

**Condition Monitoring Test Results** 

**Brookhaven National Laboratory** 

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001



#### AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

| NRC Reference Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Non-NRC Reference Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| As of November 1999, you may electronically access<br>NUREG-series publications and other NRC records at<br>NRC's Public Electronic Reading Room at<br>www.nrc.gov/NRC/ADAMS/index.html.<br>Publicly released records include, to name a few,<br>NUREG-series publications; <i>Federal Register</i> notices;<br>applicant, licensee, and vendor documents and<br>correspondence; NRC correspondence and internal<br>memoranda; bulletins and information notices;<br>inspection and investigative reports; licensee event<br>reports; and Commission papers and their<br>attachments.<br>NRC publications in the NUREG series, NRC<br>regulations, and <i>Title 10, Energy</i> , in the Code of<br><i>Federal Regulations</i> may also be purchased from one<br>of these two sources.<br>1. The Superintendent of Documents<br>U.S. Government Printing Office<br>Mail Stop SSOP<br>Washington, DC 20402–0001<br>Internet: bookstore.gpo.gov<br>Telephone: 202-512-1800<br>Fax: 202-512-2250<br>2. The National Technical Information Service<br>Springfield, VA 22161–0002<br>www.ntis.gov | Documents available from public and special technical<br>libraries include all open literature items, such as<br>books, journal articles, and transactions, <i>Federal</i><br><i>Register</i> notices, Federal and State legislation, and<br>congressional reports. Such documents as theses,<br>dissertations, foreign reports and translations, and<br>non-NRC conference proceedings may be purchased<br>from their sponsoring organization.<br>Copies of industry codes and standards used in a<br>substantive manner in the NRC regulatory process are<br>maintained at—<br>The NRC Technical Library<br>Two White Flint North<br>11545 Rockville Pike<br>Rockville, MD 20852–2738<br>These standards are available in the library for<br>reference use by the public. Codes and standards are<br>usually copyrighted and may be purchased from the<br>originating organization or, if they are American<br>National Standards, from—<br>American National Standards Institute<br>11 West 42 <sup>rd</sup> Street<br>New York, NY 10036–8002<br>www.ansi.org<br>212–642–4900 |
| A single copy of each NRC draft report for comment is<br>available free, to the extent of supply, upon written<br>request as follows:<br>Address: Office of the Chief Information Officer,<br>Reproduction and Distribution<br>Services Section<br>U.S. Nuclear Regulatory Commission<br>Washington, DC 20555-0001<br>E-mail: DISTRIBUTION@nrc.gov<br>Facsimile: 301-415-2289<br>Some publications in the NUREG series that are<br>posted at NRC's Web site address<br>www.nrc.gov/NRC/NUREGS/indexnum.html<br>are updated periodically and may differ from the fast<br>printed version. Although references to material found<br>on a Web site bear the date the material was<br>accessed, the material available on the date cited may<br>subsequently be removed from the site.                                                                                                                                                                                                                                                                                                          | Legally binding regulatory requirements are stated<br>only in laws; NRC regulations; licenses, including<br>technical specifications; or orders, not in<br>NUREG-series publications. The views expressed<br>in contractor-prepared publications in this series<br>are not necessarily those of the NRC.<br>The NUREG series comprises (1) technical and<br>administrative reports and books prepared by the<br>staff (NUREG-XXXX) or agency contractors<br>(NUREG/CR-XXXX), (2) proceedings of<br>conferences (NUREG/CP-XXXX), (3) reports<br>resulting from international agreements<br>(NUREG/IA-XXXX), (4) brochures<br>(NUREG/BR-XXXX), and (5) compilations of legal<br>decisions and orders of the Commission and<br>Atomic and Safety Licensing Boards and of<br>Directors' decisions under Section 2.206 of NRC's<br>regulations (NUREG-0750).                                                                                                                                                                                                                           |

**DISCLAIMER:** This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

# Assessment of Environmental Qualification Practices and Condition Monitoring Techniques for Low-Voltage Electric Cables

# **Condition Monitoring Test Results**

Manuscript Completed: December 2000 Date Published: February 2001

Prepared by R. Lofaro, E. Grove, M. Villaran P. Soo, F. Hsu

Brookhaven National Laboratory Upton, NY 11973-5000

S. K. Aggarwal, NRC Program Manager

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code W6465



NUREG/CR-6704, Volume 2, has been reproduced from the best available copy.

١

1 -

### ABSTRACT

This report documents the results of a research program addressing issues related to the qualification process for low-voltage instrumentation and control (I&C) electric cables used in commercial nuclear power plants. Three commonly used types of I&C cable were tested: Cross-Linked Polyethylene (XLPE) insulation with a Neoprene<sup>®</sup> jacket, Ethylene Propylene Rubber (EPR) insulation with an unbonded Hypalon<sup>®</sup> jacket, and EPR with a bonded Hypalon<sup>®</sup> jacket. Each cable type received accelerated aging to simulate 20, 40, and 60 years of qualified life. In addition, naturally aged cables of the same types were obtained from decommissioned nuclear power plants and tested. The cables were subjected to simulated loss-of-coolant-accident (LOCA) conditions, which included the sequential application of LOCA radiation followed by exposure to steam at high temperature and pressure, as well as to chemical spray. Periodic condition monitoring (CM) was performed using nine different techniques to obtain data on the condition of the cable, as well as to evaluate the effectiveness of those CM techniques for in situ monitoring of cables.

Volume 1 of this report presents the results of the LOCA tests, and Volume 2 discusses the results of the condition monitoring tests.

## TABLE OF CONTENTS

|        |           | Page                                                  |  |  |  |  |
|--------|-----------|-------------------------------------------------------|--|--|--|--|
| Abstr  | act       | ····· · · · · · · · · · · · · · · · ·                 |  |  |  |  |
| List o | f Figures | viii                                                  |  |  |  |  |
| List o | f Tables  | xvi                                                   |  |  |  |  |
| Execu  | tive Sum  | mary xix                                              |  |  |  |  |
| Ackno  | owledgme  | nts xxv                                               |  |  |  |  |
| Abbro  | eviations | xxvii                                                 |  |  |  |  |
| 1.     | INTRO     | DDUCTION                                              |  |  |  |  |
|        | 1.1       | Background 1-1                                        |  |  |  |  |
|        | 1.2       | Program Objectives 1-1                                |  |  |  |  |
|        | 1.3       | Research Approach 1-2                                 |  |  |  |  |
|        | 1.4       | Quality Assurance                                     |  |  |  |  |
| 2.     | TEST      | TESTING PROTOCOL                                      |  |  |  |  |
|        | 2.1       | Cable Test Specimens                                  |  |  |  |  |
|        |           | 2.1.1 Acquisition of Cable Samples                    |  |  |  |  |
|        |           | 2.1.2 Preparation of Test Specimens 2-4               |  |  |  |  |
|        |           | 2.1.3 Identification of Test Specimens                |  |  |  |  |
|        | 2.2       | Accelerated Aging Protocol                            |  |  |  |  |
|        |           | 2.2.1 Accelerated Aging Parameters 2-9                |  |  |  |  |
|        |           | 2.2.2 Accelerated Aging Procedure 2-10                |  |  |  |  |
|        | 2.3       | LOCA Testing Protocol                                 |  |  |  |  |
|        |           | 2.3.1 LOCA Profile                                    |  |  |  |  |
|        |           | 2.3.2 LOCA Test Setup                                 |  |  |  |  |
|        |           | 2.3.3 LOCA Test Procedure                             |  |  |  |  |
|        |           | 2.3.4 Functional Performance Monitoring 2-17          |  |  |  |  |
|        |           | 2.3.5 Post-LOCA Inspection and Voltage-withstand Test |  |  |  |  |
|        | 2.4       | Condition Monitoring (CM) Protocol                    |  |  |  |  |
|        |           | 2.4.1 CM Tests Evaluated                              |  |  |  |  |
|        |           | 2.4.2 CM Monitoring Points                            |  |  |  |  |

## TABLE OF CONTENTS (cont'd)

#### Page

| 3. | DESC | CRIPTION OF CONDITION MONITORING TECHNIQUES                      |  |  |  |
|----|------|------------------------------------------------------------------|--|--|--|
|    | 3.1  | Visual Inspection                                                |  |  |  |
|    | 3.2  | Elongation-at-Break                                              |  |  |  |
|    | 3.3  | Oxidation Induction Time                                         |  |  |  |
|    | 3.4  | Oxidation Induction Temperature                                  |  |  |  |
|    | 3.5  | Fourier Transform Infrared Spectroscopy                          |  |  |  |
|    | 3.6  | Compressive Modulus (Indenter)                                   |  |  |  |
|    | 3.7  | Hardness                                                         |  |  |  |
|    | 3.8  | Dielectric                                                       |  |  |  |
|    | 3.9  | Insulation Resistance                                            |  |  |  |
|    | 3.10 | Functional Performance Test                                      |  |  |  |
|    | 3.11 | Voltage Withstand                                                |  |  |  |
|    |      |                                                                  |  |  |  |
| 4. | CONI | DITION MONITORING RESULTS FOR CROSS-LINKED POLYETHYLENE CABLES   |  |  |  |
|    | 4.1  | Visual inspection                                                |  |  |  |
|    | 4.2  | Elongation-at-Break (EAB)                                        |  |  |  |
|    | 4.3  | Oxidation Induction Time (OITM)                                  |  |  |  |
|    | 4.4  | Oxidation Induction Temperature (OTTP)                           |  |  |  |
|    | 4.5  | Fourier Transform Infrared Spectroscopy                          |  |  |  |
|    | 4.6  | Indenter                                                         |  |  |  |
|    | 4.7  | Hardness                                                         |  |  |  |
|    | 4.8  | Dielectric Loss                                                  |  |  |  |
|    | 4.9  | Insulation Resistance (IR)                                       |  |  |  |
|    | 4.10 | Functional Performance                                           |  |  |  |
|    | 4.11 | Voltage Withstand                                                |  |  |  |
| 5. | CONI | DITION MONITORING RESULTS FOR ETHYLENE PROPYLENE RUBBER CABLES   |  |  |  |
|    | 5.1  | Visual Inspection                                                |  |  |  |
|    | 5.2  | Elongation-at-Break (EAB)                                        |  |  |  |
|    |      | 5.2.1 Results for Ethylene-Propylene Rubber/Hypalon® Cables      |  |  |  |
|    |      | 5.2.2 Results for Ethylene-Propylene-Diene Monomer (EPDM) Cables |  |  |  |
|    |      | 5.2.3 Normalized EAB Results                                     |  |  |  |
|    | 5.3  | Oxidation Induction Time                                         |  |  |  |
|    | 5.4  | Oxidation Induction Temperature                                  |  |  |  |
|    | 5.5  | Fourier Transform Infrared Spectroscopy                          |  |  |  |
|    | 5.6  | Indenter                                                         |  |  |  |
|    | 5.7  | Hardness                                                         |  |  |  |
|    | 5.8  | Dielectric Loss                                                  |  |  |  |
|    | 5.9  | Insulation Resistance                                            |  |  |  |
|    | 5.10 | Functional Performance                                           |  |  |  |
|    | 5.11 | Voltage Withstand                                                |  |  |  |

## TABLE OF CONTENTS (cont'd)

----

| 6.   | CONCL                                    | USION          | S                                               |       |
|------|------------------------------------------|----------------|-------------------------------------------------|-------|
|      | 6.1                                      | Effectiv       | eness of CM techniques for in situ monitoring   | . 6-1 |
|      | •••                                      | 6.1.1          | Visual Inspection                               | . 6-1 |
|      |                                          | 6.1.2          | Elongation-at-Break                             | . 6-1 |
|      |                                          | 6.1.3          | Oxidation Induction Time                        | . 6-3 |
|      |                                          | 6.1.4          | Oxidation Induction Temperature                 | . 6-3 |
|      |                                          | 6.1.5          | Fourier Transform Infrared Spectroscopy         | . 6-4 |
|      |                                          | 6.1.6          | Indenter                                        | . 6-4 |
|      |                                          | 6.1.7          | Hardness                                        | . 6-5 |
|      |                                          | 6.1.8          | Dielectric Loss                                 | . 6-6 |
|      |                                          | 6.1.9          | Insulation Resistance                           | . 6-7 |
|      |                                          | 6.1.10         | Functional Performance                          | . 6-8 |
|      |                                          | 6.1.11         | Voltage Withstand Test                          | . 6-8 |
|      | 6.2                                      | Using C        | CM Techniques to Predict Accident Survivability | . 6-9 |
|      |                                          | 6.2.1          | Visual Inspection                               | . 6-9 |
|      |                                          | 6.2.2          | Elongation-at-Break                             | . 6-9 |
|      |                                          | 6.2.3          | Oxidation Induction Time                        | 6-10  |
|      |                                          | 6.2.4          | Oxidation Induction Temperature                 | 6-10  |
|      |                                          | 6.2.5          | Fourier Transform Infrared Spectroscopy         | 6-10  |
|      |                                          | 6.2.6          | Indenter                                        | 6-10  |
|      |                                          | 6.2.7          | Hardness                                        | 6-12  |
|      |                                          | 6.2.8          | Dielectric Loss                                 | 6-13  |
|      |                                          | 6.2.9          | Insulation Resistance                           | 6-14  |
|      |                                          | 6.2.10         | Functional Performance                          | 6-17  |
|      |                                          | <b>6.2.</b> 11 | Voltage Withstand                               | 6-19  |
| _    |                                          |                |                                                 | . 7-1 |
| 7.   | REFER                                    | CENCES         | • • • • • • • • • • • • • • • • • • • •         |       |
| ADDE |                                          | FLONG          | ATION-AT-RREAK DATA                             | A-1   |
| ADDE |                                          | OYDA'          | TION INDUCTION TIME DATA                        | B-1   |
| ADDE |                                          | ΟΧΙΠΑ'         | TION INDUCTION TEMPERATURE DATA                 | C-1   |
| ADDE |                                          | INFRA          | RED SPECTROSCOPY DATA                           | D-1   |
| ADDE | NDIV F.                                  | INDEN          | FED DATA                                        | .E-1  |
| APPE | APPENDIX E. HADDALESS DATA               |                |                                                 |       |
| APPE | NDIV C.                                  | NIFI F4        | CTRIC Ι OSS DATA                                | G-1   |
| APPE | ADDENDIX II. INCHI ATION DESISTANCE DATA |                |                                                 |       |
| APPE | NDIV I. V                                |                | CF WITHSTAND DATA                               | . I-1 |
| ALLE | TADIV P                                  | 4 OPT W        |                                                 |       |

### **LIST OF FIGURES**

| Page                                                                                                             |
|------------------------------------------------------------------------------------------------------------------|
| Figure 2.1 Naturally aged cables installed on plywood boards to protect them during shipping 2-2                 |
| Figure 2.2 Typical long specimens installed in Unistrut <sup>®</sup> shown in thermal aging oven                 |
| Figure 2.3 Typical long specimen installed on a mandrel 2-5                                                      |
| Figure 2.4 Typical specimen mounted on a mandrel with a modified design for tests 4, 5 and 6 2-6                 |
| Figure 2.5 Typical basket of short specimens                                                                     |
| Figure 2.6 Typical 2-foot specimen for indenter testing                                                          |
| Figure 2.7 Hot Cell used for irradiation of specimens at Georgia Institute of Technology                         |
| Figure 2.8 Diagram of the Hot Cell at Georgia Institute of Technology with typical arrangement of long specimens |
| Figure 2.9 Photograph and diagram of the LOCA test chamber at Wyle Laboratories used for<br>Tests 1, 2 and 3     |
| Figure 2.10 End view of the LOCA test chamber with the cable specimens loaded prior to testing 2-16              |
| Figure 2.11 End view of large diameter LOCA chamber used for tests 4, 5 and 6                                    |
| Figure 2.12 Facility lead wires extending through the penetrations on the end of the LOCA test chamber           |
| Figure 2.13 Monitoring circuit diagram for straight Unistrut <sup>®</sup> mounted specimens                      |
| Figure 2.14 Monitoring circuit diagram for mandrel mounted specimens                                             |
| Figure 2.15 Test bench with hard-wired monitoring circuits and simulated pressure<br>instrumentation loops       |
| Figure 2.16 Specimen powering and monitoring equipment                                                           |
| Figure 2.17 Test setup for the submerged voltage withstand test                                                  |
| Figure 3.1 Insulation power factor relationship                                                                  |
| Figure 3.2 Test setup for dielectric loss measurement                                                            |
| Figure 4.1 Effect of LOCA testing on EAB for Rockbestos cable PNI79RB188<br>(Group 1.1, Specimen 0101)           |

•

|            | Page                                                                                                   |
|------------|--------------------------------------------------------------------------------------------------------|
| Figure 4.2 | Effect of aging and LOCA testing on EAB for Rockbestos cable PNI79RB188                                |
|            | (Group 1.2, Specimen 0106) antificially aged to 10 years service                                       |
| Figure 4.3 | Effect of LOCA testing on the EAB of Rockbestos cable PAP86RB267                                       |
|            | (Group 1.3, Specimen 0111) naturally aged for 10 years 4-0                                             |
| Figure 4.4 | Effect of aging and LOCA testing on the EAB of Rockbestos cable PNI79RB188                             |
|            | (Test 1.4, Specimen 0112) artificially aged to one-half of the 40 year qualified life                  |
| Figure 4.5 | Effect of thermal aging at 350°F (177°C) in air on the EAB of Rockbestos                               |
|            | white XLPE insulation (PNI85RB191)                                                                     |
| Figure 4.6 | OITM for white XLPE at 392°F (200°C) for Rockbestos cable PNI79RB188                                   |
| I Igui v   | (Group 1.1, Specimen 0101) 4-9                                                                         |
| Figure 4.7 | OITM for XLPE at 392°F (200°C) for Rockbestos cable PNI79RB188                                         |
|            | (Group 1.1, Specimen 0101) as a function of LOCA testing                                               |
| Figure 4.8 | OITM at 392°F (200°C) for black XLPE from Rockbestos                                                   |
| 1.9        | cable PNI79RB188 (Group 1.4, Specimen 0112) 4-10                                                       |
| Figure 49  | OITM for XLPE at 428°F (220°C) for Rockbestos cable PNI85RB191                                         |
| 1.g        | (Group 1.2, Specimen 0106) artificially aged to 10-years service                                       |
| Figure 4.1 | OITM for XLPE at 428°F (220°C) for Rockbestos cable PAP86RB267                                         |
| 1.80.0     | (Group 1.3, Specimen 0111) naturally aged for 10 years                                                 |
| Figure 1 1 | 1 Correlation between OITM and EAB for white XLPE from Rockbestos                                      |
| Figure 4.1 | cable PNI85RB191as a function of thermal pre-aging time in air at 350°F (177°C)                        |
| Figure 4.1 | 2 OITM thermogram for Neoprene <sup>®</sup> jacket at 356°F (180°C) from Rockbestos                    |
| riguie 4.1 | cable PNI79RB188 (Group 1.1, Specimen 0101)                                                            |
|            | 2. OFTE for Exclusion VI DE (Group 1.4. Specimen 0112) as a function of                                |
| Figure 4.1 | service aging protocols                                                                                |
|            | ( OVER ( ) ) 11 - ( ) WIDE (Crease 1.4. Specimen 0.1.12) as a function of                              |
| Figure 4.1 | LOCA testing protocols                                                                                 |
|            |                                                                                                        |
| Figure 4.1 | 5 OITP for Rockbestos white XLPE (Group 1.2, Specifien 0100) as a function of service aging protocols  |
|            |                                                                                                        |
| Figure 4.1 | 6 OITP for Rockbestos white XLPE (Group 1.2, Specimen 0106) as a function<br>of LOCA testing protocols |
|            | or LOCA testing protocols                                                                              |

| Figure 4.17 | OITP for Rockbestos Neoprene <sup>®</sup> jacket (Group 1.4, Specimen 0112) as                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | a function of service aging protocols                                                                                                                                                        |
| Figure 4.18 | OITP for Rockbestos Neoprene <sup>®</sup> jacket (Group 1.4, Specimen 0112) as<br>a function of LOCA testing protocols                                                                       |
| Figure 4.19 | OITP for Rockbestos Neoprene <sup>®</sup> jacket (Group 1.2, Specimen 0106) as<br>a function of service testing protocols                                                                    |
| Figure 4.20 | OITP for Rockbestos Neoprene <sup>®</sup> jacket (Group 1.2, Specimen 0106) as<br>a function of LOCA testing protocols                                                                       |
| Figure 4.21 | Effect of service aging and LOCA testing on the OITP of Rockbestos<br>cable PNI79RB188 (Group 1.4, Specimen 0112)                                                                            |
| Figure 4.22 | Effect of service aging and LOCA testing on the OITP of Rockbestos<br>cable PNI85RB191(Group 3.2, Specimen 0303)                                                                             |
| Figure 4.23 | Effect of LOCA testing on the OITP of 10-year naturally aged Rockbestos cable PAP86RB267 (Group 1.3, Specimen 0111)                                                                          |
| Figure 4.24 | FTIR spectrum for ten-year naturally aged white XLPE from Rockbestos<br>cable PAP86RB267 (Group 1.3, Specimen 0111) after receiving 157.5<br>Mrad of LOCA radiation and steam/chemical spray |
| Figure 4.25 | FTIR spectrum for unaged white XLPE from Rockbestos cable PNI85RB191<br>(Group 3.2, Specimen 0303) using the "Thunderdome <sup>®</sup> " attachment                                          |
| Figure 4.26 | FTIR spectra for artificially aged white XLPE from Rockbestos cable PNI85RB191<br>(Group 3.2, Specimen 0303) as a function of CM point                                                       |
| Figure 4.27 | FTIR results for artificially aged white XLPE from Rockbestos cable PNI85RB191<br>(Group 3.2, Specimen 0303) as a function of CM point                                                       |
| Figure 4.28 | FTIR results for artificially aged white XLPE from Rockbestos cable PNI85RB191<br>(Group 3.2, Specimen 0303) as a function of elongation-at-break                                            |
| Figure 4.29 | FTIR results for white XLPE from Rockbestos cable PNI85RB191<br>(Group 3.2, Specimen 0303) as a function of aging time at 140° (60°)                                                         |
| Figure 4.30 | FTIR results for black XLPE form Rockbestos cable PNI79RB188 as a function of gamma radiation dose in air at 50° (10°)                                                                       |
| Figure 4.31 | Correlation between FTIR transmittance and elongation-at-break for irradiated black cross-linked polyethylene from Rockbestos cable PNI79RB188                                               |

1

-----

|             | Page                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.32 | Compressive Modulus versus pre-aging for XLPE from Group 1.2 pre-aged to simulate cable naturally aged for 10 years                                                |
| Figure 4.33 | Compressive Modulus versus pre-aging for XLPE from Groups 1.4, 3.4 and 6.2 pre-aged to 20, 40 and 60 years of qualified life                                       |
| Figure 4.34 | Correlation of Compressive Modulus with EAB for XLPE from Group 1.2 pre-aged to 20 years of qualified life                                                         |
| Figure 4.35 | Compressive Modulus versus pre-aging for Neoprene <sup>®</sup> from Group 1.2 pre-aged to simulate cable naturally aged for 10 years                               |
| Figure 4.36 | Compressive Modulus versus pre-aging for Neoprene <sup>®</sup> from Group 1.4 pre-aged to 20 years of qualified life                                               |
| Figure 4.37 | Comparison of compressive modulus versus radiation dose for XLPE as a function of dose rate                                                                        |
| Figure 4.38 | Hardness versus pre-aging for XLPE 4-34                                                                                                                            |
| Figure 4.39 | Correlation of EAB and hardness for XLPE insulation                                                                                                                |
| Figure 4.40 | Dielectric phase angle vs test voltage frequency for aged XLPE-insulated cables                                                                                    |
| Figure 4.41 | Polarization Index for aged XLPE-insulated cables                                                                                                                  |
| Figure 4.42 | Post-LOCA submerged voltage withstand test results for pre-aged XLPE-insulated cables 4-41                                                                         |
| Figure 5.1  | Effect of aging and LOCA testing on the EAB of AIW EPR/Hypalon <sup>®</sup> cable PNI74AI027<br>(Group 2.2, Specimen 0205) artificially aged to simulate Group 2.3 |
| Figure 5.2  | Effect of LOCA testing on the EAB of AIW EPR/Hypalon <sup>®</sup> Cable PNI74AI015<br>(Group 2.3, specimen 0207) naturally-aged for 24 Years                       |
| Figure 5.3  | Effect of aging and LOCA testing on the EAB of Anaconda EPR/Hypalon <sup>®</sup> cable<br>DNP78AN008 (Group 5.2, Specimen 0508)                                    |
| Figure 5.4  | Effect of aging and LOCA testing on the EAB of Anaconda cable DNP78AN008<br>(Group 5.3, Specimen 0515). Specimens artificially aged to 40 Years of qualified life  |
| Figure 5.5  | Effect of aging and LOCA testing on the EAB of Okonite EPR/Hypalon <sup>®</sup> Cable<br>LNI81OK020 (Test 5.2, Specimen 0504) 5-7                                  |
|             |                                                                                                                                                                    |

| Figure 5.6 Effect of aging and LOCA testing on the EAB of Okonite EPR/Hypalon <sup>®</sup>                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cable LNI81OK020 (Test 5.3, Specimen 0510) 5-7                                                                                                              |
| Figure 5.7 Effect of aging and LOCA testing on the EAB of Samuel Moore EPDM/Hypalon <sup>®</sup><br>cable PNI82SM008 (Test 4.2, Specimen 0403)              |
| Figure 5.8 Effect of aging and LOCA testing on the EAB of Samuel Moore EPDM/Hypalon <sup>®</sup> cable PNI82SM008 (Test 4.4, Specimen 0412)                 |
| Figure 5.9 Comparison of EAB results for unbonded Hypalon <sup>®</sup> jacket material from different<br>manufacturers                                      |
| Figure 5.10 Comparison of EAB results for unbonded EPR insulation from different manufacturers                                                              |
| Figure 5.11 Comparison of EAB results for bonded EPR and EPDM insulation from different manufacturers                                                       |
| Figure 5.12 OITM Thermograms at 392°F (200°C) for AIW EPR insulation PNI74AI026<br>(Group 2.2, Specimen 0203)                                               |
| Figure 5.13 OITM Thermograms at 410°F (210°C) for AIW Hypalon <sup>®</sup> outer jackets PNI74AI028<br>(Group 2.4, Specimen 0213)                           |
| Figure 5.14 Comparison of Thermograms for Hypalon <sup>®</sup> outer jackets for unaged four- and three-conductor from AIW cable                            |
| Figure 5.15 OITM for AIW four-conductor cable PNI74AI028 (Group 2.4, Specimen 0213)<br>as a function of CM point                                            |
| Figure 5.16 Comparison of OITM for artificially-aged and naturally-aged EPR insulation from<br>AIW cable after 24-years of service aging                    |
| Figure 5.17 Correlation between OITM and EAB for EPR insulation from AIW cable PNI74AI028<br>(Group 2.4, Specimens 0213 and 0214)                           |
| Figure 5.18 Correlation between OITM and service aging time for EPR insulation from AIW cable PNI74AI028 (Group 2.4, Specimens 0213 and 0214)               |
| Figure 5.19 Correlation between OITM and EAB for Hypalon <sup>®</sup> outer jackets from AIW<br>cable PNI74AI028 (Group 2.4, Specimen 0213)                 |
| Figure 5.20 Correlation between OITM and service aging time for Hypalon <sup>®</sup> outer jackets<br>from AIW cable PNI74AI028 (Group 2.4, Specimens 0213) |
| Figure 5.21 OITP for AIW EPR (PNI74AI032) as a function of service testing protocols                                                                        |

1

| Figure 5.22        | OITP for AIW EPR (PNI74AI032) as a function of LOCA testing protocols       5-20                                                     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Figure 5.23        | OITP for AIW Hypalon <sup>®</sup> (PNI74AI032) as a function of service testing protocols                                            |
| Figure 5.24        | OITP for AIW Hypalon <sup>®</sup> (PNI74AI032) as a function of LOCA testing protocols                                               |
| Figure 5.25        | OITP for AIW EPR/Hypalon <sup>®</sup> cable (Group 2.4, Specimen 0213) as a function<br>of CM point                                  |
| Figure 5.26        | OITP for EPR insulation as a function of service aging time at 140°F (60°C)                                                          |
| Figure 5.27        | Correlation between EAB and OITP for EPR insulation from different manufacturers 5-25                                                |
| Figure 5.28<br>tim | OITP for AIW Hypalon <sup>®</sup> outer and individual jackets as a function of service aging<br>e at 140°F (60°C)                   |
| Figure 5.29        | Correlation between EAB and OITP for AIW Hypalon <sup>®</sup> outer and black individual jackets as a function of OITP               |
| Figure 5.30        | Correlation between EAB and OITP for AIW colored Hypalon <sup>®</sup> individual jackets<br>as a function of OITP                    |
| Figure 5.31        | FTIR spectra for EPR insulation from AIW cable PNI74AI027 (Group 2.2,<br>Specimen 0205) artificially aged to 20 years service        |
| Figure 5.32        | FTIR results for AIW cable PNI74AI027 (Group 2.2, Specimen 0205) artificially aged to 20 years service as a function of CM point     |
| Figure 5.33        | FTIR results for AIW cable PNI74AI028 (Group 2.4, Specimen 0213) artificially aged to one-half of the 40 year qualification protocol |
| Figure 5.34        | FTIR results for AIW cable PNI74AI019 (Group 2.3, Specimen 0210)         naturally aged to 20 years service         5-29             |
| Figure 5.35        | Correlation between FTIR transmittance and service aging time at 140°F (60°C) for<br>AIW three-conductor cable                       |
| Figure 5.36        | Correlation between FTIR transmittance and service aging Time at 140°F (60°C) for<br>AIW four-conductor cable                        |
| Figure 5.37        | Correlation between FTIR transmittance and elongation-at-break for AIW three-conductor cable                                         |
| Figure 5.38        | Correlation between FTIR transmittance and elongation-at-break for AIW four-conductor cable                                          |
|                    | xiii                                                                                                                                 |

.

| Figure 5 30 | Average compressive modulus for EPR insulation from AIW specimens pre-aged                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rigure 5.59 | to 60 yr                                                                                                                                                                 |
| Figure 5.40 | Average compressive modulus for composite EPR/unbonded Hypalon <sup>®</sup> insulation<br>from AIW specimens in test sequence 6 pre-aged to 60 yr                        |
| Figure 5.41 | Average compressive modulus for EPR insulation from Anaconda specimens in test sequence 4 pre-aged to 40 yr. with and without Hypalon <sup>®</sup> individual jacket     |
| Figure 5.42 | Average compressive modulus for composite EPR/bonded Hypalon <sup>®</sup> insulation from<br>Samuel Moore specimens in test sequence 6 pre-aged to 60 yr                 |
| Figure 5.43 | Average compressive modulus for composite EPR/bonded Hypalon <sup>®</sup> insulation from<br>Okonite specimens in test sequence 6 pre-aged to 60 yr                      |
| Figure 5.44 | Average compressive modulus for Hypalon <sup>®</sup> outer jacket from AIW specimens in test sequence 6 pre-aged to 60 yr                                                |
| Figure 5.45 | Average compressive modulus for Hypalon <sup>®</sup> outer jacket from Samuel Moore specimens in test sequence 6 pre-aged to 60 yr                                       |
| Figure 5.46 | Correlation of Compressive Modulus with EAB for EPR insulation from AIW specimens in test sequence 6 pre-aged to 60 yr                                                   |
| Figure 5.47 | Correlation of Compressive Modulus with EAB for composite EPR/unbonded Hypalon <sup>®</sup> insulation from AIW specimens in test sequence 6 pre-aged to 60 yr           |
| Figure 5.48 | Correlation of Compressive Modulus with EAB for composite EPR/bonded Hypalon <sup>®</sup><br>insulation from Samuel Moore specimens in test sequence 6 pre-aged to 60 yr |
| Figure 5.49 | Correlation of Compressive Modulus with EAB for Hypalon <sup>®</sup> outer jacket from<br>AIW specimens in test sequence 6 pre-aged to 60 yr                             |
| Figure 5.50 | Hardness versus pre-aging for EPR material from AIW specimens in Group 2.4,<br>test sequence 2 pre-aged to 20 yr                                                         |
| Figure 5.51 | Hardness versus pre-aging for Hypalon <sup>®</sup> material from AIW specimens in Group 2.4,<br>test sequence 2 pre-aged to 20 yr                                        |
| Figure 5.52 | Correlation of Shore-D Hardness with EAB for EPR insulation from Group 2.4<br>AIW specimens pre-aged to 20 yr                                                            |

| Figure 5 53 | Correlation of Shore-D Hardness with EAB for Hypalon <sup>®</sup> from Group 2.4 | Page |
|-------------|----------------------------------------------------------------------------------|------|
| riguie 5.55 | AIW specimens pre-aged to 20 yr.                                                 | 5-43 |
| Figure 5.54 | Dielectric phase angle vs test voltage frequency for aged Okonite cables         | 5-45 |
| Figure 5.55 | Insulation Resistance (IR) for aged EPR-insulated Samuel Moore cables            | 5-49 |
| Figure 5.56 | Insulation Resistance (IR) for aged EPR-insulated Anaconda cables                | 5-50 |

## LIST OF TABLES

| Table 1.1 | Page           Objectives of the six test sequences         1-4                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.1 | Cable types used in each test sequence                                                                                                            |
| Table 2.2 | Qualification reports used to determine test parameters                                                                                           |
| Table 2.3 | Parameters used in original qualification tests                                                                                                   |
| Table 2.4 | Definition of lettered CM hold points                                                                                                             |
| Table 4.1 | Sample tabulation of visual inspection results for Rockbestos XLPE/Neoprene <sup>®</sup> specimens in Group 1.1                                   |
| Table 4.2 | Effect of accelerated aging on the EAB of XLPE insulation                                                                                         |
| Table 4.3 | Correlation Between OITM for White XLPE from Rockbestos Cable PNI85RB191<br>and Elongation-at-Break                                               |
| Table 4.4 | FTIR and EAB results for white XLPE insulation from Rockbestos cable PNI85RB191 4-25                                                              |
| Table 4.5 | Insulation Power Factor for XLPE-Insulated Cables                                                                                                 |
| Table 5.1 | EAB for cable materials normalized to a service temperature of 140°F (60°C)                                                                       |
| Table 5.2 | Oxidation induction time for AIW cable PNI74AI028(Group 2.4, Specimens 0213<br>And 0214) as a function of simulated service aging at 140°F (60°C) |
| Table 5.3 | Oxidation induction temperature results for EPR insulation as a function of simulated service aging at 140°F (60°C)                               |
| Table 5.4 | Oxidation Induction Temperature results for Hypalon <sup>®</sup> jackets as a function of simulated service aging at 140°F (60°C)                 |
| Table 5.5 | FTIR results for AIW EPR/Hypalon <sup>®</sup> cables as a function of aging and elongation-at-break 5-30                                          |
| Table 5.6 | Samuel Moore Hypalon <sup>®</sup> outer jacket compressive modulus values                                                                         |
| Table 5.7 | Insulation Power Factor for Okonite EPR-Insulated Cables with Bonded Hypalon <sup>®</sup> Jacket                                                  |
| Table 5.8 | Insulation Power Factor for Samuel Moore EPDM-Insulated Cables with<br>Bonded Individual Hypalon <sup>®</sup> Jackets, Conductor-to-Conductor     |

## LIST OF TABLES (cont'd)

| Table 5.9 Insulation Power Factor for Samuel Moore EPDM-Insulated Cables with         Bonded Individual Hypalon <sup>®</sup> Jackets, Conductor-to-Ground |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 5.10 Insulation Power Factor for Aged AIW EPR-Insulated Cables, Conductor-to-Conductor       5-47                                                   |
| Table 5.11 Insulation Power Factor for Aged AIW EPR-Insulated Cables - Conductor-to-Ground       5-47                                                     |
| Table 5.12 Insulation resistance (IR) and polarization index (PI) for aged EPR-insulated cables       5-48                                                |
| Table 5.13 Results of post-LOCA submerged voltage withstand test for aged EPR/Hypalon <sup>®</sup> cables                                                 |
| Table 6.1 Summary of compressive modulus values for XLPE and EPR insulation       6-11                                                                    |
| Table 6.2 Summary of compressive modulus values for Hypalon <sup>®</sup> individual jackets                                                               |
| Table 6.3 Summary of compressive modulus values for bonded jacket cables       6-12                                                                       |
| Table 6.4 Summary of compressive modulus values for outer jackets       6-12                                                                              |
| Table 6.5 Insulation power factor and LOCA performance of pre-aged XLPE-insulated cables                                                                  |
| Table 6.6 Insulation power factor and LOCA performance of pre-aged EPR-insulated cables                                                                   |
| Table 6.7 Insulation resistance/polarization index and LOCA performance of XLPE-insulated cables 6-16                                                     |
| Table 6.8 Insulation resistance/polarization index and LOCA performance of pre-aged EPR-insulated cables . 6-18                                           |

### **EXECUTIVE SUMMARY**

As a licensing requirement for commercial nuclear power plants, electric equipment important to safety must be qualified for use in a harsh environment. Environmental qualification (EQ) requirements have evolved over the years, becoming more strict as new knowledge was gained about the aging process. The current requirements for qualification are specified in the Environmental Qualification Rule, which is documented in Title 10 of the Code of Federal Regulations, Part 50, Section 49 (10 CFR 50.49).

During a review of EQ requirements to address issues related to license renewal, questions arose as to the technical bases for allowing plants to have equipment qualified to different requirements. In addition, research in which certain types of cable failed loss-of-coolant-accident (LOCA) tests raised questions about their qualification. As a result, the issues related to EQ requirements were identified as Generic Safety Issue (GSI) 168, and a task action plan was developed to resolve them.

In support of the task action plan on EQ, and for the resolution of GSI-168, the NRC's Office of Nuclear Regulatory Research (RES) sponsored the research reported herein to resolve issues related to the process used for environmental qualification of certain electric components used in commercial nuclear power plants. Brookhaven National Laboratory (BNL) was selected as the lead laboratory to assist the RES. The initial focus of this program was on low-voltage electric cables used for instrumentation and control (I&C) applications, which is the subject of this report.

The objective of this research program was to provide information to help resolve specific issues related to the EQ process for low-voltage I&C electric cables. Initially, a comprehensive list of 43 issues was developed. Based on a thorough review and analysis of the literature, 24 issues were resolved by considering past research results, and 19 issues remained unresolved. Of the latter, six issues were identified that required additional analysis and testing of cables to resolve. These issues are summarized as follows:

- How do the properties of cables subjected to accelerated aging techniques used in the original qualification compare with the properties of naturally aged cables of equivalent age?
- What are the limitations in using an estimated value of the activation energy to predict the chemical degradation during thermal aging?
- Do multiconductor cables have different failure mechanisms than single conductor cables, and, if so, are these unique failure mechanisms properly accounted for in the qualification process?
- Do bonded jacket cables have different failure mechanisms than unbonded jacket cables, and, if so, are these unique failure mechanisms properly accounted for in the qualification process?
- Are there any effective condition monitoring techniques for determining cable condition in situ?
- Can condition monitoring techniques be used to predict LOCA survivability?

In addition to the six issues for which new testing was undertaken, six issues were categorized as unresolved with no further research recommended, and seven were identified for which the new information from the tests might help resolve. The later seven relate to addressing hot spots, impingement, physical damage, and improper installation in the qualification process. Also, the information gained from the new testing might help resolve issues related to extending the qualified life of I&C cables to 60 years.

To provide information that will assist in resolving the EQ issues of interest, the following three types of I&C electric cables commonly used in commercial nuclear power plants were tested:

- Cross-Linked Polyethylene (XLPE) Insulation with Neoprene<sup>®</sup> jacket,
- Ethylene Propylene Rubber (EPR) Insulation with unbonded Hypalon<sup>®</sup> jacket, and
- EPR Insulation with bonded Hypalon<sup>®</sup> jacket.

Testing was performed on unused cables that had undergone accelerated aging to simulate 20, 40, and 60 years of qualified life based on their original qualification parameters. Naturally aged cables from two nuclear power plants also were included. For comparison, unaged cable of the same type as the naturally aged cables received accelerated aging, using currently accepted accelerated-aging models, to match the service conditions to which the naturally aged cables had been exposed. Cables with no pre-aging were also included in all of the tests as controls. Six pre-aging/LOCA test sequences were performed to address the six EQ issues of interest. The performance results of the cables during the LOCA tests are reported in Volume 1 of this report.

Hold points were incorporated into the program to monitor the condition and performance of the cables at preselected points throughout the pre-aging and LOCA testing process. Various condition monitoring (CM) techniques were used at each hold point to obtain data on the cables, as well as to evaluate the effectiveness of those CM techniques for monitoring cable condition. Elongation-at-break (EAB) was used as a reference CM technique, against which other techniques were compared and correlated. The findings of this evaluation are reported in Volume 2 of this report.

#### **Conclusions on EQ Issues:**

Based on the results of the testing, the following conclusions are drawn:

#### Accelerated Aging Techniques:

The data obtained suggest that the accelerated aging predictions using the Arrhenius model for thermal aging, with limitations, and the equal-dose/equal-damage model for radiation aging provide adequate estimates of the degradation experienced due to actual service aging. In six-out-of-six cases, material that received accelerated aging had a lower EAB, indicating more degradation than naturally aged material of equivalent age. Also, as the duration and severity of the natural aging simulated increased, the difference in degradation simulated by the models also increased. These results suggest that currently accepted artificial aging techniques provide conservative estimates of service aging, however, the limitations in the assumptions made, along with uncertainties in the data available, prevent a definitive conclusion from being drawn regarding the accuracy of the aging models.

#### Activation Energies:

• The data from these tests demonstrate that, for the two cable insulation materials tested, the activation energies used in the original qualification tests were representative of the materials being tested.

#### Multiconductor Cables:

• Test results show that differential swelling of jacket and insulation materials due to moisture absorption can occur during a LOCA. This phenomenon can contribute to rupture or cracking of the materials during steam exposure. If the insulation on the conductors of a multiconductor cable expands faster and to a greater degree than the outer jacket, the resulting stresses imparted on the outer jacket may be significant enough to cause it to rupture. While these results might suggest a potential common cause failure for multiconductor cables, it must be noted that, of the 15 cables pre-aged to 40 years and LOCA tested, 3 experienced performance anomalies that could impact their safety function.

#### Bonded Jacket Cables:

The results of this study demonstrate that the bonded jacket/insulation configuration has a potential for catastrophic failure under LOCA conditions. This catastrophic failure can occur if the composite bonded jacket/insulation is first exposed to severe aging conditions, causing it to embrittle and shrink significantly, prior to its sudden exposure to steam. The steam causes swelling stresses that can initiate failure. While this phenomenon was observed for single conductor bonded jacket cables from one manufacturer in this program, it could be problematic for similar cables from other manufacturers.

#### Extending Qualified Life:

• The results indicate that degradation due to aging beyond the qualified life of the cables, based on extrapolation of the aging parameters used in the original qualification to a 60 year service life, may be too severe for the insulation material to withstand and still be able to perform adequately during a LOCA. For life extension purposes, the aging protocols used to establish the qualified life of the cables should be reviewed and compared to actual service environments in a plant. A determination then can be made as to whether the additional exposure to aging stressors during a period of extended operation will be acceptable for the cable materials.

#### **Observations:**

From the results of the tests, the following observations are made regarding the qualification process for electric cables:

- The currently accepted standards for qualifying various configurations of cable based on similarity to cables of the same material or construction that have already passed qualification type tests should be re-evaluated. Specifically, cables that are being qualified for use in applications requiring a multiconductor configuration should be tested in a multiconductor configuration. Similarly, cables with bonded individual jackets should be type tested in the configuration for which they are being qualified. The similarity argument may not be appropriate in all cases.
- Consideration should be given to developing more definitive acceptance criteria for determining if a cable passes a qualification type test. Currently, the qualification test results are analyzed to determine if the cable is qualified for its particular application. Typically, as long as one cable specimen passes the mandrel bend/submerged voltage withstand test at the end of the type test, and all other anomalies are determined not to be caused by global degradation of the insulation, the cable can be considered qualified. Guidance should be provided in qualification standards for the number of data points required, the number of permissible cable failures during the qualification test and how they should be addressed, and the required statistical confidence level to consider a cable qualified.
  - Test sequence 5 indicated that cables with a composite EPR insulation with bonded CSPE individual jackets may exhibit catastrophic failure under LOCA conditions if they previously were exposed to severe aging, causing them to become brittle and shrink. Additional research is recommended to quantify the degree to which this type of cable can be aged before its ability to function during a LOCA is compromised. The research should determine if this observation is specific to the materials and construction of the cables of the one manufacturer for which it was observed, or if the phenomenon is generic to all cables of this construction.
    - In thermally aging cables with a bonded CSPE individual jacket, consideration should be given to using an activation energy representative of the CSPE since it appears to dominate the failure mechanism for this type of cable.

- For safety-related cables, the electrical performance during accident peak conditions is a critical criteria for establishing qualification. However, current qualification standards do not provide any guidance on what electrical characteristics should be monitored or the frequency at which data should be obtained. Consideration should be given to including this information in the qualification standards (e.g., IEEE Std. 383).
- During the testing performed in this program, problems were observed on multiple occasions with moisture intrusion into splices applied to cables that had undergone preaging. In all cases, the cable jackets were degraded and cracked due to the preaging, and the moisture intrusion lead to a deterioration of cable performance. On the basis of these results, consideration should be given to evaluating the condition of a cable and developing an acceptance criterion prior to allowing the application of splices.
- For the Samuel Moore bonded jacket cables tested in this program, localized failures were observed on several of the test specimens after preaging to simulate 40 and 60 years of service, followed by simulated accident testing. While global degradation was not noted for these cables, the localized failures do raise uncertainties related to the accident performance of these cables after being in service for extended periods. On the basis of these results, consideration should be given to identifying and closely monitoring localized adverse environments in plants, and performing condition monitoring of electric cables located in those areas.

#### **Conclusions on Cable Condition Monitoring Techniques:**

It should be noted that most of the condition monitoring (CM) data evaluated in this study were obtained in a laboratory setting; therefore, conclusions regarding the application of the techniques in an actual plant setting cannot be drawn from this work. Additional testing is warranted to determine the impact of plant operating environments and logistics on the feasibility of performing these techniques in situ.

Eleven testing techniques were used throughout this research program. Nine were evaluated as potential methods for use as in situ condition monitoring techniques directly on plant cables or on in-plant sacrificial cable specimens. The remaining two techniques, the functional performance test and the post-LOCA voltage withstand test, were designed primarily to monitor cable performance during and after the LOCA exposure test. The effectiveness of each of the techniques for in situ CM is summarized below.

#### Visual Inspection:

Based on the results of this study, visual inspection should be considered for inclusion in any cable CM program. While it does not provide quantitative data, it does provide useful information on the condition of the cable that is easy and inexpensive to obtain and that can be used to determine if further investigation of the cable condition is warranted. A significant limitation of this technique is that the cable must be visually accessible.

#### Elongation-at-Break (EAB):

• Elongation-at-break was found to be a reliable technique for determining the condition of the polymers studied. It provides trendable data that can be directly correlated with material condition. It is useful as a reference technique; however, its destructive nature prevents it from being used as an in situ means of monitoring electric cables unless sacrificial cable specimens are available.

#### Oxidation Induction Time (OITM):

OITM was found to be a useful technique for monitoring the condition of electric cables. Results show that aging degradation can be trended with this technique for both XLPE and EPR insulation. Since a small sample of cable material is needed to perform this test, OITM is considered an effective in situ technique.

#### Oxidation Inducution Temperature (OITP):

While it is related to OITM, OITP was found to be less sensitive to the detection of aging degradation for the polymers studied. It can be considered an in situ technique; however, OITM is preferred at this time.

#### Fourier Transform Infrared Spectroscopy (FTIR):

• FTIR was found to provide inconclusive results in terms of its ability to trend aging degradation in the polymers studied. Although the results show a consistent trend with aging, the technical basis for the trend remains questionable. Further research is warranted on this technique; however, it is not currently considered effective as an in situ technique for monitoring cable degradation.

#### Indenter:

• The indenter was found to be a reliable device that provided reproducible, trendable data for monitoring the degradation of cables in situ. While it is limited to accessible sections of cables, it was found to be effective for monitoring the condition of some cable jacket and insulation materials. Therefore, the indenter is considered an effective in situ technique for monitoring low-voltage electric cables.

#### Hardness:

• This technique was evaluated since it is a simple, inexpensive technique to perform. The results indicate that, over a limited range, the hardness can be used to trend cable degradation. However, different probes must be used to accommodate the change in material hardness. Also, puncturing of the cable insulating material is a potential concern with this technique. This technique is not considered to be effective as an in situ CM technique.

#### Dielectric Loss:

• This technique was found to provide useful data for trending the degradation of cable insulation. As the cables degrade, a definite change in phase angle can be detected at various test frequencies that can be correlated to cable condition. This technique is considered effective as an in situ CM technique.

#### Insulation Resistance:

• This technique was found to provide useful data for trending the degradation of cable insulation. As the cables degrade, a definite change in insulation resistance can be detected that can be correlated to cable condition. Using 1-minute and 10-minute readings to calculate a polarization index enables the effects of temperature and humidity variations to be accounted for. This technique is considered effective as an in situ CM technique.

#### Functional Performance:

• The use of functional performance data as a means of monitoring the condition of electric cables was evaluated since it is a simple, inexpensive technique to perform. While useful information can be obtained to determine if further CM is needed, this technique alone does not provide sufficient data to determine the degraded condition of a cable. This technique is not considered effective for in situ trending of degraded cable condition.

#### Voltage Withstand:

• This technique is performed as part of the currently accepted qualification process to determine the ultimate condition of the cables under test. At high voltage levels it is a potentially destructive technique that can impart damage to the cable due to the high voltage used. At low voltage levels, the technique can be non-destructive, however, its effectiveness is undetermined. It is not considered effective as an in situ condition monitoring technique.

#### Conclusions on the Use of CM to Predict LOCA Survivability

On the basis of this study it is concluded that no single, non-intrusive, cost effective, currently available CM method alone can be used to predict the survivability of electric cables under accident conditions. A plant instrumentation and control circuit may traverse a number of environments and localized conditions along its length. Many condition monitoring techniques are localized indicators of condition at the specific location along a cable circuit where the measurement is made. The criteria used to define survivability for a particular safety-related circuit are application-specific. Consequently, engineering judgements concerning the integrity and soundness of an electric cable must be made by experienced personnel based upon several condition monitoring tests, including visual, electrical, physical and chemical techniques. A suite of such condition monitoring tests, with periodic measurements referenced to baseline values, may then be used to make survivability assessments.

#### ACKNOWLEDGMENTS

The authors wish to thank the NRC Program Manager, Satish Aggarwal, for his technical guidance in the performance of this research program and in the review of this document. We would also like to thank Jit Vora of the NRC, along with Robert Hall and John Taylor of Brookhaven National Laboratory for their technical review and comments on this and past documents, as well as their managerial direction and support, which enabled the successful completion of this program.

Special thanks and acknowledgments are extended to Sal Carfagno, formerly of Franklin Institute Research Laboratory, Jim Gleason of GLS Enterprises, and Don Stonkus of DJS Associates for their numerous consultations, insights on past practices, and input in the development of test plans and interpretation of results. Their assistance was instrumental in the successful completion of this test program and is greatly appreciated.

The authors also wish to thank Louis Gerlach for providing timely and high quality support on the preparation of test specimens, as well as for setting up and maintaining the test laboratory and his assistance in performing the cable tests.

Our appreciation is also extended to the various members of the BNL staff who provided support to the program over the years, including Jay Adams, Biays Bowerman, Richard Deem, Victor Gutierrez, Don Horn, Sonny Kasturi, Bom Soon Lee, Mano Subudhi, and Helen Todosow and the staff of the Research Information Resources Library. We also thank David Diamond and Avril Woodhead for their review of this report.

We would also like to acknowledge the contributions made by the various students that provided support on this program, including Colleen Nathan, Sadia Hameedi, Jason Sese, Victor Gao, Un Mei Pan, Carmen Jenkins and Suly Palacio.

We also thank Susan Signorelli and Jean Frejka for their assistance in the preparation of this document, along with Patricia Van Gurp and Janice De Pass for their assistance in the preparation of past reports.

The authors also thank the staff of Wyle Laboratories, Huntsville, Alabama for their excellent support in the performance of the aging and LOCA testing of the cable specimens, including Bobby Hardy, the LOCA Testing staff, Don Smith and Claude Thibault.

Our appreciation is also extended to the staff of the Georgia Institute of Technology, Neely Research Center for the successful irradiation of the test specimens, including Peter Newby, Dwayne Blaylock, Rodney Ice, Ratish Karam and Nolan Hertel.

## **ABBREVIATIONS**

| BNL                      | Brookhaven National Laboratory                     |
|--------------------------|----------------------------------------------------|
| СМ                       | Condition Monitoring                               |
| CSPE Chloro-Sulfonated I | Polyethylene (also known as Hypalon <sup>®</sup> ) |
| DBE                      | Design Basis Event                                 |
| DOR U.S                  | 8. NRC, Division of Operating Reactors             |
| EPDM                     | . Ethylene Propylene Diene Monomer                 |
| EPR                      | Ethylene Propylene Rubber                          |
| GPM                      | Gallons Per Minute                                 |
| EQ                       | Environmental Qualification                        |
| I&C                      | Instrumentation and Control                        |
| IE                       | Inspection and Enforcement                         |
| LOCA                     | Loss of Coolant Accident                           |
| NRC                      | . U.S. Nuclear Regulatory Commission               |
| PSIG                     | Pounds per Square Inch Gauge                       |
| QA                       | Quality Assurance                                  |
| RES U.S. NRC,            | , Office of Nuclear Regulatory Research            |
| XLPE                     | Cross-Linked Polyethylene                          |
| XLPO                     | Cross-Linked Polyolefin                            |

### **1. INTRODUCTION**

#### 1.1 Background

As a licensing requirement for commercial nuclear power plants, safety-related electric equipment must be qualified for use in a harsh environment. Environmental qualification (EQ) requirements have evolved over the years, starting with the U.S. Nuclear Regulatory Commission (NRC) Division of Operating Reactors Guidelines for Environmental Qualification of Class 1E Equipment (DOR Guidelines), which were issued as part of Inspection and Enforcement (IE) Bulletin 79-01B. These were followed by NUREG-0588 requirements (Szukiewicz, 1979) which essentially established two categories of qualification, one for older plants and one for newer plants. The current requirements for qualification are specified in the Environmental Qualification (EQ) Rule, which is documented in Title 10 of the Code of Federal Regulations, Part 50, Section 49 (10 CFR 50.49). As knowledge was gained in the area of equipment aging, the EQ requirements were modified to reflect this new knowledge, and, in general, became more stringent. As an example, early EQ requirements did not specifically call for equipment to receive accelerated aging to reflect its end of qualified life condition prior to being tested, whereas the current requirements do.

During a review of qualification requirements to address issues related to license renewal, questions arose as to the technical bases for allowing plants to have equipment qualified to different standards. In addition, testing in which certain cable types failed LOCA tests raised questions related to the qualification of these cable types. As a result, the issues related to EQ requirements were identified as Generic Safety Issue 168, and a task action plan was developed to resolve them.

In support of the task action plan on EQ, the NRC's Office of Nuclear Regulatory Research (RES) has sponsored research to resolve issues related to the process used for the qualification of certain electric components used in commercial nuclear power plants. Brookhaven National Laboratory (BNL) was selected as the lead laboratory to assist RES in this effort. The initial focus of this program was on low-voltage electric cables used for instrumentation and control (I&C) applications. This report focuses on the research results specifically for I&C cables.

### 1.2 Program Objective

The objective of this research program was to provide information to help resolve issues related to the EQ process for low-voltage I&C electric cables. Initially, a comprehensive list of issues of interest was developed based on a workshop held in November 1993. At this workshop, national and international experts in the area of cable qualification participated in technical discussions and provided their insights on specific topics related to cable qualification that should be addressed. The results of this workshop are documented in NUREG/CP-0135 (Lofaro, et al., 1993). Using the information obtained at this workshop, a total of 43 issues related to the EQ process were identified.

Subsequent to this workshop, a thorough literature review and analysis was performed in an attempt to resolve as many of the issues as possible using prior research results before resorting to new cable testing. The literature review and analysis, which is documented in NUREG/CR-6384, Volume 1 (Subudhi, 1996) and Volume 2 (Lofaro, 1996), along with BNL Technical Report TR-6169-9/97 (Lofaro, 1998), categorized each of the issues and was very successful at resolving many of them. The results were as follows:

| Category 1: | Resolved by past work; no new research recommended      | 24 issues |
|-------------|---------------------------------------------------------|-----------|
| Category 2: | Unresolved by past work; no new research recommended    | 6 issues  |
| Category 3: | Unresolved by past work; new research recommended       | 6 issues  |
| Category 4: | Unresolved by past work; no new research recommended    |           |
|             | but may be addressed by work performed on other issues. | 7 issues  |

#### 1. Introduction

As noted, 24 issues were resolved by reviewing and analyzing past research results, and 19 issues remained unresolved. Of those issues that were unresolved, six issues (Category 3) were identified that required additional cable testing to resolve. These issues are summarized as follows:

- How do the properties of cables subjected to accelerated aging techniques used in the original qualification compare with the properties of naturally aged cables of equivalent age?
- What are the limitations in using an estimated value of the activation energy to predict the chemical degradation during thermal aging?
- Do multiconductor cables have different failure mechanisms than single conductor cables, and, if so, are these unique failure mechanisms properly accounted for in the qualification process?
- Do bonded jacket cables have different failure mechanisms than unbonded jacket cables, and, if so, are these unique failure mechanisms properly accounted for in the qualification process?
- Are there any effective condition monitoring techniques for determining cable condition in situ?
- Can condition monitoring techniques be used to predict LOCA survivability?

In addition to the six issues for which new testing was performed, the literature review identified seven issues which the information gained from the new testing might help to resolve. These issues relate to addressing hot spots, impingement, physical damage and improper installation in the qualification process. Also, it was felt that the information gained from the new testing might help resolve issues related to extending the qualified life of I&C cables.

To facilitate future literature reviews on this or related subject areas, a computerized database was developed by BNL as part of this effort. In this database, each document reviewed is listed, along with publication information and a summary of the information included in the document. The database, along with a user's manual for the database, is available in BNL Technical Report TR-6169-06-96 (Hsu, 1998).

### **1.3 Research Approach**

To provide information that would assist in the resolution of the six EQ issues of interest, BNL designed a research program in which three types of I&C electric cables commonly used in commercial nuclear power plants were tested. The cable types tested are:

- Cross-Linked Polyethylene (XLPE) Insulation with Neoprene<sup>®</sup> jacket,
- Ethylene Propylene Rubber (EPR) Insulation with unbonded Hypalon<sup>®</sup> jacket, and
- EPR Insulation with bonded Hypalon<sup>®</sup> jacket

These cable types were selected for study since they represent the most popular types of in-containment cables currently used in U.S. commercial nuclear power plants. In a study performed by EPRI (1994), it was found that approximately 89 percent of the currently operating plants in the U.S. had cables with XLPE insulation in containment, and approximately 73 percent had cables with EPR insulation. Other insulation materials used to a lesser degree in

containment are silicone rubber (27 percent), chloro-sulfonated polyethylene (24 percent), ethylene tetrafluoroethylene copolymer (15 percent) and polyvinyl chloride (6 percent).

Testing for the research program reported herein was performed on unused cables that received accelerated aging to simulate 20, 40, and 60 years of qualified life based on their original qualification parameters. Naturally aged cables from two nuclear power plants were also tested. As a comparison, unaged cable of the same type as the naturally aged cables received accelerated aging, using currently accepted accelerated aging models, to match the service conditions to which the naturally aged cables were exposed. Unaged cables with no pre-aging were also included in the tests as controls.

The BNL test program was structured such that selected unaged cable specimens first received accelerated thermal and radiation aging to the desired equivalent qualified life, then they were exposed to high radiation doses followed by high temperature and high pressure steam and chemical spray, which simulated the first 7 to 10 days of a design basis loss-of-coolant-accident (LOCA). Unaged and naturally aged cables were also exposed to the same LOCA simulations, after which comparisons were made of their physical properties. Both the accelerated aging and LOCA simulation were performed in accordance with IEEE Standard 323-1974, which is the standard endorsed by the NRC in Regulatory Guide 1.89 to qualify Class 1E electric equipment for use in harsh environments in commercial nuclear power plants. The accelerated aging parameters were chosen to match those used in the original qualification of the cables.

Hold points were incorporated into the program to allow the condition and performance of the cables to be monitored at preselected intervals throughout the pre-aging and LOCA testing process. Various condition monitoring (CM) techniques were used at each hold point to obtain data on the cables, as well as to evaluate the effectiveness of those CM techniques for monitoring cable condition. Elongation-at-break (EAB) was used as a reference CM technique, against which other techniques were compared and correlated. The preliminary pre-aging/LOCA test plan is described in BNL Technical Report TR-6168/69-04-95 (Villaran, 1996). The preliminary condition monitoring research plan is described in BNL Technical Report TR-6168/69-03-95 (Lee, 1996).

Six pre-aging/LOCA test sequences were performed to address the six EQ issues of interest. In each sequence, one or more of the three cable types being studied were tested. Condition monitoring measurements were made at preselected hold points, after which the aging/LOCA testing continued, as appropriate. The CM data obtained were used to determine the condition of the cable, as well as to evaluate the CM techniques being studied. The objectives of each test sequence are presented in Table 1.1.

The pre-aging/LOCA testing parameters varied for each type of cable tested, however, each was based on the original qualification test for the cable being tested. In tests where more than one type of cable was tested, the cables were pre-aged separately, when necessary, to allow using parameters consistent with their original qualification. The LOCA test profile was selected to envelop the profiles used in the original qualification for all cables in the test. Sequential pre-aging was used with thermal aging preceding radiation aging. The LOCA tests were also performed sequentially with LOCA radiation preceding steam exposure.

Throughout this research program, periodic public meetings were held to obtain industry input and insights on the testing being performed, and to disseminate the results being obtained. Each of the program plans and test reports was made available for public review and comment. Test results were presented and discussed as they were obtained, and insights gained were incorporated into subsequent tests, as appropriate.

#### 1. Introduction

| Test Objectives                                                                                                                                                            |   | Test Sequence |   |   |          |   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---|---|----------|---|--|--|--|
|                                                                                                                                                                            | 1 | 2             | 3 | 4 | 5        | 6 |  |  |  |
| Primary Objectives                                                                                                                                                         |   |               |   |   | <u> </u> |   |  |  |  |
| <ol> <li>Evaluate pre-aging techniques by comparison of artificially aged<br/>cables with naturally aged cable</li> </ol>                                                  | x | x             | x |   |          |   |  |  |  |
| 2. Determine if any unique failure mechanisms exist for multiconductor cables as compared to single conductor cables.                                                      |   |               |   | x |          |   |  |  |  |
| <ol> <li>Determine if any unique failure mechanisms exist for bonded jacket<br/>cables as compared to unbonded jacket cables.</li> </ol>                                   |   |               |   |   | x        |   |  |  |  |
| <ol> <li>Evaluate the effectiveness of promising cable condition monitoring<br/>techniques and determine if they can be used to predict LOCA<br/>survivability.</li> </ol> | x | x             | x |   |          | x |  |  |  |
| Secondary Objectives                                                                                                                                                       |   |               |   |   |          |   |  |  |  |
| 5. Provide information related to cable performance during the period of extended service past 40 years.                                                                   |   |               |   |   |          | x |  |  |  |
| 6. Provide confirmatory information on the qualification basis for the cables tested.                                                                                      |   |               | x | x | x        |   |  |  |  |

#### Table 1.1 Objectives of the six test sequences

Note: LOCA testing was not required to address the issue related to activation energies, as discussed in Section 3.7 of this report.

### 1.4 Quality Assurance

To ensure that the results of this research are traceable and defensible, a Quality Assurance (QA) program was developed by BNL. The BNL QA program is based on the requirements specified in Title 10, Part 50, Appendix B of the Code of Federal Regulations (10 CFR 50, Appendix B). All work was performed under this QA program, which required the development and approval of detailed test procedures for all testing activities, as well as periodic audits, both by BNL staff and by NRC. Work performed by subcontractors to BNL was also performed according to these QA requirements. The BNL QA plan is described in BNL Technical Report TR-6169-05-95 (Grove, 1996).

The results of test sequences 1 through 3 are reported in a series of interim BNL technical reports (Lofaro, et al. 1998B, 1998C, 1999A, 1999B), while those for tests 4 and 5 are documented in letter reports (Lofaro, 2000A, B). This final program report, which is comprised of two volumes, combines the results of all test sequences to provide information and draw conclusions that can be used to help resolve the issues discussed in Section 1.2. The results of the LOCA tests are presented in Volume 1 of this report. The results of the CM techniques evaluated in the program are discussed in Volume 2.

### 2. TESTING PROTOCOL

### 2.1 Cable Test Specimens

As previously discussed, this research effort involved testing of both unaged and naturally aged cable specimens, which were obtained from decommissioned nuclear power plants. There are many factors which influence the acquisition of cable samples, including cable type, installation, configuration, degree of aging, and jacket and insulation materials. Once the cables were selected, special handling precautions were implemented to insure no damage occurred to the cables during removal and testing. Also, an identification system was developed to uniquely identify each cable specimen and maintain traceability throughout the testing process. A Cable Acquisition Plan (Deem, 1995) was prepared to identify the cable types of interest, as well as the steps and precautions to be taken to mitigate handling damage to the samples during removal and transport.

#### 2.1.1 Acquisition of Cable Samples

During the initial phases of the acquisition process, many nuclear power utilities were contacted to determine cable availability and their willingness to supply cables for this program. Naturally aged cables were requested, along with unaged cable of the same type and manufacturer, if available. Detailed plant information on the service environment seen by the naturally aged cables was also requested. Once a plant indicated a willingness to supply cables, meetings were held with utility representatives to review the types of cables available, and the environmental data available for the cables. By contacting numerous sources, BNL was successful in obtaining sufficient lengths of both unaged and naturally aged cables to meet the program objectives.

In obtaining cables from the plants, candidate cables were first identified from a review of the plant database, then located in a plant walk-down to assess the location and physical installation characteristics. Installation characteristics of interest included installation method (trays or conduits), location (potential hot spots), bends and overhangs. Special attention was given to selecting cables from areas where ambient data were available (temperature, humidity, and radiation).

Emphasis was also placed on obtaining cables from severe environmental stress areas, such as locations within the bioshield (i.e., close vicinity to reactor coolant pumps, pressurizers, steam generators, etc.). Plant files, including EQ documentation, maintenance work requests and radiation survey reports for the candidate cable locations, were reviewed to obtain historical data on the cables. Specific information of interest included the original purchase specifications, manufacture and installation date, environmental data, and initial EQ test reports.

In addition to obtaining naturally aged cables, unaged cables of the same specifications (manufacturer, material) were also obtained from the plants. These cables were used for comparative analysis with the naturally aged specimens. Typically, these cables were obtained from warehouse stock, or mild environment areas (i.e., computer rooms, cable spreading rooms, control room).

To ensure that the cables selected for removal from the plant site were in good condition initially and after removal, in situ insulation resistance (IR) tests and visual examinations were conducted before and after the removal process. Once the acceptability of the cables was established, special precautions were taken to minimize the physical handling of the cables. The cable tray (or conduit) containing the desired cables was cut and removed as a unit. Following transfer to a lay-down area, the tray (or conduit) was carefully removed from around the cable, as opposed to physically pulling the cable. In addition to protecting the cable from physical damage, this also maintained the as-installed configuration. Procedures for cleaning and bagging the cables were also implemented.

Depending upon the cable (unaged or naturally aged), different types of packaging were utilized to protect the cables during transport between the plant site and BNL. Naturally aged cables which were installed in a straight configuration were transported in PVC tubes which were capped at both ends. Naturally aged cables with bends were attached to sheets of plywood to immobilize them and maintain their installed configuration, then placed in wooden crates to protect them during shipping (Figure 2.1). Unaged cables were coiled according to acceptable handling practices, and shipped in barrels, crates, or on pallets. Prior to removal from the plant site, each cable was radiologically surveyed to detect any fixed or loose contamination.



Figure 2.1 Naturally aged cables installed on plywood boards to protect them during shipping

Transportation between plant sites and testing facilities was accomplished using dedicated shippers. This minimized the required handling, and ensured that the cables were protected from damage or exposure to adverse environmental conditions.

Upon receipt at BNL (or the test site), the cable samples were inspected to ensure that there were no visible signs of damage. They were then unloaded, inventoried, and placed in a secure storage area. The temperature and humidity in the storage area were monitored continuously using a calibrated chart recorder to verify that moderate storage conditions were maintained to protect the cables from adverse environmental conditions.

In addition to the cables obtained from decommissioned plants, several cable types were acquired from Sandia National Laboratories to address two specific issues in the program. These cables, manufactured by Okonite and Samuel Moore,

had been tested by Sandia in previous research programs and had exhibited performance anomalies. Samples from the same lots tested by Sandia were obtained to re-evaluate the anomalies experienced in past tests.

The cables tested in each of the six LOCA test sequences are listed in Table 2.1.

| Cable                            | Cable                      | Cable                                                                                                                                                                                                                                                                                                     | Test Sequence |   |        |   |   |   |  |
|----------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|--------|---|---|---|--|
| Manufacturer                     | ufacturer Type Description |                                                                                                                                                                                                                                                                                                           |               |   |        |   | 5 | 6 |  |
| Rockbestos                       | I&C                        | <ul> <li>2/C #14 AWG Firewall<sup>®</sup> III</li> <li>30 mil XLPE insulation</li> <li>45 mil Neoprene<sup>®</sup> overall jacket</li> <li>600 V</li> <li>3/C #16 AWG Firewall<sup>®</sup> III with ground</li> <li>30 mil XLPE insulation</li> <li>46 mil Neoprene<sup>®</sup> overall jacket</li> </ul> | x<br>x        |   | x<br>x |   |   | x |  |
|                                  |                            | <ul> <li>600 V</li> </ul>                                                                                                                                                                                                                                                                                 |               |   |        |   |   |   |  |
| American Insulated<br>Wire (AIW) | I&C                        | <ul> <li>3/C #16 AWG with ground</li> <li>30 mil EPR insulation</li> <li>15 mil CSPE unbonded individual jacket</li> <li>45 mil CSPE overall jacket</li> <li>600 V</li> </ul>                                                                                                                             |               | x |        |   |   | x |  |
|                                  |                            | <ul> <li>4/C #16 AWG with ground</li> <li>30 mil EPR insulation</li> <li>15 mil CSPE unbonded individual jacket</li> <li>45 mil CSPE overall jacket</li> <li>600 V</li> </ul>                                                                                                                             |               | х |        |   |   | x |  |
| Anaconda                         | P                          | <ul> <li>3/C #12 AWG</li> <li>30 mil EPR insulation</li> <li>15 mil CSPE unbonded individual jacket</li> <li>45 mil CSPE overall jacket</li> <li>1,000 V</li> </ul>                                                                                                                                       |               |   |        | x | x |   |  |
|                                  |                            | <ul> <li>1/C #12 AWG</li> <li>30 mil EPR insulation</li> <li>15 mil CSPE unbonded individual jacket</li> <li>1,000 V</li> </ul>                                                                                                                                                                           |               |   |        | x |   |   |  |
| Samuel Moore                     | I&C                        | <ul> <li>2/C #16 AWG with shield and ground</li> <li>20 mil Dekoron<sup>®</sup> (EPDM) insulation</li> <li>10 mil Dekorad<sup>®</sup> (CSPE) bonded individual jacket</li> <li>45 mil Dekorad<sup>®</sup> (CSPE) overall jacket</li> <li>600 V</li> </ul>                                                 |               |   |        | x | x | x |  |
|                                  |                            | <ul> <li>1/C #12 AWG with shield and ground</li> <li>20 mil Dekoron<sup>®</sup> (EPDM) insulation</li> <li>10 mil Dekorad<sup>®</sup> (CSPE) bonded individual jacket</li> <li>600 V</li> </ul>                                                                                                           |               |   |        | x |   |   |  |
| Okonite                          | I&C                        | <ul> <li>1/C #12 AWG</li> <li>30 mil Okonite<sup>®</sup> (EPR) insulation</li> <li>15 mil Okolon<sup>®</sup> (CSPE) bonded individual jacket</li> <li>600 V</li> </ul>                                                                                                                                    |               |   |        |   | x | х |  |

| Tab | le 2 | 2.1 | Cab | le | types | used | in | each | test | t seque | nce |
|-----|------|-----|-----|----|-------|------|----|------|------|---------|-----|
|-----|------|-----|-----|----|-------|------|----|------|------|---------|-----|

I&C = Instrumentation and Control XLPE = Cross-linked Polyethylene EPR = Ethylene Propylene RubberEPDM = Ethylene Propylene Diene MonomerP = PowerCSPE = Chlorosulfonated PolyethyleneAWG = American Wire Gauge

#### 2.1.2 Preparation of Test Specimens

Upon selecting a specific cable for testing, it was retrieved from the cable storage area, and cut to length in accordance with approved program procedures. For this testing program, the cable samples were cut into both long (10-foot or 30-foot) and short (6-inch) specimens for testing. The long specimens were energized during the steam exposure and monitored for cable functional performance. Short specimens, made from the same source as the long specimens, were used for destructive testing to determine the physical and material condition of the cable at various hold points.

Several of the long cable specimens were placed in individual steel Unistrut<sup>®</sup> channels to simulate a typical physical configuration of cables installed in a power plant, i.e., straight horizontal cable trays or conduit. The Unistrut<sup>®</sup> channels also served to protect the cable specimens from damage during handling. Approximately one inch of insulation was removed from the conductors on both ends to allow splices to be made to facility wiring to energize the long specimens. The cables were held in place using Tefzel<sup>®</sup> tie wraps, which were applied by hand just tight enough to hold the cable snugly and prevent it from moving. Figure 2.2 is an end view of four typical Unistrut<sup>®</sup> channels with individual long cable specimens on a test fixture in the thermal aging chamber.



Figure 2.2 Typical long specimens installed in Unistrut<sup>®</sup> shown in thermal aging oven

The remaining long specimens were installed on stainless steel mandrels to simulate actual qualification testing. The specimens were tied to the mandrel using stainless steel wire, which was also applied by hand just tight enough to hold the cable snugly and prevent it from moving. A piece of fiberglass tape was placed between the stainless steel wire and the test specimen to prevent the wire from cutting into the test specimen jacket. Figure 2.3 shows a typical long specimen mounted on a mandrel.



Figure 2.3 Typical long specimen installed on a mandrel

For test sequences 1, 2 and 3, un-insulated butt-splice connectors were crimped to the conductors for later connection to test leads. The facility test leads were connected to the test specimens using Raychem<sup>®</sup> nuclear grade splices after thermal aging, radiation aging and LOCA irradiation of the test specimens were completed. This procedure was modified for test sequences 4, 5 and 6 to further minimize the potential for handling damage to the specimens during splice application. In the later test sequences, the mandrels were modified to include a 2-foot arm to support the ends of the test specimen as they were routed away from the mandrel. In addition, short (2-foot to 3-foot) Teflon<sup>®</sup>-insulated pigtails were spliced to the test specimens using Raychem nuclear grade splices prior to any accelerated aging to further mitigate the potential for handling damage to the test specimens. The pigtails were shielded from the thermal and radiation aging, to the extent possible, to keep them from becoming brittle. After aging, the facility lead wires were connected to the pigtails using a second splice. Figure 2.4 shows a typical specimen mounted on the modified mandrel with pigtails attached, as used for tests 4, 5 and 6.



Figure 2.4 Typical specimen mounted on a mandrel with a modified design for tests 4, 5 and 6

Preparation of the 6-inch short specimens involved separating the cable outer jacket from the individual conductors, and removing the copper conductors from the insulation in accordance with approved program procedures. This allowed for tensile and hardness testing of individual jacket and conductor insulation materials. The outer jacket material specimens were punched into a standardized "dog bone" configuration for elongation-at-break (EAB) testing. The insulation was left in a tubular configuration for testing. The short specimens were placed in stainless steel mesh baskets during pre-aging and LOCA testing. Typically, seven to ten short cable jacket and insulation specimens were inserted into each basket. The baskets were then labeled for removal at specific CM points for materials testing. The exact number of long specimens and baskets prepared for each LOCA test was dependent upon the number of different cable types and CM points included in each test. Figure 2.5 shows a typical basket containing short specimens.

In order not to damage the long specimens, an additional two foot specimen was prepared from the same source as each long specimen to be used specifically for indenter testing. This 2-foot specimen followed the "parent" long specimen throughout the test sequence. Approximately 6 inches of outer jacket material was removed from both ends of the 2-foot specimen to allow indenter testing of the underlying insulation material. Figure 2.6 shows a typical 2-foot specimen used for indenter testing.


Figure 2.5 Typical basket of short specimens



Figure 2.6 Typical 2-foot specimen for indenter testing

# 2.1.3 Identification of Test Specimens

Throughout this program, hundreds of different cable specimens were prepared and tested. It was critical that each specimen be properly and uniquely identified to allow traceability of test results to the proper specimen, and to draw accurate conclusions. To accomplish this, a procedurally-controlled identification scheme was developed to assign a unique identification number to each specimen. These identification numbers are used throughout this report to identify cable specimens and their test results. The scheme is described in the following paragraphs.

New or unused cables were obtained from nuclear facilities, and were typically long coils or reels of cable from warehouse stock. These are used as the "unaged" cables for this program since they were not in service and the aging degradation from storage is expected to be minimal compared to service in the plant. Naturally aged cables from both mild and harsh environments were also obtained and were typically delivered in their installed configuration. Both the unaged and naturally aged source cables obtained are referred to as cable "samples" and were used as the source cable for preparing the test specimens. The cable test "specimens" are the long (30-foot or 10-foot) and short (2-foot or 6-inch) pieces of cable cut from the source cable samples.

The cable samples are identified by a 10-digit identification number, such as "PNI85RB191." Each digit provides information about the sample, as follows:

| Position | Description                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------|
| 1        | Code indicating the source of the cables: "P" for PWR, "B" for BWR, "M" for manufacturer, "D"          |
|          | for DOE facility, "L" for National Laboratory.                                                         |
| 2        | Code indicating the aging of the cable when it was obtained by BNL: "A" for naturally aged, "N" for    |
| _        | new or unused, or "U" for used (installed but not energized or not exposed to harsh environments).     |
| 3        | Code for cable type: "I" for instrumentation, "P" for power, "C" for control.                          |
| 4&5      | Year of installation for naturally aged or used cable, or year of manufacture for new or unused cable. |
| 6&7      | Code indicating the cable manufacturer: "RB" for Rockbestos, "OK" for Okonite, "AI" for American       |
|          | Insulated Wire, "AN" for Anaconda, or "SM" for Samuel Moore.                                           |
| 8.9 & 10 | Sequential number of sample (e.g., 001, 002, etc.).                                                    |

Each long cable specimen was assigned an identification number consisting of the 10-digit ID code from the parent sample from which it was made, followed by a 4-digit number, such as "0101." The first two digits represent the pre-aging/LOCA sequence in which they were tested. The last two digits are the sequential number of the specimen. Two stainless-steel tags with the specimen's 4-digit number engraved on it were tied to each long specimen using stainless-steel wire to ensure positive identification through all phases of testing. The tag wire was wound loosely around the test specimen to prevent it from damaging the test specimen jacket.

A 2-foot specimen was prepared to accompany each long specimen throughout the pre-aging and LOCA testing process for indenter testing, as previously discussed. These specimens carried the same 4-digit number as the "parent" specimen, but with an "X" suffix; e.g., 0101X. A stainless-steel tag with the specimen's 4-digit number engraved on it was tied to each specimen using stainless-steel wire to ensure positive identification through all phases of testing. The tag wire was wound loosely around the test specimen to prevent it from damaging the test specimen jacket.

The 6-inch specimens were prepared from the same source as the long specimens. Therefore, their identification code is linked to the parent specimen. The small specimen identification consists of the 4-digit code from the long specimen, with one prefix and one or two suffix codes attached, such as "I0101AW." The 4-digit core number (i.e., 0101) indicates it was prepared from the same sample cable used to make the long specimen "0101." The prefix indicates the part of the cable used for the specimen; either "I" for insulation, or "J" for jacket. The first suffix indicates the CM hold point at which the specimen was tested; "A", "B", "C", etc. For insulation specimens, a second suffix indicates the color of the insulation; "B" for black, "R" for red, "G" for green, or "W" for white. Each basket of small specimens was labeled with two stainless-steel tags engraved with the identification number to ensure positive identification throughout all phases of testing.

## 2.2 Accelerated Aging Protocol

As part of this research program, various new or unused cables were aged using accelerated thermal and radiation aging techniques to simulate actual service conditions. In all cases, sequential thermal aging followed by radiation aging was used. The following sections describe the process used to perform this accelerated aging. The development of this accelerated aging process is described in detail in the Pre-Aging and LOCA Test Plan (Villaran, 1996).

#### 2.2.1 Accelerated Aging Parameters

The accelerated aging parameters (i.e., activation energy, thermal aging temperature, radiation dose rate) were selected to match those used in the original qualification tests of the cables for the plant from which they were obtained. The

thermal aging time and total integrated dose were then adjusted using a linear extrapolation to achieve the qualified life being simulated (i.e., 20 years, 40 years, or 60 years). This approach was selected to avoid exposing the cables to any aging stresses in excess of what they were originally designed and qualified to withstand, with the exception of the 60-year tests. Since the parameters used in this test program are the same as those to which the cables were originally qualified, the cables can be expected to perform acceptably with a high level of confidence. Also, using the same aging parameters as those for the original qualification allows comparisons to be made with, and extrapolation of test results to, cables used in the plants.

Table 2.2 lists the qualification test reports obtained and reviewed for the pre-aging information. Table 2.3 presents the pre-aging parameters used in the original qualification tests, along with the accident conditions simulated. Included in Table 2.3 is the equivalent qualified life at an assumed service temperature of 140°F (60°C). This information facilitates comparison of the pre-aging for each of the test specimens and illustrates the differences in pre-aging used by the different cable manufacturers in the qualification tests.

#### 2.2.2 Accelerated Aging Procedure

Prior to thermal aging, the test specimens were prepared and installed on their test fixture (Unistrut<sup>®</sup> or mandrel), as discussed previously. Accelerated thermal aging was then performed by Wyle Laboratories in Huntsville, Alabama. All specimens with the same specified aging temperature in a particular test sequence were loaded into one oven. The specimens were not energized during the thermal aging exposure. Oven temperature was controlled to +5, -0°F with a thermal trip setting  $\pm 10^{\circ}$ F above the specified aging temperature. Thermal aging duration was controlled to  $\pm 2$ , -0 percent of the specified duration. In cases where some specimens in the oven had different required thermal aging durations, the oven was shutdown to remove specimens, then restarted to continue the thermal aging run. The shutdown and startup ramps were typically not credited as aging time for the specimens since they were of relatively short duration (approximately 1 hr.). A continuous circular chart recording was used to monitor the thermal aging process. All work was performed in accordance with Wyle Laboratories' pre-aging procedure under a 10 CFR 50, Appendix B Quality Assurance program.

| Cable<br>Tested | Cable Test Laboratory Test Report Title<br>Tested |                                                                                                                                                                     |                                                  | Report<br>Date     |  |
|-----------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|--|
| AIW             | Franklin Institute<br>Research Laboratories       | Qualification of Electrical Cables for a Loss-of-Coolant Accident                                                                                                   | F-C4197-2                                        | 12/75              |  |
| Anaconda        | Franklin Institute<br>Research Laboratories       | Tests of Electrical Cables Subjected to Thermal Aging, Gamma<br>Radiation and a Loss-of-Coolant Accident Simulation                                                 | F-C4350-3                                        | 7/76               |  |
| Okonite         | The Okonite<br>Company                            | Nuclear Environmental Qualification Report for Okonite Insulated Cables                                                                                             | NQRN-1A                                          | Rev. 5<br>10/24/88 |  |
| Samuel<br>Moore | Isomedix Inc.                                     | Qualification Test of Electric Cables Under a Simulated LOCA/DBE<br>by Sequential Exposure to Environments of Radiation, Thermal<br>Aging, Steam and Chemical Spray | LOCA<br>XLPO/<br>EPDM                            | 6/78               |  |
| Rockbestos      | The Rockbestos<br>Company                         | Report on Qualification Tests for Firewall III Irradiation Cross-Linked<br>Polyethylene Constructions for Class 1E Service in Nuclear<br>Generating Stations        | QR-1806 <sup>(a)</sup><br>QR-5805 <sup>(a)</sup> | 5/1/81<br>5/22/86  |  |

| Table 2.2 | Qualification | reports used to | determine test | parameters |
|-----------|---------------|-----------------|----------------|------------|
|-----------|---------------|-----------------|----------------|------------|

(a) Rockbestos report QR-1806 was used to determine the pre-aging parameters for the cables in test sequences 1 and 3, while report QR-5805 was used for test sequence 6.

| Cable                   | Qualified                  | Activation  | Service Pre-aging              |                         | Accident                            | Equivalent<br>Qualified Life |  |
|-------------------------|----------------------------|-------------|--------------------------------|-------------------------|-------------------------------------|------------------------------|--|
| Tested                  | Lite                       | (eV)        | Thermal                        | Radiation               |                                     | at 140°F (60°C)<br>(d)       |  |
| AIW                     | 40 yr.@122°F (50°C)<br>(a) | 1.18<br>(b) | 168hr.@<br>250°F (121°C)       | 25Mrad@<br>0.55Mrad/hr. | 75 Mrad + 1 Peak<br>Steam Exposure  | 11 yrs.                      |  |
| Anaconda                | 40 yr.@156°F (69°C)<br>(a) | 1.18<br>(b) | 168hr.@<br>302°F (150°C)       | 50Mrad@<br>0.36Mrad/hr. | 150 Mrad + 1 Peak<br>Steam Exposure | 120 yrs.                     |  |
| Okonite                 | 40 yr.@194°F (90°C)        | 1.44<br>(c) | 504hr.@<br>302°F (150°C)       | 50Mrad@<br>0.65Mrad/hr. | 150 Mrad + 2 Peak<br>Steam Exposure | 2,495 yrs.                   |  |
| Samuel<br>Moore         | 40 yr.@136°F (58°C)<br>(a) | 1.36<br>(b) | 168hr.@<br>250°F (121°C)       | 25Mrad@<br>0.75Mrad/hr. | 175 Mrad + 2 Peak<br>Steam Exposure | 30 yrs.                      |  |
| Rockbestos<br>(QR#1806) | 40 yr.@194°F (90°C)        | 1.33<br>(c) | 1,300hr.@<br>302°F (150°C) (e) | 50Mrad@<br>0.50Mrad/hr. | 150 Mrad + 2 Peak<br>Steam Exposure | 2,847 yrs.                   |  |
| Rockbestos<br>(QR#5805) | 40 yr.@194°F (90°C)        | 1.33<br>(c) | 909.5hr.@<br>302°F (150°C) (e) | 50Mrad@<br>0.40Mrad/hr. | 150 Mrad + 2 Peak<br>Steam Exposure | 1,992 yrs.                   |  |

Table 2.3 Parameters used in original qualification tests

(a) Service temperature calculated based on thermal aging performed and activation energy stated.

(b) Activation energy obtained from literature (Holzman and Sliter, 1992).

(c) Activation energy calculated based on thermal aging performed and qualified life simulated.

(d) Equivalent qualified life of the insulating material at a service temperature of 140°F (60°C) calculated using the Arrhenius model and the activation energy stated, based on thermal aging only.

(e) Thermal aging duration includes margin above calculated duration of 850 hr.

After completion of thermal aging at Wyle Laboratories, accelerated service radiation and LOCA radiation exposures were performed at the Neely Nuclear Research Center located at the Georgia Institute of Technology in Atlanta, Georgia. The accelerated service radiation exposure was used to simulate service radiation conditions. This was followed by a LOCA radiation exposure simulating the design basis accident radiation dose used in the original cable qualification tests. Specimens were not energized during either of the radiation exposures.

A photograph of the hot cell in which the specimens were irradiated is shown in Figure 2.7. As shown, the hot cell is large enough to accommodate the long specimens in their Unistrut<sup>®</sup> support channels. Figure 2.8 presents a schematic of the hot cell with a typical arrangement of long specimens in Unistrut<sup>®</sup> stacked upon each other, with the open portion of the channels facing the sources. The individual source holders without the sources were first positioned on the test bench at the required distance to provide the desired dose rate. For the mandrel mounted specimens, several mandrels were stacked on top of each other and the source holders were placed at the appropriate distance around the outside circumference of the specimens to irradiate them. The individually identified Cobalt-60 sources are kept in a source storage pool adjacent to the hot cell. After the specimens and source holders were properly placed, the designated sources were transferred from the storage pool into the hot cell by the operator using manipulator arms. The specific sources to be used, and the positions of the sources with respect to the target cable specimens, were calculated and verified by the hot cell engineer prior to the irradiation run. All irradiations were performed in accordance with Georgia Institute of Technology procedures under a 10 CFR 50, Appendix B Quality Assurance program.



Figure 2.7 Hot cell used for irradiation of specimens at Georgia Institute of Technology

# 2.3 LOCA Testing Protocol

The LOCA steam/chemical spray exposure testing was performed by Wyle Laboratories in Huntsville, Alabama. All work was performed in accordance with Wyle Laboratories' LOCA test procedure under a 10 CFR 50, Appendix B Quality Assurance program.

# 2.3.1 LOCA Profile

As for the pre-aging parameters, the LOCA test profile was selected to be consistent with the original qualification test for the cables in performing test sequences 1 through 3, and with the generic BWR/PWR LOCA profile suggested in Appendix A to IEEE Standard 323-1974 in performing test sequences 4 through 6. While the original qualification tests were 30 to over 100 days in duration, the LOCA tests for this program were shortened to simulate only the first 7 to 10 days of the LOCA since post-LOCA duration was not an issue being addressed in this program. The qualification test profiles included either a single or double peak to maximum temperature and pressure, as specified in the qualification report for the cable. In general, a double peak LOCA profile is considered more severe and can cause more degradation to the test cables. Chemical spray was included during the steam exposure for all test sequences. The qualification reports used are listed in Table 2.2.





2-13

2. Testing Protocol

## 2.3.2 LOCA Test Setup

Two different LOCA test chambers were used in this program. One LOCA test chamber was a 30-inch diameter cylindrical chamber that can accommodate the 10-foot long straight cable specimens mounted in the Unistrut<sup>®</sup> support channels. Figure 2.9 shows a side view photograph of this chamber with the specimens inside and the end bell unattached, along with a dimensional schematic of the chamber. Figure 2.10 shows the open end of the chamber with specimens loaded. This chamber was used for test sequences 1, 2 and 3. The second chamber, which was used for test sequences 4, 5, and 6, is a 59-inch diameter vessel, which was more suitable for loading mandrel mounted specimens. Figure 2.11 shows a front view of this chamber.

Thermocouples were mounted in the test chambers to monitor chamber temperature distribution in the horizontal direction and the vertical direction. The chamber temperature distribution in the area of the specimens was monitored by placing five thermocouples within one inch of the cable specimens along their length. Two other thermocouples, placed at the top and bottom of the vertical central axis of the chamber, provided the temperature distribution in the vertical direction. The average chamber temperature was calculated and recorded. The pressure in the test chamber was monitored and recorded throughout the test by means of a pressure transducer connected to the chamber.

The boilers used to provide steam to the LOCA test chamber are capable of providing saturated steam at up to 20,000 lbs/hr at 150 psig; superheat capability is also available. A chemical spray system consisting of a 140-gallon tank, recirculating pump, control valves, flow monitoring, and level instrumentation injects a chemical spray to the chamber through one or more full-cone spray nozzles.

