power Plants,"

Reliability Engineering and System Safety, vol. 59,no. 2, pp253-258, 1998.

56. Khodabandehloo, K., "Analyses of Robot Systems using Fault and Event Trees: Case Studies," Reliabilirty

Engineering and System Safety, vol. 53, no. 3, pp 247-264, September 1996.

57. Kohavi, Z., Switching and Finite Automata Theory, McGraw-Hill, New York, 1978.

58. Lala, J. H., and R. E. Harper, "Architectural Principles for Safety-critical Real-time Applications,"

Proceedings of the IEEE, vol. 82, no. 1, pp.25-40, January 1994.

59. Lala, J. H., R. E. Harper, and L. S. Alger, "A Design Approach for Ultrareliable Real-time Systems," IEEE

Computer, pp. 12-22, May 1991.

60. Laprie, J. C., "Dependable Computing and Fault Tolerance: Concepts and Terminology," Proceedings of the

15th Annual International Symposium on Fault Tolerant Computing, pp. 2-11 June 19-21, 1985.

61. Laprie, J. C., Dependability: Basic Concepts and Terminology - In English, French, German and Japanese,

Springer-Verlag, Vienna, 1992.

62. Law, A. M. and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, Inc., New York, 1991.

63. Leveson, N. G. and J. L. Stolzy, "Safety Analysis using Petri Nets", IEEE Transactions on Software

Engineering, vol. SE- 13, no. 3, pp. 386-397, March 1987.

64. Makam, S. V. and A. Avizienis, "ARIES 81: A Reliability and Lifecycle Evaluation Tool for Fault Tolerant

70

Systems," Proceedings of the 12th Annual Fault Tolerant Computing Symposium, 1982.
65. Marsan, M. A., G. Conte and G Balbo, "A Class of Generalized Stochastic Petri Nets for the Performance

Evaluation of Multiprocessor Systems", ACM Transactions on Computer Systems, vol. 2, no. 2, pp. 83-122,
May 1984.

66. McCormick, N. J., Reliability and Risk Analysis: Methods and Nuclear Power Applications, Academic
Press, Inc., San Diego, California, 1981.

67. McGough, J., "Effects of Near-Coincident Faults in Multiprocessor Systems," Proceedings of the 5th IEEE/
AIAA Digital Avionics Systems Conference, pp. 16.6.1-16.6.7, November 1983.

68. Miller, K. W., L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nicol, B. W. Murrill and J. M. Voas, "Estimating
the Probability of Failure When Testing Reveals No Failures," IEEE Trans. Software Engineering, vol. 18,
no. 1, pp. 33-43, January 1992.

69. Min, Y., Y. Zhou, Z. Li, C. Ye, "A Fail-safe Microprocessor-based System for Interlocking on Railways,"
Proceedings of Annual Reliability and Maintainability Symposium, pp. 415-420, 1994.

70. Modarres, M., What Every Engineer Should Know about Reliability and Risk Analysis, Marcel Dekker,
New York, 1993.

71. Murata, T., "Petri Nets: Properties, Analysis and Applications," Proceedings of the IEEE, vol. 77, pp. 541
580, 1989.

72. Mojdehbakhsh, R., S. Subramanian, R. Vishnuvajjala, W. Tsai and L. Elliott, "A Process for Software
Requirements Safety Analysis," Proceedings of the International Symposium on Software Reliability
Engineering, pp. 45-54, 1994.

73. Nahman, J. M., "Minimal Paths and Cutsets of Networks Exposed to Common-cause Failures," IEEE
Transactions on Reliability, vol 41, no 1, pp. 76-80, 84, March 1992.

74. NASA-GB- 1740.13-96, NASA Guidelines for Safety Critical Software, Analysis and Development, pp. 85
86, 1996.

75. NASA Contractor Report 189632, Volume II, "Advanced Information Processing System: The Army Fault
Tolerant Architecture Conceptual Study," pp. 8.1-8.36, July 1992.

76. National Research Council, Digital Instrumentation and Control Systems in Nuclear Power Plants: Safety
and Reliability Issues, National Academy Press, pp. 43-51, 1997.