The energized cable specimens were connected to Teflon<sup>®</sup>-insulated facility lead wires prior to being placed in the LOCA simulation chamber. This was accomplished by connecting the lead wires to the un-insulated butt-splices on the test specimens, which were previously attached during the initial specimen preparation for test sequences 1, 2 and 3. For test sequences 4, 5 and 6, the facility lead wires were connected to the pigtails that were installed prior to accelerated aging. Raychem<sup>®</sup> Nuclear Grade Heat Shrink was finally applied to all of the splice areas. The specimens were then placed in the LOCA test chamber. Typically, the facility lead wires exited the LOCA chamber through fittings that were sealed with  $3M^{\text{@}}$  Scotchcast potting compound<sup>1</sup>. The nuclear grade splices attaching the facility lead wire to the test specimen were exposed to the internal environment of the chamber and were not part of the chamber's pressure boundary. Figure 2.12 shows the typical Wyle penetrations on the end of the LOCA chamber with the facility lead wires extending through them.

## 2.3.3 LOCA Test Procedure

Prior to initiating the LOCA transients, the test chamber was preheated to a temperature of approximately 140°F (60°C) and held for approximately 30 to 60 minutes to allow temperatures to stabilize. Following preheat, saturated steam was admitted to the test chamber and was controlled to simulate the LOCA profile desired. The initial transients were continued until the specified peak conditions were reached, after which conditions were held for approximately 3 hours. After completing the transients, the LOCA chamber temperature and pressure enveloped the LOCA test profile specified. The total duration of the LOCA exposure was 7 to 10 days.

<sup>&</sup>lt;sup>1</sup>Several of the energized specimens in test 4 exited directly through the LOCA chamber with no facility lead wire attached, and Swagelock penetration assemblies were installed (see discussion of LOCA test 4).





2-15



Figure 2.10 End view of the LOCA test chamber with the cable specimens loaded prior to testing



Figure 2.11 End view of large diameter LOCA chamber used for tests 4, 5 and 6



Figure 2.12 Facility lead wires extending through the penetrations on the end of the LOCA test chamber

Once the LOCA chamber pressure had decreased to approximately 32 psig, the chemical spray was initiated. The chemical spray flow rate was approximately 0.15 gpm per ft<sup>2</sup> of projected area<sup>2</sup>, as recommended by IEEE Standard 323-1974. Chemical spray solution and steam condensate were captured and recirculated to the spray header for 24 hours, after which the flow was terminated. The chemical spray flow was monitored and recorded during the chemical spray portion of the exposure. The initial chemical spray solution consisted of deionized water with 0.28 molar  $H_3BO_3$  (3000 ppm Boron), 0.064 molar  $Na_2S_2O_3$ , and NaOH to make a pH of 10.6 at the start of the spray test. Dilution of the recirculated chemical spray solution by condensate lowered the pH to approximately 8.5 by the end of spray test.

#### 2.3.4 Functional Performance Monitoring

The long specimens (except the sacrificial specimens that were cut up for archiving at each hold point) were individually powered and loaded as detailed in Figures 2.13 and 2.14 for the Unistrut<sup>®</sup> mounted and mandrel mounted specimens, respectively. Each of these specimens was powered separately with 28 Vdc. A pressure transmitter was connected to

<sup>&</sup>lt;sup>2</sup> The "projected area" for determination of the chemical spray flow rate is the area projected by the test cables in a plane perpendicular to the spray direction. For the tests reported herein, the projected area was approximately 26.7  $ft^2$  resulting in a chemical spray flow rate of 4 gpm.

Figure 2.13 Monitoring circuit diagram for straight Unistrut<sup>®</sup> mounted specimens



2-18

2. Testing Protocol





the chamber leads of each long cable specimen to simulate a 4-20 mA instrumentation loop circuit. The pressure source tank and header with sixteen pressure transmitters can be seen under the test bench in Figure 2.15. The short specimens in the stainless steel baskets were not powered since they were to be used for materials condition monitoring.

Each of the powered specimens was monitored for applied voltage, circuit current, and leakage current throughout the LOCA steam exposure simulation. Circuit current was monitored for each conductor to facilitate troubleshooting. These currents are identified as "A" and "B" on the circuit diagram. Nominal values for the initial healthy circuits are 28 volts dc applied voltage, 12.0 milliamps for "A" and "B" currents, and 0 milliamps for leakage current. These circuit values correspond to the pressure source being maintained at approximately 15 psig. The test specimen powering and monitoring equipment are shown in Figure 2.16.

#### 2.3.5 Post LOCA Inspection and Voltage-Withstand Test

Upon completion of each of the LOCA steam/chemical spray exposures, the test chamber was opened and the specimens were inspected. The specimens were then removed from the test chamber and post-LOCA condition monitoring tests were performed. Following these CM tests, the long cable specimens were submerged in tap water at room temperature while still mounted in their Unistrut® or mandrel, and a voltage withstand test was performed at 80 Vac/mil of insulation thickness, in accordance with IEEE Standard 383-1974. For cables with, as well as without an individual jacket on top of the insulation, only the insulation thickness (30 mils) was considered in determining the test voltage. The one exception was the Samuel Moore cables for which both the thickness of the insulation (20 mils) plus the thickness of the individual jacket (10 mils) were used to be consistent with the original qualification test. Therefore, a test voltage of 2,400 volts was used for all test specimens.

In performing this test, the test voltage was initially set to zero volts, then was gradually increased to 2,400 volts. The acceptance criteria used was for the test specimen to hold 2,400 volts for five minutes without exceeding a leakage current of 10 milliamps, which was the maximum leakage current measurable with the test equipment used. If the leakage current exceeded 10 mA during the rise to 2,400 volts, or during the hold period, the test was terminated and the specimen was considered failed. The test setup for performing the submerged voltage withstand test on the straight specimens is shown in Figure 2.17.

# 2.4 Condition Monitoring (CM) Protocol

## 2.4.1 CM Tests Evaluated

As previously mentioned, two of the issues being studied in this program are related to condition monitoring techniques for installed low-voltage instrumentation and control electric cables. To address these issues, several promising CM techniques were selected for evaluation in this program. Each of these techniques was performed at prescribed times throughout the testing to obtain data for evaluation. The selection process and planned CM evaluation approach are described in detail in the BNL Condition Monitoring Research Plan, BNL Technical Report TR-6168/69-03-95 (Lee, 1996). The CM tests evaluated in this program are listed below.

#### Mechanical CM Tests

- Elongation-at-break
- Indenter (Compressive Modulus)



Figure 2.15 Test bench with hard-wired monitoring circuits and simulated pressure instrumentation loops

#### Chemical CM Tests

- Oxidation Induction Time
- Oxidation Induction Temperature
- Fourier Transform Infrared Spectroscopy

#### Electrical CM Tests

- AC Impedance/Dielectric Loss
- Insulation Resistance

#### Simple/Inexpensive CM Tests

- Visual Inspection
- Hardness

# 2.4.2 Condition Monitoring Points

Periodically throughout the test sequence, testing was halted and condition monitoring data were obtained. These data were used to determine the condition of the test specimens at each stage of the test and to evaluate the effectiveness of the different CM techniques. Each of these hold points, identified by a capital letter, corresponds to a different condition for the cable specimens. The test results reported herein are presented based on these condition monitoring (CM) points, which are defined in Table 2.4.



Figure 2.16 Specimen powering and monitoring equipment

Typical specimen CM hold points in test sequences 1, 2, and 3 were A-B-D-F-G-H for specimens that were being tested to match naturally aged cables, or A-C-E-F-G-H for specimens that were being tested to simulate a specific service age. The CM hold points for the control specimens and the naturally aged specimens were A-F-G-H, since no accelerated aging was applied to these specimens.



Figure 2.17 Test setup for the submerged voltage withstand test

| CM<br>Hold<br>Point | Condition of Cable Specimens                                                                   | Test<br>Sequence |
|---------------------|------------------------------------------------------------------------------------------------|------------------|
| A                   | Baseline as-received condition                                                                 | All              |
| В                   | Completion of thermal aging to match condition of naturally aged cable specimens               | 1, 2, 3          |
|                     | Completion of thermal aging to simulate 20 years of qualified life                             | 4, 5             |
|                     | Completion of thermal aging to simulate 40 years of qualified life                             | 6                |
| С                   | Completion of thermal aging to simulate 20 years of qualified life                             | 1,2              |
|                     | Completion of thermal aging to simulate 40 years of qualified life                             | 3, 4, 5          |
|                     | Completion of thermal aging to simulate 60 years of qualified life                             | 6                |
| D                   | Completion of thermal and radiation aging to match condition of naturally aged cable specimens | 1, 2, 3          |
|                     | Completion of thermal and radiation aging to simulate 20 years of qualified life               | 4, 5             |
| E                   | Completion of thermal and radiation aging to simulate 20 years of qualified life               | 1,2              |
|                     | Completion of thermal and radiation aging to simulate 40 years of qualified life               | 3, 4, 5          |
|                     | Completion of thermal and radiation aging to simulate 60 years of qualified life               | 6                |
| F                   | Completion of 75 Mrad of the simulated LOCA accident radiation                                 | All              |
| G                   | Completion of 150 Mrad of the simulated LOCA accident radiation                                | All              |
| Н                   | Completion of steam/chemical spray LOCA exposure simulation                                    | All              |

# Table 2.4 Definition of lettered CM hold points

.

\_

# 3. DESCRIPTION OF CONDITION MONITORING TECHNIQUES

Condition monitoring of an electric cable involves the observation, measurement, or trending of one or more indicators, which can be correlated to the condition or functional performance of the cable, with respect to an independent parameter, such as time or cycles. Ideally, a CM technique would have the following attributes:

- non-destructive and non-intrusive (i.e., does not require the cable to be disturbed or disconnected),
- capable of measuring property changes or indicators that are trendable and can be consistently correlated to functional performance during normal service,
- applicable to cable types and materials commonly used in existing nuclear power plants,
- provides reproducible results that are not affected by, or can be corrected for the test environment (i.e., temperature, humidity, or radiation),
- inexpensive and simple to perform under field conditions,
- able to identify the location of any defects in the cable,
- allows a well defined end condition to be established,
- provides sufficient time prior to incipient failure to allow corrective actions to be taken,
- available to the industry immediately

CM measurements are intended to provide information that can be used to determine the current ability of a cable to perform within specified acceptance criteria, as well as to make predictions about its future performance and accident survivability. To predict future performance, it is most important to have a trendable indicator and a well defined end point. A trend curve can then be used to estimate the time remaining before the end point is reached.

In this program, a number of promising condition monitoring techniques were evaluated to determine their effectiveness for in situ use. Each technique was performed periodically throughout the accelerated aging and accident testing of the cable specimens to obtain data for this evaluation, as well as to track the condition of the test specimens. The data obtained for the baseline condition of the cables and the service aging portion of the program are the most representative of actual applications of CM techniques in service, and were principally used for evaluating the effectiveness of the various CM techniques. Conditions during the accident exposures were also observed, and are reported herein, to gain a better understanding of cable performance, even though these observations are not relevant to the use of CM in operating nuclear power plants.

In this section, each of the condition monitoring techniques studied is described in terms of the theory behind it and how it was performed. Information is also provided on any special equipment that was used. In all cases, a detailed procedure was developed and approved to provide step-by-step instructions on how to perform the test.

# 3.1 Visual Inspection

Visual inspection of the cable test specimens was an integral part of the research program. In comparison to the other CM methods, which produce quantitative results, visual inspections provide a qualitative assessment of cable condition. However, visual inspection is an in situ test that is inexpensive and relatively easy to perform, and can provide useful information for determining cable condition. Therefore, it is considered an important element of any condition monitoring program, and was evaluated as part of this research effort. For this evaluation, visual inspections of the test specimens were performed prior to testing (baseline), as well as periodically throughout the pre-aging and LOCA simulation processes. The results obtained throughout the research program are compared to those obtained from the baseline visual inspection to determine if visible changes in the cable can be correlated to degradation occurring as a result of aging.

The visual inspections were performed in a standardized, detailed manner in accordance with a BNL-approved test procedure. The only pieces of equipment used were a flashlight, magnifying glass and a tape measure. Cable attributes that were inspected visually include:1) color, including changes from the original color and variations along

the length of cable, and the degree of sheen; 2) cracks, including crack length, direction, depth, location, and number per unit area; and 3) visible surface contamination, including any foreign material on the surface. Also, the rigidity of the cable was qualitatively determined by squeezing and gently flexing it.

# 3.2 Elongation-at-Break

Elongation-at-break (EAB) is a measure of a material's resistance to fracture under an applied tensile stress. It is often termed the "ductility" of a material and is defined as the percent increase in elongation at the time of fracture:

EAB (%) = <u>Final length - Original length</u> x 100 Original length

Therefore, if the specimen's original deformable length (the gage length) is 2.5 inches (63.5 mm), and it deforms to a final length of 6 inches (152.4 mm), then the EAB is  $100 \times (6.0 - 2.5)/2.5$ , or 140 percent.

It is well known that cable insulation and jacket materials, like most polymers, lose ductility as they age. In a nuclear power plant environment the aging process is a combination of thermal oxidation and gamma radiation effects. The oxidation process is accelerated by elevated temperatures. EAB has long been used to quantify the degradation of plastics. Much of this work has been for reactor cable evaluation. Therefore, in the current program, the EAB test was used as the standard procedure for estimating the integrity of cable materials. It was also used in this program as the reference against which other CM techniques were compared.

The EAB tests were carried out using a calibrated Instron tensile tester (model 4202) using ASTM Standard D638-91 for guidance. The tests were performed using 6-inch (152.4 mm) material specimens, which were prepared from the cable insulation and jackets, as described in Section 2.1.2. The standard gage length was 2.5 inches (63.5 mm), however, in a few cases a smaller gage length of 1.5 inches (38.1 mm) was used to avoid testing specimens that deformed during pre-aging. The jacket specimens were in the form of a "dog bone" shape with a 1.25-inch (31.75 mm) gage length and a width of 0.25 inches (6.35 mm). These were prepared by flattening the material to the extent possible, and stamping out the dog bones with an ASTM-approved die. For cables constructed with a composite insulation and bonded individual jacket, EAB measurements were obtained on the composite specimens. Therefore, the ductility is a measure of the overall integrity of the composite insulation and bonded individual jacket.

The standard cross head velocity during the tests was 20 in./min. (508 mm/min.). All tests were performed at room temperature. Three to five replicate specimens were normally tested at each applicable CM hold point. Data that deviated by a large margin from the average value were discarded.

After pre-aging, several of the specimens became very brittle. In order to grip these specimens for testing it was necessary to reinsert a conductor wire into the gripping ends of the insulation to prevent the specimen from being crushed in the grips.

# 3.3 Oxidation Induction Time

A Shimadzu Model DSC-50 differential scanning calorimeter (DSC) was used to measure the time at which rapid oxidation of the test material occurred at a predetermined constant test temperature in a flowing oxygen environment. This is termed the oxidation induction time (OITM). The DSC is an apparatus that supplies heat to an approximately 10 mg sample of insulation or jacket material that is placed in a small aluminum pan. The sample is cut into small pieces, each less than about 1 mg in mass. An empty pan is placed in the heating chamber adjacent to the test specimen to act as a control. The difference in heat supplied to the two pans is, therefore, the heat supplied to the sample. The

onset of oxidation is usually considered to occur when the sample has become depleted of antioxidants, which allows the main polymer backbone to suffer rapid attack.

At the beginning of the test, the temperature of the pans is raised to the predetermined test temperature in flowing nitrogen, which takes about 20 minutes. When the temperature approaches the test temperature, the nitrogen is replaced by oxygen flowing at a rate of 50 ml/min. The OITM is the time from the start of oxygen flow to the time that rapid oxidation of the sample occurs, which is manifested by the appearance of a large exothermic peak in the oxidation curve (the thermogram). The OITM is measured using software supplied with the DSC. Usually, at least two replicate samples are tested to assure reproducibility. The OITM is measured for the cable materials as a function of the various aging treatments that each specimen receives.

The calorimeter was calibrated every month when it was used intermittently. During periods of heavy use it was given a high-temperature cleaning using a  $N_2/H_2$  gas mixture to remove "sooty" deposits. Temperature and enthalpy were calibrated using tin and indium standards.

# 3.4 Oxidation Induction Temperature

As with the OITM measurements, the oxidation induction temperature (OITP) is measured using a DSC. The test specimen is prepared in an identical way to those for OITM However, the OITP is determined as the temperature of the sample is increased at a rate of  $18^{\circ}$ F/min ( $10^{\circ}$ C/min) in oxygen flowing at 50 ml/min. The temperature at which the exothermic peak commences is the OITP, and is measured by software supplied with the DSC.

# 3.5 Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared (FTIR) Spectroscopy is an important technique for analyzing the structure of molecules. The principle involves the measurement of absorbance or transmittance of infrared radiation by molecular structures, including those for polymers. As the radiation passes through a polymer, atoms absorb radiation and begin to vibrate. For a particular chemical bond, maximum vibration occurs for a specific wavelength of radiation. Therefore, by irradiating a specimen with a continuous spectrum of infrared radiation, and measuring the peaks (wavelengths) at which

maximum absorbance or transmittance occurs, the chemical bonds that are vibrating may be identified from standard wavelengths that are available from the open literature.

The FTIR spectroscope used in the current study is a Spectra-Tech Model 410. During test sequence 1 of this program a zinc selenide crystal was used against which the specimen was held in optical contact using a pressure plate. The infrared radiation passes through the crystal and is refracted into the specimen and is then reflected back into the crystal. The amount of absorbance (or transmittance) of the infrared radiation as it passes through the surface layers of the specimen is automatically measured as a function of the wavenumber, which is the inverse of the wavelength of the radiation.

In studying the oxidation of cable materials two of the more important wavenumbers in the FTIR spectrum occur at 1730 and 2916 cm<sup>-1</sup>. The presence of the carbonyl (C=O) peak at 1730 cm<sup>-1</sup> is a direct indication that the polymer is undergoing oxidation and carbonyl bonds are being generated. The 2916 cm<sup>-1</sup> peak represents the -CH<sub>2</sub> bond that is part of the specimen's backbone structure. These bonds could also be present in other constituents that are added to the polymer.

As will be described in Section 4.5 of this report, difficulties were experienced in the use of the zinc selenide crystal. This centered on the difficulty of obtaining adequate optical contact between the crystal and specimens that had become stiff from aging. To overcome this problem, a new selenium crystal assembly was purchased from Spectra-Tech Inc.

that had the advantage of using only a 2 mm diameter area of the specimen for examination. By providing a "pressure tower" that forced the specimen against the crystal at a predetermined pressure, reproducible optical contact could be obtained even for specimens that were relatively stiff. After the purchase of the so called "Thunderdome<sup>®</sup>" crystal attachment, it was used exclusively in all of the FTIR spectroscopy work.

The Spectroscope was calibrated every month by first aligning the infrared beam. Then, the accuracy of the wavenumbers of the peaks in the spectrum were confirmed by comparing values measured on a vendor-supplied control material with standard values listed in the computer's software library.

# 3.6 Compressive Modulus (Indenter)

Compressive modulus is a material property defined as the ratio of compressive stress to compressive strain below the proportional limit. As cable insulation and jacket materials age they tend to harden, which will cause the compressive modulus of the materials to increase. By monitoring this change in compressive modulus, an estimate of the degradation rate of the material can be made.

To monitor changes in the compressive modulus, the Ogden Indenter Polymer Aging Monitor (Indenter) was used. This device presses a probe into the material being tested and measures the force required for the resulting displacement. These values are then used to calculate the compressive modulus of the material. The probe is controlled by a portable computer and appropriate software, which controls the travel of the probe to prevent damage to the cable.

Indenter measurements for both the cable jacket and conductor insulation materials were performed during the initial baseline testing, and at the pre-determined CM hold points discussed previously. For the baseline testing, jacket measurements were conducted at 2-foot (0.61m) intervals along each of the long specimens, and at four different angles  $(0^\circ, 90^\circ, 180^\circ, and 270^\circ)$  circumferentially at each location. Measurements were obtained at the four different angles to account for the differences in the readings taken directly above a conductor, as opposed to readings taken above the space between conductors. The additional measurements also account for any variations in the materials. Each of the individual modulus measurements at the different angles were arithmetically averaged to obtain the mean compressive modulus for each cable specimen. For the insulation measurements, a minimum of three locations were tested for each conductor, and the results averaged to obtain the mean compressive modulus for each color of insulation.

A similar methodology was used at each of the subsequent CM hold points, with some minor modifications. In order to preclude the possibility of damaging the long cable specimens as a result of the handling required to perform the indenter measurements, a 2-foot (0.61 m)specimen was prepared from each of the original long specimens, as discussed in Section 2. Both the long specimen and the 2-foot piece were exposed to the same test conditions so each would receive the same aging exposure.

All compressive modulus measurements were obtained at room temperature. For modulus measurements on softer materials (modulus < 100 N/mm), a probe speed of 0.5 in./min. (12.7 mm/min.) was used. For harder materials (modulus > 100 N/mm), a probe speed of 0.2 in./min. (5.1 mm/min.) was selected. Semi-annually, a full calibration of the indenter was performed. Between full calibrations, a calibration "quick-check" was performed prior to, and after use at each CM hold point. This ensured no damage occurred during shipping or use that would affect measurement accuracy.

# 3.7 Hardness

As a comparison to the indenter, simple hardness measurements were performed on the jacket and insulation specimens, and evaluated as a potential condition monitoring technique. In theory, as the cable materials harden with age, a hardness test may be useful for correlating age degradation with changes in hardness readings. Hardness measurements

are similar to the indenter measurement in that a probe is pressed against the cable and the cable surface deforms. The difference between the simple hardness measurement using a Shore Durometer and the indenter is the level of sophistication of the test, and the sensitivity of the instrument in taking measurements. The Durometer hardness is based on the penetration of the tip into the material being tested. The hardness is then inversely related to the penetration depth, and is dependent on the elastic modulus and viscoelastic behavior of the material.

The Shore Durometer is a simple, inexpensive device, however, its sensitivity is not equal to that of the indenter. A needle-like steel tip is spring loaded against the test material surface, and the depth of penetration is read on a calibrated vernier indicator. The Shore-D durometer used in this evaluation is recommended for use on rigid and some semi-rigid materials. The focus of this evaluation was to determine if the Durometer is sensitive enough to be useful as a condition monitoring tool on electric cables. All the hardness measurements on the jacket and the insulation were performed in accordance with a BNL-approved test procedure. Periodically during the testing process, the Durometer was calibrated against a vendor supplied polymer test block with a pre-determined hardness of 82.

The hardness tests were conducted on the basket specimens that were removed at pre-determined hold points during the testing process. While these samples were prepared primarily for EAB testing, they were also used for hardness, OITM, OITP and FTIR measurements. In order to ensure accurate results, the hardness measurements were not performed on samples that had already been used for EAB testing. For the jackets, the measurements were obtained from the narrow gage length area of the tensile specimens. This area of the specimens was relatively flat and did not require straightening, which could have induced compressive forces that might affect the hardness readings.

#### 3.8 Dielectric Loss

When a steady-state ac test voltage (V) is applied to an insulated cable, the resulting apparent total current (I) that flows consists of a charging current (I<sub>c</sub>) due to the capacitance of the cable insulation and a leakage current (I<sub>R</sub>). The relationships among the applied test voltage and the current components are shown in Figure 3.1 The phase angle  $\theta$  between the applied test voltage (V) and the total current (I) is known as the dielectric phase angle. The compliment of the phase angle is called the dielectric loss angle  $\delta$ .

The leakage current for electric cables is normally much smaller than the charging current, but it is more sensitive to the condition of the insulation. As insulation deteriorates, it is expected that the leakage current will increase, while the capacitive current remains approximately constant. Thus, the ratio of the magnitudes of  $(I_R)$  and  $(I_C)$  will increase. As can be seen from Figure 3.1, this ratio is the tangent of the dielectric loss angle (tan  $\delta$ ). It is called the dielectric dissipation factor and is commonly used as a measure of insulation condition. Similarly, another means of describing insulation condition is the dielectric power factor, expressed as the cosine of the dielectric phase angle (cos  $\theta$ ). At very low power factors (<10 percent), the dielectric power factor (cos  $\theta$ ) is approximately equal to the dielectric dissipation factor (tan  $\delta$ ).

The dielectric loss measurement was performed according to a BNL-approved test procedure, which measures the dielectric phase angle of the cable insulation for the long cable specimens when a test voltage of 5Vac (peak) is applied over a range of frequencies from 0.1 to 5000 Hz. The baseline and final measurements were made from conductor-to-conductor and conductor-to-ground in all the conductor combinations. Measurements at intermediate CM points were made between the black and white insulated conductors, and between the black and white insulated conductors and the ground.



Figure 3.1 Insulation power factor relationship

Dielectric loss measurements for the cable specimens were made using a calibrated two-channel Hewlett Packard HP 35670A Dynamic Signal Analyzer with swept sine option. An internal source provided the applied ac voltage signal to the test specimens, and an internal disk drive allowed the data to be stored for later analysis. A simplified diagram of the test setup with this instrument is given in Figure 3.2.

# 3.9 Insulation Resistance

Insulation resistance measurements are commonly performed to determine the current condition of cable insulation. By applying a voltage from the conductor-to-ground, the resistance of the insulation separating them can be measured. The advantages of this test are that it is relatively easy to perform and requires inexpensive equipment. If the insulation resistance decreases in a predictable manner as the insulation ages, trending of this parameter could be useful as a condition monitoring technique for electric cables. This program evaluated insulation resistance as it is used to monitor the condition of cable specimens that are aged in a controlled series of steps.

When a dc voltage is applied to a test specimen, the total current flowing in the insulation from the conductor-to-ground is equal to the sum of the capacitive charging current, leakage current, and dielectric absorption current. These three component currents change with time. The capacitive charging current and the dielectric absorption current will initially be relatively high when the test voltage is first applied to the test specimen. Once the insulation, which behaves like a capacitor, is energized and charges have aligned across the insulation, these currents will taper off and eventually approach zero. However, leakage current will typically start at zero and gradually increase. In high integrity insulation, leakage current will reach and maintain a steady value after a certain amount of time. If the insulation is badly deteriorated, wet, or contaminated, the leakage current will be greater than that found in good insulation and it could continue to increase over time.



Figure 3.2 Test setup for dielectric loss measurement

As a result, the total current flowing in a test specimen will start out high when a test voltage is first applied, and taper off in different ways over the next several minutes depending on the condition of the insulation. In high integrity insulation the insulation resistance will gradually increase after the test voltage is applied, then a steady value will be reached. Because of this behavior, insulation resistance measurements are taken using an ohmmeter first at one minute and again at ten minutes. The ratio of the insulation resistance at ten minutes to the value measured at one minute is called the polarization index.

An additional factor that must be considered when making these measurements is that insulation resistance is very sensitive to temperature. It is common practice to correct the readings to a single temperature, such as  $60^{\circ}F(15.6^{\circ}C)$  for electric cables, in order to compare measurements taken at different times and to trend the data over an extended period. Another advantage of using the polarization index is that it is not temperature dependent since the temperature correction factor drops out of the calculation.

In test sequence 1, a calibrated Biddle model 210600 digital Megger<sup>®</sup> was used following a BNL-approved test procedure. This instrument was capable of measuring IR values up to 2 gigaohms, which was found to be too low a range to provide quantitative values. For subsequent tests, a calibrated General Radio model 1864 megohmmeter with the capability of measuring IR values up to 200 teraohms ( $200 \times 10^{12}\Omega$ ) was used. IR measurements were made at a test voltage of 500 Vdc in air. The IR values were taken from conductor-to-conductor or conductor-to-ground and recorded at 1 minute after application of the test voltage and again at 10 minutes. Temperature and humidity at the time of the test were also recorded. This provided direct IR values at two intervals of time and allowed calculation of the polarization index of the insulation. This method of IR measurement is similar to what would be performed in the field by plant maintenance technicians.

### 3.10 Functional Performance Test

The ultimate objective of qualification testing is to verify that a cable, at the end of its qualified life, is capable of performing its intended function in a given application under design basis accident conditions. The functional test provided a direct means for evaluating the performance of a cable test specimen while configured into a typical plant instrumentation application. The information thus gathered on the accuracy of the simulated instrumentation circuit, and the magnitudes and pathways of observed leakage currents, provided real-time quantitative research data regarding the LOCA exposure performance of cable test specimens. To perform this evaluation, the test specimens were powered and loaded as shown in Figures 2.13 and 2.14. Each of the long specimens were powered separately with 28 volts DC. A pressure transmitter was connected to the LOCA chamber leads from each long specimen to act as a load. All of the pressure transmitters were connected to a common manifold connected to a source of regulated compressed air so that they monitored the same pressure.

During the simulated LOCA test, the powered specimens were monitored for applied voltage, circuit current, and leakage current. Manifold pressure, as measured by the test specimen pressure transmitters, was compared to actual pressure, as measured by an external pressure transmitter connected directly to the manifold. Circuit current was measured on both sides of each test circuit (current "A" and current "B") to aid in evaluating the source of any anomalies. Nominal instrument readings for a healthy circuit were 28.0 volts DC, 12.8 milliamps for currents "A" and "B", and 0 milliamps for leakage current. Since currents "A" and "B" are for the same circuit, they should be equal for a healthy circuit. A 1/32 amp fuse was placed in the circuit to prevent overloading the power source in the event of a short circuit. Potential anomalies for which the circuits were monitored include: a leakage current greater than 0, indicating a short circuit from conductor-to-ground; a mismatch between currents "A" and "B", indicating a short circuit from conductor-to-ground; a short circuit from conductor-to-ground or conductor-to-conductor.

The performance of a cable specimen's test circuit during the accident exposure test can thus be evaluated by identifying the maximum error indicated by the pressure transmitter loop circuit in which the specimen was connected The magnitude of leakage current measured and the time at which it occurred was also recorded. If the circuit current exceeded 1/32 ampere, causing the protective fuse on the power supply to blow, the time at which this occurred was also noted, along with the success of any attempts to replace the fuse to return a circuit to operation.

## 3.11 Voltage Withstand

After each accident exposure test was completed, the insulation resistance of each long specimen was checked prior to its removal from the LOCA test chamber, and then measured again after the cables were removed from the chamber. At this time post-LOCA visual inspection was performed, and condition monitoring tests were repeated to provide final post-LOCA values for research information purposes.

Once the post-LOCA tests and visual inspection were completed, the long cable specimens were then subjected to a submerged voltage withstand test. While this test is not considered to be a candidate for in situ cable testing, the voltage withstand test was used in the BNL research program as an indicator of whether a cable had survived an end-of-life LOCA exposure. Since this is a high potential test, it was possible that the specimens could have been damaged during the performance of the test. For this reason, all other post-LOCA inspections and tests were completed before the voltage withstand test was performed. (The submerged voltage withstand test is also performed in the final step in cable qualification testing in accordance with IEEE Std. 383-1974.)

The post-LOCA submerged voltage withstand test was performed by Wyle Laboratories personnel using a calibrated Hippotronics Model 760-2HVT high potential test set. Each specimen was individually submerged in a trough, for straight Unistrut<sup>®</sup>-mounted specimens, or a large tank, for mandrel-mounted specimens, containing tap water at room

temperature (73°F/23°C) while being subjected to a test voltage of 80 Vac/mil of insulation thickness for a period of 5 minutes. Based on the thickness of the insulation for the cable specimens tested in this program, the voltage used was 2,400 Vac at 60 Hz. The straight cable specimens remained in their Unistrut<sup>®</sup> supports, and the mandrel-mounted specimens were left on the mandrels during the voltage withstand testing. Splices on the test specimens (to connect the specimen to the facility test leads) were not submerged during this test to ensure that only the insulation system of the test specimen was being subjected to the conditions of the submerged voltage withstand test. Figure 2.17 shows a typical test setup for voltage withstand testing a straight cable mounted on Unistrut<sup>®</sup> channel in a water-filled trough.

As the test voltage was applied to each individual conductor of the cable specimen for five minutes, the leakage current between the conductor and electrical ground was recorded. The maximum leakage current that may be measured by the Hippotronics Model 760-2HVT high potential test set is 10 mA. If the applied test voltage could not be achieved or maintained for the entire five minutes of the test without exceeding the maximum leakage current of the test set, the cable specimen was then considered to have failed the test. The cable was visually monitored to note any sparking, electrical discharges, bubbling, corona noise, or smoke that occurred during the test.

This test is similar to the post-LOCA voltage withstand test performed in many manufacturers' original qualification tests and in the qualification type tests described in the IEEE Std. 383-1974 for electric cable qualification. The major difference is that, in the typical original qualification, as well as in the IEEE standard, the cable specimens were removed from their test mandrels, straightened, and rewound on the mandrels prior to the final submerged voltage withstand test.

# 4. CONDITION MONITORING RESULTS FOR CROSS-LINKED POLYETHYLENE CABLES

This section presents the results of the condition monitoring tests on cables with cross-linked polyethylene insulation. Each CM technique is evaluated based on how well it was able to detect and trend the degradation caused by the preaging administered to the test specimens. In some cases, degradation caused by the accident exposure (radiation plus steam/chemical spray) is also discussed since it provides supplemental data and additional insights into how well the CM technique, as well as the polymer being tested, performed.

# 4.1 Visual Inspection

As discussed previously, the visual inspections were performed in accordance with a BNL-approved procedure that provided a standardized method of inspection. Attributes that were examined included discoloration, surface contamination, cracking and stiffness. Table 4.1 presents a sample tabulation of the visual inspection results for the Rockbestos XLPE-insulated cable specimens from test sequence 1, Group 1.1 (0101, 0102, 0118, 0104, 0105). These specimens received no pre-aging prior to accident irradiation and LOCA steam testing. The table shows the level of detail used in obtaining and reporting visual inspection findings. Results for all groups are discussed individually below.

For the test sequence 1, Group 1.1 specimens, which received no pre-aging prior to LOCA testing, the baseline data show the cables were initially in excellent condition, with no visible signs of degradation. The application of 150 Mrad of radiation had little noticeable affect on the cables. After exposure to simulated LOCA conditions, areas of white/brown residue, along with small, white, powdery spots were noted on the jackets. The white insulation became slightly brown in color. The cables also felt slightly more rigid than their baseline condition, however, they were still somewhat flexible. In general, the specimens appeared to be in good physical condition.

As noted in Table 4.1 for surface contamination, an area of reddish/brown residue was found on specimen 0104. This is believed to be a marking made by the utility using spray paint and is not representative of degradation. Similarly, under "Comments", flat spots were noted on several of the specimens. These are believed to be inherent to the manufacturing process and also do not represent degradation.

The visual inspection results for the Group 1.2 Rockbestos cable specimens (0106, 0107, 0108, 0109, 0110), which were pre-aged to simulate the service conditions experienced by the naturally aged specimen in Group 1.3 (0111), show these specimens were also initially in excellent condition with no visible signs of degradation. After thermal aging at 120°C for 2.86 hours to simulate the naturally aged specimen (0111), the specimens showed a slight yellowing of the white insulation, and the cables became slightly more rigid than initially. The subsequent application of 0.6 Mrad of radiation had little visible effect on the specimens. Application of an additional 150 Mrad of accident radiation also caused little noticeable change in the specimens, with the exception that one circumferential crack was noted on the jacket of specimen 0109. Exposure to the simulated LOCA conditions resulted in the white insulation becoming light brown in color, and a white/brown residue formed on the jackets. The specimens were slightly more rigid than previously.

Visual inspection of the naturally aged specimen in test sequence 1 (0111) found that initially the specimen was in excellent condition with uniform black jacket color, and slight yellowing of the white insulation. No cracks were observed in either the jacket or the insulation. A sticky residue was noted on the jacket initially. The specimen was slightly more rigid than a new cable, however, the insulated conductor had good flexibility. Application of 150 Mrad of radiation to simulate an accident had no visible effect on the specimen. Exposure to the simulated LOCA steam conditions left the jacket with some areas of white/brown residue, and small, white, powdery spots. The white insulation appeared light brown in color. Both the jacket and the insulation felt more rigid than they did previously, however, they still had some flexibility remaining. In general, the specimen appeared to be in good physical condition.

|                                 | Cable Characteristics Noted During Visual Inspection                                                                   |                                      |                                                                                                                       |                                      |                                                                                                                                                                         |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Hold<br>Point                   | Color                                                                                                                  | Cracks                               | Surface<br>Contamination                                                                                              | Flexibility                          | Comments                                                                                                                                                                |  |  |
| "A"<br>Unaged                   | Jacket:<br>1. Uniform black color; low<br>sheen.                                                                       | Jacket:<br>1. No visible cracks.     | Jacket:<br>1. Area of reddish/brown residue on<br>specimens 0104 at<br>0.9 - 1.0 m.                                   | Jacket:<br>1. Good                   | <ol> <li>Specimens inspected prior to<br/>installation in Unistrut*. 100% of<br/>jacket surface examined; insulation<br/>examined at exposed sections on</li> </ol>     |  |  |
|                                 | Insulation:<br>1. Uniform black/white color.                                                                           | Insulation:<br>1. No visible cracks. | Insulation:<br>1. No visible contamination.                                                                           | Insulation:<br>1. Good               | each end of cable.                                                                                                                                                      |  |  |
| B, C, D, E                      |                                                                                                                        | No change - specimen                 | s not exposed to any additional pre-aging after la                                                                    | est hold point.                      |                                                                                                                                                                         |  |  |
| "F"<br>75<br>Mrad               | Jacket:<br>1. Uniform black color; low<br>sheen.                                                                       | Jacket:<br>1. No visible cracks.     | Jacket:<br>1. Area of reddish/brown residue on<br>specimens 0104 at 0.9 - 1.0 m, and<br>0105 at 0.5 -<br>0.6 m.       | Jacket:<br>1. Good                   | <ol> <li>Specimens installed in Unistrut*.<br/>Top 50% of jacket inspected.<br/>Insulation examined at exposed<br/>sections on each end of cable.</li> </ol>            |  |  |
|                                 | Insulation:<br>1. Uniform black/white color.                                                                           | Insulation:<br>1. No visible cracks. | Insulation:<br>1. No visible contamination.                                                                           | Insulation:<br>1. Good               | <ol> <li>Plat spots noted on various portions<br/>of jacket surface for specimens 0102,<br/>0104, 0105, 0118</li> </ol>                                                 |  |  |
| "G"<br>150<br>Mrad              | Jacket:<br>1. Uniform black color; low<br>sheen.                                                                       | Jacket:<br>1. No visible cracks.     | Jacket:<br>1. Area of reddish/brown residue on<br>specimens 0104 at 0.9 - 1.0 m, and<br>0105 at 0.5 - 0.6 m.          | Jacket:<br>1. Good                   | <ol> <li>Specimens installed in Unistrut<sup>®</sup>.<br/>Top 50% of jacket inspected.<br/>Insulation examined at exposed<br/>sections on each end of cable.</li> </ol> |  |  |
|                                 | Insulation:<br>1. Uniform black/white color.                                                                           | Insulation:<br>1. No visible cracks. | Insulation:<br>1. No visible contamination.                                                                           | Insulation:<br>1. Good               | <ol> <li>Flat spots noted on various portions<br/>of jacket surface for specimens 0102,<br/>0104, 0105, 0118.</li> </ol>                                                |  |  |
| "H"<br>150<br>Mrad<br>+<br>LOCA | Jacket:<br>1. Mostly uniform black color;<br>low sheen. Some portions<br>of white/ brownish color on<br>all specimens. | Jacket:<br>1. No visible cracks.     | Jacket:<br>1. Small (1 mm dia.) white powdery<br>spots on sections of cable jacket for<br>specimens 0102, 0105, 0118. | Jacket:<br>1. Slight<br>rigidity     | <ol> <li>Specimens installed in Unistrut<sup>®</sup>.<br/>Top 50% of jacket inspected.<br/>Insulation examined at exposed<br/>sections on each end of cable.</li> </ol> |  |  |
| LUCA                            | Insulation:<br>1. Uniform black/white color.<br>2. White insulation light<br>brown                                     | Insulation:<br>1. No visible cracks. | Insulation:<br>1. No visible contamination.                                                                           | Insulation:<br>1. Slight<br>rigidity |                                                                                                                                                                         |  |  |

# Table 4.1 Sample tabulation of visual inspection results for Rockbestos XLPE/Neoprene® specimens in Group 1.1

4-2

.

# 4. Condition Monitoring - XLPE Cables

Visual inspection results for the Group 1.4 Rockbestos cable specimens (0112, 0113, 0114, 0115, 0116) showed the specimens were initially in excellent condition with uniform jacket and insulation colors, no cracks and no visible signs of degradation. At hold point "C" after thermal aging, all of the specimens showed significant visible signs of degradation. The jackets had areas of grey/silver coloring, while the white insulation was dark brown in color. Numerous cracks were noted in the jackets, however, no cracks were found in the insulation. The jacket cracks were circumferential in nature, with most tightly closed and several opened 1-2 mm exposing the insulation underneath. Small, white, powdery spots were noted near the ends of the jacket on all specimens. The jackets felt brittle with little or no flexibility remaining. The insulation felt moderately rigid, however, it still had some flexibility remaining.

Application of 75 Mrad of radiation had little visible effect on the Group 1.4 specimens, with the only change being the number of circumferential cracks in the outer jacket increasing slightly. It is observed that there is some variability in the number of cracks noted. This is believed to be due to different inspectors performing the visual inspections. Typically, some of the cracks are not well defined and identification becomes subjective. In general, however, the number of cracks appeared to increase with additional aging.

Exposure to the simulated LOCA caused additional degradation to the Group 1.4 specimens. The jackets were badly damaged with numerous circumferential cracks and longitudinal splits. Some sections of the jackets were missing completely. Areas of grey/silver and white/brown residue were noted on the jackets. Both the black and white insulation were very dark brown/black, as if they were burnt, such that it was difficult to distinguish between the two. The jacket remained brittle with no flexibility, while the insulation was moderately rigid with some flexibility remaining.

The corresponding EAB readings for the 20 year pre-aged specimens in Group 1.4 had all been reduced to <5 percent. Additional pre-aging to simulate 40 and 60 years of service at 194°F (90°C), therefore, produced little if any further visible change in the appearance of the cable. This explains why the pre-aged Rockbestos cables all seemed to have a very similar physical appearance.

Similar results were obtained in test sequences 3 and 6, which also included Rockbestos XLPE-insulated cable specimens. The Group 3.2 specimens, which were pre-aged to match the service exposure of the 10-year naturally aged specimens, were found to be in good condition throughout the pre-aging process. No cracking was visually evident in the jacket or insulation of these specimens. The specimens were flexible with no significant hardening noted.

The Group 3.4 specimens were pre-aged to simulate 40 years of qualified life. As for the specimens in Group 1.4, significant degradation was noted on the cable jackets. The jacket material was embrittled and severely cracked with the cracks extending through the entire jacket thickness. No cracking was noted in the insulation and it was not embrittled, however, it was slightly stiffer than the baseline condition.

The thermal pre-aging for the Rockbestos specimens in test sequence 6 was similar to that received by the specimens in test sequence 3; the major difference in pre-aging was the 50 percent greater total integrated dose of service radiation administered to the test sequence 6 cables. As a result, the two groups of preaged specimens were in similar physical condition. Severe cracking of the jackets was noted after pre-aging, however, the insulation appeared to be in good physical condition.

## 4.2 Elongation-at-Break (EAB)

Elongation-at-break (EAB) measurements were performed on the XLPE/Neoprene® cables manufactured by Rockbestos that were included in test sequences 1, 3 and 6 to quantify the condition of the specimens at each CM hold point. These measurements were also used as a reference for comparison with other CM techniques being evaluated in this program. The complete set of EAB values are presented in Appendix A. Selected data are discussed below to characterize the behavior of the XLPE-insulated cables.

In test sequences 1, 3 and 6, two different samples of XLPE-insulated cable specimens were studied. They are designated as PNI79RB188 (2-conductor) and PNI85RB191 (3-conductor), which were manufactured in 1979 and 1985, respectively. Figure 4.1 shows EAB results for the 2-conductor cable. The unaged insulation and jacket materials had EAB values in excess of 500 percent. After the LOCA irradiations (CM Points F and G) and steam/chemical spray (CM Point H), the ductilities were greatly reduced. However, the cable materials were far from brittle.

Figure 4.2 shows data for the three-conductor cable that was artificially aged to simulate the 10-year naturally aged cable in Group 1.3. The Neoprene<sup>®</sup> shows small losses in EAB after the simulated thermal and irradiation aging (CM Points B and D, respectively). However, the XLPE shows a small increase in EAB after thermal aging, and a decrease after the irradiation. When the two LOCA radiation doses were administered (CM points F and G) there was a large loss in ductility. After the LOCA steam/chemical spray, the EAB for the Neoprene<sup>®</sup> jacket again decreased; however, the XLPE showed a small increase. This could be due to penetration of water into the specimen, which could act as a plasticizer or, perhaps, because some of the aging damage was repaired during high-temperature spray testing. One interesting point to note is that the white XLPE consistently showed a larger EAB than the black and red insulation. The differences were usually small, however, and one may use the EAB values from one color of insulation to illustrate the trend for all colors during aging. Alternately, one may use an averaged value for all colors to illustrate general XLPE behavior.

Figure 4.3 shows EAB data for the 10-year naturally-aged cable in test sequence 1. Note that for this cable, CM Point A represents the EAB for the naturally-aged condition; for most other specimens in this program CM point A represents unaged cable. When the naturally-aged cable is compared to specimens that were artificially-aged to simulate 10 years of service, the results are consistent (compare results for CM Point A in Figure 4.3 with those for CM Point D in Figure 4.2). The reasonable agreement is obviously connected with the fact that, for a 10-year aging period, whether artificial or natural, cable degradation is minimal. Therefore, the EAB values for 10-year-aged cable remain very close to those for unaged materials. LOCA irradiation causes a major loss in EAB for the naturally-aged cable, which is slightly more severe than that for the artificially-aged materials. This could be because the two cables are from different production lots, and may have different responses to LOCA testing.

Figure 4.4 shows EAB results for the two-conductor cable sample (PNI78RB188), which was artificially aged under conditions that were equivalent to one-half of the manufacturer's 40-year cable qualification test protocol. After the thermal aging given in CM Point C in Figure 4.4, the EAB dropped to a value of less than 5 percent. The materials remained embrittled for all subsequent service irradiation and LOCA exposures. Based on these findings, the qualification test conditions appear to be very conservative and lead to cable embrittlement after only one-half of the 40-year qualification test protocol is applied.

Table 4.2 summarizes the accelerated thermal and radiation aging carried out in this program on XLPE/ Neoprene<sup>®</sup> cables. The EAB data for the XLPE are averages for all colors of insulation. The exception is for test sequence 3 (Specimen 0303D) results for which only white XLPE was tested. The table includes thermal aging protocols that were used by the manufacturer to qualify the cables for particular service times. In some cases a safety margin was applied so that the cable is aged more severely than they would be under actual service conditions. In order to compare the qualification aging protocols, the Arrhenius equation was used to normalize all of the aging temperatures to an assumed service temperature of 140°F (60°C). The activation energy for aging of XLPE was taken to be 1.33 electron volts/molecule, as determined from the original qualification test report for these cables. The data in the fourth column show that, at 140°F (60°C), the times required to give equivalent aging to that experienced in the qualification test protocols are extremely long. This explains why the XLPE became so severely embrittled during the qualification test simulations in all three test sequences.



Figure 4.2 Effect of aging and LOCA testing on EAB for Rockbestos cable PNI85RB191 (Group 1.2, Specimen 0106) artificially aged to 10 years service



#### Figure 4.3 Effect of LOCA testing on the EAB of Rockbestos cable PAP86RB267 (Group 1.3, Specimen 0111) naturally aged for 10 years

Some additional research was carried out to determine more quantitatively how thermal aging affects the ductility of XLPE insulation. Figure 4.5, prepared from data taken from Appendix A, shows the EAB for white XLPE aged in air at 350°F (177°C). For the shortest aging time of 6 hours, the EAB increases by about 10 percent compared to the unaged condition. As aging continues, EAB slowly decreases with aging time up to about 75 hours. Then the ductility shows a much faster loss, and appears to become stable at about 80 percent. Experiments using a differential scanning calorimeter, which will be described later in Section 4.3 of this report, show that, at about 95 hours, all of the antioxidants in the XLPE have become depleted. At this point, rapid oxidation of the insulation begins. Since the calculated depletion time is close to the time at which the EAB begins to decrease, it is a strong indication that antioxidants, up to the point that they are completely depleted, are very effective in minimizing losses in ductility. However, as Table 4.2 and Appendix A show, severe thermal aging and heavy irradiation may eventually reduce the EAB to a few percent.



| Cable<br>Sample | Group<br>(Specimen)     | Accelerated<br>Aging Treatment                                    | Equivalent Aging<br>Time at 60°C (y) | EAB<br>(%) |  |
|-----------------|-------------------------|-------------------------------------------------------------------|--------------------------------------|------------|--|
| PNI85RB191      | 1.2<br>(Specimen 0106A) | None                                                              | 0                                    | 364        |  |
| PNI85RB191      | 1.2<br>(Specimen 0106D) | 2.86 hr.@120°C + 0.63 Mrad<br>(Simulates a 10yr. nat. aged cable) | 0.4                                  | 365        |  |
| PNI85RB191      | 3.2<br>(Specimen 0303D) | 9.93 hr.@120°C + 2.27 Mrad<br>(Simulates a 10yr. nat. aged cable) | 1.3                                  | 403        |  |
| PNI79RB188      | 1.4<br>(Specimen 0112A) | None                                                              | 0                                    | 624        |  |
| PNI79RB188      | 1.4<br>(Specimen 0112E) | 648.5 hr.@150°C + 26.1 Mrad<br>(One-half of 40yr. qualified life) | 1,420                                | ≤5         |  |
| PNI79RB188      | 6.2<br>(Specimen 0621D) | 909.5 hr.@150°C + 51.4 Mrad<br>(40yr. qualified life)             | 1,992                                | ≤5         |  |
| PN179RB188      | 3.4<br>(Specimen 0312E) | 1301 hr.@150°C + 51.5 Mrad<br>(40yr. qualified life)              | 2,849                                | ≤5         |  |
| PNI79RB188      | 6.2<br>(Specimen 0621E) | 1364 hr.@150°C + 77.0 Mrad<br>(60y qualified life)                | 2,987                                | ≤5         |  |

| Table 4.2 | Effect of | accelerated | aging on | the EAB | of XLPE | insulation |
|-----------|-----------|-------------|----------|---------|---------|------------|
|-----------|-----------|-------------|----------|---------|---------|------------|

# 4.3 Oxidation Induction Time (OITM)

Two samples of Rockbestos XLPE/Neoprene<sup>®</sup> cable were evaluated from test sequences 1 and 3 (PNI79RB188 and PNI85RB191). Sample PNI79RB188 is a two-conductor cable, which received accelerated aging to simulate one-half of the manufacturer's 40-year qualification test protocol. Sample PNI85RB191, a three-conductor cable, received accelerated aging that was used to simulate a 10-year service aging period, comparable to a naturally-aged cable that had been in plant service for 10 years. All of the OITM results for the Rockbestos cables are tabulated in Appendix B of this report.

Figure 4.6 shows thermograms for white XLPE insulation taken from cable PNI79RB188 at a test temperature of 392°F (200°C). Sample weights for the individual tests varied from specimen to specimen in this figure so no weight values are given in the test data table. However, weights were all close to 10 mg. Note that the flat line in the figure denotes the test temperature profile with time. The unaged material (CM Point A) shows a flat region following a small "spike." This spike is the time at which oxygen was admitted to the sample chamber. When the flat region ends, and an exothermic peak appears, it shows that the antioxidants in the sample have been exhausted by oxidation and the main polymer structure begins to be destroyed by further oxidation. The duration of the flat region is measured by computer software and represents the OITM at the particular test temperature. LOCA radiation exposures of about 75 Mrads each (CM Points F and G) cause a decrease in the OITM, as does the LOCA steam/chemical spray (CM Point H). Figure 4.7 shows a bar chart for the OITM of XLPE from Group 1.1, Specimen 0101, as a function of the CM point. Note the large decrease in OITM after irradiation. This may be caused by structural changes in the insulation, or by the radiation-induced losses of antioxidant in the samples.

Figure 4.8 shows an OITM thermogram for black XLPE from sample PNI79RB188 (Group 1.4, Specimen 0112) that was thermally aged for 648.5 hrs at  $302^{\circ}F(150^{\circ}C)$  to simulate one-half of the 40-year qualification protocol. As soon as oxygen was admitted to the specimen chamber, there was a continuous increase in thermal energy absorbed. This indicates that the specimen was already depleted of antioxidants and that the main polymer structure was being oxidized. As shown previously in Table 4.2, this thermal aging treatment is equivalent to a service aging time of 1,420 years at 140°F (60°C). This is in keeping with the data in Figure 3.46 of Volume 1 of this report, which confirms that this is approximately the time that the antioxidants have been depleted. Therefore, the OITM is essentially zero.

For Rockbestos sample PNI85RB191 (Group 1.2, Specimen 0106) accelerated aging was carried out to simulate a 10year natural aging period (Figure 4.9). The thermal and radiation aging treatments (CM points B and D, respectively) cause little change in the OITM compared to the unaged insulation. Note that the black insulation has slightly less oxidation resistance (lower OITM) compared to the white and red XLPE. The OITM is reduced significantly after the LOCA testing protocols. A comparison with the data for the 10-year naturally-aged insulation in Figure 4.10 shows that there is excellent agreement with the artificially-aged XLPE (compare CM point D in Figure 4.9 to CM point A in Figure 4.10).



Figure 4.6 OITM for white XLPE at 392°F (200°C) for Rockbestos cable PNI79RB188 (Group 1.1, Specimen 0101)
4. Condition Monitoring - XLPE Cables



CM Point Figure 4.7 OITM for XLPE at 392°F (200°C) for Rockbestos cable PNI79RB188 (Group 1.1, Specimen 0101) as a function of LOCA testing



Figure 4.8 OITM at 392°F (200°C) for black XLPE from Rockbestos cable PNI79RB188 (Group 1.4, Specimen 0112)



(Group 1.2, Specimen 0106) artificially aged to 10-years service

To supplement the data obtained from the LOCA test specimens, several additional experiments were performed on white XLPE from Rockbestos cable PNI85RB191 at smaller thermal aging intervals to correlate changes in OITM with the elongation-at-break. Table 4.3 shows the results obtained for samples of this insulation that were aged in an oven in a flowing air environment.

Figure 4.11 shows the relationship between OITM and EAB. The times in the parentheses are the aging times in air that the specimens received prior to measuring the OITM. The OITM varies greatly with the pre-aging time and provides a sensitive estimate of the EAB for the aged XLPE. At the 96 hr. aging time, the EAB shows a very large decrease to about 175 percent, indicating that the base polymer structure has begun to be oxidized. In Volume 1, Section 3.7 it was shown that the time for the depletion of antioxidants in oxygen for white XLPE from cable PNI85RB191 is given by:

 $\ln t (\min) = 30.26/RT(^{\circ}K) - 25.88....(1)$ 

From this equation it can be shown that, for the aging temperature used in this study (350°F, 177°C), the antioxidants will be depleted after 2,864 min, or 47.7 hrs. As was also shown in Volume 1, Section 3.7, the time for depletion in air is approximately double that for oxygen. Therefore, after about 95.5 hours, it is predicted that the polymer structure begins to be attacked. The large loss in EAB at 96 hours in Figure 4.11 is, therefore, fully consistent with the prediction from this equation.

An attempt was also made to obtain OITM data for Neoprene<sup>®</sup> jackets. However, the results in Figure 4.12 show that there was not a well-defined flat portion in the thermogram that indicated that the antioxidants were preventing the oxidation of the jacket. It appears that even with unaged material (CM point A) there was a small immediate oxidation process that prevented the meaningful measurement of the OITM. Therefore, Neoprene<sup>®</sup> aging cannot be quantified by the OITM methodology. This has also been commonly observed in prior studies.

In summary, OITM measurements are useful in estimating the gradual loss in EAB as XLPE is thermally aged, as well as showing that, as the OITM tends to zero, a major loss in ductility is to be expected.

#### 4.4 Oxidation Induction Temperature (OITP)

Two samples of Rockbestos XLPE/Neoprene<sup>®</sup> cable from test sequences 1 and 3 were evaluated (PNI79RB188 and PNI85RB191). Figures 4.13 and 4.14 show OITP themograms for sample PNI79RB188, a two-conductor cable, which received accelerated aging to simulate one-half of the manufacturer's 40-year qualification test protocol. The straight lines on each figure show the linear increase in temperature with time, whereas the curves show the thermal energy absorbed by the specimen. Note that in these composite figures the curves have been displaced along the Y axis to more clearly compare the results.

Figure 4.13 shows the changes in the OITP for XLPE caused by thermal and irradiation aging during service (CM points C and E) while Figure 4.14 shows changes during LOCA testing (CM points F, G, and H). There is a large decrease in OITP for the XLPE insulation after the thermal aging treatment (CM point C) but little change after the radiation aging step (CM point E). Examination of the thermograms in Figure 4.13 shows that the initial sharp oxidation peak for CM point A is drastically reduced by thermal aging with the oxidation peak broadened and decreased in height through CM points C and E. The reason for this dramatic change in the shape of the thermogram after the thermal aging is because the thermal aging treatment of 648.5hr. at  $302^{\circ}F$  ( $150^{\circ}C$ ) is equivalent to an aging time of 1,424 years at  $140^{\circ}F$  ( $60^{\circ}C$ ), as shown in Table 4.2 in Section 4.2. For such a long aging period it is to be expected that the XLPE would have become very heavily oxidized and degraded. Table 4.2 shows that after this long term aging protocol, the XLPE has become completely brittle with an EAB of less than 5 percent

In the case of Rockbestos sample PNI85RB191, a three-conductor cable that received an accelerated aging protocol to simulate a 10-year service aging period, the oxidation peaks remain sharp and clearly defined (Figures 4.15 and 4.16). There is, also, only a small decrease in the OITP as the XLPE is aged and LOCA tested through the various CM points. This shows that the aging received is minimal and has only a small effect on the integrity of the insulation, as would be expected.

For the Neoprene<sup>®</sup> jacket from sample PNI79RB188 (Group 1.4, Specimen 0112), the thermograms in Figures 4.17 and 4.18 for unaged material (CM points A) show two oxidation peaks. The first is broad and relatively low, whereas the second is very sharply defined. Thermal aging (CM points C and E) appears to remove the second peak, or at least delay its appearance to a longer test time. The OITP measurements were taken for the first deviation from the horizontal line.

The OITP remains essentially unchanged after the LOCA irradiations (CM points F and G in Figure 4.18), but LOCA steam/chemical spraying (CM point H) causes an increase in OITP. This apparent improvement in cable oxidation characteristics is accompanied by a very large increase in the exothermic reaction (note the major change in the gradient of the thermogram curve. It is speculated that the steam/chemical spray causes the Neoprene<sup>®</sup> to absorb compounds from the chemical spray, and it is these chemicals that oxidize and give rise to the large exothermic reaction seen for CM point H. This seems reasonable because after the LOCA irradiations the exothermic reactions are very small showing that the jacket is no longer capable of being heavily oxidized. Therefore, from a mechanistic standpoint, degradation caused by accelerated thermal and radiation aging is different from that encountered during LOCA steam/chemical spraying.

| Specimen | Aging Time at 350°F (177°C)<br>(hr.) | Oxidation Induction Time<br>(min) | Elongation-at-Break<br>(%)              |  |
|----------|--------------------------------------|-----------------------------------|-----------------------------------------|--|
| 1        | 0                                    | 105.9<br>101.9                    | 444 426 433 Avg = 434 + 9               |  |
| 2        | 6                                    | Avg = 103.9<br>106.7<br>101.4     | 440<br>475<br>498                       |  |
|          |                                      | Avg = 104.0                       | $Avg = 471 \pm 29$                      |  |
| 3        | 18                                   | 68.8<br>65.1<br>Avg = 67.0        | 447<br>339<br>Avg = 393 ± 76            |  |
| 4        | 24                                   | 49.7<br>46.4<br>Ayg = 48.0        | 346<br>393<br>408<br>$Avg = 382 \pm 32$ |  |
| 5        | 48                                   | 9.0<br>8.2<br>Avg = 8.6           | $357 318 362 Avg = 346 \pm 24$          |  |
| 6        | 72                                   | 2.6<br>2.2<br>Avg = 2.4           | 368<br>358<br>$Avg = 363 \pm 7$         |  |
| 7        | 96                                   | 0.8<br>0.6<br>Avg = 0.7           | 213<br>153<br>157<br>Avg = $174 \pm 34$ |  |
| 8        | 120                                  | 0<br>(Instantaneous oxidation)    | 65<br>102<br>79<br>Avg = 82 ± 19        |  |
| 9        | 144                                  | 0<br>(Instantaneous oxidation)    | 81<br>84<br>64<br>Avg = 76 ± 11         |  |
| 10       | 168                                  | 0<br>(Instantaneous oxidation)    | 75<br>86<br>95<br>$Avg = 86 \pm 10$     |  |

# Table 4.3 Correlation Between OITM for White XLPE from Rockbestos Cable PNI85RB191 and Elongation-at-Break

4. Condition Monitoring - XLPE Cables













Figure 4.13 OITP for Rockbestos XLPE (Group 1.4, Specimen 0112) as a function of service aging protocols

4-15

| |



Figure 4.14 OITP for Rockbestos XLPE (Group 1.4, Specimen 0112) as a function of LOCA testing protocols



Figure 4.15 OITP for Rockbestos white XLPE (Group 1.2, Specimen 0106) as a function of service aging protocols



Figure 4.16 OITP for Rockbestos white XLPE (Group 1.2, Specimen 0106) as a function of LOCA testing protocols



Figure 4.17 OITP for Rockbestos Neoprene<sup>®</sup> jacket (Group 1.4, Specimen 0112) as a function of service aging protocols

4. Condition Monitoring - XLPE Cables



Figure 4.18 OITP for Rockbestos Neoprene<sup>®</sup> jacket (Group 1.4, Specimen 0112) as a function of LOCA testing protocols

Figures 4.19 and 4.20 for Neoprene<sup>®</sup> from cable PNI85RB191 (Group 1.2, Specimen 0106) show that the basic shapes of the thermograms are similar, with a broad initial peak followed by a sharply-defined second peak. Little change occurs in the OITP for the service aging treatments (CM points B and D). This is to be expected since the service aging protocol used was relatively mild. For the LOCA radiation doses of about 78 Mrad each at CM points F and G, the OITP shows a small decrease, but after the steam/chemical spray (CM point H) the OITP increases. Some of the changes in OITP as a function of CM point are summarized in Figures 4.21 and 4.22. The tabulated results in Appendix C show that the OITP for all colors of insulation are very similar, so the white insulation was arbitrarily selected to show the trend.

As mentioned above, the insulation for the two-conductor cable (Group 1.4, Specimen 0112 in Figure 4.21) shows a large decrease in OITP after thermal aging (CM point C) but irradiation does not cause any major additional losses. For the three-conductor cable (Group 3.2, Specimen 0303 shown in Figure 4.22) which was given a service aging protocol to simulate 10-years of natural aging, the OITP remains essentially unchanged. These observations are associated with the presence or depletion of antioxidants in the insulation. If the thermal aging treatment is insufficient

to deplete the antioxidants, the OITP values do not change rapidly with aging. However, if the antioxidants are completely deleted, the OITP drops rapidly to lower values.

Figure 4.23 shows OITP results for Rockbestos cable (Group 1.3, Specimen 0111) that was naturally aged for 10-years in a power plant. A comparison of the results for CM point A in Figure 4.23 for the naturally-aged cable to CM point D in Figure 4.22, which represents cable artificially aged to simulate 10-years of service, shows close agreement.

It was not feasible to correlate the OITP for the Rockbestos<sup>®</sup> cables with service aging time and the EAB because, as Table 4.2 shows, the aging protocols that were used in the current program give aging times at a nominal 140°F (60°C) for very short times (1.4 yrs) or very long times(>1,424 yrs). Thus, the important aging period between 0-60 years is not effectively covered by the data available.



Figure 4.19 OITP for Rockbestos Neoprene<sup>®</sup> jacket (Group 1.2, Specimen 0106) as a function of service testing protocols



Figure 4.20 OITP for Rockbestos Neoprene<sup>®</sup> jacket (Group 1.2, Specimen 0106) as a function of LOCA testing protocols



Figure 4.21 Effect of service aging and LOCA testing on the OITP of Rockbestos cable PNI79RB188 (Group 1.4, Specimen 0112)



Figure 4.23 Effect of LOCA testing on the OITP of 10-year naturally aged Rockbestos cable PAP86RB267(Group 1.3, Specimen 0111)

#### 4.5 Fourier Transform Infrared Spectroscopy

Section 3.5 describes the FTIR spectroscopy technique used in the current study. Early in the test program, the original zinc selenide crystal used to refract the infrared beam into the specimen was found to be inadequate. Figure 4.24 shows an FTIR transmittance spectrum using this crystal on white XLPE insulation (test sequence 1, Group 1.3, Specimen 0111) that was naturally aged for 10 years and given a LOCA irradiation of 157.5 Mrad, followed by a steam/chemical spray. In studying polymeric specimens, two of the more important peaks in the FTIR spectrum occur at wavenumbers of 1730 and 2916 cm<sup>-1.</sup> These wavenumbers represent absorptions by the carbonyl bond (C=O) and the -CH<sub>2</sub> bond, respectively. In Figure 4.24, the carbonyl bond is not clearly seen above background. Extensive tests on test sequence 1 specimens showed that the peak could sometimes be detected, but not in a consistent fashion. The -CH<sub>2</sub> peak, however, was always very prominent. In some rare cases for heavily aged specimens, the carbonyl and -CH<sub>2</sub> were reversed, which is indicative of poor optical contact between the specimen and the crystal. Discussions with the spectroscope vendor support the conclusion that the oxidized specimens were not making proper optical contact with the zinc selenide crystal. This made it impossible to obtain consistent spectra when specimens became stiff during aging and did not have flat contact with the large zinc selenide crystal, which measured about 3x0.5 cm. For some stiff specimens, there was essentially only line contact, because of the inability to press the tubular samples flatly against the crystal. Because of this problem, the use of the zinc selenide crystal was discontinued.



Figure 4.24 FTIR spectrum for ten-year naturally aged white XLPE from Rockbestos cable PAP86RB267 (Group 1.3, Specimen 0111) after receiving 157.5 Mrad of LOCA radiation and steam/chemical spray

In order to overcome the difficulty with poor optical contact, a new "Thunderdome®" crystal attachment for the spectroscope was purchased from the Nicolet Instrument Corp. It operates under the ATR (Attenuated Total Reflectance) mode. During test, the specimen is placed on top of the concave crystal and pressure is applied using a ratchet controlled pressure tower to force the specimen against the crystal with a large preset contact pressure. Because only about a 2 mm diameter surface disc of material is involved, excellent optical contact is obtained reproducibly. Figure 4.25 shows a typical spectrum for as-received white XLPE (test sequence 3, Group 3.2, Specimen 0303). Note the much cleaner spectrum compared to that obtained for the zinc selenide crystal shown in Figure 4.24. All subsequent tests in this program were, therefore, conducted with the "Thunderdome. " Appendix D gives the FTIR results obtained. Note that the data are given simply as peak heights on the transmittance spectra, taking into account subtraction of the baseline value of the spectrum at the peak location. The percent transmittance is merely 100 minus the peak height given in Appendix D. Figure 4.26 shows a series of FTIR tests on white XLPE (test sequence 3, Group 3.2, Specimen 0303), which had received a service aging protocol that simulated 10 years of natural aging. This included 9.93 hrs of aging at 250°F (120°C) (CM point B), followed by 2.27 Mrad of radiation (CM point D). At CM points F and G the specimen received 76.6 and 76.7 Mrad of LOCA radiation, respectively, followed by steam/chemical spraying (CM point H). Unfortunately, the carbonyl peak at wavenumber 1730 cm<sup>-1</sup> could not usually be detected by the Thunderdome<sup>®</sup>. It was, therefore, decided to measure the transmittance at wavenumber 2916 cm<sup>-1</sup> to determine if it could be correlated with aging of XLPE. The service aging treatments and the LOCA radiation exposures caused small increases in transmittance indicating that the number of  $-CH_2$  bonds is decreasing (see Figure 4.27). However, the steam/chemical spray causes the transmittance to drop slightly from the LOCA radiation (CM point G) value.



Figure 4.25 FTIR spectrum for unaged white XLPE from Rockbestos cable PNI85RB191 (Group 3.2, Specimen 0303) using the "Thunderdome<sup>®</sup>" attachment

Table 4.4 shows the very limited FTIR data available for XLPE. Values of the elongation-at-break are also given to correlate with the percent transmittance. For the small amount of service aging, the transmittance increase is small, as is the associated decrease in EAB, as would be expected.



## Figure 4.26 FTIR spectra for artificially aged white XLPE from Rockbestos cable PNI85RB191(Group 3.2, Specimen 0303) as a function of CM point

Figures 4.28 and 4.29 plot the FTIR transmittance against the elongation-at-break and the service aging time, respectively. The aging time was normalized to a service aging temperature of  $140^{\circ}$  (60°) using the Arrhenius equation. The data, although very limited, are consistent with the theory that oxidation reduces the number of  $-CH_2$  bonds, thereby increasing the transmittance of infrared radiation. According to Baird (1981), free radicals (R<sup>0</sup>) are formed that combine with oxygen to form peroxyl radicals:

 $R^0 + O_2 = ROO^0$ .....(2)

These radicals can remove hydrogen atoms from another portion of the polymer to form hydroperoxides and a polymer free radical:

 $ROO^0 + RH = ROOH + R^0$ .....(3)

This gives rise to a repetitive cyclic chain reaction as the new free radical reacts with additional oxygen according to equation (2). If the polymer free radical removes hydrogen atoms from the  $-CH_2$  bonds in the polymer during aging then the transmittance of infrared radiation would be expected to increase, as is shown in the current data.



Figure 4.27 FTIR results for artificially aged white XLPE from Rockbestos cable PNI85RB191 (Group 3.2, Specimen 0303) as a function of CM point

| Table 4.4 FTIR and EAB results for white | <b>XLPE</b> insulation from | Rockbestos cable PNI85RB191 |
|------------------------------------------|-----------------------------|-----------------------------|
|------------------------------------------|-----------------------------|-----------------------------|

| Group<br>(Specimen)    | Aging Protocol             | Aging Protocol Equivalent Aging Time at 140° (60°), (years) |      | EAB<br>(%) <sup>(a)</sup> |  |
|------------------------|----------------------------|-------------------------------------------------------------|------|---------------------------|--|
| 3.2 (Spec. 0303A) None |                            | 0                                                           | 87.4 | 426                       |  |
| 3.2 (Spec. 0303D)      | 9.93 hr.@120°C + 2.27 Mrad | 1.4                                                         | 89.8 | 403                       |  |

(a) Average values from at least 3 replicate tests.

It is also important to remember that FTIR spectroscopy is a surface measurement technique. Hence, it is mainly valuable in evaluating surface oxidation characteristics. If there are major differences in the degree of oxidation at the surface of a specimen and the interior, then the "average" behavior of the specimen will not be measurable. To check this possibility, a comparison was made between the percent transmittance for white XLPE naturally aged for 10 years (Group 3.3, Specimen 0307A) and similar material artificially aged to simulate this aging time (Group 3.2, Specimen 0303D). One might suspect that the oxidation profile through a naturally aged specimen would be relatively flat compared with a specimen that had been artificially aged at a higher temperature. However, the percent transmittance values from Appendix D are 89.2 percent and 89.8 percent, respectively, showing good agreement. This indicates that, for this particular accelerated aging protocol, FTIR spectroscopy appears to measure bulk behavior in thin walled

insulation. This may not be true for all accelerated aging protocols. Therefore, it is likely that FTIR is most suitable for examining naturally aged polymers for which the differences between surface and internal oxidation are minimized.

To further investigate the usefulness of FTIR spectroscopy for condition monitoring, a series of tests was run to examine how transmittance is affected by gamma radiation. Specimens of black XLPE were irradiated in air at 50°F (10°C) in the BNL Gamma Irradiation Facility to different dose levels and tested with the "Thunderdome.<sup>®</sup>" Figure 4.30 shows that a sigmoidal relationship exists between the transmittance and the dose. This indicates that XLPE is initially resistant to radiation induced oxidation but, after a given irradiation dose, the rate of oxidation increases.

At even higher doses, the rate of oxidation again decreases. Figure 4.31 shows a correlation between the FTIR transmittance and the elongation-at-break. For the high-ductility specimens that had received smaller radiation doses, the transmittance increased only slightly. As the dose level increases, the transmittance displays a sharp increase.





Overall, FTIR spectroscopy appears to monitor thermal and radiation aging of XLPE by measuring changes in  $-CH_2$  bond concentrations. The XLPE backbone contains many such bonds but one should not assume that it is only the backbone bonds that are oxidized. Other constituents in the cable may contain similar structures. However, additional work is clearly needed to check the usefulness of FTIR as a condition monitoring technique.



Figure 4.30 FTIR results for black XLPE form Rockbestos cable PNI79RB188 as a function of gamma radiation dose in air at 50°F (10°C)

4. Condition Monitoring - XLPE Cables



Figure 4.31 Correlation between FTIR transmittance and elongation-at-break for irradiated black cross-linked polyethylene from Rockbestos cable PNI79RB188

#### 4.6 Indenter

Indenter testing was performed using the Ogden Polymer Indenter, as described in Section 3.6. Measurements were taken on the Rockbestos cables, with Neoprene<sup>®</sup> outer jackets and XLPE insulation, in LOCA test sequences 1, 3, and 6. Appendix E contains the compressive modulus results for all of the specimens tested. Figure 4.32 provides the compressive modulus results for the Group 1.2 specimens, which received relatively mild pre-aging to match the service conditions experienced by the naturally aged cables in Group 1.3. As shown, the compressive modulus showed no significant change as thermal and radiation pre-aging was applied. Results for the XLPE specimens in test sequences 1, 3, and 6, which received accelerated aging to simulate 20, 40, and 60 years of qualified life, respectively, are shown in Figure 4.33. For the specimens pre-aged to 20 years of qualified life, the compressive modulus did not show a continuous increase. Rather, the compressive modulus first increased after thermal aging, then decreased after service radiation. Subsequently, it increased again after accident radiation, but not to its value after thermal aging.

Figure 4.33 also shows that, for the specimens aged to 40 and 60 years of qualified life, the more severe pre-aging did result in a continuous increasing trend in the compressive modulus. These data suggest that below a certain aging degradation threshold, the compressive modulus of the XLPE material does not respond in a predictable, trendable manner. This would indicate that, for relatively low aging conditions, the changes in XLPE modulus may be too small to effectively predict aging related degradation. This observation related to small amounts of aging would support conclusions from previous indenter studies (EPRI, TR-102399), which concluded that the properties of XLPE are such that the modulus remains nearly constant over its life. For larger amounts of aging, the indenter appears to provide trendable data for XLPE.

Comparing CM hold point "A" in Figures 4.32 and 4.33, it is noted that these XLPE specimens have different baseline values for compressive modulus. The cable sample used to make the Group 1.2 specimens was a three-conductor, #16 AWG Rockbestos cable, while the sample for the specimens in Groups 1.4, 3.4 and 6.2 was a two-conductor, #14 AWG Rockbestos cable. All other specifications were the same. The two-conductor cables had an initial modulus of approximately 100 N/mm (572 lbs/in), compared to a modulus of approximately 175-200 N/mm (1000-1144 lbs/in) for the three-conductor cables. These results are consistent with the EAB data, which show the two-conductor cables are initially more ductile than the three-conductor cables.



Figure 4.32 Compressive Modulus versus pre-aging for XLPE from Group 1.2 pre-aged to simulate cable naturally aged for 10 years

| A = Baseline               | $\mathbf{F} = \mathbf{Post}$ half accident radiation |
|----------------------------|------------------------------------------------------|
| B = Post Thermal Pre-aging | G = Post full accident radiation                     |
| D = Post Service Radiation |                                                      |

The difference in baseline modulus values demonstrates the variation in properties that can be found among cables from the same manufacturer, but different vintages. The cause for these differences could be the result of chemical processing differences during fabrication, or it may be related to the physical design of the cables. Previous research using the indenter on insulation and jacket materials (EPRI TR-102399, June 1993) hypothesized that differences in indenter moduli for a given polymer may be related to the actual fabrication process in which the insulation may be subjected to higher compressive stresses due to the physical design of the cable. Over long periods of time, if these stresses do not completely relax, they could result in less ductile material. This study contained data limited to a single threeconductor cable (XLPE insulation) that had a baseline modulus of 130 N/mm (744 lbs./in). This data point, while less than the range observed in this study, is greater than the two-conductor baseline value observed. No other data on XLPE insulation were reported.

A review of the publicly available data on XLPE modulus identified only limited data. In a study performed by Sandia National Laboratories (Jacobus, 1992) indenter measurements were performed on a Rockbestos Firewall® III, threeconductor cable with XLPE insulation. This cable had an initial modulus of 130N/mm (740 lbs./in.). Following preaging, which consisted of exposure to 20 Mrad at 212°F (100°C) for three months, a 35 percent increase in modulus was



Figure 4.33 Compressive Modulus versus pre-aging for XLPE from Groups 1.4, 3.4 and 6.2 pre-aged to 20, 40 and 60 years of qualified life



F = Post half accident radiationG = Post full accident radiation

reported (175.5 N/mm, 1,000 lbs./in.). Other samples of the same cable, which were pre-aged for six months (40 Mrad@ 212°F), exhibited a 40 percent modulus increase (182 N/mm, 1,040 lbs./in.), while samples pre-aged for nine months (50 Mrad@ 212°F) exhibited a modulus increase of 65 percent (215 N/mm). A comparison shows that the results reported herein are in relatively good agreement with the values observed in the Sandia study.

Correlation of compressive modulus with elongation-at-break measurements was difficult for XLPE material, especially for the Group 1.4, 3.4 and 6.2 specimens. Following thermal aging, the EAB decreased quite rapidly for the XLPE insulation in these tests (<5 percent elongation remaining). This degradation was reflected by increasing modulus, however, the indenter was still able to produce compressive modulus measurements subsequent to thermal aging. For the Group 1.2 and 3.2 specimens, which received relatively mild aging by comparison, EAB was able to be compared to the compressive modulus. As shown in Figure 4.34, the relatively mild aging for these specimens resulted in little or no change in the modulus. Therefore, only a moderate correlation with EAB was found.

Figure 4.35 presents the compressive modulus values for the Neoprene<sup>®</sup> outer jackets on the Group 1.2 specimens from test sequence 1. A slight decrease in the modulus from the baseline value of approximately 10 N/mm (57 lbs./in.) was noted after service thermal and radiation aging. An increase in modulus was noted after exposure to accident radiation. A more significant increase in modulus was noted in the Group 1.4 specimens (Figure 4.36), which were pre-aged to the equivalent of 20 years of qualified life. Following thermal aging, the Neoprene<sup>®</sup> outer jackets were brittle, and this was reflected in the dramatic 1,900 percent increase in compressive modulus. Clearly, the predominant driver in this increase was the thermal aging.

The increase in modulus for the Neoprene<sup>®</sup> outer jackets was even larger following the 40 and 60 year aging in test sequences 3 and 6, where the modulus was seen to increase up to 4,750 percent. At this point, the outer jackets were

very hard and contained visible cracks. The cracking was worsened during the process of clamping them in the indenter, and further testing was not possible. Because of this, modulus measurements taken after thermal aging (CM point C) for test sequences 3 and 6 are not considered to be accurate representations of the modulus of the Neoprene<sup>®</sup>.



D = Post Service Radiation



Figure 4.36 Compressive Modulus versus pre-aging for Neoprene® from Group 1.4 pre-aged to 20 years of qualified life

| A = Baseline               |  |
|----------------------------|--|
| B = Post Thermal Pre-aging |  |
| D = Post Service Radiation |  |

F = Post half accident radiationG = Post full accident radiation

A review of past research data for Neoprene<sup>®</sup> reveals similar large modulus increases for aged cables. In a Sandia study (Jacobus, 1992), cables with Neoprene<sup>®</sup> outer jackets received accelerated aging to the equivalent of 20, 40, and 60 years of service at 131°F (55°C). At the equivalent of 20 years, the modulus increased to 1945 lbs/in (340 N/mm), from a baseline of 99 lbs/in (17 N/mm). For the equivalent of 40 years of aging, the modulus increased to 2236 lbs/in (391 N/mm), and at 60 years of age, the modulus was 2430 lbs/in (425 N/mm). Cracking was reported for these jackets, similar to that observed in this study also. These data are consistent with the results presented herein, and show the relatively low resistance to aging for Neoprene<sup>®</sup> material.

It is recognized that the dose rates used in this study were relatively high compared to those expected in actual service. Therefore, dose rate effects were anticipated in the test samples. To investigate the impact of dose rate effects on the evaluation of the indenter as an in situ condition monitoring technique, a separate test was performed on individually irradiated cable specimens. Pieces of XLPE-insulated conductor were individually irradiated at low (0.02 Mrad/hr.), moderate (0.20 Mrad/hr.) and high (1.30 Mrad/hr.) dose rates. Indenter measurements were taken periodically to determine how the dose rate effects influenced the data for these specimens, and whether the conclusions reached related to the effectiveness of the indenter technique would be impacted. The results of this test (Figure 4.37) show that the high dose rates produced slightly less degradation of the specimens, while the low and intermediate dose rates produced similar results. However, the difference between the high dose rate values and the others was relatively small. Also, the same general increasing trend in compressive modulus with increasing aging was found for all dose rates. Therefore, these results indicate that the high dose rates used in this program should not influence the overall conclusions regarding effectiveness of the indenter.



Figure 4.37 Comparison of compressive modulus versus radiation dose for XLPE as a function of dose rate

#### 4.7 Hardness

As discussed in Section 3.7, hardness measurements were taken in accordance with a BNL approved test procedure using a hand-held Rex-D durometer. Measurements were obtained on specimens from the first three test sequences, however, this technique was ultimately discontinued due to problems encountered with the test technique and the durometer used. Hardness data for the Rockbestos XLPE-insulated specimens from test sequences 1 and 3 are shown in Figure 4.38. To obtain this data it was necessary to stack several specimens so that the 10 lb. (44.48 N) spring force from the durometer would not cause the point to totally penetrate the material. Hardness results for all specimens tested are presented in Appendix F.

For the XLPE insulation from test sequence 1, Group 1.4, which was pre-aged to simulate 20 years of qualified life, a 6 percent increase in hardness was measured from the baseline condition to the aged condition (40 to 42.5 Shore-D hardness). This relatively small change in hardness would be difficult to accurately detect in situ using the hand-held durometer. For the specimens aged to the equivalent of 40 years of qualified life in test sequence 3 a more significant, and detectable change was observed. For these specimens, a 22 percent increase in hardness was observed (41 to 50 Shore-D hardness). Following the accident radiation exposure, the hardness increased to 57.

Hardness data on the Neoprene<sup>®</sup> outer jackets from the test sequence 1 specimens were not obtainable due to the brittle condition of the jackets following thermal aging. Following the thermal aging exposure the outer jackets were found to be cracked and brittle, and, in many instances, shattered under the load from the durometer. The use of a mandrel on the test sequence 3 specimens eliminated this problem. The degree of hardening resulting from the thermal aging was evident by a marked increase in hardness from a baseline value of 28 to a value of 85 after pre-aging.

To evaluate the effectiveness of this technique, an attempt was made to correlate the hardness values with the EAB measurements for the specimens. For the Group 1.4 and 3.4 XLPE specimens in test sequences 1 and 3, this was not possible since the brittleness of the materials following thermal aging resulted in EAB values less than 5 percent. However, such a comparison was possible for the specimens in Group 1.2 and 3.2, which were aged to simulate the

service conditions experienced by the naturally aged specimens in Groups 1.3 and 3.3, respectively. As shown in Figure 4.39, an excellent correlation between the two CM methods was seen. The excellent correlation between EAB and hardness seen for the XLPE insulation indicates the potential usefulness of hardness for condition monitoring. However, as discussed in Section 3.7, a specially designed hardness tester would be needed to allow the tip configuration and the spring force to be varied to accommodate the change in material hardness as a function of the amount of aging degradation experienced by the material.



#### 4.8 Dielectric Loss

Dielectric loss measurements were performed in accordance with a BNL test procedure using a two-channel Hewlett Packard HP 35670A Dynamic Signal Analyzer, as described in Section 3.8. The data obtained are included in Appendix G. Selected results are discussed in the following paragraphs.

Figure 4.40 presents the data for 2/C #14 AWG Rockbestos Firewall<sup>®</sup> III XLPE-insulated cables with Neoprene<sup>®</sup> outer jackets. The average dielectric phase angle measured from conductor-to-conductor as a function of the applied ac test voltage is plotted for the baseline cables (no pre-aging) and for cables pre-aged to the equivalent of 20, 40, and 60 years of qualified life. From approximately 10 to 3000 Hz, the plot generally moves toward the origin throughout the service pre-aging process compared to the baseline values.



Figure 4.39 Correlation of EAB and hardness for XLPE insulation

As cable insulation deteriorates over time, either as a result of natural in-service aging or by being subjected to accelerated aging, the degradation in the dielectric properties of the insulating material can be detected, monitored, and trended. Low voltage ac applied to the test specimens at frequencies between 10 and 500 Hz were found to be the most effective in showing the effects of insulation degradation on dielectric properties. Lower frequency applied test voltage also showed the dielectric changes, especially at severe levels of insulation damage and degradation. However, the very low frequency (less than 1 Hz) measurements were much more difficult to perform, very time consuming, not consistently trendable, and results were not as repeatable.

As discussed in Section 3.8, these dielectric measurements can be presented in terms of the insulation power factor, i.e., the cosine of the dielectric phase angle,  $\cos \theta$ . Table 4.5 summarizes the insulation power factor values for pre-aged XLPE-insulated cables compared to the baseline values measured before any pre-aging had been performed. The insulation power factors measured at 50, 100, and 500 Hz are presented as an example, since the changes and trends were most consistently demonstrated within this range of frequencies.



Figure 4.40 Dielectric phase angle vs test voltage frequency for aged XLPE-insulated cables

| Insulation Power Factor - Low Voltage XLPE-Insulated Cables |       |                  |                                      |        |        |
|-------------------------------------------------------------|-------|------------------|--------------------------------------|--------|--------|
| Cable<br>Specimens                                          | Group | Aging<br>(Years) | Frequency of Applied ac Test Voltage |        |        |
|                                                             |       |                  | 50 Hz                                | 100 Hz | 500 Hz |
| Baseline                                                    | All   | None             | 0.13                                 | 0.24   | 0.77   |
| 20 Years                                                    | 1.4   | None             | 0.14                                 | 0.26   | 0.81   |
|                                                             |       | 20               | 0.18                                 | 0.29   | 0.82   |
| 40 Years                                                    | 3.4   | None             | 0.13                                 | 0.23   | 0.74   |
|                                                             |       | 40               | 0.20                                 | 0.33   | 0.84   |
| 60 Years                                                    | 6.2   | None             | 0.13                                 | 0.23   | 0.74   |
|                                                             |       | 60               | 0.19                                 | 0.33   | 0.85   |

Table 4.5 Insulation Power Factor for XLPE-Insulated Cables

The data in Table 4.5 show a measurable general trend of increasing insulation power factor from the unaged condition of the cable to the post-service aging condition. There is also good consistency in the relative insulation power factor as the total equivalent service aging, and corresponding level of insulation degradation, increased from 20 years up to 60 years.

It should be noted that the 20 year and 40 year groups were thermally aged per the parameters of Rockbestos qualification report QR #1806, i.e., 40 years service at 194°F (90°C) was simulated by 1,300 hours at an oven temperature of  $302^{\circ}$ F (150°C). The 60 year group, on the other hand, was thermally aged per the parameters of Rockbestos qualification report QR-5805, i.e., 40 years service at 194°F(90°C) was simulated by 909.5 hours at an oven temperature of  $302^{\circ}$ F (150°C). Based on qualification report QR-5805, 1,364 hours of thermal aging were required to simulate 60 years of service (150 percent of 909.5 hrs.), which is only slightly more than the 1,300 hours received for the 40 year pre-aging in the Group 3.4 specimens. Service irradiation was similar for the two test reports, therefore, the 60 year cables received 50 percent more service radiation than the 40 year cables.

The 40 year group had a slightly higher power factor than the 60 year group when measured at 50 Hz, most likely the result of the similar level of pre-aging received by the two groups of cables. Nevertheless, with the exception of the power factors measured at 50 Hz, the 60 year group followed the general trend toward higher insulation power factor as cable degradation increased because of pre-aging. Therefore, dielectric loss measurements do appear to be trendable, and may be useful for monitoring the condition of cables if a well defined limiting value can be established.

#### 4.9 Insulation Resistance (IR)

Insulation resistance measurements were performed in accordance with a BNL test procedure using a General Radio Model 1864 Megohmmeter, as described in Section 3.9. The data obtained are included in Appendix H. Selected results are discussed in the following paragraphs.

The baseline insulation resistance readings at 10 minutes for the 2/C #14 AWG Rockbestos Firewall<sup>®</sup> III XLPE-insulated cables with Neoprene<sup>®</sup> outer jackets were generally very high, frequently exceeding the 200 Teraohm upper range of the test instrument. Pre-aging in accordance with the parameters of the original qualification test (Rockbestos Report QR #1806), which were very severe, produced large changes in the insulation resistance. The average insulation resistance, corrected to 60°F (16°C), for 40 and 60 years of qualified life at a service temperature of 194°F (90°C), dropped between one and two orders of magnitude compared to the baseline readings. No quantitative data were obtained for long specimens aged to the equivalent of 20 years of service at 194°F (90°C) because the insulation resistance, even for the specimens aged to 20 years, exceeded the 2 gigaohm maximum range of the Biddle megohmmeter used in test sequence 1.

The average insulation resistance measurements for the 60 year aged cable specimens was actually higher than for the 40 year aged specimens. It should be noted, however, that the 20 year and 40 year groups were thermally aged per the parameters of Rockbestos qualification report QR #1806, i.e., 40 years service at 194°F (90°C) was simulated by 1,300 hours at an oven temperature of  $302^{\circ}$ F (150°C). The 60 year group, on the other hand, was thermally aged per the parameters of Rockbestos qualification report QR-5805, i.e., 40 years service at 194°F (90°C) was simulated by 909.5 hours at an oven temperature of  $302^{\circ}$ F (150°C). This required 1,364 hours of thermal aging to simulate 60 years of service (150 percent of 909.5), which is only slightly more than the 1,300 hours received for the 40 year group. Radiation aging was similar for the two test reports, therefore, the specimens in the 60 year pre-aging group received 50 percent more radiation than those in the 40 year pre-aging group. Consequently, with less than a 5 percent difference in thermal aging, which was the dominant pre-aging parameter causing degradation, there was very little actual difference in the condition of these two groups of cable.

Figure 4.41 presents the polarization index data for 2/C #14 AWG Rockbestos Firewall<sup>®</sup> III XLPE-insulated cables with Neoprene<sup>®</sup> outer jackets. The polarization index, as a ratio of the 10 minute and 1 minute insulation resistance readings, minimizes the temperature and humidity effects and the differences in baseline readings among the cables, thereby providing a better relative representation of the dielectric condition of the cables. The large change from the baseline values is clearly shown in the figure. As discussed in the previous paragraph, however, the condition of the 40 year aged group is nearly the same as the 60 year aged cables. Therefore, the apparent increase in the polarization index for the 60 year aged cables is nothing more than variation in the average initial condition of the two groups. Furthermore, referring to the elongation-at-break (EAB) values for cables aged to 20 years of service at 194°F (90°C) in Table 3.3 of Volume 1 of this report, it is seen that EAB has been reduced to less than 5 percent. This means that the ductility of the XLPE insulation in the 20, 40, and 60 year cable groups has been reduced to its minimum and little difference would be expected in the insulation resistance or polarization index readings at that extreme level of degradation.



Figure 4.41 Polarization Index for aged XLPE-insulated cables

Given the large change in polarization index from the baseline to the 40 and 60 year aged cables (and to the 20 year cables, if quantitative values were available), it follows that the insulation resistance/polarization index could be a trendable parameter for increments of degradation smaller than depicted in Figure 4.41. This was in fact found to be the case in test sequence 3 (Lofaro, et.al., January 1999A) where temperature-corrected insulation resistance measurements for baseline XLPE cables, 10-year-old naturally aged cables, cables aged to match the naturally aged cables, and incrementally aged 40 year cables corresponded to the relative level of degradation for each group.

The test data for hold points in the pre-aging process, as described in Volume 1 of this report, and observations by the BNL test engineers indicate that the insulation resistance readings are a trendable parameter for smaller increments of insulation damage, as would be encountered during normal service aging in a nuclear power plant environment. Temperature-corrected insulation resistance or polarization index values, particularly when compared to a baseline measurement, are considered an electrical condition monitoring technique capable of observing incremental trends in degradation for these materials.

#### 4.10 Functional Performance

The XLPE-insulated 2/C # 14 AWG Rockbestos cables in test sequences 1, 3, and 6 were connected into individual 4-20 mA instrumentation loop circuits in order to assess their functional performance throughout the LOCA exposure test. The test specimens were powered and loaded as shown in Figure 2.13 for cables mounted in a straight configuration in Unistrut<sup>®</sup> channels and Figure 2.14 for mandrel-mounted cables. Each of the long specimens was powered separately with 28 Vdc. A 4-20 mA output pressure transmitter was connected to the LOCA chamber leads from each of the long specimens to serve as a load. All of the pressure transmitters were connected to a common manifold pressurized by a source of regulated compressed air, so that they all monitored the same pressure.

Five specimens in Group 1.1, Specimen 0301 in Group 3.1, and Specimen 0604 in Group 6.1 were control specimens that received no pre-aging prior to the LOCA exposure test. Groups 1.4 (5 specimens) and 3.4 (5 specimens) were preaged to the equivalent of 20 years and 40 years of service at  $194^{\circ}F$  (90°C), respectively, in accordance with the parameters of Rockbestos qualification report QR #1806, i.e., 40 years service at  $194^{\circ}F$  (90°C) was simulated by 1,300 hours at an oven temperature of 302°F (150°C). The three specimens in Group 6.2 were pre-aged to the equivalent of 60 years of service at  $194^{\circ}F$  (90°C) in accordance with the parameters of Rockbestos qualification report QR.#1806, i.e., 40 years at an oven temperature of 302°F (150°C). The three specimens in Group 6.2 were pre-aged to the equivalent of 60 years of service at  $194^{\circ}F$  (90°C) was simulated by 909.5 hours at an oven temperature of  $302^{\circ}F$  (150°C). Thus, similar amounts of thermal pre-aging were administered to the 40 year and 60 year cables.

During the simulated LOCA test, the powered specimens were monitored for applied voltage, circuit current, and leakage current, as described in Section 3.10. Manifold pressure, as measured by the test specimen pressure transmitters, was compared to actual pressure, measured by an external pressure transmitter connected directly to the manifold. A 1/32 ampere fuse was placed in the circuit to prevent overloading the power source in the event of a short circuit.

With the exception of one faulty pressure transmitter on Specimen 0105, all of the unaged XLPE-insulated cables performed adequately during the LOCA tests, with a maximum deviation from the nominal circuit current of no greater than  $\pm 2$  percent of full scale and negligible leakage current. High leakage current problems were encountered on all of the 20 year aged specimens (Test Group 1.4); circuit 0212 experienced one blown protective fuse and circuit 0116 blew its protective fuse three times before being permanently removed from service. It was later determined that the splices used to connect the facility test leads to the cable specimens under test were incorrectly specified and misapplied. This problem was corrected for subsequent testing by procedurally applying nuclear grade splices that had been custom specified for this application by Raychem, the manufacturer of the splices. Despite the leakage current problems, the maximum deviation from nominal circuit 0616 which reached 46 percent before being taken out of service. These data are summarized in Table 3.4 of Volume 1 of this report.

Problems were also encountered in the functional performance of the 40 year specimens (Group 3.4). Specimens 0313 and 0316 both had to be abandoned due to excessive leakage currents that blew protective fuses three times and one time, respectively, before being finally removed from service. Maximum deviation from the nominal circuit current for the three remaining 40 year cables was 6 percent of full scale. Maximum leakage current among the three remaining circuits was 12.4mA. These data are summarized in Table 3.13 of Volume 1 of this report.

The 60 year cables (Group 6.2) all performed adequately during the LOCA test. Maximum leakage current observed was 0.7mA. Maximum deviation from nominal circuit current was no more than 5 percent.

Referring to the elongation-a-break (EAB) values for cables aged to 20 years of service at 194°F (90°C) in Table 3.3 of Volume 1 of this report, it can be seen that the EAB had been reduced to less than 5 percent. This means that the ductility of the XLPE insulation for the 20, 40, and 60 year cable groups had all been reduced to minimum and little difference would be expected in the level of degradation among the three groups. The poor insulation resistance and

insulation power factor values reinforced these EAB findings by showing that the dielectric integrity for the three groups of cables was also marginal.

Disregarding the splice-related problems of Group 1.4, leakage currents exceeded 10mA on three of the remaining eight aged XLPE-insulated specimens, and two of those had to be removed from service before the end of the LOCA test due to persistent high leakage current (blown 1/32 ampere fuse). With the exception of those two cable specimens, the maximum deviation from nominal circuit current was less than 6 percent of full scale. The functional performance of a cable specimen's test circuit during the accident exposure test can be evaluated by identifying the maximum error indicated by the pressure transmitter loop circuit that the specimen was part of. The magnitude of leakage current can also become a problem, however, if it exceeds the level of the circuit protection from the loop power supply, as was the case for Specimens 0312 and 0316.

#### 4.11 Voltage Withstand

Upon completion of the LOCA exposure test, the XLPE-insulated 2/C # 14 AWG Rockbestos Firewall<sup>®</sup> III cables in test sequences 1, 3, and 6 were removed from the LOCA test chamber and subjected to a post-LOCA submerged voltage withstand test. This test, described in Section 3.11, is the final step of the pre-aging/LOCA test sequence followed in the BNL test program. The data obtained are included in Appendix I. Selected results are discussed in the following paragraphs.

Each long cable specimen was connected, one conductor at a time, to a Hippotronics Model 760-2HVT high potential test set and energized at 2,400Vac (80Vac per mil of insulation thickness), 60 Hz, while submerged in tap water at room temperature ( $\sim$ 73°F/23°C). The test voltage was applied to each conductor for a total duration of 5 minutes, and the leakage current and applied test voltage were recorded. If the leakage current exceeded the maximum level that the test set is capable of measuring, 10mA in this case, or a voltage breakdown was observed, the test specimen was considered failed.

As discussed in Section 3.11, the submerged voltage withstand test is the final step in the environmental qualification type test procedure described in IEEE Std. 383-1974 for electric cables. The BNL test sequence differs from the IEEE standard in that the cable specimen is voltage withstand tested as-is, coiled on its stainless steel test mandrel, or straight, in a steel Unistrut<sup>®</sup> support channel. In the IEEE test, the cable specimen is removed from its test mandrel following the LOCA exposure, straightened, and then coiled back onto a mandrel prior to final voltage withstand testing. This process of straightening and recoiling the test specimen was judged to be unnecessarily severe, and was not included in the BNL test sequence.

The results of the post-LOCA voltage withstand test on the Rockbestos Firewall<sup>®</sup> III XLPE/Neoprene<sup>®</sup> cables are summarized in Tables 3.5, 3.14, and 3.27 in Volume 1 of this report for test sequences 1, 3, and 6, respectively. These raw data were sorted by the amount of pre-aging received by XLPE-insulated specimens prior to the LOCA exposure test, and the average leakage current measured for each pre-aging group was then plotted (Figure 4.42). The leakage currents for those specimens that successfully withstood the applied test voltage for the full 5 minute duration of the test are included in each group. The quantity of cable conductors successfully passing the test is shown above the bar representing each pre-aging group. Conductors in the 40 year pre-aging group that failed as a result of handling damage during the testing process are not included.



Figure 4.42 Post-LOCA submerged voltage withstand test results for pre-aged XLPE-insulated cables

Figure 4.42 clearly shows that there is a trend toward increasing leakage current observed during the voltage withstand test for XLPE-insulated cable specimens as the level of pre-aging prior to LOCA exposure increased. This trend is generally what would be expected for increased amounts of insulation degradation. Recalling the discussions in Section 4.8 and 4.9, however, that the 60 year XLPE-insulated cables received only slightly more thermal pre-aging than the 40 year cables, most of the increase in leakage current would be attributed to the additional 50 percent higher total integrated dose of radiation pre-aging administered to the 60 year cables.

Other condition monitoring methods, such as elongation-at-break, visual inspection, insulation power factor measurement, and insulation resistance measurement, showed the condition of the XLPE cable insulation to be completely deteriorated after the very severe first step of pre-aging to the equivalent of 20 years of service at  $194^{\circ}$ F (90°C). These methods did not indicate significant additional insulation degradation for cables that received further pre-aging to the equivalent of 40 and 60 years. The submerged voltage withstand test did continue to provide a trendable measure of dielectric condition at the extreme levels of insulation degradation at which some of the other conditioning monitoring methods were less sensitive to the detection of further insulation degradation.

In summary, the submerged voltage withstand test provides a measure of the electrical condition of a cable specimen's insulation following LOCA exposure testing. However, in its present protocol for this research program, it is not a true condition monitoring test. Even conducted as a dry high potential test, it would not normally be used in situ, by nuclear power plant technicians, to assess and trend the dielectric integrity of an I&C cable's insulation system. Since it is a high voltage test, it has the potential to destroy a cable if a voltage breakdown should occur. Even at lower levels of applied test voltage, within the voltage rating of the cable, the cable insulation is incrementally weakened by each high potential test. Thus, the risks of causing either catastrophic or incipient damage to cable insulation make this an unsuitable condition monitoring method.

### 5. CONDITION MONITORING RESULTS FOR ETHYLENE PROPYLENE RUBBER CABLES

This section presents the results of the condition monitoring tests on cables with ethylene propylene rubber insulation. Each CM technique is evaluated based on how well it was able to detect and trend the degradation caused by the preaging administered to the test specimens. In some cases, degradation caused by the accident exposure (radiation plus steam/chemical spray) is also discussed since it provides supplemental data and additional insights into how well the CM technique, as well as the polymer being tested, performed.

#### 5.1 Visual Inspection

Test sequence 2 included EPR-insulated cables manufactured by AIW. Visual inspection of the Group 2.1 AIW specimens, which received no pre-aging prior to accident testing, showed that the specimens were initially in excellent condition with no visible signs of degradation. The application of 150 Mrad of radiation had little noticeable affect on the specimens. After exposure to simulated LOCA condition, areas of greyish/white residue were noted on the jackets. The white insulation became slightly yellow in color. The specimens remained very flexible and, in general, appeared to be in good physical condition.

The Group 2.2 specimens, pre-aged to match the service aging experienced by the naturally aged specimens in Group 2.3, were also initially in excellent condition with no visible signs of degradation. After thermal aging the specimens showed slight visible signs of degradation, including a greyish coloring on the jacket. The subsequent application of service radiation had only slight visible effects on the specimens, including a white dusting on the insulation and several small longitudinal splits. Application of an additional 150 Mrad of accident radiation (75 Mrad for specimens 0203 and 0204) also caused little noticeable change in the specimens. Exposure to the simulated LOCA conditions resulted in a greyish/white dusting on the cables, along with a rough surface texture.

For the naturally aged specimens in Group 2.3, the visual inspection showed they were initially in excellent condition with uniform jacket and insulation colors. No cracks we observed in either the jackets or the insulation. A waxy residue was noted on the jackets initially, which may have been cable pulling compound. The specimens were slightly stiffer than a new cable, however, the insulated conductor had good flexibility. Application of 150 Mrad of radiation to simulate an accident had no visible effect on the specimen, with the exception that several small (1mm) splits/nicks were noted in the insulation. Exposure to the simulated LOCA conditions left the jacket with some areas of greyish/white residue and a rough texture. The white insulation appeared slightly yellow in color. Both the jackets and the insulation felt slightly more rigid than they did previously, however, they still had good flexibility remaining. In general, the specimens appeared to be in good condition after the accident simulation.

The specimens in Group 2.4 were pre-aged to simulate 20 years of qualified life. After thermal aging, all of the specimens showed slight signs of degradation. The jackets retained their uniform black color, however, the white insulation was slightly yellow in color. No cracks were found in the jackets or insulation. Application of 150 Mrad of radiation had little visible effect on the specimens, with the only change being a greyish/white dusting on the jackets.

Exposure of the Group 2.4 AIW specimens to the simulated LOCA caused similar surface deposits as noted on the other specimens. Areas of grey/white residue were noted on the jackets and insulation. A rough surface texture was also noted. The jacket and insulation were slightly rigid with good flexibility remaining.

Test sequence 4 included EPR-insulated cables manufactured by Samuel Moore and Anaconda. The Group 4.2 Samuel Moore cable specimens were artificially aged to simulate 20 years of qualified life, as determined from the original qualification report. The visual inspections indicated that the Samuel Moore cables were in acceptable condition throughout the pre-aging sequence. No cracks were evident and the cables remained relatively flexible. The Group 4.3

cables were artificially aged to simulate 40 years of service. Again, the visual examinations showed that the Samuel Moore cables were in good condition and remained moderately flexible with no cracking evident. The Anaconda cables appeared degraded and were somewhat stiff, however, no cracking was evident. The accident irradiation had little effect on their visual appearance.

Following completion of the accident steam exposure, the specimens were removed from the test chamber and a visual inspection was performed. White powdery deposits were noted on the surface of the outer jackets on all of the specimens, however, no cracking was visible on any of them.

The visual inspection of the Group 4.2 cables clearly showed some degree of degradation to all of the specimens. The multi-conductor Samuel Moore specimens were still flexible and had a spongy feel to them. Large (5-10 cm) cracks were noted in the jackets, however, the underlying insulation appeared to be in good condition. Swelling was noted for the cable with the outer jacket diameter increasing approximately 21 percent and the insulation diameter increasing approximately 33 percent. The single conductor Samuel Moore specimens showed some shriveling and dis-bonding of the Hypalon<sup>®</sup> jacket on portions of the cable not attached to the mandrel. The EPR insulation appeared to be in good condition. The cable was stiff and swelling was noted with the insulation diameter increasing approximately 28 percent.

Visual inspection of the Group 4.3 cables also showed degradation on each of the specimens. The multiconductor Samuel Moore specimens had multiple large cracks in the outer jacket exposing the insulated conductors underneath. The exposed insulation appeared to be in good condition. Small water-filled bubbles were also noted in the outer jacket. The cables were stiff and swelling was noted with the jacket diameter increasing approximately 23 percent and the insulation diameter increasing approximately 29 percent. The single conductor specimens appeared similar to those in Group 4.2 with the Hypalon<sup>®</sup> jacket shriveled and dis-bonded.

The Group 4.3 Anaconda multiconductor specimens had multiple large cracks and ruptures in the outer jacket. The cable was fairly stiff and swelling was noted with the outer jacket diameter increasing approximately 21 percent and the insulation diameter increasing approximately 17 percent. The single conductor Anaconda specimens had multiple superficial cracks, or crazing in the jacket. Swelling was noted with the insulation diameter increasing approximately 12 percent.

Test sequence 5 included EPR-insulated cables manufactured by Samuel Moore, Anaconda, and Okonite. The Group 5.2 cables were artificially aged to simulate 20 years of qualified life, as determined from the original qualification report. The visual inspections indicated that the Samuel Moore and Anaconda cables were in acceptable condition throughout the pre-aging sequence. No cracks were evident and the cables remained relatively flexible. The Okonite cables in Group 5.2 appeared degraded and were relatively stiff, however, no cracking was evident.

The Group 5.3 cables were artificially aged to simulate 40 years of service. The visual examinations showed that the Samuel Moore cables were in good condition and remained moderately flexible with no cracking evident. The Anaconda cables appeared degraded and were somewhat stiff, however, no cracking was evident. The Okonite cables also appeared degraded and were very stiff. Also, minor circumferential cracking was noted in the jackets of 2 of the 3 Okonite cables in this group. The accident irradiation had little effect on the visual appearance of the specimens.

Following completion of the accident steam exposure, the test specimens were removed from the test chamber and a visual inspection was performed. All of the Group 5.1 cables appeared to be in good condition with no cracking evident. Small (1-2 mm diameter) water-filled bubbles were noted on the surface of the outer jackets on all of the specimens, however, no cracking was visible on any of the specimens.

Visual inspection of the Group 5. 2 cables clearly showed some degree of degradation to all of the specimens. The Samuel Moore specimens were still flexible and had a spongy feel to them. Small (0.75-2 in./2-5 cm) cracks were noted

in the jackets. The Anaconda specimens had multiple longitudinal cracks in the outer jacket; none were through-wall. The cracks appeared to be due to swelling of the jacket. Also, one large circumferential crack was noted in the outer jacket of one of the Anaconda specimens exposing the insulated conductor. The Okonite specimens were found to have a longitudinal crack running along the length of the jacket. On one of the Okonite cables, a 5-inch (12.7 cm) section had split open exposing the bare conductor underneath.

Visual inspection of the Group 5.3 cables also showed degradation on each of the specimens. The Samuel Moore specimens were still flexible and the outer jackets felt spongy. Both of the Samuel Moore specimens had a 5 cm crack in the outer jacket exposing the insulation on the conductors underneath. The exposed insulation appeared to be in good condition. The Anaconda specimens had multiple longitudinal cracks in the outer jacket similar to the Group 5.2 specimens. In addition, a large circumferential crack was noted in the overall jacket of one cable exposing the insulation on the conductor. The Okonite specimens all had longitudinal cracking of the jacket and the underlying insulation that split open along the length of the cable exposing the bare copper conductor.

Test sequence 6 included EPR-insulated cables manufactured by Samuel Moore, AIW and Okonite that were pre-aged to simulate 60 years of qualified life. Visual inspection of the specimens at their baseline condition found that all specimens were in excellent condition with no significant anomalies. A greenish film was noted on the AIW specimens, which was probably due to cable pulling compound applied during installation. Also, several paint marks were noted on the AIW specimens, which were attributed to markings applied to identify the cable in the plant.

Following thermal aging, two of the three Okonite specimens developed circumferential cracking of the jacket. The specimens also were judged to be embrittled. The Samuel Moore specimens were somewhat stiffer than their baseline condition, however, some flexibility remained and no cracking was evident. The AIW specimens were also judged to be very stiff compared to the baseline condition, however, no cracking was evident. A white powdery coating was also noted on the outer jackets of the AIW specimens.

Application of the service radiation dose caused additional cracking to be noted on the two previously cracked Okonite specimens, as well as on the previously un-cracked Okonite specimen, leaving all three Okonite specimens containing cracks at this point. Little change was noted on the Samuel Moore specimens; the cables were stiffer than their baseline condition, however, no cracking was evident. The AIW specimens appeared to have degraded further from the previous post-thermal inspection with additional greyish/white deposits on the jackets, along with a tan colored powdery deposit on the jackets. The specimens were judged to be very stiff at this point, however, no cracking was evident.

Application of the accident radiation had little effect on the visual appearance of the specimens. Several additional cracks were noted on the Okonite specimens. No cracking was evident on the Samuel Moore or AIW specimens.

Following the LOCA steam exposure, a visual inspection showed that the pre-aged Okonite had failed catastrophically by splitting open exposing the bare conductor, similar to the results of test sequence 5. The unaged Okonite specimen appeared to be in good physical condition with no cracking evident. Cracking of the outer jackets was noted on both the Samuel Moore and AIW specimens. In some areas of the Samuel Moore specimens the cracking in the outer jacket exposed the insulated conductors underneath. On the AIW specimens, the outer jackets appeared to have expanded lengthwise causing them to rupture and travel over themselves. The AIW jacket material felt soft and spongy as if it had absorbed a large quantity of water.

#### 5.2 Elongation-at-Break (EAB)

In this section of the report, the EAB properties of EPR and ethylene-propylene-diene monomer (EPDM) insulations are evaluated together with their associated Hypalon<sup>®</sup> jackets. All EAB results are tabulated in Appendix A.

#### 5.2.1 Results for Ethylene-Propylene Rubber/Hypalon<sup>®</sup> Cables

The AIW and Anaconda cables evaluated consisted of EPR insulation enclosed by Hypalon<sup>®</sup> individual jackets of different colors. The overall outer jacket was also made from Hypalon<sup>®</sup>. Figure 5.1 shows the changes in EAB for AIW cable that was given thermal and irradiation aging treatments (CM points B and D, respectively) to simulate the 24 years of service that had been received by the naturally-aged cable in Group 2.3. The outer jacket consistently showed a loss in EAB with each aging step and also during the LOCA radiation and steam/chemical spraying. The individual Hypalon<sup>®</sup> jackets, however, showed an increase in EAB after the first LOCA radiation (CM point F). For subsequent steps in the LOCA cycle the EAB decreased. The ductility of the individual jackets did not seem to show any consistent differences from color to color. For the EPR insulation, the EAB showed a decrease throughout the successive service aging and LOCA treatments. The one exception was for the service aging step (CM point B) for which there was a small increase in ductility. Subsequent aging and LOCA cycles consistently reduced the EAB.

In Figure 5.2, CM point A gives the EAB results for AIW cable that was naturally aged for 24 years in a nuclear power plant. The results in Figure 5.1 (CM point D) for material artificially aged to 24 years of service show that it has a lower EAB compared to the naturally-aged material. This suggests that artificially aged cable may be used to conservatively estimate aging effects in cable materials. Such a conclusion assumes that the artificially- and naturally-aged cables, which were made by the same manufacture, had the same starting properties. This is a reasonable assumption since both cables were made in the same year (1974). It is also assumed that aging while in storage was insignificant for the artificially aged cable. The naturally-aged cable materials showed decreasing ductility after the LOCA radiation and steam/chemical spraying cycles (CM point F, G, and H in Figure 5.2). In the case of the artificially-aged cable, however, the first LOCA radiation dose of 78.7 Mrad increased the EAB. Subsequent LOCA radiation and steam/chemical spraying reduced the ductility.



PNI74AI027 (Group 2.2, Specimen 0205) artificially aged to simulate Group 2.3

EAB data for Anaconda EPR/Hypalon<sup>®</sup> cable are given in Figures 5.3 and 5.4 for materials aged for 20 and 40 years of qualified life, respectively. As expected, the insulation and jacket materials suffered a loss in ductility of
approximately 75 percent after the 20 year aging treatment (Figure 5.3, CM Point D); LOCA radiation and steam/chemical spraying caused further reductions in EAB, but the materials were not brittle. After the 40-year treatment (Figure 5.4, CM Point E) the ductility decreased to the 10-20 percent range. There were additional decreases after LOCA testing, and the materials became brittle.

A similar major loss in EAB was observed for Okonite<sup>®</sup> cable consisting of a Hypalon<sup>®</sup> jacket bonded to EPR insulation. After artificial aging to one-half of the manufacturer's 40-year qualification protocol, assuming a service temperature of 194°F (90°C), the EAB of the bonded Hypalon<sup>®</sup>/EPR composite specimens was reduced to approximately 8 percent (Figure 5.5, CM Point D). For the full 40-year qualification, the cable became brittle with the EAB reduced to about 5 percent (Figure 5.6).





# 5.2.2 Results for Ethylene-Propylene-Diene Monomer (EPDM) Cables

The EPDM insulation tests were carried out on two samples of Samuel Moore cable (PNI82SM008, and DNI80SM010) both of which were of the two-conductor type. Red or purple individual jackets made from Hypalon<sup>®</sup> were bonded to the EPDM insulation. The outer jacket was also made from Hypalon.<sup>®</sup> Complete results of the EAB tests are given in Appendix A.

5. Condition Monitoring - EPR Cables







Because of the similar behavior of the two cables, only results from test sequence 4 specimens are described here. Figures 5.7 and 5.8 show EAB data for bonded EPDM/Hypalon<sup>®</sup> composite specimens that were aged to 20 and 40 years of qualified life, respectively. As expected, the 40-year qualification protocol gave the larger losses in ductility for both the outer jacket and EPDM/Hypalon<sup>®</sup> duplex specimens. At the 40-year aging time (CM point E), the outer jacket had an EAB of about 320 percent whereas the EPDM/Hypalon<sup>®</sup> specimens had an EAB of about 170 percent. Although this is a major decrease from the ductility of unaged material, the cable specimens retained a large amount of ductility. Subsequent LOCA radiation and steam/chemical sprays again caused the EAB to fall, but the specimens were still ductile.



Figure 5.7 Effect of aging and LOCA testing on the EAB of Samuel Moore EPDM/Hypalon<sup>®</sup> cable PNI82SM008 (Test 4.2, Specimen 0403)

# 5.2.3 Normalized EAB Results

In order to more clearly illustrate the losses in EAB for the various types of cable as a function of service thermal aging and radiation, the EAB results, from specimens that had been given a range of different aging protocols, were normalized to a single assumed aging temperature of 140°F (60°C). This was achieved by using an Arrhenius analysis and an activation energy that is consistent with the pre-aging parameters used in the original qualification test. It should be remembered that, for the EAB tests, the insulation and jacket specimens were aged together according to a single preselected protocol. The activation energy used to determine the aging time was that for the insulation since it is generally accepted that the insulation is the primary component relied on for cable integrity. However, in the present analysis, to normalize aging times to a common service temperature of 140°F (60°C), the aging times for the Hypalon<sup>®</sup> jacket material were calculated using an activation energy of 1.24 eV/molecule (Holzman, 1992), rather than assuming that the jacket had the same activation energy as the insulation. Table 5.1 shows the calculated service aging times at 140°F (60°C) for the different cable components and the associated EAB values.



Figure 5.8 Effect of aging and LOCA testing on the EAB of Samuel Moore EPDM/Hypalon<sup>®</sup> cable PNI82SM008 (Test 4.4, Specimen 0412)

The EAB values for unbonded Hypalon<sup>®</sup> jackets are given in Figure 5.9. There is a large loss in EAB during the first 20 years of aging, after which the rate of aging degradation shows a decrease. Note that the Hypalon<sup>®</sup> outer jackets consistently have a higher EAB than the individual jackets, as is documented in the detailed data in Appendix A. It is possible that this is caused by the different shapes of the two types of jacket (the outer jacket specimens are in the form of "dogbones", whereas the individual jackets are in tubular form). Also, the outer jackets have thicker walls than the individual jackets and, therefore, will be less oxidized under the same aging conditions. The results indicate that, after about 60 years of service at 140°F (60°C), the EAB for the jackets will be about 80 to 100 percent.

Figure 5.10 shows the EAB results for EPR insulation from AIW and Anaconda. The curve drawn through the data points shows that during the early part of aging the EAB decreases to an initial plateau and this is followed at longer aging times by a second large drop in EAB. The basic shape of the curve for aging times of 0 to 60 years is similar to that reported in Figure 4.5 for XLPE. The early decreases in EAB for EPR appear to be connected with thermally-induced changes in the insulation by oxidative processes that are not known. It is assumed that the shape of the curve for aging times greater than 60 years is also similar to that reported in Figure 4.5. The second large loss in EAB is probably associated with the depletion of antioxidants, which allows the main polymer structure to be attacked by a different oxidation process. Support for this interpretation can be found in Figure 3.47 of Section 3.7, in Volume 1 of this report, which shows that, for EPR insulation aged in air at  $140^{\circ}F$  (60°C), the antioxidants are depleted after about 50 years. This is consistent with the large EAB loss at this time, as shown in Figure 5.10.

Figure 5.11 shows data for EPR and EPDM-insulated cable with bonded individual Hypalon<sup>®</sup> jackets. The two Samuel Moore cables show differences in EAB with aging, although the trends are similar. There are no results for Okonite EPR between 0-100 years, but it is likely that the EAB values are similar to those for EPDM. A smooth curve was drawn through all the data points. Based on the curve through the data, it appears that after 60 years of service aging in air at 140°F (60°C) the EAB of bonded EPR and EPDM insulation will have decreased to about 40-50 percent.



Figure 5.9 Comparison of EAB results for unbonded Hypalon<sup>®</sup> jacket material from different manufacturers

### 5.3 Oxidation Induction Time

The only two EPR/Hypalon<sup>®</sup> cables studied in this effort were manufactured by AIW and were included in test sequences 2 and 6. One of the samples is a 4-conductor cable that consists of black, white, red, and green individual Hypalon<sup>®</sup> jackets. The other has black, white, and red individual jackets. Both cables have EPR insulation and Hypalon<sup>®</sup> outer jackets. All OITM results are given in Appendix B of this report.

Figure 5.12 shows typical OITM thermograms for EPR from Group 2.2 that was given an accelerated aging treatment to simulate 24 years of natural aging to match that for the naturally-aged cable in Group 2.3. Note that the flat line in the figure denotes the test temperature profile with time. The thermal aging (CM point B) consisted of oven aging for 28.45 hours at 250°F (121°C). The service radiation dose was 3.25 Mrad (CM point D). There is a large decrease in OITM after thermal aging, but a small increase after radiation.

# Table 5.1 EAB for cable materials normalized to a service temperature of 140°F (60°C)

| Cable               | Group               | Material                                                               | Aging Protocol              | EAB % (Equivalent Aging Time at 60°C in years) |                   |                |                      |
|---------------------|---------------------|------------------------------------------------------------------------|-----------------------------|------------------------------------------------|-------------------|----------------|----------------------|
|                     |                     |                                                                        |                             | Outer<br>Jacket                                | Individual Jacket | Insulation     | Bonded<br>Components |
| AIW<br>(PNI74AI025) | 2.1 (Specimen 0201) | Unbonded EPR/White Hypalon®<br>Individual Jacket, and Hypalon ®        | 0                           | 649 (0)                                        | 540 (0)           | 284 (0)        | Not applicable       |
| AIW<br>(PNI74AI027) | 2.2 (Specimen 0205) | Outer Jacket. 4-conductor Cable                                        | 28.5 hr.@ 121°C + 3.25 Mrad | 582 (2.62)                                     | 341 (2.62)        | 224 (1.9)      | Not applicable       |
| AIW<br>(PNI74AI028) | 2.4 (Specimen 0213) |                                                                        | 82.5 hr.@ 121°C + 25.8 Mrad | 429 (7.57)                                     | 371 (7.57)        | 196 (5.48)     | Not applicable       |
| AIW<br>(PNI74AI031) | 2.1 (Specimen 0202) | Unbonded EPR/White Hypalon®<br>Individual Jacket, and Hypalon® Outer   | 0                           | 563 (0)                                        | 482 (0)           | 341 (0)        | Not applicable       |
| AIW<br>(PNI74AI032) | 2.4 (Specimen 0214) | Jacket. 3-conductor Cable                                              | 82.5 hr.@ 121°C + 25.8 Mrad | 369 (7.57)                                     | 250 (7.57)        | 224 (5.48)     | Not applicable       |
| AIW<br>(PNI74AI035) | 6.2 (Specimen 0611) |                                                                        | 252 hr.@ 121°C + 38.7 Mrad  | 191 (23.2)                                     | 197 (23.2)        | 218 (16.8)     | Not applicable       |
| Anaconda            | 5.1 (Specimen 0503) | Unbonded EPR/White Hypalon®                                            | 0                           | 476 (0)                                        | 390 (0)           | 356 (0)        | Not applicable       |
| (DNP78AN008)        | 4.3 (Specimen 0407) | Individual Jacket and Hypalon®<br>Outer Jacket                         | 84 hr.@ 150°C + 25.7 Mrad   | 87(93.5)                                       | 52 (93.5)         | 138 (59.9)     | Not applicable       |
|                     | 5.2 (Specimen 0508) |                                                                        | 84 hr.@ 150°C + 25.7 Mrad   | 94 (93.5)                                      | 67 (93.5)         | 166 (59.9)     | Not applicable       |
|                     | 4.3 (Specimen 0407) |                                                                        | 168 hr.@ 150°C + 53.6 Mrad  | 11(187)                                        | 9(187)            | 13(120)        | Not applicable       |
|                     | 5.3 (Specimen 0515) |                                                                        | 168 hr.@ 150°C + 53.6 Mrad  | 22 (187)                                       | 9 (187)           | 22 (120)       | Not applicable       |
| Okonite             | 5.2 (Specimen 0504) | Bonded EPR/Hypalon®                                                    | 0                           | Not applicable                                 | Not applicable    | Not applicable | 471 (0)              |
| (LNI810K020)        | 5.2 (Specimen 0504) |                                                                        | 252 hr.@ 150°C + 25.8 Mrad  | Not applicable                                 | Not applicable    | Not applicable | 8 (99.4)             |
|                     | 5.3 (Specimen 0510) |                                                                        | 504 hr.@ 150°C + 51.5 Mrad  | Not applicable                                 | Not applicable    | Not applicable | 4 (199)              |
|                     | 6.2 (Specimen 0605) |                                                                        | 756 hr.@ 150°C + 77.3 Mrad  | Not applicable                                 | Not applicable    | Not applicable | <b>≤5 (298)</b>      |
| Sam. Moore          | 4.2 (Specimen 0403) | Bonded                                                                 | 0                           | 762(0)                                         | Not applicable    | Not applicable | 467(0)               |
| (PNI82SM008)        | 4.2 (Specimen 0403) | EPDM/Red Hypalon® Individual<br>Jacket                                 | 84 hr.@ 121°C + 26.0 Mrad   | 422 (7.74)                                     | Not applicable    | Not applicable | 261(14.8)            |
|                     | 4.4 (Specimen 0412) | with Hypalon® Outer Jacket                                             | 168 hr.@ 121°C +51.6 Mrad   | 312 (15.5)                                     | Not applicable    | Not applicable | 173(29.6)            |
| Sam. Moore          | 5.2 (Specimen 0506) | Bonded                                                                 | 0                           | 613 (0)                                        | Not applicable    | Not applicable | 418 (0)              |
| (DNI80SM010)        | 5.2 (Specimen 0506) | EPDM/Hypaton® White Individual<br>Jacket<br>with Hypalon® Outer Jacket | 84 hr.@ 121°C +26.0 Mrad    | 338 (7.74)                                     | Not applicable    | Not applicable | 147 (14.8)           |
|                     | 5.3 (Specimen 0513) |                                                                        | 168 @ 121°C + 51.5 Mrad     | 283 (15.5)                                     | Not applicable    | Not applicable | 94 (29.6)            |
|                     | 6.2 (Specimen 0608) |                                                                        | 252 hr.@ 121°C + 77.3 Mrad  | 145 (23.2)                                     | Not applicable    | Not applicable | 68 (44.4)            |

.









The accelerated service aging treatment for the Group 2.4 specimens simulated one-half of the manufacturers 40-year qualification test protocol. It involved a thermal aging step of 82.45 hours at 250°F (121°C) and a radiation dose of 25.5 Mrad (CM points C and E, respectively). LOCA accident radiation doses of 78.6 and 76.8 Mrad were given at CM points F and G, respectively. For the Hypalon<sup>®</sup> outer jacket, the OITM decreases consistently for each successive treatment step (Figure 5.13). Note that the results in Figure 5.13 are for the four-conductor cable. The three-conductor cable did not display a classical OITM thermogram with the flat section that indicates protection by the antioxidants. This may be seen in Figure 5.14, which compares the thermograms for the four and three conductor cable jackets. Note the absence of the flat region in the curve for the three-conductor, which prevents the OITM from being determined.

Figure 5.15 summarizes the changes in OITM for the insulation and outer jacket materials for the four-conductor cable that had been pre-aged to one-half of the manufacturer's 40-year qualified life. The OITM shows consistent decreases for each successive service aging step (CM points C and E) and for the LOCA radiation test protocols (CM points F, and G).

Figure 5.16 compares the results for artificially-aged and naturally-aged EPR insulation that had received 24 years of aging. Comparing the baseline condition of specimen 0207 (CM point A) with the artificially aged specimen 0203 (CM point D), it is seen that there is reasonable agreement in OITM. The results indicate that OITM measurements on artificially aged EPR are reasonable approximations for those on naturally aged material.

Comparisons between the OITM for artificially- and naturally-aged Hypalon<sup>®</sup> outer jackets could not be made because the naturally-aged jackets did not display a classical thermogram with the flat oxidation-resistant region.

The relationships between the OITM for EPR/Hypalon<sup> $\oplus$ </sup> cable and elongation-at-break, as well as service aging time were explored using results from this study. The thermal aging treatments given to the cable specimens were normalized to a common service temperature of 140°F (60°C) using the Arrhenius equation. Table 5.2 summarizes the relevant data. As shown, a consistent decrease in OITM is observed as aging increases.

Figure 5.17 is a correlation between the OITM for EPR insulation and the elongation-at-break. Although the data are limited, because of the small number of predetermined aging protocols used in this study, both the three- and four conductor cables show that the elongation-at-break continuously decreases as the OITM decreases. There is a significant difference between the two cables with the three-conductor cable having the highest ductility for a given OITM. However, a good correlation between OITM and EAB is shown for both types of cable insulation.

Figure 5.18 shows the correlation between the OITM and the service aging time. For service aging to the equivalent of about 17 years at 140°F (60°C) the OITM decreases to about 3 min. The OITM tends to zero when the antioxidants have been depleted. Extrapolating the curve in Figure 5.18 indicates that this would occur at a service time in excess of 20 years. Unfortunately, the precise time cannot be determined since the curve is asymptotic. However, this time is consistent with the value that may be calculated using the EPR OITM equation taken from Section 3.7 of Volume 1 of this report. The equation is:

 $\ln t(\min) = 28.38/RT(^{\circ}K) - 26.67....(1)$ 

in which t is the time at which the antioxidants have become depleted during oxidation in oxygen, and R is the gas constant.



Figure 5.12 OITM Thermograms at 392°F (200°C) for AIW EPR insulation PNI74AI026 (Group 2.2, Specimen 0203)



Figure 5.13 OITM Thermograms at 410°F (210°C) for AIW Hypalon<sup>®</sup> outer jackets PNI74AI028 (Group 2.4, Specimen 0213)



.....

Figure 5.14 Comparison of Thermograms for Hypalon<sup>®</sup> outer jackets for unaged four- and three-conductor from AIW cable



Figure 5.15 OITM for AIW four-conductor cable PNI74AI028 (Group 2.4, Specimen 0213) as a function of CM point



Figure 5.16 Comparison of OITM for artificially-aged and naturally-aged EPR Insulation from AIW cable after 24-Years of service aging

For a service aging temperature of 140°F (60°C), the time for the depletion of antioxidants is calculated to be 21 years. No data were obtained for oxidation times in air but, since the oxidation times in air for EPR are double those for oxygen, as was shown for XLPE (see Section 3.7, Vol. 1 of this report) then the time to deplete all of the antioxidants should be approximately 42 years. The trend of the curve in Figure 5.18 appears to be consistent with this time.

Figures 5.19 and 5.20 show correlations between OITM and EAB and service aging time for Hypalon<sup>®</sup> outer jackets. Again, the data are limited but there is a clear relationship between the variables in each figure. This indicates that the OITM is a useful parameter to predict the EAB for Hypalon<sup>®</sup>.

# 5.4 Oxidation Induction Temperature

OITP measurements were made on cable specimens manufactured by AIW, along with a small number of Anaconda specimens from test sequences 4 and 5 since they had been pre-aged to simulate longer aging times. Measurements were made on specimens that had received both accelerated thermal and radiation treatments.

| Group                      | Cable                       | Aging Protocol                 | Equivalent Aging Time at 140°F<br>(60°C), (yrs) |                   | Oxidation Induction Time<br>(min) <sup>(a)</sup> |                   |
|----------------------------|-----------------------------|--------------------------------|-------------------------------------------------|-------------------|--------------------------------------------------|-------------------|
|                            | Sample                      |                                | Hypalon <sup>®</sup><br>Outer Jacket            | EPR<br>Insulation | Hypalon <sup>®</sup><br>Outer Jacket             | EPR<br>Insulation |
| 2.4<br>(Specimen<br>0213A) | PNI74AI028<br>(4 conductor) | None                           | 0                                               | 0                 | 46.1                                             | 29.2              |
| 2.4<br>(Specimen<br>0214A) | PNI74AI028<br>(3 conductor) | None                           | 0                                               | 0 .               | (b)                                              | 25.3              |
| 2.2<br>(Specimen<br>0203D) | PNI74AI026<br>(4 conductor) | 28.45 hr.@121°C<br>+ 3.25 Mrad | 2.62                                            | 1.9               | 42.2                                             | 18.3              |
| 2.4<br>(Specimen<br>0213E) | PNI74AI028<br>(4 conductor) | 82.5 hr.@121⁰C<br>+25.8 Mrad   | 7.57                                            | 5.48              | 29.8                                             | 10.0              |
| 2.4<br>(Specimen<br>0214E) | PNI74AI028<br>(3 conductor) | 82.5 hr.@121⁰C<br>+25.8 Mrad   | 7.57                                            | 5.48              | (b)                                              | 8.2               |
| 6.2<br>(Specimen<br>0611E) | PNI74AI035<br>(3 conductor) | 252 hr.@121°C<br>+38.7 Mrad    | 23.2                                            | 16.8              | <b>(b)</b>                                       | 2.9               |

Table 5.2Oxidation induction time for AIW cable PNI74AI028(Group 2.4, Specimens 0213 and 0214)as a function of simulated service aging at 140°F (60°C)

(a) Hypalon<sup>®</sup> tested at 410°F (210°C) and EPR at 392°F (200°C)

(b) Non-classical thermogram, OITM not determinable

Figures 5.21 and 5.22 show thermograms for AIW EPR insulation (Group 2.4, Specimen 0214)). Note that the straight lines in the figures denote the test temperature profile with time. The OITP values for the service aging protocols (CM points C and E in Figure 5.21) are one-half of that used in the manufactures's 40-year qualification tests, viz. 82.5 hrs. at 250°F (121°C) and 25.5 Mrad of gamma radiation, respectively. A decrease in the OITP is noted after the thermal aging step, but the radiation dose did not cause any significant additional change in the OITP. Results for the LOCA tested specimens in Figure 5.22, show that the OITP decreases after CM points F and G in which the specimens received about 78 Mrad of radiation, and for the steam/chemical spray (CM point H). The Hypalon® outer jacket results, given in Figures 5.23 and 5.24, for Group 2.4, Specimen 0214, show that for each CM point the OITP decreases consistently.

Figure 5.25 summarizes all of the OITP data for Group 2.4, Specimen 0213, and includes results for the EPR insulation, Hypalon<sup>®</sup> outer jackets, and white individual jackets. Note the very close agreement in the OITP values for the black outer and black individual jackets for the service aging protocols. This indicates that the chemical composition of the two components is the same. The OITP values for the white individual jackets are very similar to those for the other colored individual jackets (see Appendix C) and are significantly higher than those for the black jackets.



Figure 5.18 Correlation between OITM and service aging time for EPR insulation from AIW cable PNI74AI028 (Group 2.4, Specimens 0213 and 0214)



Figure 5.20 Correlation between OITM and service aging time for Hypalon<sup>®</sup> outer jackets from AIW cable PNI74AI028 (Group 2.4, Specimens 0213)







5-20









5-21

Figure 5.24 OITP for AIW Hypalon<sup>®</sup> (PNI74AI032) as a function of LOCA testing protocols



Figure 5.25 OITP for AIW EPR/Hypalon<sup>®</sup> cable (Group 2.4, Specimen 0213) as a function of CM point



Figure 5.26 OITP for EPR insulation as a function of service aging time at 140°F (60°C)

.

| Group                   | Manufacturer             | Aging Protocol                     | Equivalent Aging<br>Time at 140°F (60°C)<br>(years) | Oxidation Induction<br>Temperature (°C) |
|-------------------------|--------------------------|------------------------------------|-----------------------------------------------------|-----------------------------------------|
| 2.4<br>(Specimen 0213A) | AIW<br>(PNI74AI028)      | None                               | 0                                                   | 234.9<br>230.6<br>Avg = 232.7           |
| 2.4<br>(Specimen 0214A) | AIW<br>(PNI74AI032)      | None                               | 0                                                   | 242.6<br>246.7<br>Avg = 244.7           |
| 2.2<br>(Specimen 0205D) | AIW<br>(PNI74AI027)      | 28.45 hr.@<br>121°C<br>+ 3.25 Mrad | 1.9                                                 | 234.2<br>233.4<br>Avg = 233.6           |
| 2.4<br>(Specimen 0213E) | AIW<br>(PNI74AI028)      | 82.5 hr.@ 121°C<br>+ 25.8 Mrad     | 5.5                                                 | 223.9<br>221.2<br>Avg = 222.6           |
| 2.4<br>(Specimen 0214E) | AIW<br>(PNI74AI032)      | 82.5 hr.@ 121°C<br>+ 25.8 Mrad     | 5.5                                                 | 224.9<br>223.0<br>Avg = 223.9           |
| 4.3<br>(Specimen 0407A) | Anaconda<br>(DNP78AN008) | None                               | 0                                                   | 225.0<br>226.0<br>Avg = 225.5           |
| 5.1<br>(Specimen 0503A) | As above                 | None                               | 0                                                   | 228.8<br>227.5<br>Avg = 228.1           |
| 4.3<br>(Specimen 0407D) | As above                 | 84 hr.@ 150°C<br>+ 25.7 Mrad       | 60                                                  | 186.6<br>183.0<br>Avg = 184.8           |
| 5.2<br>(Specimen 0508D) | As above                 | As above                           | 60                                                  | 208.8<br>206.4<br>Avg = 207.6           |
| 4.3<br>(Specimen 0407E) | As above                 | 168 hr.@ 150°C<br>+ 53.6 Mrad      | 120                                                 | 166.1<br>166.4<br>Avg = 166.2           |
| 5.3<br>(Specimen 0515E) | As above                 | As above                           | 120                                                 | 166.9<br>166.0<br>Avg = 166.4           |

# Table 5.3 Oxidation induction temperature results for EPR insulation as a<br/>function of simulated service aging at 140°F (60°C)

| Group                      | Material            | Aging<br>Protocol                 | Equivalent<br>Aging Time at<br>140°F (60°C)<br>(years) | Oxidation Induction Temperature (°C) |                               |                                |
|----------------------------|---------------------|-----------------------------------|--------------------------------------------------------|--------------------------------------|-------------------------------|--------------------------------|
| Group                      | Matria              |                                   |                                                        | Black Outer<br>Jacket                | Black Indiv.<br>Jacket        | Avg. for<br>Colored<br>Jackets |
| 2.4<br>(Specimen<br>0213A) | AIW<br>(PNI74AI028) | None                              | 0                                                      | 231.9<br>232.6<br>Avg = 232.2        | 231.7<br>230.8<br>Avg = 231.3 | 256.9                          |
| 2.4<br>(Specimen<br>0214A) | AIW<br>(PNI74AI032) | None                              | 0                                                      | 233.1<br>235.0<br>Avg = 234.0        | 240.8<br>241.9<br>Avg = 241.3 | 259.4                          |
| 2.2<br>(Specimen<br>0205D) | AIW<br>(PNI74AI027) | 28.45 hr.@<br>121℃<br>+ 3.25 Mrad | 2.6                                                    | 229.8<br>227.8<br>Avg = 228.8        | 228.6<br>227.2<br>Avg = 227.9 | 254.9                          |
| 2.4<br>(Specimen<br>0213E) | AIW<br>(PNI74AI028) | 82.5 hr.@<br>121℃<br>+ 25.8 Mrad  | 7.6                                                    | 227.7<br>225.3<br>Avg = 226.5        | 227.3<br>227.5<br>Avg = 227.4 | 253.9                          |
| 2.4<br>(Specimen<br>0214E) | AIW<br>(PNI74AI032) | 82.5 hr.@<br>121°C<br>+ 25.8 Mrad | 7.6                                                    | 225.9<br>221.6<br>Avg = 223.8        | 228.8<br>228.0<br>Avg = 228.4 | 250.2                          |

# Table 5.4 Oxidation Induction Temperature results for Hypalon<sup>®</sup> jackets as a function of simulated service aging at 140°F (60°C)

Table 5.3 is a tabulation of OITP results for AIW EPR insulation from test sequence 2 and Anaconda EPR insulation from test sequences 4 and 5. The service aging protocols are normalized to a service temperature of  $140^{\circ}F(60^{\circ}C)$  using the Arrhenius equation. Figure 5.26 shows that there is a linear correlation between the OITP and service time. A linear relationship also exists between the OITP for EPR and the EAB, as shown in Figure 5.27.

The OITP values for the AIW outer and individual jackets are given in Table 5.4 and Figure 5.28 as a function of the service aging time. The black outer and individual jackets show similar behavior. The OITP values for the colored (non-black) individual jackets were averaged because of their similarity. It is noticed that the OITP values for the colored jackets are about 35°F (20°C) higher than those for black jackets. This shows that the colored jackets are more resistant to oxidation than the black jackets. Figure 5.29 shows that there is a correlation between the EAB and OITP for the black jackets. Therefore, in principle, the OITP may be used to estimate the residual EAB in aged black jackets. There also appears to be a correlation between EAB and OITP for the colored individual jackets, as shown in Figure 5.30 despite considerable scatter in the data.

In summary, a reasonable correlation was found between OITP and EAB, therefore, OITP is judged to be an acceptable method for estimating EAB for EPR/Hypalon<sup>®</sup> cable materials.



5-25

5. Condition Monitoring - EPR Cables



# 5.5 Fourier Transform Infrared Spectroscopy

The technique used for the study of AIW EPR/Hypalon<sup>®</sup> cables is similar to that used for the XLPE/Neoprene<sup>®</sup> cables (see Sections 3.5 and 4.5 of this report). Appendix D is a tabulation of FTIR data obtained in the current program. Figure 5.31 shows FTIR spectra for EPR insulation that had received an accelerated aging protocol that simulates the aging that was received by the naturally aged cable in Group 2.3. This involved thermal aging of 28.45 hrs. at 250°F (121°C), CM point B, plus an irradiation of 3.25 Mrad, CM point D. Subsequent LOCA irradiations of 78.7 and 77.0 Mrad are given at CM points F and G, followed by steam/chemical spraying at CM point H. The EPR results, together with data for Hypalon<sup>®</sup> outer and white individual jackets, are plotted in Figure 5.32. They show that the service aging results in a small increase in transmittance for all three materials. After the second LOCA irradiation dose, the transmittance again increases slightly. When the steam/chemical spray is administered, the outer and individual jackets show a further increase in transmittance, but the EPR insulation shows a small decrease.

Figure 5.33 shows data for cable that had received one-half of the 40 year qualification test protocol used by the cable manufacturer. The protocol involved a thermal aging step of 82.5 hrs at 250°F (121°C), CM point C, and an irradiation of 25.5 Mrad (CM point E). This is followed by two LOCA radiation exposures of 78.6 and 76.8 Mrad at CM point F and G, respectively. A final steam/chemical spray is administered at CM point H. The trends in transmittance for the various CM points are similar to those for the 20-year aging protocol shown in Figure 5.32.

Results for the 24-year naturally aged cable obtained by BNL are shown in Figure 5.34. LOCA irradiation and steam/chemical spraying usually caused small increases in the transmittance for the outer and white individual jackets and the EPR insulation. In comparing the transmittance values for the 24-year naturally aged cable material (CM point A in Figure 5.34) with those for materials artificially aged to an equivalent age (CM point D in Figure 5.32) it is found that the values are noticeably lower for the naturally aged cables. It is possible that the cables had different formulations which could contribute to the differences. Another explanation is that the amount of surface oxidation is greater in the artificially aged materials because of the high aging temperature compared to the naturally aged cable. Since FTIR is a surface characterization technique, the greater amount of surface oxidation in the artificially aged materials would give a higher transmittance if  $-CH_2$  bonds are lost during the oxidation process, as described in Section 4.5. It would be expected that the difference in behavior between the artificially and naturally aged materials would be smaller if the artificial aging temperature had been decreased (i.e., the aging time increased) since it would minimize oxidation gradients at the specimen surfaces. However, in Section 4.5, it was noted that there was little difference in FTIR transmittance for naturally aged XLPE.

Table 5.5 shows FTIR and EAB data taken from Appendices E and B, respectively. Using this information the transmittances for three and four conductor AIW cable materials are plotted, respectively, in Figures 5.35 and 5.36 as a function of service aging time at a normalized temperature of  $140^{\circ}F(60^{\circ}C)$ . For both cable types, the percent increases with aging time. The one exception is for the EPR insulation for the four-conductor cable (Figure 5.36) which does not show a significant change after about 5 years of aging.

Figures 5.37 and 5.38 show the FTIR transmittance as a function of the elongation-at-break for AIW three and four conductor cables, respectively. When the materials are given service aging treatments, the ductilities decrease and the transmittances increase. This is in keeping with the loss of  $-CH_2$  bonds by oxidation.



Figure 5.31 FTIR spectra for EPR insulation from AIW cable PNI74AI027 (Group 2.2, Specimen 0205) artificially aged to 20 years service



Figure 5.32 FTIR results for AIW cable PNI74AI027 (Group 2.2, Specimen 0205) artificially aged to 20 years service as a function of CM point



Figure 5.33 FTIR results for AIW cable PNI74AI028 (Group 2.4, Specimen 0213) artificially aged to one-half of the 40 year qualification protocol



Figure 5.34 FTIR results for AIW cable PNI74AI019 (Group 2.3, Specimen 0210) naturally aged to 20 years service

| Group                | Material                                                       | Service Aging<br>Protocol      | Equiv. Aging<br>Time at 60°C<br>(years) | Transmittance at<br>Wavenumber 2916 cm <sup>-1</sup><br>(%) <sup>(a)</sup> | EAB<br>(%) <sup>(s)</sup> |
|----------------------|----------------------------------------------------------------|--------------------------------|-----------------------------------------|----------------------------------------------------------------------------|---------------------------|
| 2.2<br>(Spec. 0205A) | PNI74AI027 (4-conductor)<br>(Hypalon® Outer Jacket)            | None                           | 0                                       | 83.1                                                                       | 649                       |
| 2.2<br>(Spec. 0205D) | PNI74AI027 (4-conductor)<br>(Hypalon® Outer Jacket)            | 28.45 hr.@121°C<br>+ 3.25 Mrad | 2.6                                     | 88.3                                                                       | 582                       |
| 2.4<br>(Spec. 0213E) | PNI74AI028 (4-conductor)<br>(Hypalon® Outer Jacket.)           | 82.5 hr.@121°C<br>+ 25.8 Mrad  | 7.6                                     | 90.6                                                                       | 429                       |
| 2.2<br>(Spec. 0205A) | PNI74AI027 (4-conductor)<br>(Hypalon® White Individual Jacket) | None                           | 0                                       | 89.4                                                                       | 540                       |
| 2.2<br>(Spec. 0205D) | PNI74AI027 (4-conductor)<br>(Hypalon® White Individual Jacket) | 28.45 hr.@121°C<br>+ 3.25 Mrad | 2.6                                     | 91.6                                                                       | 341                       |
| 2.4<br>(Spec. 0213E) | PNI74AI028 (4-conductor)<br>(Hypalon® White Individual Jacket) | 82.5 hr.@121°C<br>+ 25.8 Mrad  | 7.6                                     | 92.6                                                                       | 371                       |
| 2.2<br>(Spec. 0205A) | PNI74AI027 (4-conductor)<br>(EPR Insulation)                   | None                           | 0                                       | 89.6                                                                       | 284                       |
| 2.2<br>(Spec. 0205D) | PNI74AI027 (4-conductor)<br>(EPR Insulation)                   | 28.45 hr.@121°C<br>+ 3.25 Mrad | 1.9                                     | 90.4                                                                       | 224                       |
| 2.4<br>(Spec. 0213E) | PNI74AI028 (4-conductor)<br>(EPR Insulation)                   | 82.5 hr.@121°C<br>+ 25.8 Mrad  | 5.5                                     | 89.8                                                                       | 196                       |
| 2.1<br>(Spec. 0202A) | PNI74AI031 (3-conductor)<br>(Hypalon® Outer Jacket)            | None                           | 0.                                      | 78.6                                                                       | 563                       |
| 2.4<br>(Spec. 0214E) | PNI74AI032 (3-conductor)<br>(Hypalon® Outer Jacket)            | 82.5 hr.@121°C<br>+ 25.8 Mrad  | 7.6                                     | 83.3                                                                       | 369                       |
| 6.2<br>(Spec. 0611E) | PNI74AI035 (3-conductor)<br>(Hypalon® Outer Jacket)            | 252 hr.@121°C<br>+ 38.7 Mrad   | 23.2                                    | 89.1                                                                       | 191                       |
| 2.1<br>(Spec. 0202A) | PNI74AI031 (3-conductor)<br>(Hypalon® White Individual Jacket) | None                           | 0                                       | 90.5                                                                       | 482                       |
| 2.4<br>(Spec. 0214E) | PNI74AI032 (3-conductor)<br>(Hypalon® White Individual Jacket  | 82.5 hr.@121°C<br>+ 25.8 Mrad  | 7.6                                     | 93.0                                                                       | 250                       |
| 6.2<br>(Spec. 0611E) | PNI74AI035 (3-conductor)<br>(Hypalon® White Individual Jacket) | 252 hr.@121°C<br>+ 38.7 Mrad   | 23.2                                    | 97.8                                                                       | 197                       |
| 2.1<br>(Spec. 0202A) | PNI74AI031 (3-conductor)<br>(EPR Insulation)                   | None                           | 0                                       | 90.6                                                                       | 341                       |
| 2.4<br>(Spec. 0214E) | PNI74AI032 (3-conductor)<br>(EPR Insulation)                   | 82.5 hr.@121°C<br>+ 25.8 Mrad  | 5.5                                     | 91.8                                                                       | 224                       |
| 6.2<br>(Spec. 0611E) | PNI74AI035 (3-conductor)<br>(EPR Insulation)                   | 252 hr.@121°C<br>+ 38.7 Mrad   | 16.8                                    | 94.7                                                                       | 218                       |

# Table 5.5 FTIR results for AIW EPR/Hypalon<sup>®</sup> cables as a function of aging and elongation-at-break

(a) Average of at least 3 tests



Figure 5.35 Correlation between FTIR transmittance and service aging time at 140°F (60°C) for AIW three-conductor cable



Figure 5.36 Correlation between FTIR transmittance and service aging Time at 140°F (60°C) for AIW four-conductor cable

5. Condition Monitoring - EPR Cables



One potential drawback to laboratory evaluation of FTIR is that accelerated aging at high temperatures may cause a large oxidation gradient to form near the surface of the specimens. Thus, FTIR surface measurements will not always be representative of bulk aging behavior. However, if the measurements are performed on naturally aged materials, the oxidation gradients will be minimized and FTIR spectroscopy may be valuable in monitoring long term degradation.

In summary, the FTIR technique that monitors aging through transmittance measurements on the  $-CH_2$  peak at 2916 cm<sup>-1</sup> appears to be capable of trending the aging degradation of EPR insulation. Although these bonds are usually very stable for the polymer backbone, there may be similar bonds present in other cable constituents. Oxidation, according to the theory described in Section 4.5, should cause a decrease in the number of  $-CH_2$  bonds and be reflected by an increase in transmittance. Additional work should be performed to more fully establish the technique as a viable condition monitoring procedure.

# 5.6 Indenter

This section presents the results of the indenter tests on the EPR-insulated cable specimens. Test sequences 2, 4, 5 and 6 included cables with EPR insulation. Selected results are presented and discussed in the following paragraphs. Complete indenter results are tabulated in Appendix E.

Figure 5.39 provides the results of the indenter tests on the EPR insulation from the AIW specimens in test sequence 6, which were pre-aged to the equivalent of 60 years of qualified life. These specimens had an unbonded individual Hypalon<sup>®</sup> jacket on top of the EPR insulation, which was removed prior to indenter testing. The composite EPR/unbonded Hypalon<sup>®</sup> individual jacket insulation was tested separately. As shown, the AIW EPR insulation did



Figure 5.38 Correlation between FTIR transmittance and elongation-at-break for AIW four-conductor cable

not exhibit any significant change in compressive modulus from baseline to post-accident radiation (overall 3 percent increase). Similar results were seen for the EPR materials from the Anaconda specimens pre-aged to the equivalent of 20 and 40 years of qualified life. The data indicate that the Anaconda EPR is a relatively stable material when exposed to the thermal and radiation stressors applied in this program.

Figure 5.40 presents the compressive modulus as a function of pre-aging for the composite EPR/unbonded Hypalon<sup>®</sup> individual jacket insulation for the test sequence 6 AIW specimens. Unlike the results for EPR alone, the composite shows a definite increasing trend with increasing exposure to aging stressors. While the overall change in compressive modulus from baseline to post-accident radiation is relatively small (11 to 17 N/mm, 63 to 97 lbs./in.), it represents a 55 percent increase, which is significant. Also, the increase is continuous, except for the slight decrease in modulus after the second half of the accident radiation exposure, and it can be detected with the indenter. Comparing these results with the results for the EPR alone (Figure 5.39), the data suggest that the Hypalon individual jacket is more susceptible to aging than the EPR and, when applied to the EPR in the form of an individual jacket, the resulting composite insulation is less stable under aging stress than the EPR alone. The compressive modulus of the composite is also more responsive to aging degradation, which makes it a better candidate for monitoring with the indenter.



Figure 5.39 Average compressive modulus for EPR insulation from AIW specimens pre-aged to 60 yr.

F = Post half accident radiation G = Post full accident radiation

To examine this further, data for EPR-insulated Anaconda specimens pre-aged to 40 years of equivalent qualified life, both with and without the Hypalon<sup>®</sup> individual jacket, were compared (Figure 5.41). As shown, the specimens with EPR alone exhibited a smaller increase in compressive modulus from their baseline value to post-service aging (overall increase of 37 percent) compared to the specimens with the composite EPR/unbonded Hypalon<sup>®</sup> individual jacket (overall increase of 149 percent). These results are consistent with those from the AIW specimens and indicate that the Hypalon<sup>®</sup> individual jacket influences the change in compressive modulus of the insulation as a function of aging degradation.

In Figure 5.42 the compressive modulus values for the Samuel Moore specimens pre-aged to 60 years of equivalent qualified life are presented. These specimens included a composite EPR/bonded Hypalon<sup>®</sup> individual jacket insulation. As shown, a definite increasing trend with age was noted for these specimens with a continuous, overall increase of 277 percent (14.3 N/mm baseline to 53.9 N/mm after service aging plus accident radiation). These results are consistent with the results for the composite EPR/unbonded Hypalon<sup>®</sup> individual jacket insulation and suggest that this composite is well suited to be monitored and trended with the indenter.

The compressive modulus for the Okonite specimens pre-aged to 60 years of equivalent qualified life was also examined (Figure 5.43). These data show that the compressive modulus increased dramatically after thermal aging and subsequently remained relatively stable. This is believed to be due to the severe thermal aging received by the Okonite specimens as compared to the other specimens. After thermal aging, the Okonite specimens were essentially brittle, therefore, subsequent exposure to the radiation stressors had little effect on the material ductility; thus, no change in compressive modulus was evident. This is confirmed by the EAB data, which show the insulation had little, if any ductility remaining after thermal aging.

A = Baseline C = Post Thermal Pre-aging E = Post Service Radiation



Figure 5.41 Average compressive modulus for EPR insulation from Anaconda specimens in test sequence 4 pre-aged to 40 yr. with and without Hypalon<sup>®</sup> individual jacket A = Baseline E = Post Thermal and Radiation Service Pre-aging

A

Е

0



 Figure 5.42 Average compressive modulus for composite EPR/bonded Hypalon® insulation from Samuel

 Moore specimens in test sequence 6 pre-aged to 60 yr.

 A = Baseline
 E = Post Service Radiation
 F = Post half accident radiation

 C = Post Thermal Pre-aging
 G = Post full accident radiation
 F = Post half accident radiation

Compressive modulus was measured for the Hypalon<sup>®</sup> outer jackets used on the Samuel Moore, Anaconda and AIW cable specimens. Figure 5.44 presents the results for the AIW outer jacket, which show a definite, continuous increase in the compressive modulus with pre-aging. While the overall increase is small (9.5 to 14.1 N/mm, 52 to 81 lbs./in.), this represents a 48 percent increase and should be measurable with the indenter. The results for the Samuel Moore outer jacket show a more pronounced change in compressive modulus, which increases from 13.9 to 60.5 N/mm (79 to 345 lbs./in.) (Figure 5.45). Both of these results indicate that these materials are suitable candidates for monitoring with the indenter.

An observation made during the analysis of the above data is that, in all cases, effective trending of the compressive modulus results was found to depend on having a good baseline value to use as a reference. Comparison of subsequent measurements to the baseline value was found to be very helpful in determining and interpreting variations in the values obtained. Therefore, it is important to establish a baseline value for the cables to be monitored as early in life as possible to most effectively utilize the indenter measurements. Of equal or greater importance for estimating remaining life is the establishment of a well defined end condition.



Figure 5.43 Average compressive modulus for composite EPR/bonded Hypalon<sup>®</sup> insulation from Okonite specimens in test sequence 6 pre-aged to 60 yr.



 Figure 5.44 Average compressive modulus for Hypalon® outer jacket from AIW specimens in test sequence 6 pre-aged to 60 yr.

 A = Baseline
 E = Post Service Radiation
 F = Post half accident radiation

 C = Post Thermal Pre-aging
 G = Post full accident radiation
 F = Post half accident radiation

5. Condition Monitoring - EPR Cables



Figure 5.45 Average compressive modulus for Hypalon® outer jacket from Samuel Moore specimens in test sequence 6 pre-aged to 60 yr.

| м-  | Dase | inne    |        |      |
|-----|------|---------|--------|------|
| C = | Post | Thermal | Pre-as | ging |

E = Post Service Radiation G = Post full accident radiation

F = Post half accident radiation

Another observation made in analyzing the data is that cable construction has a definite effect on the compressive modulus. This was clearly observed with the Samuel Moore specimens tested in test sequences 4, 5, and 6. Previous research (IAEA, 2000) documented the influence of cable construction on modulus results, particularly in cables with loose construction or cables which have an inner metallic shielding. Table 5.6 provides the mean compressive modulus for the Samuel Moore specimens following accelerated aging to the equivalent of 20, 40, and 60 years of qualified life. As indicated, the specimens tested in sequence 4 exhibited markedly different results than the specimens tested in sequences 5 and 6. Each of the specimens tested had the same Hypalon® outer jackets, but were of different cable design. The specimens tested in test sequences 5 and 6 were from a two conductor instrument wire with solid conductors, while the specimens in test sequences 5 and 6 were from a two conductor instrument wire with stranded copper conductors. The cable specimens with the stranded copper conductor had higher compressive modulus values than the thermocouple wire. However, the two conductor thermocouple wire exhibited a higher percentage increase in compressive modulus after aging to the equivalent of 40 years of qualified life (72 percent vs. 56 percent) when compared to the instrumentation wire in test sequences 5 and 6. Also, a continuous increase in modulus was noted for this cable during the accident irradiation exposure.

The indenter results for the EPR-insulated cables showed modest increases in compressive modulus for the pre-aging used in this study. This is indicative of the overall resistance of this material to thermal and irradiation degradation, however, it also highlights the potential difficulty in using the indenter to monitor aging degradation in conditions where aging stressors may be less severe than simulated herein. In general, the materials studied do show a consistent trend toward increasing modulus with increasing aging degradation.

| Test     |                          | Compressive Modulus (N/mm)(lbs/in) |                    |                       |                       |  |  |
|----------|--------------------------|------------------------------------|--------------------|-----------------------|-----------------------|--|--|
| Sequence | Cable Type               | Baseline                           | Pre-aged to 20 yr. | Pre-aged to<br>40 yr. | Pre-aged to<br>60 yr. |  |  |
| 4        | Thermocouple<br>Cable    | 9.13 (52.45)                       | 12.8 (73.53)       | . 15.7 (90.19)        | NA                    |  |  |
| 5&6      | Instrumentation<br>Cable | 15.16 (87.09)                      | 20.36 (116.96)     | 23.66 (135.92)        | 32.29 (185.50)        |  |  |

# Table 5.6 Samuel Moore Hypalon<sup>®</sup> outer jacket compressive modulus values

As discussed previously, EAB is often considered the standard against which the effectiveness of other condition monitoring techniques is measured. To determine how well the indenter data obtained in this study correlates with the EAB values for the materials tested, compressive modulus was plotted against EAB for several of the specimens. As shown in Figure 5.46, the EPR insulation alone did not have a very good correlation with EAB since the compressive modulus changed very little with increasing aging while the EAB continuously decreased. However, with a Hypalon<sup>®</sup> individual jacket applied to the EPR, the compressive modulus values correlated very well with EAB, as shown in Figures 5.47 and 5.48 for the AIW and Samuel Moore specimens, respectively. In both cases, an excellent correlation was found with compressive modulus continuously increasing corresponding to a decrease in EAB as aging degradation increased. Correlation of compressive modulus with EAB for the Hypalon<sup>®</sup> outer jacket was also found to be very good (Figure 5.49).



Figure 5.46 Correlation of Compressive Modulus with EAB for EPR insulation from AIW specimens in test sequence 6 pre-aged to 60 yr.



Figure 5.48 Correlation of Compressive Modulus with EAB for composite EPR/bonded Hypalon<sup>®</sup> insulation from Samuel Moore specimens in test sequence 6 pre-aged to 60 yr.


Figure 5.49 Correlation of Compressive Modulus with EAB for Hypalon<sup>®</sup> outer jacket from AIW specimens in test sequence 6 pre-aged to 60 yr.

# 5.7 Hardness

Hardness data were obtained for the AIW EPR-insulated cable specimens in test sequence 2. The average hardness results for the Group 2.4 specimens pre-aged to the equivalent of 20 years of qualified life show that none of the specimens tested in this sequence exhibited a dramatic increase in hardness (Figures 5.50 and 5.51). Figure 5.50 shows the EPR insulation experienced a 34 percent increase in hardness (21.7 to 29). The increase was continuous and would provide a means of trending degradation rate for this material.

By comparison, the Hypalon<sup>®</sup> individual and outer jackets experienced smaller overall increases of approximately 5 percent and 15 percent, respectively. It is noted that the Hypalon<sup>®</sup> individual and outer jackets were initially harder than the EPR insulation. Given the inherent error associated with reading the vernier scale on the durometer, the overall change in hardness for neither the individual jackets nor the outer jackets would be readily apparent during in situ use.

The hardness data were plotted against EAB to determine if a correlation exists between these two techniques. Figure 5.52 shows that, for the EPR insulation, a good correlation with EAB exists. This suggests that hardness could provide trendable data for monitoring degradation of this material. For the Hypalon<sup>®</sup> material, Figure 5.53 shows a fair correlation for the outer jacket material, however, the individual jacket had a poor correlation. This is due to the small amount of change in the hardness values as a function of aging degradation.

5. Condition Monitoring - EPR Cables



Figure 5.50 Hardness versus pre-aging for EPR material from AIW specimens in Group 2.4, test sequence 2 pre-aged to 20 yr.



Figure 5.51 Hardness versus pre-aging for Hypalon<sup>®</sup> material from AIW specimens in Group 2.4, test sequence 2 pre-aged to 20 yr.

A = Baseline C = Post Thermal Pre-aging

E = Post Service RadiationF = Post half accident radiation

The good correlation observed for the EPR material indicates that hardness can be used as a reasonable indication of aging for this material. However, as discussed in Section 3.7, a specially designed hardness tester would be needed to mitigate puncture of the material being tested.





# 5.8 Dielectric Loss

Dielectric loss measurements were performed in accordance with a BNL approved test procedure using a two-channel Hewlett Packard HP 35670A Dynamic Signal Analyzer as described in Section 3.8. The data obtained are included in Appendix G. Selected results are discussed in the following paragraphs.

Figure 5.54 presents the data for 1/C #12 AWG Okonite EPR-insulated cables with bonded Hypalon<sup>®</sup> jackets. The average dielectric phase angle measured from conductor-to-ground as a function of the frequency of the applied ac test voltage is plotted for the baseline cables (no pre-aging) and for cables pre-aged to the equivalent of 20, 40, and 60 years of qualified life using the pre-aging parameters found in the original qualification test reports. From approximately 5 to 5000 Hz (the maximum frequency measured in this program), the plot generally moves toward the origin throughout the service pre-aging process compared to the baseline values. A large change can be seen in the cables pre-aged to 60 years; the 60 year specimens experienced 100 percent failure in the subsequent LOCA exposure test.

The results shown in Figure 5.54 indicate that, as cable insulation deteriorates over time, either as a result of natural inservice aging or by being subjected to accelerated aging, the degradation in the dielectric properties of the insulating material can be detected, monitored, and trended using this technique. Low voltage ac applied to the test specimens at frequencies between 50 and 500 Hz were found to be the most effective in showing the effects of insulation degradation on dielectric properties. Lower frequency applied test voltage also showed the dielectric changes, especially at severe levels of insulation damage and degradation. However, as was found with the XLPE-insulated cables, the very low frequency (less than 1 Hz) measurements were much more difficult to perform, very time consuming, not consistently trendable, and results were not as repeatable.

As discussed in Section 3.8, the dielectric measurements can be presented in terms of the insulation power factor, i.e., the cosine of the dielectric phase angle,  $\cos \theta$ . Table 5.7 summarizes the insulation power factor values for pre-aged Okonite EPR-insulated cables with bonded Hypalon<sup>®</sup> jackets compared to the baseline values measured before any preaging had been performed. The insulation power factors measured at 50, 100, 500 Hz are presented as an example, since the changes and trends were most consistently demonstrated within this range of frequencies.

The data in Table 5.7 show a measurable general trend of increasing insulation power factor from the unaged condition of the cable to the post-service aging condition. There is also good consistency in the relative insulation power factor as the total equivalent service aging, and corresponding level of insulation degradation, progressively increased from 20 years up to 60 years.

An EPR-insulated cable with individual Hypalon<sup>®</sup> jackets was also tested in a multiple conductor cable configuration. This was a Samuel Moore 2/C #16 AWG low voltage I&C cable with shield and bare copper drain (ground) conductor enclosed in an overall Hypalon<sup>®</sup> jacket. Insulation power factor measurements for this cable showed an increasing trend as the cable insulation degraded during pre-aging from the baseline value (no pre-aging) up to a maximum of 60 years of equivalent service.

Table 5.8 is a tabulation of the insulation power factor values, measured from the black-to-white-insulated conductors, for pre-aged Samuel Moore EPDM-insulated cables with individual bonded Hypalon<sup>®</sup> jackets compared to the baseline values measured before any pre-aging had been performed. Measurements were made with the cable intact in its original multiconductor configuration. The insulation power factors measured at 50, 100, and 500 Hz are given since the changes and trends were most consistently demonstrated within this range of frequencies.



Figure 5.54 Dielectric phase angle vs test voltage frequency for aged Okonite cables

| Insulation Power Factor<br>Low Voltage Okonite EPR-insulated Cables with Bonded Hypalon <sup>®</sup> Jacket |     |         |       |        |        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----|---------|-------|--------|--------|--|--|--|--|--|
| Cable Group Aging Frequency of Applied ac Test Voltage                                                      |     |         |       |        |        |  |  |  |  |  |
| Specimens                                                                                                   |     | (Years) | 50 Hz | 100 Hz | 500 Hz |  |  |  |  |  |
| Baseline                                                                                                    | All | None    | 0.13  | 0.24   | 0.73   |  |  |  |  |  |
| 20 Years                                                                                                    | 5.2 | None    | 0.13  | 0.23   | 0.73   |  |  |  |  |  |
|                                                                                                             | OK  | 20      | 0.16  | 0.25   | 0.75   |  |  |  |  |  |
| 40 Years                                                                                                    | 5.3 | None    | 0.13  | 0.24   | 0.73   |  |  |  |  |  |
|                                                                                                             | OK  | 40      | 0.19  | 0.28   | 0.76   |  |  |  |  |  |
| 60 Years                                                                                                    | 6.2 | None    | 0.13  | 0.24   | 0.74   |  |  |  |  |  |
|                                                                                                             | OK  | 60      | 0.50  | 0.58   | 0.91   |  |  |  |  |  |

Table 5.7 Insulation power factor for Okonite EPR-insulated cables with bonded Hypalon<sup>®</sup> jacket

| Low Vol   | Insulation Power Factor - Conductor-to-conductor<br>Low Voltage Samuel Moore EPR-insulated Cables with Bonded Individual Hypalon <sup>®</sup> Jacket |         |       |        |        |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|--------|--------|--|--|--|--|--|
| Cable     | Cable Group Aging Frequency of Applied ac Test Voltage                                                                                               |         |       |        |        |  |  |  |  |  |
| Specimens |                                                                                                                                                      | (Years) | 50 Hz | 100 Hz | 500 Hz |  |  |  |  |  |
| Baseline  | All                                                                                                                                                  | None    | 0.16  | 0.27   | 0.80   |  |  |  |  |  |
| 20 Years  | 5.2                                                                                                                                                  | None    | 0.16  | 0.27   | 0.80   |  |  |  |  |  |
|           | SM                                                                                                                                                   | 20      | 0.20  | 0.33   | 0.85   |  |  |  |  |  |
| 40 Years  | 5.3                                                                                                                                                  | None    | 0.16  | 0.28   | 0.81   |  |  |  |  |  |
|           | SM                                                                                                                                                   | 40      | 0.21  | 0.34   | 0.85   |  |  |  |  |  |
| 60 Years  | 6.2                                                                                                                                                  | None    | 0.16  | 0.27   | 0.80   |  |  |  |  |  |
|           | SM                                                                                                                                                   | 60      | 0.21  | 0.35   | 0.86   |  |  |  |  |  |

 Table 5.8 Insulation power factor for Samuel Moore EPDM-insulated cables with bonded individual

 Hypalon<sup>®</sup> jackets, conductor-to-conductor

Similarly, Table 5.9 is a tabulation of the insulation power factor values, measured from the black-insulated conductor to ground, for pre-aged Samuel Moore EPDM-insulated cables with individual bonded Hypalon<sup>®</sup> jackets compared to the baseline values measured before any pre-aging had been performed. As shown by the data, the trend toward increasing insulation power factor measurements is even more pronounced in the conductor-to-ground measurement because there is only a single thickness of insulating material between the measured conductors.

| Table 5.9 | Insulation power factor for Samuel Moore EPDM-insulated cables with bonded individual |
|-----------|---------------------------------------------------------------------------------------|
|           | Hypalon <sup>®</sup> jackets, conductor-to-ground                                     |

| Low Vo    | Insulation Power Factor - Conductor-to-ground<br>Low Voltage Samuel Moore EPR-insulated Cables with Bonded Individual Hypalon <sup>®</sup> Jacket |         |        |                        |         |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|------------------------|---------|--|--|--|--|--|
| Cable     | Group                                                                                                                                             | Aging   | Freque | ncy of Applied ac Test | Voltage |  |  |  |  |  |
| Specimens |                                                                                                                                                   | (Years) | 50 Hz  | 100 Hz                 | 500 Hz  |  |  |  |  |  |
| Baseline  | All                                                                                                                                               | None    | 0.25   | 0.40                   | 0.89    |  |  |  |  |  |
| 20 Years  | 5.2                                                                                                                                               | None    | 0.25   | ·0.40                  | 0.89    |  |  |  |  |  |
|           | SM                                                                                                                                                | 20      | 0.29   | 0.44                   | 0.91    |  |  |  |  |  |
| 40 Years  | 5.3                                                                                                                                               | None    | 0.25   | 0.40                   | 0.89    |  |  |  |  |  |
|           | SM                                                                                                                                                | 40      | 0.29   | 0.45                   | 0.92    |  |  |  |  |  |
| 60 Years  | 6.2                                                                                                                                               | None    | 0.25   | 0.39                   | 0.89    |  |  |  |  |  |
|           | SM                                                                                                                                                | 60      | 0.42   | 0.58                   | 0.94    |  |  |  |  |  |

The other multiple conductor cable configurations with EPR insulation and individual Hypalon<sup> $\oplus$ </sup> jackets (AIW 3/C and 4/C #16 AWG with bare copper drain (ground) and Anaconda 3/C #12 AWG) demonstrated the same trend of increasing power factor with greater insulation material degradation as for the Okonite and Samuel Moore cables. The one exception involved the AIW cables, which showed an initial improvement in dielectric properties (lower insulation power factor) after 20 years of pre-aging compared to the baseline values. The data for the AIW cables are tabulated

in Table 5.10 for measurements between the black- and white-insulated conductors, and in Table 5.11 for the white-insulated conductors-to-ground.

The data in Tables 5.10 and 5.11 show the decrease in power factor after receiving the equivalent of 20 years of thermal and radiation aging. This improvement in dielectric properties is attributed to drying out the moisture that had been absorbed by the cable insulation and jacket materials, and the water vapor within the cable interior that had accumulated during the 24 calendar years since the date of manufacture. The positive effects of the drying during thermal aging offset the degradation caused by the thermal and radiation aging. This phenomenon was also detected by the insulation resistance measurements (see Section 5.9). The moisture effects observed could complicate electrical measurements made in a plant environment.

| Insulation Power Factor - Conductor-to-conductor<br>Low Voltage AIW EPR-insulated Cables with Individual Hypalon <sup>®</sup> Jacket |                                                        |         |       |        |        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|-------|--------|--------|--|--|--|--|
| Cable                                                                                                                                | Cable Group Aging Frequency of Applied ac Test Voltage |         |       |        |        |  |  |  |  |
| Specimens                                                                                                                            |                                                        | (Years) | 50 Hz | 100 Hz | 500 Hz |  |  |  |  |
| Baseline                                                                                                                             | All                                                    | None    | 0.20  | 0.33   | 0.85   |  |  |  |  |
| 20 Years                                                                                                                             | 2.4                                                    | None    | 0.21  | 0.33   | 0.85   |  |  |  |  |
|                                                                                                                                      |                                                        | 20      | 0.19  | 0.30   | 0.81   |  |  |  |  |
| 60 Years                                                                                                                             | 6.2                                                    | None    | 0.19  | 0.31   | 0.83   |  |  |  |  |
|                                                                                                                                      | AI                                                     | 60      | 0.24  | 0.36   | 0.86   |  |  |  |  |

| Table 5.10 | Insulation power | · factor for aged AIV | EPR-insulated cables | , conductor-to-conductor |
|------------|------------------|-----------------------|----------------------|--------------------------|
|------------|------------------|-----------------------|----------------------|--------------------------|

Table 5.11 Insulation power factor for aged AIW EPR-insulated cables, conductor-to-ground

| Insulation Power Factor - White-insulated Conductor-to-ground<br>Low Voltage AIW EPR-insulated Cables with Individual Hypalon <sup>®</sup> Jacket |           |         |       |        |        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-------|--------|--------|--|--|--|--|
| Cable Group Aging Frequency of Applied ac Test Voltage                                                                                            |           |         |       |        |        |  |  |  |  |
| Specimens                                                                                                                                         |           | (Years) | 50 Hz | 100 Hz | 500 Hz |  |  |  |  |
| Baseline                                                                                                                                          | All       | None    | 0.33  | 0.49   | 0.92   |  |  |  |  |
| 20 Years                                                                                                                                          | 2.4       | None    | 0.35  | 0.51   | 0.93   |  |  |  |  |
|                                                                                                                                                   |           | 20      | 0.30  | 0.45   | 0.91   |  |  |  |  |
| 60 Years                                                                                                                                          | 6.2<br>AI | None    | 0.30  | 0.45   | 0.91   |  |  |  |  |
|                                                                                                                                                   |           | 60      | 0.37  | 0.54   | 0.94   |  |  |  |  |

Nevertheless, the EPR-insulated cables with bonded and unbonded Hypalon<sup>®</sup> jackets, in both single and multiple conductor configurations, all demonstrated a measurable trend toward increasing power factor (deteriorating dielectric strength) with greater insulation material degradation. This trend was most pronounced and consistent at applied ac test voltage frequencies in the range from 10 to 500 Hz. The effect was also best observed in measurements from conductor-to-ground. Based on these results, dielectric loss measurements, particularly when compared to a baseline measurement, are considered a good electrical condition monitoring technique for these materials. It is again noted that a well defined end condition would have to be established to estimate remaining life.

# 5.9 Insulation Resistance

Insulation resistance measurements were performed in accordance with a BNL-approved test procedure using a General Radio Model 1864 Megohmmeter, as described in Section 3.9. The data obtained are included in Appendix H. Selected results are discussed in the following paragraphs.

Insulation resistance measurements were made for EPR-insulated cables from four different manufacturers. Two of these were constructed using bonded individual Hypalon<sup>®</sup> jackets; the others had unbonded individual Hypalon<sup>®</sup> jackets. The average insulation resistance readings at 1 minute and at 10 minutes are summarized in Table 5.12 for these cables, along with the corresponding polarization indices. Polarization indices in the range of about 2 or below are indicative of weakened or deteriorated cable insulation. All values in the table are for cable specimens tested intact, on stainless steel mandrels or in steel Unistrut<sup>®</sup> channels, in their multiconductor configuration, with the exception of the single conductor Okonite cable.

|        | Cab | le  |                | Overall             |        | Insulation R | Resistance (Tera | ohms, Correc | ted to 60°F) |               |
|--------|-----|-----|----------------|---------------------|--------|--------------|------------------|--------------|--------------|---------------|
|        |     |     | IR Time<br>And | Average<br>Baseline | 20 1   | rears        | 40 Ye            | ars          | 60 1         | <i>l</i> ears |
|        |     |     | PI             | Unaged              | Unaged | Aged         | Unaged           | Aged         | Unaged       | Aged          |
| В      | ок  | C/E | 1 min          | 8.57                | 4.49   | 0.07         | 6.83             | 0.07         | 9.25         | 0.22          |
| O<br>N |     |     | 10 min         | 49.06               | 19.81  | 0.07         | 20.03            | 0.09         | 38.75        | 0.48          |
| D      |     |     | PI             | 5.729               | 4.41   | 1.14         | 2.93             | 1.47         | 4.19         | 2.22          |
| E<br>D | SM  | C/C | 1 min          | 5.18                | 6.94   | 3.22         | 4.98             | 1.93         | 6.08         | 2.43          |
| Ţ      |     |     | 10 min         | 55.01               | 33.75  | 11.28        | 80.92            | 5.07         | 103.74       | 10.04         |
| A      |     |     | PI             | 10.63               | 4.86   | 3.50         | 16.26            | 2.63         | 17.07        | 4.13          |
| C<br>K |     | C/E | 1 min          | 1.65                | 1.30   | 0.77         | 5.48             | 0.15         | 1.31         | 0.98          |
| E      |     |     | 10 min         | 13.87               | 8.96   | 6.27         | 35.40            | 0.34         | 10.11        | 2.98          |
|        |     |     | PI             | 8.41                | 6.91   | 7.96         | 16.54            | 2.21         | 7.74         | 3.05          |
| U      | AN  | C/C | 1 min          | 3.24                | 4.55   | 3.00         | 2.35             | 0.79         | *****        |               |
| N<br>B |     |     | 10 min         | 23.83               | 27.00  | 10.40        | 24.07            | 3.18         |              |               |
| O<br>N |     |     | PI             | 7.36                | 5.93   | 3.35         | 10.29            | 4.05         |              |               |
| D      | AI  | C/C | 1 min          | 27.39               | 46.91  | 0.87         |                  |              | 4.55         | 0.47          |
| B      |     |     | 10min          | 46.98               | 74.31  | 1.41         |                  |              | 10.21        | 1.58          |
| 1      |     |     | PI             | 1.72                | 1.58   | 1.49         |                  |              | 2.25         | 3.34          |
| AC     |     | C/E | 1 min          | 3.34                | 4.11   | 0.32         |                  |              | 1.10         | 0.47          |
| K      |     |     | 10 min         | 12.57               | 13.22  | 0.46         |                  |              | 3.96         | 0.82          |
| T      |     |     | PI             | 3.76                | 3.22   | 1.44         |                  |              | 3.59         | 1.66          |

Table 5.12 Insulation resistance (IR) and polarization index (PI) for aged EPR-insulated cables

OK - Okonite 1/C #12

AN - Anaconda 3/C #12

C/C - Conductor-to-Conductor

SM - Samuel Moore 2/C #16 with shield & ground

AI - American Insulated Wire 3/C & 4/C #16 with ground

C/E - Conductor-to-Ground PI - Polorization Index

All of the EPR-insulated cables showed a trend toward decreasing IR values after pre-aging. The Samuel Moore and Anaconda cables, which experienced relatively mild pre-aging compared to the Okonite cables, exhibited a very strong incremental trend toward decreasing IR with a corresponding increase in pre-aging/insulation degradation. This is illustrated in Figure 5.55 for the Samuel Moore cables and Figure 5.56 for the Anaconda cables in which the average conductor-to-conductor, temperature-corrected IR values are plotted as a function of the incremental level of pre-aging administered.



Figure 5.55 Insulation Resistance (IR) for aged EPR-insulated Samuel Moore cables

In contrast, the insulation on the Okonite cables, which experienced very harsh pre-aging conditions, was completely embrittled even after 20 years of pre-aging, as evidenced by the low EAB values in Tables 3.22 and 3.26 of Volume 1 of this report. The additional 40 and 60 year pre-aging administered to the Okonite cables did little further damage to the insulation compared to the 20 year aged insulation. This is reflected in the uniformly low average IR readings for the 20, 40, and 60 year cables and the corresponding low average PI values. Given the large drop in IR between the unaged overall baseline values and the 20 year aged cables, however, it follows that insulation resistance/polarization index could be a trendable parameter for gradual increments of degradation smaller than the severe pre-aging conditions applied in this test.

The pre-aging applied to the AIW cables was not as severe as that experienced by the Okonite cables, and the EAB measurements in Tables 3.8 and 3.26 of Volume 1 of this report show a significant amount of ductility remaining in the insulation; 196 percent and 218 percent for the 20 and 60 year cables, respectively. This indicates that the two groups were similar in their physical condition. Electrically, the two groups also exhibit similar IR readings. However, the large decrease in IR compared to the average baseline levels, together with poor PI readings, indicate that the dielectric properties of the insulation had deteriorated significantly after only 20 years of pre-aging and were electrically similar to the 60 year aged cables. A subsequent post-LOCA 6 inspection showed that the white-colored individual Hypalon<sup>®</sup> jackets had numerous small (approximately 1mm) surface cracks, which may have contributed to the observations in Table 5.12.



Figure 5.56 Insulation Resistance (IR) for aged EPR-insulated Anaconda cables

Nevertheless, the large change in insulation resistance from the baseline to the 20 and 60 year aged cables implies that the insulation resistance/polarization index could be a trendable parameter for gradual increments of degradation smaller than the relatively severe pre-aging applied during qualification testing. This was in fact found to be the case in test sequence 2 (Lofaro, et.al., November 1998C) where temperature-corrected insulation resistance measurements for baseline EPR-insulated AIW cables, 24-year-old naturally aged cables, cables aged to match the naturally aged cables, and incrementally aged 20 year cables corresponded to the relative level of degradation for each group.

The test data for hold points in the pre-aging process, as described in Volume 1 of this report, and observations by the BNL test engineers indicate that the insulation resistance readings are a trendable parameter for the smaller increments of insulation damage that would be encountered during normal service aging in a nuclear power plant environment. Based on these results, temperature-corrected insulation resistance or polarization index values, particularly when compared to a baseline measurement, are considered an electrical condition monitoring technique capable of observing incremental trends in degradation for these materials. If well defined end conditions can be established, this technique may be useful for estimating remaining life.