77. NUREG/CR- 6303, Method for Performing Diversity and Defense-in-depth Analyses of Reactor Protection
Systems, prepared by G. G. Preckshot, Lawrence Livermore National Laboratory, December 1994.

78. NUREG/CR-6465, Development of Tools for Safety Analysis of Control Software in Advance Reactors,
prepared by S. Guano, M. Yao and M. Motamed, ASCA, Inc., April 1996.

79. Nelson, V. P. and B. D. Carroll, "Fault-Tolerant Computing (A Tutorial)," presented at the AJAA Fault
Tolerant Computing Workshop, November 8-10, 1982.

80. Papoulis, A., Random Variables and Stochastic Processes, McGraw-Hill, Inc., New York, 1991.
81. Paula, H. M., "Database Features that are Needed to Support CCF Analysis: An Analyst's Perspective,"

Nuclear Safety, vol. 31, no. 2, pp. 159-173, April - June 1990.
82. Peng, Z. and A. Tome, "A Petri Net Based Modeling and Synthesis Technique for Real-Time Systems",

Proceeding of the 5th Euromicro Workshop on Real-7Tme Systems, 1993.
83. Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood Cliffs, New Jersey,

1981.

84. Powell, D., M. Cukier and J. Arlat, "On Stratified Sampling for High Coverage Estimations," Proceedings
of EDDC-2, pp. 37-54, Oct. 1996.

71

85. Powell, D., E. Martins, J. Arlat and Y. Crouzet, "Estimators for Fault Tolerance Coverage Evaluation,"

Proceedings of the 23rd Fault Tolerant Computing Symposium, pp. 229-237, June 1993.

86. Powell, D., E. Martins, J. Arlat and Y. Crouzet, "Estimators for Fault Tolerance Coverage Evaluation," IEEE

Transactions on Computers, vol. 44, no. 2, pp. 261-274, February 1995.

87. Presentation by Mark Richards, ARPA Technology Kickoff Meeting, RASSP Program, Oct. 21-22, 1993.

88. Rao, R., G. Swarninathan, B. W. Johnson, J. Aylor, "Synthesis of Reliability Models from Behavioral

Performance Models", Proceedings of Annual Reliability and Maintainability Symposium, pp. 292-297,

1994.

89. Rao, R., A. Raman, B. W. Johnson, "Reliability Analysis using the ADEPT-REST Interface", Proceedings of

Annual Reliability and Maintainability Symposium, pp. 73-81, 1996.

90. Richards, M., ARPA Kickoff Meeting RASSP Program Presentation, Oct. 21-23, 1993, Arlington, VA.

91. Rosen, K. H., Discrete Mathematics and Its Applications, 3rd Edition, McGraw-Hill, New York, 1995.

92. Rosenberg, G., "Advances in Petri Nets 1990", Lecture Notes in Computer Science, vol. 483, Springer, New

York, 1990.

93. Segall, Z., D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, D. Rancey, A. Robinson and T.

Lin, "FIAT - Fault Injection based Automatic Testing Environment," Proceedings of the 18th International

Symposium on Fault Tolerant Computing, pp. 102-107, 1988.

94. Shedler, G. S. and S. Moriguchi, "Diagnosis of Computer Systems by Stochastic Petri Nets Part II (Theory)",

IEICE Transactions Fundamentals, vol. E76 A, no. 4, pp 565-579, April 1993.

95. Shimeall, T. J., R. J. McGraw, Jr., and J. A. Gill, "Software Safety Analysis in Heterogeneous

Multiprocessor Control Systems," Proceedings of Annual Reliability and Maintainability Symposium, pp.

290-294, 1991.

96. Shooman, M. L., Probabilistic Reliability: An Engineering Approach, McGraw-Hill, New York, 1968.

97. Siu, N. and A. Mosleh, "Treating Data Uncertainties in CCF Analysis," Nuclear Technology, vol. 84, no. 3,

pp. 265-8 1, March 1989.