# 5.10 Functional Performance

EPR-insulated cables from four different manufacturers were connected into individual 4-20 mA instrumentation loop circuits in order to assess their functional performance throughout the LOCA exposures in test sequences 2, 4, 5, and 6, as discussed in Section 3.10. All of the pre-aged Samuel Moore (EPDM-insulated 2/C #16 AWG with individual bonded Hypalon<sup>®</sup> jackets and overall Hypalon<sup>®</sup> jacket), AIW (EPR-insulated 3/C & 4/C #16 AWG with individual unbonded Hypalon<sup>®</sup> jackets and overall Hypalon<sup>®</sup> jacket) and Anaconda cables (EPR-insulated 3/C #12 AWG with individual unbonded Hypalon<sup>®</sup> jackets and overall Hypalon<sup>®</sup> jacket) performed adequately on the functional performance test. Instrument loop circuit currents and voltages remained at their nominal levels and leakage currents were negligible throughout the duration of the LOCA exposures.

The pre-aged 1/C #12 AWG Okonite cables with EPR insulation and bonded Hypalon<sup>®</sup> jacket experienced problems on the functional performance test in both test sequences 5 and 6. Test sequence 5 contained unaged (Group 5.1), 20 year (Group 5.2), and 40 year (Group 5.3) pre-aged Okonite cables. Instrument loop circuit currents and voltages remained at their nominal levels and leakage currents were negligible throughout the initial preheat of the test chamber and the double peak pressure/temperature transient. During cooldown from the second transient peak, at approximately 15 hours into test, chemical spray was initiated and maintained for the next 24 hours. Immediately upon initiation of the chemical spray, leakage currents, ranging from 0.2mA to 0.6mA, were observed for the three specimens in Group 5.3. Upon completion of the chemical spray, the leakage currents returned to negligible levels.

After completion of the LOCA exposure for test sequence 5, a check of the test specimen wiring revealed that the single conductor Okonite specimens had inadvertently been connected in to the positive side of the test circuit. Since this portion of the circuit was referenced to ground, this configuration minimized the potential between the conductors and ground. This impaired the ability of the test setup to monitor the full leakage current for the Okonite specimens. This is documented in Notice of Anomaly 11 in Appendix B to Volume 1 of this report.

The Okonite cables aged to the equivalent of 60 years of service at 194°F (90°C) (Group 6.2) also experienced problems during the LOCA exposure for test sequence 6. During the 3 hour hold period at the peak conditions of the first pressure/temperature transient, a leakage current of 0.2mA was observed in Okonite Specimen 0605. This returned to 0mA during the cooldown preceding the second pressure transient. Within a minute of initiating the second transient, the 1/32 ampere protective fuses in the instrument loop circuits in all three of the Group 6.2 Okonite specimens blew. After the fuses were replaced, two of the three circuits continued to operate; 0607 blew the new fuse immediately and it could not be replaced successfully until about 15 minutes later. The protective fuses for circuits 0605 and 0606 blew for the second time during cooldown from the second transient, with circuit currents measured at between 200 and 300mA. Approximately one hour later, the protective fuse for circuit 0607 blew for the third time with a circuit current measured at about 273mA. All three of the Okonite circuits were removed from service for the remainder of the LOCA test.

The functional performances for the pre-aged EPR-insulated Anaconda, Samuel Moore, and AIW cables were adequate. Instrument loop circuit currents and voltages remained at their nominal levels, and leakage currents were negligible throughout the duration of the LOCA exposures. These results are in agreement with several of the other condition monitoring tests such as the elongation-at-break, insulation resistance/polarization index, and dielectric power factor.

Referring to the elongation-a-break (EAB) values for Okonite cables aged to 20 years of service at 194°F (90°C) in Table 3.22 of Volume 1 of this report, it can be seen that the EAB had been reduced to less than 5 percent. This means that the ductility of the EPR/Hypalon<sup>®</sup> insulation for the 20, 40, and 60 year cable groups had all been reduced to minimum, and little difference would be expected in the level of degradation among the three groups. The poor insulation resistance and insulation power factor values reinforced these EAB findings by showing that the dielectric integrity for the three groups of cables was also marginal.

Because of the severe pre-aging administered to the Okonite cables, the cable insulation was extremely degraded and the resulting leakage currents were very high. This caused the protective fuses in the instrument loop circuits to blow frequently making it impossible to make meaningful quantitative measurements of circuit error. Post-LOCA visual inspection revealed that catastrophic failure of the cable insulation/jacket material occurred at some time during the LOCA exposure for the all of the 40 year (Group 5.3) and 60 year (Group 6.2) Okonite cables. Consequently, the functional performance test for the pre-aged Okonite cables in these groups was in effect a pass/fail test because of the excessive leakage currents.

# 5.11 Voltage Withstand

Upon completion of the LOCA exposure test, EPR-insulated cables from four different manufacturers in test sequences 2, 4, 5, and 6 were removed from the LOCA test chamber and subjected to a post-LOCA submerged voltage withstand test. This test, described in Section 3.11, is the final step of the pre-aging/LOCA test sequence followed in the BNL test program. The data obtained are included in Appendix I. Selected results are discussed in the following paragraphs.

Each long cable specimen was connected, one conductor at a time, to a Hippotronics Model 760-2HVT high potential test set and energized at 2,400Vac (80Vac per mil of insulation thickness), 60 Hz, while submerged in tap water at room temperature ( $\sim$ 73°F/23°C). The test voltage was applied to each conductor for a total duration of 5 minutes, and the leakage current and applied test voltage were recorded. If the leakage current exceeded the maximum level that the test set is capable of measuring, 10mA in this case, or a voltage breakdown was observed, the test specimen was considered failed.

As discussed in Section 3.11, the submerged voltage withstand test is the final step in the environmental qualification type test procedure described in IEEE Std. 383-1974 for electric cables. The BNL test sequence differs from the IEEE standard in that the cable specimen is voltage withstand tested as-is, coiled on its stainless steel test mandrel, or straight, in a steel Unistrut<sup>®</sup> support channel. In the IEEE test, the cable specimen is removed from its test mandrel following the LOCA exposure, straightened, and then coiled back onto a mandrel prior to final voltage withstand testing. This process of straightening and recoiling the test specimen was judged to be unnecessarily severe, and was, therefore, not included in the BNL test sequence.

The results of the submerged post-LOCA voltage withstand test on the EPR-insulated cables from four different manufacturers are summarized in Table 5.13. The test data from Tables 3.9, 3.19, 3.23, and 3.27 in Volume 1 of this report for test sequences 2, 4, 5, and 6, respectively, were sorted by the amount of pre-aging received by the EPR-insulated specimens prior to the LOCA exposure test, and the average leakage current measured for each pre-aging group was then calculated. The leakage currents for those specimens that successfully withstood the applied test voltage for the full 5 minute duration of the test are included in each group. The quantity of cable conductors successfully passing the test is shown for each pre-aging group.

Table 5.13 clearly shows that there is a trend toward increasing leakage current observed during the voltage withstand test for EPR-insulated cable specimens that had been subjected to a greater level of pre-aging prior to LOCA exposure, compared to those with no pre-aging prior to LOCA exposure. This trend, observed in the EPR-insulated cables from all four manufacturers, is generally what would be expected for increased amounts of insulation degradation.

As mentioned in Sections 3.5.7 and 3.6.7 in Volume 1 of this report, one of the 1/C #12 AWG Okonite cables that was pre-aged to the equivalent of 20 years of service at  $194^{\circ}F(90^{\circ}C)$  displayed a 12cm-long longitudinal crack visible in the outer jacket during the LOCA exposure, and those that were pre-aged to 40 and 60 years experienced catastrophic failure of the EPR insulation/bonded Hypalon<sup>®</sup> jacket. Therefore, it was virtually impossible for these specimens to pass the submerged voltage withstand test, and testing confirmed this. The EPR-insulated cable specimens from the other three manufacturers displayed a trend of increasing leakage current during the post-LOCA voltage withstand test that corresponded to the increased levels of degradation brought about by pre-aging to 20, 40, and 60 years prior to LOCA exposure testing. This trend was supported by data from other condition monitoring methods such as elongation-atbreak, insulation power factor measurements, and insulation resistance/polarization index measurements. Cables that were not pre-aged, or that experienced pre-aging degradation that resulted in an average leakage current below 1,000 $\mu$ A on the post-LOCA voltage withstand, test experienced no failures. For average leakage currents between 1,500 and 2,000 $\mu$ A, failures

were approximately 20 percent; and for average leakage currents between 2,000 and 3,040µA, failures were approximately 33 percent.

|             |       |             |         | Average Leakage Current (micro Amperes) |          |          |  |  |  |  |
|-------------|-------|-------------|---------|-----------------------------------------|----------|----------|--|--|--|--|
| •           | Cable | Conductor   | 0 Years | 20 Years                                | 40 Years | 60 Years |  |  |  |  |
| B           | ОК    | C/E         | 730     | 730 1000 >10000                         |          | >10000   |  |  |  |  |
| N<br>D      |       | Qty Passing | 2 of 2  | 1 of 2                                  | 0 of 3   | 0 of 3   |  |  |  |  |
| E<br>D      | SM    | White       | 767     | 1200                                    | 1750     | 3600     |  |  |  |  |
| 1           |       | Black       | 717     | 1250                                    | 1400     | 2667     |  |  |  |  |
| A<br>C<br>K |       | C/E         | 742     | 1225                                    | 1575     | 3040     |  |  |  |  |
| E<br>T      |       | Qty Passing | 6 of 6  | 8 of 8                                  | 8 of 10  | 5 of 6   |  |  |  |  |
| U           | AN    | White       | 790     | 785                                     | 1242     |          |  |  |  |  |
| N<br>B      |       | Black       | 760     | 925                                     | 1166     |          |  |  |  |  |
| O<br>N      |       | C/E         | 775     | 855                                     | 1204     |          |  |  |  |  |
| D<br>E      |       | Qty Passing | 4 of 4  | 4 of 4                                  | 10 of 10 |          |  |  |  |  |
| В           | AI    | White       | 920     | 926                                     |          | 4200     |  |  |  |  |
| J<br>A      |       | Black       | 1093    | 874                                     |          | 1400     |  |  |  |  |
| C<br>K      |       | C/E         | 1024    | 900                                     |          | 2333     |  |  |  |  |
| E<br>T      |       | Qty Passing | 5 of 6  | 10 of 10                                |          | 3 of 6   |  |  |  |  |

Table 5.13 Results of post-LOCA submerged voltage withstand test for aged EPR/Hypalon<sup>®</sup> cables

OK - Okonite 1/C #12 AN - Anaconda 3/C #12 SM - Samuel Moore 2/C #16 w/ Shid & Gnd

AI - American Insulated Wire 3/C & 4/C #16 w/ Gnd

C/E - Avg White & Black Conductor-to-Ground

The AIW cables that received no pre-aging prior to LOCA performed slightly worse than AIW cables that had been preaged to the equivalent of 20 years of service prior to LOCA exposure. This apparent discrepancy was observed and discussed in the sections on ac impedance testing and insulation resistance/polarization index testing where a similar behavior was observed. This is attributed to improved dielectric strength brought about by driving entrapped and absorbed moisture out of the cable materials during the mild 20 year service pre-aging. This improved the cables' performance during the LOCA exposure, and was apparently carried over into slightly better performance on the post-LOCA submerged voltage withstand test. One white Hypalon®-jacketed, EPR insulated conductor on the unaged AIW control cable Specimen 0603 failed the voltage withstand test. Subsequent visual inspection and testing revealed that the white-colored Hypalon® jackets in all of the AIW cables in test sequence 6 had numerous longitudinal cracks, approximately 1mm in length, but occasionally as long as 10mm. The failure in cable Specimen 0603 had occurred at the site of one of the longer cracks in the white-colored Hypalon<sup>®</sup>.

The submerged voltage withstand test provides a measure of the electrical condition of a cable specimen's insulation following LOCA exposure testing. However, in its present protocol for this research program, it is not a true condition monitoring test. Even conducted as a dry high potential test, it would not normally be used in situ, by nuclear power plant technicians, to assess and trend the dielectric integrity of an I&C cable's insulation system. Since it is a high voltage test, it has the potential to destroy a cable if a voltage breakdown should occur. Even at lower levels of applied test voltage, within the voltage rating of the cable, the cable insulation is incrementally weakened by each high potential test. Thus, the risks of causing either catastrophic or incipient damage to cable insulation make this an unsuitable condition monitoring method.

# 6. CONCLUSIONS

Each of the condition monitoring techniques studied in this program was evaluated in terms of how effective it is at monitoring the in situ condition of low-voltage I&C electric cables, and whether the technique was capable of predicting accident survivability. It should be noted that all of the condition monitoring data evaluated in this study were obtained in a laboratory setting, therefore, conclusions regarding the application of the techniques in an actual plant setting cannot be directly drawn from this work. The impact of plant operating environments and logistics on the feasibility of performing these techniques in situ should be considered. The following paragraphs discuss the conclusions for each of the CM techniques resulting from this study. Advantages and limitations of each technique are discussed.

# 6.1 Effectiveness of CM techniques for in situ monitoring

In general, no one CM technique was identified that could be used to effectively monitor the conditions of all types and configurations of cables. Some techniques were found to be more effective than others depending upon the application and the environment under which measurements were made. Each technique has advantages and limitations that must be considered and accounted for when applying it. It is believed that a combination of techniques is the most useful approach to effectively monitor the condition of low-voltage electric cables in situ. Each of the CM techniques studied is discussed below in terms of its effectiveness, advantages and limitations.

# 6.1.1 Visual Inspection

Visual inspection was found to be a very effective technique for providing a qualitative assessment of a cable's condition. While no quantitative data is obtained, the results can be trended to provide an assessment of how fast a cable is degrading under the operating conditions to which it is exposed. This technique can be used to evaluate the condition of a cable and determine if more extensive testing is required to characterize its condition. In most cases in this program, cables that appeared to be in good physical condition through visual inspection showed acceptable electrical performance under accident conditions.

The major advantage of the visual inspection is that it is inexpensive to perform and it does not require any expensive equipment. A standardized procedure should be developed to ensure that a consistent inspection approach is used and that all of the important cable attributes are inspected.

The most serious limitation of this technique is that the cable to be inspected must be accessible and visible. In some cases, cables may be installed in closed conduits or buried beneath other cables in a cable tray. In these cases, visual inspection would not be directly useful. Also, even for visually accessible cables, usually only the jacket can be seen. Therefore, inspection of the insulation would probably not be possible. However, visual inspection of representative cables that are accessible could be used to provide an indirect measure of the condition of the inaccessible cables.

Based on the results of this study it is concluded that visual inspection should be considered for inclusion in any cable condition monitoring program. While it does not provide quantitative data, it does provide useful information on the condition of the cable that is easy and inexpensive to obtain, and that can be used to determine if further investigation of the cable condition is warranted. A significant limitation of this technique is that the cable must be visually accessible.

## 6.1.2 Elongation-at-Break

The analyses presented in Sections 4.2 and 5.2, and the data base given in Appendix A of this report, show that EAB is a very valuable parameter for monitoring aging in cable materials because of its sensitivity to microstructural changes in polymers brought about by service aging. The specimens tested in the current program were prepared from cable that had been disassembled into insulation and jacket components where possible. For bonded components, however,

it was necessary to test composite specimens consisting of jacket material bonded to the insulation. Since the individual cable components were directly exposed to the service aging and LOCA test environments, it is likely that the EAB measurements are conservative when compared to data taken from cables that were aged in the as-received condition and then disassembled for EAB testing. This is because the outer jacket would be expected to provide some degree of protection to the individual jackets, if present, and the insulation during the aging process. Below are given some of the general observations for the unbonded cables types that were studied:

- For XLPE and EPR insulation, simulated reactor power plant service aging will cause gradual decreases in EAB, even when antioxidants are still present in the material. The EAB appears to decrease to a plateau value provided that the antioxidants have not become completely depleted by the oxidation process. Similar decreases in EAB occur for Neoprene® and Hypalon® jackets during simulated service aging.
- When all of the antioxidants have been depleted from the insulation, the EAB values for the insulation begin to decrease dramatically to a low value and embrittlement may result. No results are available from this effort to show whether the jacket materials behave similarly, since no estimates could be made regarding the times at which the antioxidants had become depleted.
- LOCA radiation doses of about 150 Mrad usually cause major losses in EAB for both unaged and service-aged cable components. However, in many cases, these large radiation doses, while causing major losses in EAB, do not alone cause complete embrittlement since post-radiation EAB values of 40-50 percent are commonly observed. It appears that cable materials must already have lost a large amount of ductility from service aging before the LOCA radiation can cause embrittlement.
- Of the jacket materials studied, Neoprene<sup>®</sup> is more susceptible than Hypalon<sup>®</sup> to radiation-induced losses in EAB.
- The LOCA steam/chemical spray administered after the 150 Mrad of LOCA radiation usually increases the EAB for XLPE. The EPR, Neoprene<sup>®</sup>, and Hypalon<sup>®</sup> show losses in EAB after spraying.
- Data for bonded EPR/Hypalon<sup>®</sup> and EPDM/Hypalon<sup>®</sup> cable specimens generally followed the same trends as for the unbonded materials. The simulated service aging, and the LOCA radiations and steam/chemical sprays, cause decreases in EAB, but complete embrittlement was not observed unless the service aging was extremely severe.

In general, EAB measurements provide a useful quantitative assessment of the remaining integrity of a cable. As the EAB decreases to a low value, and crack initiation and propagation become possible from in-service stresses, moisture intrusion and current leakage could become a problem. At this time there does not appear to be any commonly acceptable criterion that defines the minimum EAB for a cable material that will define the end of its useful service life. A conservative value of  $\geq 50$  percent has been used as an acceptance criterion, even though there is usually some useful service life remaining. It may be feasible to correlate with an existing electrical failure criterion so that a minimum EAB value could be specified.

The major concern with EAB testing is that it is a destructive test, and relatively large amounts of cable are required. They can only be obtained if cable is removed from service, or if surveillance-type cables are available for periodic evaluation.

In summary, elongation-at-break was found to be a reliable technique for determining the condition of the polymers studied. It provides trendable data that can be directly correlated with material condition. It is useful as a reference

technique, however, its destructive nature prevents it from being used as an in situ means of monitoring electric cables unless sacrificial cable specimens are available.

# 6.1.3 Oxidation Induction Time

Both the OITM and EAB for XLPE decrease as service aging time increases. As shown in Section 4.2, a rapid decrease in EAB occurs when the antioxidants in the insulation are depleted. Data for EPR (Figs. 5.17 and 5.18) show similar trends in which decreases in OITM are observed when the EAB decreases and the service aging time increases. Since the OITM, which is a measure of the remaining amount of antioxidant in an aged specimen, changes sensitively with aging, it is an ideal technique for monitoring the kinetics of degradation. The ability to correlate this parameter with EAB make it possible to estimate the residual ductility of cable insulation.

The limited results for Hypalon<sup>®</sup> jacket material were mainly for specimens that were exposed to LOCA test conditions (see Appendix B). They show that LOCA radiation doses of about 150 Mrad cause a decrease in the OITM, as would be expected. This is an indication that OITM measurements would also be capable of monitoring aging and EAB changes in Hypalon<sup>®</sup> for normal service aging conditions. No results were obtained for Neoprene<sup>®</sup> because the classical thermogram curve, with a flat oxidation-induction period, was not present under the current test conditions.

In summary, OITM was found to be a promising technique for monitoring the condition of electric cables. Results show that aging degradation can be trended with this technique for both XLPE and EPR insulation. While a small sample of cable material is needed to perform this test, the relatively small amount required should be obtainable without impacting cable performance.

# 6.1.4 Oxidation Induction Temperature

The OITP results for XLPE given in Section 4.4 and Appendix C are not comprehensive since the materials were either aged for very short service aging periods for which little change would be expected, or for very severe qualification protocols that rendered the material brittle. The data in Appendix C show that, for mild service aging conditions, the OITP shows very little change. For a severe aging treatment that causes embrittlement of the XLPE, however, the OITP for XLPE decreased by about 60°F (33°C). For more normal service aging treatments, the relative changes in OITP are small compared to those for OITM. For LOCA radiation doses of about 150 Mrad, the OITP for XLPE does not decrease by more than several degrees. After steam/chemical spraying, the OITP for XLPE decreased again. Data for Neoprene® jackets show that service thermal aging initially increases the OITP, however, after the service radiation the OITP falls to a value close to that for the unaged material.

LOCA radiation decreases the OITP for Neoprene<sup>®</sup>, but steam/chemical spraying cause an increase. It is possible that the increase could be a result of oxidizable compounds deposited on the specimens during the spray tests. If these compounds oxidize during the tests, they would decrease the rate of attack on the cable material and increase the OITP. Currently, there are insufficient data on XLPE/Neoprene<sup>®</sup> cables to determine the usefulness of OITP measurements to estimate aging characteristics.

For EPR, the OITP shows a consistent decrease with service aging. Also, there is a good correlation between OITP and the EAB. Similar correlations were found for Hypalon<sup>®</sup> jackets, but there is more uncertainty in the data trend. At this time, therefore, it is concluded that EPR/Hypalon<sup>®</sup> cables are amenable to OITP measurements that may be used to estimate the EAB. As such, OITP measurements for this type of cable are promising as a condition monitoring technique.

Based on the relative sensitivity to aging, however, it appears that OITP measurements, while very valuable, are less sensitive than OITM in trending the aging behavior of cable polymers. This is concluded from the fact that OITP values

change by only tens of degrees Celsius from starting values of about 240-250°C (a change of about 10-15 percent), whereas OITM values, depending on the test temperature and material, can change from 40-100 minutes to essentially zero.

In summary, while it is related to OITM, OITP was found to be less sensitive to the detection of aging degradation for the polymers studied. It may be useful as an in situ technique, however, OITM is preferred at this time.

# 6.1.5 Fourier Transform Infrared Spectroscopy

FTIR spectroscopy was evaluated as a potential condition monitoring technique for cable insulation. A selenium "Thunderdome<sup>®</sup>" attachment to the infrared spectroscope was used to obtain surface measurements on aged cable specimens. Previous researchers have measured changes in the absorbance (or transmittance) of infrared radiation by carbonyl bonds. Since these C=O bonds are formed during oxidative degradation, they are a direct indication of polymer oxidation. Unfortunately, the selenium crystal could not detect any significant peaks at the 1730 cm<sup>-1</sup> wavenumber location. According to the manufacturer of the Thunderdome<sup>®</sup> attachment, this might be a result of incompatibility between the refractive indices for the selenium crystal and the cable materials. It was, therefore, decided to measure the transmittance of infrared radiation at wavenumber 2916 cm<sup>-1</sup>, which represents the -CH<sub>2</sub> bond, to determine if it changed as a material was aged. It has been generally assumed that the -CH<sub>2</sub> bonds are extremely stable since they are incorporated in the polymer backbone structure, which is protected by the presence of antioxidants.

The experiments show that decreases in the  $-CH_2$  bond actually do occur with aging and radiation. This is indicated for XLPE, although the data are very limited, and for EPR. It is not clear whether the loss of the bonds is from the backbone or from some other constituent in the insulation that contains the  $-CH_2$  bond. The transmittance has been shown to be correlatable with the EAB. As the EAB decreases as a result of aging, the transmittance increases. This is consistent with the loss of  $-CH_2$  bonds which would give increased transmittance. The technique has the advantage of examining very small areas of cable and is, therefore, non intrusive.

One of the potential problems with the FTIR spectroscopy technique is that it is a surface examination procedure in which the infrared radiation passes into the surface of the specimen and is refracted back into the crystal. By analyzing the intensity of the incident and reflected rays, the transmittance is determined. Since accelerated thermal aging at elevated temperatures will produce an oxidation gradient at the specimen surface, the spectroscope will detect a higher amount of oxidation that the average bulk value. The technique would, therefore, be expected to give a more accurate estimate of bulk aging for naturally-aged specimens, for which oxidation gradients will be minimized at the lower service aging temperatures.

Based on the current results, it is not clear if FTIR spectroscopy would be appropriate as a non-intrusive condition monitoring technique. As a surface monitoring procedure it has limitations when attempts are made to correlate data to bulk properties such as EAB.

# 6.1.6 Indenter

The indenter was found to be easy to operate and capable of producing repeatable results. It can be operated by one person in the laboratory, though in situ testing in a nuclear power plant would require two persons. Over the course of the six test sequences, the indenter was used to obtain over 15,000 data points on over 100 cable specimens. Over this period, only one operational problem was noted, resulting in the replacement of the electric motor. This failure was easily identified by widely-varying modulus results and did not affect any of the data used in this program.

In many instances, cables are not easily accessible in nuclear plants. Often they may be stacked in cable trays or run through conduits, which severely limits access to perform CM testing. For cables which are accessible, the indenter can

be used to determine the modulus of the outer jackets. For those cables that are not accessible, it is not desirable nor possible, in some instances, to excessively handle the cables to permit indenter testing. To monitor the modulus of individual jackets or insulation, access would be needed at a termination point. This is not the optimum situation, since the termination points may be physically located in a different plant location and exposed to very different ambient conditions than the remainder of the cable. This highlights the potential benefit from the use of test coupons which could be strategically located throughout the plant and used for CM. However, in the absence of test specimens, there may be no alternative, and CM must be performed where physically accessible.

An assessment of the condition of an electrical cable must focus on the insulation. The outer jacket (for unbonded specimens) is primarily for physical protection, and not for electrical performance. This creates a unique problem, because, as seen from the results obtained from this program, an outer jacket may be severely degraded while the integrity of the insulation is still maintained.

The indenter was found to be a non-destructive test which did not affect the continued operation of the cable. The indenter software prevented the probe from penetrating the material being tested, from leaving residual marks, or from causing any other type of damage. It is suitable for use on various materials (XLPE, EPR, Hypalon<sup>®</sup> and Neoprene<sup>®</sup>). However, not every material produced significant age-induced changes that could easily be correlated with thermal or radiation exposure. For low levels of aging, relatively small modulus changes were seen, which, in the absence of baseline measurements, might be difficult to correlate with aging. Cable construction and manufacturer were also found to produce different modulus results for the same aging. The results obtained were found to be correlatable with EAB measurements, which is an indication of this technique's usefulness. It can also provide an alternative to EAB, which by its nature requires specially prepared samples and is a destructive test.

From the results of this program, it was determined that the indenter is an effective mechanical monitoring technique, which can be used in situ or in the laboratory. The changes in a polymer's compressive modulus reflect the condition of the material, and can be an important indicator of remaining life. Dramatic increases in modulus are indications of extreme exposure to temperature and radiation, which can be used to determine replacement schedules for the whole, or individual sections of the cable.

# 6.1.7 Hardness

As discussed in Sections 4.7 and 5.7, hardness was one of the condition monitoring methods used to assess the mechanical condition of the cable specimens in this test program. For this purpose, a Type-D Rex Durometer was chosen. This type of hand held hardness tester has a sharp pointed tip which, when pressed against the polymer using a ten pound spring force, allows the Shore-D hardness to be read on the vernier type scale. Rather than risk inducing damage on the long specimens being tested, basket specimens were used for the hardness testing. Similar to the indenter, cable location would present a potential problem for the in situ use of this method. Specimens located in conduits or buried in cable trays would be inaccessible.

The polymers tested in this program (EPR, Hypalon<sup>®</sup>, Neoprene<sup>®</sup>, and XLPE) transitioned from being very soft, to various degrees of hardness, up to totally brittle when aged. Because of this wide span of hardness, a major difficulty encountered was that the Rex durometer was found to be inadequate in effectively obtaining hardness measurements. The sharp tipped point was more suited for softer, thicker materials, while a rounded tip would have been better suited for the brittle material conditions.

As discussed, the thickness of the polymer materials tested in this program necessitated sample stacking in order to obtain hardness readings. Without doing this, the sharp pointed tip penetrated the material. While the stacking technique was found suitable for laboratory use, it is not feasible for in situ studies. One exception to this conclusion

would be the use of test coupons, which could be removed and tested. Penetrating the jacket or insulation is unacceptable for several reasons, not the least of which is personnel safety. Contact of the tip of the hardness tester with a potentially energized cable could result in serious physical harm.

Discussions regarding improvements in the hardness testing technique with experts in this technique indicated that a specialized tester could be designed to accommodate various material hardness values. This tester would have the capability to change the tips and the spring force. However, the indenter is an alternative that provides similar data and has already been shown to be effective. Therefore, development of an improved hardness tester was judged not to be appropriate.

# 6.1.8 Dielectric Loss

Dielectric loss measurement using the two-channel Hewlett Packard HP 35670A Dynamic Signal Analyzer is a very simple and straightforward condition monitoring technique. An internal source provides the applied ac voltage signal to the test specimens, and an internal disk drive allows the data to be stored for later analysis. The instrument is programmable so the testing routine can be setup, stored on a 3.25" diskette, and reloaded whenever it is needed. For the testing performed in this program, the instrument was programmed to apply the 5 Vac (peak) test voltage at increasing increments of frequency ranging from 0.1 Hz to 5000 Hz, while measuring and recording the dielectric phase angle at each increment. This feature yields very repeatable results.

Some of the factors which affect the dielectric loss measurement technique include cable length, humidity or moisture within the cable and insulation, and electrical equipment operating in the vicinity of the test cable. Testing was performed at BNL to study and quantify these effects by testing various lengths of cable in cable tray with other cables in an industrial environment. The effect of length is very uniform and predictable, resulting in a relative increase in insulation power factor as the length of cable increases. This effect is most easily accounted for by making in situ baseline measurements for each cable to be monitored to serve as a standard for comparison with similar measurements in the future. The effect of other operating electrical equipment or energized cables in the same tray was concentrated at the frequency of the operating equipment. In most cases, this was the 60 Hz power frequency and it had a more pronounced effect on longer cables than short ones. This problem can be avoided by making measurements at an applied ac test voltage with a frequency below 50 Hz or above 70 Hz.

The effects of humidity or moisture within the cable and insulation were observed in measurements made on EPRinsulated cables. As described in Sections 5.8 and 5.9, the cable specimens exhibited improved dielectric properties after initial thermal aging had driven all moisture and humidity out of the cables. The effect on dielectric loss measurements was less severe than for the insulation resistance tests. In any event, the sudden extreme change in moisture would not normally occur in a plant environment. By making baseline measurements against which future condition monitoring results can be compared, the effects of moisture would be minimized under normal plant conditions.

The major advantage of the dielectric loss technique is that the cable being tested does not have to be completely accessible. The test equipment can be connected to the ends of the cable, and the test can be performed without physically touching the length of the cable. Also, no material samples need be taken from the cable.

A disadvantage of the dielectric loss technique is that the cable under test must be disconnected in order to attach the test instrument. However, this can be controlled by test procedures with independent verification steps, as are commonly used for surveillance and maintenance procedures in nuclear power plants.

EPR-insulated cables with bonded and unbonded Hypalon<sup>®</sup> jackets, in both single and multiple conductor configurations, all demonstrated a measurable trend toward increasing power factor (deteriorating dielectric strength) with greater insulation material degradation. Similarly, XLPE-insulated cables also exhibited the trend toward

increasing power factor as the cables were subject to greater degradation during pre-aging. This trend was most pronounced and consistent at applied ac test voltage frequencies in the range from 10 to 500 Hz. The effect was also best observed in measurements from conductor-to-ground. Dielectric loss measurements, particularly when compared to a baseline measurement, are thus considered a good electrical condition monitoring technique for these materials.

# 6.1.9 Insulation Resistance

Insulation resistance measurement using the General Radio Model 1864 Megohmmeter is a very simple and straightforward condition monitoring technique. The megohmmeter is a familiar piece of test equipment known to all electrical maintenance personnel and it is routinely used in nuclear power plants. The main advantages of this test method are that it is relatively easy to perform and requires inexpensive test equipment. For quantitative data collection on electric cables, a megohmmeter that is capable of accurately measuring insulation resistance in the Teraohm range is required.

One disadvantage of making insulation resistance measurements is that the cable under test must be disconnected in order to attach the test instrument. However, this can be controlled by test procedures with independent verification steps, as are commonly used for surveillance and maintenance procedures in nuclear power plants.

The major factor affecting insulation resistance measurements is temperature. The effect of temperature is predictable and can be corrected by normalizing the raw insulation resistance readings to a common temperature, such as  $60^{\circ}$ F (16°C), for purposes of comparison. Using the ratio of the 10 minute insulation resistance to the 1 minute reading, the polarization index can provide a measure of dielectric condition that minimizes temperature effects. Consequently, in order to collect data that are trendable, accurate time and temperature data must accompany the raw quantitative insulation resistance measurements. For this reason, plant personnel often look upon the insulation resistance test as a simple pass/fail test for the dielectric integrity of electrical equipment and cables, but too irregular for trendable condition monitoring. The quantitative measurements in the BNL test program show that this test can be used to trend and monitor the condition of cable insulation.

Some of the other factors that can affect the insulation resistance technique include cable length, humidity or moisture within the cable and insulation, dirt, oil, and other surface contaminants, personnel in close proximity to the equipment under test, and electrical equipment operating in the vicinity of the test cable. Testing was performed at BNL to study and quantify some of these effects by testing various lengths of cable in cable tray with other cables in an industrial environment. The effect of length is very uniform and predictable, resulting in a relative decrease in insulation resistance as the length of cable increases. The effects of length and some of the other factors mentioned are most easily accounted for by making in situ baseline measurements for each cable to be monitored to serve as a standard for comparison with similar measurements in the future. The effect of other operating electrical equipment or energized cables in the same tray was found to be negligible in the BNL tests.

The effects of humidity or moisture within the cable and insulation were observed in measurements made on EPRinsulated cables. As described in Section 5.9, in comparison to baseline measurements the AIW cable specimens in test sequence 2 exhibited improved dielectric properties after initial thermal aging had driven all moisture and humidity out of the cables. In any event, the sudden extreme change in moisture would not normally occur in a plant environment. By making baseline measurements against which future condition monitoring results can be compared, the effects of moisture would be minimized under normal plant conditions. The effects of moisture and humidity on cables with XLPE insulation were found to be negligible under the humidity conditions experienced during the BNL condition monitoring tests.

EPR-insulated cables with bonded and unbonded Hypalon<sup>®</sup> jackets, in both single and multiple conductor configurations, all demonstrated a measurable trend toward decreasing insulation resistance and polarization index (deteriorating dielectric strength) with greater insulation material degradation. Similarly, XLPE-insulated cables also

exhibited the trend toward decreasing insulation resistance and polarization index as the cables were subject to greater degradation during pre-aging. The trend was similar in measurements made from conductor-to-conductor and from conductor-to-ground. Insulation resistance measurements, particularly when compared to a baseline measurement, are thus considered a good electrical condition monitoring technique for these materials.

## **6.1.10 Functional Performance**

One of the tests used to evaluate the cables in this program is the functional performance test. The ultimate objective for environmentally qualified low voltage power and instrumentation and control (I&C) cables is to be capable of successfully performing their intended function during a design basis accident occurring at the end of their service life. By including each cable specimen under test as part of a 4-20 mA instrumentation loop circuit, the performance of that cable specimen can be assessed throughout the LOCA exposure test by monitoring the performance of the instrumentation loop circuit. The accuracy and longevity required of an instrument circuit during an accident, and hence the acceptance criteria for a functional test, are application-dependent. They might be expressed, for example, as a maximum allowable percentage of error in the instrument circuit for some specified period of time following an accident.

During routine technical specification or preventive maintenance surveillance testing of instrumentation circuits in nuclear power plants, direct condition monitoring specifically for the instrumentation cable is normally limited to specialty cables for nuclear instrumentation and in-core monitoring. The majority of instrument circuit cables are only monitored indirectly as part of a surveillance test performed for an instrument loop, such as a calibration, functional test, response time test, or logic system functional test. If an instrument loop is not performing within specifications, the instrumentation cable is one potential cause, however, most problems are likely to be associated with the sensor, power supply, connectors, and actuators rather than the low voltage instrumentation cable. For this reason, BNL does not consider the functional performance test to be a good method for routine monitoring of cable condition.

For purposes of the research program, however, the functional performance test demonstrated that 4-20mA instrument loop circuits could continue to provide accurate indication even with severely degraded instrumentation cables operating in a simulated LOCA environment. Despite the presence of high leakage currents, the loop power supply typically could continue to supply current to the circuit with less than 10 percent error in the indicated pressure reading. The error in indicated pressure only became significant in the most severely degraded aged cables, such as the Okonite and Rockbestos specimens discussed in Sections 4.10 and 5.10, in which the leakage current became great enough to blow the 1/32 ampere fuse protecting the circuit power supply.

# 6.1.11 Voltage Withstand Test

Upon completion of the LOCA exposure test, each long cable specimen was connected, one conductor at a time, to a Hippotronics Model 760-2HVT high potential (high-pot) test set and energized at 2400Vac (80Vac per mil of insulation thickness), 60 Hz, while submerged in tap water at room temperature (~73°F/23°C). The test voltage was applied to each conductor for a total duration of five minutes, and the leakage current and applied test

voltage were recorded. If the leakage current exceeded the maximum level that the test set is capable of measuring, 10mA in this case, or a voltage breakdown was observed, the test specimen was considered failed.

The post-LOCA submerged voltage withstand test was included as the final step in the test sequences for this program which were developed in accordance with the environmental qualification type test procedure described in IEEE Std. 383-1974 for electric cables. The BNL test sequence differs from the IEEE standard in that the cable specimen is voltage withstand tested as is, coiled on its stainless steel test mandrel, or straight, in a steel Unistrut<sup>®</sup> support channel. In the IEEE test, the cable specimen is removed from its test mandrel following the LOCA exposure, straightened, and

then coiled back onto a mandrel prior to final voltage withstand testing. This process of straightening and recoiling the test specimen was judged to be unnecessarily severe, and was therefore not included in the BNL test sequence.

The test was also designated as the final step in the test sequence procedure because it is a high voltage test that has the potential to cause a voltage breakdown, which would permanently ruin the cable insulation. Each application of the high voltage may cause an incremental increase in the amount of degradation to the dielectric integrity of the insulation. This would alter the cable and compromise the results of other non-destructive electrical condition monitoring methods that were being evaluated under this research program. If this test is repeated a number of times, the dielectric strength may become so weakened that the cable could fail because of the testing.

The submerged voltage withstand test provides a measure of the electrical condition of a cable specimen's insulation following LOCA exposure testing. However, in its present protocol for this research program, it is not a true condition monitoring test which would be used to evaluate and trend the status of an I&C circuit's insulation system over the course of its service life. Even if it were conducted as a dry high potential test, it would not normally be used in situ, by nuclear power plant technicians, to assess and trend the dielectric integrity of an I&C cable's insulation system. Since it is a high voltage test, it has the potential to destroy a cable if a voltage breakdown should occur. Even at lower levels of applied test voltage, within the voltage rating of the cable, the cable insulation is incrementally weakened by each high potential test. Thus, the risks of causing either catastrophic or incipient damage to cable insulation make this an unsuitable condition monitoring method.

# 6.2 Using CM Techniques to Predict Accident Survivability

#### 6.2.1 Visual Inspection

Visual inspection was found to be a useful technique for assessing the condition of a cable in a qualitative manner. In most cases in this study, cables that appeared to be in good physical condition showed acceptable electrical performance under accident condition. However, visual inspection alone is not considered sufficient to determine the accident survivability of a cable. For example, in this program Samuel Moore specimens that appeared to be in good physical condition failed a submerged voltage withstand test after exposure to 10 days of simulated accident conditions. Also, it was found that the condition of a cable's outer jacket was not, necessarily, indicative of the condition of the underlying insulation. Therefore, visual inspections alone should not be used to determine if a cable will perform acceptably under accident conditions. Rather, visual inspections should be used to determine if additional, more in-depth testing of a cable is warranted.

From visual examinations and electrical tests on long lengths of cable that were artificially-aged to simulate natural service aging, and then LOCA tested to determine the effects of high radiation doses and steam/chemical spraying, an approach to check cable survivability during a LOCA may be developed. The extensive visual examinations described in Volume 1, and Sections 4.1 and 5.1 in Volume 2 of this report, showed that local weaknesses or punctures in aged cables may lead to unacceptable current leakage. Subsequent submerged voltage withstand tests were also employed to detect cables that did not survive a LOCA test.

# 6.2.2 Elongation-at-Break

LOCA survivability was found to be related to the EAB measurements on 6-inch lengths of insulation and jacket materials that received the same aging and LOCA treatments as the long cables. Therefore, these results, reported in Appendix A, may be used to correlate with survivability. For the XLPE/Neoprene<sup>®</sup> cables, some of the severe service aging protocols resulted in EAB values for the XLPE and Neoprene<sup>®</sup> of only a few percent. Despite this, none of the cables failed in any of the BNL electrical tests after LOCA simulations. This indicates that embrittlement of

XLPE/Neoprene<sup>®</sup> cables does not provide the necessary pathways, such as deep cracks or weaknesses, to cause electrical failure. To be conservative in assuring survivability, one could show that the EAB values for the cable materials, during long term service, maintain some level of ductility. A residual EAB of 50 percent has been used by some to provide confidence that the cable will survive a LOCA.

Cables made from EPR/Hypalon<sup>®</sup> were also examined for electrical failure during LOCA testing. It was found that, unlike XLPE/Neoprene<sup>®</sup> cables, failures could occur even though the EAB for the cable components were relatively high. For example, in test sequence 4, some Samuel Moore cables failed the submerged voltage withstand test despite the fact that the EAB for the EPR insulation and Hypalon<sup>®</sup> outer jackets were 173 and 312 percent, respectively, after the 40-year qualified life aging. Therefore, the limiting EAB values for predicting accident survivability can vary based on materials of construction and cable configuration.

# 6.2.3 Oxidation Induction Time

Conceptually, OITM measurements can also be used as an indicator of cable survivability. Appendix B shows data for XLPE/Neoprene<sup>®</sup> and EPR/Hypalon<sup>®</sup> cables that have received accelerated service aging followed by LOCA testing. Some of the results are plotted in Sections 4.3 and 5.3 of this report. It was found that service aging followed by LOCA radiation and steam/chemical spray result in decreases in OITM. From extensive testing it should be possible to define the envelope of service aging conditions for which cables will pass a LOCA test. The associated OITM values for these limiting service conditions must be measured. If a cable material has an OITM value that is greater than these limiting values it would indicate survivability. To assure conservatism, a safety margin should be added to the limiting OITM values.

# 6.2.4 Oxidation Induction Temperature

The approach for using OITP measurements to check cable survivability is similar to that outlined above for OITM. Again, the envelope of service conditions that would allow a cable to pass a LOCA test would be determined, and this boundary defined in terms of the OITP values for the cable materials. By ensuring that the OITP values do not fall below the limiting values, there would be some confidence in survivability. Safety margins should be added to the limiting OITP values for conservatism.

## 6.2.5 Fourier Transform Infrared Spectroscopy

This condition monitoring technique evaluates the surface degradation of the cable materials. As stated in Section 6.1.5, above, there may be a problem associated with using the technique to predict bulk material behavior. Since, cable survivability is closely connected with bulk material degradation, the FTIR technique may not be appropriate for determining cable survivability.

# 6.2.6 Indenter

The Ogden Polymer Cable Indenter was used to monitor changes in the materials compressive modulus throughout various aging sequences. Compressive modulus results for cables aged to the equivalent of 20, 40, and 60 years of service, which did not fail, can be viewed as a representative bound for a given material. Since the cables in use have not been exposed to these levels of aging, any material approaching these upper bounds would be cause for additional evaluation (e.g., excessive temperature or radiation hot spots). This would allow plant owners who use the indenter to periodically assess the in situ condition of cables, and make a decision for continued use or replacement. The frequency of the CM can be altered by trending the modulus results and comparing it to the ranges provided. Cables which are exhibiting an increasing trend close to the upper bound reported may need to be tested more frequently, as opposed to those which remain near the lower bounds.

The compressive modulus ranges for XLPE and EPR insulation are summarized in Table 6.1. From modulus results observed in this study, EPR was found not to experience any significant change in modulus due to the pre-aging protocols used. XLPE, however, did experience some increase in the modulus, particularly following significant aging.

|          | XLPE (Ro  | XLPE (Rockbestos) N/mm (lbs/in) |            |          | EPR (AIW, Anaconda) N/mm (lbs/in) |          |  |  |
|----------|-----------|---------------------------------|------------|----------|-----------------------------------|----------|--|--|
|          | 20 years  | 40 years                        | 60 years   | 20 years | 40 years                          | 60 years |  |  |
| Baseline | 100 (572) | 104 (595)                       | 102 (583)  | 13 (74)  | 12 (69)                           | 16 (91)  |  |  |
| Aged     | 116 (663) | 152 (869)                       | 196 (1121) | 14 (80)  | 17 (97)                           | 17 (97)  |  |  |

Table 6.1 Summary of compressive modulus values for XLPE and EPR insulation

Tables 6.2 and 6.3 provide similar comparisons for cables which have individual unbonded and bonded jackets on the insulation, respectively. Due to the bonding, individual jacket and insulation measurements were not possible for Okonite and Samuel Moore bonded jacket specimens. Significant variations in modulus results were found between these two cable specimen types. Other than the comparatively higher modulus values noted for the bonded Okonite cables, the indenter did not provide any specific indications of the deleterious performance of this cable in the LOCA test. The range of modulus values does provide an indication of the material's condition prior to the LOCA exposure, and any in situ specimens in this range should be closely evaluated for acceptability for continued use.

The condition of the insulation is of paramount importance in the ability of the cable to survive a LOCA exposure. However, as discussed, access to the insulation for indenter testing is often not possible. This means that the insulation needs to tested at termination points which may be exposed to different ambient conditions than the rest of the cable, and may not be representative of the cable. Provided the cable is not buried in a cable tray, or installed in conduits, access to the outer jacket may be obtained for indenter testing. Unfortunately, the condition of the outer jacket may not be representative of the condition. As shown in Table 6.4, Neoprene<sup>®</sup> outer jackets may be degraded due to aging making it brittle and cracked. While it is anticipated that, if this condition was found in situ, the cable would be replaced, the XLPE insulation under the jacket was still in good condition and able to function properly.

|          | AIW N/mm (lbs/in) |          |          | Anaconda N/mm (lbs/in) |          |          |
|----------|-------------------|----------|----------|------------------------|----------|----------|
|          | 20 years          | 40 years | 60 years | 20 years               | 40 years | 60 years |
| Baseline | 11 (63)           | NA       | 11(63)   | 8 (51)                 | 8 (51)   | NA       |
| Aged     | 13 (74)           | NA       | 16 (91)  | 21 (120)               | 29 (166) | NA       |

Table 6.2 Summary of compressive modulus values for Hypalon<sup>®</sup> individual jackets

NA=Data not available from this test program

|          | Samue    | el Moore N/mm | (lbs/in) | Okonite N/mm (lbs/in) |            |           |
|----------|----------|---------------|----------|-----------------------|------------|-----------|
|          | 20 years | 40 years      | 60 years | 20 years              | 40 years   | 60 years  |
| Baseline | 14 (80)  | 14 (80)       | 14 (80)  | 13 (74)               | 13 (74)    | 13 (74)   |
| Aged     | 22 (126) | 27 (154)      | 36 (206) | 141 (806)             | 190 (1087) | 160 (915) |

#### Table 6.3 Summary of compressive modulus values for bonded jacket cables

#### Table 6.4 Summary of compressive modulus values for outer jackets

|          | Neoj       | prene (Rockbes<br>N/mm (lbs/in) | itos)    | Hypalon <sup>®</sup> (AIW, Samuel Moore,<br>Anaconda)<br>N/mm (lbs/in) |          |          |  |
|----------|------------|---------------------------------|----------|------------------------------------------------------------------------|----------|----------|--|
|          | 20 years   | 40 years                        | 60 years | 20 years                                                               | 40 years | 60 years |  |
| Baseline | 10 (57)    | 10 (57)                         | 10 (57)  | 9 (34)                                                                 | 9 (34)   | 9 (34)   |  |
| Aged     | 190 (1087) | Brittle                         | Brittle  | 20 (114)                                                               | 43 (246) | 60 (343) |  |

In summary, the indenter can be a valuable asset in predicting a cable's accident survivability when used to supplement other CM techniques. Comparing in situ modulus values to values obtained from aged specimens will provide an indication as to the degree of aging and an estimate of remaining life. As discussed, accessability to cables in situ may be severely limited. To rectify this difficulty, consideration may be given to strategically locating test coupons in the plant. These would allow for baseline measurements (which have been found to vary) and periodic monitoring throughout life.

# 6.2.7 Hardness

The results from this program show that no single CM technique is capable of assessing the cables ability to survive an accident. However, when the results of various CM techniques are evaluated, certain insights are obtained which can assist in assessing accident survivability. Hardness, when used in conjunction with EAB and the indenter provided such mechanical insights.

As discussed in Section 6.1.7, difficulties with the specific hardness tester initially chosen for use prevented it from being used beyond the first three test sequences. However, valuable insights were still obtained. Accident tests on the Rockbestos Firewall<sup>®</sup> III specimens, after being accelerated aged to the equivalent of 20 and 40 years of service, resulted in no failures. When hardness tests were performed on the Neoprene<sup>®</sup> outer jackets of these specimens, it was found that the aged condition was inconsequential to the condition of the XLPE insulation and its ability to function under accident conditions. The Neoprene<sup>®</sup> jackets on the Rockbestos Firewall<sup>®</sup> III specimens were found to be totally brittle and cracked, yet the XLPE insulation performed satisfactorily. This leads to the conclusion that hardness measurements should be made directly on the insulation, which is often difficult.

Hardness measurements obtained for the XLPE insulation (using basket specimens) showed no significant increase for samples aged to the equivalent of either 20 or 40 years of service. Both exhibited a baseline value of 40 (Shore-D hardness), which increased to 50 following the 40 years of aging. No XLPE sample in either test sequence exhibited

severe stiffness or embrittlement. This would indicate that any in situ measurements performed on this material should fall within this range. Measurements exceeding this range would highlight the need for additional evaluation and may be indicative of severe aging or hot spots.

In test sequence 2, EPR insulation and Hypalon<sup>®</sup> jackets (outer and individual) were tested for specimens which were accelerated aged to the equivalent of 20 years. No anomalies were noted for these specimens during simulated accident conditions. For this relatively small amount of aging, no significant changes were seen in any of the hardness values. For the EPR insulation, baseline values of 21 increased to 26, while no significant detectable change from a baseline of 25 was seen for the Hypalon<sup>®</sup> jackets. Again these values provide a range where in situ measurements would be expected to lie. Higher values may be indicative of more severe aging, and would be the cause of additional engineering evaluation, however it would not necessarily be indicative of unacceptable behavior.

As previously discussed, the limitations found for the use of the hand held Rex D Durometer prevented it from extensive use in this program. A specially designed tester was discussed which would be capable of predicting more accurate hardness results in situ without requiring the use of test coupons.

# 6.2.8 Dielectric Loss

The evaluation of this condition monitoring method in Section 6.1.8 indicated that measurements on XLPE- and EPRinsulated cables all demonstrated a measurable trend toward increasing power factor (deteriorating dielectric strength) with greater insulation material degradation. This trend was most pronounced and consistent at applied ac test voltage frequencies in the range from 10 Hz to 500 Hz. The effect was also best observed in measurements from conductor-toground. Therefore, dielectric loss measurements, particularly when compared to a baseline measurement, are considered a good electrical condition monitoring technique for these materials.

Since the method demonstrated a measurable trend, its usefulness for predicting the LOCA survivability of an I&C cable was examined. Sample insulation power factor data for XLPE-insulated cables are presented in Table 6.5 together with the corresponding post-LOCA submerged voltage withstand test data. The trend toward increasing insulation power factor can be seen for all the pre-aging groups. The failure of Specimen 0313 in the 40 year group during the post-LOCA submerged voltage withstand test was attributed to handling damaged, so it was not included as a test-induced failure. The power factor measured for the individual Specimen 0310, however, was greater than the average for the 60 year pre-aging group.

|       |         | Insulation Power Factor |                  | Post-LOCA Voltage Withstand Test |                       |         |  |  |
|-------|---------|-------------------------|------------------|----------------------------------|-----------------------|---------|--|--|
| Group | Aging   | (Applied AC Test        | Voltage @ 100Hz) | Leakage Current                  | Conductors Passing    |         |  |  |
|       | (Years) | Baseline Avg            | After Pre-aging  | (μA)                             | Quantity              | Percent |  |  |
| 1.1   | 0       | 0.24                    |                  | 648                              | 14 of 14 (a)          | 100     |  |  |
| 3.1   |         |                         |                  |                                  |                       |         |  |  |
| 6.1   |         |                         |                  |                                  |                       |         |  |  |
| 1.4   | 20      | 0.26                    | 0.29             | 712                              | 10 of 10              | 100     |  |  |
| 3.4   | 40      | 0.23                    | 0.33             | 1,178                            | 8 of 8 <sup>(b)</sup> | 100     |  |  |
| 6.2   | 60      | 0.23                    | 0.33             | 2,517                            | 5 of 6                | 83.3    |  |  |

Table 6.5 Insulation power factor and LOCA performance of pre-aged XLPE-insulated cables

(a) Group 1.1 cables passed after faulty splices had been removed

(b) Specimen 0313 not included; failure attributed to handling damage

From the data in Table 6.5, and the measurement for Specimen 0313, it appears that the XLPE-insulated cables in this research program with an insulation power factor greater than approximately 0.3 are at potential risk for failure when exposed to LOCA conditions. In a plant setting, they would be candidates for more careful and frequent inspection and surveillance, or, depending on the importance of the application, replacement. Recalling from the discussions in Section 6.1.8 that many factors, such as temperature, humidity, length, and adjacent operating equipment and cables can affect these measurements, it is difficult to specify an acceptance criterion for insulation power factor that would apply to all circumstances. Rather, it is recommended that dielectric parameters, such as insulation power factor, be referenced and trended against a baseline value and a well defined end point in order to assess cable condition and make decisions regarding LOCA survivability.

Table 6.6 provides a similar presentation of insulation power factor data and post-LOCA voltage withstand data for EPR-insulated cables. For these cables it appears that an insulation power factor of about 0.4 would be a conservative point at which further investigation should be considered to verify LOCA survivability. Note that the Okonite cables were subjected to severe pre-aging parameters, causing extensive insulation degradation and embrittlement (EAB < 5%) after only 20 years of pre-aging, Even though the insulation power factor data for Okonite cables continued to trend above 20 years of pre-aging, differential swelling between the jacket and insulation material played the major role in the outcome of cable performance after extensive pre-aging and subsequent LOCA testing. This further highlights the need to rely on information from multiple sources of condition monitoring in order to make a complete, well-informed assessment of cable condition and LOCA survivability.

One of the AIW cables with no pre-aging failed its post-LOCA voltage withstand test. The unaged cables demonstrated weaker dielectric properties in several electrical condition monitoring tests than the group of cables receiving 20 years of mild pre-aging. This was attributed to the thermal aging process driving out moisture and humidity trapped within the cable and its materials over the 24 years since it had been manufactured. Note that the average power factor of 0.49 measured for this group of unaged cables is above the 0.4 acceptance criterion suggested by the data in Table 6.5. If this guideline for LOCA survivability is applied in this case, the possibility of the cable failing during LOCA or post-LOCA testing is significant, even though the cable had never been pre-aged.

As mentioned above, many factors can affect the dielectric measurements of cables. This makes it difficult to select a universal acceptance criterion for a given parameter, such as insulation power factor, that could be applied to all cable installation circumstances for predicting LOCA survivability. A prudent approach is to take baseline measurements of the selected dielectric parameters, and to reference future periodic measurements to the baseline values. Trends will then reveal themselves over time. Combining dielectric measurements with data from other condition monitoring methods will provide an integrated picture of the status of a cable. This information then becomes a meaningful tool for experienced maintenance personnel to assess cable condition and to make engineering judgments regarding the LOCA survivability of electric cables.

## 6.2.9 Insulation Resistance

The evaluation of this electrical condition monitoring method in Section 6.1.9 indicated that measurements on XLPEand EPR-insulated cables all demonstrated a measurable trend toward decreasing insulation resistance, indicating deteriorating dielectric strength, with greater insulation material degradation. The effect was best observed in measurements from conductor-to-ground since the insulation resistance readings for a single thickness of insulation tend to be about one order of magnitude lower than conductor-to-conductor readings. Insulation resistance readings, normalized for temperature effects, provide a trendable electrical parameter, particularly when compared to a baseline measurement. For this reason, insulation resistance measurement are considered a good electrical condition monitoring technique for these materials. If a well defined end point can be established, this technique may be useful for estimating remaining life.

|        |       |       |         | Insulation ]                 | Power Factor     | Post-LOCA Voltage Withstand Test |                    |         |  |
|--------|-------|-------|---------|------------------------------|------------------|----------------------------------|--------------------|---------|--|
| (      | Cable | Group | Aging   | (Applied AC Tes              | t Voltage@100Hz) | Leakage Current                  | Conductors Passing |         |  |
|        |       |       | (Years) | Baseline Avg After Pre-aging |                  | (μA)                             | Quantity           | Percent |  |
| В      | ОК    | 5.1 0 |         | 0.24                         |                  | 730                              | 2 of 2             | 100     |  |
| 0      | B/E   | 6.1   |         |                              |                  |                                  |                    |         |  |
| N      |       | 5.2   | 20      | 0.23                         | 0.25             | 1,000                            | 1 of 2             | 50      |  |
| D      |       |       |         |                              |                  | 10.000 (02003/)                  | 0 -62              |         |  |
| E      |       | 5.3   | 40      | 0.24                         | 0.28             | >10,000 (@200 vac)               | 0 01 3             | U U     |  |
| D      |       | 6.2   | 60      | 0.24                         | 0.58             | >10,000 (@50Vac)                 | 0 of 3             | 0       |  |
| 1      | SM    | 4.1   | 0       | 0.40                         |                  | 742                              | 6 of 6             | 100     |  |
| A      | B/E   | 5.1   |         |                              |                  |                                  |                    |         |  |
| С      |       | 6.1   |         |                              |                  |                                  |                    |         |  |
| K      |       | 4.2   | 20      | 0.40                         | 0.44             | 1,225                            | 8 of 8             | 100     |  |
| E      |       | 5.2   |         |                              |                  |                                  |                    |         |  |
| T      |       | 4.3   | 40      | 0.40                         | 0.45             | 1,575                            | 8 of 10            | 80      |  |
|        |       | 5.3   |         |                              |                  |                                  |                    |         |  |
|        |       | 6.2   | 60      | 0.39                         | 0.58             | 3,040                            | 5 of 6             | 83.3    |  |
| U      | AN    | 4.1   | 0       | 0.24                         |                  | 775                              | 4 of 4             | 100     |  |
| N      | B/W   | 5.1   |         |                              |                  |                                  |                    |         |  |
| в      |       | 5.2   | 20      | 0.24                         | 0.29             | 855                              | 4 of 4             | 100     |  |
| 0      |       |       |         |                              |                  |                                  | 10 - 610           | 100     |  |
| N      |       | 4.3   | 40      | 0.34                         | 0.38             | 1,204                            | 10 01 10           | 100     |  |
| D      |       | 5.3   | ļ       |                              |                  |                                  |                    |         |  |
| E      |       | None  | 60      |                              |                  |                                  | ******             |         |  |
|        | AI    | 2.1   | 0       | 0.49                         |                  | 1,024                            | 5 of 6             | 83.3    |  |
| J      | W/E   |       |         |                              |                  |                                  |                    |         |  |
| A      |       | 2.4   | 20      | 0.51                         | 0.45             | 900                              | 10 of 10           | 100     |  |
| l c    |       |       |         |                              |                  |                                  |                    |         |  |
| к      |       | None  | 40      |                              |                  |                                  |                    |         |  |
| E<br>T |       | 6.2   | 60      | 0.45                         | 0.54             | 2,333                            | 3 of 6             | 50      |  |

# Table 6.6 Insulation power factor and LOCA performance of pre-aged EPR-insulated cables

OK - Okonite 1/C #12 AN - Anaconda 3/C #12

SM - Samuel Moore 2/C #16 w/ Shld & Gnd AI - American Insulated Wire 3/C & 4/C #16 w/ Gnd B/W - Conductor-to-Conductor

B/E - Black-Insulated Conductor-to-Ground

6-15

Since this method demonstrated a measurable trend, its usefulness for predicting the LOCA survivability of an I&C cable was examined. Sample insulation resistance measurements for XLPE-insulated cables, taken from conductor-to -conductor after 10 minutes, are presented in Table 6.7 together with the corresponding post-LOCA submerged voltage withstand test data. The trend toward decreasing insulation resistance can be seen for both the 40 and 60 year pre-aging groups. The failure of Specimen 0313 in the 40 year group during the post-LOCA submerged voltage withstand test was attributed to handling damaged, so it was not included as a test-induced failure. The temperature-corrected insulation resistance measured for Specimen 0313 after the equivalent of 40 years of service aging, was  $0.29T\Omega$  from conductor-to-conductor after 10 minutes, however, the polarization index was only 1.4. This is lower than the average polarization index for both 40 and 60 year pre-aging groups, indicating that this specimen was at risk for failure during LOCA in spite of the handling damage problem.

| Group      | Aging<br>(Years) | Insulation Resistance<br>(Corrected to 60°F)<br>(@ 10 min in Tera Ohms) |                    | Polarization Index |                    | Post-LOCA<br>Voltage Withstand Test |                       |         |
|------------|------------------|-------------------------------------------------------------------------|--------------------|--------------------|--------------------|-------------------------------------|-----------------------|---------|
|            |                  | Baseline<br>Avg                                                         | After<br>Pre-aging | Baseline<br>Avg    | After<br>Pre aging | Leakage Current<br>(µA)             | Conductors Passing    |         |
|            |                  |                                                                         |                    |                    |                    |                                     | Quantity              | Percent |
| 3.1<br>6.1 | 0                | 64.3                                                                    |                    | 7.2                |                    | 648                                 | 14 of 14 🕬            | 100     |
| 3.4        | 40               | 185.5                                                                   | 1.2                | 11.4               | 1.9                | 1,178                               | 8 of 8 <sup>(b)</sup> | 100     |
| 6.2        | 60               | 177.5                                                                   | 6.5                | 117.2              | 3.4                | 2,517                               | 5 of 6                | 83.3    |

| Table 6. | 7 Insulation | resistance/ | polarization ind | ex and LOCA | performance | of XLPE-insu | lated cables |
|----------|--------------|-------------|------------------|-------------|-------------|--------------|--------------|
|          |              |             |                  |             |             |              |              |

(a) Group 1.1 cables passed after faulty splices had been removed

(b) Specimen 0313 not included; failure attributed to handling damage

From the data in Table 6.7, and the measurements for Specimen 0313, it appears that XLPE-insulated cables in this research program show a clear trend of decreasing insulation resistance with age compared to baseline values. However, the variations from specimen to specimen make it difficult to specify a general acceptance criterion for insulation resistance. Part of the difficulty is attributable to the severe pre-aging conditions that produced extremely degraded and embrittled insulation (EAB < 5%) after the equivalent of only 20 years of service aging. The cable insulation in the 20 year pre-aging group was so degraded that additional pre-aging beyond that level produced very little additional decrease in insulation resistance.

A general guideline for polarization index is that readings lower than approximately 2 indicate weakened dielectric strength. As would be expected, the variations affecting insulation resistance readings are carried over into the polarization index calculation. In this program it was found that, because of the variations among specimens, the most prudent approach is to trend insulation resistance/polarization index in comparison to individual baseline measurements, and then to take into consideration data from other condition monitoring methods when making an overall assessment of the condition of a cable and its ability to survive a LOCA exposure.

Table 6.8 provides a similar presentation of insulation resistance/polarization index data and post-LOCA voltage withstand data for EPR-insulated cables. Note that the Okonite cables were subjected to severe pre-aging parameters, similar to the case for the XLPE cables discussed in the previous paragraphs, causing extensive insulation degradation and embrittlement (EAB < 5%) after only 20 years of pre-aging.

One of the AIW cables with no pre-aging failed its post-LOCA voltage withstand test. The unaged cables demonstrated weaker dielectric properties in other electrical condition monitoring tests than the group of cables receiving 20 years of mild pre-aging. This was attributed to the thermal aging process driving out moisture and humidity trapped within the cable and its materials. Note that the average insulation resistance of the unaged cables appears to be adequate, and the polarization index is well above 3.0 indicating good insulation. The individual readings for cable Specimen 0603 are  $2.7T\Omega$  for insulation resistance from the white conductor-to-ground after 10 minutes and the polarization index is 2.0. These are below the average for the unaged AIW cables, however, they do not stand out as being in a problem range, nor would they, taken alone, indicate that there would be a problem under LOCA conditions.

The EPR-insulated cables from the other manufacturers were subjected to much less severe pre-aging conditions than the Rockbestos and Okonite cables, and this is reflected in the adequate average insulation resistance/polarization index values. There is a great deal of variation in the insulation resistance/polarization index measurements from specimen to specimen, as was noted above for the XLPE-insulated cables. The individual values measured for a cable are, therefore, a better measure of the cable's condition, and potential LOCA survivability than a generic acceptance criterion derived from the group averages.

As mentioned above, many factors can affect the insulation resistance measurements for electric cables. This makes it difficult to select a universal acceptance criterion for a given parameter, such as insulation resistance, that could be applied to all cable installation circumstances for predicting LOCA survivability. Specimen-to-specimen variations among cables in similar condition further complicate attempts to set an acceptance criterion for insulation resistance/polarization index. The most prudent approach is to take baseline measurements of the selected insulation resistance/polarization index parameters for each individual cable, and then reference future periodic measurements to the baseline values. Trends will then reveal themselves over time. Combining insulation resistance/polarization index measurements with data from other condition monitoring methods will provide an integrated picture of the status of a cable. This would then be a meaningful tool for experienced maintenance personnel to assess cable condition and to make predictions regarding LOCA survivability.

# **6.2.10** Functional Performance

The ultimate objective for environmentally qualified low voltage power and instrumentation and control (I&C) cables is to be capable of successfully performing their intended function during a design basis accident occurring at the end of their service life. As discussed in Section 6.1.10, the functional performance test was used in this research program to assess the effects of cable degradation on the overall accuracy of an instrumentation circuit into which a cable test specimen had been wired. The performance of that cable specimen could then be assessed throughout the LOCA exposure test by monitoring the performance, i.e., accuracy and longevity, of the instrumentation loop circuit.

The functional performance test was not intended to be an acceptance criterion for success or failure for the LOCA exposure portion of the research test sequence. Rather, the performance test was designed to demonstrate the level of accuracy that could be expected from each type of cable in a typical nuclear power plant instrumentation application, after having been pre-aged to a specified equivalent service age. Cable that was to be environmentally qualified for a particular nuclear power plant I&C application would have to satisfy the specified accuracy, longevity, or other parameters required for the intended application. There were no generic acceptance criteria set for the functional performance of electric cable specimens during the LOCA exposure.

| Cable            |           | Group             | Aging   | Insulation Resistance<br>(Corrected to 60°F) |                               | Polarization Index |                    | Post-LOCA<br>Voltage Withstand Test |                    |         |
|------------------|-----------|-------------------|---------|----------------------------------------------|-------------------------------|--------------------|--------------------|-------------------------------------|--------------------|---------|
|                  |           |                   | (rears) |                                              | - Tera Onms)                  |                    |                    | Leakage Current                     | Conductors Passing |         |
|                  |           |                   |         | Baseline<br>Avg                              | seline After<br>Avg Pre-aging |                    | After<br>Pre-aging | (µА)                                | Quantity           | Percent |
| B<br>O           | OK<br>B/E | 5.1<br>6.1        | 0       | 49.1                                         |                               | 5.7                |                    | 730                                 | 2 of 2             | 100     |
| D                |           | 5.2               | 20      | 19.8                                         | 0.1                           | 4.4                | 1.1                | 1,000                               | 1 of 2             | 50      |
| D                |           | 5.3               | 40      | 20.0                                         | 0.1                           | 2.9                | 1.4                | >10,000 (200Vac)                    | 0 of 3             | 0       |
|                  |           | 6.2               | 60      | 38.7                                         | 0.5                           | 4.2                | 2.2                | >10,000 (50Vac)                     | 0 of 3             | 0       |
| J<br>A<br>C      | SM<br>B/E | 4.1<br>5.1<br>6.1 | 0       | 13.9                                         |                               | 8.4                |                    | 742                                 | 6 of 6             | 100     |
| E<br>T           |           | 4.2<br>5.2        | 20      | 9.0                                          | 6.3                           | 6.9                | 8.0                | 1,225                               | 8 of 8             | 100     |
|                  |           | 4.3<br>5.3        | 40      | 35.4                                         | 0.3                           | 16.5               | 2.2                | 1,575                               | 8 of 10            | 80      |
|                  |           | 6.2               | 60      | 10.1                                         | 3.0                           | 7.7                | 3.1                | 3,040                               | 5 of 6             | 83.3    |
| U<br>N           | AN<br>B/W | 4.1<br>5.1        | 0       | 20.8                                         |                               | 6.4                |                    | 775                                 | 4 of 4             | 100     |
|                  |           | 5.2               | 20      | 27.0                                         | 10.4                          | 5.9                | 3.4                | 855                                 | 4 of 4             | 100     |
| N<br>D<br>E      |           | 4.3<br>5.3        | 40      | 24.1                                         | 3.2                           | 10.3               | 4.0                | 1,204                               | 10 of 10           | 100     |
|                  |           | None              | 60      |                                              |                               | *****              |                    |                                     |                    |         |
| J<br>A<br>C<br>K | AI<br>W/F | 2.1               | 0       | 12.6                                         |                               | 3.8                |                    | 1,024                               | 5 of 6             | 83.3    |
|                  | 17725     | 2.4               | 20      | 13.2                                         | 0.5                           | 3.2                | 1.4                | 900                                 | 10 of 10           | 100     |
| E<br>T           |           | None              | 40      |                                              |                               |                    |                    |                                     |                    |         |
|                  |           | 6.2               | 60      | 4.0                                          | 0.8                           | 3.6                | 1.7                | 2.333                               | 3 of 6             | 50      |

# Table 6.8 Insulation resistance/polarization index and LOCA performance of pre-aged EPR-insulated cables

OK - Okonite 1/C #12 AN - Anaconda 3/C #12

B/E - Black-Insulated Conductor-to-Ground W/E - White-Insulated Conductor-to-Ground SM - Samuel Moore 2/C #16 w/ Shid & Gnd AI - American Insulated Wire 3/C & 4/C #16 w/ Gnd

B/W - Conductor-to-Conductor

Instrument circuit calibrations, functional tests, and logic system functional tests are commonly performed in nuclear power plants during preventive maintenance and technical specification surveillance testing. However, while these tests may indirectly monitor the functional performance of low-voltage I&C cables, they provide no specific data for assessing the condition of the cables, and they are of little or no help in trying to predict the LOCA survivability of a cable.

Routine surveillance testing under normal plant conditions will produce very different results than the same tests performed under the conditions of a LOCA exposure. A low-voltage cable with dry, cracked, and damaged insulation can perform adequately under normal plant conditions, as long as it has not contacted an electrical ground. The same cable might not function under saturated steam conditions. For the reasons cited above, functional performance testing is not considered an effective method for determining, in situ, the LOCA survivability for a particular cable.

# 6.2.11 Voltage Withstand

As discussed in Section 6.1.11, the submerged voltage withstand test, as used in this program, as well as in IEEE Std. 383-1974, is intended to be a post-LOCA test to assess the remaining dielectric integrity of a cable specimen's insulation. It served as a success criterion for cables in a qualification type test.

In the setting of a research program, correlating the level of pre-aging administered to a cable's insulation with the leakage current measured during a successful performance of a post-LOCA submerged voltage withstand test, such as the data presented in Table 5.13, could provide some measure of the probability of survival during a LOCA exposure. More importantly, further correlation of data from a non-destructive condition monitoring technique, gathered after pre-aging, with subsequent performance during LOCA exposure testing (as measured by the leakage current observed during post-LOCA submerged voltage withstand testing), would provide a quantitative means for using the data from that condition monitoring technique to predict a probability for LOCA survival.

The post-LOCA submerged voltage withstand test, however, is a high voltage test that has the potential to cause a voltage breakdown, which would permanently ruin the cable insulation. Each application of the high voltage may further cause an incremental increase in the amount of degradation to the dielectric integrity of the insulation. For this reason, it is not a true condition monitoring test that could be used in situ, by nuclear power plant technicians, to predict the LOCA survivability of an I&C circuit's insulation system over the course of its service life. Even at lower levels of applied test voltage, within the voltage rating of the cable, the cable insulation is incrementally weakened by each high potential test. Thus, the risks of causing either catastrophic or incipient damage to cable insulation make this an unsuitable method for assessing the LOCA survivability of low voltage electric cable in situ.

# 7. REFERENCES

Baird, H.E., "Thermal Analysis of Additives in Polymers", in <u>Thermal Characterization of Polymeric Materials</u>, pp. 845-909, E. A. Turn (Edit.), Academic Press, 1981.

Bustard, L. D., "The Effect of LOCA Simulation Procedures on Ethylene Propylene Rubber's Mechanical and Electrical Properties," NUREG/CR-3538, SAND83-1258, 1983.

Deem, R., and Lofaro, R., "Acquisition Plan for Non-Aged, and Naturally Aged Cable Samples from Nuclear Facilities," BNL Technical Report TR-6168/69, Rev. 1, November 1995.

Grove, E., "Environmental Qualification Research Program Quality Plan," BNL Technical Report TR-6169-05-95, April 1996.

EPRI, "Low-Voltage Environmentally-Qualified Cable License Renewal Industry Report; Revision 1," TR-103841, July 1994.

Franklin Institute Research Laboratories, "Tests of Electrical Cables Subjected to Thermal Aging, Gamma Radiation and a Loss-of-Coolant Accident Simulation," Report No. F-C4350-3, July, 1976.

Holtzman, P. and Sleiter, G., "Nuclear Power Plant: Equipment Qualification Reference Manual", EPRI TR-100516, 1992.

Hsu, F., Lofaro, R., Mughabghab, S. and Subudhi, M., "Environmental Qualification Research Literature Database and User's Manual," BNL Technical Report TR-6169-06-96, Rev. 2, May 1998.

IAEA, "Assessment and Management of Aging of Major Nuclear Power Plant Components Important to Safety: In-containment Instrumentation and Control Cables," IAEA-TECDOC-1188, December 2000.

Isomedix Inc., "Qualification Test of Electric Cables Under a Simulated LOCA/DBE by Sequential Exposure to Environments of Radiation, Thermal Aging, Steam and Chemical Spray," Report No. LOCA XLPO/EPDM, June 1978.

Jacobus, M. J., "Aging, Condition Monitoring, and Loss-of-Coolant-Accident (LOCA) Tests of Class 1E Electrical Cables," NUREG/CR-5772, SAND91-1766, Volumes 1, 2 and 3, 1992.

Lee, B., "Condition Monitoring Research Plan for Low-Voltage Electric Cables," BNL Technical Report TR-6168/69-03-95, February 1996.

Lofaro, R., Gunther, W., Villaran, M., Lee, B., and Taylor, J., "Workshop on Environmental Qualification of Electric Equipment." NUREG/CP-0135, May 1994.

Lofaro, R., Bowerman, B., Carbonaro, J., Kasturi, S., Lee, B., Subudhi, M., Taylor, J., and Villaran, M., "Literature Review of Environmental Qualification of Safety-Related Electric Cables: Literature Analysis and Appendices," NUREG/CR-6384, Volume 2, April 1996.

Lofaro, R., Gunther, W., Villaran, M., Lee, B., and Taylor, J., "Workshop on Environmental Qualification of Electric Equipment," NUREG/CP-0-135, May 1994.

Lofaro, R., Subudhi, M., Travis, R., Grove, E., Lee, B., Villaran, M., Bowerman, B., and Soo, P., "Supplemental Literature Review on the Environmental Qualification of Safety-Related Electric Cables," BNL Technical Report TR-6169-9/97, January 1998A.

7. References

Lofaro, R., Villaran, M., Grove, E., Soo, P., and Hsu, F., "Interim Report: Results of Test Sequence 1 on Electric Cables with Cross-Linked Polyethylene Insulation and Neoprene® Jacket," BNL Technical Report TR-6465-01-98 (volumes 1 and 2), March 1998B.

Lofaro, R., Villaran, M., Grove, E., Soo, P., and Hsu, F., "Interim Report: Results of Test Sequence 2 on Electric Cables with Ethylene Propylene Rubber Insulation and Hypalon<sup>®</sup> Jacket," BNL Technical Report TR-6465-05-98 (volumes 1 and 2), November 1998C.

Lofaro, R., Villaran, M., Grove, E., Soo, P., and Hsu, F., "Interim Report: Results of Test Sequence 3 on Electric Cables with Cross-Linked Polyethylene Insulation and Neoprene® Jacket pre-aged to 40 Years," BNL Technical Report TR-6465-01-99, January 1999A.

Lofaro, R., Villaran, M., Grove, E., Soo, P., and Hsu, F., "Interim Report: Results of Test Sequences 4 and 5 on Electric Cables with Ethylene Propylene Rubber Insulation and Hypalon<sup>®</sup> Jacket pre-aged to 40 Years," BNL Technical Report TR-6465-02-99, January 1999B.

Lofaro, R., "Results of Test Sequence 4 on Multiconductor Electric Cables," BNL Letter Report to S. Aggarwal, NRC/RES, March 6, 2000A.

Lofaro, R., "Results of Test 5 on Bonded Jacket Electric Cables," BNL Letter Report to S. Aggarwal, NRC/RES, March 6, 2000B.

Lofaro, R., "Minutes of February 8, 2000 NRC Meeting with Okonite," BNL letter to S. Aggarwal, NRC dated March 8, 2000C.

Subudhi, M., "Literature Review of Environmental Qualification of Safety-Related Electric Cables: Summary of Past Work," NUREG/CR-6384, Volume 1, April 1996.

Szukiewicz, A. J., "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment," NUREG-0588 For Comment, December 1979.

Vigil, R. A. and Jacobus, M. J., "Aging, Loss-of-Coolant Accident (LOCA), and High Potential Testing of Damaged Cables," NUREG/CR-6095, SAND93-1803, 1993.

Villaran, M., "Pre-aging and LOCA Test Plan for Low-Voltage Electric Cables," BNL Technical Report TR-6168/69-04-95, Rev. 1, March 1996.

# Appendix A

.

# **Elongation-at-Break Data**
# Tables

| <u>Title</u> Page                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Table A-1 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 1.1, Specimen 0101)       A-4                                  |
| Table A-2 Elongation-at-Break for Rockbestos Cable PNI85RB191 (Group 1.2, Specimen 0106)       A-5                                  |
| Table A-3 Elongation-at-Break for Rockbestos Cable PAP86RB267 (Group 1.3, Specimen 0111)       A-6                                  |
| Table A-4 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 1.4, Specimen 0112)       A-7                                  |
| Table A-5 Elongation-at-Break for AIW Cable PNI74AI025 (Group 2.1, Specimen 0201)       A-8                                         |
| Table A-6 Elongation-at-Break for AIW Cable PNI74AI031 (Group 2.1, Specimen 0202)       A-9                                         |
| Table A-7 Elongation-at-Break for AIW Cable PNI74AI026 (Group 2.2, Specimen 0203)       A-10                                        |
| Table A-8 Elongation-at-Break for AIW Cable PNI74AI027 (Group 2.2, Specimen 0205) A-11                                              |
| Table A-9 Elongation-at-Break for AIW Cable PAI74AI015 (Group 2.3, Specimen 0207)       A-12                                        |
| Table A-10 Elongation-at-Break for AIW Cable PAI74AI019 (Group 2.3, Specimen 0210)       A-13                                       |
| Table A-11       Elongation-at-Break for AIW Cable PAI74AI028 (Group 2.4, Specimen 0212)       A-14                                 |
| Table A-12 Elongation-at-Break for AIW Cable PNI74AI028 (Group 2.4, Specimen 0213)       A-15                                       |
| Table A-13 Elongation-at-Break for AIW Cable PNI74AI032 (Group 2.4, Specimen 0214)       A-16                                       |
| Table A-14 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 3.1, Specimen 301)       A-17                                 |
| Table A-15 Elongation-at-Break for Rockbestos Cable PNI85RB191 (Group 3.1, Specimen 0302)       A-18                                |
| Table A-16 Elongation-at-Break for Rockbestos Cable PNI85RB191 (Group 3.2, Specimen 0303)       A-19                                |
| Table A-17 Elongation-at-Break for Rockbestos Cable PAP86RB229 (Group 3.3, Specimen 0307)       A-20                                |
| Table A-18 Elongation-at-Break for Rockbestos Cable PAP86RB267 (Group 3.3, Specimen 0311)       A-21                                |
| Table A-19 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 3.4, Specimen 0312)       A-22                                |
| Table A-20 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 4.1, Specimen 0401)       A-23                                  |
| Table A-21 Elongation-at-Break for Samuel Moore Cable PNI82M008, (Group 4.1, Specimen 0402)       A-24                              |
| Table A-22 Elongation-at-Break for Samuel Moore Cable PNI82SM008 (Group 4.2, Specimen 0403)       A-25                              |
| Table A-23 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 4.3, Specimen 0407)         Aged to 20 yrs Service         A-26 |

| Table A-24 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 4.3, Specimen 0407)         Aged to 40 yrs Service       A-27   |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Table A-25 Elongation-at-Break for Samuel Moore Cable PNI82SM008 (Group 4.4, Specimen 0412) A-28                                    |
| Table A-26 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 5.1, Specimen 0501)       A-29                                   |
| Table A-27 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 5.1, Specimen 0502) A-30                                    |
| Table A-28 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 5.1, Specimen 0503)       A-31                                  |
| Table A-29 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 5.2, Specimen 0504)       A-32                                   |
| Table A-30 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 5.2, Specimen 0506) A-33                                    |
| Table A-31 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 5.2, Specimen 0508) A-34                                        |
| Table A-32 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 5.3, Specimen 0510)       A-35                                   |
| Table A-33 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 5.3, Specimen 0513) A-36                                    |
| Table A-34 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 5.3, Specimen 0515) A-37                                        |
| Table A-35 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 6.1, Specimen 0601)       A-38                                   |
| Table A-36 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 6.1, Specimen 0602) A-39                                    |
| Table A-37 Elongation-at-Break for AIW Cable PNI74AI035, (Group 6.1, Specimen 0603) A-40                                            |
| Table A-38 Elongation-at-Break for Rockbestos Cable PNI79RB191 (Group 6.1, Specimen 0604)       A-41                                |
| Table A-39 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 6.3, Specimen 0605) A-42                                         |
| Table A-40 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 6.3, Specimen 0608) A-43                                    |
| Table A-41 Elongation-at-Break for AIW Cable PNI74AI035 (Group 6.3, Specimen 0611)       A-44                                       |
| Table A-42 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 6.3, Specimen 0621)       A-45                                |
| Table A-43 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 6.3, Specimen 0621)         Aged to 60 yrs Service       A-46 |
| Table A-44 Correlation Between Aging Time and Elongation-at-Break for         White XLPE from Rockbestos Cable PNI85RB191           |

|                              | Elongation at Break (%)                                                                                      |                                                                  |                                                                                   |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                                                                                 | Black XLPE Insulation                                            | White XLPE Insulation                                                             |  |  |  |  |
| A<br>[Unused]                | 589<br>556<br>530<br>549<br>492<br>534<br>523<br>527<br>521<br>Aug = 535+27                                  | 595<br>638<br>644                                                | 613<br>640<br>657<br>654<br>629<br>585<br>579                                     |  |  |  |  |
| B,C,D,E                      | Avg = $535\pm 27$ Avg = $626\pm 27$ Avg = $622\pm 31$ No change - no additional preaging after last CM Point |                                                                  |                                                                                   |  |  |  |  |
| F<br>[A + 78.3 Mrad]         | 226<br>248<br>232<br>224<br>286<br>Avg = 243±26                                                              | 279<br>307<br>304<br>312<br>304<br>Avg = 301±13                  | $308314300260286Avg = 294\pm22$                                                   |  |  |  |  |
| G<br>[F + 78.3 Mrad]         | 125<br>106<br>62<br>57<br>Avg = 88±33                                                                        | 130<br>155<br>125<br>147<br>153<br>Avg = 142±14                  | 128 103 113 90 120 Avg = 111±15                                                   |  |  |  |  |
| H<br>[G + Steam/Chem. Spray] | 30 . 33 . 31 . 32 . 31 . Avg = 31±1                                                                          | $     140     139     124     109     149     Avg = 132\pm16   $ | $ \begin{array}{r} 141 \\ 86 \\ 131 \\ 93 \\ 147 \\ Avg = 120\pm 28 \end{array} $ |  |  |  |  |

### Table A-1 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 1.1, Specimen 0101)

|                                                        |                                                     | Elongation                                      | at Break (%)                                    |                                                 |
|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | White XLPE Insulation                               | Red XLPE<br>Insulation                          |                                                 |                                                 |
| A<br>[Unused]                                          | 429<br>455<br>453<br>493<br>438<br>Avg = 454±25     | 372<br>371<br>416<br>298<br>385<br>Avg = 368±43 | 367<br>379<br>384<br>387<br>378<br>Avg = 379±8  | 369<br>352<br>373<br>285<br>Avg = 345±41        |
| B<br>[A + 2.86 hrs<br>@ 120⁰C]                         | 404<br>467<br>444<br>440<br>383<br>Avg = 428±34     | 407<br>336<br>418<br>310<br>445<br>Avg = 383±57 | 413<br>443<br>421<br>432<br>426<br>Avg = 427±11 | 429<br>424<br>408<br>424<br>Avg = 421±9         |
| С                                                      |                                                     | No change - no additional                       | preaging after last CM Point                    |                                                 |
| D<br>[B + 0.63 Mrad]                                   | $410 \\ 410 \\ 434 \\ 432 \\ 418 \\ Avg = 421\pm12$ | 355<br>349<br>353<br>402<br>351<br>Avg = 362±22 | 399<br>387<br>345<br>381<br>374<br>Avg = 377±20 | 355<br>358<br>352<br>368<br>347<br>Avg = 356±8  |
| E                                                      |                                                     | No Change - no additional                       | preaging after last CM Point                    |                                                 |
| F<br>[D + 78.3 Mrad]                                   | 110<br>71<br>84<br>120<br>101<br>Avg = 97±20        | 157<br>203<br>233<br>214<br>258<br>Avg = 213±38 | $257 203 263 237 245 Avg = 241\pm24$            | 219<br>242<br>231<br>238<br>224<br>Avg = 231±10 |
| G<br>[F + 78.3 Mrad]                                   | 56<br>57<br>47<br>49<br>49<br>Avg = 52±5            | 63<br>66<br>95<br>101<br>37<br>Avg = 72±26      | 136<br>105<br>113<br>146<br>99<br>Avg = 120±20  | 98<br>96<br>118<br>114<br>112<br>Avg = 108±11   |
| H<br>[G + Steam/Chem.<br>Spray}                        | 33<br>38<br>28<br>Avg = 33±5                        | 134<br>110<br>125<br>108<br>121<br>Avg = 120±11 | 178<br>184<br>134<br>134<br>171<br>Avg = 160±24 | 134<br>145<br>175<br>184<br>115<br>Avg = 151±29 |

# Table A-2 Elongation-at-Break for Rockbestos Cable PNI85RB191 (Group 1.2, Specimen 0106)

| •                               | -                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | •                                                                            |  |  |  |
|---------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| CM Point                        | Elongation at Break (%)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                                              |  |  |  |
| CM POINT                        | Neoprene <sup>®</sup> Jacket                           | Elongation at Break (%)           acket         Black XLPE Insulation         White XLPE Insulation         Red XLPE Insulation           400         400         363           408         421         338           366         390         355           369         425         340 $\pm 14$ Avg = 386 $\pm 21$ Avg = 412 $\pm 16$ Avg = 349 $\pm 12$ No change - no additional preaging after last CM Point         143         143           197         200         175         112           112         184         119         200 $\pm 6$ Avg = 129 $\pm 43$ Avg = 186 $\pm 10$ Avg = 156 $\pm 32$ $30$ 55         69           26         105         76           21         71         85           18         98         57           64         43         77           43         157         126           142         169         175           126         145         132           126         145         132           126         145         132           129         122 | Red XLPE Insulation                             |                                                                              |  |  |  |
| A<br>[Naturally<br>Aged 10 yrs] | 519<br>508<br>519<br>546<br>516<br>Avg = 521±14        | 400<br>408<br>366<br>369<br>Avg = 386±21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400<br>421<br>390<br>425<br>423<br>Avg = 412±16 | 363<br>338<br>355<br>340<br>Avg = 349±12                                     |  |  |  |
| B,C,D,E                         | No change - no additional preaging after last CM Point |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                                              |  |  |  |
| F<br>[A + +78.3 Mrad]           | 70<br>78<br>67<br>80<br>71<br>Avg = $73\pm 6$          | 92<br>143<br>197<br>112<br>99<br>Avg = 129±43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178<br>183<br>200<br>184<br>Avg = 186±10        | 143<br>143<br>175<br>119<br>200<br>Avg = 156±32                              |  |  |  |
| G<br>[F + 78.3 Mrad]            | 33<br>46<br>48<br>39<br>56<br>Avg = 44±9               | 30<br>26<br>21<br>18<br>64<br>77<br>Avg = 39±25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55<br>105<br>71<br>98<br>43<br>Avg = 74±27      | 69<br>76<br>85<br>57<br>Avg = 72±12                                          |  |  |  |
| H<br>[G + Steam/Chem.<br>Spray] | 45<br>35<br>40<br>45<br>Avg = 41±5                     | $     142     127     126     127     149     Avg = 134\pm11 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 169<br>194<br>145<br>192<br>128<br>Avg = 166±30 | $     175 \\     157 \\     132 \\     182 \\     88 \\     Avg = 147\pm38 $ |  |  |  |

### Table A-3 Elongation-at-Break for Rockbestos Cable PAP86RB267 (Group 1.3, Specimen 0111)

# Table A-4 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 1.4, Specimen 0112)

|                              |                                                                                    | Elongation at Break (%)                                |                                                               |  |  |
|------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|--|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                                                       | Black XLPE Insulation                                  | White XLPE Insulation                                         |  |  |
| A<br>[Unused]                | 589<br>556<br>530<br>549<br>492<br>492<br>534<br>523<br>527<br>521<br>Avg = 531±29 | 595<br>638<br>644<br>Avg = 626±27                      | 613<br>640<br>657<br>654<br>629<br>585<br>579<br>Avg = 622±31 |  |  |
| В                            | No char                                                                            | nge - no additional preaging after last                | CM Point                                                      |  |  |
| C<br>[A + 648.5 hrs @150°C]  | Specimens brittle; not tested                                                      |                                                        |                                                               |  |  |
| D                            | No char                                                                            | nge - no additional preaging after last                | CM Point                                                      |  |  |
| E<br>[C + 26.1 Mrad]         | 2.0 (Est.)                                                                         | 4.7<br>4.2<br>3.9<br>3.8<br>5.9<br>Avg = 4.5±0.9       | 2.4<br>2.9<br>3.1<br>2.5<br>Avg = 2.7±0.3                     |  |  |
| F<br>[E + 78.3 Mrad]         | 2.0 (Est)                                                                          | 2.8<br>3.4<br>1.4<br>3.1<br>2.1<br>$Avg = 2.6 \pm 0.8$ | 2.1<br>1.9                                                    |  |  |
| G<br>[F + 78.3 Mrad          | 2.0 (Est)                                                                          | 1.8<br>1.8<br>1.7<br>Avg = 1.8±0.1                     | $1.9 \\ 1.7 \\ 1.5 \\ Avg = 1.7 \pm 0.2$                      |  |  |
| H<br>[G + Steam/Chem. Spray] | 2.0 (Est)                                                                          | 4.7<br>4.2<br>3.9<br>3.8<br>5.9<br>Avg = 4.5±0.9       | 2.8<br>2.0<br>2.7<br>2.6<br>Avg = 2.5±0.4                     |  |  |

.

#### Table A-5 Elongation-at-Break for AIW Cable PNI74AI025 (Group 2.1, Specimen 0201)

| CMPsint                         | Elongation at Break (%)                         |                                                        |                                                 |                                                 |                                                 |                                                 |  |
|---------------------------------|-------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
| CM Point                        | OJ <sup>(a)</sup>                               | IJB                                                    | IJW                                             | IJR                                             | IJG                                             | Insul                                           |  |
| A<br>[Unused]                   | 663<br>699<br>636<br>645<br>603<br>Avg = 649±35 | 587<br>371<br>479<br>615<br>487<br>Avg = 508±97        | 542<br>566<br>553<br>560<br>481<br>Avg = 540±34 | 525<br>513<br>526<br>493<br>518<br>Avg = 515±13 | 545<br>476<br>596<br>588<br>550<br>Avg = 551±46 | 367<br>278<br>279<br>225<br>273<br>Avg = 284±51 |  |
| В                               |                                                 | No ch                                                  | ange - no additional                            | preaging after last Cl                          | M Point                                         |                                                 |  |
| С                               |                                                 | No ch                                                  | ange - no additional                            | preaging after last Cl                          | M Point                                         |                                                 |  |
| D                               |                                                 | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |  |
| Е                               |                                                 | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |  |
| F<br>[A + 76.6 Mrad]            | 609<br>558<br>564<br>557<br>665<br>Avg = 591±47 | 446<br>449<br>521<br>493<br>415<br>Avg = 465±42        | 482<br>289<br>354<br>271<br>Avg = 349±96        | 471<br>467<br>473<br>481<br>331<br>Avg = 445±64 | 344<br>223<br>443<br>369<br>Avg = 345±91        | 214<br>227<br>205<br>Avg = 215±11               |  |
| G<br>[F + 77.5 Mrad]            | 496<br>550<br>493<br>472<br>396<br>Avg = 481±56 | 372<br>333<br>346<br>383<br>Avg = 359±23               | 362<br>367<br>374<br>347<br>Avg = 363±11        | 366<br>361<br>342<br>352<br>Avg = 355±11        | 319<br>351<br>367<br>345<br>Avg = 345±20        | 201<br>189<br>209<br>149<br>Avg = 187±27        |  |
| H<br>[G + Steam/Chem.<br>Spray] | $155 \\ 126 \\ 146 \\ 188 \\ 196$               | 65<br>80<br>92<br>64<br>93<br>$Ayg = 79\pm 14$         | 63<br>59<br>53<br>59<br>62<br>Avg = 59±4        | $41 \\ 56 \\ 50 \\ 52 \\ 48 $                   | 37<br>30<br>43<br>52<br>39<br>Avg = $40\pm 8$   | $4842272534354228Avg = 35\pm 8$                 |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation

| Table A-6 | Elongation-at-Break for A | IW Cable | PNI74AI031 | (Group 2.1, Specimen 02 | .02) |
|-----------|---------------------------|----------|------------|-------------------------|------|
|-----------|---------------------------|----------|------------|-------------------------|------|

|                              |                                                        | Elong                                           | gation at Break (%)                             |                                                 |                                                             |  |
|------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|--|
| CM Point                     | OJ <sup>(a)</sup>                                      | IJB                                             | IJW                                             | IJR                                             | Insul                                                       |  |
| A<br>[Unused]                | 578<br>610<br>552<br>547<br>527<br>Avg = 563±32        | 550<br>554<br>530<br>542<br>Avg = 544±11        | 462<br>544<br>408<br>514<br>Avg = 482±60        | 464<br>505<br>456<br>489<br>462<br>Avg = 475±21 | 348<br>324<br>328<br>329<br>377<br>Avg = 341±22             |  |
| В                            |                                                        | No change - no addi                             | itional preaging after                          | last CM Point                                   |                                                             |  |
| С                            |                                                        | No change - no add                              | itional preaging after                          | last CM Point                                   |                                                             |  |
| D                            | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                             |  |
| E                            | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                             |  |
| F<br>[A + 76.6 Mrad]         | 488<br>514<br>449<br>423<br>448<br>Avg = 464±36        | 484<br>418<br>465<br>442<br>451<br>Avg = 452±25 | 375<br>375<br>374<br>423<br>312<br>Avg = 372±39 | Not tested                                      | 224<br>186<br>209<br>213<br>225<br>Avg = 211±16             |  |
| G<br>[F + 77.5 Mrad]         | 349<br>368<br>345<br>381<br>351<br>Avg = 359±15        | 267<br>300<br>271<br>285<br>Avg = 281±15        | 235<br>205<br>254<br>265<br>Avg = 240±26        | Not tested                                      | 166<br>152<br>112<br>144<br>118<br>Avg = 138±23             |  |
| H<br>[G + Steam/Chem. Spray] | 80<br>86<br>94<br>94<br>75                             | 30<br>72<br>55<br>24<br>35                      | 25<br>32<br>37<br>38<br>24                      | Not tested                                      | 32<br>43<br>25<br>35<br>35<br>50<br>13<br>28<br>Avg = 33±11 |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation

|                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                               |                                                 |                                                 |                                                          |  |  |
|---------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|--|--|
| CM Point                        |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elongation a                                    | Clongation at Break (%)                         |                                                 |                                                          |  |  |
| CMFOIIT                         | OJ <sup>(a)</sup>                                   | Elongation at Break (%) $OJ^{(o)}$ IJBIJWIJRIJG663587542525545699371566513476636479553526596645615560493588603487481518550g = 649±35Avg = 508±97Avg = 540±34Avg = 515±13Avg = 551±597584424365500668551460427434649417440522498680536456501505575457519510510g = 634±46Avg = 522±73Avg = 447±15Avg = 467±69Avg = 489±No change - no additional preaging after last CM Point60136027138429463228941126723555223434027051824826621760736641943025145530444152145839643253432844538560736641943034329411±383543944094303551617138986073664194303432945757516332450304419430< | IJG                                             | Insul                                           |                                                 |                                                          |  |  |
| A <sup>(b)</sup><br>[Unused]    | 663<br>699<br>636<br>645<br>603<br>Avg = 649±35     | 587<br>371<br>479<br>615<br>487<br>Avg = 508±97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542<br>566<br>553<br>560<br>481<br>Avg = 540±34 | 525<br>513<br>526<br>493<br>518<br>Avg = 515±13 | 545<br>476<br>596<br>588<br>550<br>Avg = 551±46 | 367<br>278<br>279<br>225<br>273<br>Avg = 284±51          |  |  |
| B<br>[A + 28.45 hrs @<br>121°C] | 597<br>668<br>649<br>680<br>575<br>Avg = 634±46     | 584<br>551<br>417<br>536<br>Avg = 522±73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 424<br>460<br>440<br>456<br>457<br>Avg = 447±15 | 365<br>427<br>522<br>501<br>519<br>Avg = 467±69 | 500<br>434<br>498<br>505<br>510<br>Avg = 489±31 | 365<br>326<br>379<br>282<br>328<br>Avg = 336±38          |  |  |
| С                               |                                                     | No change - no additional preaging after last CM Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                                 |                                                 |                                                          |  |  |
| D<br>[B + 3.25 Mrad]            | 601<br>632<br>552<br>518<br>607<br>Avg = 582±46     | 360<br>289<br>234<br>248<br>Avg = 283±57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 271<br>411<br>Avg = 341±99                      | 384<br>267<br>340<br>Avg = 330±59               | 294<br>235<br>270<br>269<br>217<br>Avg = 257±31 | 256<br>248<br>204<br>189<br>Avg = 224±33                 |  |  |
| E                               |                                                     | No chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge - no additional p                            | reaging after last C                            | M Point                                         |                                                          |  |  |
| F<br>[D + 76.6 Mrad]            | 516<br>521<br>540<br>607<br>Avg = 546±42            | 332<br>458<br>328<br>366<br>343<br>Avg = 365±54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 450<br>396<br>445<br>Avg = 430±30               | 304<br>432<br>385<br>419<br>Avg = 385±58        | 441<br>379<br>394<br>430<br>Avg = 411±29        | 111<br>170<br>143<br>179<br>Avg = 151±31                 |  |  |
| G                               |                                                     | No chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge - no additional p                            | reaging after last C                            | M Point                                         |                                                          |  |  |
| H<br>[F + Steam/Chem.<br>Spray] | $235 \\ 214 \\ 265 \\ 218 \\ 200 \\ Avg = 226\pm25$ | 161<br>195<br>103<br>130<br>Avg = 147±40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71<br>64<br>79<br>94<br>94<br>94                | 38<br>57<br>86<br>74<br>114                     | 98<br>95<br>64<br>63<br>66                      | 62 $112$ $144$ $73$ $72$ $143$ $165$ $77$ $Ayg = 106+40$ |  |  |

#### Table A-7 Elongation-at-Break for AIW Cable PNI74AI026 (Group 2.2, Specimen 0203)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation
 (b) Baseline values of EAB listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)

|                                                | Elongation at Break (%)                                |                                                 |                                                 |                                                 |                                                 |                                                             |  |
|------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|--|
| CM Point                                       | OJ <sup>(a)</sup>                                      | IJB                                             | IJW                                             | IJR                                             | IJG                                             | Insul                                                       |  |
| A <sup>®</sup><br>[Unused]                     | 663<br>699<br>636<br>645<br>603<br>Avg = 649±35        | 587<br>371<br>479<br>615<br>487<br>Avg = 508±97 | 542<br>566<br>553<br>560<br>481<br>Avg = 540±34 | 525<br>513<br>526<br>493<br>518<br>Avg = 515±13 | 545<br>476<br>596<br>588<br>550<br>Avg = 551±46 | 367<br>278<br>279<br>225<br>273<br>Avg = 284±51             |  |
| B <sup>(e)</sup><br>[A + 28.45 hrs @<br>121°C] | 597<br>668<br>649<br>680<br>575<br>Avg = 633±46        | 584<br>551<br>417<br>536<br>Avg = 522±73        | 424<br>460<br>440<br>456<br>457<br>Avg = 447±15 | 365<br>427<br>522<br>501<br>519<br>Avg = 467±69 | 500<br>434<br>498<br>505<br>510<br>Avg = 489±31 | 365<br>326<br>379<br>282<br>328<br>Avg = 336±38             |  |
| С                                              | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |                                                             |  |
| D <sup>@)</sup><br>[B + 3.25 Mrad]             | 601<br>632<br>552<br>518<br>607<br>Avg = 582±46        | 360<br>289<br>234<br>248<br>Avg = 283±57        | 271<br>411<br>Avg = 341±99                      | 384<br>267<br>340<br>Avg = 330±59               | 294<br>235<br>270<br>269<br>217<br>Avg = 257±31 | 256<br>248<br>204<br>189<br>Avg = 224±33                    |  |
| E                                              | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |                                                             |  |
| F <sup>(6)</sup><br>[D + 76.6 Mrad]            | 516<br>521<br>540<br>607<br>Avg = $546\pm 42$          | 332<br>458<br>328<br>366<br>343<br>Avg = 365±54 | 450<br>396<br>445<br>Avg = 430±30               | 304<br>432<br>385<br>419<br>Avg = 385±58        | 441<br>379<br>394<br>430<br>Avg = 411±29        | 111<br>170<br>143<br>179<br>Avg = 151±31                    |  |
| G<br>[F + 77.5 Mrad]                           | 305<br>310<br>323<br>309<br>343<br>Avg = 318±16        | $213 \\ 166 \\ 260 \\ 164 \\ Avg = 201 \pm 46$  | 285<br>277<br>302<br>205<br>Avg = 267±43        | 292<br>279<br>207<br>297<br>287<br>Avg = 273±37 | 264<br>209<br>270<br>277<br>268<br>Avg = 258±28 | 117<br>129<br>121<br>130<br>135<br>Avg = 126±7              |  |
| H<br>[G + Steam/Chem.<br>Spray]                | 204<br>159<br>152<br>150<br>163                        | 58<br>102<br>63<br>75<br>33                     | $28 \\ 69 \\ 32 \\ 60 \\ 48 $                   | 45 - 35 - 40 - 27 - 58                          | $30 \\ 39 \\ 48 \\ 48 \\ 41 \\ Avg = 41 \pm 7$  | 42<br>73<br>53<br>52<br>35<br>38<br>42<br>30<br>Avg = 46±14 |  |

Table A-8 Elongation-at-Break for AIW Cable PNI74AI027 (Group 2.2, Specimen 0205)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red (a) OF = Hypatone outer jacket, IJG = Hypatone of ack individual jacket, IJW = Hypatone white individual jacket, Hypatone white individu

| Table A-9 | Elongation-at-Break for | AIW | Cable | PNI74AI015 | (Group 2 | 2.3, | Specimen 02 | :07) |
|-----------|-------------------------|-----|-------|------------|----------|------|-------------|------|
|-----------|-------------------------|-----|-------|------------|----------|------|-------------|------|

|                                 | Elongation at Break (%)                                |                                                        |                                                 |                                                                                 |                                                 |                                                 |
|---------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| CM Point                        | OJ <sup>(a)</sup>                                      | IJB                                                    | IJW                                             | IJR                                                                             | IJG                                             | Insul                                           |
| A<br>[Naturally Aged<br>24 yrs] | 700<br>691<br>627<br>582<br>$Avg = 650\pm 56$          | 517<br>Avg = 517                                       | 461<br>459<br>483<br>Avg = $468\pm13$           | $     370 \\     341 \\     479 \\     462 \\     439 \\     Avg = 418 \pm 60 $ | $494 \\ 437 \\ 355 \\ 535 \\ Avg = 455 \pm 78$  | $336 364 329 342 Avg = 343 \pm 15$              |
| В                               |                                                        | No cha                                                 | nge - no additional p                           | reaging after last CM                                                           | 1 Point                                         |                                                 |
| с                               |                                                        | No cha                                                 | nge - no additional p                           | reaging after last CM                                                           | l Point                                         | <del>.</del>                                    |
| D                               |                                                        | No change - no additional preaging after last CM Point |                                                 |                                                                                 |                                                 |                                                 |
| Е                               | No change - no additional preaging after last CM Point |                                                        |                                                 |                                                                                 | ······································          |                                                 |
| F<br>[A + 76.6 Mrad]            | 457<br>443<br>376<br>Avg = 425±43                      | 217<br>351<br>264<br>Avg = 277±68                      | 361<br>312<br>357<br>360<br>345<br>Avg = 347±21 | 344<br>346<br>Avg = 345±1                                                       | 270<br>273<br>344<br>268<br>382<br>Avg = 307±50 | 226<br>151<br>128<br>155<br>149<br>Avg = 162±37 |
| G<br>[F + 77.5 Mrad]            | 336<br>292<br>350<br>363<br>405<br>Avg = 349±41        | $209 \\ 192 \\ 190 \\ 190 \\ 140 \\ Avg = 184\pm26$    | 285<br>279<br>298<br>220<br>Avg = 270±35        | 208<br>302<br>302<br>267<br>259<br>Avg = 268±39                                 | 207<br>310<br>292<br>282<br>Avg = 273±45        | 112<br>146<br>134<br>136<br>154<br>Avg = 136±16 |
| H<br>[G + Steam/Chem.<br>Spray] | 181<br>189<br>173<br>152<br>197<br>Avg = 178±17        | 97<br>73<br>88<br>95<br>80<br>Avg = <b>87</b> ±10      | 52<br>54<br>102<br>61<br>44<br>Avg = $62\pm 23$ | 53<br>52<br>78<br>79<br>38                                                      | 65<br>88<br>72                                  | 32 67 117 78 60 116 108 110 Avg = 86+31         |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation

|                                    | Elongation at Break (%)                                |                                                 |                                                |                                                 |                                                                                                         |                                                              |
|------------------------------------|--------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| CM Point                           | OJ <sup>(a)</sup>                                      | IJB                                             | IJW                                            | IJR                                             | IJG                                                                                                     | Insul                                                        |
| A<br>[Naturally Aged<br>24 yrs]    | 427<br>517<br>519<br>546<br>552<br>Avg = 512±50        | 412<br>526<br>462<br>534<br>443<br>Avg = 475±53 | 510<br>534<br>499<br>514<br>Avg = 514±15       | 499<br>445<br>367<br>Avg = 437±66               | 436<br>522<br>532<br>411<br>343<br>Avg = 449±79                                                         | 329<br>356<br>308<br>349<br>352<br>Avg = 339±20              |
| В                                  |                                                        | No chan                                         | ge - no additional p                           | reaging after last CM                           | l Point                                                                                                 |                                                              |
| С                                  |                                                        | No chan                                         | ge - no additional p                           | reaging after last CM                           | l Point                                                                                                 |                                                              |
| D                                  | No change - no additional preaging after last CM Point |                                                 |                                                |                                                 |                                                                                                         |                                                              |
| Е                                  | No change - no additional preaging after last CM Point |                                                 |                                                |                                                 |                                                                                                         |                                                              |
| F<br>[A + 76.6 Mrad]               | 540<br>382<br>463<br>346<br>Avg = 433±87               | 198<br>190<br>259<br>Avg = 216±38               | 387<br>248<br>436<br>381<br>Avg = 363±81       | 412<br>378<br>373<br>239<br>Avg = 351±76        | 362<br>263<br>230<br>347<br>Avg = 301±64                                                                | 132<br>187<br>138<br>192<br>144<br>Avg = 159±29              |
| G<br>[F + 77.5 Mrad]               | 311<br>381<br>325<br>382<br>Avg = 350±37               | 212<br>194<br>205<br>193<br>Avg = 201±9         | 278<br>277<br>272<br>267<br>285<br>Avg = 276±7 | 284<br>268<br>220<br>254<br>253<br>Avg = 256±24 | 282<br>268<br>280<br>289<br>Avg = 280±9                                                                 | 119<br>117<br>152<br>157<br>Avg = 136±21                     |
| H<br>[G +<br>Steam/Chem.<br>Spray] | 168<br>151<br>159<br>143<br>172                        | * 83<br>120<br>80<br>111<br>73                  | 85<br>99<br>75<br>79<br>74                     | 97<br>73<br>93<br>70                            | $   \begin{array}{r}     110 \\     77 \\     83 \\     72 \\     77 \\     Avg = 84+15   \end{array} $ | 76<br>80<br>80<br>79<br>95<br>60<br>72<br>110<br>Avg = 82±15 |

### Table A-10 Elongation-at-Break for AIW Cable PNI74AI019 (Group 2.3, Specimen 0210)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation

### Table A-11 Elongation-at-Break for AIW Cable PNI74AI028 (Group 2.4, Specimen 0212)

| CMD                             | Elongation at Break (%)                                |                                                 |                                                 |                                                 |                                                 |                                                 |
|---------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| CM Point                        | OJ <sup>(a)</sup>                                      | IJB                                             | IJW                                             | IJR                                             | IJG                                             | Insul                                           |
| A <sup>(b)</sup><br>[Unused]    | 663<br>699<br>636<br>645<br>603<br>Avg = 649±35        | 587<br>371<br>479<br>615<br>487<br>Avg = 508±97 | 542<br>566<br>553<br>560<br>481<br>Avg = 540±34 | 525<br>513<br>526<br>493<br>518<br>Avg = 515±13 | 545<br>476<br>596<br>588<br>550<br>Avg = 551±46 | 367<br>278<br>279<br>225<br>273<br>Avg = 284±5  |
| В                               |                                                        | No chai                                         | nge - no additional p                           | oreaging after last C                           | CM Point                                        | •                                               |
| C<br>[A + 82.5 hrs @<br>121°C]  | 480<br>591<br>523<br>625<br>548<br>Avg = 553±57        | 450<br>508<br>546<br>535<br>Avg = 510±43        | 431<br>472<br>499<br>504<br>500<br>Avg = 481±31 | 502<br>417<br>484<br>333<br>Avg = 434±77        | 454<br>373<br>389<br>505<br>Avg = 430±61        | 329<br>342<br>229<br>287<br>229<br>Avg = 283±53 |
| D                               | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |                                                 |
| E<br>[C + 25.8 Mrad]            | 346<br>468<br>488<br>407<br>436<br>Avg = 429±56        | 343<br>394<br>339<br>Avg = 359±31               | 441<br>301<br>Avg = 371±99                      | 309<br>397<br>305<br>Avg = 337±52               | 419<br>532<br>379<br>280<br>Avg = 402±104       | 223<br>160<br>153<br>246<br>Avg = 196±46        |
| F<br>[E + 76.6 Mrad]            | 368<br>285<br>394<br>342<br>371<br>Avg = 352±42        | 287<br>292<br>201<br>282<br>Avg = 266±43        | 357<br>377<br>272<br>219<br>342<br>Avg = 313±66 | 355<br>221<br>339<br>370<br>Avg = 321±68        | 302<br>353<br>361<br>290<br>Avg = 326±36        | 143<br>161<br>115<br>147<br>138<br>Avg = 141±17 |
| G                               | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |                                                 |
| H<br>[F + Steam/Chem.<br>Spray] | 162<br>187<br>155<br>165<br>222                        | 113<br>109<br>134<br>102<br>93                  | 79<br>59                                        | 91<br>93<br>45<br>82<br>56                      | 73<br>77<br>40<br>60<br>45                      | 80<br>92<br>101<br>78<br>42<br>53<br>72<br>73   |
|                                 | $Avg = 178 \pm 27$                                     | $Avg = 110 \pm 15$                              | $Avg = 69 \pm 14$                               | Avg = 73±22                                     | $Avg = 59 \pm 16$                               | $Avg = 74 \pm 19$                               |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red (b) Baseline values of EAB listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)

|                                               | Elongation at Break (%)                                |                                                 |                                                 |                                                 |                                                 |                                                 |
|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| CM Point                                      | OJ <sup>(a)</sup>                                      | IJB                                             | IJW                                             | IJR                                             | IJG                                             | Insul                                           |
| A <sup>(b)</sup><br>[Unused]                  | 663<br>699<br>636<br>645<br>603<br>Avg = 649±35        | 587<br>371<br>479<br>615<br>487<br>Avg = 508±97 | 542<br>566<br>553<br>560<br>481<br>Avg = 540±34 | 525<br>513<br>526<br>493<br>518<br>Avg = 515±13 | 545<br>476<br>596<br>588<br>550<br>Avg = 551±46 | 367<br>278<br>279<br>225<br>273<br>Avg = 284±51 |
| В                                             |                                                        | No chai                                         | ige - no additional pr                          | eaging after last CM                            | 1 Point                                         |                                                 |
| C <sup>(e)</sup><br>[A + 82.5 hrs @<br>121°C] | 480<br>591<br>523<br>625<br>548<br>Avg = 553±57        | 450<br>508<br>546<br>535<br>Avg = 510±43        | 431<br>472<br>499<br>504<br>500<br>Avg = 481±31 | 502<br>417<br>484<br>333<br>Avg = 434±77        | 454<br>373<br>389<br>505<br>Avg = 430±61        | 329<br>342<br>229<br>287<br>229<br>Avg = 283±53 |
| D                                             | No change - no additional preaging after last CM Point |                                                 |                                                 |                                                 |                                                 |                                                 |
| Е <sup>©</sup><br>[C + 25.8 Mrad]             | 346<br>468<br>488<br>407<br>436<br>Avg = 429±56        | 343<br>394<br>339<br>Avg = 359±31               | 441<br>301<br>Avg = 371±99                      | 309<br>397<br>305<br>Avg = 337±52               | 419<br>532<br>379<br>280<br>Avg = 402±104       | 223<br>160<br>153<br>246<br>Avg = 196±46        |
| F <sup>(e)</sup><br>[E + 76.6 Mrad]           | 368<br>285<br>394<br>342<br>371<br>Avg = 352±42        | 287<br>292<br>201<br>282<br>Avg = 266±43        | 357<br>377<br>272<br>219<br>342<br>Avg = 313±66 | 355<br>221<br>339<br>370<br>Avg = 321±68        | 302<br>353<br>361<br>290<br>Avg = 326±36        | 143<br>161<br>115<br>147<br>138<br>Avg = 141±17 |
| G<br>[F + 77.5 Mrad]                          | 247<br>244<br>255<br>277<br>Avg = 256±15               | 212<br>184<br>178<br>115<br>144<br>Avg = 167±38 | 210<br>252<br>248<br>253<br>250<br>Avg = 243±18 | 260<br>268<br>248<br>240<br>235<br>Avg = 250±14 | 245<br>200<br>240<br>Avg = 228±25               | 111<br>112<br>147<br>113<br>118<br>Avg = 120±15 |
| H<br>[G + Steam/Chem.<br>Spray]               | 136<br>112<br>128<br>150<br>134<br>Avg = 132±14        | 45<br>62<br>79<br>60<br>115<br>Avg = 72±27      | 32<br>22<br>38<br>25<br>42<br>Avg = 32±8        | 39<br>50<br>35<br>49<br>52<br>Avg = 45±8        | Not tested                                      | 22<br>30<br>32<br>55<br>52<br>Avg = 38±15       |

### Table A-12 Elongation-at-Break for AIW Cable PNI74AI028 (Group 2.4, Specimen 0213)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation
 (b) Baseline values of EAB listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)
 (c) CM point C, E and F values of EAB listed are for identical specimen PNI74AI028 (Group 2.4, Specimen 0212)

#### Table A-13 Elongation-at-Break for AIW Cable PNI74AI032 (Group 2.4, Specimen 0214)

| CMD                             |                                                 | I                                               | Clongation at Break (%                          | <b>b</b> )                                      |                                                      |
|---------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------|
| CM Point                        | OJ <sup>(a)</sup>                               | IJB                                             | IJW                                             | IJR                                             | Insul                                                |
| A <sup>(b)</sup><br>[Unused]    | 578<br>610<br>552<br>547<br>527<br>Avg = 563±32 | 550<br>554<br>530<br>542<br>Avg = 544±11        | $462 \\ 544 \\ 408 \\ 514 \\ Avg = 482\pm60$    | 464<br>505<br>456<br>489<br>462<br>Avg = 475±21 | 348<br>324<br>328<br>329<br>377<br>Avg = 341±22      |
| В                               |                                                 | No change - no                                  | additional preaging after                       | er last CM Point                                |                                                      |
| C<br>[A + 82.5 hrs @<br>121°C]  | 411<br>405<br>384<br>415<br>333<br>Avg = 390±34 | 455<br>468<br>443<br>438<br>Avg = 451±13        | 416<br>434<br>417<br>432<br>400<br>Avg = 420±14 | Not tested                                      | 390<br>246<br>364<br>230<br>360<br>Avg = 318±74      |
| D                               |                                                 | No change - no                                  | additional preaging afte                        | er last CM Point                                |                                                      |
| E<br>[C + 25.8 Mrad]            | 423<br>340<br>304<br>403<br>377<br>Avg =369±48  | 449<br>426<br>440<br>430<br>Avg = 436±10        | 276<br>214<br>268<br>244<br>Avg = 250±28        | Not tested                                      | 256<br>248<br>204<br>189<br>Avg = 224±33             |
| F<br>[E + 76.6 Mrad]            | $349315226362312Avg = 313\pm53$                 | 267<br>370<br>240<br>307<br>282<br>Avg = 293±49 | 278<br>355<br>325<br>314<br>345<br>Avg = 323±30 | Not tested                                      | 142<br>158<br>148<br>112<br>Avg = 140±20             |
| G<br>[F + 77.5 Mrad]            | 243<br>178<br>261<br>212<br>223<br>Avg = 223±32 | 236<br>236<br>263<br>170<br>Avg = 226±40        | 207<br>170<br>202<br>217<br>158<br>Avg = 191±25 | Not tested                                      | 136<br>133<br>127<br>128<br>135<br>Avg = 132±4       |
| H<br>[G + Steam/Chem.<br>Spray] | 86<br>115<br>59<br>64<br>83<br>Avg = 81±22      | 54<br>33<br>58<br>78<br>66<br>Avg = 58±17       | 20<br>42<br>39<br>37<br>35<br>Avg = 35±9        | Not tested                                      | 25<br>27<br>16<br>22<br>39<br>37<br>20<br>Avg = 27±9 |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, IJG = Hypalon® green individual jacket, and Insul = EPR insulation

(b) Baseline values of EAB listed are for identical specimen PNI74AI031 (Group 2.1, Specimen 0202)

|                              | Elongation at Break (%)                                |                                   |  |
|------------------------------|--------------------------------------------------------|-----------------------------------|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                           | White XLPE Insulation             |  |
| A<br>[Unused]                | 516<br>570<br>518<br>Avg = 535±31                      | 619<br>630<br>611<br>Avg = 620±10 |  |
| В                            | No change - no additional pre                          | eaging after last CM Point        |  |
| С                            | No change - no additional pre                          | eaging after last CM Point        |  |
| D                            | No change - no additional preaging after last CM Point |                                   |  |
| Е                            | No change - no additional preaging after last CM Point |                                   |  |
| F<br>[A + 76.65 Mrad]        | 197<br>195<br>160<br>Avg = 184±21                      | 277<br>244<br>256<br>Avg = 259±17 |  |
| G<br>[F + 76.75 Mrad]        | 44<br>46<br>43<br>Avg = 44±2                           | $6158518073Avg = 65\pm 12$        |  |
| H<br>[G + Steam/Chem. Spray] | 15<br>10<br>11<br>Avg = 12±3                           | 100<br>112<br>119<br>Avg = 111±10 |  |

### Table A-14 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 3.1, Specimen 0301)

|                              | Elongation                                                | n at Break (%)                     |  |
|------------------------------|-----------------------------------------------------------|------------------------------------|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                              | White XLPE Insulation              |  |
| A<br>[Unused]                | 422<br>468<br>439<br>Avg = 443±23                         | 444<br>420<br>448<br>Avg = 437±15  |  |
| В                            | No chance - no additiona                                  | l preaging after last CM Point     |  |
| С                            | No chance - no additiona                                  | l preaging after last CM Point     |  |
| D                            | No chance - no additional preaging after last CM Point    |                                    |  |
| Е                            | No chance - no additional preaging after last CM Point    |                                    |  |
| F<br>[A + 76.65 Mrad]        | 107<br>120<br>86<br>Avg = 104±17                          | 210<br>206<br>Avg = 208±3          |  |
| G<br>[F + 76.75 Mrad]        | 36<br>52<br>50<br>46<br>Avg = 46±7                        | 31<br>41<br>31<br>38<br>Avg = 35±5 |  |
| H<br>[G + Steam/Chem. Spray] | $     13     19     17     12     18     Avg = 16\pm3   $ | 145<br>139                         |  |

.

### Table A-15 Elongation-at-Break for Rockbestos Cable PNI85RB191 (Group 3.1, Specimen 0302)

|                              | Elongation a                                              | t Break (%)                             |
|------------------------------|-----------------------------------------------------------|-----------------------------------------|
| CM Point                     | Neoprene <sup>®</sup> Jacket                              | White XLPE Insulation                   |
| A<br>[Unused]                | 404<br>462<br>429<br>414<br>Avg = 427±25                  | 429<br>425<br>424<br>Avg = 426±3        |
| B<br>[A + 9.93 hrs @ 120ºC]  | 394<br>353<br>339<br>Avg = 362±29                         | 375<br>384<br>414<br>Avg = 391±20       |
| с                            | No change - no additional preaging after last CM Point    |                                         |
| D<br>[B + 2.27 Mrad]         | 376<br>400<br>443<br>Avg = 406±34                         | $390407411Avg = 403\pm11$               |
| Е                            | No change - no additional p                               | preaging after last CM Point            |
| F<br>[D + 76.65 Mrad]        | 52<br>69<br>57<br>53<br>Avg = 58±8                        | 176<br>148<br>176<br>Avg = 167±16       |
| G<br>[F + 76.75 Mrad]        | 34<br>33<br>43<br>Avg = 37±6                              | 57<br>70<br>51<br>Avg = 59±10           |
| H<br>[G + Steam/Chem. Spray] | $     13     14     18     11     15     Avg = 14\pm3   $ | $112 \\ 128 \\ 134 \\ Avg = 125 \pm 11$ |

# Table A-16 Elongation-at-Break for Rockbestos Cable PNI85RB191 (Group 3.2, Specimen 0303)

|                              | Elongation                                             | at Break (%)                      |  |  |
|------------------------------|--------------------------------------------------------|-----------------------------------|--|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                           | White XLPE Insulation             |  |  |
| A<br>[Naturally aged 10 yrs] | 632<br>610<br>553<br>Avg = 598±41                      | 470<br>457<br>468<br>Avg = 465±7  |  |  |
| В                            | No change - no additional preaging after last CM Point |                                   |  |  |
| С                            | No change - no additional preaging after last CM Point |                                   |  |  |
| D                            | No change - no additional preaging after last CM Point |                                   |  |  |
| Е                            | No change - no additional preaging after last CM Point |                                   |  |  |
| F<br>[A + 76.65 Mrad]        | 245<br>278<br>219<br>239<br>Avg = 245±25               | 210<br>238<br>194<br>Avg = 214±22 |  |  |
| G<br>[F + 76.75 Mrad]        | 99<br>78<br>102<br>Avg = 93±13                         | 104<br>86<br>65<br>Avg = 85±20    |  |  |
| H<br>[G + Steam/Chem. Spray] | 18<br>14<br>12<br>12<br>Avg = 14±3                     | 127<br>127<br>105<br>Avg = 120±13 |  |  |

### Table A-17 Elongation-at-Break for Rockbestos Cable PAP86RB229 (Group 3.3, Specimen 0307)

|                                      | Elongation at Break (%)                                |                                          |  |
|--------------------------------------|--------------------------------------------------------|------------------------------------------|--|
| CM Point                             | Neoprene <sup>®</sup> Jacket                           | White XLPE Insulation                    |  |
| A<br>[Naturally aged 10 yrs]         | 571<br>592<br>581<br>Avg = 581±11                      | 422<br>452<br>439<br>Avg = 438±15        |  |
| В                                    | No change - no additional                              | preaging after last CM Point             |  |
| С                                    | No change - no additional                              | preaging after last CM Point             |  |
| D                                    | No change - no additional preaging after last CM Point |                                          |  |
| E                                    | No change - no additional preaging after last CM Point |                                          |  |
| F <sup>(a)</sup><br>[A + 76.65 Mrad] | 245<br>278<br>219<br>239<br>Avg = 245±25               | 210<br>238<br>194<br>Avg = 214±22        |  |
| G<br>[F + 76.75 Mrad]                | 43<br>40<br>45<br>Avg = 43±3                           | 24<br>29<br>15<br>18<br>19<br>Avg = 21±6 |  |
| H<br>[G + Steam/Chem. Spray]         | $     17     22     19     Avg = 19\pm3   $            | 155<br>169<br>152<br>Avg = 159±9         |  |

### Table A-18 Elongation-at-Break for Rockbestos Cable PAP86RB267 (Group 3.3, Specimen 0311)

\_...

(a) Since there was insufficient naturally-aged 0311 material available to complete this test, the 0311F data were assumed to be the same as those obtained for 0307 cable

.

|                              | Elongation a                                           | t Break (%)                           |
|------------------------------|--------------------------------------------------------|---------------------------------------|
| CMI POINT                    | Neoprene <sup>®</sup> Jacket                           | White XLPE Insulation <sup>(b)</sup>  |
| A<br>[Unused]                | 535<br>567<br>503<br>524<br>Avg = 532±27               | 619<br>630<br>611<br>$Avg = 620\pm10$ |
| В                            | No change - no additional preaging after last CM Point |                                       |
| C<br>[A + 1301 hrs @ 150°C]  | (a)                                                    | (a)                                   |
| D                            | No change - no additional preaging after last CM Point |                                       |
| E<br>[C + 51.5 Mrad]         | (a)                                                    | (a)                                   |
| F<br>[E + 76.65 Mrad]        | (a)                                                    | (a)                                   |
| G<br>[F + 76.75Mrad]         | (a)                                                    | (a)                                   |
| H<br>[G + Steam/Chem. Spray] | (a)                                                    | (a)                                   |

### Table A-19 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 3.4, Specimen 0312)

(a) Specimens very brittle; not tested
(b) Baseline values of EAB listed are for identical specimen PNI79RB188 (Group 3.1, Specimen 0301)

| Table A-20 | Elongation-at-Break for | Anaconda Cable DNP78AN008 (Group 4.1, Specimen 0401) |
|------------|-------------------------|------------------------------------------------------|
|            | 0                       |                                                      |

|                               | Elongation-at-Break (%)                                |                    |                                         |                    |                                          |  |
|-------------------------------|--------------------------------------------------------|--------------------|-----------------------------------------|--------------------|------------------------------------------|--|
| CM Point                      | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>                      | IJR <sup>(a)</sup> | Insul <sup>(a)</sup>                     |  |
| A                             | 454<br>483<br>490<br>Avg = 476±19                      | (b)                | 390<br>397<br>384<br>Avg = 390±7        | (b)                | 418<br>293<br>360<br>352<br>Avg = 356±51 |  |
| В                             |                                                        | No change - no     | additional preaging after               | r last CM Point    |                                          |  |
| с                             |                                                        | No change - no     | additional preaging after               | r last CM Point    |                                          |  |
| D                             | No change - no additional preaging after last CM Point |                    |                                         |                    |                                          |  |
| E                             | No change - no additional preaging after last CM Point |                    |                                         |                    |                                          |  |
| F<br>[77.1 Mrad]              | 95<br>87<br>91<br>Avg = 91±4                           | (b)                | 118<br>91<br>116<br>Avg = 108±15        | (b)                | 188<br>185<br>189<br>Avg = 187±2         |  |
| G<br>[F+77.7 Mrad]            | 161<br>144<br>144<br>Avg = 150±10                      | (b)                | 97<br>113<br>150<br>132<br>Avg = 123±23 | (b)                | 144<br>140<br>109<br>159<br>Avg = 138±21 |  |
| H<br>[G+Steam/<br>Chem.Spray] | 73<br>77<br>93<br>Avg = 81±11                          | (b)                | 147<br>149<br>137<br>Avg = 144±6        | (b)                | 125<br>144<br>164<br>126<br>Avg = 140±18 |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation
 (b) Not tested

|                           | Elongation-at-Break (%)                                                                                                |                                        |                                                                            |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|--|--|
| CM Point                  | Hypalon <sup>©</sup> Outer Jacket Bonded Hypalon <sup>©</sup> Red<br>Individual Jacket/EPDM<br>Insulation              |                                        | Bonded Hypalon <sup>®</sup> Purple<br>Individual Jacket/EPDM<br>Insulation |  |  |
| А                         | 696         480           709         487           682         458           Avg = 696±14         Avg = 475±15        |                                        | (a)                                                                        |  |  |
| В                         | No chang                                                                                                               | ge - no additional preaging after last | CM Point                                                                   |  |  |
| С                         | No change - no additional preaging after last CM Point                                                                 |                                        |                                                                            |  |  |
| D                         | No change - no additional preaging after last CM Point                                                                 |                                        |                                                                            |  |  |
| E                         | No change - no additional preaging after last CM Point                                                                 |                                        |                                                                            |  |  |
| F<br>[77.1 Mrad]          | 215<br>265<br>214<br>Avg = 231±29                                                                                      | 147<br>163<br>143<br>Avg = 151±11      | (a)                                                                        |  |  |
| G<br>[F+77.7 Mrad]        | 222       153         234       167         213       89         112       112         Avg = 223±11       Avg = 130±36 |                                        | (a)                                                                        |  |  |
| H<br>[G+Steam/Chem.Spray] | 70<br>34<br>38<br>93<br>$Avg = 59\pm 28$                                                                               | 95<br>103<br>88<br>104<br>Avg = 98±8   | (a)                                                                        |  |  |

### Table A-21 Elongation-at-Break for Samuel Moore Cable PNI82M008, (Group 4.1, Specimen 0402)

(a) Not tested

| Table A-22 E | longation-at-Break for Samuel Moore | Cable PNI82SM008 (Group | 4.2, Specimen 0403) |
|--------------|-------------------------------------|-------------------------|---------------------|
|--------------|-------------------------------------|-------------------------|---------------------|

|                                                               | Elongation-at-Break (%)                            |                                                             |                                                                            |  |  |
|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| CM Point                                                      | Hypalon <sup>©</sup> Outer Jacket                  | Bonded Hypalon® Red<br>Individual Jacket/EPDM<br>Insulation | Bonded Hypalon <sup>®</sup> Purple<br>Individual Jacket/EPDM<br>Insulation |  |  |
| А                                                             | 755<br>736<br>796<br>Avg = 762±31                  | 451<br>499<br>452<br>Avg = 467±27                           | (a)                                                                        |  |  |
| B<br>[A+84h@121ºC]                                            | 615<br>533<br>524<br>Avg = 557±50                  | 415<br>389<br>388<br>Avg = 397±15                           | (a)                                                                        |  |  |
| С                                                             | No change - no preaging after last CM Point        |                                                             |                                                                            |  |  |
| D<br>[B+26.0 Mrad]                                            | 476<br>396<br>394<br>Avg = 422±47                  | 256<br>258<br>270<br>Avg = 261±8                            | (a)                                                                        |  |  |
| E                                                             | No change - no preaging after last CM Point        |                                                             |                                                                            |  |  |
| F<br>[D+77.1 Mrad]                                            | $122 \\ 136 \\ 168 \\ Avg = 142\pm24$              | 133<br>123<br>138<br>Avg = 131±8                            | (2)                                                                        |  |  |
| G 91<br>[F+77.7 Mrad] 91<br>[F+77.7 Mrad] 119<br>Avg = 102±15 |                                                    | 96<br>103<br>110<br>Avg = 103±7                             | (a)                                                                        |  |  |
| H<br>[G+Steam/Chem.Spray]                                     | $     39     18     24     25     Avg = 27\pm9   $ | 65<br>76<br>71<br>Avg = 71±6                                | (a)                                                                        |  |  |

(a) Not tested

.

# Table A-23 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 4.3, Specimen 0407) Aged to 20 yrs Service

|                                   | Elongation-at-Break (%)                                |                    |                                    |                    |                                          |  |
|-----------------------------------|--------------------------------------------------------|--------------------|------------------------------------|--------------------|------------------------------------------|--|
| CM Point                          | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>                 | IJR <sup>(a)</sup> | Insul®                                   |  |
| Ata                               | 454<br>483<br>490<br>Avg = 476±19                      | (c)                | 390<br>397<br>384<br>Avg = 390±7   | (0)                | 418<br>293<br>360<br>352<br>Avg = 356±51 |  |
| B <sup>tb)</sup><br>[A+84h@150°C] | 133<br>153<br>121<br>Avg = 136±16                      | (¢)                | 70<br>100<br>85<br>Avg = 85±15     | (c)                | 225<br>226<br>211<br>Avg = 221±8         |  |
| с                                 | No change - no additional preaging after last CM Point |                    |                                    |                    |                                          |  |
| D <sup>®)</sup><br>[B+25.7 Mrad]  | 96<br>76<br>89<br>Avg = 87±10                          | (c)                | 58<br>46<br>60<br>42<br>Avg = 52±9 | (c)                | 155<br>127<br>134<br>Avg = 138±15        |  |
| E                                 |                                                        |                    |                                    |                    |                                          |  |
| F                                 | No change - no additional preaging after last CM Point |                    |                                    |                    |                                          |  |
| G                                 |                                                        |                    |                                    |                    |                                          |  |
| Н                                 |                                                        |                    |                                    |                    |                                          |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation

(b) Aged to 20 yrs. service

(c) Not tested

(d) Baseline values of EAB listed are for identical specimen DNP78AN008 (Group 4.1, Specimen 0401)

### Table A-24 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 4.3, Specimen 0407) Aged to 40 yrs Service

|                                  | Elongation-at-Break (%)                                |                    |                                  |                    |                                                 |
|----------------------------------|--------------------------------------------------------|--------------------|----------------------------------|--------------------|-------------------------------------------------|
| CM Point                         | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>               | IJR <sup>(a)</sup> | Insul <sup>(a)</sup>                            |
| A <sub>(0)</sub>                 | 454<br>483<br>490<br>Avg = 476±19                      | (c)                | 390<br>397<br>384<br>Avg = 390±7 | (c)                | 418<br>293<br>360<br>352<br>Avg = 356±51        |
| В                                |                                                        | No change - no     | additional preaging sin          | ce last CM Point   |                                                 |
| C <sup>®</sup><br>[168h@150ºC]   | 22<br>21<br>29<br>Avg = 24±4                           | (C)                | 20<br>17<br>14<br>Avg = 17±3     | (c)                | $27 \\ 10 \\ 29 \\ 10 \\ 30 \\ Avg = 21 \pm 10$ |
| D                                | No change - no additional preaging since last CM Point |                    |                                  |                    |                                                 |
| E <sup>®)</sup><br>[C+53.6 Mrad] | 14<br>11<br>9<br>Avg = 11±3                            | (c)                | 10<br>9<br>7<br>Avg = 9±2        | (c)                | 20<br>11<br>9<br>10<br>Avg = 13±5               |
| F<br>[E+77.1 Mrad]               | 10<br>8<br>10<br>Avg = 10±1                            | (c)                | ≤5                               | (c)                | 12<br>11<br>20<br>10<br>Avg = 13±4              |
| G<br>[F+77.7 Mrad]               | 8<br>10<br>9<br>Avg = 9±1                              | (¢)                | ≤5                               | (0)                | 18<br>15<br>11<br>21<br>Avg = 16±4              |
| H<br>[G+Steam/ChemSpray]         | 12<br>11<br>12<br>Avg = 11±1                           | (¢)                | 6 .                              | (c)                | Not tested.<br>Specimens badly<br>distorted     |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red (a) OF - Hypatone outer jacket, IDB - Hypatone black individual jacket, IDW - Hypatone white individual jacket, IDW -

|                            | Elongation-at-Break (%)                                                                               |                                        |                                                                            |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|--|--|
| CM Point                   | Hypalon <sup>®</sup> Outer Jacket Bonded Hypalon <sup>®</sup> R<br>Individual Jacket/EP<br>Insulation |                                        | Bonded Hypalon <sup>®</sup> Purple<br>Individual Jacket/EPDM<br>Insulation |  |  |
| A(p)                       | 696<br>709<br>682<br>Avg = 696±14                                                                     | 480<br>487<br>458<br>Avg = 475±15      | (a)                                                                        |  |  |
| В                          | No chang                                                                                              | ge - no additional preaging after last | CM Point                                                                   |  |  |
| C<br>[168h@121⁰C]          | 579<br>525<br>589<br>Avg = 564±34                                                                     | 304<br>290<br>270<br>Avg = 288±17      | (a)                                                                        |  |  |
| D                          | No change - no additional preaging after last CM Point                                                |                                        |                                                                            |  |  |
| E<br>[C+51.6 Mrad]         | 291<br>358<br>288<br>Avg = 312±40                                                                     | 174<br>186<br>158<br>Avg = 173±14      | (a)                                                                        |  |  |
| F<br>[E+77.1 Mrad]         | 100<br>88<br>88<br>Avg = 92±7                                                                         | 96<br>94<br>80<br>Avg = 90±9           | (a)                                                                        |  |  |
| G<br>[F+77.7 Mrad]         | 95<br>101<br>114<br>Avg = 103±10                                                                      | 96<br>99<br>97<br>Avg = 98±2           | (a)                                                                        |  |  |
| H<br>[G+Steam/Chem. Spray] | 36<br>20<br>28<br>Avg = 28±8                                                                          | 44<br>46<br>46<br>Avg = 46±1           | (a)                                                                        |  |  |

### Table A-25 Elongation-at-Break for Samuel Moore Cable PNI82SM008 (Group 4.4, Specimen 0412)

· · ·

(a) Not tested
(b) Baseline values of EAB listed are for identical specimen PNI82SM008 (Group 4.1, Specimen 0402)

|                           | Elongation-at-Break (%)                                |  |  |
|---------------------------|--------------------------------------------------------|--|--|
| CM Point                  | Bonded Hypalon <sup>®</sup> Jacket/EPR Insulation      |  |  |
| А                         | 490<br>471<br>450<br>Avg = 471±20                      |  |  |
| В                         | No change - no additional preaging after last CM Point |  |  |
| С                         | No change - no additional preaging after last CM Point |  |  |
| D                         | No change - no additional preaging after last CM Point |  |  |
| Е                         | No change - no additional preaging after last CM Point |  |  |
| F<br>[A+77.1 Mrad]        | $     157     178     183     Avg = 172\pm 14 $        |  |  |
| G<br>[F+77.7 Mrad]        | 213<br>232<br>251<br>Avg = 232±19                      |  |  |
| H<br>[G+Steam/Chem.Spray] | $     130     131     140     Avg = 134\pm6 $          |  |  |

# Table A-26 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 5.1, Specimen 0501)

### Table A-27 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 5.1, Specimen 0502)

|                                           | Elongation-at-Break (%)                                |                                                        |                                   |  |  |
|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------|--|--|
| CM Point                                  | OJ <sup>(a)</sup>                                      | IJB/Ĩnsul <sup>(a)</sup>                               | IJW/Insul <sup>(a)</sup>          |  |  |
| A 619<br>639<br>581<br>Avg = 613±29       |                                                        | (b)                                                    | $408 432 414 Avg = 418\pm12$      |  |  |
| В                                         | No cha                                                 | No change - no additional preaging after last CM Point |                                   |  |  |
| С                                         | No cha                                                 | nge - no additional preaging after last                | st CM Point                       |  |  |
| D                                         | No change - no additional preaging after last CM Point |                                                        |                                   |  |  |
| Ē                                         | No cha                                                 | No change - no additional preaging after last CM Point |                                   |  |  |
| F<br>[A+77.1 Mrad]                        | 157<br>134<br>172<br>Avg = 154±19                      | (b) .                                                  | 123<br>107<br>128<br>Avg = 119±11 |  |  |
| G 237<br>[F+77.7 Mrad] 238<br>Avg = 239±2 |                                                        | (b)                                                    | 155<br>164<br>171<br>Avg = 163±8  |  |  |
| H<br>[G+Steam/Chem.Spray]                 | 62<br>70<br>72<br>Avg = 68±5                           | (b)                                                    | 70<br>86<br>65<br>Avg = 74±11     |  |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black bonded individual jacket, IJW = Hypalon® white bonded individual jacket, Insul = EPDM bonded insulation

(b) Not tested

| Table A-20 Elongation-at Divariation individual constants of the |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

|                           | Elongation-at-Break (%)                                |                    |                                  |                    |                                             |
|---------------------------|--------------------------------------------------------|--------------------|----------------------------------|--------------------|---------------------------------------------|
| CM Point                  | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>               | IJR <sup>(a)</sup> | Insul <sup>(a)</sup>                        |
| А                         | 454<br>483<br>490<br>Avg = 476±19                      | (b)                | 390<br>397<br>384<br>Avg = 390±7 | (b)                | 418<br>293<br>360<br>352<br>Avg = 356±5     |
| В                         | No change - no additional preaging after last CM Point |                    |                                  |                    |                                             |
| с                         |                                                        | No change - no     | additional preaging after        | r last CM Point    |                                             |
| D                         | No change - no additional preaging after last CM Point |                    |                                  |                    |                                             |
| E                         |                                                        | No change - no     | additional preaging after        | r last CM Point    |                                             |
| F<br>[A+77.1 Mrad]        | 166<br>153<br>142<br>Avg = 154±12                      | (b)                | 117<br>115<br>110<br>Avg = 114±4 | (b)                | 123<br>139<br>148<br>Avg = 137±13           |
| G<br>[F+77.7 Mrad]        | 169<br>156<br>135<br>Avg = 153±17                      | (b)                | 128<br>132<br>122<br>Avg = 128±5 | (b)                | 150<br>142<br>129<br>Avg = 140±11           |
| H<br>[G+Steam/Chem.Spray] | 118<br>150<br>112<br>161<br>134<br>Avg = 135±21        | (b)                | 70<br>73<br>83<br>Avg = 76±7     | (b)                | Not tested.<br>Specimens badly<br>distorted |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation

(b) Not tested

(c) Baseline values of EAB listed are for identical specimen DNP78AN008 (Group 4.1, Specimen 0401)

.

|                           | T                                                      |
|---------------------------|--------------------------------------------------------|
| CM Point                  | Elongation-at-Break (%)                                |
|                           | Bonded Hypalon <sup>®</sup> Jacket/EPR Insulation      |
| A <sub>(0)</sub>          | $490 \\ 471 \\ 450 \\ Avg = 471 \pm 20$                |
| B<br>[A+252h@121⁰C]       |                                                        |
| С                         | No change - no additional preaging after last CM Point |
| D<br>[B+25.8 Mrad]        | 8<br>6<br>9<br>Avg = 8±2                               |
| E                         | No change - no additional preaging after last CM Point |
| F<br>[D+77.1 Mrad]        | ≤5                                                     |
| G<br>[F+77.7 Mrad]        | ≤5                                                     |
| H<br>[G+Steam/Chem.Spray] | ≤5                                                     |

### Table A-29 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 5.2, Specimen 0504)

(a) Baseline values of EAB listed are for identical specimen LNI810K020 (Group 5.1, Specimen 0501)

· ·

# Table A-30 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 5.2, Specimen 0506)

|                                        | Elongation-at-Break (%)                                |                          |                                   |  |
|----------------------------------------|--------------------------------------------------------|--------------------------|-----------------------------------|--|
| CM Point                               | OJ <sup>(a)</sup>                                      | IJB/Insul <sup>(*)</sup> | IJW/Insul <sup>(a)</sup>          |  |
| A <sup>(c)</sup>                       | 619<br>639<br>581<br>Avg = 613±29                      | (b)                      | 408<br>432<br>414<br>Avg = 418±12 |  |
| B<br>[A+84h@121°C]                     | 484<br>401<br>474<br>Avg = 453±45                      | (b)                      | 255<br>214<br>228<br>Avg = 233±21 |  |
| С                                      | No change - no additional preaging after last CM Point |                          |                                   |  |
| D<br>[B+26.0 Mrad]                     | 336<br>357<br>322<br>Avg = 338±18                      | (b)                      | 144<br>146<br>150<br>Avg = 147±3  |  |
| Е                                      | No change - no additional preaging after last CM Point |                          |                                   |  |
| F 90<br>[D+77.1 Mrad] 90<br>Avg = 89±2 |                                                        | (b)                      | 74<br>75<br>74<br>Avg = 75±1      |  |
| G<br>[F+77.7 Mrad]                     | 109<br>92<br>84<br>Avg = 95±13                         | (b)                      | 81<br>67<br>75<br>Avg = 74±7      |  |
| H<br>[G+Steam/Chem.Spray]              | 46<br>64<br>49<br>Avg = 53±10                          | (b)                      | 63<br>63<br>52<br>Avg = 59±6      |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black bonded individual jacket, IJW = Hypalon® white bonded individual jacket, Insul = EPDM bonded insulation

(b) Not tested

.

(c) Baseline values of EAB listed are for identical specimen DNI80SM010 (Group 5.1, Specimen 0502)

.

### Table A-31 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 5.2, Specimen 0508)

| CM Point                  | Elongation-at-Break (%)                                |                    |                                  |                    |                                              |
|---------------------------|--------------------------------------------------------|--------------------|----------------------------------|--------------------|----------------------------------------------|
|                           | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>               | IJR <sup>(s)</sup> | Insul <sup>(s)</sup>                         |
| A <sup>(c)</sup>          | 454<br>483<br>490<br>Avg = 476±19                      | (b)                | 390<br>397<br>384<br>Avg = 390±7 | (b)                | 418<br>293<br>360<br>351<br>Avg = 356±5      |
| B<br>[A+84h@121ºC]        | 162<br>147<br>154<br>Avg = 155±8                       | (b)                | 107<br>110<br>104<br>Avg = 107±3 | (b)                | 296<br>272<br>292<br>Avg = 287±13            |
| С                         | No change - no additional preaging after last CM Point |                    |                                  |                    |                                              |
| D<br>[B+25.7 Mrad]        | 97<br>89<br>97<br>Avg = 94±5                           | (b)                | 67<br>71<br>64<br>Avg = 67±4     | (b)                | 184<br>152<br>162<br>Avg = 166±16            |
| Е                         | No change - no additional preaging after last CM Point |                    |                                  |                    |                                              |
| F<br>[D+77.1 Mrad]        | 42<br>38<br>37<br>Avg = 39±3                           | (b)                | 21<br>14<br>31<br>Avg = 22±9     | (b)                | 84<br>99<br>102<br>Avg = 95±10               |
| G<br>[F+77.7 Mrad]        | 29<br>28<br>31<br>Avg = 29±2                           | (b)                | 20<br>19<br>29<br>Avg = 23±6     | (b)                | 88<br>78<br>86<br>Avg = 84±5                 |
| H<br>[G+Steam/Chem.Spray] | 37<br>43<br>38<br>Avg = 40±3                           | (b)                | 30<br>32<br>33<br>Avg = 32±2     | (b)                | Not tested.<br>Specimens badly<br>distorted. |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation

(b) Not tested

(c) Baseline values of EAB listed are for identical specimen DNP78AN008 (Group 4.1, Specimen 0401)

A-34

|                           | Elongation-at-Break (%)<br>Bonded Hypalon <sup>®</sup> Jacket/EPR Insulation |  |  |
|---------------------------|------------------------------------------------------------------------------|--|--|
| CM Point                  |                                                                              |  |  |
| A <sup>(0)</sup>          | $490 \\ 471 \\ 450 \\ Avg = 471 \pm 20$                                      |  |  |
| В                         | No change - no additional preaging after last CM Point                       |  |  |
| C<br>[A+504h@121ºC]       | 6<br>6<br>5<br>Avg =6±1                                                      |  |  |
| D                         | No change - no additional preaging after last CM Point                       |  |  |
| E<br>[C+51.5 Mrad]        | 4 $4$ $4vg = 4$                                                              |  |  |
| F<br>[E+77.1 Mrad]        | ≲5                                                                           |  |  |
| G<br>[F+77.7 Mrad]        | ≤5                                                                           |  |  |
| H<br>[G+Steam/Chem.Spray] | ≤5                                                                           |  |  |

# Table A-32 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 5.3, Specimen 0510)

(a) Baseline values of EAB listed are for identical specimen LN181OK020 (Group 5.1, Specimen 0501)

| Table A-33 | Elongation-at-Break for Samuel Moore Cable DNI80SM010 | (Grou | o 5.3. | Specimen 0513  | 3)  |
|------------|-------------------------------------------------------|-------|--------|----------------|-----|
|            |                                                       | (     |        | Observer Acres | ~ . |

| CM Beint                  | Elongation-at-Break (%)                                |            |                                   |  |
|---------------------------|--------------------------------------------------------|------------|-----------------------------------|--|
| Civi Point                | OJ <sup>(a)</sup>                                      | IJB/Insul® | IJW/Insul <sup>(a)</sup>          |  |
| A <sup>(c)</sup>          | 619<br>639<br>581<br>Avg = 613±29                      | (b)        | $408432414Avg = 418\pm12$         |  |
| В                         | No change - no additional preaging after last CM Point |            |                                   |  |
| C<br>[A+168h@121⁰C]       | 436<br>387<br>394<br>Avg = 406±27                      | (b)        | 203<br>177<br>178<br>Avg = 186±15 |  |
| D                         | No change - no additional preaging after last CM Point |            |                                   |  |
| E<br>[C+51.5 Mrad]        | 291<br>271<br>288<br>Avg = 283±11                      | (b)        | 101<br>89<br>93<br>Avg = 94±6     |  |
| F<br>[G+77.1 Mrad]        | 77<br>79<br>82<br>Avg = 79±3                           | (b) ·      | 57<br>54<br>49<br>Avg = 53±4      |  |
| G<br>[F+77.7 Mrad]        | 61<br>74<br>83<br>Avg = 73±11                          | (b)        | 60<br>55<br>60<br>Avg = 58±3      |  |
| H<br>[G+Steam/Chem.Spray] | 30<br>36<br>33<br>Avg = 33±3                           | (b)        | 38<br>34<br>36<br>Avg = 36±2      |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black bonded individual jacket, IJW = Hypalon® white bonded individual jacket, Insul = EPDM bonded insulation

(b) Not tested

(c) Baseline values of EAB listed are for identical specimen DNI80SM010 (Group 5.1, Specimen 0502)

# Table A-34 Elongation-at-Break for Anaconda Cable DNP78AN008 (Group 5.3, Specimen 0515)

|                           | Elongation-at-Break (%)                                |                    |                                  |                    |                                                                |  |
|---------------------------|--------------------------------------------------------|--------------------|----------------------------------|--------------------|----------------------------------------------------------------|--|
| CM Point                  | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>               | IJR <sup>(a)</sup> | Insul <sup>(a)</sup>                                           |  |
| A <sup>©</sup>            | 454<br>483<br>490<br>Avg = 476±19                      | (b)                | 390<br>397<br>384<br>Avg = 390±7 | (b)                | 418<br>293<br>360<br>352<br>Avg = 356±51                       |  |
| В                         | No change - no additional preaging after last CM Point |                    |                                  |                    |                                                                |  |
| C<br>[A+168h@150ºC]       | 25<br>36<br>31                                         | (b)                | 17<br>14<br>17<br>Avg = 16±2     | (b)                | $     13 \\     36 \\     21 \\     12 \\     Avg = 20\pm 11 $ |  |
| D                         | Avg - 5120                                             | No change - no     | additional preaging after        | er last CM Point   |                                                                |  |
| E<br>[C+53.6 Mrad]        | 17<br>26<br>21<br>Avg = 22±5                           | (b)                | 10<br>9<br>10<br>Avg=9±1         | (b)                | 13<br>31<br>23<br>Avg = 22±9                                   |  |
| F<br>[E+77.1 Mrad]        | 9<br>7<br>6<br>4<br>Avg = 6±2                          | (b)                | <b>≾</b> 5                       | (b)                | 10<br>Avg = 10                                                 |  |
| G<br>[F+77.7 Mrad]        | 9<br>8<br>7<br>Avg = 8±2                               | (b)                | ≤5                               | (b)                | $     12     7     7     11     33     Avg = 14 \pm 11   $     |  |
| H<br>[G+Steam/Chem.Spray] | 12<br>7<br>11<br>Avg = 10±3                            | (b)                | ≤5                               | (b)                | Not tested.<br>Specimens badly<br>distorted                    |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation

(b) Not tested

(c) Baseline values of EAB listed are for identical specimen DNP78AN008 (Group 4.1, Specimen 0401)
| CM Point                  | Elongation-at-Break (%)                                  |  |
|---------------------------|----------------------------------------------------------|--|
|                           | Hypalon <sup>®</sup> Bonded Outer Jacket /EPR Insulation |  |
| A(e)                      | 490     471     450     Avg = 471±20                     |  |
| В                         | No change - no additional preaging after last CM Point   |  |
| С                         | No change - no additional preaging after last CM Point   |  |
| D                         | No change - no additional preaging after last CM Point   |  |
| E                         | No change - no additional preaging after last CM Point   |  |
| F<br>[A+79.0 Mrad]        | 371<br>369<br>339<br>Avg = 360±18                        |  |
| G<br>[F+77.6 Mrad]        | $226 \\ 237 \\ 241 \\ Avg = 234\pm 8$                    |  |
| H<br>[G+Steam/Chem.Spray] | Not tested                                               |  |

#### Table A-35 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 6.1, Specimen 0601)

(a) Baseline values of EAB listed are for identical specimen LNI81OK020 (Group 5.1, Specimen 0501)

## Table A-36 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 6.1, Specimen 0602)

|                           |                                                        | Elongation-at-Break (%)                 |                                                  |
|---------------------------|--------------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| CM Point                  | OJ <sup>(a)</sup>                                      | IJB/Insul <sup>(a)</sup>                | IJW/Insul <sup>(a)</sup>                         |
| А                         | 619<br>637<br>581<br>Avg = 613±29                      | (b)                                     | 408<br>432<br>414<br>Avg = 418±12                |
| В                         | No cha                                                 | ange - no additional preaging after las | t CM Point                                       |
| С                         | No change - no additional preaging after last CM Point |                                         |                                                  |
| D                         | No change - no additional preaging after last CM Point |                                         |                                                  |
| Е                         | No chi                                                 | ange - no additional preaging after las | st CM Point                                      |
| F<br>[A+79.0 Mrad]        | 338<br>380<br>364<br>Avg = 361±21                      | (b)                                     | 288<br>324<br>288<br>Avg = 300±21                |
| G<br>[F+77.6 Mrad]        | 240<br>249<br>230<br>Avg = 240±10                      | (b)                                     | $     177     179     156     Avg = 171\pm13   $ |
| H<br>[G+Steam/Chem.Spray] | (b)                                                    | (b)                                     | (b)                                              |

(a) OJ = Hypalon @outer jacket, IJB = Hypalon @ black bonded individual jacket, IJW = Hypalon @ white bonded individual jacket, Insul = EPDM bonded insulation

(b) Not tested

(c) Baseline values of EAB listed are for identical specimen DNI80SM010 (Group 5.1, Specimen 0502)

#### Table A-37 Elongation-at-Break for AIW Cable PNI74AI035, (Group 6.1, Specimen 0603)

| CM Boint                  | Elongation-at-Break (%)                                |                        |                                          |                    |                                   |
|---------------------------|--------------------------------------------------------|------------------------|------------------------------------------|--------------------|-----------------------------------|
| CM Fom                    | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup>     | IJW <sup>(a)</sup>                       | IJR <sup>(a)</sup> | Insul <sup>(a)</sup>              |
| A                         | 444<br>475<br>367<br>Avg = 429±56                      | (b)                    | 462<br>395<br>477<br>482<br>Avg = 454±40 | (b)                | 401<br>400<br>373<br>Avg = 391±16 |
| В                         |                                                        | No change - no a       | additional preaging after                | last CM Point      |                                   |
| С                         | No change - no addit                                   | ional preaging after l | ast CM Point                             |                    |                                   |
| D                         | No change - no additional preaging after last CM Point |                        |                                          |                    |                                   |
| Е                         | No change - no additional preaging after last CM Point |                        |                                          |                    |                                   |
| F<br>[A+79.0 Mrad]        | 355<br>361<br>401<br>Avg = 373±25                      | (b)                    | 447<br>414<br>321<br>Avg = 394±65        | (b)                | 431<br>500<br>468<br>Avg = 466±35 |
| G<br>[F+77.6 Mrad]        | 281<br>295<br>233<br>Avg = 270±33                      | (b)                    | 317<br>324<br>338<br>Avg = 326±11        | (b)                | 160<br>155<br>168<br>Avg = 161±7  |
| H<br>[G+Steam/Chem.Spray] | (b)                                                    | (b)                    | (b)                                      | (b)                | (b)                               |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation

.

(b) Not tested

1

| Table A-38 | Elongation-at-Break for Rockbestos | Cable PNI79RB188 ( | (Group 6.1, Specimen 0604) |
|------------|------------------------------------|--------------------|----------------------------|
| Lable H-50 | Diongution at Di tali iti iti iti  |                    |                            |

.

|                           | Elongation-at-Break (%)                                |                                        |                                   |
|---------------------------|--------------------------------------------------------|----------------------------------------|-----------------------------------|
| CM Point                  | Neoprene <sup>®</sup> Outer Jacket                     | Black XLPE Insulation                  | White XLPE Insulation             |
| A                         | 592<br>515<br>565<br>Avg = 557±39                      | (a)                                    | 560<br>595<br>568<br>Avg = 574±18 |
| В                         | No chan                                                | ge - no additional preaging after last | CM Point                          |
| С                         | No chan                                                | ge - no additional preaging after last | CM Point                          |
| D                         | No change - no additional preaging after last CM Point |                                        |                                   |
| Е                         | No change - no additional preaging after last CM Point |                                        |                                   |
| F<br>[A+79.0 Mrad]        | 171<br>188<br>162<br>Avg = 174±13                      | (a)                                    | 311<br>353<br>355<br>Avg = 340±25 |
| G<br>[F+77.6 Mrad]        | 115<br>148<br>153<br>154<br>Avg = 143±19               | (a)                                    | 155<br>143<br>159<br>Avg = 152±8  |
| H<br>[G+Steam/Chem.Spray} | (a)                                                    | (a)                                    | (a)                               |

(a) Not tested

|                           | Elongation-at-Break (%)                                  |  |
|---------------------------|----------------------------------------------------------|--|
| CMI Point                 | Hypalon <sup>®</sup> Bonded Outer Jacket/ EPR Insulation |  |
| A <sup>(0)</sup>          | $     490     471     450     Avg = 471\pm20   $         |  |
| В                         | No change - no additional preaging after last CM Point   |  |
| C<br>[A+756h@302⁰F]       | Brittle < 5%                                             |  |
| D                         | No change - no additional preaging after last CM Point   |  |
| E<br>[C+77.3 Mrad]        | Brittle ≤ 5%                                             |  |
| F<br>[E+79.0 Mrad]        | Brittle ≤ 5%                                             |  |
| G<br>[F+77.6 Mrad]        | Brittle ≤ 5%                                             |  |
| H<br>[G+Steam/Chem.Spray] | Brittle ≤ 5%                                             |  |

#### Table A-39 Elongation-at-Break for Okonite Cable LNI81OK020 (Group 6.2, Specimen 0605)

(a) Baseline values of EAB listed are for identical specimen LNI81OK020 (Group 5.1, Specimen 0501)

### Table A-40 Elongation-at-Break for Samuel Moore Cable DNI80SM010 (Group 6.2, Specimen 0608)

|                           | Elongation-at-Break (%)           |                                     |                                          |
|---------------------------|-----------------------------------|-------------------------------------|------------------------------------------|
| CM Point                  | OJ <sup>(a)</sup>                 | IJB/Insul <sup>(a)</sup>            | IJW/Insul <sup>(a)</sup>                 |
| A <sup>©</sup>            | 619<br>639<br>581<br>Avg = 613±29 | (b)                                 | 408<br>432<br>414<br>Avg = 418±12        |
| В                         | No change                         | - no additional preaging after last | CM Point                                 |
| C<br>[A+252h@250ºF]       | 436<br>376<br>349<br>Avg = 387±45 | (b)                                 | 176<br>174<br>154<br>Avg = 168±12        |
| D                         | No change                         | - no additional preaging after last | t CM Point                               |
| E<br>[C+77.3 Mrad]        | 139<br>151<br>146<br>Avg=145±6    | (b)                                 | 65<br>68<br>70<br>Avg = 68±3             |
| F<br>[E+79.0 Mrad]        | 75<br>67<br>68<br>Avg = 70±4      | <b>(b)</b>                          | 45<br>41<br>44<br>38<br>43<br>Avg = 42±3 |
| G<br>[F+77.6 Mrad]        | 59<br>49<br>53<br>Avg = 54±5      | (b)                                 | 37<br>38<br>36<br>Avg = 37±1             |
| H<br>[G+Steam/Chem.Spray] | (b)                               | (b)                                 | (b)                                      |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black bonded individual jacket, IJW = Hypalon® white bonded individual jacket, Insul = EPDM bonded insulation

(b) Not tested

(c) Baseline values of EAB listed are for identical specimen DNI80SM010 (Group 5.1, Specimen 0502)

#### Table A-41 Elongation-at-Break for AIW Cable PNI74AI035 (Group 6.2, Specimen 0611)

|                           | Elongation-at-Break (%)                                |                    |                                          |                    |                                                |
|---------------------------|--------------------------------------------------------|--------------------|------------------------------------------|--------------------|------------------------------------------------|
| Civi Point                | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>                       | IJR <sup>(a)</sup> | Insul <sup>(a)</sup>                           |
| A                         | 444<br>475<br>367<br>Avg = 429±56                      | (b)                | 462<br>395<br>477<br>482<br>Avg = 454±40 | (b)                | 401<br>400<br>373<br>Avg = 391±16              |
| В                         |                                                        | No change - no     | additional preaging af                   | ter last CM Point  |                                                |
| C<br>[A+252h@250ºF]       | 390<br>306<br>266<br>249<br>Avg = 303±63               | <b>(b)</b>         | 334<br>374<br>Avg = 354±28               | (b)                | 340<br>304<br>255<br>Avg = 300±43              |
| D                         | No change - no additional preaging after last CM Point |                    |                                          | •                  |                                                |
| E<br>[C+38.65 Mrad]       | 177<br>207<br>191<br>Avg = 191±15                      | (b)                | 203<br>219<br>170<br>Avg = 197±25        | (b)                | $238 \\ 160 \\ 273 \\ 202 \\ Avg = 218 \pm 48$ |
| F<br>[E+79.0 Mrad]        | 139<br>177<br>104<br>Avg = 140±37                      | (b)                | 148<br>146<br>167<br>Avg = 153±12        | (b)                | 134<br>126<br>133<br>Avg = 131±4               |
| G<br>[F+77.6 Mrad]        | $140 \\ 152 \\ 171 \\ Avg = 154\pm 16$                 | (b)                | 93<br>130<br>118<br>Avg = 114±19         | (b)                | 126<br>131<br>123<br>Avg = 127±4               |
| H<br>[G+Steam/Chem.Spray] | (b)                                                    | (b)                | (b)                                      | (b)                | (b)                                            |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul = EPR insulation
 (b) Not tested

.

,

#### Table A-42 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 6.2, Specimen 0621) Aged to 40 yrs Service

|                                      | Elongation-at-Break (%)                                |                       |                                   |
|--------------------------------------|--------------------------------------------------------|-----------------------|-----------------------------------|
| CM Point                             | Neoprene <sup>®</sup> Outer Jacket                     | Black XLPE Insulation | White XLPE Insulation             |
| A <sup>©</sup>                       | 592<br>515<br>565<br>Avg = 557±39                      | (a)                   | 560<br>595<br>568<br>Avg = 574±18 |
| B <sup>(b)</sup><br>[A+909.5h@302ºF] | Brittle ≤ 5                                            | (a)                   | Brittle ≤5                        |
| С                                    | No change - no additional preaging after last CM Point |                       | CM Point                          |
| D <sup>(b)</sup><br>[B+51.4 Mrad]    | Brittle ≤ 5                                            | (a)                   | Brittle ≤5                        |
| Ē                                    |                                                        |                       |                                   |
| F                                    | No change - no additional preaging after last CM Point |                       | CM Point                          |
| G                                    |                                                        |                       |                                   |
| Н                                    |                                                        |                       |                                   |

(a) Not tested
(b) Aged to 40 yrs service
(c) Baseline values of EAB listed are for identical specimen PNI79RB188 (Group 6.1, Specimen 0604)

## Table A-43 Elongation-at-Break for Rockbestos Cable PNI79RB188 (Group 6.2, Specimen 0621)Aged to 60 yrs Service

|                                                 | Elongation-at-Break (%)                                |                                         |                                   |
|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------|
| CM Point                                        | Neoprene <sup>®</sup> Outer Jacket                     | Black XLPE Insulation                   | White XLPE Insulation             |
| <b>A</b> ©                                      | 592<br>515<br>565<br>Avg = 557±39                      | (a)                                     | 560<br>595<br>568<br>Avg = 574±18 |
| В                                               | No cha                                                 | nge - no additional preaging after last | CM Point                          |
| C <sup>©)</sup><br>[A+1364h@302 <sup>o</sup> F] | Brittle ≤5%                                            | (a)                                     | Brittle ≤ 5%                      |
| D                                               | No change - no additional preaging after last CM Point |                                         |                                   |
| E <sup>®)</sup><br>[C+77.0 Mrad]                | Brittle ≤5%                                            | (a)                                     | Brittle ≤ 5%                      |
| F<br>[E+79.0 Mrad]                              | Brittle ≤5%                                            | (a)                                     | Brittle ≤ 5%                      |
| G<br>[F+77.6 Mrad]                              | Brittle ≤5%                                            | (a)                                     | Brittle ≤ 5%                      |
| H<br>[G+Steam/Chem.Spray]                       | Brittle ≤5%                                            | (a) .                                   | Brittle ≤ 5%                      |

(a) Not tested

(b) Aged to 60 yrs service

(c) Baseline values of EAB listed are for identical specimen PNI79RB188 (Group 6.1, Specimen 0604)

| Specimen | Aging Time at 350°F (177°C)<br>(hrs.) | Elongation-at-Break<br>(%)        |
|----------|---------------------------------------|-----------------------------------|
| 1        | 0                                     | 444<br>426<br>433<br>Avg = 434±9  |
| 2        | 6                                     | 440<br>475<br>498<br>Avg = 471±29 |
| 3        | 18                                    | 447<br>339<br>Avg = 393±76        |
| 4        | 24                                    | 346<br>393<br>408<br>Avg = 382±32 |
| 5        | 48                                    | 357<br>318<br>362<br>Avg = 346±24 |
| 6        | 72                                    | 368<br>358<br>Avg = 363±7         |
| 7        | 96                                    | 213<br>153<br>157<br>Avg = 174±34 |
| 8        | 120                                   | 65<br>102<br>79<br>Avg = 82±19    |
| 9        | 144                                   | 81<br>84<br>64<br>Avg = 76±11     |
| 10       | 168                                   | 75<br>86<br>95<br>Avg = 86±10     |

# Table A-44 Correlation Between Aging Time and Elongation-at-Break for White XLPE from Rockbestos Cable PNI85RB191

## Appendix B

.

### **Oxidation Induction Time Data**

### Tables

| <u>Title</u> Pag                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table B-1 Oxidation Induction Time for Rockbestos Cable PNI79RB188 (Group 1.1, Specimen 0101)       B-1                                                            |
| Table B-2 Oxidation Induction Time for Rockbestos Cable PNI85RB191 (Group 1.2, Specimen 0106)       B-4                                                            |
| Table B-3 Oxidation Induction Time for Rockbestos Cable PAP86RB267 (Group 1.3, Specimen 0111)       B-3                                                            |
| Table B-4 Oxidation Induction Time for Rockbestos Cable PNI79RB188 (Group 1.4, Specimen 0112)       B-6                                                            |
| Table B-5 Oxidation Induction Time for AIW Cable PNI74AI025 (Group 2.1, Specimen 0201)       B-7                                                                   |
| Table B-6 Oxidation Induction Time for AIW Cable PNI74AI026 (Group 2.2, Specimen 0203)       B-6                                                                   |
| Table B-7 Oxidation Induction Time for AIW Cable PAI74AI015 (Group 2.3, Specimens 0207 and 0210) B-                                                                |
| Table B-8 Oxidation Induction Time for AIW Cable PNI74AI028 (Group 2.4, Specimens 0213 and 0214) B-10                                                              |
| Table B-9 Oxidation Induction Time for White XLPE Insulation from         Rockbestos Cable PNI79RB188 (Group 3.1, Specimen 0 301)         B-1                      |
| Table B-10 Oxidation Induction Time for White XLPE Insulation from         Rockbestos Cable PNI85RB191 (Group 3.1, Specimen 0302)         B-12                     |
| Table B-11 Oxidation Induction Time for White XLPE Insulation from         Rockbestos Cable PNI85RB191 (Group 3.2, Specimen 0303)         B-13                     |
| Table B-12 Oxidation Induction Time for White XLPE Insulation from         Rockbestos Cable PAP86RB29 (Group 3.3, Specimen 0307)                                   |
| Table B-13 Oxidation Induction Time for White XLPE Insulation from         Rockbestos Cable PNI79RB188 (Group 3.4, Specimen 0312)         B-14                     |
| Table B-14 Oxidation Induction Time for AIW Cable PNI74AI035 (Group 6.3, Specimen 0611)       B-16                                                                 |
| Table B-15 Oxidation Induction Time for AIW Cable PNI74AI028 (Group 2.4, Specimens 0213 and 0214)         as a Function of Simulated Service Aging at 140°F (60°C) |

ľ

.

-

|                                 | Oxidation Induction Time (min) at 200°C                |                                |                                 |
|---------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------|
| CM Point                        | Neoprene® Jacket                                       | Black XLPE Insulation          | White XLPE Insulation           |
| A<br>[Unused]                   | (a)                                                    | 45.8<br>46.0<br>Avg = 45.9±0.1 | 91.7<br>84.7<br>Avg = 88.2±5.0  |
| B,C,D,E                         | No change - no additional preaging after last CM Point |                                |                                 |
| F<br>[A + 78.3 Mrad]            | (a)                                                    | 28.6<br>29.3<br>Avg = 29.0±0.5 | 18.7<br>21.23<br>Avg = 20.0±1.8 |
| G<br>[F + 78.3 Mrad]            | (a)                                                    | 36.6<br>38.9<br>Avg = 37.8±1.6 | 29.6<br>28.7<br>Avg = 29.1±0.6  |
| H<br>[G + Steam/Chem.<br>Spray] | (a)                                                    | 25.8                           | 24.6                            |

.

.

### Table B-1 Oxidation Induction Time for Rockbestos Cable PNI79RB188 (Group 1.1, Specimen 0101)

(a) Non-classical thermogram; unable to determine oxidation induction times.

.

.

\_\_\_\_\_

|                                 | 7                                                      | ·······                  |                          |                        |
|---------------------------------|--------------------------------------------------------|--------------------------|--------------------------|------------------------|
|                                 | Oxidation Induction Time (min) at 220°C                |                          |                          |                        |
| CM Point                        | Neoprene® Jacket                                       | Black XLPE<br>Insulation | White XLPE<br>Insulation | Red XLPE<br>Insulation |
| A<br>[Unused]                   | (a)                                                    | 103.0                    | 111.2                    | 111.0                  |
| B<br>[A + 2.86 hrs @ 120°C]     | (a)                                                    | 102.2                    | 111.8                    | 111.6                  |
| С                               | No change - no additional preaging after last CM Point |                          |                          | oint                   |
| D<br>[B + 0.63 Mrad]            | (a)                                                    | 104.4                    | 114.1                    | 109.6                  |
| Е                               | No change - no additional preaging after last CM Point |                          |                          | oint                   |
| F<br>[D + 78.3 Mrad             | (a)                                                    | 48.2                     | 53.7                     | 41.9                   |
| G<br>[F + 78.3 Mrad]            | (a)                                                    | 31.0                     | 53.5                     | 52.5                   |
| H<br>[G + Steam/Chem.<br>Spray] | ·(a)                                                   | 30.6                     | 20.9                     | 12.3                   |

Table B-2 Oxidation Induction Time for Rockbestos Cable PNI85RB191 (Group 1.2, Specimen 0106)

(a) Non classical thermogram; unable to determine oxidation induction times.

|                                 | Oxidation Induction Time (min) at 220°C                |                          |                          |                        |
|---------------------------------|--------------------------------------------------------|--------------------------|--------------------------|------------------------|
| CM Point                        | Neoprene® Jacket                                       | Black XLPE<br>Insulation | White XLPE<br>Insulation | Red XLPE<br>Insulation |
| A<br>[Naturally<br>Aged 10 yrs] | (a)                                                    | 109.3                    | 112.8                    | (b)                    |
| B,C,D,E                         | No change - no additional preaging after last CM Point |                          |                          |                        |
| F<br>[A + 78.3 Mrad]            | (a)                                                    | 60.5                     | 54.8                     | (b)                    |
| G<br>[F + 78.3 Mrad]            | (a)                                                    | 61.9                     | 59.1                     | (b)                    |
| H<br>[G + Steam/Chem.<br>Spray] | (a)                                                    | 32.0                     | 29.2                     | (b)                    |

Table B-3 Oxidation Induction Time for Rockbestos Cable PAP86RB267 (Group 1.3, Specimen 0111)

(a) Non classical thermogram; unable to determine oxidation induction times(b) Not tested

|                              | Oxidation Induction Time (min)                         |                                     |                       |  |
|------------------------------|--------------------------------------------------------|-------------------------------------|-----------------------|--|
| CIVI Point                   | Neoprene® Jacket                                       | <b>Black XLPE Insulation</b>        | White XLPE Insulation |  |
| A<br>Unused                  | (a)                                                    | 45.9 (@ 200°C<br>8.0 (@220°C        | (c)                   |  |
| В                            | No change -                                            | no additional preaging after        | last CM Point         |  |
| C<br>648.5 hrs @ 150°C       | (a)                                                    | Instantaneous<br>oxidation at 200°C | (c)                   |  |
| D                            | No change - No additional preaging after last CM Point |                                     |                       |  |
| E<br>[C + 26.1 Mrad]         | (a)                                                    | (b)                                 | (c)                   |  |
| F<br>[E + 78.3 Mrad]         | (a)                                                    | (b)                                 | (c)                   |  |
| G<br>[F + 78.3 Mrad]         | (a)                                                    | (b)                                 | (c)                   |  |
| H<br>[G + Steam/Chem. Spray] | (a)                                                    | (b)                                 | (c)                   |  |

#### Table B-4 Oxidation Induction Time for Rockbestos Cable PNI79RB188 (Group 1.4, Specimen 0112)

(a) Non classical thermogram; unable to determine oxidation induction times
 (b) Instantaneous oxidation upon introduction of oxygen
 (c) Not tested

|                      | Oxidation Induction Time (min)                         |                                                        |  |  |
|----------------------|--------------------------------------------------------|--------------------------------------------------------|--|--|
| CM Point             | Hypalon® Outer Jacket <sup>(a)</sup>                   | EPR Insulation <sup>(b)</sup>                          |  |  |
| A<br>[Unused]        | 46.1<br>46.0<br>Avg = 46.1±0.1                         | 27.0<br>29.5<br>31.0<br>Avg = 29.2±2.0                 |  |  |
| В                    | No change - no additional                              | No change - no additional preaging after last CM Point |  |  |
| С                    | No change - no additional preaging after last CM Point |                                                        |  |  |
| D                    | No change - no additional preaging after last CM Point |                                                        |  |  |
| E                    | No change - no additional                              | No change - no additional preaging after last CM Point |  |  |
| F<br>[A + 76.6 Mrad] | 22.3<br>21.3<br>$Avg = 21.8 \pm 0.7$                   | $15.0 \\ 14.1 \\ Avg = 14.5 \pm 0.6$                   |  |  |
| G<br>[F + 77.5 Mrad] | 6.6<br>5.9<br>Avg = 6.2±0.5                            | 8.2<br>8.6<br>Avg = 8.4±0.3                            |  |  |

### Table B-5 Oxidation Induction Time for AIW Cable PNI74AI025 (Group 2.1, Specimen 0201)

(a) Test temperature is 210° C
(b) Test temperature is 200° C

| CM Point                     | Oxidation Induction Time (min)                         |                                                      |  |
|------------------------------|--------------------------------------------------------|------------------------------------------------------|--|
|                              | Hypalon® Outer Jacket <sup>(a)</sup>                   | EPR Insulation <sup>(b)</sup>                        |  |
| A <sup>(e)</sup><br>[Unused] | 46.1<br>46.0<br>Avg = 46.1±0.1                         | 27.0<br>29.5<br>31.0<br>Avg = 29.2±2.0               |  |
| B<br>[A + 28.45 hrs @ 121ºC] | 41.4<br>42.1<br>Avg = $41.8\pm0.5$                     | $15.6 \\ 16.2 \\ 17.8 \\ 15.0 \\ Avg = 16.1 \pm 1.2$ |  |
| С                            | No change - no additional preaging after last CM Point |                                                      |  |
| D<br>[B + 3.25 Mrad]         | 42.4<br>42.0<br>Avg = 42.2±0.3                         | 17.9<br>18.7<br>Avg = 18.3±0.6                       |  |
| E                            | No change - no additional pre                          | aging after last CM Point                            |  |
| F<br>[D + 76.6 Mrad]         | 13.6<br>12.2<br>$Avg = 12.9 \pm 1.0$                   | 8.0<br>8.2<br>Avg = 8.1±0.1                          |  |
| G                            | No change - no additional preaging after last CM Point |                                                      |  |

#### Table B-6 Oxidation Induction Time for AIW Cable PNI74AI026 (Group 2.2, Specimen 0203)

(a) Test temperature is 210°C
(b) Test temperature is 200°C
(c) Baseline values of OIT listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)

|                            | Oxidation Induction Time (min)                         |                                                        |                                         |                                |
|----------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|--------------------------------|
| CM Point                   | Group 0207                                             |                                                        | Group                                   | » 0210                         |
| -                          | Hypalon® Outer<br>Jacket <sup>(a)</sup>                | EPR Insulation <sup>(b)</sup>                          | Hypalon® Outer<br>Jacket <sup>(*)</sup> | EPR Insulation <sup>(b)</sup>  |
| A<br>Naturally aged 24 yrs | (¢)                                                    | 20.1<br>20.2<br>Avg = 20.2±0.1                         | (0)                                     | 21.8<br>18.2<br>Avg = 20.0±2.6 |
| В                          | No change - no additional preaging after last CM Point |                                                        |                                         |                                |
| С                          |                                                        | No change - no additional preaging after last CM Point |                                         |                                |
| D                          | No change - no additional preaging after last CM Point |                                                        |                                         |                                |
| E                          |                                                        | No change - no additional p                            | reaging after last CM Point             |                                |
| F<br>76.6 Mrad             | (c)                                                    | 6.3<br>6.0<br>Avg = 6.2±0.2                            | (c)                                     | 4.5<br>3.9<br>Avg = 4.2±0.4    |
| G<br>154.1 Mrad            | (c)                                                    | 3.1<br>3.2<br>Avg = 3.2±0.1                            | (c)                                     | (¢)                            |

.

#### Table B-7 Oxidation Induction Time for AIW Cable PAI74AI015 & 019 (Group 2.3, Specimens 0207 and 0210)

(a) Test temperature is 210°C
(b) Test temperature is 200°C
(c) Thermogram non classical in shape; unable to determine the oxidation induction time

|                              |                                                        | Oxidation Indu                         | ction Time (hrs)                        |                                       |
|------------------------------|--------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------|
| CM Point                     | Group 0213                                             | (4-conductor)                          | Group 0214                              | (3-conductor)                         |
|                              | Hypalon® Outer<br>Jacket <sup>(s)(e)</sup>             | EPR Insulation <sup>(b)(c)</sup>       | Hypalon® Outer<br>Jacket <sup>(a)</sup> | EPR Insulation <sup>(6)</sup>         |
| A<br>Unused                  | 46.1<br>46.0<br>Avg = 46.1±0.1                         | 27.0<br>29.5<br>31.0<br>Avg = 29.2±2.0 | (c)                                     | 24.7<br>26.0<br>Avg = 25.3±0.9        |
| В                            |                                                        | No change - no additional r            | preaging after last CM Point            | · · · · · · · · · · · · · · · · · · · |
| C<br>[A + 82.45 hrs @ 121ºC] | 39.7<br>38.7                                           | 15.5<br>15.8                           | (c)                                     | 6.1<br>6.8<br>7.4                     |
|                              | Avg = 39.2±0.7                                         | Avg = 15.7±0.2                         |                                         | 8.4<br>Avg = 7.2±1.0                  |
| D                            | No change - no additional preaging after last CM Point |                                        |                                         |                                       |
| E<br>[C + 25.8 Mrad]         | 27.8<br>31.8<br>Avg = 29.8±2.8                         | 9.2<br>10.8<br>Avg = 10.0±1.1          | (c)                                     | 8.4<br>8.0<br>Avg = 8.2±0.3           |
| F<br>[E + 76.6 Mrad]         | 8.5<br>9.7<br>Avg = 9.1±0.9                            | 3.2<br>4.1<br>Avg = 3.6±0.6            | (0)                                     | 5.4<br>4.0<br>Avg = 4.7±1.0           |
| G<br>[F + 77.5 Mrad]         | 4.9<br>2.7<br>Avg = 3.8±1.6                            | 3.0<br>3.0<br>Avg = 3.0                | (c)                                     | (d)                                   |

#### Table B-8 Oxidation Induction Time for AIW Cable PNI74AI028 & 032 (Group 2.4, Specimens 0213 and 0214)

(a) Test temperature is 210°C
(b) Test temperature is 200°C
(c) Thermogram non classical in shape; unable to determine the oxidation induction time

(d) Not tested

(e) Baseline values of OIT listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)

#### Table B-9 Oxidation Induction Time for White XLPE Insulation from Rockbestos Cable PNI79RB188 (Group 3.1, Specimen 0301)

|                              | Oxidation Induction Time (min) at 220°C                |                              |
|------------------------------|--------------------------------------------------------|------------------------------|
| CM Point                     | First Peak                                             | Second Peak                  |
| A<br>[Unused]                | (a)                                                    | 10.0<br>8.1<br>Avg = 9.1±1.3 |
| В                            | No change - no additional pr                           | eaging after last CM Point   |
| С                            | No change - no additional preaging after last CM Point |                              |
| D                            | No change - no additional preaging after last CM Point |                              |
| E                            | No change - no additional preaging after last CM Point |                              |
| F<br>[A + 76.5 Mrad]         | (a)                                                    | 7.7<br>8.0<br>Avg = 7.9±0.2  |
| G<br>[F + 76.5 Mrad]         | (a)                                                    | 7.5<br>7.1<br>Avg = 7.3±0.3  |
| H<br>[G + Steam/Chem. Spray] | (a)                                                    | 2.5<br>2.5<br>Avg = 2.5      |

(a) First peak not observed or poorly defined

.