98. Smith, D. T., B. W. Johnson, J.A. Profeta and D.G. Bozzolo, "A Method to Determine Equivalent Fault

Classes for Permanent and Transient Faults," Proceedings of the Annual Reliability Symposium, pp. 418

424, January 1995.

99. Smith, D. T., B. W. Johnson, N. Andrianos, and J.A. Profeta EII, "A Variance Reduction Technique via Fault

Expansion for Fault Coverage Estimation," IEEE Transactions on Reliability, vol 46, no. 3, pp. 366-374,

September, 1997.

100. Stavrianidis, P., "Reliability and Uncertainty Analysis of Hardware Failures of a Programmable Electronic

System," Reliability Engineering and System Safety, vol. 39, pp. 309-324, 1993.

101. Stiffier, J. J. and L. A. Bryant, CARE III Phase III Report - Mathematical Description, Contr. Rep. 3566,

NASA, Nov. 1982.

102. Stuart, A. and J. K. Ord, Distribution Theory, vol. 1, Edward Arnold, London, 1987.

103. Trivedi, K. S., Probability and Statistics with Reliability, Queueing and Computer Science Applications,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

104. Trivedi, K. S., J. B Dugan, R. Geist and M. Smotherman, "Modeling Imperfect Coverage in Fault-Tolerant

Systems," Proceedings of the 14th Fault Tolerant Computing Symposium, pp. 77-82, June 1984.

105. United States Atomic Energy Commission, An Assessment of Accident Risks in U.S. Commercial Nuclear

Power Plants, WASH-1400, 1975.

106. United States Department of Defense, Military Standardization Handbook: Reliability Prediction of

72

Electronic Equipment, MIL-HDBK-217, Revision F Notice 2, February 1995.
107. Voas, J. A. Ghosh, F. Charron, and L. Kassab, Reducing Uncertainty about Common Mode Failures, http://

www.rstcorp.com.

108. Wadsworth, H. M. (editor), Handbook of Statistical Methods for Engineers and Scientists, McGraw-Hill,
New York, 1990.

109. Wang, W., K. S. Trivedi, B. V. Shah, and J. A. Profeta Im, "The Impact of Fault Expansion on the Internal
Estimate for Fault Detection Coverage," Proceedings of the 24th Annual International Symposium on Fault
Tolerant Computing, pp.330-337, June 1994.

110. Watson, I. A., "Analysis of Dependent Events and Multiple Unavailabilities with Particular Reference to
Common-cause Failures," Nuclear Engineering and Design, vol. 93, pp. 227-44, 1986.

111. Watson, I. A., and G. T. Edwards, "Common-mode Failures in Redundant Systems," Nuclear Technology,
vol. 46, no. 2, pp. 183-91, November - December 1979.

112. Watson, I. A., and A. M. Smith, "Common-cause Failures - A Dilemma in Perspective," Proceedings of
Annual Reliability and Maintainability Symposium, pp. 332-339, 1980.

113. Yau, M., S. Guarro, R. Mulvihill, T. Milici, "Application of Dynamic Flowgraph Techniques for Safety
Analysis and Testing of Space Systems Software," ASCA Inc., Final Report prepared for NASA, Lewis
Research Center, 1995.

114. Yau, M., S. Guarro, G. Apostolakis, "Demonstration of the Dynamic Flowgraph Methodology using the
Titan H Space Launch Vehicle Digital Flight Control System," Reliability Engineering and System Safety,
vol. 49, no. 3, pp. 335-353, 1995.

73

GLOSSARY

Algorithmic level model provides the highest level of system information. This model level explains the desired sys

tem behavior and demonstrates the interaction of various high-level components. When little information is available

about a given component, then this level of modeling may be all that is available.

Architectural level model provides the actual design of the embedded system. At this design level, component selec

tion is made and the functional interaction among the various components is defined.

Axiomatic models are analytical models that are used to model structure and the dependability and/or performance

behavior of a system.

Coverage is the conditional probability that given the occurrence of a fault in a system it is detected and the system

recovers.

Defense in depth approaches safety by implementing multiple protective echelons in a concentric nature within the

designw that is, system safety is achieved by separating safety features such that the failure of one echelon does not

disable the safety systems contained within other echelons.