٠

|                              | Oxidation Inductio                                     | on Time (min) at 220°C         |  |
|------------------------------|--------------------------------------------------------|--------------------------------|--|
|                              | First Peak                                             | Second Peak                    |  |
| A<br>[Unused]                | 98<br>105<br>Avg = 101±5                               |                                |  |
| В                            | No chance - no additional                              | l preaging after last CM Point |  |
| С                            | No chance - no additional preaging after last CM Point |                                |  |
| D                            | No chance - no additional preaging after last CM Point |                                |  |
| Е                            | No chance - no additional preaging after last CM Point |                                |  |
| F<br>[A + 76.5 Mrad]         | 45<br>41<br>Avg = 43±3                                 | $56 \\ 60 \\ Avg = 58\pm 3$    |  |
| G<br>[F + 76.5 Mrad]         | 31<br>35<br>Avg = 33±3                                 | 60<br>66<br>Avg = 63±4         |  |
| H<br>[G + Steam/Chem. Spray] | 42<br>42<br>Avg = 42                                   | 46<br>44<br>Avg = 45±1         |  |

## Table B-10 Oxidation Induction Time for White XLPE Insulation fromRockbestos Cable PNI85RB191 (Group 3.1, Specimen 0302)

# Table B-11 Oxidation Induction Time for White XLPE Insulation fromRockbestos Cable PNI85RB191 (Group 3.2, Specimen 0303)

|                              | Oxidation Induction Time (min) at 220°C                |                                       |  |
|------------------------------|--------------------------------------------------------|---------------------------------------|--|
| CM Point                     | First Peak                                             | Second Peak                           |  |
| A <sup>(0)</sup><br>[Unused] | 98<br>105<br>Avg =101±5                                | 101<br>107<br>Avg = 104±4             |  |
| B<br>[A + 9.93 hrs@ 120⁰C]   | 91<br>97<br>Avg = 94±4                                 | . 97<br>103<br>Avg = 100±4            |  |
| С                            | No change - no additional preaging after last CM Point |                                       |  |
| D<br>[B + 2.27 Mrad]         | 94<br>90<br>Avg = 92±3                                 | 107<br>104<br>Avg = 10 <del>6±2</del> |  |
| Е                            | No change - no additional preaging after last CM Point |                                       |  |
| F<br>[D + 76.5 Mrad]         | 38<br>38<br>Avg = 38                                   | 50<br>52<br>Avg = 51±1                |  |
| G<br>[F + 76.5 Mrad]         | 34<br>36<br>Avg = 35±1                                 | 60<br>61<br>Avg = 60±1                |  |
| H<br>[G + Steam/Chem. Spray] | 24<br>26<br>Avg = 25±1                                 | 44<br>42<br>Avg = 43±1                |  |

(a) Baseline values of OIT listed for identical specimen PNI79RB191 (Group 3.1, Specimen 0302)

|                              | Oxidation Induction                                    | Time (min) at 220°C         |
|------------------------------|--------------------------------------------------------|-----------------------------|
| CM Point                     | First Peak                                             | Second Peak                 |
| A<br>[Naturally aged 10 yrs] | 101<br>104<br>Avg = 102±2                              | 102<br>105<br>Avg = 103±2   |
| В                            | No change - no additional p                            | reaging after last CM Point |
| С                            | No change - no additional preaging after last CM Point |                             |
| D                            | No change - no additional preaging after last CM Point |                             |
| E                            | No change - no additional preaging after last CM Point |                             |
| F<br>[A + 76.5 Mrad]         | 52<br>53<br>Avg = 52±1                                 | 69<br>69<br>Avg = 69        |
| G<br>[F + 76.5 Mrad]         | 33<br>35<br>Avg = 34±1                                 | $5960Avg = 60\pm 1$         |
| H<br>[G + Steam/Chem. Spray] | 30<br>23<br>Avg = 27±5                                 | 67<br>65<br>Avg = 66±1      |

## Table B-12 Oxidation Induction Time for White XLPE Insulation fromRockbestos Cable PAP86RB229 (Group 3.3, Specimen 0307)

#### Table B-13 Oxidation Induction Time for White XLPE Insulation from Rockbestos Cable PNI79RB188 (Group 3.4, Specimen 0312)

|                              | Oxidation Induction Time (min) at 220°C                |                              |  |  |
|------------------------------|--------------------------------------------------------|------------------------------|--|--|
| CM Point                     | First Peak                                             | Second Peak <sup>(e)</sup>   |  |  |
| A<br>[Unused]                | (a)                                                    | 10.0<br>8.1<br>Avg = 9.1±1.0 |  |  |
| В                            | No change - no additional preaging after last CM Point |                              |  |  |
| C<br>[A +1301 hrs @ 150⁰C]   | (a)                                                    | 00                           |  |  |
| D                            | No change - no additional preaging after last CM Point |                              |  |  |
| E<br>[C + 51.5 Mrad]         | (a)                                                    | 0                            |  |  |
| F<br>[E + 76.5 Mrad]         | (a)                                                    | 0                            |  |  |
| G<br>[F + 76.5 Mrad]         | (a)                                                    | 0                            |  |  |
| H<br>[G + Steam/Chem. Spray] | (a0                                                    | 0                            |  |  |

(a) Peak not observed or poorly defined

.

(b) After artificial thermal aging, material oxidized immediately upon introduction of oxygen
 (c) Baseline values of OIT listed are for identical specimen PNI79RB188 (Group 3.1, Specimen 0301)

| The for the fo | Table B-14 | Oxidation In | nduction Time fo | or AIW Cal | ole PNI74AI035 | (Group 6.2 | 2. Specimen 0611) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------|------------|----------------|------------|-------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------|------------|----------------|------------|-------------------|

| CM Doint              | Oxidation Induction Time (min)                         |                               |  |  |  |
|-----------------------|--------------------------------------------------------|-------------------------------|--|--|--|
|                       | Hypalon® Outer Jacket <sup>(a)</sup>                   | EPR Insulation <sup>(b)</sup> |  |  |  |
| A<br>[Unused]         | (c)                                                    | 24.7<br>26.0<br>Avg = 25.3±1  |  |  |  |
| В                     | No change - no additional preaging after last CM Point |                               |  |  |  |
| C<br>[A + 252h@250ºF] | (c)                                                    | (d)                           |  |  |  |
| D                     | No change - no additional pr                           | eaging after last CM Point    |  |  |  |
| E<br>[C + 38.65 Mrad] | (c)                                                    | 2.6<br>3.2<br>Avg = 2.9±0.4   |  |  |  |
| F<br>[E + 79.0 Mrad]  | (c)                                                    | 5.4<br>4.0<br>Avg = 4.7±1.0   |  |  |  |
| G<br>[F + 77.6 Mrad]  | (c)                                                    | (d)                           |  |  |  |

(a) Test temperature is 210°C
(b) Test temperature is 200°C
(c) None classical thermogram, OITM not measurable

(d) Not tested

| Group Material             |            | Aging Protocol              | Equivalent Aging Time at 140°F<br>(60°C), (yrs) |                   | Oxidation Induction Time<br>(min) <sup>(a)</sup> |                   |
|----------------------------|------------|-----------------------------|-------------------------------------------------|-------------------|--------------------------------------------------|-------------------|
|                            |            |                             | Hypalon®<br>Outer Jacket                        | EPR<br>Insulation | Hypalon®<br>Outer Jacket                         | EPR<br>Insulation |
| 2.4<br>(Specimen<br>0213A) | PNI74AI028 | None                        | 0                                               | 0                 | 46.1                                             | 29.2              |
| 2.2<br>(Specimen<br>0203D) | PNI74AI026 | 28.45h@121°C<br>+ 3.25 Mrad | 2.6                                             | 1.9               | 42.2                                             | 18.3              |
| 2.4<br>(Specimen<br>0213E) | PNI74AI028 | 82.5h@121℃<br>+ 25.8 Mrad   | 7.6                                             | 5.5               | 29.8                                             | 10.0              |
| 2.4<br>(Specimen<br>0214E) | PNI74AI028 | 82.5h@121°C<br>+ 25.8 Mrad  | 7.6                                             | 5.5               | (b)                                              | 8.2               |
| 6.2<br>(Specimen<br>0611E) | PNI74AI035 | 252h@121°C<br>+ 38.65 Mrad  | 23.2                                            | 16.8              | (b)                                              | 2.9               |

.

# Table B-15 Oxidation Induction Time for AIW Cable PNI74AI028 (Group 2.4, Specimens 0213 and 0214)as a Function of Simulated Service Aging at 140°F (60°C)

.

(a) Hypalon® tested at 210°C and EPR at 200°C
(b) Non-classical thermogram, OITM not determinable

## Appendix C

\_\_\_\_\_

**Oxidation Induction Temperature Data** 

### Tables

| <u>Title</u> P                                                                                                           | age |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| Table C-1 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188         (Group 1.1, Specimen 0101)             | C-4 |
| Table C-2 Oxidation Induction Temperature for Rockbestos Cable PNI85RB191         (Group 1.2, Specimen 0106)             | C-5 |
| Table C-3 Oxidation Induction Temperature for Rockbestos Cable PAP86RB267         (Group 1.3, Specimen 0111)             | C-6 |
| Table C-4 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188         (Group 1.4, Specimen 0112)             | C-7 |
| Table C-5 Oxidation Induction Temperature for AIW Cable PNI74AI025         (Group 2.1, Specimen 0201)                    | C-8 |
| Table C-6 Oxidation Induction Temperature for AIW Cable PNI74AI031         (Group 2.1, Specimen 0202)                    | C-9 |
| Table C-7 Oxidation Induction Temperature for AIW Cable PNI74AI026         (Group 2.2, Specimen 0203)         Complexity | -10 |
| Table C-8 Oxidation Induction Temperature for AIW Cable PAI74AI027         (Group 2.2, Specimen 0205)                    | -11 |
| Table C-9 Oxidation Induction Temperature for AIW Cable PAI74AI015         (Group 2.3, Specimen 0207)         C-         | -12 |
| Table C-10 Oxidation Induction Temperature for AIW Cable PAI74AI019         (Group 2.3, Specimen 0210)         C-        | -13 |
| Table C-11 Oxidation Induction Temperature for AIW Cable PNI74AI028 (Group 2.4, Specimen 0212) C-                        | -14 |
| Table C-12 Oxidation Induction Temperature for AIW Cable PNI74AI028         (Group 2.4, Specimen 0213)         C-        | -15 |
| Table C-13 Oxidation Induction Temperature for AIW Cable PNI74AI032         (Group 2.4, Specimen 0214)         C-        | -16 |
| Table C-14 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188         (Group 3.1, Specimen 0301)         C- | -17 |
| Table C-15 Oxidation Induction Temperature for Rockbestos Cable PNI85RB191         (Group 3.1, Specimen 0302)         C- | -18 |

| Table C-16 Oxidation Induction Temperature for Rockbestos Cable PNI85RB191         (Group 3.2 Specimen 0303)                                   | -19  |
|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table C-17 Oxidation Induction Temperature for Rockbestos Cable PAP86RB229         (Group 3.3, Specimen 0307)                                  | -20  |
| Table C-18 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188         (Group 3.4, Specimen 0312)                                  | -21  |
| Table C-19 Oxidation Induction Temperature for Anaconda Cable DNP78AN008         (Group 4.3, Specimen 0407) Aged to 20 Years                   | -22  |
| Table C-20 Oxidation Induction Temperature for Anaconda Cable DNP78AN008         (Group 4.3, Specimen 0407) Aged to 40 Years                   | -23  |
| Table C-21 Oxidation Induction Temperature for Anaconda Cable DNP78AN008         (Group 5.1, Specimen 0503)                                    | :-24 |
| Table C-22 Oxidation Induction Temperature for Anaconda Cable DNP78AN008         (Group 5.2, Specimen 0508)                                    | :-25 |
| Table C-23 Oxidation Induction Temperature for Anaconda Cable DNP78AN008         (Group 5.3, Specimen 0515)                                    | :-26 |
| Table C-24 Oxidation Induction Temperature Results for EPR Insulation as a<br>Function of Simulated Service Aging at 140°F (60°C) C            | 2-27 |
| Table C-25 Oxidation Induction Temperature Results for Hypalon® Outer Jackets as a         Function of Simulated Service Aging at 140°F (60°C) | 2-28 |

|                              | Oxidation Induction Temperature (°C)                   |                                   |                                   |                                   |  |  |  |
|------------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|--|--|
| CM Point                     | Neopren                                                | e® Jacket                         | Black XLPE                        | White XLPE                        |  |  |  |
|                              | Peak 1                                                 | Peak 2                            | Insulation                        | Insulation                        |  |  |  |
| A<br>[Unused]                | 210.2<br>210.3<br>Avg = 210.2±0.1                      | 292.9<br>292.6<br>Avg = 292.8±0.2 | 247.2<br>250.5<br>Avg = 248.9±2.3 | 239.1<br>241.7<br>Avg = 240.4±1.8 |  |  |  |
| B,C,D,E                      | No change - no additional preaging after last CM Point |                                   |                                   |                                   |  |  |  |
| F<br>[A + 78.3 Mrad]         | 203.8<br>204.1<br>Avg = 204.0±0.2                      | 294.2<br>297.4<br>Avg = 295.8±2.3 | 242.9<br>243.5<br>Avg = 243.2±0.4 | 242.7<br>240.0<br>Avg = 241.3±1.9 |  |  |  |
| G<br>[F + 78.3 Mrad]         | 200.3<br>200.1<br>Avg = 200.2±0.1                      | 291.1<br>289.1<br>Avg = 290.1±1.4 | 246.6<br>246.1<br>Avg = 246.3±0.3 | 241.9<br>241.6<br>Avg = 241.7±0.2 |  |  |  |
| H<br>[G + Steam/Chem. Spray] | 214.3<br>214.1<br>Avg = 214.2±0.1                      | 292.4<br>294.0<br>Avg = 293.2±1.1 | 214.0<br>214.8<br>Avg = 214.4±0.6 | 207.6<br>205.3<br>Avg = 206.4±1.6 |  |  |  |

# Table C-1 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188 (Group 1.1, Specimen 0101)

|                                 | Oxidation Induction Temperature (°C)                   |                                          |                                 |                                                   |                                                   |  |  |
|---------------------------------|--------------------------------------------------------|------------------------------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|
| CM Point                        | Neoprene                                               | B Jacket                                 | Black XLPE                      | White XLPE                                        | Red XLPE                                          |  |  |
|                                 | Peak 1 Peak 2                                          |                                          | Insulation                      | Insulation                                        |                                                   |  |  |
| A<br>[Unused]                   | 209.9<br>208.5<br>Avg = 209.2±1.0                      | 299.5<br>301.3<br>Avg = 300.4±1.3        | 272.9<br>273.0<br>Avg=273.0±0.1 | 272.8<br>271.4<br>Avg=272.1±1.0                   | 271.1<br>270.1<br>Avg=270.6±0.7                   |  |  |
| B<br>[A + 2.86 hrs<br>@ 120⁰C]  | 212.9<br>212.1<br>209.5<br>Avg=211.5±1.8               | 292.8<br>294.4<br>297.6<br>Avg=294.9±2.4 | 267.4<br>267.7<br>Avg=267.5±0.2 | 268.9<br>270.9<br>269.0<br>269.3<br>Avg=269.5±0.9 | 268.6<br>270.8<br>269.8<br>268.6<br>Avg=269.4±1.1 |  |  |
| с                               | No change - no additional preaging after last CM Point |                                          |                                 |                                                   |                                                   |  |  |
| D<br>[B + 0.63 Mrad]            | 212.1<br>211.3<br>Avg=211.7±0.6                        | 298.2<br>298.8<br>Avg=298.5±0.4          | 268.5<br>268.5<br>Avg=268.5     | 269.5<br>269.2<br>Avg=269.3±0.2                   | 268.6<br>268.5<br>Avg=268.5±0.1                   |  |  |
| E                               |                                                        | No change - no a                         | additional preaging after       | r last CM Point                                   |                                                   |  |  |
| F<br>[D + 78.3 Mrad]            | 203.3<br>203.8<br>Avg=203.6±0.3                        | 295.0<br>295.8<br>Avg=295.4±0.6          | 267.9<br>268.0<br>Avg=268.0±0.1 | 263.2<br>264.0<br>266.4<br>Avg=264.5±1.7          | 264.3<br>267.1<br>267.2<br>Avg=266.2±1.7          |  |  |
| G<br>[F + 78.3 Mrad]            | 203.7<br>204.9<br>Avg=204.3±0.9                        | 291.8<br>290.1<br>Avg=291.0±1.2          | 262.9<br>263.1<br>Avg=263.0±0.1 | 265.8<br>264.8<br>Avg=265.3±0.7                   | 262.8<br>263.8<br>Avg=263.3±0.7                   |  |  |
| H<br>[G + Steam/Chem.<br>Spray] | 211.8<br>217.2<br>Avg=214.5±3.8                        | 291.7<br>295.1<br>Avg=293.4±2.4          | 260.1<br>264.8<br>Avg=262.4±3.3 | 259.7<br>260.1<br>Avg=259.9±0.3                   | 261.0<br>259.5<br>Avg=260.2±1.1                   |  |  |

# Table C-2 Oxidation Induction Temperature for Rockbestos Cable PNI85RB191(Group 1.2, Specimen 0106)

|                                 | Oxidation Induction Temperature (°C)              |                                                        |                                                   |                                 |                                 |  |  |  |
|---------------------------------|---------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------|---------------------------------|--|--|--|
| CM Point                        | Neoprene                                          | ® Jacket                                               | Black XLPE                                        | White XLPE                      | Red XLPE                        |  |  |  |
|                                 | Peak 1                                            | Peak 1 Peak 2                                          |                                                   | Insulation                      | Insulation                      |  |  |  |
| A<br>[Naturaliy<br>Aged 10 yrs] | 207.1<br>212.0<br>207.6<br>206.3<br>Avg=208.2±2.6 | 296.4<br>290.6<br>292.9<br>299.9<br>Avg=295.0±4.1      | 270.1<br>270.7<br>269.0<br>268.4<br>Avg=269.6±1.0 | 274.0<br>272.3<br>Avg=273.1±1.2 | 271.5<br>270.6<br>Avg=271.0±0.6 |  |  |  |
| B,C,D,E                         |                                                   | No change - no additional preaging after last CM Point |                                                   |                                 |                                 |  |  |  |
| F<br>[A + 78.3 Mrad]            | 200.8<br>200.4<br>Avg=200.6±0.3                   | 295.7<br>290.8<br>Avg=293.2±3.5                        | 263.2<br>262.2<br>Avg=262.7±0.6                   | 261.4<br>261.9<br>Avg=261.7±0.3 | 263.8<br>263.4<br>Avg=263.6±0.3 |  |  |  |
| G<br>[F + 78.3 Mrad]            | 200.7<br>201.4<br>Avg=201.0±0.5                   | 286.1<br>288.8<br>Avg=287.4±1.9                        | 265.9<br>265.5<br>Avg=265.7±0.3                   | 264.5<br>264.4<br>Avg=264.4±0.1 | 264.5<br>264.0<br>Avg=264.2±0.3 |  |  |  |
| H<br>[G + Steam/Chem.<br>Spray] | 193.1<br>187.4<br>Avg=190.2±4.0                   | 295.6<br>294.3<br>Avg=295.0±0.9                        | 259.5<br>263.4<br>Avg=261.4±2.8                   | 264.0<br>260.2<br>Avg=262.1±2.7 | 257.6<br>262.0<br>Avg=259.8±3.1 |  |  |  |

## Table C-3 Oxidation Induction Temperature for Rockbestos Cable PAP86RB267(Group 1.3, Specimen 0111)

|                                 | Oxidation Induction Temperature (°C)                   |                                   |                                         |                                                     |  |  |  |
|---------------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------------|--|--|--|
| CM Point                        | Neoprene                                               | ® Jacket                          | Black XLPE Insulation                   | White XLPE Insulation                               |  |  |  |
|                                 | Peak 1                                                 | Peak 2                            |                                         |                                                     |  |  |  |
| A<br>[Unused]                   | 210.2<br>210.3<br>Avg = 210.2±0.1                      | 292.9<br>292.6<br>Avg = 292.8±0.2 | 247.2<br>250.5<br>Avg = 248.9±2.3       | 239.1<br>241.7<br>Avg = 240.4±1.8                   |  |  |  |
| В                               | No Change - no additional preaging after last CM Point |                                   |                                         |                                                     |  |  |  |
| C<br>[A + 648.5 hrs<br>@ 150ºC] | 233.9<br>240.3<br>244.4<br>241.0<br>Avg = 239.9±4.4    | (a) <sup>(1)</sup>                | $209.9210.5209.8209.6Avg = 210.0\pm0.4$ | 206.1<br>207.0<br>206.1<br>205.4<br>Avg = 206.1±0.7 |  |  |  |
| D                               |                                                        | No Change - no addition           | al aging since last CM Point            |                                                     |  |  |  |
| E<br>[C + 26.1 Mrad]            | 209.4<br>211.3<br>Avg = 210.3±1.3                      | (a)                               | 208.8<br>208.7<br>Avg = 208.8±0.1       | 207.3<br>207.3<br>Avg = 207.3                       |  |  |  |
| F<br>[E + 78.3 Mrad]            | 206.3<br>209.6<br>Avg = 208.0±2.3                      | (a)                               | $207.4 \\ 213.4 \\ Avg = 210.4 \pm 4.2$ | 207.0<br>210.2<br>Avg = 208.6±2.3                   |  |  |  |
| G<br>[F + 78.3 Mrad]            | 206.5<br>207.0<br>Avg = 206.8±0.3                      | (a)                               | 207.8<br>207.2<br>Avg = 207.5±0.4       | 203.1<br>203.2<br>Avg = 203.1±0.1                   |  |  |  |
| H<br>[G + Steam/Chem.<br>Spray] | 228.5<br>227.8<br>Avg = 228.1±0.5                      | (a)                               | 214.1<br>213.1<br>Avg = 213.6±0.7       | 216.3<br>211.1<br>Avg = 213.7±3.7                   |  |  |  |

.

# Table C-4 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188(Group 1.4, Specimen 0112)

(a) No second peak

| CM Paint                        | Oxidation Induction Temperature (°C)                   |                                      |                                      |                                      |                                      |                                                |  |
|---------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|--|
| CM Point                        | OJ <sup>(a)</sup>                                      | IJB                                  | IJW                                  | IJR                                  | IJG                                  | Insul.                                         |  |
| A<br>[Unused]                   | 231.9<br>232.6<br>Avg =<br>232.2±0.5                   | 231.7<br>230.8<br>Avg =<br>231.3±0.6 | 256.5                                | 256.7<br>258.8<br>Avg =<br>257.8±1.5 | 256.5                                | 234.9<br>230.6<br>Avg =<br>232.7±3.0           |  |
| В                               |                                                        | No cha                               | ange - no additional p               | preaging after last C                | M Point                              |                                                |  |
| С                               |                                                        | No cha                               | ange - no additional p               | oreaging after last C                | M Point                              |                                                |  |
| D                               |                                                        | No cha                               | ange - no additional p               | oreaging after last C                | M Point                              |                                                |  |
| Ē                               | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                                |  |
| F<br>[A + 76.6 Mrad]            | 226.9<br>227.0<br>Avg =<br>226.9±0.1                   | 226.1<br>226.0<br>Avg =<br>226.0±0.1 | 247.4<br>246.8<br>Avg =<br>247.1±0.4 | 245.0<br>246.4<br>Avg =<br>245.7±1.0 | 246.9<br>243.9<br>Avg =<br>245.4±2.1 | 232.2<br>232.2<br>Avg = 232.2                  |  |
| G<br>[F + 77.5 Mrad ]           | 221.8<br>220.9<br>Avg =<br>221.3±0.6                   | 220.4<br>223.4<br>Avg =<br>221.9±2.1 | 241.5<br>238.3<br>Avg =<br>239.9±2.3 | 240.1<br>240.0<br>Avg =<br>240.1±0.1 | 242.6<br>242.5<br>Avg =<br>242.5±0.1 | 221.7<br>218.8<br>Avg =<br>220.3±2.0           |  |
| H<br>[G + Steam/Chem.<br>Spray] | 219.5<br>217.2<br>Avg =<br>218.4±1.6                   | 209.8<br>210.2<br>Avg =<br>210.0±0.3 | 225.3<br>226.4<br>Avg =<br>225.9±0.8 | 226.9<br>224.7<br>Avg =<br>225.8±1.6 | 221.1<br>221.4<br>Avg =<br>221.3±0.2 | 155.3<br>169.5<br>179.0<br>Avg =<br>167.9±11.9 |  |

## Table C-5 Oxidation Induction Temperature for AIW Cable PNI74AI025 (Group 2.1, Specimen 0201)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

|                                 | Oxidation Induction Temperature (°C)                   |                                                        |                                   |                                             |                                   |  |  |  |
|---------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|--|--|--|
| CM Point                        | OJ <sup>(a)</sup>                                      | IJB                                                    | IJW                               | IJR                                         | Insul.                            |  |  |  |
| A<br>[Unused]                   | 240.8<br>241.9<br>Avg = 241.3±0.87                     | (b)                                                    | 258.5                             | 260.9<br>259.4<br>260.9<br>Avg. = 260.4±0.9 | 242.6<br>246.7<br>Avg = 244.7±2.9 |  |  |  |
| В                               |                                                        | No change - no additional preaging after last CM Point |                                   |                                             |                                   |  |  |  |
| с                               | No change - no additional preaging after last CM Point |                                                        |                                   |                                             |                                   |  |  |  |
| D                               | No change - no additional preaging after last CM Point |                                                        |                                   |                                             |                                   |  |  |  |
| E                               | No change - no additional preaging after last CM Point |                                                        |                                   |                                             |                                   |  |  |  |
| F<br>[76.6 Mrad]                | 215.5<br>216.8<br>Avg = 216.2±0.9                      | 205.3<br>204.0<br>Avg = 204.7±0.9                      | 247.4<br>245.6<br>Avg = 246.5±1.3 | (b)                                         | 229.2<br>227.2<br>Avg = 228.2±1.4 |  |  |  |
| G<br>[F + 77.5 Mrad ]           | 200.2<br>198.2<br>Avg = 199.2±1.4                      | 186.3<br>187.3<br>Avg = 186.8±0.7                      | 228.1<br>229.7<br>Avg = 228.9±1.1 | (b)                                         | 211.7<br>209.5<br>Avg = 210.6±1.6 |  |  |  |
| H<br>[G + Steam/Chem.<br>Spray] | 228.2<br>227.4<br>Avg = 227.8±0.6                      | 224.6<br>221.2<br>Avg = 222.9±2.4                      | 226.1<br>220.1<br>Avg = 223.1±4.2 | (b)                                         | 165.5<br>166.8<br>Avg = 166.2±0.9 |  |  |  |

## Table C-6 Oxidation Induction Temperature for AIW Cable PNI74AI031(Group 2.1, Specimen 0202)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Not tested
| CM Boint                     |                                                        | 0                                    | xidation Inductio                    | n Temperature (                      | °C)                                  |                                       |
|------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| CMI Point                    | OJ <sup>(a)</sup>                                      | IJB                                  | IJW                                  | IJR                                  | IJG                                  | Insul.                                |
| A <sup>®)</sup><br>[Unused]  | 231.9<br>232.6<br>Avg =<br>232.2±0.5                   | 231.7<br>230.8<br>Avg =<br>231.3±0.6 | 256.5                                | 256.7<br>258.8<br>Avg<br>=257.8±1.5  | 256.5                                | 234.9<br>230.6<br>Avg =<br>232.7±3.0  |
| B<br>[A + 28.45 hrs @ 121°C] | 224.9<br>222.0<br>Avg =<br>223.5±2.1                   | 233.0<br>231.7<br>Avg =<br>232.4±0.9 | 258.6<br>259.8<br>Avg =<br>259.2±0.9 | 257.3<br>257.6<br>Avg =<br>257.5±0.2 | 255.1                                | 229.5<br>228.8<br>Avg =<br>229.2±0.5  |
| С                            | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                       |
| D<br>[B + 3.25 Mrad]         | 229.8<br>227.8<br>Avg =<br>228.8±1.4                   | 228.6<br>227.2<br>Avg =<br>227.9±1.0 | 255.5                                | 254.0<br>253.0<br>Avg =<br>253.5±0.7 | 256.2<br>255.5<br>Avg =<br>255.8±0.5 | 234.2<br>233.4<br>Avg =<br>233.8±0.6  |
| E                            |                                                        | No chang                             | e - no additional p                  | oreaging after last                  | CM Point                             | · · · · · · · · · · · · · · · · · · · |
| F<br>[D + 76.6 Mrad]         | 236.4<br>236.3<br>Avg<br>=236.4±0.1                    | 226.3<br>228.5<br>Avg =<br>227.4±1.6 | 244.9<br>245.1<br>Avg =<br>245.0±0.1 | 243.8<br>241.1<br>Avg =<br>242.5±1.9 | 248.6<br>247.7<br>Avg =<br>248.1±0.6 | 224.3<br>225.0<br>Avg =<br>224.7±0.5  |
| G                            | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                       |
| H<br>[F + Steam/Chem. Spray] | 228.9<br>227.9<br>Avg =<br>228.4±0.7                   | 223.6<br>226.0<br>Avg<br>=224.8±1.7  | 223.1<br>223.3<br>Avg =<br>223.2±0.1 | 220.9<br>218.5<br>Avg =<br>219.7±1.7 | 223.4<br>223.5<br>Avg =<br>223.5±0.1 | 195.7<br>190.0<br>Avg =<br>192.9±4.0  |

# Table C-7 Oxidation Induction Temperature for AIW Cable PNI74AI026(Group 2.2, Specimen 0203)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Baseline values of OI Temperature listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)

|                                           | Oxidation Induction Temperature (°C)                   |                                      |                                      |                                      |                                      |                                      |
|-------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| CM Point                                  | OJ <sup>(a)</sup>                                      | IJB                                  | IJW                                  | IJR                                  | IJG                                  | Insul.                               |
| A <sup>(b)</sup><br>[Unused]              | 231.9<br>232.6<br>Avg =<br>232.2±0.5                   | 231.7<br>230.8<br>Avg =<br>231.3±0.6 | 256.5                                | 256.7<br>258.8<br>Avg<br>=257.8±1.5  | 256.5                                | 234.9<br>230.6<br>Avg<br>=232.7±3.0  |
| B <sup>©</sup><br>[A + 28.45 hrs @ 121⁰C] | 224.9<br>222.0<br>Avg =<br>223.5±2.0                   | 233.0<br>231.7<br>Avg =<br>232.4±0.9 | 258.6<br>259.8<br>Avg =<br>259.2±0.9 | 257.3<br>257.6<br>Avg =<br>257.5±0.2 | 255.1                                | 229.5<br>228.8<br>Avg =<br>229.2±0.5 |
| С                                         | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                      |
| D <sup>(e)</sup><br>[B + 3.25 Mrad]       | 229.8<br>227.8<br>Avg =<br>228.8±1.4                   | 228.6<br>227.2<br>Avg =<br>227.9±1.0 | 255.5                                | 254.0<br>253.0<br>Avg =<br>253.5±0.7 | 256.2<br>255.5<br>Avg =<br>255.8±0.5 | 234.2<br>233.4<br>Avg<br>=233.8±0.6  |
| E                                         |                                                        | No chang                             | e - no additional pr                 | eaging after last C                  | M Point                              |                                      |
| F<br>[D + 76.6 Mrad]                      | 236.4<br>236.3<br>Avg =<br>236.4±0.1                   | 226.3<br>228.5<br>Avg =<br>227.4±1.6 | 244.9<br>245.1<br>Avg =<br>245.0±0.1 | 243.8<br>241.1<br>Avg =<br>242.5±1.9 | 248.6<br>247.7<br>Avg =<br>248.1±0.6 | 224.3<br>225.0<br>Avg =<br>224.7±0.5 |
| G<br>[F + 77.5 Mrad]                      | 214.7<br>214.1<br>Avg =<br>214.4±0.4                   | 196.0                                | 236.0<br>232.5<br>Avg =<br>234.3±2.5 | 225.0<br>221.1<br>Avg =<br>223.0±2.8 | 230.3<br>228.8<br>Avg =<br>229.6±1.1 | 210.0<br>211.2<br>Avg =<br>210.6±0.9 |
| H<br>[G + Steam/Chem. Spray]              | 213.6<br>213.9<br>Avg =<br>213.7±0.2                   | 206.9<br>206.0<br>Avg =<br>206.5±0.6 | 226.6<br>227.5<br>Avg =<br>227.1±0.6 | 226.1<br>224.8<br>Avg =<br>225.5±0.9 | 222.6<br>224.7<br>Avg =<br>223.7±1.5 | 169.5<br>173.8<br>Avg =<br>171.7±3.0 |

#### Table C-8 Oxidation Induction Temperature for AIW Cable PNI74AI027 (Group 2.2, Specimen 0205)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Baseline values of OI Temperature listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)
(c) Values of OI Temperature listed are for identical specimen PNI74AI026 (Group 2.2, Specimen 0203)

# Table C-9 Oxidation Induction Temperature for AIW Cable PNI74AI015(Group 2.3, Specimen 0207)

| CM Beint                        | Oxidation Induction Temperature (°C) |                                                        |                                      |                                      |                                      |                                      |  |
|---------------------------------|--------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| CWIPOINT                        | OJ <sup>(a)</sup>                    | IJB                                                    | IJW                                  | IJR                                  | IJG                                  | Insul.                               |  |
| A<br>[Nat. Aged<br>24 yrs]      | 228.2<br>229.7<br>Avg =<br>228.9±1.1 | 234.4<br>235.6<br>Avg =<br>235.0±0.9                   | 251.6                                | 250.6<br>252.7<br>Avg =<br>251.6±1.5 | 254.0                                | 229.0<br>232.6<br>Avg =<br>230.8±2.6 |  |
| В                               |                                      | No ch                                                  | ange - no additional                 | preaging after last (                | CM Point                             |                                      |  |
| с                               |                                      | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |  |
| D                               |                                      | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |  |
| Е                               |                                      | No ch                                                  | ange - no additional                 | preaging after last (                | CM Point                             |                                      |  |
| F<br>[A + 76.6 Mrad]            | 227.4<br>229.7<br>Avg =<br>228.6±1.6 | 224.5<br>225.6<br>Avg =<br>225.0±0.8                   | 238.2<br>238.7<br>Avg =<br>238.4±0.3 | 239.3<br>238.5<br>Avg =<br>238.9±0.6 | 245.2<br>245.7<br>Avg =<br>245.5±0.3 | 217.7<br>217.5<br>Avg =<br>217.6±0.1 |  |
| G<br>[F + 77.5 Mrad ]           | 216.3<br>217.1<br>Avg =<br>216.7±0.6 | 201.4<br>205.4<br>Avg =<br>203.4±2.8                   | 221.1<br>219.5<br>Avg =<br>220.3±1.1 | 222.0<br>221.6<br>Avg =<br>221.8±0.3 | 227.6<br>230.0<br>Avg =<br>228.8±1.7 | 203.3<br>202.4<br>Avg =<br>202.9±0.6 |  |
| H<br>[G + Steam/Chem.<br>Spray] | 220.3<br>219.2<br>Avg =<br>219.8±0.8 | 235.2<br>237.8<br>Avg =<br>236.5±1.8                   | 222.6<br>222.1<br>Avg =<br>222.4±0.3 | 221.3<br>219.0<br>Avg =<br>220.2±1.6 | 219.5<br>218.4<br>Avg =<br>219.0±0.8 | 186.8<br>183.7<br>Avg =<br>185.3±2.2 |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

|                                 | <u></u>                                                |                                      | Oxidation Inductio                   | n Temperature (°C                    | C)                                   |                                      |
|---------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| CM Point                        | OJ <sup>(a)</sup>                                      | IJB                                  | IJW                                  | IJR                                  | IJG                                  | Insul.                               |
| A<br>[Nat. Aged<br>24 yrs]      | 228.4<br>231.5<br>227.9<br>Avg =<br>229.2±2.0          | 236.6<br>236.5<br>Avg =<br>236.6±0.1 | 252.6                                | 251.2<br>251.5<br>Avg =<br>251.4±0.2 | 253.4                                | 228.3<br>234.3<br>Avg =<br>231.3±4.2 |
| В                               |                                                        | No cha                               | ange - no additional p               | preaging after last C                | CM Point                             |                                      |
| с                               |                                                        | No cha                               | ange - no additional p               | preaging after last (                | CM Point                             |                                      |
| D                               | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                      |
| Ē                               | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                      |
| F<br>[A + 76.6 Mrad]            | 228.0<br>229.2<br>229.2<br>Avg =                       | 207.2<br>208.0                       | 240.4<br>238.7<br>Ayg =              | 237.4<br>237.4<br>Avg = 237.4        | 243.0<br>241.9<br>Avg =              | 209.7<br>210.1<br>Avg =              |
|                                 | 228.8±0.7                                              | 207.6±0.6                            | 239.5±1.2                            |                                      | 242.5±0.8                            | 209.9±0.3                            |
| G<br>[F = 77.5 Mrad ]           | 214.6<br>216.3<br>Avg =<br>215.4±1.2                   | 197.0                                | 233.7<br>233.0<br>Avg =<br>233.4±0.5 | 229.2<br>226.9<br>Avg<br>=228.0±1.6  | 234.3<br>236.7<br>Avg =235.5±1.7     | 197.0<br>199.1<br>Avg =<br>198.1±1.5 |
| H<br>[G + Steam/Chem.<br>Spray] | 204.2<br>204.6<br>Avg =<br>204.4±0.3                   | 200.4<br>201.4<br>Avg =<br>200.9±0.7 | 220.8<br>221.6<br>Avg =221.2±0.6     | 217.2<br>218.5<br>Avg =<br>217.9±0.9 | 224.2<br>220.6<br>Avg =<br>222.4±2.6 | 179.8<br>174.5<br>Avg =<br>177.2±3.8 |

# Table C-10 Oxidation Induction Temperature for AIW Cable PNI74AI019(Group 2.3, Specimen 0210)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

.

| CM Point                     | Oxidation Induction Temperature (°C)                   |                                                        |                                      |                                      |                                      |                                      |  |
|------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
|                              | OJ <sup>(a)</sup>                                      | IJB                                                    | IJW                                  | IJR                                  | IJG                                  | Insul.                               |  |
| A®<br>[Unused]               | 231.9<br>232.6<br>Avg<br>=232.2±0.5                    | 231.7<br>230.8<br>Avg =<br>231.3±0.6                   | 256.5                                | 256.7<br>258.8<br>Avg<br>=257.8±1.5  | 256.5                                | 234.9<br>230.6<br>Avg =<br>232.7±3.0 |  |
| В                            |                                                        | No chang                                               | ge - no additional j                 | preaging after last                  | CM Point                             |                                      |  |
| C<br>[A +82.5 hrs @ 121ºC]   | 221.7<br>224.1<br>Avg =<br>222.9±1.7                   | 2248<br>225.4<br>Avg =<br>225.1±0.4                    | 257.9<br>258.0<br>Avg =<br>257.9±0.1 | 255.9<br>257.0<br>Avg =<br>256.5±0.8 | 257.4<br>257.4<br>Avg = 257.4        | 232.6<br>232.2<br>Avg =<br>232.4±0.3 |  |
| D                            |                                                        | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |  |
| E<br>[C + 25.8 Mrad]         | 227.7<br>225.3<br>Avg =<br>226.5±1.7                   | 227.3<br>227.5<br>Avg =<br>227.4±0.1                   | 255.4                                | 252.2<br>252.5<br>Avg =<br>252.3±0.2 | 254.1                                | 223.9<br>221.2<br>Avg =<br>222.6±1.9 |  |
| F<br>[E + 76.6 Mrad]         | 229.3<br>228.7<br>Avg =<br>229.0±0.4                   | 222.0<br>221.6<br>Avg =<br>221.8±0.3                   | 239.7<br>239.3<br>Avg =<br>239.5±0.3 | 237.6<br>237.6<br>Avg = 237.6        | 247.2<br>247.6<br>Avg =<br>247.4±0.3 | 218.0<br>219.9<br>Avg =<br>219.0±1.3 |  |
| G                            | No change - no additional preaging after last CM Point |                                                        |                                      |                                      |                                      |                                      |  |
| H<br>[F + Steam/Chem. Spray] | 218.2<br>218.3<br>Avg =<br>218.2±0.1                   | 208.6<br>207.7<br>Avg =<br>208.2±0.6                   | 222.9<br>223.3<br>Avg =<br>223.1±0.3 | 226.4<br>228.0<br>Avg =<br>227.2±1.1 | 225.0<br>223.2<br>Avg =<br>224.1±1.3 | 168.6<br>167.9<br>Avg =<br>168.2±0.5 |  |

### Table C-11 Oxidation Induction Temperature for AIW Cable PNI74AI028 (Group 2.4, Specimen 0212)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Baseline values of OI Temperature listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)

.

| Oxidation Inde                            |                                                        |                                      |                                      | tion Temperature (°C)                |                                      |                                      |
|-------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| CM Point                                  | OJ <sup>(a)</sup>                                      | IJB                                  | IJW                                  | IJR                                  | IJG                                  | Insul.                               |
| A <sup>©</sup><br>[Unused]                | 231.9<br>232.6<br>Avg =<br>232.2±0.5                   | 231.7<br>230.8<br>Avg =<br>231.3±0.6 | 256.5                                | 256.7<br>258.8<br>Avg =<br>257.8±1.5 | 256.5                                | 234.9<br>230.6<br>Avg =<br>232.7±3.0 |
| В                                         |                                                        | No chan                              | ge - no additional p                 | reaging after last C                 | M Point                              |                                      |
| C <sup>(0)</sup><br>[A +82.5 hrs @ 121°C] | 221.7<br>224.1<br>Avg =<br>222.9±1.7                   | 2248<br>225.4<br>Avg =<br>225.1±0.4  | 257.9<br>258.0<br>Avg =<br>257.9±0.1 | 255.9<br>257.0<br>Avg =<br>256.5±0.8 | 257.4<br>257.4<br>Avg = 257.4        | 232.6<br>232.2<br>Avg =<br>232.4±0.3 |
| D .                                       | No change - no additional preaging after last CM Point |                                      |                                      |                                      |                                      |                                      |
| E <sup>ஞ</sup><br>[C + 25.8 Mrad]         | 227.7<br>225.3<br>Avg =<br>226.5±1.7                   | 227.3<br>227.5<br>Avg =<br>227.4±0.1 | 255.4                                | 252.2<br>252.5<br>Avg =<br>252.3±0.2 | 254.1                                | 223.9<br>221.2<br>Avg =<br>222.6±1.9 |
| F <sup>(4)</sup><br>[E + 76.6 Mrad]       | 229.3<br>229.0<br>Avg =<br>229.0±0.4                   | 222.0<br>221.6<br>Avg =<br>221.8±0.3 | 239.7<br>239.3<br>Avg =<br>239.5±0.3 | 237.6<br>237.6<br>Avg = 237.6        | 247.2<br>247.6<br>Avg =<br>247.4±0.3 | 218.0<br>219.9<br>Avg =<br>219.0±1.3 |
| G<br>[F + 77.5 Mrad]                      | 216.9<br>215.9<br>Avg =<br>216.4±0.7                   | 199.1                                | 231.7                                | 228.5<br>230.3<br>Avg =<br>229.4±1.3 | 226.1                                | 200.1<br>200.7<br>Avg =<br>200.4±0.4 |
| H<br>[G + Steam/Chem.<br>Spray]           | 161.1<br>164.9<br>Avg<br>=163.0±2.7                    | 192.4<br>197.6<br>Avg =<br>195.0±3.7 | 232.2<br>230.0<br>Avg =<br>231.1±1.6 | 222.8<br>224.4<br>Avg =<br>223.6±1.1 | (b)                                  | 170.2<br>169.6<br>Avg =<br>169.9±0.4 |

#### Table C-12 Oxidation Induction Temperature for AIW Cable PNI74AI028 (Group 2.4, Specimen 0213)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Not tested

(c) Baseline values of OI Temperature listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)
 (d) Values of OI Temperature listed are for identical specimen PNI74AI028 (Group 2.4, Specimen 0212)

|                              | Oxidation Induction Temperature (°C) |                                                        |                                      |                                               |                                   |  |  |
|------------------------------|--------------------------------------|--------------------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------|--|--|
|                              | OJ <sup>(a)</sup>                    | IJB                                                    | IJW                                  | IJR                                           | Insul.                            |  |  |
| A <sup>(e)</sup><br>[Unused] | 240.8<br>241.9<br>Avg = 241.3±0.8    | (b)                                                    | 258.5                                | 260.9<br>259.4<br>260.9<br>Avg ≈<br>260.4±0.9 | 242.6<br>246.7<br>Avg = 244.7±2.9 |  |  |
| В                            |                                      | No change - no a                                       | additional preaging after            | er last CM Point                              |                                   |  |  |
| C<br>[A +82.5 hrs @ 121°C]   | 231.8<br>230.3<br>Avg = 231.0±1.1    | 223.0<br>219.2<br>Avg = 221.1±2.7                      | 262.0<br>262.1<br>Avg = 262.0±0.1    | (b)                                           | 218.6<br>223.0<br>Avg = 220.8±3.1 |  |  |
| D                            |                                      | No change - no additional preaging after last CM Point |                                      |                                               |                                   |  |  |
| E<br>[C + 25.8 Mrad]         | 225.9<br>221.6<br>Avg = 223.8±3.0    | 228.8<br>228.0<br>Avg = 228.4±0.6                      | 250.6<br>249.8<br>Avg = 250.2±0.6    | (b)                                           | 224.9<br>223.0<br>Avg = 223.9±1.3 |  |  |
| F<br>[E + 76.6 Mrad]         | 198.8<br>198.3<br>Avg = 198.6±0.4    | 186.4<br>188.6<br>Avg = 187.5±1.6                      | 246.3<br>249.5<br>Avg = 247.9±2.3    | (b)                                           | 223.6<br>222.2<br>Avg = 222.9±1.0 |  |  |
| G<br>[F + 77.5 Mrad]         | 179.7<br>171.5<br>Avg = 175.6±5.8    | 177.0<br>174.7<br>Avg = 175.9±1.6                      | 238.8<br>238.6<br>Avg = 238.7±0.1    | (b)                                           | 198.0<br>197.4<br>Avg = 197.7±0.4 |  |  |
| H<br>[G + Steam/Chem. Spray] | 148.2<br>149.5<br>Avg = 148.9±0.9    | 233.6<br>232.5<br>Avg = 233.1±0.8                      | 231.3<br>230.2<br>Avg =<br>230.8±0.8 | (b)                                           | 168.1<br>171.5<br>Avg = 169.8±0.4 |  |  |

# Table C-13 Oxidation Induction Temperature for AIW Cable PNI74AI032(Group 2.4, Specimen 0214)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Not tested

(c) Baseline values of OI Temperature listed are for identical specimen PNI74AI031 (Group 2.1, Specimen 0202)

|                              | Oxidation Induction Temperature ( <sup>a</sup> C)      |                                          |                                   |  |  |
|------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------|--|--|
| CM Point                     | Neopren                                                | White XI PF                              |                                   |  |  |
| Γ                            | First Peak                                             | Second Peak                              | Winte ALT E                       |  |  |
| A<br>[Unused]                | 209.5<br>210.1<br>Avg = 209.8±0.4                      | 301.3<br>298.2<br>Avg = 299.8±2.2        | 245.1<br>246.0<br>Avg = 245.6±0.6 |  |  |
| В                            | No change                                              | e - no additional preaging after last CM | I Point                           |  |  |
| С                            | No change - no additional preaging after last CM Point |                                          |                                   |  |  |
| D                            | No change - no additional preaging after last CM Point |                                          |                                   |  |  |
| Е                            | No change                                              | e - no additional preaging after last CM | 1 Point                           |  |  |
| F<br>[A + 76.65 Mrad]        | 205.1<br>206.1<br>Avg = 205.6±0.7                      | 296.6<br>297.1<br>Avg = 296.9±0.3        | 243.3<br>241.9<br>Avg = 242.6±1.0 |  |  |
| G<br>[F + 76.75 Mrad]        | 207.9<br>209.4<br>Avg = 208.7±1.1                      | 285.2<br>285.4<br>Avg = 285.3±0.1        | 238.3<br>238.2<br>Avg = 238.3±0.1 |  |  |
| H<br>[G + Steam/Chem. Spray] | 202.3<br>203.6<br>Avg = 202.9±0.9                      | 286.9<br>289.6<br>Avg = 288.3±1.9        | 213.3<br>213.0<br>Avg=213.1±0.2   |  |  |

# Table C-14 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188(Group 3.1, Specimen 0301)

| CM Point                     | Oxidation Induction Temperature (°C)                   |                                       |                                   |  |  |
|------------------------------|--------------------------------------------------------|---------------------------------------|-----------------------------------|--|--|
|                              | Neopren                                                | e® Jacket                             |                                   |  |  |
|                              | First Peak                                             | Second Peak.                          | White XLPE                        |  |  |
| A<br>[Unused]                | 209.9<br>208.5<br>Avg = 209.2±1.0                      | 299.5<br>301.3<br>Avg = 300.4±1.3     | 270.0<br>268.9<br>Avg = 269.5±0.8 |  |  |
| В                            | No chang                                               | e - no additional preaging after last | CM Point                          |  |  |
| C                            | No change - no additional preaging after last CM Point |                                       |                                   |  |  |
| D                            | No change - no additional preaging after last CM Point |                                       |                                   |  |  |
| E                            | No chang                                               | e - no additional preaging after last | CM Point                          |  |  |
| F<br>[A +76.65 Mrad]         | 209.0<br>208.2<br>Avg = 208.6±0.6                      | 295.8<br>297.4<br>Avg = 296.6±1.1     | 268.2<br>269.7<br>Avg = 269.0±1.1 |  |  |
| G<br>[F + 76.75 Mrad]        | 194.3<br>192.9<br>Avg = 193.6±1.0                      | 285.3<br>288.4<br>Avg = 286.9±2.2     | 264.6<br>267.3<br>Avg = 266.0±1.9 |  |  |
| H<br>[G + Steam/Chem. Spray] | 213.6<br>213.9<br>Avg = 213.7±0.2                      | 289.4<br>291.2<br>Avg = 290.3±1.3     | 272.9<br>272.4<br>Avg = 272.6±0.3 |  |  |

# Table C-15 Oxidation Induction Temperature for Rockbestos Cable PNI85RB191(Group 3.1, Specimen 0302)

|                              | Oxidation Induction Temperature (°C)                   |                                        |                                   |  |  |
|------------------------------|--------------------------------------------------------|----------------------------------------|-----------------------------------|--|--|
| CM Point                     | Neoprene                                               | White VI DE                            |                                   |  |  |
|                              | First Peak                                             | Second Peak.                           | white ALPE                        |  |  |
| A<br>[Unused]                | 209.9<br>208.5<br>Avg = 209.2±1.0                      | 299.5<br>301.3<br>Avg = 300.4±1.3      | 270.0<br>268.9<br>Avg = 269.5±0.8 |  |  |
| B<br>[A + 9.93 hrs @ 120°C]  | 209.9<br>209.0<br>Avg = 209.5±0.6                      | 298.8<br>300.6<br>Avg = 299.7±1.3      | 269.2<br>269.2<br>Avg = 269.2     |  |  |
| С                            | No change - no additional preaging after last CM Point |                                        |                                   |  |  |
| D<br>[B + 2.27 Mrad]         | 208.9<br>212.2<br>Avg = 210.6±2.3                      | 296.0<br>293.4<br>Avg = 294.7±1.8      | 271.0<br>270.4<br>Avg = 270.7±0.4 |  |  |
| E                            | No chan                                                | ge - no additional preaging after last | CM Point                          |  |  |
| F<br>[D + 76.65 Mrad]        | 189.8<br>199.9<br>Avg = 194.9±7.1                      | 294.7<br>296.3<br>Avg = 295.5±1.1      | 266.3<br>266.7<br>Avg = 266.5±0.3 |  |  |
| G<br>[F + 76.75 Mrad]        | 202.6<br>198.7<br>Avg = 200.6±2.8                      | 282.5<br>286.6<br>Avg = 284.5±2.9      | 269.8<br>270.3<br>Avg = 270.0±0.3 |  |  |
| H<br>[G + Steam/Chem. Spray] | 210.6<br>211.7<br>Avg = $211.2\pm0.8$                  | 290.2<br>292.6<br>Avg = 291.4±1.7      | 272.5<br>274.2<br>Avg = 273.3±1.2 |  |  |

# Table C-16 Oxidation Induction Temperature for Rockbestos Cable PNI85RB191(Group 3.2 Specimen 0303)

|                              | (                                                      | Dxidation Induction Temperature       | (°C)                              |  |  |  |
|------------------------------|--------------------------------------------------------|---------------------------------------|-----------------------------------|--|--|--|
| CM Point                     | Neopren                                                | White XLPE                            |                                   |  |  |  |
|                              | First Peak                                             | Second Peak.                          |                                   |  |  |  |
| A<br>[Naturally aged 10 yrs] | 208.9<br>209.9<br>Avg = 209.4±0.7                      | 304.3<br>301.8<br>Avg = 303.1±1.8     | 269.7<br>269.7<br>Avg = 269.7     |  |  |  |
| В                            | No change - no additional preaging after last CM Point |                                       |                                   |  |  |  |
| С                            | No change - no additional preaging after last CM Point |                                       |                                   |  |  |  |
| D                            | No change - no additional preaging after last CM Point |                                       |                                   |  |  |  |
| E                            | No chan                                                | ge - no additional preaging after las | st CM Point                       |  |  |  |
| F<br>[A + 76.65 Mrad]        | 203.6<br>199.9<br>Avg = 201.7±2.6                      | 297.3<br>299.3<br>Avg = 298.4±1.4     | 268.9<br>269.5<br>Avg = 269.2±0.4 |  |  |  |
| G<br>[F + 76.75 Mrad]        | 207.6<br>211.5<br>Avg = 209.6±2.8                      | 297.6<br>299.0<br>Avg = 298.3±1.0     | 268.8<br>269.2<br>Avg =269.0±0.3  |  |  |  |
| H<br>[G + Steam/Chem. Spray] | 205.7<br>207.4<br>Avg = 206.6±1.2                      | 289.6<br>288.9<br>Avg = 289.2±0.5     | 271.9<br>271.2<br>Avg = 271.6±0.5 |  |  |  |

# Table C-17 Oxidation Induction Temperature for Rockbestos Cable PAP86RB229(Group 3.3, Specimen 0307)

|                              | Oxidation Induction Temperature (°C) |                                        |                                   |  |  |
|------------------------------|--------------------------------------|----------------------------------------|-----------------------------------|--|--|
| CM Point                     | Neopren                              | e® Jacket                              | White XLPE                        |  |  |
|                              | First Peak                           | Second peak.                           |                                   |  |  |
| A<br>[Unused]                | 209.5<br>210.1<br>Avg = 209.8±0.4    | 301.3<br>298.2<br>Avg = 299.8±2.2      | 245.1<br>246.6<br>Avg = 245.8±1.1 |  |  |
| В                            | No chang                             | ge - no additional preaging after last | CM Point                          |  |  |
| C<br>[A + 1301 hrs @ 150°C]  | 212.5<br>211.1<br>Avg = 211.8±1.0    | (a)                                    | 213.7<br>212.1<br>Avg = 212.9±1.1 |  |  |
| D                            | No chan                              | ge - no additional preaging after las  | t CM Point                        |  |  |
| E<br>[C + 51.5 Mrad ]        | 207.4<br>208.2<br>Avg = 207.8±0.6    | (a)                                    | 211.9<br>213.2<br>Avg = 212.5±0.9 |  |  |
| F<br>[E = 76.65 Mrad]        | 201.4<br>206.0<br>Avg = 203.7±3.3    | (a)                                    | 218.2<br>218.7<br>Avg = 218.5±0.3 |  |  |
| G<br>[F + 76.75 Mrad]        | 210.9<br>209.2<br>Avg = 210.0±1.2    | (a)                                    | 221.8<br>223.4<br>Avg = 222.6±1.1 |  |  |
| H<br>[G + Steam/Chem. Spray] | 192.8<br>189.6<br>Avg = 191.2±2.3    | (a)                                    | 194.6<br>192.2<br>Avg = 193.4±1.7 |  |  |

# Table C-18 Oxidation Induction Temperature for Rockbestos Cable PNI79RB188(Group 3.4, Specimen 0312)

(a) Peak not observed for current test conditions

#### Table C-19 Oxidation Induction Temperature for Anaconda Cable DNP78AN008 (Group 4.3, Specimen 0407) Aged to 20 Years

| CM Deint                                   | Oxidation Induction Temperature (°C)                   |                                   |                                   |                    |                                               |  |  |
|--------------------------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------|-----------------------------------------------|--|--|
| CWFOIII                                    | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup>                | IJW <sup>(a)</sup>                | IJR <sup>(a)</sup> | Insul <sup>(a)</sup> .                        |  |  |
| A <sup>(d)</sup><br>[Unused]               | 247.6<br>246.5<br>247.1<br>247.0<br>Avg = 247.0±0.4    | 235.2<br>234.8<br>Avg = 235.0±0.3 | 233.6<br>232.0<br>Avg = 232.8±1.1 | (c)                | 225.0<br>226.0<br>Avg = 225.5±0.7             |  |  |
| B <sup>&amp;)</sup><br>[A +84 hrs @ 150°C] | (c)                                                    | (c)                               | (c)                               | (c)                | (c)                                           |  |  |
| C                                          | No change - no additional preaging after last CM Point |                                   |                                   |                    |                                               |  |  |
| D <sup>(b)</sup><br>[C + 25.7 Mrad]        | (c)                                                    | (c)                               | (c)                               | (c)                | 186.6<br>183.0<br>Avg = 184.8±2.6             |  |  |
| Е                                          |                                                        |                                   |                                   |                    | <u>, , , , , , , , , , , , , , , , , , , </u> |  |  |
| F<br>[E + 77.1 Mrad]                       |                                                        | No change - no ad                 | ditional preaging after las       | t CM Point         |                                               |  |  |
| G<br>[F + 77.7 Mrad]                       |                                                        |                                   |                                   |                    |                                               |  |  |
| H<br>[G + Steam/Chem.<br>Spray]            | · · ·                                                  |                                   |                                   |                    |                                               |  |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Aged to 20 years(c) Not tested

(d) Baseline values of OI Temperature listed are for identical specimen DNP78AN008 (Group 4.1, Specimen 0401)

| Table C-20 Oxidation Induction Temperature for Anaconda Cable DNP78AN008 |  |
|--------------------------------------------------------------------------|--|
| (Group 4.3, Specimen 0407) Aged to 40 Years                              |  |

|                                         | Oxidation Induction Temperature ( <sup>®</sup> C) |                    |                          |                    |                                         |  |
|-----------------------------------------|---------------------------------------------------|--------------------|--------------------------|--------------------|-----------------------------------------|--|
| CM Point                                | OJ <sup>(a)</sup>                                 | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>       | IJR <sup>(s)</sup> | Insul®.                                 |  |
| A <sup>to</sup><br>[Unused]             | 247.6<br>246.5<br>247.1<br>247.0                  | 235.2<br>234.8     | 233.6<br>232.0           | (c)                | $225.0 \\ 226.0 \\ Avg = 225.5 \pm 0.7$ |  |
| P                                       | Avg = 247.0±0.4                                   | No change - no a   | dditional preaging after | last CM Point      | 1                                       |  |
| В                                       |                                                   |                    |                          |                    |                                         |  |
| C <sup>6)</sup><br>[A +168 hrs @ 150°C] | (c)                                               | (c)                | (c) .                    | (c)                | (c)                                     |  |
| D                                       |                                                   | No change - no a   | dditional preaging after | r last CM Point    |                                         |  |
| E <sup>®)</sup><br>[C + 53.6 Mrad]      | (¢)                                               | (c)                | (c)                      | (c)                | 166.1<br>166.4<br>Avg = 166.2±0.2       |  |
| F<br>[E + 77.1 Mrad]                    | (c)                                               | (c)                | (c)                      | (c)                | (c)                                     |  |
| G<br>[F + 77.7 Mrad]                    | (c)                                               | (c)                | (c)                      | (c)                | (c)                                     |  |
| H<br>[G + Steam/Chem. Spray]            | (c)                                               | (c)                | (c)                      | (c)                | (c)                                     |  |

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Aged to 40 years service
(c) Not tested
(d) Baseline values of OI Temperature listed are for identical specimen DNP78AN008 (Group 4.1, Specimen 0401)

|                              | Oxidation Induction Temperature (°C) |                                                        |                       |                     |                                   |  |
|------------------------------|--------------------------------------|--------------------------------------------------------|-----------------------|---------------------|-----------------------------------|--|
| CMI Point                    | OJ <sup>(a)</sup>                    | IJB <sup>(a)</sup>                                     | IJW <sup>(*)</sup>    | IJR <sup>(*)</sup>  | Insul <sup>(a)</sup> .            |  |
| A<br>[Unused]                | (b)                                  | (b)                                                    | (b)                   | (b)                 | 228.8<br>227.5<br>Avg = 228.1±0.9 |  |
| В                            |                                      | No change - no a                                       | additional preaging a | after last CM Point |                                   |  |
|                              |                                      | No change - no additional preaging after last CM Point |                       |                     |                                   |  |
| D                            |                                      | No change - no additional preaging after last CM Point |                       |                     |                                   |  |
| E                            |                                      | No change - no a                                       | additional preaging a | after last CM Point |                                   |  |
| F<br>[E + 77.1 Mrad]         | (b)                                  | (b)                                                    | (b)                   | (b)                 | (b)                               |  |
| G<br>[F + 77.7 Mrad]         | (b)                                  | (b)                                                    | (b)                   | (c)                 | (b)                               |  |
| H<br>[G + Steam/Chem. Spray] | (b)                                  | (b)                                                    | (b)                   | (b)                 | (b)                               |  |

# Table C-21 Oxidation Induction Temperature for Anaconda Cable DNP78AN008(Group 5.1, Specimen 0503)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

.

(b) Not tested

|                                       | Oxidation Induction Temperature (°C)                   |                    |                       |                     |                                         |  |
|---------------------------------------|--------------------------------------------------------|--------------------|-----------------------|---------------------|-----------------------------------------|--|
| CM Point                              | OJ <sup>(a)</sup>                                      | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>    | IJR <sup>(a)</sup>  | Insul <sup>(a)</sup> .                  |  |
| A <sup>(c)</sup><br>[Unused]          | (b)                                                    | (b)                | (b)                   | (b)                 | 228.8<br>227.5<br>Avg = 228.1±0.9       |  |
| B <sup>to</sup><br>[A +84 hrs @ 121℃] | (b)                                                    | (b)                | (b)                   | (b)                 | (b)                                     |  |
| C'                                    | No change - no additional preaging after last CM Point |                    |                       |                     |                                         |  |
| D <sup>(b)</sup><br>[B + 25.7 Mrad]   | (b)                                                    | (b)                | (b)                   | (b)                 | 208.8<br>206.4<br>$Avg = 207.6 \pm 1.7$ |  |
| E                                     |                                                        | No change - no     | additional preaging a | after last CM Point |                                         |  |
| F<br>[E + 77.1 Mrad]                  | (b)                                                    | (b)                | (b) .                 | (b)                 | (b)                                     |  |
| G<br>[F + 77.7 Mrad]                  | (b)                                                    | (b)                | (b)                   | (b)                 | (b)                                     |  |
| H<br>[G + Steam/Chem. Spray]          | (b)                                                    | (b)                | (b)                   | (b)                 | (b)                                     |  |

#### Table C-22 Oxidation Induction Temperature for Anaconda Cable DNP78AN008 (Group 5.2, Specimen 0508)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation .

(b) Not tested

.

(c) Baseline values of OI Temperature listed are for identical specimen DNP78AN008 (Group 5.1, Specimen 0503)

| CM Deint                     | Oxidation Induction Temperature (°C) |                    |                       |                    |                                   |  |  |
|------------------------------|--------------------------------------|--------------------|-----------------------|--------------------|-----------------------------------|--|--|
|                              | OJ <sup>(a)</sup>                    | IJB <sup>(a)</sup> | IJW <sup>(a)</sup>    | IJR <sup>(a)</sup> | Insul <sup>(a)</sup> .            |  |  |
| A <sup>(C)</sup><br>[Unused] | (b)                                  | (b)                | (b)                   | (b)                | 228.8<br>227.5<br>Avg = 228.1±0.9 |  |  |
| В                            |                                      | No change - no     | additional preaging a | fter last CM Point |                                   |  |  |
| C<br>[168h@150ºC]            | (b)                                  | (b)                | (b)                   | (b)                | (b)                               |  |  |
| D                            |                                      | No change - no     | additional preaging a | fter last CM Point |                                   |  |  |
| E<br>[C+53.6 Mrad]           | (b)                                  | (b)                | (b)                   | (b)                | 166.9<br>166.0<br>Avg = 166.4±0.6 |  |  |
| F<br>[E + 77.1 Mrad]         | (b)                                  | (b)                | (b)                   | (b)                | (b)                               |  |  |
| G<br>[F + 77.7 Mrad]         | (b)                                  | (b)                | (b)                   | (c)                | (b)                               |  |  |
| H<br>[G + Steam/Chem. Spray] | (b)                                  | (b)                | (b)                   | (b)                | (b)                               |  |  |

## Table C-23 Oxidation Induction Temperature for Anaconda Cable DNP78AN008(Group 5.3, Specimen 0515)

(a) OJ = Hypalon® outer jacket, IJB = Hypalon® black individual jacket, IJW = Hypalon® white individual jacket, IJR = Hypalon® red individual jacket, Insul. = EPR insulation

(b) Not tested

(c) Baseline values of OI Temperature listed are for identical specimen DNP78AN008 (Group 5.1, Specimen 0503)

| Group                   | Material                 | Aging Protocol               | Equivalent Aging Time<br>at 140°F (60°C), (y) | Oxidation Induction<br>Temperature<br>(°C) |
|-------------------------|--------------------------|------------------------------|-----------------------------------------------|--------------------------------------------|
| 2.4<br>(Specimen 0213A) | AIW<br>(PNI74A1028)      | None                         | 0                                             | 234.9<br>230.6<br>Avg = 232.7±3.0          |
| 2.4<br>(Specimen 0214A) | AIW<br>(PNI74AI032)      | None                         | 0                                             | 242.6<br>246.7<br>Avg = 244.7±2.9          |
| 2.2<br>(Specimen 0205D) | AIW<br>(PNI74A1027)      | 28.45h@ 121°C<br>+ 3.25 Mrad | 1.9                                           | 234.2<br>233.4<br>Avg = 233.8±0.6          |
| 2.4<br>(Specimen 0213E) | AIW<br>(PNI74AI028)      | 82.5h@ 121°C<br>+ 25.8 Mrad  | 5.48                                          | 223.9<br>221.2<br>Avg = 222.6±1.9          |
| 2.4<br>(Specimen 0214E) | AIW<br>(PNI74AI032)      | 82.5h@ 121°C<br>+ 25.8 Mrad  | 5.48                                          | 224.9<br>223.0<br>Avg = 223.9±1.3          |
| 4.3<br>(Specimen 0407A) | Anaconda<br>(DNP78AN008) | None                         | 0                                             | 225.0<br>226.0<br>Avg = 225.5±0.7          |
| 5.1<br>(Specimen 0503A) | As above                 | None                         | 0                                             | 228.8<br>227.5<br>Avg = 228.1±0.9          |
| 4.3<br>(Specimen 0407D) | As above                 | 84h@ 150°C<br>+ 25.7 Mrad    | 59.9                                          | $186.6 \\ 183.0 \\ Avg = 184.8 \pm 2.6$    |
| 5.2<br>(Specimen 0508D) | As above                 | As above                     | 59.9                                          | 208.8<br>206.4<br>Avg = 207.6±1.7          |
| 4.3<br>(Specimen 0407E) | As above                 | 168h@ 150⁰C<br>+ 53.6 Mrad   | 120                                           | $166.1 \\ 166.4 \\ Avg = 166.2 \pm 0.2$    |
| 5.3<br>(Specimen 0515E) | As above                 | As above                     | 120                                           | 166.9<br>166.0<br>Avg = 166.4±0.6          |

### Table C-24 Oxidation Induction Temperature Results for EPR Insulation as a Function of Simulated Service Aging at 140°F (60°C)

|                         |                     |                                 | Equiv. Aging<br>Time at | Oxidation Induction Temperature (°C) |                                   |                             |
|-------------------------|---------------------|---------------------------------|-------------------------|--------------------------------------|-----------------------------------|-----------------------------|
| Group                   | Material            | Aging<br>Protocol               | 140°F (60°C)<br>(yr)    | Black Outer<br>Jacket.               | Black Indiv.<br>Jacket            | Avg. for Colored<br>Jackets |
| 2.4<br>(Specimen 0213A) | AIW<br>(PNI74AI028) | None                            | 0                       | 231.9<br>232.6<br>Avg = 232.2±0.5    | 231.7<br>230.8<br>Avg = 231.3±0.6 | Avg = 256.9±0.8             |
| 2.4<br>(Specimen 0214A) | AIW<br>(PNI74AI032) | None                            | 0                       | 233.1<br>235.0<br>Avg = 234.0±1.3    | 240.8<br>241.9<br>Avg = 241.3±0.8 | Avg = 259.4±1.3             |
| 2.2<br>(Specimen 0205D) | AIW<br>(PNI74A1027) | 28.45h@<br>121°C<br>+ 3.25 Mrad | 2.6                     | 229.8<br>227.8<br>Avg = 228.8±1.4    | 228.6<br>227.2<br>Avg = 227.9±1.0 | Avg = 254.9±1.2             |
| 2.4<br>(Specimen 0213E) | AIW<br>(PNI74A1028) | 82.5h@<br>121°C<br>+ 25.8 Mrad  | 7.6                     | 227.7<br>225.3<br>Avg = 226.5±1.7    | 227.3<br>227.5<br>Avg = 227.4±0.1 | Avg = 253.9±1.6             |
| 2.4<br>(Specimen 0214E) | AIW<br>(PNI74AI032) | 82.5h@<br>121⁰C<br>+ 25.8 Mrad  | 7.6                     | 225.9<br>221.6<br>Avg = 223.8±3.0    | 228.8<br>228.0<br>Avg = 228.4±0.6 | Avg = 250.2±0               |

# Table C-25 Oxidation Induction Temperature Results for Hypalon® Jackets as aFunction of Simulated Service Aging at 140°F (60°C)

## Appendix D

----

Fourier Transform Infrared Spectroscopy Data

٠

## Tables

| <u>Title</u> Pag                                                                                                                 | ge |
|----------------------------------------------------------------------------------------------------------------------------------|----|
| Table D-1 FTIR Results for AIW Cable PNI74AI025 (Group 2.1, Series 0201)       Description         Description       Description | -3 |
| Table D-2 FTIR Results for AIW Cable PNI74AI027 (Group 2.2, Series 0205)       D-2                                               | -4 |
| Table D-3 FTIR Results for AIW Cable PAI74AI019 (Group 2.3, Series 0210)       D-         D-       D-                            | -5 |
| Table D-4 FTIR Results for AIW Cable PNI74AI028 (Group 2.4, Series 0213)       D-4                                               | -6 |
| Table D-5 FTIR Results for Rockbestos Cable PNI79RB188 (Group 3.1, Series 301)       D-                                          | -7 |
| Table D-6 FTIR Results for Rockbestos Cable PNI85 RB191 (Group 3.1 Series 0302)       D-0                                        | -8 |
| Table D-7 FTIR Results for Rockbestos Cable PNI85RB191 (Group 3.2, Series 0303)       D-                                         | -9 |
| Table D-8 FTIR Results for Rockbestos Cable PAP86RB229 (Group 3.3, Series 0307)       D-1                                        | 10 |
| Table D-9 FTIR Results for Rockbestos Cable PNI79RB188 (Group 3.4, Series 0312)       D-1                                        | 11 |
| Table D-10 FTIR Results for Irradiated Black XLPE Insulation From Rockbestos Cable PNI79RB188 D-1                                | 12 |
| Table D-11 FTIR Results for AIW EPR/Hypalon Cables as a Function of Service Aging       D-1                                      | 13 |
| Table D-12 FTIR Results for AIW EPR/Hypalon Cables as a Function of         Service Aging and Elongation-at-Break         D-1    | 14 |

## Table D-1 FTIR Results for AIW Cable PNI74AI025 (Group 2.1, Series 0201)

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup>       |                                                 |                                             |  |  |
|------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--|--|
| CM Point                     | Hypalon <sup>®</sup> Outer Jacket                      | Hypalon <sup>®</sup> White<br>Individual Jacket | EPR Insulation                              |  |  |
| A<br>[Unused]                | 21.3<br>17.2<br>12.1<br>Avg = 16.9±4.6                 | 9.6<br>10.4<br>11.9<br>Avg = 10.6±1.2           | $10.1 \\ 11.1 \\ 9.9 \\ Avg = 10.4 \pm 0.6$ |  |  |
| В                            | No chang                                               | e - no additional preaging after last           | t CM Point                                  |  |  |
| С                            | No change - no additional preaging after last CM Point |                                                 |                                             |  |  |
| D                            | No change - no additional preaging after last CM Point |                                                 |                                             |  |  |
| Е                            | No chang                                               | e - no additional preaging after las            | t CM Point                                  |  |  |
| F<br>[A + 76.6 Mrad]         | 15.5<br>22.8<br>15.6<br>Avg = 18.0±4.1                 | 10.9<br>10.4<br>11.3<br>Avg = 10.8±0.4          | 8.0<br>10.8<br>9.8<br>Avg = 9.5±1.4         |  |  |
| G<br>[F + 77.5 Mrad]         | 11.9<br>10.1<br>11.0<br>Avg = 11.0±0.9                 | 8.5<br>8.4<br>13.4<br>Avg = 10.1±2.9            | 9.9<br>9.6<br>10.5<br>Avg = 10.0±0.5        |  |  |
| H<br>[G + Steam/Chem. Spray] | 2.6<br>5.6<br>3.9<br>Avg = 4.0±1.5                     | 1.5<br>2.2<br>2.0<br>Avg = 1.9±0.4              | 10.8<br>12.5<br>12.3<br>$Avg = 11.9\pm0.9$  |  |  |

| CM Delet                                    | Peak Heights at Wavenumber 2916 cm <sup>-1</sup>       |                                                  |                                             |  |  |  |
|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--|--|--|
|                                             | Hypalon <sup>®</sup> Outer<br>Jacket                   | Hypalon <sup>\$</sup> White<br>Individual Jacket | EPR Insulation.                             |  |  |  |
| A <sup>(s)</sup><br>[Unused]                | 21.3<br>17.2<br>12.1<br>Avg = 16.9±4.6                 | 9.6<br>10.4<br>11.9<br>Avg = 10.6±1.2            | $10.1 \\ 11.1 \\ 9.9 \\ Avg = 10.4 \pm 0.6$ |  |  |  |
| B <sup>(b)</sup><br>[A + 28.45 hrs @ 121ºC] | $10.4 \\ 10.0 \\ 12.1 \\ Avg = 10.8 \pm 1.1$           | 7.3<br>9.0<br>7.3<br>Avg = 7.9±1.0               | 9.4<br>9.2<br>9.7<br>Avg = 9.4±0.2          |  |  |  |
| С                                           | No change - no additional preaging after last CM Point |                                                  |                                             |  |  |  |
| D <sup>(b)</sup><br>[B + 3.25 Mrad]         | $15.0 \\ 12.0 \\ 8.1 \\ Avg = 11.7 \pm 3.5$            | 10.1<br>5.5<br>9.5<br>Avg = 8.4±2.5              | 8.7<br>10.1<br>10.0<br>Avg = 9.6±0.8        |  |  |  |
| Ē                                           | No change                                              | e - no additional preaging after last            | CM Point                                    |  |  |  |
| F <sup>(b)</sup><br>[D + 76.6 Mrad]         | $10.1 \\ 10.0 \\ 10.7 \\ Avg = 10.3 \pm 0.4$           | 3.4<br>6.6<br>7.3<br>Avg = 5.8±2.1               | 9.2<br>9.2<br>11.0<br>Avg = 9.8±1.0         |  |  |  |
| G<br>[F + 77.5 Mrad]                        | 5.8<br>8.6<br>8.1<br>Avg = 7.5±1.5                     | 6.6<br>4.5<br>8.0<br>Avg = 6.4±1.8               | 9.9<br>8.5<br>9.7<br>Avg = 9.4±0.8          |  |  |  |
| H<br>[G + Steam/Chem. Spray]                | 1.2<br>3.6<br>2.3<br>Avg = 2.4±1.2                     | 0.6<br>0<br>0<br>Avg = 0.2±0.3                   | 9.8<br>10.0<br>14.4<br>$Avg = 11.4\pm 2.6$  |  |  |  |

#### Table D-2 FTIR Results for AIW Cable PNI74AI027 (Group 2.2, Series 0205)

(a) Baseline values listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)
(b) Values listed are for identical specimen PNI74AI026 (Group 2.2, Specimen 0203)

### Table D-3 FTIR Results for AIW Cable PAI74AI019 (Group 2.3, Series 0210)

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup>       |                                                        |                                              |  |  |
|------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|--|--|
| CM Point                     | Hypalon <sup>®</sup> Outer<br>Jacket                   | Hypalon <sup>®</sup> White<br>Individual Jacket        | EPR Insulation.                              |  |  |
| A<br>[Nat. Aged 24 yrs]      | 11.2<br>16.9<br>14.5<br>Avg = 14.2±2.9                 | 9.6<br>16.9<br>12.7<br>Avg = 13.1±3.7                  | 16.9<br>11.5<br>9.6<br>Avg = 12.7±3.8        |  |  |
| В                            | No chang                                               | No change - no additional preaging after last CM Point |                                              |  |  |
| С                            | No change - no additional preaging after last CM Point |                                                        |                                              |  |  |
| D                            | No change - no additional preaging after last CM Point |                                                        |                                              |  |  |
| E                            | No chan                                                | ge - no additional preaging after las                  | t CM Point                                   |  |  |
| F<br>[A + 76.65 Mrad]        | $12.7 \\ 12.9 \\ 17.4 \\ Avg = 14.3 \pm 2.7$           | 7.6<br>15.0<br>8.9<br>Avg = 10.5±4.0                   | 10.1<br>9.7<br>11.6<br>Avg = 10.5 ±1.0       |  |  |
| G<br>[F + 77.75 Mrad]        | 12.6<br>11.7<br>12.5<br>Avg = 12.3±0.5                 | 10.4<br>11.7<br>11.1<br>Avg = 11.1±0.7                 | $10.7 \\ 10.9 \\ 11.7 \\ Avg = 11.1 \pm 0.5$ |  |  |
| H<br>[G + Steam/Chem. Spray] | 5.8<br>3.8<br>4.8<br>Avg = 4.8±1.0                     | 1.6<br>2.7<br>2.1<br>Avg = 2.1±0.6                     | 9.3<br>11.7<br>10.7<br>Avg = 10.6±1.2        |  |  |

|                                           | Peak Heights at Wavenumber 2916 cm <sup>-1</sup>       |                                                 |                                             |  |
|-------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--|
| CM Point                                  | Hypalon <sup>®</sup> Outer<br>Jacket                   | Hypalon <sup>©</sup> White<br>Individual Jacket | EPR Insulation                              |  |
| A <sup>(a)</sup><br>[Unused]              | 21.3<br>17.2<br>12.1<br>Avg = 16.9±4.6                 | 9.6<br>10.4<br>11.9 ·<br>Avg = 10.6±1.2         | $10.1 \\ 11.1 \\ 9.9 \\ Avg = 10.4 \pm 0.6$ |  |
| В                                         | No chang                                               | e - no additional preaging after las            | t CM Point                                  |  |
| C <sup>to</sup><br>[A + 82.5 hrs @ 121°C] | 7.0<br>11.5<br>9.5<br>Avg = 9.3±2.3                    | 9.3<br>9.0<br>9.6<br>Avg = 9.3±0.3              | $8.9 \\ 10.7 \\ 10.0 \\ Avg = 9.9 \pm 0.9$  |  |
| D                                         | No change - no additional preaging after last CM Point |                                                 |                                             |  |
| E <sup>(b)</sup><br>[Ċ + 25.8 Mrad]       | 7.2<br>9.6<br>11.3<br>Avg = 9.4±2.1                    | 4.9<br>8.9<br>8.3<br>Avg = 7.4±2.2              | 9.7<br>9.5<br>11.5<br>Avg = 10.2±1.1        |  |
| F®<br>[E + 76.65 Mrad]                    | 5.0<br>8.4<br>9.2<br>Avg = 7.5±2.2                     | 9.4<br>2.5<br>3.9<br>Avg = 5.3 ±3.7             | 11.6<br>9.5<br>10.9<br>Avg = 10.7 ±1.1      |  |
| G<br>[F + 77.75 Mrad]                     | 7.2<br>8.1<br>9.2<br>Avg = 8.2±1.0                     | 7.5<br>5.9<br>9.2<br>Avg = 7.5±1.7              | 9.4<br>9.0<br>9.8<br>Avg = 9.4±0.4          |  |
| H<br>[G + Steam/Chem. Spray]              | 0.5<br>2.8<br>2.0<br>Avg = 1.8±1.2                     | 1.0<br>1.0<br>0.1<br>Avg = 0.7±0.5              | 9.8<br>7.0<br>11.5<br>Avg = 9.4±2.3         |  |

### Table D-4 FTIR Results for AIW Cable PNI74AI028 (Group 2.4, Series 0213)

(a) Baseline values listed are for identical specimen PNI74AI025 (Group 2.1, Specimen 0201)
(b) Baseline values listed are for identical specimen PNI74AI028 (Group 2.4, Specimen 0212)

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup>       |                                                  |  |
|------------------------------|--------------------------------------------------------|--------------------------------------------------|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                           | White XLPE Insulation                            |  |
| A<br>[Unused]                | (a)                                                    | 9.8<br>11.5<br>8.2<br>10.1<br>Avg = 9.9±1.4      |  |
| В                            | No change - no additional                              | preaging after last CM Point                     |  |
| С                            | No change - no additional                              | preaging after last CM Point                     |  |
| D                            | No change - no additional preaging after last CM Point |                                                  |  |
| Е                            | No change - no additional preaging after last CM Point |                                                  |  |
| F<br>[A + 76.65 Mrad]        | (a)                                                    | 7.6<br>6.8<br>6.7<br>5.7<br>Avg = 6.7±0.8        |  |
| G<br>[F + 76.75 Mrad]        | (a)                                                    | $5.7  5.5  5.4  6.0  Avg = 5.7\pm0.3$            |  |
| H<br>[G + Steam/Chem. Spray] | (a)                                                    | 4.2<br>6.7<br>5.9<br>9.1<br>6.8<br>Avg = 6.5±1.8 |  |

## Table D-5 FTIR Results for Rockbestos Cable PNI79RB188 (Group 3.1, Series 301)

(a) Not tested

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup> |                                                                         |  |
|------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                     | White XLPE Insulation<br>10.6<br>11.1<br>12.5<br>14.7<br>Avg = 12.2±1.8 |  |
| A<br>[Unused]                | (a)                                              |                                                                         |  |
| В                            | No change - no additional p                      | oreaging after last CM Point                                            |  |
| С                            | No change - no additional p                      | reaging after last CM Point                                             |  |
| D                            | No change - no additional p                      | reaging after last CM Point                                             |  |
| E                            | No change - no additional p                      | reaging after last CM Point                                             |  |
| F<br>[A + 76.65 Mrad]        | . (a)                                            | 12.9<br>13.8<br>15.2<br>11.5<br>Avg = 13.4±1.6                          |  |
| G<br>[F + 76.75 Mrad]        | (a)                                              | 14.6<br>14.6<br>13.2<br>13.4<br>Avg = 14.0±0.8                          |  |
| H<br>[G + Steam/Chem. Spray] | (a) .                                            | 11.6<br>11.1<br>15.6<br>10.7<br>14.9<br>Avg = 12.8+2.3                  |  |

#### Table D-6 FTIR Results for Rockbestos Cable PNI85 RB191 (Group 3.1 Series 0302)

(a) Not tested

.

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup> |                                                                              |  |
|------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                     | White XLPE Insulation                                                        |  |
| A<br>[Unused]                | (a)                                              | 12.3<br>12.5<br>13.1<br>12.4<br>Avg = 12.6±0.4                               |  |
| B<br>[A + 9.93 hrs @ 120°C]  | (a)                                              | $     11.3 \\     11.6 \\     11.0 \\     11.6 \\     Avg = 11.4 \pm 0.3   $ |  |
| С                            | No change - no addition                          | al preaging after last CM Point                                              |  |
| D<br>[B + 2.27 Mrad]         | (a)                                              | $10.1 \\ 9.1 \\ 9.9 \\ 11.9 \\ Avg = 10.2 \pm 1.2$                           |  |
| E                            | No change - no addition                          | al preaging after last CM Point                                              |  |
| F<br>[D + 76.65 Mrad]        | (a)                                              | 10.3<br>9.5<br>10.9<br>10.5<br>Avg = 10.3±0.6                                |  |
| G<br>[F + 76.75 Mrad]        | (a)                                              | 10.2<br>10.5<br>9.6<br>9.5<br>Avg = 9.9±0.5                                  |  |
| H<br>[G + Steam/Chem. Spray] | (a)                                              | 10.8<br>10.1<br>11.1<br>12.8<br>Avg = 11.2±1.1                               |  |

## Table D-7 FTIR Results for Rockbestos Cable PNI85RB191 (Group 3.2, Series 0303)

,

(a) Not tested

.

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup>       |                                                          |  |  |
|------------------------------|--------------------------------------------------------|----------------------------------------------------------|--|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                           | White XLPE Insulation                                    |  |  |
| A<br>[Naturally aged 10 yrs] | (a)                                                    | 10.5<br>12.3<br>9.3<br>11.0<br>Avg = 10.8±1.2            |  |  |
| В                            | No change - no additional p                            | reaging after last CM Point                              |  |  |
| С                            | No change - no additional p                            | reaging after last CM Point                              |  |  |
| D                            | No change - no additional preaging after last CM Point |                                                          |  |  |
| E                            | No change - no additional preaging after last CM Point |                                                          |  |  |
| F<br>[A + 76.65 Mrad]        | (a)                                                    | 9.5<br>9.2<br>9.7<br>12.9<br>11.6<br>$Avg = 10.5\pm 1.6$ |  |  |
| G<br>[F + 76.75 Mrad]        | (a)                                                    | $11.8 \\ 8.0 \\ 9.6 \\ 9.6 \\ Avg = 9.8 \pm 1.5$         |  |  |
| H<br>[G + Steam/Chem. Spray] | (a)                                                    | $13.1 \\ 13.1 \\ 12.4 \\ 13.7 \\ Avg = 13.1 \pm 0.5$     |  |  |

### Table D-8 FTIR Results for Rockbestos Cable PAP86RB229 (Group 3.3, Series 0307)

(a) Not tested

## Table D-9 FTIR Results for Rockbestos Cable PNI79RB188 (Group 3.4, Series 0312)

|                              | Peak Heights at Wavenumber 2916 cm <sup>-1</sup> |                                             |  |
|------------------------------|--------------------------------------------------|---------------------------------------------|--|
| CM Point                     | Neoprene <sup>®</sup> Jacket                     | White XLPE Insulation                       |  |
| A<br>[Unused]                | (a)                                              | 9.8<br>11.5<br>8.2<br>10.2<br>Avg = 9.9±1.4 |  |
| В                            | No change - no additional                        | preaging after last CM Point                |  |
| C<br>[A + 1301 hrs @ 150°C]  | (a)                                              | (b)                                         |  |
| D                            | No change - no additional                        | preaging after last CM Point                |  |
| E<br>[C + 51.5 Mrad]         | (a) .                                            | (b)                                         |  |
| F<br>[E + 76.65 Mrad]        | (a)                                              | (b)                                         |  |
| G<br>[F + 76.75 Mrad]        | (a)                                              | (b)                                         |  |
| H<br>[G + Steam/Chem. Spray] | (a)                                              | (b)                                         |  |

(a) Not tested
(b) Specimens very stiff; no readings possible because of poor optical contact between specimen and crystal

| Table D-10 FTIR Results fo | Irradiated Black XLPE Insulation From | m Rockbestos Cable PNI79RB188 |
|----------------------------|---------------------------------------|-------------------------------|
|----------------------------|---------------------------------------|-------------------------------|

| Dose (Mrad) <sup>(a)</sup> | Peak Height at Wavenumber 2916<br>cm <sup>-1</sup> |
|----------------------------|----------------------------------------------------|
| 0                          | 8.4<br>9.5<br>10.0<br>8.9<br>Avg = 9.2±0.7         |
| 21.1                       | 6.9<br>7.4<br>7.4<br>8.1<br>Avg = 7.4±0.5          |
| 41.8                       | 8.2<br>7.5<br>8.4<br>7.9<br>Avg = 8.0±0.4          |
| 60.5                       | 5.4<br>7.6<br>6.8<br>6.7<br>Avg = 6.6±0.9          |
| 78.6                       | 4.8<br>4.3<br>3.5<br>3.7<br>Avg = 4.1±0.6          |
| 95.8                       | 3.5<br>4.1<br>2.9<br>4.0<br>Avg = 3.6±0.6          |
| 113.0                      | 3.8<br>2.2<br>3.6<br>2.1<br>Avg = 2.9±0.9          |

(a) Average dose rate is 1.4x10<sup>4</sup> rad/hr

### Table D-11 FTIR Results for AIW EPR/Hypalon Cables as a Function of Service Aging

| Group                | Material                                                                                                | Aging Protocol | Percent Transmittance at<br>Wavenumber 2916 cm <sup>-1</sup> |
|----------------------|---------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|
| 2.2                  | PNI74AI027 (4-conductor)                                                                                | None           | 78.7; 82.8; 87.9                                             |
| (Spec. 0205A)        | (Hypalon <sup>®</sup> Outer Jacket)                                                                     |                | Avg = 83.1±4.6                                               |
| 2.2                  | PNI74AI027 (4-conductor)                                                                                | 28.45h@121°C   | 85.0; 88.0; 91.9                                             |
| (Spec. 0205D)        | (Hypalon <sup>®</sup> Outer Jacket)                                                                     | + 3.25 Mrad    | Avg = 88.3±3.5                                               |
| 2.4                  | PNI74AI028 (4-conductor)                                                                                | 82.5h@121°C    | 92.8; 88.5; 90.5                                             |
| (Spec. 0213E)        | (Hypalon <sup>®</sup> Outer Jacket.)                                                                    | + 25.8 Mrad    | Avg = 90.6±2.2                                               |
| 2.2                  | PNI74AI027 (4-conductor)                                                                                | None           | 90.4; 89.6; 88.1                                             |
| (Spec. 0205A)        | (Hypalon <sup>®</sup> White Individual Jacket)                                                          |                | Avg = 89.4±1.2                                               |
| 2.2                  | PNI74AI027 (4-conductor)                                                                                | 28.45h@121⁰C   | 89.9; 94.5; 90.5                                             |
| (Spec. 0205D)        | (Hypalon <sup>®</sup> White Individual Jacket.)                                                         | + 3.25 Mrad    | Avg = 91.6±2.5                                               |
| 2.4                  | PNI74AI028 (4-conductor)                                                                                | 82.5h@121°C    | 95.1; 91.9; 91.7                                             |
| (Spec. 0213E)        | (Hypalon <sup>®</sup> White Individual Jacket)                                                          | + 25.8 Mrad    | Avg = 92.6±1.9                                               |
| 2.2                  | PNI74AI027 (4-conductor)                                                                                | None           | 89.9; 88.9; 90.1                                             |
| (Spec. 0205A)        | (EPR Insulation)                                                                                        |                | Avg = 89.6±0.6                                               |
| 2.2                  | PNI74AI027 (4-conductor)                                                                                | 28.45h@121°C   | 91.3; 89.9; 90.0                                             |
| (Spec. 0205D)        | (EPR Insulation)                                                                                        | + 3.25 Mrad    | Avg = 90.4±0.8                                               |
| 2.4                  | PNI74AI028 (4-conductor)                                                                                | 82.5h@121°C    | 90.3; 90.5; 88.5                                             |
| (Spec. 0213E)        | (EPR Insulation)                                                                                        | + 25.8 Mrad    | Avg = 89.8±1.1                                               |
| 2.1                  | PNI74AI031 (3-conductor)                                                                                | None           | 79.2; 77.6; 78.9                                             |
| (Spec. 0202A)        | (Hypalon <sup>®</sup> Outer Jacket)                                                                     |                | Avg = 78.6±0.9                                               |
| 2.4                  | PNI74AI032 (3-conductor)                                                                                | 82.5h@121°C    | 84.6; 84.2; 81.7; 82.7                                       |
| (Spec. 0214E)        | (Hypalon <sup>®</sup> Outer Jacket)                                                                     | + 25.8 Mrad    | Avg = 83.3±1.3                                               |
| 6.2                  | 6.2 PNI74AI035 (3-conductor)                                                                            |                | 89.5; 88.6; 89.3                                             |
| (Spec. 0611E)        | (Spec. 0611E) (Hypalon <sup>®</sup> Outer Jacket)                                                       |                | Avg = 89.1±0.5                                               |
| 2.1<br>(Spec. 0202A) | 2.1     PNI74AI031 (3-conductor)       (Spec. 0202A)     (Hypalon <sup>®</sup> White Individual Jacket) |                | 91.2; 89.9; 91.0; 90.0<br>Avg = 90.5±0.7                     |
| 2.4                  | PNI74AI032 (3-conductor)                                                                                | 82.5h@121°C    | 91.6; 94.5; 93.9; 92.0                                       |
| (Spec. 0214E)        | (Hypalon <sup>®</sup> White Individual Jacket                                                           | + 25.8 Mrad    | Avg = 93.0±1.4                                               |
| 6.2                  | 6.2 PNI74AI035 (3-conductor)                                                                            |                | 97.3; 98.1; 97.9                                             |
| (Spec. 0611E)        | (Spec. 0611E) (Hypalon <sup>®</sup> White Individual Jacket)                                            |                | Avg = 97.8±0.4                                               |
| 2.1                  | PNI74AI031 (3-conductor)                                                                                | None           | 91.1; 90.7; 90.0                                             |
| (Spec. 0202A)        | (EPR Insulation)                                                                                        |                | Avg = 90.6±0.6                                               |
| 2.4                  | PNI74AJ032 (3-conductor)                                                                                | 82.5h@121°C    | 91.9; 91.1; 92.5                                             |
| (Spec. 0214E)        | (EPR Insulation)                                                                                        | + 25.8 Mrad    | Avg = 91.8±0.7                                               |
| 6.2                  | PNI74AI035 (3-conductor)                                                                                | 252h@121°C     | 94.2; 95.5; 94.4                                             |
| (Spec. 0611E)        | (EPR Insulation)                                                                                        | + 38.65 Mrad   | Avg = 94.7±0.7                                               |

.

| Group                                                           | Material                                                                                     | Aging Protocol              | Equiv. Aging<br>Time at 60°C<br>(y) | Transmittance at<br>Wavenumber<br>2916 cm <sup>-1</sup> (%) <sup>(a)</sup> | EAB<br>(%) <sup>(a)</sup> |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|----------------------------------------------------------------------------|---------------------------|
| 2.2<br>(Spec. 0205A)                                            | PNI74AI027 (4-conductor)<br>(Hypalon <sup>®</sup> Outer Jacket)                              | None                        | 0                                   | 83.1±4.6                                                                   | 649                       |
| 2.2<br>(Spec. 0205D)                                            | PNI74AI027 (4-conductor)<br>(Hypalon <sup>®</sup> Outer Jacket)                              | 28.45h@121°C<br>+ 3.25 Mrad | 2.6                                 | 88.3±3.5                                                                   | 582                       |
| 2.4<br>(Spec. 0213E)                                            | PNI74AI028 (4-conductor)<br>(Hypalon® Outer Jacket.)                                         | 82.5h@121°C<br>+ 25.8 Mrad  | 7.6                                 | 90.6±2.2                                                                   | 429                       |
| 2.2<br>(Spec. 0205A)                                            | PNI74AI027 (4-conductor)<br>(Hypalon <sup>®</sup> White Individual Jacket)                   | None                        | 0                                   | 89.4±1.2                                                                   | 540                       |
| 2.2<br>(Spec. 0205D)                                            | PNI74AI027 (4-conductor)<br>(Hypalon <sup>®</sup> White Individual Jacket.)                  | 28.45h@121°C<br>+ 3.25 Mrad | 2.6                                 | 91.6±2.5                                                                   | 341                       |
| 2.4<br>(Spec. 0213E)                                            | PNI74AI028 (4-conductor)<br>(Hypalon <sup>®</sup> White Individual Jacket)                   | 82.5h@121°C<br>+ 25.8 Mrad  | 7.6                                 | 92.6±1.9                                                                   | 371                       |
| 2.2<br>(Spec. 0205A)                                            | PNI74AI027 (4-conductor)<br>(EPR Insulation)                                                 | None                        | 0                                   | 89.6±0.6                                                                   | 284                       |
| 2.2<br>(Spec. 0205D)                                            | PNI74AI027 (4-conductor)<br>(EPR Insulation)                                                 | 28.45h@121⁰C<br>+ 3.25 Mrad | 1.9                                 | 90.4±0.8                                                                   | 224                       |
| 2.4<br>(Spec. 0213E)                                            | PNI74AI028 (4-conductor)<br>(EPR Insulation)                                                 | 82.5h@121°C<br>+ 25.8 Mrad  | 5.5                                 | 89.8±1.1                                                                   | 196                       |
| 2.1<br>(Spec. 0202A)                                            | PNI74AI031 (3-conductor)<br>(Hypalon <sup>®</sup> Outer Jacket)                              | None                        | 0                                   | 78.6±0.9                                                                   | 563                       |
| 2.4PNI74AI032 (3-conductor)(Spec. 0214E)(Hypalon® Outer Jacket) |                                                                                              | 82.5h@121°C<br>+ 25.8 Mrad  | 7.6                                 | 83.3±1.3                                                                   | 369                       |
| 6.2<br>(Spec. 0611E)                                            | 6.2 PNI74AI035 (3-conductor)<br>(Spec. 0611E) (Hypalon® Outer Jacket)                        |                             | 23.2                                | 89.1±0.5                                                                   | 191                       |
| 2.1<br>(Spec. 0202A)                                            | 2.1 PNI74AI031 (3-conductor)<br>(Spec. 0202A) (Hypalon <sup>®</sup> White Individual Jacket) |                             | 0                                   | 90.5±0.7                                                                   | 482                       |
| 2.4<br>(Spec. 0214E)                                            | PNI74AI032 (3-conductor)<br>(Hypalon <sup>®</sup> White Individual Jacket                    | 82.5h@121°C<br>+ 25.8 Mrad  | 7.6                                 | 93.0±1.4                                                                   | 250                       |
| 6.2<br>(Spec. 0611E)                                            | PNI74AI035 (3-conductor)<br>(Hypalon <sup>®</sup> White Individual Jacket)                   | 252h@121℃<br>+ 38.65 Mrad   | 23.2                                | 97.8±0.4                                                                   | 197                       |
| 2.1<br>(Spec. 0202A)                                            | PNI74AI031 (3-conductor)<br>(EPR Insulation)                                                 | None                        | 0                                   | 90.6±0.6                                                                   | 341                       |
| 2.4<br>(Spec. 0214E)                                            | PNI74AI032 (3-conductor)<br>(EPR Insulation)                                                 | 82.5h@121°C<br>+ 25.8 Mrad  | 5.5                                 | 91.8±0.7                                                                   | 224                       |
| 6.2<br>(Spec. 0611E)                                            | PNI74AI035 (3-conductor)<br>(EPR Insulation)                                                 | 252h@121⁰C<br>+ 38.65 Mrad  | 16.8                                | 94.7±0.7                                                                   | 218                       |

#### Table D-12 FTIR Results for AIW EPR/Hypalon Cables as a Function of Service Aging and Elongation-at-Break

(a) Average of at least 3 tests

.

Appendix E

Indenter Data

### Tables

| <u>Title</u> | Page                                       |   |
|--------------|--------------------------------------------|---|
| Table E-1    | Test Sequence 1 - Compressive Modulus E-   | 1 |
| Table E-2    | Test Sequence 2 - Compressive Modulus E-:  | 5 |
| Table E-3    | Test Sequence 3 - Compressive Modulus E-1: | 5 |
| Table E-4    | Test Sequence 4 - Compressive Modulus E-20 | 0 |
| Table E-5    | Test Sequence 5 - Compressive Modulus E-2  | 9 |
| Table E-6    | Test Sequence 6 - Compressive Modulus E-3  | 7 |

|                               |      | Outer Jacket (Newtons/mm) |                        |                |                   |                |                    |                |
|-------------------------------|------|---------------------------|------------------------|----------------|-------------------|----------------|--------------------|----------------|
| Specimen Specimen<br>Group ID |      | Baseline                  | Baseline Thermal Aging |                | Service Radiation |                | Accident Radiation |                |
| Crowb                         |      | Α                         | В                      | С              | D                 | Е              | F                  | G              |
| 1                             | 0101 | 8.49 (1.02)               |                        |                |                   |                | 8.81 (1.37)        | 10.84 (1.36)   |
|                               | 0102 | 8.58 (1.06)               |                        |                |                   |                | 9.65 (1.25)        | 11.85 (1.39)   |
|                               | 0118 | 8.19 (0.78)               |                        |                |                   |                | 9.34 (1.08)        | 12.83 (1.35)   |
|                               | 0104 | 9.14 (0.82)               |                        |                |                   |                | 10.33 (1.42)       | 12.33 (1.15)   |
|                               | 0105 | 9.14 (0.89)               |                        |                |                   |                | 10.18 (2.84)       | 13.26 (1.31)   |
| 2                             | 0106 | 10.12 (0.69)              | 9.66 (0.75)            |                | 9.10 (1.46)       |                | 12.17 (1.08)       | 15.89 (1.55)   |
|                               | 0107 | 10.06 (1.03)              | 9.80 (0.87)            |                | 8.61 (0.84)       |                | 11.81 (3.17)       | 15.92 (1.46)   |
|                               | 0108 | 10.17 (0.82)              | 9.53 (0.77)            |                | 8.67 (1.26)       |                | 12.12 (1.54)       | 15.79 (1.64)   |
|                               | 0109 | 9.87 (0.83)               | 10.04 (0.65)           |                | 8.96 (1.48)       |                | 12.39 (0.78)       | 15.69 (0.97)   |
|                               | 0110 | 9.84 (0.83)               | 9.68 (0.69)            |                | 8.93 (0.79)       |                | 11.84 (0.72)       | 14.94 (0.92)   |
| 3                             | 0111 | 10.68 (0.82)              |                        |                |                   |                | 11.11 (0.85)       | 13.49 (1.41)   |
| 4                             | 0112 | 8.95 (0.98)               |                        | 190.89 (38.70) |                   | 207.71 (38.78) | 187.58 (39.49)     | 190.53 (60.45) |
|                               | 0113 | 8.82 (0.92)               |                        | 202.02 (71.50) |                   | 202.92 (61.52) | 209.63 (55.32)     | 178.64 (56.33) |
|                               | 0114 | 8.82 (0.89)               |                        | 180.27 (37.39) |                   | 193.30 (66.64) | 168.84 (71.49)     | 218.91 (61.08) |
|                               | 0115 | 8.92 (0.87)               |                        | 190.39 (26.54) |                   | 168.58 (53.80) | 214.34 (67.92)     | 184.52 (34.73) |
|                               | 0116 | 8.80 (0.74)               |                        | 211.58 (27.68) |                   | 191.88 (67.40) | 194.19 (88.51)     | 175.66 (53.44) |
|                               | 0117 | 8.97 (0.90)               |                        | 213.41 (45.38) |                   | 185.22 (48.47) | 184.16 (50.50)     | NA             |

## Table E.1 Test Sequence 1 - Compressive Modulus

.

1
|                   |                |                |                | Insulat        | ion White (Newton | ns/mm)         |                    |                |
|-------------------|----------------|----------------|----------------|----------------|-------------------|----------------|--------------------|----------------|
| Specimen<br>Group | Specimen<br>ID | Baseline       | Therma         | ıl Aging       | Service Radiation |                | Accident Radiation |                |
|                   |                | A              | В              | С              | D                 | Е              | F                  | G              |
| 1                 | 0101           | 106.40 (3.38)  |                |                |                   |                | 70.87 (14.86)      | 105.19 (6.35)  |
|                   | 0102           | 85.65 (11.09)  |                |                |                   |                | 88.31 (7.34)       | 108.08 (6.35)  |
|                   | 0118           | 105.30 (6.40)  |                |                |                   |                | 98.14 (7.64)       | 109.45 (6.81)  |
|                   | 0104           | 98.10 (6.43)   |                |                |                   |                | 98.70 (10.36)      | 106.58 (7.57)  |
|                   | 0105           | 107.32 (7.99)  |                |                |                   |                | 94.98 (7.42)       | 105.66 (9.58)  |
| 2                 | 0106           | 166.91 (20.03) | 160.04 (13.10) |                | 149.11 (12.49)    |                | 174.18 (16.91)     | 186.37 (14.58) |
|                   | 0107           | 186.80 (16.72) | 168.96 (7.68)  |                | 158.67 (11.74)    |                | 173.01 (11.50)     | 180.78 (9.18)  |
|                   | 0108           | 173.97 (10.40) | 176.11 (7.44)  |                | 141.61 (24.73)    |                | 166.43 (19.01)     | 189.85 (6.72)  |
|                   | 0109           | 170.89 (13.12) | 167.21 (11.06) |                | 148.10 (11.50)    |                | 186.19 (14.80)     | 187.06 (9.26)  |
|                   | 0110           | 182.87 (15.74) | 178.28 (18.52) |                | 150.09 (11.50)    |                | 179.82 (12.14)     | 191.25 (18.73) |
| 3                 | 0111           | 179.02 (11.69) |                |                |                   |                | 184.75 (9.55)      | 204.50 (8.06)  |
| 4                 | 0112           | 87.97 (12.66)  |                | 153.19 (4.83)  |                   | 133.39 (11.23) | 137.25 (9.41)      | 149.20 (5.23)  |
|                   | 0113           | 102.69 (5.77)  |                | 149.11 (9.04)  |                   | 117.93 (18.77) | 139.29 (7.95)      | 134.21 (15.40) |
|                   | 0114           | 88.24 (11.95)  |                | 157.87 (15.02) |                   | 120.27 (15.04) | 149.91 (7.92)      | 141.12 (5.64)  |
|                   | 0115           | 103.55 (6.97)  |                | 156.02 (12.31) |                   | 108.19 (18.78) | 150.40 (11.42)     | 145.63 (11.60) |
|                   | 0116           | 101.26 (10.81) |                | 142.23 (14.02) |                   | 134.46 (9.36)  | 135.38 (11.47)     | 130.33 (10.21) |
|                   | 0117           | 100.62 (5.83)  |                | 144.29 (17.82) |                   | 130.97 (13.54) | 155.99 (5.25)      | NA             |

|                   |                |                |                | Insulati       | on Black (Newton | s/mm)          |                |                |
|-------------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|
| Specimen<br>Group | Specimen<br>ID | Baseline       | Thermal        | Aging          | Service R        | adiation       | Accident l     | Radiation      |
| Croah             |                | А              | В              | С              | D                | Е              | F              | G              |
| 1                 | 0101           | 98.12 (5.93)   |                |                |                  |                | 76.22 (6.21)   | 104.96 (7.66)  |
|                   | 0102           | 93.21 (7.27)   |                |                |                  |                | 73.72 (8.19)   | 105.39 (11.25) |
|                   | 0118           | 108.42 (12.70) |                |                |                  |                | 90.67 (12.47)  | 99.69 (5.77)   |
|                   | 0104           | 102.15 (6.18)  |                |                |                  |                | 96.68 (7.87)   | 108.88 (8.18)  |
|                   | 0105           | 99.3 (7.68)    |                |                |                  |                | 97.91 (6.05)   | 99.87 (8.37)   |
| 2                 | 0106           | 177.03 (15.30) | 150.08 (11.87) |                | 113.78 (8.95)    |                | 162.32 (20.47) | 178.16 (18.54) |
|                   | 0107           | 172.16 (18.63) | 166.41 (10.66) |                | 152.36 (17.55)   |                | 168.29 (37.41) | 183.85 (16.79) |
|                   | 0108           | 165.85 (17.64) | 169.71 (19.46) |                | 150.48 (20.34)   |                | 163.66 (19.92) | 183.18 (24.22) |
|                   | 0109           | 173.74 (30.03) | 169.39 (8.38)  |                | 141.35 (16.93)   |                | 187.47 (38.34) | 175.33 (20.93) |
|                   | 0110           | 181.97 (14.67) | 178.28 (17.55) |                | 149.59 (11.61)   |                | 164.38 (21.72) | 173.51 (11.59) |
| 3                 | 0111           | 180.36 (7.59)  |                |                |                  |                | 187.83 (16.95) | 201.30 (19.19) |
| 4                 | 0112           | 87.98 (4.05)   |                | 160.85 (19.34) |                  | 120.73 (16.73) | 137.91 (10.74) | 140.92 (14.28) |
|                   | 0113           | 103.88 (1.71)  |                | 141.04 (21.98) |                  | 121.01 (14.69) | 141.98 (13.22) | 140.36 (9.35)  |
|                   | 0114           | 91.10 (8.84)   |                | 145.55 (13.35) |                  | 111.55 (9.90)  | 138.24 (11.88) | 152.98 (9.56)  |
|                   | 0115           | 102.20 (2.26)  |                | 153.26 (12.35) |                  | 100.25 (13.51) | 130.16 (14.07) | 139.13 (16.02) |
|                   | 0116           | 103.96 (8.80)  |                | 140.38 (9.65)  |                  | 96.18 (12.47)  | 137.85 (4.78)  | 137.78 (10.94) |
|                   | 0117           | 102.64 (2.81)  |                | 138.21 (10.53) |                  | 105.29 (11.07) | 153.75 (9.91)  | NA             |

Notes: 1. Standard deviations provided in parenthesis
2. All measurements made at room temperature
3. Probe speed: for modulus less than 100 N/mm: 12.7 mm/min. for modulus greater than 100 N/mm: 5.1 mm/min.

.

|                   |                |              | <u>,,, , , , , , , , , , , , , , , , , , </u> | Outer        | Jacket (Newtons | s/mm)        | ·            |              |
|-------------------|----------------|--------------|-----------------------------------------------|--------------|-----------------|--------------|--------------|--------------|
| Specimen<br>Group | Specimen<br>ID | Baseline     | Therma                                        | l Aging      | Service F       | Radiation    | Accident     | Radiation    |
| Group             |                | А            | В                                             | С            | D               | Е            | F            | G            |
| 1                 | 0201           | 9.76 (1.48)  |                                               |              |                 |              | 9.70 (1.40)  | 9.79 (1.21)  |
|                   | 0202           | 8.83 (0.50)  |                                               |              |                 |              | 9.40 (0.60)  | 10.45 (0.77) |
| 2                 | 0203           | 10.16 (1.87) | 10.51 (2.11)                                  |              | 9.47 (1.58)     |              | 11.17 (1.36) |              |
|                   | 0204           | 9.69 (1.78)  | 10.97 (1.59)                                  |              | 10.56 (1.74)    |              | 11.18 (1.62) |              |
|                   | 0205           | 9.34 (1.42)  | 9.95 (1.47)                                   |              | 10.45 (1.97)    |              | 10.65 (1.99) | 13.98 (2.32) |
|                   | 0206           | 10.41 (1.84) | 9.95 (1.84)                                   |              | 9.78 (1.30)     |              | 10.69 (1.21) | 13.40 (1.66) |
| 3                 | 0207           | 10.30 (1.41) |                                               |              |                 |              | 10.24 (1.62) |              |
|                   | 0208           | 9.88 (0.93)  |                                               |              |                 |              | 9.56 (1.12)  |              |
|                   | 0209           | 9.82 (1.23)  |                                               |              |                 |              | 10.21 (1.90) |              |
|                   | 0210           | 9.87 (1.00)  |                                               |              |                 |              | 10.11 (1.03) |              |
| 4                 | 0212           | 9.19 (1.24)  |                                               | 10.76 (1.73) |                 | 10.95 (1.76) | 11.41 (1.46) |              |
|                   | 0213           | 8.71 (1.49)  |                                               | 11.20 (1.18) |                 | 10.66 (1.48) | 13.10 (1.70) | 14.98 (1.87) |
|                   | 0214           | 8.18 (0.48)  |                                               | 8.79 (0.86)  |                 | 9.00 (0.60)  | 11.00 (0.76) | 13.29 (1.23) |
|                   | 0215           | 8.92 (0.95)  |                                               | 10.72 (1.78) |                 | 11.85 (1.41) | 11.85 (1.68) | 17.60 (3.03) |
|                   | 0216           | 8.09 (0.30)  |                                               | 9.75 (1.14)  |                 | 9.96 (0.80)  | 11.91 (0.93) | 17.16 (1.02) |

|                   |                |              |              | Individual   | Jacket White (Ne | wtons/mm)    |              |              |
|-------------------|----------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|
| Specimen<br>Group | Specimen<br>ID | Baseline     | Therma       | ıl Aging     | Service          | Radiation    | Accident     | Radiation    |
|                   |                | A            | В            | С            | D                | E            | F            | G            |
| 1                 | 0101           | 11.80 (0.61) |              |              |                  |              | 13.00 (0.51) | 12.67 (0.53) |
|                   | 0202           | 10.19 (0.70) |              |              |                  |              | 11.66 (0.39) | 11.85 (0.58) |
| 2                 | 0203           | 11.53 (0.45) | 13.63 (0.20) |              | 12.09 (0.33)     |              | 13.26 (0.29) |              |
|                   | 0204           | 11.99 (0.50) | 13.66 (0.54) |              | 12.11 (0.61)     |              | 13.48 (0.37) |              |
|                   | 0205           | 11.30 (0.69) | 13.19 (0.52) |              | 12.04 (0.39)     |              | 13.39 (0.39) | 13.00 (0.46) |
|                   | 0206           | 11.25 (0.58) | 13.39 (0.53) |              | 11.93 (0.35)     |              | 13.52 (0.50) | 13.34 (0.54) |
| 3                 | 0207           | 11.37 (0.82) |              |              |                  |              | 11.89 (0.66) |              |
|                   | 0208           | 11.61 (0.78) |              |              |                  |              | 12.19 (0.46) |              |
|                   | 0209           | 11.77 (1.05) |              |              |                  |              | 13.62 (0.85) |              |
|                   | 0210           | 11.44 (0.44) |              |              |                  |              | 12.41 (0.23) |              |
| 4                 | 0212           | 11.54 (0.64) |              | 14.25 (0.40) | ******           | 12.97 (0.32) | 13.53 (0.36) |              |
|                   | 0213           | 12.00 (0.95) |              | 14.12 (0.30) |                  | 13.47 (0.45) | 14.38 (0.56) | 13.69 (4.05) |
|                   | 0214           | 11.15 (0.90) |              | 14.53 (0.60) |                  | 12.76 (0.44) | 13.90 (1.37) | 14.79 (2.85) |
|                   | 0215           | 12.46 (0.44) |              | 14.35 (0.36) |                  | 14.06 (0.43) | 15.02 (0.28) | 16.03 (1.30) |
|                   | 0216           | 11.46 (0.62) |              | 13.99 (0.69) | *****            | 14.18 (0.90) | 13.21 (0.90) | 16.26 (0.87) |

.

| Individual Jac    | Jacket Black (New | vtons/mm)    |              |              |              |              |              |                    |  |
|-------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------|--|
| Specimen<br>Group | Specimen<br>ID    | Baseline     | Therma       | l Aging      | Service F    | Radiation    | Accident l   | Accident Radiation |  |
|                   |                   | Α            | В            | С            | D            | Е            | F            | G                  |  |
| 1                 | 0201              | 10.70 (0.70) |              |              |              |              | 11.03 (0.55) | 11.30 (0.63)       |  |
|                   | 0202              | 11.40 (0.59) |              |              |              |              | 12.13 (0.85) | 13.07 (0.87)       |  |
| 2                 | 0203              | 10.70 (0.41) | 10.89 (1.52) |              | 10.39 (0.31) |              | 11.76 (1.35) |                    |  |
|                   | 0204              | 10.75 (0.52) | 10.79 (0.28) |              | 10.76 (0.26) |              | 11.64 (0.22) |                    |  |
|                   | 0205              | 11.51 (1.14) | 10.93 (0.20) |              | 10.70 (0.25) |              | 11.61 (0.17) | 12.74 (0.39)       |  |
|                   | 0206              | 11.68 (0.87) | 10.99 (0.65) |              | 10.65 (0.49) |              | 11.21 (0.33) | 12.64 (0.58)       |  |
| 3                 | 0207              | 11.98 (0.45) |              |              |              |              | 12.47 (0.81) |                    |  |
|                   | 0208              | 11.95 (0.67) |              |              |              |              | 13.24 (0.51) |                    |  |
|                   | 0209              | 11.87 (0.60) |              |              | 1            |              | 13.18 (0.33) |                    |  |
|                   | 0210              | 12.74 (0.46) |              |              |              |              | 13.25 (0.95) |                    |  |
| 4                 | 0212              | 11.15 (0.41) |              | 10.95 (0.55) |              | 10.83 (0.26) | 11.38 (0.16) |                    |  |
|                   | 0213              | 11.29 (0.80) |              | 10.72 (0.48) |              | 11.02 (0.35) | 12.55 (0.38) | 14.59 (3.04)       |  |
|                   | 0214              | 11.16 (0.61) |              | 11.03 (0.44) |              | 11.33 (0.16) | 12.43 (0.57) | 12.59 (1.98)       |  |
|                   | 0215              | 11.01 (0.70) |              | 10.62 (0.41) |              | 10.85 (0.35) | 11.96 (0.41) | 15.50 (1.32)       |  |
|                   | 0216              | 11.63 (0.70) |              | 11.36 (0.73) |              | 11.71 (0.62) | 12.11 (0.61) | 15.35 (1.38)       |  |

| Specimen |      |               |              | Individua    | al Jacket Red (New | /tons/mm)    | ·            |              |
|----------|------|---------------|--------------|--------------|--------------------|--------------|--------------|--------------|
| Group    | ID   | Baseline      | Therma       | al Aging     | Service            | Radiation    | Accident     | Radiation    |
|          |      | А             | В            | С            | D                  | Е            | F            | G            |
| 1        | 0201 | 11.83 (0.99)  |              |              |                    |              | 11.87 (0.48) | 12.92 (0.65) |
|          | 0202 | 10.19 (0.23)  |              |              |                    |              | 11.52 (0.60) | 12.48 (0.45) |
| 2        | 0203 | · 12.28 (067) | 14.44 (0.71) |              | 12.59 (0.61)       |              | 13.33 (0.35) |              |
|          | 0204 | 12.50 (0.76)  | 13.82 (0.69) |              | 12.55 (0.75)       |              | 13.36 (0.74) |              |
|          | 0205 | 11.73 (0.30)  | 13.36 (1.10) |              | 12.16 (0.39)       |              | 13.49 (0.91) | 13.44 (0.92) |
|          | 0206 | 11.85 (0.48)  | 14.21 (0.74) |              | 12.42 (1.11)       |              | 13.43 (0.80) | 13.58 (0.86) |
| 3        | 0207 | 11.48 (0.98)  |              |              |                    |              | 12.71 (0.76) |              |
|          | 0208 | 11.55 (0.49)  |              |              |                    |              | 12.84 (1.06) |              |
|          | 0209 | 11.79 (0.59)  |              |              |                    |              | 13.17 (0.64) |              |
|          | 0210 | 10.84 (0.69)  |              |              |                    |              | 12.09 (0.53) |              |
| 4        | 0212 | 11.85 (0.64)  |              | 14.15 (0.87) |                    | 13.06 (0.51) | 13.60 (0.74) | ······       |
|          | 0213 | 11.70 (0.51)  |              | 14.13 (0.59) |                    | 13.35 (0.71) | 14.40 (0.66) | 16.36 (0.74) |
|          | 0214 | 10.35 (0.56)  |              | 13.29 (0.30) |                    | 12.74 (0.42) | 14.23 (0.50) | 14.44 (0.81) |
|          | 0215 | 11.89 (0.60)  |              | 14.17 (0.70) |                    | 13.79 (0.53) | N/A          | 17.38 (0.95) |
|          | 0216 | 10.49 (0.73)  |              | 13.59 (0.41) |                    | 13.32 (0.67) | N/A          | 15.83 (0.80) |

|                   |                |              |              | Individual   | Jacket Green (New                         | vtons/mm)    |                    |              |
|-------------------|----------------|--------------|--------------|--------------|-------------------------------------------|--------------|--------------------|--------------|
| Specimen<br>Group | Specimen<br>ID | Baseline     | Therma       | l Aging      | Service Radiation                         |              | Accident Radiation |              |
|                   |                | Α            | В            | С            | D                                         | Е            | F                  | G            |
| 1                 | 0201           | 10.78 (0.57) |              |              | <u>, , , , , , , , , , , , , , , , , </u> |              | 10.81 (0.84)       | 11.54 (0.54) |
|                   | 0202           | -            |              |              |                                           |              | -                  | -            |
| 2                 | 0203           | 10.86 (0.70) | 12.45 (0.66) |              | 10.70 (0.39)                              |              | 11.30 (0.50)       |              |
|                   | 0204           | 10.43 (1.20) | 12.31 (0.59) |              | 10.90 (0.39)                              |              | 11.64 (0.34)       |              |
|                   | 0205           | 9.84 (0.50)  | 11.45 (0.52) |              | 10.59 (0.49)                              |              | 11.08 (0.19)       | 11.78 (0.46) |
|                   | 0206           | 10.55 (0.33) | 12.07 (0.27) |              | 10.65 (0.50)                              |              | 11.54 (0.60)       | 12.53 (0.58) |
| 3                 | 0207           | 12.01 (0.80) |              |              |                                           |              | 12.27 (0.72)       |              |
|                   | 0208           | 11.52 (0.58) |              |              |                                           |              | 11.86 (0.98)       |              |
|                   | 0209           | 11.29 (0.51) |              |              |                                           |              | 12.35 (0.76)       |              |
|                   | 0210           | 10.92 (0.48) |              |              |                                           |              | 11.86 (0.63)       | · · ·        |
| 4                 | 0212           | 10.19 (1.18) |              | 13.05 (0.40) |                                           | 11.52 (0.53) | 12.31 (0.49)       |              |
|                   | 0213           | 10.54 (0.85) |              | 12.95 (0.43) |                                           | 12.05 (1.01) | 12.27 (0.29)       | 16.40 (0.94) |
|                   | 0214           | -            |              | -            |                                           | -            | -                  | -            |
|                   | 0215           | 10.80 (0.53) |              | 12.49 (0.30) |                                           | 12.10 (0.45) | N/A                | 17.03 (0.64) |
|                   | 0216           | -            |              | -            |                                           | -            | -                  | -            |

| Succimon          | Guadana |              | Insulation White (Newtons/mm) |                           |              |              |              |              |  |  |  |  |
|-------------------|---------|--------------|-------------------------------|---------------------------|--------------|--------------|--------------|--------------|--|--|--|--|
| Specimen<br>Group | ID      | Baseline     | Therma                        | al Aging                  | Service      | Radiation    | Accident     | Radiation    |  |  |  |  |
|                   |         | A            | В                             | С                         | D            | Е            | F            | G            |  |  |  |  |
| 1                 | 0201    | 12.86 (2.30) |                               |                           |              |              | 14.69 (2.43) | 13.10 (2.86) |  |  |  |  |
|                   | 0202    | 15.81 (2.06) |                               |                           |              |              | 14.06 (3.49) | 15.57 (3.37) |  |  |  |  |
| 2                 | 0203    | 13.07 (3.38) | 16.08 (1.32)                  |                           | 15.08 (2.70) |              | 13.18 (2.95) |              |  |  |  |  |
|                   | 0204    | 14.75 (1.53) | 14.06 (3.05)                  |                           | 13.78 (2.80) |              | 14.06 (2.76) |              |  |  |  |  |
|                   | 0205    | 13.95 (2.74) | 15.98 (1.98)                  |                           | 16.11 (2.88) |              | 14.40 (2.54) | 13.40 (3.00) |  |  |  |  |
|                   | 0206    | 14.67 (2.18) | 14.64 (1.31)                  |                           | 12.12 (2.66) |              | 13.08 (3.59) | 13.64 (3.66) |  |  |  |  |
| 3                 | 0207    | 16.65 (2.53) |                               |                           |              |              | 11.50 (2.40) |              |  |  |  |  |
|                   | 0208    | 13.74 (2.27) |                               |                           |              |              | 13.10 (3.59) |              |  |  |  |  |
|                   | 0209    | 12.14 (2.66) |                               |                           |              |              | 14.67 (3.04) |              |  |  |  |  |
|                   | 0210    | 13.87 (3.12) |                               |                           |              |              | 13.89 (2.83) |              |  |  |  |  |
| 4                 | 0212    | 13.33 (1.62) |                               | 14.35 (1.88)              |              | 15.14 (2.10) | 15.14 (3.47) |              |  |  |  |  |
|                   | 0213    | 13.56 (2.71) |                               | 16.35 (2.00)              |              | 12.65 (2.72) | 15.60 (4.32) | 15.03 (5.10) |  |  |  |  |
|                   | 0214    | 14.11 (2.36) |                               | <sup>-</sup> 16.63 (2.74) |              | 15.63 (2.48) | 16.62 (3.05) | 17.15 (6.06) |  |  |  |  |
|                   | 0215    | 14.27 (1.96) |                               | 14.58 (2.83)              |              | 13.98 (1.10) | 16.48 (3.32) | 15.05 (2.36) |  |  |  |  |
|                   | 0216    | 15.00 (2.78) |                               | 17.57 (1.66)              |              | 15.87 (2.84) | 18.78 (6.27) | 17.08 (1.69) |  |  |  |  |

|                   |                |              |              | Insulat      | ion Black (Newtor | ıs/mm)       |                    |              |
|-------------------|----------------|--------------|--------------|--------------|-------------------|--------------|--------------------|--------------|
| Specimen<br>Group | Specimen<br>ID | Baseline     | Therma       | l Aging      | Service Radiation |              | Accident Radiation |              |
| Group             |                | A            | В            | С            | D                 | Е            | F                  | G            |
| 1                 | 0201           | 12.88 (1.30) |              |              |                   |              | 13.16 (3.06)       | 14.03 (1.25) |
|                   | 0202           | 14.90 (3.01) |              |              |                   |              | 14.33 (2.54)       | 14.84 (2.52) |
| 2                 | 0203           | 12.63 (1.92) | 13.32 (2.10) |              | 13.74 (2.58)      |              | 14.27 (2.36)       |              |
|                   | 0204           | 14.59 (3.78) | 14.83 (1.55) |              | 14.77 (2.11)      |              | 14.69 (2.65)       |              |
|                   | 0205           | 11.96 (3.46) | 16.41 (2.35) |              | 14.60 (2.17)      |              | 14.17 (2.25)       | 12.92 (2.69) |
|                   | 0206           | 11.38 (2.08) | 15.75 (2.35) |              | 14.59 (2.06)      |              | 15.18 (3.27)       | 15.97 (4.61) |
| 3                 | 0207           | 15.01 (0.71) |              |              |                   |              | 17.46 (3.14)       |              |
|                   | 0208           | 13.90 (2.14) |              |              |                   |              | 15.36 (1.93)       |              |
|                   | 0209           | 13.44 (2.97) |              |              |                   |              | 15.35 (2.92)       |              |
|                   | 0210           | 14.76 (1.50) |              |              |                   |              | 16.52 (2.28)       |              |
| 4                 | 0212           | 14.22 (2.09) |              | 14.67 (2.45) |                   | 14.28 (1.67) | 13.82 (3.08)       |              |
|                   | 0213           | 13.17 (1.50) |              | 13.66 (1.29) |                   | 14.00 (1.70) | 14.88 (2.45)       | 16.35 (3.10) |
|                   | 0214           | 12.17 (2.48) |              | 14.00 (2.39) |                   | 13.57 (3.42) | 15.32 (2.84)       | 16.63 (3.08) |
|                   | 0215           | 12.49 (3.07) |              | 12.62 (2.87) |                   | 13.62 (3.58) | 13.36 (2.23)       | 12.37 (1.36) |
|                   | 0216           | 12.28 (3.29) |              | 14.44 (3.66) |                   | 13.71 (2.97) | 20.18 (4.45)       | 17.31 (3.90) |

|       |      |              |              | Insula       | ation Red (Newton | s/mm)        | · · · · · · · · · · · · · · · · · · · |              |
|-------|------|--------------|--------------|--------------|-------------------|--------------|---------------------------------------|--------------|
| Group | ID   | Baseline     | Therma       | ıl Aging     | Service           | Radiation    | Accident                              | Radiation    |
|       |      | Α            | В            | С            | D                 | Е            | F                                     | G            |
| 1     | 0201 | 14.44 (3.69) |              |              |                   |              | 13.45 (2.74)                          | 13.41 (3.06) |
|       | 0202 | 14.49(2.90)  |              |              |                   |              | 17.29 (2.25)                          | 14.39 (2.86) |
| 2     | 0203 | 13.82 (3.27) | 15.32 (3.01) |              | 14.58 (1.71)      |              | 15.31 (3.53)                          |              |
|       | 0204 | 15.01 (1.98) | 15.86 (2.78) |              | 15.23 (1.91)      |              | 14.43 (2.13)                          |              |
|       | 0205 | 13.11 (2.16) | 15.94 (1.56) |              | 15.52 (1.82)      |              | 15.85 (3.92)                          | 14.51 (3.22) |
|       | 0206 | 10.54 (1.54) | 14.25 (2.52) |              | 13.42 (1.56)      |              | 15.72 (3.11)                          | 12.44 (1.17) |
| 3     | 0207 | 15.58 (2.72) |              |              |                   |              | 14.72 (1.59)                          |              |
|       | 0208 | 14.47 (1.83) |              |              |                   |              | 14.90 (2.75)                          |              |
|       | 0209 | 13.39 (2.24) |              |              |                   |              | 13.69 (4.40)                          |              |
|       | 0210 | 15.04 (2.25) |              |              |                   |              | 16.28 (2.84)                          |              |
| 4     | 0212 | 17.19 (3.01) |              | 14.59 (3.31) |                   | 14.56 (2.54) | 14.61 (2.52)                          |              |
|       | 0213 | 16.11 (2.63) | -            | 15.95 (3.56) |                   | 16.46 (3.09) | 16.29 (5.61)                          | 15.27 (3.17) |
|       | 0214 | 14.77 (1.22) |              | 15.11 (2.12) |                   | 14.51 (2.77) | 16.09 (3.83)                          | 14.53 (2.36) |
|       | 0215 | 14.25 (2.63) |              | 14.44 (1.87) |                   | 16.65 (1.83) | N/A                                   | 16.73 (3.97) |
|       | 0216 | 14.37 (1.65) |              | 15.11 (0.86) |                   | 16.20 (2.83) | N/A                                   | 16.03 (1.97) |

|                   |                |              | <u></u>      | Insulati     | on Green (Newtor | ıs/mm)       |              |              |
|-------------------|----------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|
| Specimen<br>Group | Specimen<br>ID | Baseline     | Therma       | l Aging      | Service F        | Radiation    | Accident     | Radiation    |
| Group             |                | Α            | В            | С            | D                | E            | F            | G            |
| 1                 | 0201           | 13.51 (2.81) |              |              |                  |              | 12.85 (2.56) | 13.39 (2.41) |
|                   | 0202           | -            |              |              |                  |              | -            | -            |
| 2                 | 0203           | 14.01 (1.85) | 15.42 (1.95) |              | 12.90 (1.71)     |              | 14.87 (2.22) |              |
|                   | 0204           | 13.98 (1.87) | 15.12 (2.24) |              | 14.23 (1.91)     |              | 13.26 (2.61) |              |
|                   | 0205           | 13.50 (0.89) | 13.68 (2.91) |              | 14.27 (1.45)     |              | 13.94 (2.44) | 13.31 (2.66) |
|                   | 0206           | 14.53 (1.74) | 13.66 (1.56) |              | 14.57 (1.90)     |              | 14.21 (2.18) | 13.97 (1.52) |
| 3                 | 0207           | 14.93 (2.41) |              |              |                  |              | 14.28 (2.97) |              |
|                   | 0208           | 15.68 (2.66) |              |              |                  |              | 15.10 (2.88) |              |
|                   | 0209           | 15.25 (2.60) |              |              |                  |              | 15.19 (2.63) |              |
|                   | 0210           | 15.16 (2.47) |              |              |                  |              | 14.10 (3.22) |              |
| 4                 | 0212           | 14.68 (1.59) |              | 14.1 (1.39)  |                  | 14.57 (2.33) | 15.07 (2.70) |              |
|                   | 0213           | 13.65 (1.87) |              | 14.33 (2.86) |                  | 14.01 (1.04) | 14.85 (2.94) | 15.05 (2.65) |
|                   | 0214           | -            |              | -            |                  | -            | -            | -            |
|                   | 0215           | 12.46 (1.64) |              | 12.72 (2.60) |                  | 14.94 (1.98) | N/A          | 14.05 (3.15) |
|                   | 0216           | -            |              | -            |                  |              | -            | -            |

Notes: 1. Standard deviations provided in parenthesis
2. All measurements made at room temperature
3. Probe speed: for modulus less than 100 N/mm: 12.7 mm/min. for modulus greater than 100 N/mm: 5.1 mm/min.

| Specimen |                |              |              |                                       | Outer Jacket                          |                 |                |              |
|----------|----------------|--------------|--------------|---------------------------------------|---------------------------------------|-----------------|----------------|--------------|
| Group    | Specimen<br>ID | Baseline     | Therm        | al Aging                              | Service                               | Radiation       | Accident R     | adiation     |
|          |                | А            | В            | С                                     | D                                     | Е               | F              | G            |
| 1        | 0301           | 9.66 (0.77)  |              |                                       |                                       |                 | 10.14 (1.08)   | 12.96 (1.24) |
|          | 0302           | 10.99 (1.19) |              |                                       |                                       |                 | 13.16 (1.52)   | 17.81 (1.71) |
| 2        | 0303           | 10.99 (0.93) | 10.43 (0.95) |                                       | 9.98 (0.80)                           |                 | 16.18 (1.41)   | 21.36 (2.60) |
|          | 0304           | 11.03 (1.08) | 10.11 (1.47) |                                       | 9.78 (1.13)                           |                 | 15.64 (1.04)   | 28.12 (2.01) |
|          | 0305           | 11.25 (0.77) | 10.32 (1.30) |                                       | 10.01 (0.95)                          |                 | 17.20 (1.67)   | 24.30 (3.54) |
|          | 0306           | 10.81 (0.61) | 10.12 (0.84) |                                       | 10.37 (1.32)                          |                 | 15.07 (1.22)   | 22.58 (2.43) |
| 3        | 0307           | 10.08 (0.73) |              | · · · · · · · · · · · · · · · · · · · |                                       |                 | 12.50 (0.75)   | 17.80 (1.65) |
|          | 0308           | 10.45 (0.88) |              |                                       |                                       |                 | 15.04 (2.18)   | 21.67 (2.99) |
|          | 0309           | 10.83 (0.70) |              |                                       |                                       | •               | 12.19 (1.34)   | 17.28 (1.69) |
|          | 0310           | 11.06 (0.95) |              |                                       |                                       |                 | 12.46 (1.22)   | 16.39 (1.91) |
|          | 0311           | 9.64 (1.20)  |              |                                       |                                       |                 | 11.69 (1.11)   | 16.70 (1.61) |
| 4        | 0312           | 9.58 (0.56)  | 1            | 483.34 (105.34)                       |                                       | 578.94 (345.52) | 349.13 (35.67) | NA           |
|          | 0313           | 9.15 (0.60)  |              | 475.93 (193.68)                       |                                       | 558.46 (261.05) | 372.26 (0.00)  | NA           |
|          | `0314          | 9.22 (0.85)  |              | 358.32 (118.83)                       |                                       | 434.00 (108.46) | NA             | NA           |
|          | 0315           | 9.07 (1.07)  |              | 506.08 (124.57)                       | · · · · · · · · · · · · · · · · · · · | 318.50 (185.09) | NA             | NA           |
|          | 0316           | 9.35 (1.01)  |              | 593.23 (112.17)                       |                                       | 433.28 (58.80)  | NA             | NA           |
|          | 0317           | 8.90 (0.89)  |              | 501.24 (122.26)                       |                                       | 469.89 (202.65) | NA             | NA           |

 Table E.3 Test Sequence 3 - Compressive Modulus

| Specimen | Specimen |                |                |                | Insulation Whit | e              |                |                |
|----------|----------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|
| Group    | ID.      | Baseline       | Therm          | al Aging       | Service         | Radiation      | Accident R     | adiation       |
|          |          | A              | В              | С              | D               | Е              | F              | G              |
| 1        | 0301     | 108.36 (4.69)  |                |                |                 |                | 110.09 (6.20)  | 114.87 (8.28)  |
|          | 0302     | 194.84 (15.56) |                |                |                 |                | 188.61 (28.07) | 210.56 (15.40) |
| 2        | 0303     | 199.94 (9.25)  | 159.74 (14.02) |                | 160.87 (6.46)   |                | 200.86 (8.58)  | 200.49 (9.76)  |
|          | 0304     | 197.49 (15.48) | 165.53 (12.31) | •              | 161.70 (9.21)   |                | 195.30 (6.30)  | 199.15 (12.46) |
|          | 0305     | 210.97 (18.81) | 168.31 (8.70)  |                | 174.31 (7.06)   |                | 198.41 (10.20) | 207.63 (14.41) |
|          | 0306     | 204.42 (14.70) | 168.57 (10.09) |                | 177.91 (9.37)   |                | 197.42 (9.30)  | 212.51 (10.48) |
| 3        | 0307     | 203.35 (13.68) |                |                |                 |                | 199.16 (20.43) | 230.98 (15.16) |
|          | 0308     | 206.90 (22.12) |                |                |                 |                | 215.48 (21.26) | 234.88 (24.39) |
|          | 0309     | 208.04 (13.84) |                |                |                 |                | 201.57 (16.65) | 223.63 (16.69) |
|          | 0310     | 213.11 (17.17) |                |                |                 |                | 200.28 (20.68) | 216.50 (15.79) |
|          | 0311     | 213.34 (13.34) |                |                |                 |                | 201.36 (18.38) | 237.09 (19.21) |
| 4        | 0312     | 106.68 (6.74)  |                | 152.17 (11.84) |                 | 160.54 (11.94) | 178.61 (11.29) | 173.26 (10.13) |
|          | 0313     | 105.98 (5.98)  |                | 151.34 (11.57) |                 | 168.71 (11.00) | 179.03 (18.30) | 176.70 (17.79) |
|          | 0314     | 105.10 (7.18)  | `              | 152.41 (20.87) |                 | 154.85 (17.29) | 159.21 (24.98) | 169.80 (15.61) |
|          | 0315     | 103.23 (5.76)  |                | 162.76 (16.37) |                 | 162.35 (9.34)  | NA             | 177.85 (13.83) |
|          | 0316     | 104.22 (5.74)  |                | 152.06 (11.76) |                 | 162.78 (8.93)  | NA             | 187.94 (24.42) |
|          | 0317     | 101.40 (8.17)  |                | 146.84 (17.17) |                 | 160.96 (12.40) | 181.25 (24.90) | 180.45 (18.42) |

 Table E.3
 Test Sequence 3 - Compressive Modulus

| Specimen | Sussimor       |                |                | ······································ | Insulation Red    |   | · · · · · · · · · · · · · · · · · · · |                |
|----------|----------------|----------------|----------------|----------------------------------------|-------------------|---|---------------------------------------|----------------|
| Group    | Specimen<br>ID | Baseline       | Therm          | al Aging                               | Service Radiation |   | Accident Radiation                    |                |
|          |                | А              | В              | С                                      | D                 | E | F                                     | G              |
| 1        | 0301           |                |                |                                        |                   |   |                                       |                |
|          | 0302           | 181.22 (11.89) |                |                                        |                   |   | 205.36 (38.00)                        | 196.10 (19.19) |
| 2        | 0303           | 204.68 (26.45) | 171.07 (8.52)  |                                        | 164.52 (4.96)     |   | 186.45 (27.75)                        | 201.69 (12.23) |
|          | 0304           | 190.11 (19.80) | 157.07 (13.67) |                                        | 157.00 (12.59)    |   | 194.23 (10.56)                        | 201.64 (12.55) |
|          | 0305           | 193.16 (22.08) | 166.37 (6.50)  |                                        | 167.44 (7.56)     |   | 203.62 (25.26)                        | 203.09 (8.09)  |
| 2        | 0306           | 199.79 (21.07) | 170.54 (15.91) |                                        | 172.48 (5.96)     |   | 179.72 (16.63)                        | 221.87 (18.14) |
| 3        | 0307           | 196.87 (15.16) |                |                                        |                   |   | 186.00 (36.00)                        | 229.19 (23.28) |
|          | 0308           | 197.54 (8.25)  |                |                                        |                   |   | 183.99 (22.07)                        | 222.42 (13.79) |
|          | 0309           | 195.93 (30.85) |                |                                        |                   |   | 189.06 (46.71)                        | 210.35 (16.23) |
|          | 0310           | 203.97 (19.99) |                |                                        |                   |   | 199.50 (20.43)                        | 216.12 (23.86) |
|          | 0311           | 189.92 (27.13) |                |                                        |                   |   | 197.37 (27.11)                        | 214.00 (17.46) |
| 4        | 0312           |                |                |                                        |                   |   |                                       |                |
|          | 0313           |                |                |                                        |                   |   |                                       |                |
|          | 0314           |                | •              | · .                                    |                   |   |                                       |                |
|          | 0315           |                |                |                                        |                   |   |                                       |                |
|          | 0316           |                |                |                                        |                   |   |                                       |                |
|          | 0317           |                |                |                                        |                   |   |                                       |                |

#### Table E.3 Test Sequence 3 - Compressive Modulus

| Specimen |             |                |                |                | Insulation Black | ζ              |                |                |
|----------|-------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|
| Group    | ID Specimen | Baseline       | Therm          | al Aging       | Service          | Radiation      | Accident R     | adiation       |
|          |             | A              | В              | С              | D                | Е              | F              | G              |
| 1        | 0301        | 98.83 (5.20)   |                |                |                  |                | 108.73 (8.84)  | 122.75 (10.07) |
|          | 0302        | 197.24 (24.10) |                |                |                  |                | 249.61 (22.01) | 198.17 (13.67) |
| 2        | 0303        | 196.41 (27.55) | 153.97 (14.62) |                | 149.12 (17.40)   |                | 217.44 (30.44) | 202.24 (10.09) |
|          | 0304        | 190.60 (9.97)  | 158.23 (12.46) |                | 154.40 (9.80)    |                | 184.42 (14.30) | 197.24 (10.25) |
|          | 0305        | 196.11 (25.45) | 180.83 (13.64) |                | 168.50 (5.51)    |                | 186.05 (21.27) | 212.72 (18.27) |
|          | 0306        | 196.88 (21.76) | 152.40 (22.20) |                | 165.61 (13.53)   |                | 194.84 (24.83) | 206.17 (19.45) |
| 3        | 0307        | 206.36 (14.55) |                |                |                  |                | 200.28 (20.65) | 231.13 (29.91) |
|          | 0308        | 198.55 (18.35) |                |                |                  |                | 204.17 (24.74) | 240.38 (23.43) |
|          | 0309        | 195.76 (23.60) |                |                |                  |                | 206.21 (21.09) | 231.61 (23.76) |
|          | 0310        | 215.84 (23.16) |                |                |                  |                | 218.81 (23.17) | 217.21 (35.69) |
|          | 0311        | 203.56 (14.88) |                |                |                  |                | 215.20 (24.21) | 221.20 (24.30) |
| 4        | 0312        | 103.03 (4.39)  |                | 127.76 (11.17) |                  | 144.51 (16.70) | 164.47 (15.67) | 163.54 (5.86)  |
|          | 0313        | 103.20 (4.16)  |                | 137.91 (13.22) |                  | 146.70 (12.24) | 148.64 (17.76) | 154.36 (18.79) |
|          | 0314        | 103.83 (8.85)  |                | 129.80 (12.50) |                  | 147.84 (14.24) | 143.17 (17.89) | 156.69 (17.46) |
|          | 0315        | 101.49 (4.75)  |                | 134.65 (13.16) |                  | 139.17 (15.33) | NA             | 166.25 (17.76) |
|          | 0316        | 102.76 (6.08)  |                | 130.91 (15.99) |                  | 141.89 (17.22) | NA             | 166.50 (20.09) |
|          | 0317        | 98.75 (4.13)   |                | 138.88 (15.39) |                  | 139.51 (14.32) | 158.74 (28.98) | 166.25 (19.27) |

| Table E.3 | Test Seq | uence 3 - | Compr | essive | Modulus |
|-----------|----------|-----------|-------|--------|---------|
|-----------|----------|-----------|-------|--------|---------|

: +

Notes: 1. Standard deviations provided in parenthesis
2. All measurements made at room temperature
3. Probe speed: for modulus less than 100 N/mm: 12.7 mm/min. for modulus greater than 100 N/mm: 5.1 mm/min.

| Specimen |             |         |                                        | Outer Jacket |              |                                       |   |
|----------|-------------|---------|----------------------------------------|--------------|--------------|---------------------------------------|---|
| ID       | Baseline    | Thermal | Aging                                  | Service      | Radiation    | Accident Radiation                    |   |
|          | А           | В       | С                                      | D            | Е            | F                                     | G |
| 0401     | 9.45 (0.27) |         |                                        |              |              |                                       |   |
| 0402     | 8.89 (1.69) |         |                                        |              |              |                                       |   |
| 0403     |             |         |                                        |              |              |                                       |   |
| 0404     | 9.10 (1.93) |         | ·····                                  | 11.8 (2.25)  |              |                                       |   |
| 0405     |             |         |                                        |              |              |                                       |   |
| 0406     | 9.59 (1.18) |         |                                        | 13.8 (3.14)  |              |                                       |   |
| 0407     |             |         | ······································ |              |              |                                       |   |
| 0408     | 9.38 (0.49) |         |                                        |              | 43.4 (5.17)  |                                       |   |
| 0409     |             |         |                                        |              |              |                                       |   |
| 0410     | 9.56 (0.59) |         |                                        |              | 44.28 (4.51) |                                       |   |
| 0411     | 9.67 (0.79) |         |                                        |              | 41.5 (4.40)  | · · · ·                               |   |
| 0412     |             |         |                                        |              |              |                                       |   |
| 0413     | 9.04 (2.99) |         |                                        |              | 15.2 (2.86)  | ·······                               |   |
| 0414     |             |         |                                        |              |              | · · · · · · · · · · · · · · · · · · · |   |
| 0415     | 9.43 (1.85) |         | ······································ |              | 17.9 (3.54)  | ······                                |   |
| 0416     | 9.20 (2.48) |         |                                        |              | 12.4 (2.68)  |                                       |   |
| 0417     | 9.51 (0.45) |         |                                        |              |              |                                       |   |
| 0418     | 8.67 (1.99) |         |                                        |              |              |                                       |   |

|                |             |         | ······································ | Individual Jacket | White       |                    |                                       |  |
|----------------|-------------|---------|----------------------------------------|-------------------|-------------|--------------------|---------------------------------------|--|
| Specimen<br>ID | Baseline    | Thermal | Aging                                  | Service I         | Radiation   | Accident Radiation |                                       |  |
|                | А           | В       | С                                      | D                 | Е           | F                  | G                                     |  |
| 0401           | 7.63 (0.71) |         |                                        |                   |             |                    |                                       |  |
| 0402           |             |         |                                        |                   |             |                    |                                       |  |
| 0403           |             |         |                                        |                   |             |                    |                                       |  |
| 0404           |             |         |                                        |                   |             |                    |                                       |  |
| 0404           |             |         |                                        |                   |             |                    |                                       |  |
| 0406           |             |         |                                        |                   |             |                    |                                       |  |
| 0407           |             |         |                                        |                   |             |                    |                                       |  |
| 0408           | 7.52 (0.47) |         |                                        |                   | 20.2 (0.89) |                    | · · · · · · · · · · · · · · · · · · · |  |
| 0409           |             |         |                                        |                   |             |                    |                                       |  |
| 0410           | 7.77 (0.72) |         |                                        |                   | 19.6 (0.47) |                    |                                       |  |
| 0411           | 7.36 (0.40) |         |                                        |                   | 20.8 (1.14) |                    |                                       |  |
| 0412           |             |         |                                        |                   |             |                    |                                       |  |
| 0413           |             |         |                                        |                   |             |                    |                                       |  |
| 0414           | <b>.</b>    |         |                                        |                   |             |                    |                                       |  |
| 0415           |             |         |                                        |                   |             |                    |                                       |  |
| 0416           |             |         |                                        | •                 |             |                    |                                       |  |
| 0417           | 7.81 (0.46) |         |                                        |                   |             |                    |                                       |  |
| 0418           |             |         |                                        |                   |             |                    |                                       |  |

.

### Table E.4 Test Sequence 4 - Compressive Modulus

| G    |             | Individual Jacket Black |                                       |         |             |                    |   |  |  |  |  |  |
|------|-------------|-------------------------|---------------------------------------|---------|-------------|--------------------|---|--|--|--|--|--|
| ID   | Baseline    | Thermal                 | Aging                                 | Service | Radiation   | Accident Radiation |   |  |  |  |  |  |
|      | А           | В                       | С                                     | D       | Е           | F                  | G |  |  |  |  |  |
| 0401 | 9.25 (0.68) |                         |                                       | ]       |             |                    |   |  |  |  |  |  |
| 0402 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0403 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0404 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0404 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0406 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0407 |             |                         | · · · · · · · · · · · · · · · · · · · | ·····   |             |                    |   |  |  |  |  |  |
| 0408 | 9.03 (0.37) |                         | <del></del>                           |         | 21.5 (0.57) |                    |   |  |  |  |  |  |
| 0409 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0410 | 9.74 (0.85) |                         |                                       |         | 21.3 (0.94) |                    |   |  |  |  |  |  |
| 0411 | 9.09 (0.63) |                         |                                       |         | 21.8 (0.85) |                    |   |  |  |  |  |  |
| 0412 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0413 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0414 | •           |                         |                                       | •       |             |                    |   |  |  |  |  |  |
| 0415 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0416 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0417 | 9.27 (0.50) |                         |                                       |         |             |                    |   |  |  |  |  |  |
| 0418 |             |                         |                                       |         |             |                    |   |  |  |  |  |  |

| Table E.4 | Test Seq | uence 4 - | <b>Compressive</b> | Modulus |
|-----------|----------|-----------|--------------------|---------|
|-----------|----------|-----------|--------------------|---------|

|                |              | Individual Jacket Purple |                                        |             |             |                    |   |  |  |  |  |  |
|----------------|--------------|--------------------------|----------------------------------------|-------------|-------------|--------------------|---|--|--|--|--|--|
| Specimen<br>ID | Baseline     | Thermal                  | Aging                                  | Service     | Radiation   | Accident Radiation |   |  |  |  |  |  |
|                | А            | В                        | С                                      | D           | Е           | F                  | G |  |  |  |  |  |
| 0401           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0402           | 15.02 (2.19) |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0403           | 16.02 (2.30) |                          |                                        | 17.8 (1.47) |             |                    |   |  |  |  |  |  |
| 0404           | 13.59 (2.39) |                          |                                        | 22.6 (3.73) |             |                    |   |  |  |  |  |  |
| 0405           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0406           | 13.41 (1.38) |                          |                                        | 20.6 (3.88) |             |                    |   |  |  |  |  |  |
| 0407           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0408           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0409           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0410           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0411           |              |                          |                                        |             |             |                    | : |  |  |  |  |  |
| 0412           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0413           | 14.55 (2.15) |                          |                                        |             | 24.5 (4.37) |                    |   |  |  |  |  |  |
| 0414           | 14.57 (2.72) |                          |                                        |             | 27.5 (1.13) |                    |   |  |  |  |  |  |
| 0415           | 14.47 (1.43) |                          | ······································ |             | 23.9 (2.35) |                    |   |  |  |  |  |  |
| 0416           | 13.84 (1.46) |                          |                                        |             | 26.5 (3.74) |                    |   |  |  |  |  |  |
| 0417           |              |                          |                                        |             |             |                    |   |  |  |  |  |  |
| 0418           | 16.68 (2.66) |                          |                                        |             |             |                    |   |  |  |  |  |  |

.

#### Table E.4 Test Sequence 4 - Compressive Modulus

| Specimen       |              |         |       | Individual Jacke | t Red       |          |                    |  |  |
|----------------|--------------|---------|-------|------------------|-------------|----------|--------------------|--|--|
| Specimen<br>ID | Baseline     | Thermal | Aging | Service          | Radiation   | Accident | Accident Radiation |  |  |
|                | Α            | В       | С     | D                | Е           | F        | G                  |  |  |
| 0401           | 8.38 (0.89)  |         |       |                  |             |          |                    |  |  |
| 0402           | 14.03 (1.20) |         |       |                  |             |          |                    |  |  |
| 0403           |              |         |       |                  |             |          |                    |  |  |
| 0404           | 15.19 (0.97) |         |       | 23.0 (1.99)      |             |          |                    |  |  |
| 0405           | 15.78 (2.63) |         |       | 24.0 (1.77)      |             |          |                    |  |  |
| 0406           | 13.76 (2.16) |         |       | 22.7 (1.86)      |             |          |                    |  |  |
| 0407           |              |         |       |                  |             |          |                    |  |  |
| 0408           | 8.24 (0.49)  |         |       |                  | ·           |          |                    |  |  |
| 0409           |              |         |       |                  |             |          |                    |  |  |
| 0410           | 7.89 (0.16)  |         |       |                  |             | ·        |                    |  |  |
| 0411           | 7.98 (0.73)  |         |       |                  |             |          |                    |  |  |
| 0412           | 14.80 (1.11) |         |       |                  | 26.6 (1.16) |          |                    |  |  |
| 0413           | 13.68 (1.40) |         |       |                  | 26.8 (1.00) |          |                    |  |  |
| 0414           |              |         |       | •                |             |          |                    |  |  |
| 0415           | 15.27 (2.12) |         |       |                  | 27.8 (1.15) |          |                    |  |  |
| 0416           | 13.90 (2.04) |         |       |                  | 24.4 (1.53) |          |                    |  |  |
| 0417           | 8.51 (0.52)  |         |       |                  |             |          |                    |  |  |
| 0418           | 13.81 (1.85) |         |       |                  |             |          |                    |  |  |

| Table E.4 | <b>Test Sequence 4</b> | - Compressive | Modulus |
|-----------|------------------------|---------------|---------|
|-----------|------------------------|---------------|---------|

|                | Insulation White |          |                                       |         |             |                    |   |  |  |  |  |
|----------------|------------------|----------|---------------------------------------|---------|-------------|--------------------|---|--|--|--|--|
| Specimen<br>ID | Baseline         | Thermal  | Aging                                 | Service | Radiation   | Accident Radiation |   |  |  |  |  |
|                | А                | В        | С                                     | D       | E           | F                  | G |  |  |  |  |
| 0401           | 10.31 (1.24)     |          |                                       |         |             |                    |   |  |  |  |  |
| 0402           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0403           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0404           | ·                |          |                                       |         |             |                    |   |  |  |  |  |
| 0405           |                  |          |                                       | ·       |             |                    |   |  |  |  |  |
| 0406           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0407           | 9.96 (1.48)      |          |                                       |         | 16.0 (1.05) |                    |   |  |  |  |  |
| 0408           | 10.19 (1.21)     |          |                                       |         | 15.8 (0.62) |                    |   |  |  |  |  |
| 0409           | 9.82 (1.01)      |          |                                       |         | 16.0 (1.61) |                    |   |  |  |  |  |
| 0410           | 10.37 (1.35)     |          |                                       |         | 14.6 (0.37) |                    |   |  |  |  |  |
| 0411           | 10.15 (0.93)     |          | :<br>.*                               |         | 14.7 (1.57) | :                  |   |  |  |  |  |
| 0412           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0413           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0414           |                  | <u>.</u> |                                       |         |             |                    |   |  |  |  |  |
| 0415           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0416           |                  |          |                                       |         |             |                    |   |  |  |  |  |
| 0417           | 10.32 (1.27)     |          | · · · · · · · · · · · · · · · · · · · |         |             |                    |   |  |  |  |  |
| 0418           |                  |          |                                       |         |             |                    |   |  |  |  |  |

|      |              |         |                                         | Insulation Bla | ck          |                                       |           |
|------|--------------|---------|-----------------------------------------|----------------|-------------|---------------------------------------|-----------|
| ID   | Baseline     | Thermal | Aging                                   | Service        | Radiation   | Accident                              | Radiation |
|      | Α            | В       | С                                       | D              | Е           | F                                     | G         |
| 0401 | 13.16 (1.00) |         |                                         |                |             |                                       |           |
| 0402 |              |         |                                         |                |             |                                       |           |
| 0403 |              |         |                                         |                |             |                                       |           |
| 0404 |              |         | **************************************  |                |             |                                       |           |
| 0405 |              |         |                                         |                |             |                                       |           |
| 0406 |              |         | - • • • • • • • • • • • • • • • • • • • |                |             | · · ·                                 |           |
| 0407 |              |         |                                         |                |             |                                       |           |
| 0408 | 12.79 (1.65) |         | <u></u>                                 |                | 18.4 (0.90) |                                       |           |
| 0409 |              |         |                                         |                |             |                                       |           |
| 0410 | 13.37 (1.56) |         |                                         |                | 17.4 (2.69) |                                       |           |
| 0411 | 12.83 (1.02) |         |                                         |                | 17.1 (2.15) |                                       |           |
| 0412 |              |         |                                         |                |             |                                       |           |
| 0413 |              |         |                                         |                |             |                                       |           |
| 0414 |              |         |                                         |                |             | · · · · · · · · · · · · · · · · · · · |           |
| 0415 |              |         |                                         |                |             |                                       |           |
| 0416 |              |         |                                         |                |             |                                       |           |
| 0417 | 13.82 (1.05) |         |                                         |                |             |                                       |           |
| 0418 |              |         |                                         |                | ·····       |                                       |           |

|                |              | Insulation Red |       |           |           |          |           |  |  |  |  |
|----------------|--------------|----------------|-------|-----------|-----------|----------|-----------|--|--|--|--|
| Specimen<br>ID | Baseline     | Thermal        | Aging | Service I | Radiation | Accident | Radiation |  |  |  |  |
|                | Α            | В              | С     | D         | Е         | F        | G         |  |  |  |  |
| 0401           | 12.21 (2.00) |                |       |           |           |          |           |  |  |  |  |
| 0402           |              |                |       |           |           | ·        |           |  |  |  |  |
| 0403           |              |                |       |           |           |          |           |  |  |  |  |
| 0404           |              |                |       |           |           |          |           |  |  |  |  |
| 0405           |              |                |       |           |           |          |           |  |  |  |  |
| 0406           |              |                |       |           |           |          |           |  |  |  |  |
| 0407           |              |                |       |           |           |          |           |  |  |  |  |
| 0408           | 12.81 (1.03) |                |       |           |           |          |           |  |  |  |  |
| 0409           |              |                |       |           |           |          |           |  |  |  |  |
| 0410           | 12.28 (1.30) |                | ·     |           |           |          |           |  |  |  |  |
| 0411           | 13.31 (1.62) |                |       |           |           |          |           |  |  |  |  |
| 0412           |              |                |       |           |           |          |           |  |  |  |  |
| 0413           |              |                |       |           |           |          |           |  |  |  |  |
| 0414           |              | •              | -     |           |           |          | -         |  |  |  |  |
| 0415           |              |                |       |           |           |          |           |  |  |  |  |
| 0416           |              |                |       |           |           |          |           |  |  |  |  |
| 0417           | 14.07 (2.84) |                |       |           |           |          |           |  |  |  |  |
| 0418           |              |                |       |           |           |          |           |  |  |  |  |

.

#### Table E.4 Test Sequence 4 - Compressive Modulus

E-27

Notes: 1. Standard deviations provided in parenthesis 2. All measurements made at room temperature

3. Probe speed: for modulus less than 100 N/mm: 12.7 mm/min.

for modulus greater than 100 N/mm: 5.1 mm/min.

|                | Outer Jacket |         |       |              |              |          |           |  |  |  |
|----------------|--------------|---------|-------|--------------|--------------|----------|-----------|--|--|--|
| Specimen<br>ID | Baseline     | Thermal | Aging | Service H    | Radiation    | Accident | Radiation |  |  |  |
|                | Α            | В       | С     | D            | Е            | F        | G         |  |  |  |
| 0501           |              |         |       |              |              |          |           |  |  |  |
| 0502           | 14.91 (1.62) |         |       |              | ·            |          |           |  |  |  |
| 0503           | 9.55 (1.23)  |         |       |              |              |          |           |  |  |  |
| 0504           |              |         |       |              |              |          |           |  |  |  |
| 0505           |              |         |       |              |              |          |           |  |  |  |
| 0506           | 15.51 (2.85) |         |       | 20.89 (3.26) |              |          |           |  |  |  |
| 0507           | 16.53 (3.59) |         |       | 19.83 (3.10) |              |          |           |  |  |  |
| 0508           | 9.16 (1.92)  |         |       | 18.41 (2.08) |              |          |           |  |  |  |
| 0509           | 7.36 (2.16)  |         |       | 18.44 (1.38) |              |          |           |  |  |  |
| 0510           |              |         |       |              |              |          |           |  |  |  |
| 0511           | :            |         |       |              |              |          |           |  |  |  |
| 0512           |              |         |       |              |              |          |           |  |  |  |
| 0513           | 14.25 (1.70) |         |       |              | 22.89 (2.99) |          |           |  |  |  |
| 0514           | 15.06 (2.56) |         |       |              | 24.43 (4.28) |          |           |  |  |  |
| 0515           | 9.53 (0.58)  |         |       |              | 42.48 (5.61) |          |           |  |  |  |
| 0516           | 9.41 (0.34)  |         |       |              | 39.84 (4.78) |          |           |  |  |  |
| 0517           | 13.15 (0.82) |         |       |              |              |          |           |  |  |  |
| 0518           | 14.69 (2.58) |         |       |              |              |          |           |  |  |  |
| 0519           | 9.82 (1.08)  |         |       |              |              |          |           |  |  |  |

|             |              |         |                                        | Individual Jacket | White        | <u></u>  |                                       |
|-------------|--------------|---------|----------------------------------------|-------------------|--------------|----------|---------------------------------------|
| ID Specimen | Baseline     | Thermal | Aging                                  | Service           | Radiation    | Accident | Radiation                             |
|             | Α            | В       | С                                      | D                 | Е            | F        | · G                                   |
| 0501        |              |         |                                        |                   |              |          |                                       |
| 0502        | 14.45 (0.65) |         | ······································ |                   |              |          | · · · · · · · · · · · · · · · · · · · |
| 0503        | 7.90 (0.59)  |         |                                        |                   |              |          |                                       |
| 0504        |              |         |                                        |                   |              |          |                                       |
| 0505        |              |         |                                        |                   |              |          |                                       |
| 0506        | 15.35 (1.01) |         |                                        | 20.91 (0.92)      |              |          |                                       |
| 0507        | 13.90 (1.28) |         |                                        | 22.53 (2.29)      |              |          |                                       |
| 0508        | 7.75 (0.40)  |         |                                        | 12.84 (0.56)      |              |          |                                       |
| 0509        | 7.53 (0.64)  |         |                                        | 13.26 (0.52)      |              |          |                                       |
| 0510        |              |         |                                        |                   |              |          |                                       |
| 0511        |              |         |                                        |                   |              |          |                                       |
| 0512        |              |         |                                        |                   |              |          |                                       |
| 0513        | 15.44 (0.90) |         |                                        |                   | 25.82 (1.33) |          |                                       |
| 0514        | 14.38 (1.12) |         |                                        | •                 | 28:79 (1.94) |          | ·                                     |
| 0515        | 7.81 (0.35)  |         |                                        |                   | 25.32 (1.01) |          |                                       |
| 0516        | 7.67 (0.78)  |         |                                        |                   | 24.99 (1.50) |          |                                       |
| 0517        |              |         |                                        |                   |              |          |                                       |
| 0518        | 14.57 (1.56) |         |                                        |                   |              |          |                                       |
| 0519        | 7.92 (0.67)  |         |                                        |                   |              |          |                                       |

|                |              | Individual Jacket Black |       |                |                |          |           |  |  |  |  |  |
|----------------|--------------|-------------------------|-------|----------------|----------------|----------|-----------|--|--|--|--|--|
| Specimen<br>ID | Baseline     | Thermal                 | Aging | Service R      | Radiation      | Accident | Radiation |  |  |  |  |  |
|                | А            | В                       | С     | D              | Е              | F        | G         |  |  |  |  |  |
| 0501           | 13.24 (0.46) |                         |       |                |                |          |           |  |  |  |  |  |
| 0502           | 14.38 (0.96) |                         |       | ·              |                |          |           |  |  |  |  |  |
| 0503           | 8.97 (0.48)  |                         |       |                |                |          |           |  |  |  |  |  |
| 0504           | 13.01 (0.90) |                         |       | 135.63 (29.88) |                |          |           |  |  |  |  |  |
| 0505           | 14.05 (0.49) |                         |       | 145.71 (29.09) |                |          |           |  |  |  |  |  |
| 0506           | 14.63 (1.37) |                         |       | 22.57 (1.53)   |                |          |           |  |  |  |  |  |
| 0507           | 14.18 (1.00) |                         |       | 21.37 (0.42)   |                |          |           |  |  |  |  |  |
| 0508           | 9.19 (0.46)  |                         |       | 13.68 (0.32)   |                |          |           |  |  |  |  |  |
| 0509           | 9.10 (0.46)  |                         |       | 14.35 (0.49)   |                |          |           |  |  |  |  |  |
| 0510           | 12.86 (1.57) |                         |       |                | 183.38 (9.77)  |          |           |  |  |  |  |  |
| 0511           | 14.18 (0.74) |                         | 1     |                | 190.24 (16.28) |          |           |  |  |  |  |  |
| 0512           | 13.24 (0.94) |                         |       |                | 195.03 (22.13) |          |           |  |  |  |  |  |
| 0513           | 13.99 (0.95) |                         |       |                | 27.48 (0.67)   |          |           |  |  |  |  |  |
| 0514           | 14.23 (1.14) |                         | •     |                | 27.65 (1.10)   |          |           |  |  |  |  |  |
| 0515           | 9.44 (0.28)  |                         |       |                | 29.64 (0.50)   |          |           |  |  |  |  |  |
| 0516           | 9.29 (0.34)  |                         |       |                | 27.78 (1.22)   |          |           |  |  |  |  |  |
| 0517           | NA           |                         |       |                | NA             |          |           |  |  |  |  |  |
| 0518           | 14.77 (1.10) |                         |       |                |                |          |           |  |  |  |  |  |
| 0519           | 9.21 (0.62)  |                         |       |                |                |          |           |  |  |  |  |  |

#### Table E.5 Test Sequence 5 - Compressive Modulus

|             |             | Individual Jacket Red |         |         |                                        |          |           |  |  |  |  |  |
|-------------|-------------|-----------------------|---------|---------|----------------------------------------|----------|-----------|--|--|--|--|--|
| ID Specimen | Baseline    | Therma                | l Aging | Service | Radiation                              | Accident | Radiation |  |  |  |  |  |
|             | Α           | В                     | с       | D       | Е                                      | F        | G         |  |  |  |  |  |
| 0501        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0502        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0503        | 8.10 (0.49) |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0504        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0505        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0506        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0507        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0508        | 8.93 (1.09) |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0509        | 7.77 (0.58) |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0510        |             |                       |         |         | ************************************** |          |           |  |  |  |  |  |
| 0511        |             | -<br>-                |         |         |                                        | · ·      |           |  |  |  |  |  |
| 0512        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0513        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0514        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0515        | 8.33 (0.38) |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0516        | 8.49 (0.66) |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0517        | :           |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0518        |             |                       |         |         |                                        |          |           |  |  |  |  |  |
| 0519        | 8.30 (0.42) |                       |         |         |                                        |          |           |  |  |  |  |  |

|                | Insulation White |         |           |              |              |          |           |  |  |  |  |
|----------------|------------------|---------|-----------|--------------|--------------|----------|-----------|--|--|--|--|
| Specimen<br>ID | Baseline         | Thermal | Aging     | Service I    | Radiation    | Accident | Radiation |  |  |  |  |
|                | Α                | В       | С         | D            | Е            | F        | G         |  |  |  |  |
| 0501           |                  |         |           |              |              |          |           |  |  |  |  |
| 0502           |                  |         |           |              |              |          |           |  |  |  |  |
| 0503           | 9.98 (1.15)      |         | · · · · · |              |              |          |           |  |  |  |  |
| 0504           |                  |         |           |              |              |          |           |  |  |  |  |
| 0505           |                  |         |           |              |              |          |           |  |  |  |  |
| 0506           |                  |         |           |              |              |          |           |  |  |  |  |
| 0507           |                  |         |           |              |              |          |           |  |  |  |  |
| 0508           | 11.37 (2.02)     |         |           | 12.80 (0.58) |              |          |           |  |  |  |  |
| 0509           | 9.76 (1.13)      |         |           | 12.37 (1.04) |              |          |           |  |  |  |  |
| 0510           |                  |         |           |              |              |          |           |  |  |  |  |
| 0511           |                  |         |           |              |              |          |           |  |  |  |  |
| 0512           |                  |         |           |              |              |          |           |  |  |  |  |
| 0513           |                  |         |           |              |              |          |           |  |  |  |  |
| 0514           | х.<br>Х          |         |           |              |              | •        | ·         |  |  |  |  |
| 0515           | 10.96 (1.46)     |         |           |              | 17.44 (1.57) |          |           |  |  |  |  |
| 0516           | 10.63 (1.42)     |         |           |              | 16.32 (1.74) |          |           |  |  |  |  |
| 0517           |                  |         |           |              |              |          |           |  |  |  |  |
| 0518           |                  |         |           |              |              |          |           |  |  |  |  |
| 0519           | 9.68 (0.40)      |         |           |              |              |          |           |  |  |  |  |

#### Table E.5 Test Sequence 5 - Compressive Modulus

| 0    |              | Insulation Black |       |              |              |          |           |  |  |  |  |  |
|------|--------------|------------------|-------|--------------|--------------|----------|-----------|--|--|--|--|--|
| ID   | Baseline     | Thermal          | Aging | Service      | Radiation    | Accident | Radiation |  |  |  |  |  |
|      | Α            | В                | С     | D            | Е            | F        | G         |  |  |  |  |  |
| 0501 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0502 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0503 | 12.99 (1.20) |                  |       |              |              | ·····    |           |  |  |  |  |  |
| 0504 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0505 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0506 |              |                  |       |              |              | •        |           |  |  |  |  |  |
| 0507 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0508 | 12.40 (1.31) |                  |       | 15.09 (0.88) |              |          |           |  |  |  |  |  |
| 0509 | 12.28 (1.06) |                  |       | 14.40 (1.04) |              |          |           |  |  |  |  |  |
| 0510 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0511 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0512 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0513 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0514 |              |                  | •     |              | •            |          | · · ·     |  |  |  |  |  |
| 0515 | 10.64 (1.87) |                  |       |              | 18.96 (2.15) |          |           |  |  |  |  |  |
| 0516 | 11.45 (1.21) |                  |       |              | 18.06 (2.21) |          |           |  |  |  |  |  |
| 0517 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0518 |              |                  |       |              |              |          |           |  |  |  |  |  |
| 0519 | 13.98 (1.48) |                  |       |              |              |          |           |  |  |  |  |  |

### Table E.5 Test Sequence 5 - Compressive Modulus

|                | Insulation Red |         |       |           |           |          |           |  |  |  |
|----------------|----------------|---------|-------|-----------|-----------|----------|-----------|--|--|--|
| Specimen<br>ID | Baseline       | Thermal | Aging | Service F | Radiation | Accident | Radiation |  |  |  |
|                | А              | В       | С     | D         | Е         | F        | G         |  |  |  |
| 0501           |                |         |       |           |           |          |           |  |  |  |
| 0502           |                |         |       |           |           |          |           |  |  |  |
| 0503           | 12.18 (1.66)   |         |       |           |           |          |           |  |  |  |
| 0504           |                |         |       |           |           |          |           |  |  |  |
| 0505           |                |         |       |           |           |          |           |  |  |  |
| 0506           |                |         |       |           |           |          |           |  |  |  |
| 0507           |                |         |       |           |           |          |           |  |  |  |
| 0508           | 13.61 (0.54)   |         |       |           |           |          |           |  |  |  |
| 0509           | 13.80 (0.79)   |         |       |           |           |          |           |  |  |  |
| 0510           |                |         |       |           |           |          |           |  |  |  |
| 0511           |                | 4       |       |           |           | •        |           |  |  |  |
| 0512           |                |         |       |           |           |          |           |  |  |  |
| 0513           |                |         |       |           |           |          |           |  |  |  |
| 0514           |                |         |       |           |           |          |           |  |  |  |
| 0515           | 12.66 (1.76)   |         |       |           |           |          |           |  |  |  |
| 0516           | 13.96 (1.39)   |         |       |           |           |          |           |  |  |  |
| 0517           |                |         |       |           |           |          |           |  |  |  |
| 0518           |                |         |       |           |           |          |           |  |  |  |
| 0519           | 13.52 (2.50)   |         |       |           |           |          |           |  |  |  |

.

Notes:1. Standard deviations provided in parenthesis2. All measurements made at room temperature3. Probe speed: for modulus less than 100 N/mm: 12.7 mm/min.for modulus greater than 100 N/mm: 5.1 mm/min.

|          | Outer Jacket |       |                 |         |                |                 |                |  |  |  |  |
|----------|--------------|-------|-----------------|---------|----------------|-----------------|----------------|--|--|--|--|
| Specimen | Baseline     | Therm | al Aging        | Service | Radiation      | Accident        | Radiation      |  |  |  |  |
| 12       | Α            | В     | С               | D       | Е              | F               | G              |  |  |  |  |
| 0601     |              |       |                 |         |                |                 |                |  |  |  |  |
| 0602     | 13.05 (2.10) |       |                 |         |                | 20.73 (3.93)    | 28.43 (5.14)   |  |  |  |  |
| 0603     | 10.32 (1.21) |       |                 |         |                | 10.48 (0.71)    | 10.90 (1.58)   |  |  |  |  |
| 0604     | 9.07 (1.31)  |       |                 |         |                | 14.40 (2.23)    | 19.45 (1.69)   |  |  |  |  |
| 0605     |              |       |                 |         |                |                 |                |  |  |  |  |
| 0606     |              |       |                 |         |                |                 |                |  |  |  |  |
| 0607     |              |       |                 |         |                |                 |                |  |  |  |  |
| 0608     | 13.69 (1.95) |       | 17.40 (3.28)    |         | 34.22 (5.76)   | 43.09 (7.52)    | 56.60 (8.82)   |  |  |  |  |
| 0609     | 14.22 (2.20) |       | 16.90 (3.66)    |         | 30.85 (5.19)   | 45.39 (9.63)    | 64.92 (9.92)   |  |  |  |  |
| 0610     | 13.89 (2.99) |       | 17.87 (2.53)    |         | 31.80 (5.13)   | 39.98 (8.56)    | 59.83 (9.36)   |  |  |  |  |
| 0611     | 10.11 (0.87) |       | 11.99 (1.18)    |         | 16.27 (5.85)   | 15.18 (1.31)    | 15.36 (1.55)   |  |  |  |  |
| 0612     | 8.39 (0.42)  |       | 9.61 (0.81)     |         | 10.87 (0.78)   | 13.65 (1.03)    | 14.10 (1.25)   |  |  |  |  |
| 0613     | 10.23 (1.78) |       | 12.16 (1.97)    | •       | 12.42 (1.36)   | 15.68 (1.98)    | 14.49 (1.84)   |  |  |  |  |
| 0614     | 9.30 (0.85)  |       |                 |         |                |                 |                |  |  |  |  |
| 0615     | 8.96 (0.96)  |       |                 |         |                |                 |                |  |  |  |  |
| 0616     | 9.13 (0.66)  |       | •               |         |                |                 |                |  |  |  |  |
| 0617     |              |       |                 |         |                |                 |                |  |  |  |  |
| 0618     | 13.29 (2.53) |       | 18.96 (3.57)    |         | 33.49 (5.19)   | 39.80 (7.08)    | 59.62 (10.41)  |  |  |  |  |
| 0619     | 8.44 (0.60)  |       | 9.72 (0.96)     |         | 10.29 (0.41)   | 12.53 (1.13)    | 12.43 (0.89)   |  |  |  |  |
| 0621     | 8.93 (0.53)  |       | 524.64 (155.86) |         | 321.63 (69.02) | 503.33 (78.39)  | 443.37 (68.25) |  |  |  |  |
| 0622     | 8.91 (0.69)  |       | 454.67 (87.50)  |         | NA             | 453.43 (114.29) | NA             |  |  |  |  |
| 0623     | 9.04 (0.78)  |       | 440.92 (79.79)  |         | NA             | 490.21 (136.25) | NA             |  |  |  |  |
| 0624     | 9.62 (1.22)  |       | 514.27 (144.51) |         | NA             | 446.82 (81.08)  | NA             |  |  |  |  |
|                |              | <u>i i i i i i i i i i i i i i i i i i i </u> | White        | e Individual Ja                       | acket        |                                       |              |
|----------------|--------------|-----------------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------|--------------|
| Specimen<br>ID | Baseline     | Ther                                          | mal Aging    | Servio                                | e Radiation  | Accident                              | Radiation    |
|                | Α            | В                                             | C            | D                                     | E            | F                                     | G            |
| 0601           |              | <u></u>                                       |              |                                       |              |                                       | Ť            |
| 0602           | 14.39 (1.27) |                                               |              | · · · · · · · · · · · · · · · · · · · |              | 22.85 (2.03)                          | 25.42 (3.37) |
| 0603           | 10.69 (0.43) |                                               |              |                                       |              | 13.77 (0.89)                          | 12.17 (0.47) |
| 0604           |              |                                               |              |                                       |              |                                       | 1            |
| 0605           |              | · · · · · · · · · · · · · · · · · · ·         |              |                                       |              |                                       |              |
| 0606           |              | ······································        |              |                                       |              | · · · · · · · · · · · · · · · · · · · |              |
| 0607           |              |                                               |              |                                       |              |                                       |              |
| 0608           | 14.88 (0.98) |                                               | 27.14 (2.06) |                                       | 37.43 (1.67) | 46.43 (2.66)                          | 49.87 (2.41) |
| 0609           | 14.56 (1.25) |                                               | 26.16 (1.50) |                                       | 38.93 (1.14) | 47.24 (2.49)                          | 55.46 (1.82) |
| 0610           | 14.63 (0.89) |                                               | 26.70 (1.87) |                                       | 34.67 (1.50) | 44.48 (4.30)                          | 51.74 (3.73) |
| 0611           | 11.30 (0.40) |                                               | 14.70 (0.41) |                                       | 17.42 (0.77) | 21.62 (0.73)                          | 18.99 (1.38) |
| 0612           | 10.63 (0.86) |                                               | 13.35 (0.65) |                                       | 17.72 (1.00) | 20.24 (1.18)                          | 17.99 (0.35) |
| 0613           | 11.75 (0.42) |                                               | 14.22 (0.38) |                                       | 17.01 (0.36) | 19.93 (0.80)                          | 17.84 (0.67) |
| 0614           |              |                                               |              |                                       |              |                                       |              |
| 0615           |              |                                               |              |                                       |              | ·····                                 | · ·          |
| 0616           |              |                                               |              |                                       |              |                                       |              |
| 0617           |              |                                               |              |                                       |              |                                       |              |
| 0618           | 14.77 (1.06) |                                               | 26.46 (1.82) |                                       | 37.36 (0.92) | 47.29 (2.50)                          | 55.99 (4.63) |
| 0619           | 10.50 (0.32) |                                               | 13.31 (0.91) |                                       | 15.94 (0.72) | 19.09 (1.70)                          | 16.90 (1.00) |
| 0621           |              |                                               |              |                                       |              |                                       |              |
| 0622           |              |                                               |              |                                       |              |                                       |              |
| 0623           |              |                                               |              |                                       |              |                                       |              |
| 0624           |              |                                               |              |                                       |              |                                       |              |

.

#### Table E.6 Test Sequence 6 - Compressive Modulus

•

|          |              |       | Black          | Individual Jac                        | ket            |                |                |
|----------|--------------|-------|----------------|---------------------------------------|----------------|----------------|----------------|
| Specimen | Baseline     | Thern | nal Aging      | Service                               | Radiation      | Accident       | Radiation      |
|          | Α            | В     | C              | D                                     | E              | F              | G              |
| 0601     | 13.32 (0.72) |       |                |                                       |                | 14.66 (0.72)   | 15.30 (0.68)   |
| 0602     | 13.65 (1.73) |       |                |                                       |                | 22.67 (1.87)   | 22.79 (2.78)   |
| 0603     | 11.34 (0.63) |       |                |                                       |                | 12.84 (0.69)   | 12.47 (0.75)   |
| 0604     |              |       |                |                                       |                |                |                |
| 0605     | 13.30 (0.44) |       | 163.60 (27.65) |                                       | 152.02 (39.56) | 169.88 (41.40) | 120.28 (25.14) |
| 0606     | 12.85 (0.52) |       | 160.76 (34.42) |                                       | 140.85 (23.44) | 168.12 (31.95) | 138.66 (29.12) |
| 0607     | 13.09 (0.59) |       | 174.11 (15.59) |                                       | 199.79 (30.45) | 163.31 (44.18) | 157.91 (53.15) |
| 0608     | 12.32 (3.63) |       | 25.07 (0.98)   |                                       | 36.53 (1.61)   | 45.75 (2.50)   | 54.92 (2.18)   |
| 0609     | 14.78 (0.64) |       | 26.47 (1.77)   |                                       | 38.04 (1.70)   | 47.37 (2.52)   | 52.40 (2.12)   |
| 0610     | 14.33 (1.44) |       | 27.43 (0.52)   |                                       | 35.07 (1.23)   | 45.14 (3.84)   | 54.38 (3.52)   |
| 0611     | 11.83 (0.85) |       | 12.52 (0.73)   |                                       | 14.31 (0.91)   | 18.26 (0.76)   | 17.30 (0.92)   |
| 0612 .   | 11.18 (0.40) |       | 12.20 (0.28)   |                                       | 14.54 (0.52)   | 18.17 (0.74)   | 17.81 (0.59)   |
| 0613     | 10.65 (0.96) |       | 11.39 (0.31)   |                                       | 12.42 (0.63)   | 15.52 (0.53)   | 14.91 (0.31)   |
| 0614     |              |       |                |                                       |                |                |                |
| 0615     |              |       |                |                                       |                |                |                |
| 0616     |              |       |                |                                       |                |                |                |
| 0617     | 13.53 (0.46) |       | 155.49 (24.08) |                                       | 144.29 (57.47) | 173.46 (47.93) | 118.76 (25.75) |
| 0618     | 14.55 (1.38) |       | 27.23 (1.04)   |                                       | 37.01 (2.03)   | 46.48 (2.09)   | 56.05 (3.65)   |
| 0619     | 11.69 (0.43) |       | 11.82 (0.29)   | · · · · · · · · · · · · · · · · · · · | 13.47 (0.46)   | 16.74 (0.25)   | 15.82 (0.25)   |
| 0621     |              |       |                |                                       |                |                |                |
| 0622     |              |       |                |                                       |                |                |                |
| 0623     |              |       |                |                                       |                |                |                |
| 0624     |              |       |                |                                       |                |                |                |

.