Dependabilit- is a measure of the quality of service that given system provides.

Diversity provides several ways of detecting and responding to a significant event by using different logic, algo

rithms, or means of actuation.

Embedded system means the integration of hardware and software components to produce a functional system.

Empirical model are statistical models that model complex and detailed descriptions of a system's parameter(s) using

data collected from physical models.

Error is any deviation from correctness or accuracy. It is the manifestation of a fault.

Failure means the nonperformance of some expected action. It is the manifestation of an error.

Fault is a physical defect, imperfection or flaw that occurs within some hardware or software component

Hybrid modeling consists of using simulation and algorithmic models to determine various parameters required by

dependability models.

Logic level model provides the actual implementation of the system.

74

Physical models are prototypes that actually implement the hardware and/or the software of an actual system.

Redundancy is the addition of information, resources or time beyond what is needed for normal system operation.

Reliability is the probability that a system is an operational state for a specified time interval.

Robustness combines elements of redundancy, diversity and defense in depth to achieve safety and reliability.

Safety means that given the occurrence of a fault, the system recognizes the fault occurrence and can continue correct

operation or it can shut down in a safe manner.

75

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(2-89) (Assigned by NRC, Add Vol., Supp., Rev.,
NRCM 1102. and Addendum Numbers, I any.)
3201,3202 BIBLIOGRAPHIC DATA SHEET

(See instructions on the revrse)

2. TITLE AND SUBTITLE NUREG/GR-0020

Embedded Digital System Reliability and Safety Analyses 3. DATE REPORT PUBLISHED

MONTH YEAR

February 2001
4. FIN OR GRANT NUMBER

K6907

5. AUTHOR(S) 6. TYPE OF REPORT

L.M. Kaufman, B.W. Johnson Technical

7. PERIOD COVERED (inc.usive Doees)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. NudearRegul Comnmission, and mailing addrass;ifcontractor,
provide name and mailing address.)

University of Virginia
Department of Electrical Engineering
Center for Safety-Critical Systems - Thornton Hall
Charlottesville, VA 22904

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (Nf NRC, type "Same as above. if contract, provide NRC Division, Office or Region, U.S. Nucdear Regulatory Commission,
and maising addres.)

Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

J.A. Calvert, NRC Project Manager
11. ABSTRACT (200 words or less)

The migration from analog to digital systems in the instrumentation and control (I &C) within a nuclear power plant has
increased the complexity of the instrumentation. The I & C systems being developed are computer-based consisting of
embedded digital hardware and software components. These embedded systems perform many varying and highly complex
functions that are integral to the safety-critical requirements of a nuclear power plant. The need to understand the effects of
various failure modes, including common cause failures and common mode failures, in these systems is becoming increasingly
important because the failure of an I & C system could leak to risk significant events. In order to understand the effects of
common cause and common mode failures on a system, a survey of existing definitions and applications of these definitions as
they apply to digital embedded systems was performed. From this survey, it was found that the definitions and analysis treated
the hardware and the software as independent entities. However when embedded digital systems are in actual operation, there
is tight integration of the hardware and software components; that is, the function realized by such a system cannot be
partitioned between hardware and software but must be analyzed in a unified manner. In addition to addressing the limitations of
the existing common cause and common mode failure definitions, a detailed assessment of existing modeling techniques to
assess their effects is also presented.

12. KEY WORDS/DESCRIPTORS (L.st words or phrases that wl assist eerchers in locaig the report) 13. AVAILABmITY STATEMENT

instrumentation and control (I & C) unlimited
embedded digital systems 14. SECURITY CLASSIFICATION

hardware components (h Pas
software components unclassified
failure modes (This Report)

unclassified

15. NUMBER OF PAGES

16. PRICE

This form was electronically produced by Elite Federal Forms. Inc.NRC FORM 335 (2-89)

PI Printed
on recycled

Federal Recycling Program

NUREG/GR-0020 EMBEDDED DIGITAL SYSTEM RELIABILITY AND SAFETY ANALYSIS FEBRUARY 2001

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300