#### Table E.6 Test Sequence 6 - Compressive Modulus

|                |              |       | Red          | Individual Jac | cket         |                                       |              |
|----------------|--------------|-------|--------------|----------------|--------------|---------------------------------------|--------------|
| Specimen<br>ID | Baseline     | Ther  | mal Aging    | Servio         | e Radiation  | Accident                              | Radiation    |
|                | А            | В     | C            | D              | Е            | F                                     | G            |
| 0601           |              |       |              |                |              |                                       |              |
| 0602           |              |       | 1            |                |              |                                       |              |
| 0603           | 12.18 (0.75) |       |              |                |              | 14.23 (1.02)                          | 13.15 (0.98) |
| 0604           |              |       |              |                |              |                                       |              |
| 0605           |              |       |              |                |              |                                       |              |
| 0606           | · · · ·      |       |              |                |              |                                       |              |
| 0607           |              |       |              |                |              |                                       |              |
| 0608           |              | ····· |              |                |              |                                       |              |
| 0609           |              |       |              |                |              |                                       |              |
| 0610           |              |       |              |                |              |                                       |              |
| 0611           | 11.39 (0.85) |       | 13.90 (0.42) |                | 17.50 (0.87) | 19.77 (0.87)                          | 18.10 (0.86) |
| 0612           | 10.92 (0.80) |       | 14.32 (0.37) |                | 18.05 (0.63) | 20.73 (1.71)                          | 19.10 (1.96) |
| 0613           | 12.15 (0.70) |       | 14.58 (0.48) |                | 15.88 (0.86) | 18.66 (0.63)                          | 16.79 (1.01) |
| 0614           |              |       |              |                |              |                                       |              |
| 0615           |              | ····· |              |                |              | · · · · · · · · · · · · · · · · · · · |              |
| 0616           |              |       |              | · · · · · ·    |              |                                       |              |
| 0617           |              |       |              |                |              |                                       |              |
| 0618           |              |       |              |                |              |                                       |              |
| 0619           | 10.66 (0.74) |       | 13.18 (0.33) |                | 16.69 (0.84) | 19.18 (0.97)                          | 17.59 (1.05) |
| 0621           |              |       |              |                |              |                                       |              |
| 0622           |              |       |              |                |              |                                       |              |
| 0623           |              |       |              |                |              |                                       |              |
| 0624           |              |       |              | <del></del>    |              |                                       |              |

|          |                                       |       | Gree         | en Individual Jacl | cet          |                                       |              |  |
|----------|---------------------------------------|-------|--------------|--------------------|--------------|---------------------------------------|--------------|--|
| Specimen | Baseline                              | Therm | nal Aging    | Service            | Radiation    | Accident                              | Radiation    |  |
|          | Α                                     | В     | С            | Ð                  | Е            | F                                     | G            |  |
| 0601     |                                       |       |              |                    |              |                                       |              |  |
| 0602     |                                       |       |              |                    |              |                                       |              |  |
| 0603     |                                       |       |              |                    |              |                                       |              |  |
| 0604     |                                       |       |              |                    |              | ·····                                 |              |  |
| 0605     |                                       |       |              |                    |              |                                       |              |  |
| 0606     |                                       |       |              |                    |              |                                       |              |  |
| 0607     |                                       |       |              |                    |              |                                       |              |  |
| 0608     |                                       |       |              |                    |              | · · · · · · · · · · · · · · · · · · · |              |  |
| 0609     |                                       |       |              |                    |              |                                       |              |  |
| 0610     |                                       |       |              |                    |              |                                       |              |  |
| 0611     |                                       |       |              |                    |              |                                       |              |  |
| 0612     |                                       |       |              |                    |              |                                       |              |  |
| 0613     | 10.30 (0.92)                          | ÷     | 13.30 (0.40) |                    | 15.35 (0.26) | 18.14 (0.99)                          | 15.82 (0.68) |  |
| 0614     |                                       |       |              |                    |              |                                       |              |  |
| 0615     |                                       |       |              |                    |              |                                       |              |  |
| 0616     | ·                                     |       |              |                    |              |                                       |              |  |
| 0617     |                                       |       |              |                    |              |                                       |              |  |
| 0618     |                                       |       |              |                    |              |                                       |              |  |
| 0619     |                                       |       |              |                    |              |                                       |              |  |
| 0621     | · · · · · · · · · · · · · · · · · · · |       |              |                    |              |                                       |              |  |
| 0622     |                                       |       |              |                    |              |                                       |              |  |
| 0623     |                                       |       |              |                    |              |                                       |              |  |
| 0624     |                                       |       |              |                    |              |                                       |              |  |

:

#### Table E.6 Test Sequence 6 - Compressive Modulus

E41

.

|                |                                                  |       | I              | nsulation White                       | 3              |                |                |
|----------------|--------------------------------------------------|-------|----------------|---------------------------------------|----------------|----------------|----------------|
| Specimen<br>ID | Baseline                                         | Thern | nal Aging      | Service                               | e Radiation    | Accident       | Radiation      |
|                | A                                                | В     | C              | D                                     | Е              | F              | G              |
| 0601           |                                                  |       |                |                                       |                |                |                |
| 0602           |                                                  |       | · ·            |                                       |                |                |                |
| 0603           | 15.14 (3.89)                                     |       |                |                                       |                | 16.12 (1.66)   | 15.38 (3.42)   |
| 0604           | 101.43 (7.25)                                    |       |                |                                       |                | 125.81 (12.25) | 117.62 (25.32) |
| 0605           |                                                  |       |                |                                       |                |                |                |
| 0606           |                                                  |       |                |                                       |                |                |                |
| 0607           |                                                  |       |                |                                       |                |                |                |
| 0608           |                                                  |       |                |                                       |                |                | · · · ·        |
| 0609           |                                                  |       |                |                                       | -              |                | -              |
| 0610           |                                                  |       |                |                                       |                |                |                |
| 0611           | 16.87 (3.19)                                     |       | 17.31 (2.97)   |                                       | 17.62 (2.39)   | 19.28 (3.96)   | 19.39 (2.03)   |
| 0612           | 18.31 (3.96)                                     |       | 15.44 (2.58)   |                                       | 15.10 (2.79)   | 18.63 (4.55)   | 14.47 (2.32)   |
| 0613           | 15.17 (2.63)                                     |       | 18.28 (2.71)   |                                       | 18.03 (2.45)   | 18.08 (3.86)   | 19.13 (1.86)   |
| 0614           | 106.21 (10.33)                                   |       |                |                                       |                |                |                |
| 0615           | 103.43 (8.19)                                    |       |                |                                       |                | <u> </u>       |                |
| 0616           | 100.43 (7.83)                                    |       |                |                                       |                |                |                |
| 0617           |                                                  |       |                | · · · · · · · · · · · · · · · · · · · |                |                |                |
| 0618           | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |       |                |                                       |                |                |                |
| 0619           | 19.40 (4.02)                                     |       | 15.41 (2.65)   |                                       | 18.18 (6.43)   | 18.45 (4.82)   | 18.33 (5.26)   |
| 0621           | 101.37 (5.10)                                    |       | 169.04 (22.86) |                                       | 208.54 (15.03) | 207.56 (18.95) | 200.74 (24.16) |
| 0622           | 105.44 (3.59)                                    |       | 172.64 (19.07) |                                       | 213.83 (30.60) | 207.55 (20.22) | 202.73 (17.28) |
| 0623           | 100.93 (3.90)                                    |       | 179.47 (16.25) |                                       | 188.97 (18.07) | 199.85 (13.06) | 199.07 (19.20) |
| 0624           | 103.17 (4.48)                                    |       | 187.40 (42.08) |                                       | 200.52 (19.67) | 208.67 (37.03) | 221.20 (28.76) |

|          |                                                                                                                | Insulation Black                      |                |         |                |                                                   |                |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|---------|----------------|---------------------------------------------------|----------------|--|--|--|--|--|
| Specimen | Baseline                                                                                                       | Therm                                 | al Aging       | Service | Radiation      | Accident                                          | Radiation      |  |  |  |  |  |
| U.       | Α                                                                                                              | В                                     | C              | D       | Е              | F                                                 | G              |  |  |  |  |  |
| 0601     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0602     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0603     | 15.66 (3.57)                                                                                                   | ·····                                 |                |         |                | 14.96 (1.81)                                      | 15.89 (3.69)   |  |  |  |  |  |
| 0604     | 103.60 (4.49)                                                                                                  |                                       |                |         |                | 120.07 (3.80)                                     | 130.03 (9.97)  |  |  |  |  |  |
| 0605     | an demonstration of the second se |                                       |                |         |                | er armenis de Biolog (1039-100 p.). (1039-100 p.) |                |  |  |  |  |  |
| 0606     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0607     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0608     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0609     |                                                                                                                | · · · · · · · · · · · · · · · · · · · |                |         |                |                                                   |                |  |  |  |  |  |
| 0610     |                                                                                                                | <b></b>                               |                |         |                |                                                   |                |  |  |  |  |  |
| 0611     | 17.59 (2.81)                                                                                                   |                                       | 16.59 (3.85)   |         | 17.43 (2.91)   | 19.37 (3.38)                                      | 13.78 (2.76)   |  |  |  |  |  |
| 0612     | 16.33 (3.55)                                                                                                   |                                       | 17.84 (1.46)   |         | 14.88 (3.62)   | 17.53 (3.25)                                      | 16.84 (3.65)   |  |  |  |  |  |
| 0613     | 14.77 (4.66)                                                                                                   |                                       | 15.07 (1.94)   |         | 15.38 (4.32)   | 16.18 (2.70)                                      | 14.82 (2.18)   |  |  |  |  |  |
| 0614     | 101.65 (8.06)                                                                                                  |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0615     | 100.20 (8.48)                                                                                                  |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0616     | 100.83 (7.30)                                                                                                  |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0617     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0618     |                                                                                                                |                                       |                |         |                |                                                   |                |  |  |  |  |  |
| 0619     | 15.53 (3.27)                                                                                                   | 4                                     | 17.50 (2.13)   |         | 17.51 (1.41)   | 18.27 (2.88)                                      | 20.02 (3.27)   |  |  |  |  |  |
| 0621     | 102.95 (3.61)                                                                                                  |                                       | 136.27 (9.73)  |         | 184.50 (15.44) | 208.25 (23.63)                                    | 200.09 (22.98) |  |  |  |  |  |
| 0622     | 102.53 (6.39)                                                                                                  |                                       | 159.73 (18.13) |         | 183.85 (14.25) | 199.12 (27.96)                                    | 198.18 (24.93) |  |  |  |  |  |
| 0623     | 100.80 (6.55)                                                                                                  |                                       | 158.27 (21.75) |         | 192.62 (20.01) | 205.86 (21.17)                                    | 192.49 (13.26) |  |  |  |  |  |
| 0624     | 99.78 (5.99)                                                                                                   |                                       | 161.37 (22.81) |         | 199.96 (38.20) | 195.95 (22.19)                                    | 201.87 (41.26) |  |  |  |  |  |

E-43

|                |              |       | l            | nsulation Red |              |                                       |                                       |
|----------------|--------------|-------|--------------|---------------|--------------|---------------------------------------|---------------------------------------|
| Specimen<br>ID | Baseline     | Thern | nal Aging    | Servic        | e Radiation  | Accident                              | Radiation                             |
|                | Α            | В     | C            | D             | E            | F                                     | G                                     |
| 0601           | ·····        |       |              |               |              |                                       | <u> </u>                              |
| 0602           |              |       |              |               |              |                                       |                                       |
| 0603           | 19.58 (5.19) |       |              |               |              | 17.26 (1.69)                          | 17.12 (3.56)                          |
| 0604           |              |       |              |               |              |                                       |                                       |
| 0605           |              |       |              |               |              |                                       |                                       |
| 0606           |              |       |              |               |              |                                       |                                       |
| 0607           |              |       |              |               | · · ·        |                                       |                                       |
| 0608           |              |       |              |               |              |                                       |                                       |
| 0609           |              |       |              |               |              |                                       |                                       |
| 0610           |              |       |              |               |              |                                       |                                       |
| 0611           | 15.76 (2.18) |       | 15.54 (1.78) |               | 17.14 (2.87) | 17.16 (2.92)                          | 17.55 (2.78)                          |
| 0612           | 16.18 (2.72) |       | 17.25 (2.21) |               | 16.25 (2.53) | 16.71 (3.23)                          | 16.42 (3.20)                          |
| 0613           | 13.53 (2.56) | ı     | 19.26 (4.42) |               | 15.20 (2.16) | 17.89 (3.14)                          | 14.59 (2.91)                          |
| 0614           |              |       |              |               |              | ·····                                 |                                       |
| 0615           |              |       |              |               |              |                                       |                                       |
| 0616           |              |       |              |               |              |                                       | · · · · · · · · · · · · · · · · · · · |
| 0617           |              |       |              |               |              |                                       |                                       |
| 0618           |              |       |              |               |              | · · · · · · · · · · · · · · · · · · · |                                       |
| 0619           | 17.60 (3.38) |       | 14.48 (5.31) |               | 17.61 (4.05) | 19.17 (3.21)                          | 18.65 (5.43)                          |
| 0621           |              |       |              |               |              |                                       |                                       |
| 0622           |              |       |              |               |              |                                       |                                       |
| 0623           |              |       |              |               |              |                                       |                                       |
| 0624           |              |       |              |               |              |                                       |                                       |

E-44

|          |              |       | I            | nsulation Green |              |                                       |                                       |
|----------|--------------|-------|--------------|-----------------|--------------|---------------------------------------|---------------------------------------|
| Specimen | Baseline     | Therm | al Aging     | Service         | Radiation    | Accident                              | Radiation                             |
|          | Α            | В     | С            | D               | Е            | F                                     | G                                     |
| 0601     |              |       |              |                 |              |                                       |                                       |
| 0602     |              |       |              |                 |              |                                       | · · · · · · · · · · · · · · · · · · · |
| 0603     |              |       |              |                 |              | · · · · · · · · · · · · · · · · · · · |                                       |
| 0604     |              | 1     |              |                 |              |                                       |                                       |
| 0605     |              |       |              |                 |              |                                       |                                       |
| 0606     | <u> </u>     |       |              |                 |              |                                       |                                       |
| 0607     |              |       |              |                 |              | ·····                                 |                                       |
| 0608     |              |       |              | ······          |              |                                       |                                       |
| 0609     |              | -     |              |                 |              |                                       |                                       |
| 0610     |              |       |              |                 |              |                                       |                                       |
| 0611     | ·            |       |              |                 |              |                                       |                                       |
| 0612     |              |       |              |                 |              |                                       |                                       |
| 0613     | 14.10 (2.53) |       | 15.01 (3.47) |                 | 15.02 (2.82) | 18.08 (1.49)                          | 14.66 (3.41)                          |
| 0614     |              |       |              |                 |              |                                       |                                       |
| 0615     |              |       |              |                 |              |                                       |                                       |
| 0616     | · · ·        |       |              |                 |              |                                       |                                       |
| 0617     |              |       |              |                 |              |                                       |                                       |
| 0618     |              |       |              |                 |              |                                       |                                       |
| 0619     |              |       |              |                 |              |                                       |                                       |
| 0621     |              |       |              |                 |              |                                       |                                       |
| 0622     |              |       |              |                 |              |                                       |                                       |
| 0623     |              |       |              |                 |              |                                       |                                       |
| 0624     |              |       |              |                 |              |                                       | [                                     |

Notes: 1. Standard deviations provided in parenthesis

 All measurements made at room temperature
 Probe speed: for modulus less than 100 N/mm: 12.7 mm/min. for modulus greater than 100 N/mm: 5.1 mm/min. Appendix F

\_

\_\_\_\_\_

.

.

-----

Hardness Data

#### Tables

.

| <u>Title</u> | Page                                                                |
|--------------|---------------------------------------------------------------------|
| Table F.1    | Average hardness for Groups 1 and 2 specimens - Test Sequence 1     |
| Table F.2    | Average hardness for Groups 3 and 4 specimens - Test Sequence 1 F-2 |
| Table F.3    | Average hardness for Group 1 specimens - Test Sequence 2 F-3        |
| Table F.4    | Average hardness for Group 2 specimens - Test Sequence 2 F-4        |
| Table F.5    | Average hardness for Group 3 specimens - Test Sequence 2 F-5        |
| Table F.6    | Average hardness for Group 4 specimens - Test Sequence 2            |
| Table F.7    | Average hardness for Groups 1 and 2 specimens - Test Sequence 3 F-7 |
| Table F.8    | Average hardness for Groups 3 and 4 specimens - Test Sequence 3     |

|                 | Baseline | Therma | al Aging | Service Radiation |   | Accident Radiation |      |
|-----------------|----------|--------|----------|-------------------|---|--------------------|------|
|                 | A        | В      | С        | D                 | Е | F                  | G    |
|                 |          |        | Group    | 1                 |   |                    |      |
| Outer Jacket    | 31.8     |        |          |                   |   | 36.3               | 38.5 |
| XLPE Insulation |          | -      | •        |                   |   |                    |      |
| Black           | 40.0     |        |          |                   |   | 41.6               | 47.8 |
| White           | 39.5     |        |          |                   |   | 40.2               | 42.2 |
| Red             | NA       |        |          |                   |   | NA                 | NA   |
|                 |          |        | Group    | 2                 |   |                    |      |
| Outer Jacket    | 34.3     | 30.3   |          | 29.7              |   | 35.0               | 40.3 |
| XLPE Insulation |          |        |          | · ·               |   |                    |      |
| Black           | 50.3     | 49.5   |          | 48.2              |   | 50.7               | 51.5 |
| White           | 50.2     | 50.0   |          | 47.4              |   | 51.3               | 52.2 |
| Red             | 49.2     | 49.3   |          | 49.3              |   | 51.0               | 53.8 |

#### Table F.1 Average hardness for Groups 1 and 2 specimens - Test Sequence 1

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

|                 | Baseline Thermal Aging |       | al Aging | Service R | ladiation | Accident Radiation                    |         |
|-----------------|------------------------|-------|----------|-----------|-----------|---------------------------------------|---------|
|                 | Α                      | В     | С        | D         | Е         | F                                     | G       |
|                 |                        |       | Group    | 3         |           |                                       |         |
| Outer Jacket    | 26.8                   |       |          |           |           | 39.6                                  | 39.8    |
| XLPE Insulation |                        | · · · |          |           |           | · · · · · · · · · · · · · · · · · · · |         |
| Black           | 46.3                   |       |          |           |           | 51.8                                  | 52.2    |
| White           | 47.5                   |       |          |           |           | 51.7                                  | 50.8    |
| Red             | 50.1                   |       |          |           |           | 49.4                                  | 52.3    |
|                 |                        |       | Group    | 4         |           |                                       |         |
| Outer Jacket    | 31.8                   |       | Brittle  |           |           | Brittle                               | Brittle |
| XLPE Insulation |                        | ·     |          |           |           |                                       |         |
| Black           | 40.0                   |       | 40.9     |           | 44.6      | 50.3                                  | 50.3    |
| White           | 39.5                   |       | 40.7     |           | 40.0      | 44.8                                  | 45.5    |
| Red             | NA                     |       | NA       |           | NA        | NA                                    | NA      |

Table F.2 Average hardness for Groups 3 and 4 specimens - Test Sequence 1

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

| Specimen |                      | Baseline | Therma | al Aging | Service F | Radiation | Accident 1 | Radiation |
|----------|----------------------|----------|--------|----------|-----------|-----------|------------|-----------|
| ID       |                      | А        | В      | С        | D         | E         | F          | G         |
|          | Outer Jacket         | 25.4     |        |          |           |           | 25.4       | 28.8      |
| 0201     | Individual<br>Jacket |          |        |          |           |           |            |           |
|          | White                | 23.8     |        |          |           |           | 23.3       | 24.6      |
|          | Red                  | 25.8     |        |          |           |           | 24.2       | 21.7      |
|          | Black                | 22.1     |        |          |           |           | 25.0       | 25.4      |
|          | Green                | 23.8     |        |          |           |           | 25.8       | 25.7      |
|          | EPR Insulation       | 21.7     |        |          |           |           | 16.3       | 18.3      |
|          | Outer Jacket         | 25.4     |        |          |           |           | 26.3       | 29.0      |
| 0202     | Individual<br>Jacket |          | :      |          |           |           | •          |           |
|          | White                | 25.0     |        |          |           |           | 25.4       | 25.4      |
|          | Red                  | 25.4     |        |          |           |           | NA         | NA        |
|          | Black                | 25.7     |        |          |           |           | 26.0       | 26.3      |
|          | Green                | NA       |        |          |           |           | NA         | NA        |
|          | EPR Insulation       | 20.8     |        |          |           |           | 20.8       | 14.5      |

#### Table F.3 Average hardness for Group 1 specimens - Test Sequence 2

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

| Specimen |                      | Baseline | Therma | al Aging | Service R | adiation | Accident                                                                           | Radiation |
|----------|----------------------|----------|--------|----------|-----------|----------|------------------------------------------------------------------------------------|-----------|
|          |                      | A        | В      | С        | D         | Е        | F                                                                                  | G         |
|          | Outer Jacket         | 25.4     | 25.0   |          | 25.4      |          | 25.6                                                                               |           |
| 0203     | Individual<br>Jacket |          |        |          |           | •        | <b>Δ<sub>μ</sub>μη<sub>δ</sub>, ,,,, (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, </b> |           |
|          | White                | 23.8     | 24.6   |          | 24.6      |          | 24.3                                                                               |           |
|          | Red                  | 25.8     | 26.7   |          | 25.8      |          | 25.2                                                                               |           |
|          | Black                | 22.1     | 24.6   |          | 25.0      |          | 26.3                                                                               |           |
|          | Green                | 23.8     | 25.4   |          | 25.4      |          | 26.7                                                                               |           |
|          | EPR Insulation       | 21.7     | 17.5   |          | 14.8      |          | 14.5                                                                               |           |
|          | Outer Jacket         | 25.4     | 25.0   |          | 25.4      |          | 25.6                                                                               | 30.8      |
| 0205     | Individual<br>Jacket |          |        | :        |           |          |                                                                                    | ·         |
|          | White                | 23.8     | 24.6   |          | 24.6      |          | 24.3                                                                               | 24.2      |
|          | Red                  | 25.8     | 26.7   |          | 25.8      |          | 25.2                                                                               | 22.9      |
|          | Black                | 22.1     | 24.6   |          | 25.0      |          | 26.3                                                                               | 26.3      |
|          | Green                | 23.8     | 25.4   |          | 25.4      |          | 26.7                                                                               | 24.7      |
|          | EPR Insulation       | 21.7     | 17.5   |          | 14.8      |          | 14.5                                                                               | 15.4      |

#### Table F.4 Average hardness for Group 2 specimens - Test Sequence 2

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

**F**4

| Specimen |                      | Baseline | Therma | al Aging | Service R | adiation | Accident F | Radiation |
|----------|----------------------|----------|--------|----------|-----------|----------|------------|-----------|
|          |                      | А        | В      | с        | D         | E        | F          | G         |
|          | Outer Jacket         | 23.8     |        |          |           |          | 27.9       |           |
| 0207     | Individual<br>Jacket |          |        |          |           |          |            |           |
|          | White                | 26.3     |        |          |           |          | 27.9       |           |
|          | Red                  | 25.8     |        |          |           |          | 24.2       |           |
|          | Black                | 22.9     |        |          |           |          | 24.6       |           |
|          | Green                | 26.3     |        |          |           |          | 21.3       |           |
|          | EPR Insulation       | 19.5     |        |          |           |          | 18.8       |           |
|          | Outer Jacket         | 23.2     |        |          |           |          | .28.8      |           |
| 0210     | Individual<br>Jacket |          |        |          |           | ·        |            |           |
|          | White                | 22.5     |        |          |           |          | 26.7       |           |
|          | Red                  | 25.0     |        |          |           |          | 21.7       |           |
|          | Black                | 23.3     |        |          |           |          | 25.8       |           |
|          | Green                | 23.8     |        |          |           |          | 22.1       |           |
|          | EPR Insulation       | 18.8     |        |          |           |          | 16.7       |           |

#### Table F.5 Average hardness for Group 3 specimens - Test Sequence 2

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

F-S

| Specimen |                      | Baseline | Therma | al Aging | Service | Radiation | Accident                               | Radiation |
|----------|----------------------|----------|--------|----------|---------|-----------|----------------------------------------|-----------|
| ID       |                      | Α        | В      | C        | D       | Е         | F                                      | G         |
|          | Outer Jacket         | 25.4     |        | 25.0     |         | 26.7      | 29.6                                   |           |
| 0212     | Individual<br>Jacket |          |        |          |         |           | •••••••••••••••••••••••••••••••••••••• |           |
|          | White                | 23.8     |        | 26.7     |         | 26.3      | 24.6                                   |           |
|          | Red                  | 25.8     |        | 25.0     |         | 20.8      | 24.6                                   |           |
|          | Black                | 22.1     |        | 26.3     |         | 25.4      | 20.8                                   |           |
|          | Green                | 23.8     |        | 26.3     |         | 25.0      | 28.3                                   |           |
|          | EPR Insulation       | 21.7     |        | 18.3     |         | 16.3      | 15.0                                   |           |
|          | Outer Jacket         | 25.4     |        | 22.1     |         | 26.3      | 29.2                                   |           |
| 0214     | Individual<br>Jacket |          |        | ·        |         |           |                                        |           |
|          | White                | 23.8     |        | 25.8     |         | 26.3      | 29.2                                   |           |
| · ·      | Red                  | 25.8     |        | NA       |         | NĄ        | NA                                     |           |
|          | Black                | 22.1     |        | 26.7     |         | 24.6      | 28.8                                   |           |
|          | Green                | 23.8     |        | NA       |         | NA        | NA                                     |           |
|          | EPR Insulation       | 21.7     |        | 21.3     |         | 16.7      | 20.8                                   |           |

.

#### Table F.6 Average hardness for Group 4 specimens - Test Sequence 2

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

|                 | Baseline | Therm | al Aging | Service F | Radiation | Accident 1 | Radiation                               |
|-----------------|----------|-------|----------|-----------|-----------|------------|-----------------------------------------|
|                 | А        | В     | С        | D         | Е         | F          | G                                       |
|                 |          |       | Group    | 1         |           |            | · ·                                     |
| Outer Jacket    | 28.0     |       |          |           |           | 35.2       | 45.0                                    |
| XLPE Insulation |          |       |          |           |           |            |                                         |
| Black           | 48.5     |       |          |           |           | 50.2       | 49.8                                    |
| White           | 46.3     |       |          |           |           | 49.5       | 49.5                                    |
| Red             | 54.0     |       |          |           |           | 55.0       | 56.0                                    |
|                 | <u> </u> |       | Group    | 2         |           |            |                                         |
| Outer Jacket    | 31.0     | 30.0  |          | 29.0      |           | 36.0       | 50.5                                    |
| XLPE Insulation | · · ·    |       |          |           |           |            | • , , , , , , , , , , , , , , , , , , , |
| Black           | 53.0     | 54.5  |          | 54.0      |           | 56.5       | 58.5                                    |
| White           | 48.5     | 54.5  |          | 50.5      |           | 55.0       | 52.0                                    |
| Red             | 51.0     | 51.0  |          | 54.0      |           | 55.5       | 58,5                                    |

٠

#### Table F.7 Average hardness for Groups 1 and 2 specimens - Test Sequence 3

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

|                 | Baseline | Therma | al Aging | Service R | adiation | Accident | Radiation |
|-----------------|----------|--------|----------|-----------|----------|----------|-----------|
|                 | A        | В      | С        | D         | E        | F        | G         |
|                 |          |        | Group    | 3         |          |          |           |
| Outer Jacket    | 29.0     |        |          |           |          | 38.8     | 37.5      |
| XLPE Insulation |          |        |          |           |          |          |           |
| Black           | 50.1     |        |          |           |          | 54.8     | 57.5      |
| White           | 52.0     |        |          |           |          | 55.0     | 57.8      |
| Red             | 51.4     |        |          |           |          | 54.9     | 55.5      |
|                 |          |        | Group    | 4         |          |          | · ····    |
| Outer Jacket    | 28.0     |        | 85.5     |           | 79.5     | Brittle  | Brittle   |
| XLPE Insulation |          |        |          |           |          |          |           |
| Black           | 42.5     |        | 46.5     |           | 48.5     | 56.0     | 59.0      |
| White           | 40.0     |        | 45.5     |           | 51.5     | 54.5     | 56.0      |
| Red             | NA       |        | NA       |           | NA       | NA       | NA        |

 Table F.8
 Average hardness for Groups 3 and 4 specimens - Test Sequence 3

Note: No data signifies that specimens were not exposed to additional aging since last CM point.

Appendix G

\_\_\_\_\_

•

**Dielectric Loss Data** 

### Tables

| <u>Title</u> |                                                            | Page |
|--------------|------------------------------------------------------------|------|
| Table G.1    | AC impedance measurements for specimens in test sequence 1 | G-3  |
| Table G.2    | AC impedance measurements for specimens in test sequence 2 | G-7  |
| Table G.3    | AC impedance measurements for specimens in test sequence 3 | G-17 |
| Table G.4    | AC impedance measurements for specimens in test sequence 4 | G-24 |
| Table G.5    | AC impedance measurements for specimens in test sequence 5 | G-27 |
| Table G.6    | AC impedance measurements for specimens in test sequence 6 | G-30 |

ŀ

| CBL | Cnd   | СМ        | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000             | 3000   | 5000    |
|-----|-------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------------|--------|---------|
| 101 | BW    | == =<br>A | 83.8514 | 87.0933 | 87.5671 | 87.8632 | 88.5563 | 88.5013 | 89.1368 | 88.5724 | 82.2765 | 80.5829 | 75.032  | 36.8384 | 20.4533          | 7.2356 | 4.3268  |
| 102 | BW    | A         | 88.6872 | 86.9572 | 87.3754 | 87.719  | 88.3645 | 88.4095 | 88.885  | 88.1959 | 82.0524 | 80.4334 | 74.7361 | 36.7104 | 20.3692          | 7.2021 | 4.3021  |
| 118 | вw    | A         | 89.9548 | 86.9804 | 88.014  | 88.2664 | 88.2943 | 88.4278 | 88.7989 | 88.2135 | 81.9696 | 80.9932 | 74.9683 | 36.8079 | 20.4402          | 7.2261 | 4.3291  |
| 104 | BW    | A         | 84.2325 | 88.0607 | 88.0706 | 88.1257 | 88.1816 | 88.3077 | 88.6336 | 88.161  | 82.1859 | 80.3526 | 74.9459 | 36.9095 | 20.5305          | 7.2774 | 4.362   |
| 105 | BW    | А         | 89.9336 | 87.0703 | 88.1157 | 88.4531 | 88.4597 | 88.5505 | 88.9944 | 88.3127 | 82.1    | 80.6586 | 74.8874 | 36.8042 | 20.4605          | 7.2433 | 4.3536  |
| 106 | 5 BW  | A         | 91.4432 | 92.2662 | 92.212  | 91.9462 | 91.5427 | 91.4841 | 90.3084 | 89.5106 | 82.8336 | 81.5879 | 75.23   | 35.8256 | 19.8757          | 7.2542 | 4.5125  |
| 106 | 5 BR  | Α         | 97.1844 | 92.3465 | 92.1419 | 91.5112 | 91.5306 | 91.4947 | 90.3594 | 89.3932 | 82.4238 | 80.4331 | 74.2794 | 34.3488 | 18.9742          | 6.9449 | 4.3342  |
| 106 | WR    | Α         | 97.0721 | 92.7595 | 92.4315 | 91.7734 | 91.7013 | 91.4731 | 90.4407 | 89.6126 | 82.859  | 81.6985 | 75.2383 | 35.9417 | 19.984           | 7.3057 | 4.5391  |
| 107 | ' BW  | Α         | 95.5366 | 91.951  | 91.9241 | 91.2595 | 91.377  | 91.1625 | 90.1755 | 89.3318 | 82.596  | 81.0479 | 75.0686 | 35.7156 | 19.7929          | 7.1866 | 4.4411  |
| 107 | BR    | Α         | 95.2152 | 91.8608 | 91.8351 | 91.6944 | 91.3773 | 91.4531 | 90.1548 | 89.2821 | 82.3624 | 80.4255 | 74.1809 | 34.2885 | 18.8914          | 6.8825 | 4.2738  |
| 107 | WR    | Α         | 90.5628 | 91.3197 | 91.1069 | 91.3396 | 91.1573 | 91.2023 | 90.2901 | 89.319  | 82.5809 | 81.8244 | 75.2028 | 35.9635 | 19.9766          | 7.2605 | 4.4969  |
| 108 | B BW  | Α         | 88.8745 | 91.3189 | 91.9352 | 91.484  | 91.3698 | 91.2291 | 90.5531 | 89.5343 | 82.455  | 80.8204 | 74.7072 | 34.8959 | 19.3527          | 7.0596 | 4.3882  |
| 108 | B BR  | Α         | 90.2547 | 92.1641 | 91.4588 | 91.4054 | 91.2381 | 91.1338 | 90.3633 | 89.4952 | 82.5259 | 80.7112 | 74.3663 | 34.5157 | 19.0631          | 6.9564 | 4.3249  |
| 108 | 8 WR  | Α         | 90.5252 | 91.9885 | 92.1461 | 92.0129 | 90.9997 | 91.0889 | 90.3376 | 89.6779 | 82.5487 | 81.7656 | 74.9693 | 35.4533 | 19.6511          | 7.1917 | 4.4626  |
| 109 | BW    | Α         | 92.088  | 91.6301 | 91.2318 | 91.4644 | 91.1008 | 91.2159 | 90.3392 | 89.5512 | 82.6514 | 81.2219 | 75.088  | 35.7831 | 19.8115          | 7.157  | 4.4102  |
| 109 | BR    | Α         | 95.4266 | 92.0304 | 91.5361 | 91.2574 | 91.3905 | 91.2537 | 90.2597 | 89.5757 | 82.5173 | 80.0472 | 74.3581 | 34.4807 | 19.0197          | 6.9158 | 4.286   |
| 109 | WR    | Α         | 90.5891 | 91.7379 | 92.8137 | 91.9114 | 92.0018 | 91.6688 | 90.7122 | 89.6853 | 82.8493 | 81.6788 | 75.4093 | 36.1502 | 20.0672          | 7.2871 | 4.5039  |
| 110 | ) BW  | Α         | 90.2519 | 91.7253 | 92.2302 | 91.0115 | 91.0561 | 91.1323 | 90.4866 | 89.5815 | 82.7955 | 81.0591 | 75.1459 | 35.8433 | 19.8415          | 7.1969 | 4.4346  |
| 110 | ) BR  | Α         | 89.9209 | 91.6731 | 91.4703 | 91.4205 | 91.1547 | 91.1397 | 90.1694 | 89.3898 | 82.1474 | 80.0566 | 74.2203 | 34.2919 | 18.8092          | 6.8274 | 4.2212  |
| 110 | ) WR  | Α         | 91.0424 | 91.627  | 91.9219 | 91.4137 | 91.2463 | 91.2931 | 90.557  | 89.6312 | 82.6621 | 81.7075 | 75.2544 | 36.0121 | 19.9375          | 7.2499 | 4.4738  |
| 110 | ) RE  | Α         | 87.7943 | 89.5502 | 89.1882 | 89.2096 | 89.5182 | 89.1583 | 88.1463 | 86.5176 | 74.2239 | 71.0635 | 61.5896 | 21.2904 | 11.3445          | 4.2299 | 2.6701  |
| 111 | BW    | Α         | 95.5923 | 92.094  | 91.6359 | 91.7932 | 91.562  | 91.3346 | 90.5592 | 89.7575 | 82.972  | 81.2364 | 75.257  | 35.9626 | 19.9334          | 7.2193 | 4.469   |
| 111 | BR    | Α         | 91.5069 | 92.0974 | 91.3375 | 91.4688 | 91.4541 | 91.4198 | 90.6383 | 89.6836 | 82.503  | 81.2092 | 74.4731 | 34.7151 | 19. <b>12</b> 61 | 6.9666 | 4.3195  |
| 111 | WR    | Α         | 95.5178 | 92.1597 | 92.1998 | 91.8602 | 91.541  | 91.6534 | 90.6851 | 89.7848 | 83.1195 | 81.2989 | 75.4279 | 36.211  | 20.1008          | 7.3171 | 4.5229  |
| 111 | RE    | Α         | 90.3073 | 89.6099 | 90.0085 | 89.7016 | 89.5113 | 89.4909 | 88.1797 | 86,6071 | 74.5144 | 71.4803 | 61.9207 | 21.8071 | 11.6836          | 4.3941 | 2.7911  |
| 112 | 2 BW  | Α         | 86.0632 | 87.1356 | 88.1886 | 88.5365 | 88.3949 | 88.5034 | 88.8123 | 88.2379 | 82.2063 | 80.627  | 74.9042 | 36.915  | 20.4931          | 7.2626 | 4.3563  |
| 113 | BW BW | Α         | 89.4548 | 87.2148 | 87.4889 | 88.0221 | 88.4229 | 88.4016 | 88.9557 | 88.3137 | 82.156  | 81.0375 | 74.9186 | 36.8725 | 20.4963          | 7.2678 | 4.367   |
| 114 | \$ BW | Α         | 85.1759 | 87.064  | 87.5895 | 88.3227 | 88.2938 | 88.5872 | 88.9143 | 88.2516 | 82.1567 | 80.5341 | 74.8135 | 36.6612 | 20.3524          | 7.2061 | 4.3294  |
| 115 | 5 BW  | Α         | 86.4452 | 87.5118 | 87.5418 | 88.0249 | 88.3366 | 88.5845 | 89.0008 | 88.4034 | 82.1672 | 81.4913 | 74.8556 | 36.63   | 20.3554          | 7.2422 | 4.3683  |
| 116 | 5 BW  | Α         | 89.4178 | 87.3411 | 88.1111 | 88.5118 | 88.0005 | 88.6249 | 88.9532 | 88.4705 | 82.16   | 81.2418 | 74.8784 | 36.6507 | 20.3623          | 7.2469 | 4.3612  |
| 100 | 5 BW  | в         | 83.2571 | 87.6607 | 88.7934 | 89.5343 | 89.8369 | 89.8003 | 90.2996 | 89.2767 | 82.7957 | 81.4737 | 76.4807 | 40.221  | 22.9369          | 8.4164 | 5.22048 |
| 100 | 5 BE  | в         | 91.9292 | 89.5905 | 89.4378 | 89.1347 | 89.3694 | 89.4158 | 87.5882 | 85.81   | 76.3353 | 74.163  | 67.7787 | 27.9982 | 15.0107          | 5.3625 | 3.3132  |
| 101 | 7 BW  | в         | 91.0975 | 90.1925 | 90.015  | 90.3797 | 90.0796 | 90.0637 | 89.3914 | 88.3866 | 82.3407 | 81.1541 | 76.2587 | 40.0273 | 22.7527          | 8.2697 | 5.0795  |
| 10' | 7 BE  | В         | 85.8246 | 89.6943 | 90.2676 | 89.6067 | 89.5011 | 89.2276 | 87.5939 | 85.7279 | 76.3971 | 74.8456 | 67.6985 | 27.9922 | 14.9483          | 5.3587 | 3.3155  |
| 10  | B BW  | В         | 89.5549 | 90.064  | 90.1865 | 90.4751 | 90.0583 | 90.1936 | 89.3965 | 88.4716 | 82.2749 | 81.3246 | 76.2241 | 40.1084 | 22.8646          | 8.3138 | 5.1145  |
| 10  | B BE  | в         | 88.1778 | 89.3045 | 89.4781 | 89.4608 | 89.2725 | 89.2768 | 87.4936 | 85.651  | 76.1572 | 67.5389 | 27.7442 | 14.8769 | 5.3607           | 3.3123 |         |
| 109 | 9 BW  | В         | 89.5294 | 90.0373 | 90.3942 | 90.0865 | 90.2211 | 90.2752 | 89.451  | 88.4063 | 82.3574 | 80.7923 | 76.3032 | 40.1622 | 22.8369          | 8.3058 | 5.0888  |

# Table G.1 AC impedance measurements for specimens in test sequence 1<br/>(phase angle at various frequencies of applied test voltage)F R E Q U E N C Y (Hertz)

| CBL | Cnd         | СМ         | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | FRE<br>1 | QUEI<br>5 | NCY (<br>10 | Hert<br>50 | z)<br>60 | 100     | 500     | 1000    | 3000                 | 5000      |
|-----|-------------|------------|---------|---------|---------|---------|---------|----------|-----------|-------------|------------|----------|---------|---------|---------|----------------------|-----------|
|     | ===<br>9 BE | == =<br>B  | 92.3234 |         | 89.5581 | 89.4202 | 89.3192 | 89.4671  | 87.5419   |             | 76.1974    | 74.5408  | 67.4529 | 27,7398 |         | •====== •<br>5 3 5 1 | 3 3 1 7 3 |
| 110 | ) BW        | в          | 90.4546 | 90.2074 | 90.1177 | 90.1208 | 90.3419 | 90.2069  | 89.4983   | 88.8322     | 82.2098    | 81.5961  | 76.2544 | 40.0341 | 22.7835 | 83157                | 5 1237    |
| 110 | ) BE        | в          | 86.5267 | 89.6172 | 89.419  | 89.4222 | 89.365  | 89.3738  | 87.4949   | 85.725      | 76.3409    | 74.0635  | 67.4745 | 27.6245 | 14.8662 | 5 3459               | 3 3444    |
| 112 | 2 BW        | с          | 84.0814 | 88.8038 | 89.3634 | 89.7171 | 89.8541 | 89.9842  | 89.4574   | 88.0972     | 80.7747    | 79.6593  | 73.9475 | 35,9865 | 19 9921 | 7 1477               | 4 366     |
| 113 | B BW        | с          | 62.7284 | 82.1162 | 85.011  | 86.698  | 87.6782 | 88.1845  | 89.4689   | 88.2258     | 80.8197    | 73.7964  | 73,7964 | 35.6665 | 19.8931 | 7.1421               | 4 4213    |
| 114 | 4 BW        | с          | 76.5576 | 83.8092 | 86.4287 | 87.1458 | 87.6301 | 87.9495  | 88.4182   | 87.3337     | 80.3448    | 79.3954  | 73.6795 | 35.9218 | 19.9437 | 7.0753               | 4 2911    |
| 11: | 5 BW        | с          | 92.3962 | 90.0814 | 90.0185 | 90.128  | 90.2747 | 90.1415  | 88.9204   | 87.5862     | 80.5951    | 79.3031  | 74.0766 | 36.7187 | 20.3896 | 7,1791               | 4 3133    |
| 110 | 5 BW        | с          | 95.9494 | 90.1282 | 90.3636 | 89.879  | 90.0217 | 89.8395  | 88.8986   | 87.5709     | 80.6192    | 79.2645  | 74.1112 | 36.785  | 20.3918 | 7.1794               | 4 3065    |
| 100 | 5 BW        | D          | 87.2652 | 89.8196 | 90.1482 | 90.2019 | 90.53   | 89.652   | 88.0316   | 87.9556     | 81.9723    | 81.5836  | 75.6169 | 39.6823 | 22.7877 | 8 9 3 9 7            | 5 8997    |
| 100 | 5 BE        | D          | 86.1946 | 89.3815 | 89.1793 | 89.5399 | 89.1467 | 88.4759  | 87.295    | 84.7698     | 73.8847    | 80.5597  | 63.807  | 24.4583 | 13.5962 | 5.5975               | 3 891     |
| 101 | 7 BW        | D          | 90.8048 | 89.6227 | 89.887  | 90.1914 | 90.3213 | 90.1749  | 88.8879   | 87.8352     | 82.5501    | 79.7056  | 75.2383 | 39.4845 | 22.7213 | 8.795                | 5.786     |
| 10  | 7 BE        | D          | 84.5442 | 89.1806 | 89.0777 | 89.4361 | 90.1763 | 91.7309  | 86.6994   | 84.7413     | 74.7821    | 82.4756  | 63.6299 | 24.4316 | 13.5823 | 5.4434               | 3.8509    |
| 10  | 8 BW        | D          | 94.4771 | 89.9924 | 89.7202 | 89.9225 | 90.3224 | 90.2858  | 89.1458   | 87.9703     | 81.7757    | 83.1131  | 75.5935 | 39.4128 | 22.6257 | 8.7812               | 5.6338    |
| 10  | 8 BE        | D          | 83.4366 | 88.6139 | 89.2929 | 89.1269 | 89.04   | 88.2521  | 87.8646   | 84.7263     | 73.7785    | 75.3921  | 64.4756 | 25,1582 | 13.0322 | 5.2544               | 3.7512    |
| 109 | 9 BW        | D          | 92.7285 | 90.7144 | 90.8734 | 90.3232 | 90.4378 | 89.28    | 89.4805   | 87.7336     | 81.5626    | 80.4965  | 75.2747 | 39.3581 | 22.5666 | 8.9182               | 5,9698    |
| 109 | ) BE        | D          | 81.6465 | 85.9303 | 87.8314 | 88.6288 | 88.7623 | 88.1183  | 86.7322   | 84.5497     | 71.3085    | 67.4858  | 62.2958 | 23.6393 | 13.1226 | 5.54985              | 4.0111    |
| 109 | ) WE        | D          | 85.0561 | 89.4111 | 89.1553 | 88.6605 | 89.9896 | 89.1105  | 87.0353   | 84.9544     | 76.0063    | 70.3584  | 65.3197 | 25.5746 | 14.1737 | 6.1672               | 4.5799    |
| 110 | ) BW        | D          | 88.805  | 90.0835 | 90.0823 | 89.9814 | 90.7945 | 89.8965  | 88.7715   | 87.9146     | 81.0717    | 81.4038  | 75.3014 | 39.2937 | 22.6597 | 8.7376               | 5.68169   |
| 110 | ) BE        | D          | 85.5773 | 88.5571 | 88.8672 | 89.3904 | 89.4192 | 88.906   | 87.3144   | 84.8522     | 74.1303    | 66.912   | 64.7646 | 24.009  | 13.4515 | 5.4381               | 3.6651    |
| 110 | ) WE        | <b>D</b> . | 91.2462 | 89.583  | 89.2859 | 89.0004 | 89.2068 | 89.1007  | 88.1496   | 85.4094     | 75.7       | 60.1843  | 66.2108 | 27.2464 | 14.656  | 5.8847               | 4.1541    |
| 112 | 2 BW        | E          | 91.9753 | 92.7208 | 93.1405 | 93.3121 | 92.4452 | 92.0562  | 89.2432   | 87.3125     | 79.858     | 82.5183  | 71.7276 | 33.6351 | 19.4904 | 9.0216               | 6.9367    |
| 113 | B BW        | Ε          | 87.6492 | 90.8946 | 91.3895 | 92.4285 | 92.1747 | 91.9298  | 92.2796   | 89.6295     | 78.7931    | 73.7353  | 72.9912 | 34.8105 | 19.5468 | 7.9677               | 5.4305    |
| 114 | I BW        | Е          | 86.0158 | 90.8713 | 89.8623 | 90.5051 | 89.8799 | 89.1021  | 88.2801   | 87.3812     | 79.9163    | 78.6921  | 72.9794 | 35.3851 | 19.9516 | 7.6696               | 5.0095    |
| 115 | 5 BW        | Е          | 87.7252 | 89.2527 | 89.1249 | 89.3179 | 89.1767 | 89.2205  | 88.2446   | 86.8032     | 80.0004    | 79.6735  | 73.5439 | 36.3216 | 20.4015 | 7.6662               | 4.9561    |
| 116 | 5 BW        | Е          | 92.6319 | 88.9812 | 89.0718 | 88.8299 | 89.1323 | 89.166   | 87.9265   | 86.7107     | 79.7468    | 78.0222  | 73.4176 | 36.1681 | 20.2683 | 7.5677               | 4.8117    |
| 101 | BW          | F          | 82.6881 | 89.5011 | 87.4899 | 87.7265 | 86.9956 | 87.1876  | 84.035    | 83.3738     | 78.507     | 78.5234  | 74.4164 | 39.7614 | 22.9958 | 8.8484               | 5.9064    |
| 102 | 2 BW        | F          | 81.9794 | 87.5729 | 87.0367 | 87.4124 | 87.1    | 87.7429  | 84.0162   | 83.0567     | 79.4087    | 75.1607  | 74.303  | 39.6456 | 22.9271 | 8.8177               | 5.8125    |
| 118 | B BW        | F          | 83.5441 | 87.1184 | 87.9494 | 89.1883 | 87.2572 | 87.8051  | 84.9646   | 83.2188     | 78.412     | 79.3037  | 73.3539 | 39.7424 | 22.8005 | 8.3871               | 5.3339    |
| 104 | BW          | F          | 84.8408 | 87.6584 | 87.3766 | 87.6311 | 86.8302 | 86.9214  | 84.6727   | 83.1693     | 79.7624    | 67.7782  | 74.0375 | 40.0793 | 22.9252 | 8.6167               | 5.5412    |
| 105 | 5 BW        | F          | 89.0468 | 87.95   | 87.629  | 86.0977 | 86.9176 | 86.6426  | 84.1388   | 83.5686     | 79.1807    | 80.0544  | 74.5969 | 39.7948 | 23.0286 | 8.7982               | 5.6771    |
| 106 | 5 BW        | F          | 96.226  | 87.6593 | 88.5748 | 90.512  | 86.357  | 90.4753  | 88.7302   | 87.8654     | 80.8871    | 82.7902  | 75.5882 | 39.2925 | 22.5205 | 8.7176               | 5.7747    |
| 106 | 5 BE        | F          | 92.6513 | 91.7668 | 88.1811 | 89.1308 | 91.223  | 89.5523  | 89.1402   | 85.2197     | 74.0844    | 70.1973  | 63.3996 | 24.8624 | 12.8657 | 5.4875               | 3.9603    |
| 100 | WE WE       | F          | 88.404  | 88.4171 | 88.0731 | 89.2758 | 88.6148 | 89.1776  | 85.2878   | 85.3608     | 76.3067    | 100.142  | 65.1583 | 26.0067 | 14.1911 | 6.1992               | 4.3617    |
| 107 | ' BW        | F          | 85.3542 | 89.7541 | 90.0834 | 90.3896 | 90.1718 | 90.1492  | 89.9307   | 88.1222     | 82.5953    | 81.244   | 75.6401 | 39.6353 | 22.4162 | 8.8319               | 5.8673    |
| 107 | BE          | F          | 92.5558 | 89.2962 | 89.8664 | 89.0695 | 88.1918 | 89.1466  | 87.0175   | 84.2872     | 71.7991    | 57.0295  | 63.8995 | 24.4394 | 13.2534 | 5.5515               | 4.1709    |
| 107 | WE          | F          | 91.3882 | 89.7015 | 88.3684 | 90.1273 | 87.9975 | 91.2971  | 87.2391   | 84.9342     | 75.211     | 97.7225  | 65.1128 | 26.305  | 14.3545 | 6.3595               | 4.3749    |
| 108 | BW          | F          | 92.7219 | 89.8944 | 90.2983 | 89.7097 | 88.6634 | 90.2198  | 88.8009   | 88.0922     | 81.0365    | 80.8803  | 75.8298 | 39.5742 | 22.6538 | 8.6657               | 5.5992    |

 Table G.1 AC impedance measurements for specimens in test sequence 1 (phase angle at various frequencies of applied test voltage)

|      |           |           |         |                    |                 |         | ue      | FRE     | QUEN    | ICY (   | Hert    | z )     |         |         |         |         |         |
|------|-----------|-----------|---------|--------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL  | Cnd       | СМ        | 0.1     | 0.3                | 0.5             | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
|      | ===<br>BE | == =<br>F | 92.9973 | ===== =<br>89.5236 | 88.9387         | 89.4504 | 89.5214 | 88.3629 | 87.3771 | 84.6639 | 74.3006 | 71.9017 | 63.6791 | 24.3417 | 13.2346 | 5.5276  | 3.8028  |
| 108  | WE        | F         | 85.6847 | 89.347             | 89.3788         | 89.5688 | 88.9513 | 90.1535 | 87.5371 | 85.4571 | 73.4129 | 79.4857 | 66.3134 | 26.5802 | 14.4957 | 5.982   | 4.3251  |
| 109  | BW        | F         | 85.0828 | 89.9056            | 90.2866         | 89.7481 | 89.9407 | 89.3822 | 89.8803 | 88.5294 | 83.2432 | 77.2055 | 75.2729 | 39.782  | 22.7534 | 8.9973  | 6.0853  |
| 109  | BE        | F         | 89.0258 | 89.3196            | 89.206          | 89.0549 | 88.2185 | 90.3617 | 86.3103 | 84.2801 | 73.1478 | 68.3861 | 63.0356 | 23.7668 | 13.172  | 5.6522  | 4.2065  |
| 109  | WE        | F         | 90.6937 | 89.8445            | 100.064         | 89.2535 | 86.2631 | 87.3974 | 86.0285 | 84.6611 | 76.849  | 75.0331 | 64.8646 | 25.5657 | 15.1912 | 6.4009  | 4.7882  |
| 110  | BW        | F         | 86.7992 | 89.476             | 89.4895         | 89.6852 | 89.5699 | 89.4225 | 90.3472 | 87.9902 | 81.7662 | 77.5208 | 75.735  | 39.4045 | 22.5763 | 8.6924  | 5.6554  |
| 110  | BE        | F         | 93.1096 | 89.4621            | 88.833          | 89.6513 | 88.7187 | 88.0888 | 88.2524 | 85.1789 | 76.1258 | 71.7428 | 65.2642 | 25.4297 | 13.2618 | 5.2772  | 3.7109  |
| 110  | WE        | F         | 85.817  | 89.4021            | 89.7386         | 89.2063 | 88.9569 | 88.1343 | 87.6223 | 85.7484 | 76.3346 | 67.2627 | 66.3448 | 27.4525 | 14.6671 | 5.9615  | 4.2213  |
| 111  | BW        | F         | 84.1806 | 89.9603            | 90.0987         | 90.3517 | 90.3392 | 90.3351 | 89.7016 | 88.4174 | 82.2599 | 79.6635 | 75.3086 | 39.8028 | 22.9034 | 8.9528  | 5.98    |
| 111  | BE        | F         | 110.697 | 90.8422            | 86.9988         | 88.4985 | 89.6626 | 88.1374 | 87.4237 | 84.6553 | 74.1751 | 63.574  | 63.4074 | 24.5611 | 13.2385 | 5.5737  | 3.9617  |
| 111  | WE        | F         | 85.365  | 90.736             | 88.7789         | 89.588  | 89.2996 | 87.2832 | 84.9959 | 72.5565 | 83.5706 | 65.2031 | 26.0732 | 14.4575 | 5.9095  | 4.3404  |         |
| -112 | BW        | F         | 83.4615 | 88.034             | 88.5379         | 88.5258 | 87.0917 | 87.3745 | 87.2244 | 86.328  | 79.0256 | 67.4046 | 71.4652 | 34.8683 | 21.8388 | 11.466  | 9.1765  |
| 113  | BW        | F         | 91.4918 | 88.9799            | 90.1011         | 90.1797 | 89.8356 | 90.2893 | 88.0621 | 86.9685 | 79.7749 | 83.5521 | 72.2004 | 33.9431 | 18.9114 | 7.3023  | 4.8567  |
| 114  | BW        | F         | 90.0658 | 88.5695            | 88.4206         | 88.3901 | 87.9644 | 88.6317 | 87.3426 | 85.9689 | 78.5922 | 69.812  | 72.2537 | 34.1524 | 18.9723 | 6.9937  | 4.4943  |
| 115  | BW        | F         | 84.3038 | 87.0956            | 87.635          | 87.2267 | 86.7256 | 87.3895 | 86.8824 | 85.6306 | 78.9259 | 78.4593 | 72.6603 | 35.4921 | 19.5433 | 6.798   | 3.9996  |
| 116  | BW        | F         | 94.5441 | 89.1131            | 87.3284         | 86.982  | 86.4492 | 87.3061 | 85.9527 | 85.797  | 75.4216 | 107.963 | 71.0126 | 33.9243 | 20.1106 | 10.2544 | 8.41047 |
| 101  | BW        | G         | 76.5408 | 87.1438            | \$6.9173        | 87.0638 | 87.3136 | 86.5618 | 84.25   | 83.3852 | 79.1508 | 76.4601 | 73.1194 | 38.849  | 22.2634 | 8.5081  | 5.5774  |
| 102  | BW        | G         | 77.4561 | 84.5656            | 86.3095         | 86.2917 | 86.1015 | 86.3403 | 83.7471 | 82.9306 | 79.4185 | 74.9622 | 73.0686 | 38.5659 | 21.974  | 8.0755  | 5.0746  |
| 118  | BW        | G         | 84.5965 | 86.8323            | 86.8285         | 86.8123 | 87.4601 | 86.5754 | 84.8887 | 83.0798 | 78.9978 | 72.0283 | 73.2558 | 38.772  | 21.885  | 7.9131  | 4.9433  |
| 104  | BW        | G         | 87.2529 | 83.8456            | 85.827          | 87.1733 | 86.0142 | 85.8891 | 84.6573 | 83.1495 | 78.7654 | 76.683  | 73.238  | 38.9269 | 22.094  | 8.1146  | 5.103   |
| 105  | BW        | G         | 74.0763 | 84.1572            | 85.6102         | 85.4504 | 85.5442 | 85.4978 | 84.4222 | 83.0741 | 79.2501 | 73.1875 | 73.3143 | 38.1766 | 21.7143 | 8.058   | 5.1719  |
| 106  | BW        | G         | 82.1165 | 88.528             | 89.3761         | 89.4827 | 89.6192 | 88.9893 | 89.226  | 87.9688 | 82.5238 | 79.7638 | 75.4697 | 38.9281 | 22.1877 | 8.5219  | 5.5928  |
| 106  | BE        | G         | 85.3954 | 89.1712            | 89.1058         | 89.166  | 88.738  | 88.511  | 87.6917 | 84.5214 | 74.3262 | 79.8729 | 63.555  | 24.5182 | 13.0821 | 5.5732  | 3.9946  |
| 107  | BW        | G         | 82.3186 | 88.3601            | 88.9632         | 89.7083 | 89.574  | 89.6648 | 88.378  | 88.1688 | 81.865  | 79.3329 | 74.8976 | 38.7088 | 22.1702 | 8.7593  | 5.9143  |
| 107  | BE        | G         | 86.7853 | 89.0364            | 88.5455         | 88.8347 | 89.6789 | 88.2958 | 86.9001 | 84.3735 | 73.7396 | 61.4873 | 63.0143 | 23.906  | 13.0888 | 5.6631  | 4.1816  |
| 108  | BW        | G         | 78.306  | 87.4316            | 87.8515         | 89.0731 | 89.2587 | 89.6942 | 89.122  | 88.158  | 82.3731 | 78.8038 | 75.4834 | 38.9068 | 22.1832 | 8.6967  | 5.8296  |
| 108  | BE        | G         | 84.9372 | 89.0698            | 88.8499         | 88.8325 | 88.6232 | 89.2001 | 86.3749 | 84.3062 | 73.8176 | 62.4009 | 63.2593 | 23.986  | 13.2534 | 5.5936  | 4.0607  |
| 109  | BW        | G         | 85.3509 | 88.1045            | 89.0189         | 89.4132 | 89.3083 | 89.7603 | 89.4428 | 88.0253 | 81.4203 | 79.9487 | 75.7803 | 38.9747 | 22.2013 | 8.7228  | 5.8132  |
| 109  | BE        | G         | 92.8097 | 89.388             | 88.6711         | 89.0994 | 89.781  | 88.0688 | 86.8173 | 84.3323 | 72.6565 | 59.707  | 62.6817 | 23.5542 | 12.9252 | 5.6819  | 4.2392  |
| 110  | BW        | G         | 82.1929 | 88.4135            | 89.9636         | 89.627  | 89.538  | 90.6971 | 89.8552 | 88.27   | 80.9702 | 81.9154 | 75.3329 | 39.1281 | 22.3624 | 8.582   | 5.6456  |
| 110  | BE        | G         | 89.5569 | 89.0873            | 88.843          | 88.7473 | 88.9254 | 88.3987 | 87.0299 | 84.7712 | 74.5227 | 71.6068 | 64.2411 | 24.9166 | 13.257  | 5.4742  | 3.8905  |
| 111  | BW        | G         | 90.6442 | 89.3441            | <b>89.62</b> 66 | 89.9089 | 89.3349 | 90.5629 | 89.7296 | 88.3673 | 82.7164 | 75.1685 | 75.5182 | 39.1789 | 22.5293 | 8.91    | 6.0102  |
| 111  | BE        | G         | 87.4607 | 88.3422            | 88.9173         | 88.9071 | 89.1175 | 89.0534 | 87.4739 | 84.4882 | 72.666  | 80.8684 | 63.1618 | 24.2089 | 13.2368 | 5.7387  | 4.12955 |
| 111  | WE        | G         | 87.906  | 88,6886            | 89.0278         | 88.7825 | 88.6312 | 89.1515 | 87.617  | 85.7861 | 76.7024 | 79.9082 | 68.0142 | 28.6096 | 15.4588 | 5.7157  | 3.7042  |
| 112  | BW        | G         | 77.8891 | 85.7109            | 87.7756         | 88.4885 | 88.4154 | 88.3938 | 90.1095 | 87.8036 | 78.2955 | 73.9377 | 71.5123 | 33.3002 | 18.6067 | 7.1844  | 4.7961  |
| 113  | BW        | G         | 90.7643 | 88.9968            | 90.0624         | 89.4149 | 89.627  | 89.718  | 87.6224 | 86.02   | 78.5623 | 73.3462 | 70.4803 | 32.8197 | 18.1204 | 6.7922  | 4.4887  |
| 114  | BW        | G         | 82.4938 | 86.1109            | 86.9912         | 87.1674 | 86.8326 | 87.0227 | 86.4343 | 84.472  | 77.6743 | 73.3195 | 70.0634 | 32.3904 | 17.921  | 6.9367  | 4.8061  |

## Table G.1 AC impedance measurements for specimens in test sequence 1 (phase angle at various frequencies of applied test voltage)

G-S

•

|     | Table G.1 AC impedance measurements for specimens in test sequence 1         (phase angle at various frequencies of applied test voltage)         E R E O U E N C X (Herricz) |    |         |           |         |         |         |           |           |           |           |           |           |           |           |           |         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|-----------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
|     |                                                                                                                                                                               |    |         |           |         |         | -       | FRI       | EQUE      | NCY       | (Hert     | z )       |           |           |           |           |         |
| CBL | Cnd                                                                                                                                                                           | СМ | 0.1     | 0.3       | 0.5     | 0.7     | 0.9     | 1         | 5         | 10        | 50        | 60        | 100       | 500       | 1000      | 3000      | 5000    |
| 115 | BW                                                                                                                                                                            | G  | 85.3331 | 85.3459   | 85.8697 | 85.7011 | 85.6309 | 85.4125   | 84.9674   | 83.9263.  | 77.184    | 76.99     | 70.7692   | 33.7901   | 18.743    | 6.9047    | 4.3639  |
| 116 | 5 BW                                                                                                                                                                          | G  | 80.2672 | 85.4905   | 85.6333 | 85.7219 | 85.6496 | 85.6732   | 84.9182   | 83.9899   | 77.5475   | 75.9126   | 70.6695   | 33.9185   | 18.8024   | 6.9576    | 4.4072  |
| 102 | BW                                                                                                                                                                            | Н  | 95.6421 | 90.259267 | 90.1947 | 89.8931 | 90.0541 | 89.906467 | 87.990133 | 85.381633 | 73.737767 | 71.831033 | 63.661067 | 23.772033 | 12.511533 | 4.3234333 | 2.5916  |
| 118 | BW                                                                                                                                                                            | Н  | 85.74   | 89.4726   | 89.509  | 89.3405 | 89.5545 | 89.4218   | 87.6084   | 84.912    | 72.9991   | 71.0286   | 62.6964   | 22.8968   | 12.0146   | 4.2017    | 2.5736  |
| 104 | BW                                                                                                                                                                            | н  | 93.4911 | 90.5139   | 89.8053 | 89.8736 | 89.869  | 89.818    | 88.2126   | 85.7119   | 74.0847   | 72.1989   | 64.036    | 24.0597   | 12.6884   | 4.385     | 2.6079  |
| 105 | BW                                                                                                                                                                            | Н  | 95.9491 | 90.7913   | 91.2698 | 90.4652 | 90.7388 | 90.4796   | 88.1494   | 85.521    | 74.1295   | 72.2656   | 64.2508   | 24.3596   | 12.8316   | 4.3836    | 2.5933  |
| 106 | BW                                                                                                                                                                            | Н  | 99.5151 | 91.3105   | 89.8808 | 89.753  | 90.5827 | 90.4416   | 89.2226   | 87.786    | 78.1047   | 68.5916   | 28.0428   | 15.3948   | 5.8944    | 3.8114    |         |
| 106 | BE                                                                                                                                                                            | н  | 81.9745 | 85.3492   | 89.3648 | 88.7411 | 88.5397 | 88.4712   | 85.2138   | 81.6017   | 66.7234   | 64.1253   | 54.8154   | 18.0652   | 9.5663    | 3.5669    | 2.3615  |
| 107 | BW                                                                                                                                                                            | Н  | 94.801  | 90.9778   | 90.9243 | 91.0174 | 90.6741 | 90.1995   | 89.0033   | 87.1603   | 77.2722   | 74.5821   | 67.7387   | 27.4136   | 15.1363   | 6.3291    | 4.5411  |
| 107 | BĒ                                                                                                                                                                            | H  | 87.7679 | 89.5588   | 89.3485 | 89.1226 | 89.2221 | 89.2231   | 87.2701   | 85.007    | 68.0098   | 64.6694   | 52.1923   | 15.8851   | 9.2782    | 5.2932    | 4.40823 |
| 108 | BW                                                                                                                                                                            | Н  | 85.74   | 89.4726   | 89.509  | 89.3405 | 89.5545 | 89.4218   | 87.6084   | 84.912    | 72.9991   | 71.0286   | 62.6964   | 22.8968   | 12.0146   | 4.2017    | 2.5736  |
| 108 | BE                                                                                                                                                                            | Н  | 92.601  | 89.229    | 89.3878 | 89.3074 | 89.1235 | 88.9852   | 87.0516   | 84.6781   | 74.1699   | 72.5506   | 64.6495   | 25.1961   | 13.6675   | 5.3777    | 3.7514  |
| 109 | BW                                                                                                                                                                            | Н  | 94.5012 | 92.2054   | 91.2018 | 90.9678 | 91.2002 | 91.0728   | 89.6563   | 87.9916   | 77.6081   | 75.7188   | 68.149    | 68.149    | 68.149    | 68.149    | 68.149  |
| 109 | BE                                                                                                                                                                            | Н  | 93.1384 | 89.2167   | 88.7459 | 89.1934 | 88.6423 | 88.4998   | 85.0738   | 81.3945   | 66.3573   | 63.9688   | 54.2489   | 17.4814   | 9.4065    | 3.7428    | 2.6193  |
| 110 | BW                                                                                                                                                                            | Н  | 85.9011 | 88.5848   | 89.9244 | 88.61   | 88.1445 | 87.4843   | 82.2641   | 77.8733   | 60.4994   | 69.3379   | 50.4588   | 20.8645   | 15.3166   | 8.985     | 7.05115 |
| 110 | BE                                                                                                                                                                            | Н  | 86.1532 | 89.3865   | 89,4507 | 88.7693 | 89.1253 | 88.7608   | 85.2128   | 81.6026   | 66.5859   | 64.1742   | 54.6506   | 19.4153   | 11.1266   | 5.6829    | 4.1459  |
| 111 | BW                                                                                                                                                                            | Н  | 99.6377 | 95.5399   | 94.3459 | 93.9679 | 93.6207 | 93.5399   | 90.3925   | 87.698    | 77.215    | 75.2745   | 67.9726   | 27.8112   | 14.9895   | 5.6107    | 3.6364  |
| 111 | BE                                                                                                                                                                            | Н  | 89.2309 | 88.9087   | 89.5158 | 88.6866 | 88.6676 | 88.6603   | 85.6903   | 82.0551   | 67.5399   | 62.2641   | 55.5351   | 17.6616   | 9.5787    | 4.1403    | 2.87281 |
| 111 | WE                                                                                                                                                                            | Н  | 88.6963 | 89.3496   | 89.2866 | 88.8657 | 88.6945 | 88.694    | 85.2959   | 81.9296   | 68.0099   | 65.7403   | 56.3388   | 18.6986   | 9.8787    | 3.7064    | 2.3844  |
| 112 | BW                                                                                                                                                                            | Н  | 96.6043 | 95.4802   | 94.1846 | 93.6261 | 93.393  | 93.074    | 90.1942   | 88.7499   | 79.0484   | 77.3254   | 70.0034   | 31.1918   | 17.8884   | 7.1619    | 4.526   |
| 113 | BW                                                                                                                                                                            | Н  | 96.9204 | 98.6972   | 99.3558 | 99.2189 | 99.6172 | 99.318    | 90.9312   | 87.9198   | 77.8585   | 76.5622   | 69.8359   | 31.4789   | 17.5252   | 6.871     | 4.7283  |
| 114 | BW                                                                                                                                                                            | Н  | 95.7682 | 100.002   | 99.4293 | 99.3431 | 99.1029 | 98.7829   | 91.5474   | 87.8102   | 77.1293   | 75.6429   | 69.0206   | 31.3029   | 17.8827   | 6.9119    | 4.2932  |
| 115 | BW                                                                                                                                                                            | Н  | 90.674  | 87.1422   | 86.9774 | 87.1731 | 87.202  | 87.1592   | 85.9295   | 84.2916   | 76.302    | 74.9507   | 68.7799   | 31.1205   | 16.8132   | 5.564     | 3.133   |
| 116 | BW                                                                                                                                                                            | Н  | 84.3426 | 87.636    | 88.0656 | 87.9254 | 87.9974 | 88.1886   | 86.8378   | 85.2272   | 77.2425   | 75.7842   | 69.7509   | 31.7202   | 17.1732   | 5.773     | 3.3175  |

ဌှ

|              |           |         |         |                     |           |         | -               | FRE     | QUEN            | ст (    | Hert    | z )     |         |         |         |         |        |
|--------------|-----------|---------|---------|---------------------|-----------|---------|-----------------|---------|-----------------|---------|---------|---------|---------|---------|---------|---------|--------|
| CBL          | Cnd       | CM      | 0.1     | 0.3                 | 0.5       | 0.7     | 0.9             | 1       | 5               | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000   |
| =====<br>201 | ===<br>BW | ==<br>A | 72.8825 | ====== =<br>87.7635 | 88.3061 - | 88.7108 | 88.998 ×        | 89.2392 | 87.922 <b>-</b> | 86.4559 | 78.0844 | 77.0311 | 70.3984 | 31.3772 | 16.9601 | 5.7622  | 3.2863 |
| 201          | BR        | A       | 83,4282 | 87.2911             | 87.8181   | 87,9775 | 88.128          | 88.0912 | 87.6342         | 86.278  | 78.1494 | 76.9498 | 70.5562 | 31.8491 | 17.2597 | 5.7844  | 3.2347 |
| 201          | WR        | A       | 84.4284 | 87.4019             | 88.0125   | 87,766  | 87.9098         | 87.9081 | 87.3398         | 85.815  | 77.4375 | 75.9922 | 69.4981 | 30.5321 | 16.4465 | 5.4876  | 3.0743 |
| 201          | BG        | A       | 86.2378 | 87.9569             | 90.4738   | 88.1994 | 88.8646         | 88.7282 | 88.0344         | 86.6293 | 78.4141 | 77.1778 | 70.7063 | 31.6539 | 17.1593 | 5.842   | 3.3318 |
| 201          | WG        | A       | 89.5677 | 86.3536             | 87.192    | 87.6038 | 87.4683         | 87.6004 | 87.2886         | 85.8724 | 77.8663 | 76.4475 | 70.2489 | 31.674  | 15.1531 | 5.6958  | 3.1571 |
| 201          | RG        | A       | 84.1132 | 87.3078             | 87.9716   | 88.0941 | 87.9145         | 87.9301 | 87.4564         | 85.9666 | 77.5441 | 76.4399 | 69.7211 | 30.7823 | 16.5907 | 5.55072 | 3.1111 |
| 201          | BE        | A       | 81.4446 | 86.4798             | 86.9815   | 87.1741 | 87.0784         | 87.1824 | 85.1597         | 82.4545 | 70.8532 | 68.8347 | 60.7561 | 22.3954 | 11.7411 | 3.9171  | 2.2068 |
| 201          | WE        | A       | 85.0727 | 85.29               | 86.1415   | 86.2391 | 86.0178         | 86.056  | 83.9568         | 81.1131 | 69.0928 | 67.1979 | 58.8182 | 21.2052 | 11.0458 | 3.6178  | 1.9767 |
| 201          | RE        | A       | 82.0929 | 85.4738             | 86.1373   | 86.2546 | 85.8534         | 86.0656 | 83.6826         | 80.9976 | 69.0219 | 65.5194 | 58.2197 | 20.7877 | 10.7676 | 3.501   | 1.9322 |
| 201          | GE        | A       | 84.528  | 85.3322             | 85.2775   | 85.8129 | 86.2182         | 85.7915 | 83.9887         | 81.3013 | 69.8515 | 65.2187 | 59.3271 | 21.3707 | 11.2935 | 3.6567  | 1.9961 |
| 202          | BW        | Α       | 83.4967 | 88.0276             | 88.5461   | 88.678  | 88.6202         | 88.9212 | 88.1276         | 86.1664 | 77.7944 | 75.7805 | 69.5624 | 30.5031 | 16.4291 | 5.6178  | 3.2156 |
| 202          | BR        | A       | 89.905  | 87.6593             | 88.362    | 88.6054 | 88.4099         | 88.3087 | 88.1681         | 86.5361 | 78.3618 | 76.0899 | 69.9342 | 30.7608 | 16.6149 | 6.6623  | 3.255  |
| 202          | WR        | A       | 85.033  | 87.7566             | 87.5813   | 87.7107 | 88.2445         | 88.2244 | 87.2922         | 85.6243 | 77.01   | 73.4473 | 68.8361 | 29.6277 | 15.9036 | 5.3611  | 3.0155 |
| 202          | BE        | Α       | 84.1369 | 85.9457             | 86.3507   | 87.0628 | 86.9168         | 86.8754 | 84.895          | 82.0994 | 69.7024 | 67.6061 | 59.9821 | 21.5741 | 11.3125 | 3.8398  | 2.1678 |
| 202          | WE        | Α       | 85,0631 | 86.1192             | 86.5515   | 86.7257 | 86.5            | 86.5551 | 84.428          | 81.7083 | 69.763  | 67.7318 | 59.3635 | 21.0569 | 10.8043 | 3.4392  | 1.8573 |
| 202          | RE        | Α       | 88.1413 | 85.7845             | 86.6569   | 86.4371 | 86.573 <b>7</b> | 86.4779 | 84.6609         | 82.0559 | 70.4089 | 68.4614 | 60.1857 | 21.6617 | 11.1463 | 3.5771  | 1.9576 |
| 203          | BW        | A       | 86.1025 | 87.6107             | 88.3763   | 88.6807 | 88.2546         | 88.4734 | 88.2195         | 86.4366 | 78.3148 | 76.147  | 70.572  | 31.4972 | 17.0567 | 5.8613  | 3.396  |
| 203          | BR        | Α       | 87.1408 | 87.1209             | 87.6859   | 87.9862 | 88.1984         | 88.0576 | 87.5429         | 86.3934 | 78.1598 | 78.0145 | 70.428  | 31.7103 | 17.2321 | 5.8674  | 3.3304 |
| 203          | WR        | A       | 85.1606 | 88.0366             | 87.8886   | 87.9656 | 87.8404         | 88.2077 | 87.2136         | 85.694  | 77.113  | 75.4207 | 69.3347 | 30.4198 | 16.4146 | 5.5577  | 3.1338 |
| 203          | BG        | A       | 85.7392 | 88.7702             | 88.7775   | 89.1567 | 89.1661         | 88.9227 | 88.2157         | 86.6631 | 78.4264 | 77.991  | 70.8957 | 31.8106 | 17.3511 | 6.0045  | 3.4545 |
| 203          | WG        | Α       | 85.0616 | 86.824              | 87.7009   | 88.4903 | 87.8653         | 87.7525 | 87.2001         | 85.8535 | 77.8714 | 77.3441 | 70.3526 | 31.8661 | 17.3559 | 5.8486  | 3.2777 |
| 203          | RG        | Α       | 89.4469 | 87.8375             | 88.0887   | 87.7706 | 88.0118         | 87.8274 | 87.2886         | 85.8964 | 77.5325 | 75.7025 | 69.6232 | 30.8579 | 16.6883 | 5.6535  | 3.2033 |
| 203          | BE        | A       | 88.6758 | 86.6193             | 86.8577   | 86.9516 | 87.1419         | 87.2911 | 85.0261         | 82.3201 | 70.6504 | 71.3231 | 60.3885 | 22.1656 | 11.7899 | 4.0467  | 2.3123 |
| 203          | WE        | Α       | 81.8208 | 85.2766             | 85.987    | 86.1564 | 85.9671         | 86.0933 | 83.7344         | 80.89   | 68.3937 | 68.4583 | 58.3171 | 21.1315 | 11.0983 | 3.6978  | 2.0746 |
| 203          | RE        | Α       | 82.137  | 85.3834             | 85.6429   | 85.9423 | 85.815          | 86.0373 | 83.7046         | 80.7378 | 68,4783 | 65.7846 | 57.5171 | 20.6246 | 10.7136 | 3.5463  | 1.9789 |
| 203          | GE        | Α       | 81.3522 | 85.0319             | 85,4753   | 85.8811 | 85.7073         | 85.9543 | 84.0625         | 81.2445 | 69.7269 | 66.5335 | 59.3132 | 21.7196 | 11.5488 | 3.846   | 2.1757 |
| 204          | BW        | Α       | 91.86   | 88.5236             | 88.6253   | 88.6892 | 88.639          | 88.438  | 88.2037         | 86.5262 | 78.421  | 76.6034 | 70.5454 | 31.5725 | 17.1636 | 5.8809  | 3.3826 |
| 204          | BR        | Α       | 83.1415 | 87.2756             | 87.7326   | 87.8474 | 88.1805         | 88.0881 | 87.3617         | 86.2841 | 78.2907 | 75.5266 | 70.5341 | 31.8374 | 17.265  | 5.8689  | 3.3039 |
| 204          | BG        | Α       | 90.3275 | 88.178              | 87.7672   | 88,5906 | 88.833          | 88.469  | 87.79           | 86.524  | 78.6792 | 76.4433 | 70.6213 | 31.7626 | 17.2878 | 5.7751  | 3.4508 |
| 204          | BE        | Α       | 83.0573 | 86.4486             | 86.3976   | 87.0248 | 87.0328         | 87.1765 | 84.8661         | 82.2414 | 70.2378 | 71.1175 | 60.6354 | 22.5018 | 11.8486 | 4.0199  | 2.3459 |
| 204          | WE        | Α       | 88      | 85.1431             | 85.7296   | 85.8772 | 85.9319         | 86.0743 | 84.5564         | 82.106  | 70.7516 | 68.7232 | 60.7003 | 22.1351 | 11.4229 | 3.6632  | 1.9962 |
| 204          | RE        | Α       | 81.9559 | 85.0191             | 85.0535   | 85.2761 | 85.6774         | 85.675  | 83.634          | 80.7129 | 68.558  | 67.5393 | 57.9932 | 20.83   | 10.858  | 3.534   | 1.9427 |
| 204          | GE        | Α       | 82.8481 | 85.0707             | 85.449    | 85.7693 | 85.7748         | 85.8291 | 84.4002         | 81.2794 | 69.8097 | 64.8543 | 59.4389 | 21.6366 | 11.3435 | 3.7987  | 2.0914 |
| 205          | 5 BW      | Α       | 93.0563 | 88.0907             | 87.8572   | 88.9499 | 88.809          | 88.7458 | 87.5744         | 86.5316 | 78.3575 | 72.2549 | 70.1466 | 30.8978 | 16.806  | 5.7829  | 3.3166 |
| 205          | 5 BR      | A       | 87.5461 | 87.2856             | 87.5985   | 87.7756 | 87.7792         | 88.1821 | 87.5077         | 86.2132 | 78.2419 | 75.8607 | 70.1368 | 31.2768 | 16.9935 | 5.7107  | 3.215  |
| 205          | 5 BG      | A       | 83.5917 | 87.1284             | 88.2729   | 88.461  | 88.1333         | 88.8592 | 87.8639         | 86.641  | 78,1466 | 76.2306 | 70.4225 | 31.3238 | 17.0038 | 5.8242  | 3.377  |
| 205          | 5 BE      | ·A      | 84.6465 | 86.2478             | 86.5053   | 86.7332 | 86.9478         | 86.8021 | 84.6224         | 82.2113 | 70.9989 | 65.9272 | 60.4421 | 22.2017 | 11.7903 | 3.9758  | 2.2527 |
| 205          | 5 WE      | A       | 81.2601 | 85.4122             | 85.5932   | 86.0324 | 85.7772         | 85.8774 | 83.537          | 81.0628 | 68.7774 | 66.9493 | 58.7106 | 21.1076 | 10.9872 | 3.6016  | 1.9696 |

### Table G.2 AC impedance measurements for specimens in test sequence 2 (phase angle at various frequencies of applied test voltage)

.

| CBL | Cnđ   | СМ | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000   | 5000   |
|-----|-------|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| 205 | RE    | А  | 87.1584 | 85.1412 | 85.7305 | 85.8398 | 85.9945 | 85.4664 | 83.4888 | 80.6548 | 67.8588 | 65.2244 | 57.7053 | 20.3916 | 10.6355 | 3.4255 | 1.8494 |
| 205 | GE    | Α  | 88.2848 | 85.1019 | 85.8331 | 86.0376 | 86.0363 | 85.9459 | 84.1869 | 81.31   | 68.834  | 68.8026 | 59.0702 | 21.2326 | 10.9842 | 3.594  | 1.9166 |
| 206 | 5 BW  | Α  | 81.5881 | 86.9199 | 87.7483 | 87.9841 | 88.352  | 88.2444 | 87.9107 | 86.3573 | 77.7629 | 72.4316 | 70.0581 | 31.0248 | 16.7873 | 5.7642 | 3.2945 |
| 206 | BR    | Α  | 86.0772 | 86.8702 | 87.1202 | 87.6446 | 87.8283 | 87.5509 | 87.3185 | 86.0801 | 77.6751 | 77.3892 | 70.1699 | 31.4754 | 16.9114 | 5.6883 | 3.2196 |
| 206 | 6 BG  | Α  | 86.6786 | 87.7093 | 88.5418 | 88.8139 | 88.8371 | 88.3722 | 88.0559 | 86.6152 | 78.4045 | 78.2549 | 70.4726 | 31.4477 | 17.0745 | 5.8814 | 3.4101 |
| 206 | BE    | Α  | 83.3853 | 86.1832 | 86.9686 | 87.2088 | 87.6865 | 87.2024 | 85.1486 | 82.1861 | 69.9704 | 68.356  | 60.2313 | 22.1684 | 11.6665 | 3.9487 | 2.3002 |
| 206 | WE    | Α  | 87.0796 | 84.7893 | 85.8766 | 86.0893 | 85.5347 | 85.711  | 84.0024 | 80.801  | 68.692  | 67.7859 | 58.171  | 21.0769 | 10.8938 | 3.611  | 2.0145 |
| 206 | RE    | Α  | 87.6893 | 85.0696 | 85.3941 | 85.5653 | 85.7943 | 85.5876 | 83.8483 | 80.5789 | 67.7804 | 66.4635 | 57.6184 | 20.3215 | 10.7057 | 3.5004 | 1.9192 |
| 206 | GE    | Α  | 82.0762 | 85.3637 | 85.2115 | 85.5682 | 86.025  | 86.0051 | 84.1142 | 81.1418 | 68.8551 | 68.0013 | 58.9017 | 21.2751 | 11.1317 | 3.7135 | 2.0616 |
| 207 | ' BW  | Α  | 93.9634 | 91.1147 | 86.761  | 93.0252 | 92.7515 | 89.4774 | 87.7605 | 86.7643 | 78.5536 | 78.1837 | 72.03   | 33.8123 | 18.6615 | 6.3812 | 3.6384 |
| 207 | ' BE  | Α  | 82.7406 | 86.3982 | 86.5203 | 86.3168 | 87.9081 | 87.6111 | 85.4809 | 83.0939 | 72.2168 | 71.941  | 62.6341 | 24.318  | 12.7842 | 4.389  | 2.4983 |
| 207 | WE    | Α  | 81.7831 | 85.9519 | 85.7298 | 86.977  | 86.1284 | 86.8248 | 84.8896 | 82.0013 | 70.2569 | 69.6573 | 61.0325 | 22.9846 | 12.1646 | 4.035  | 2.2441 |
| 207 | ' RE  | Α  | 89.0462 | 86.019  | 86.2521 | 86.3974 | 87.2082 | 86.2895 | 84.501  | 82.0331 | 70.749  | 64.1894 | 60.3001 | 23.0073 | 12.4388 | 4.3028 | 2.4234 |
| 207 | GE    | A  | 84.6521 | 84.1391 | 86.8407 | 86.2972 | 85.9588 | 86.214  | 84.4749 | 81.8026 | 69.8703 | 72.9779 | 60.4103 | 22.9946 | 12.3089 | 4.3029 | 2.4373 |
| 208 | B BW  | A  | 88.9093 | 88.2789 | 89.1729 | 89.2761 | 88.6241 | 89.5456 | 88.1903 | 86.797  | 79.6895 | 76.3133 | 71.7915 | 33.8937 | 18.5247 | 6.3725 | 3.6398 |
| 208 | BR BR | A  | 91.1993 | 88.2175 | 88.4212 | 88.3719 | 88.9338 | 88.528  | 88.0288 | 86.3939 | 78.1915 | 79.8375 | 71.7041 | 34.5334 | 19.1232 | 6.636  | 3.7277 |
| 208 | wr    | А  | 87.5238 | 88.0751 | 88.4744 | 88.7899 | 88.8877 | 88.9463 | 87.6037 | 86.0657 | 78.5498 | 76.4194 | 70.8809 | 33.4558 | 18.5614 | 6.3497 | 3.5946 |
| 208 | BG BG | Α  | 83.0576 | 89.199  | 88.7211 | 89.0104 | 89.5348 | 89.2683 | 87.6561 | 86.4827 | 78.3186 | 76.2921 | 71.8032 | 33.7481 | 18.7061 | 6.506  | 3.7156 |
| 208 | 8 WG  | Α  | 83.8578 | 87.5051 | 87.3899 | 87.9055 | 87.3818 | 86.9644 | 87.1782 | 85.8221 | 77.9578 | 75.1773 | 71.3931 | 33.9792 | 18.7885 | 6.4136 | 3.5912 |
| 208 | RG RG | Α  | 82.5229 | 88.0279 | 88.6142 | 86.7852 | 89.8234 | 85,3235 | 87.315  | 85.9099 | 78.4504 | 76.6418 | 70.957  | 33.3307 | 18.4732 | 6.4429 | 3.6763 |
| 208 | BE BE | Α  | 90.1647 | 86.276  | 87.2835 | 85.7792 | 87.1871 | 87.3577 | 85.3075 | 82.893  | 71.7002 | 65.1169 | 62.0297 | 23.6582 | 12.8029 | 4.5434 | 2.6803 |
| 208 | WE WE | Α  | 87.4709 | 85.9125 | 86.1927 | 86.0706 | 86.4145 | 86.005  | 84.5826 | 81.8019 | 70.1237 | 65.7091 | 60.4195 | 22.9727 | 12.3294 | 4.2816 | 2.4486 |
| 208 | RE    | Α  | 82.6227 | 85.7728 | 85.8984 | 86.6584 | 87.1249 | 84.7592 | 84.31   | 82.128  | 70.8513 | 64.1451 | 60.7309 | 23.2236 | 12.4335 | 4.2662 | 2.4205 |
| 208 | GE GE | Α  | 85.1458 | 87.1381 | 86.3707 | 86.2925 | 86.1095 | 86.5299 | 84.6316 | 81.9608 | 70.5221 | 64.7401 | 60.4771 | 23.0705 | 12.499  | 4.2124 | 2.3469 |
| 209 | BW    | Α  | 90.6673 | 88.3297 | 88.5735 | 88.7631 | 89.0594 | 88.6751 | 87.8459 | 86.345  | 78.9207 | 77.0535 | 71.3826 | 33.4784 | 18.4709 | 6.4111 | 3.7216 |
| 209 | BE    | Α  | 85.4115 | 86.1823 | 86.9372 | 91.4801 | 86.8442 | 87.2104 | 85.2974 | 82.8413 | 72.425  | 68.6009 | 62.1913 | 24.0223 | 12.8113 | 4.2873 | 2.5261 |
| 209 | WE    | Α  | 86.9409 | 85.7103 | 86,7847 | 86.2351 | 86.4062 | 86.3056 | 84.2254 | 81.9264 | 70.5126 | 74.7008 | 60.9745 | 22.9749 | 12.1126 | 3.9177 | 2.1744 |
| 209 | RE    | Α  | 82.5337 | 85.1138 | 85.7184 | 85.7232 | 86.5415 | 86.2283 | 84.5818 | 82.0996 | 71.3236 | 67.1111 | 61.3139 | 23.067  | 11.9855 | 3.9916 | 2.132  |
| 209 | GE    | Α  | 89.196  | 85.1678 | 84.9994 | 85.6166 | 86.4145 | 85.7239 | 84.7659 | 81.8098 | 70.1814 | 64.1744 | 60.9974 | 23.0755 | 11.9551 | 4.0418 | 2.1953 |
| 210 | BW    | Α  | 76.1055 | 87.1402 | 96.1508 | 97.1003 | 90.7746 | 94.1974 | 88.0345 | 86.8811 | 80.5498 | 80.0581 | 74.5139 | 37.9734 | 21.3628 | 7.3413 | 4.1409 |
| 210 | BR    | Α  | 89.2021 | 88.1664 | 88.6245 | 87.5609 | 85.0726 | 90.3174 | 87.95   | 86.8474 | 80.5237 | 80.4634 | 74.7054 | 39.0774 | 22.3913 | 7.9196 | 4.5329 |
| 210 | WR    | Α  | 87.0127 | 87.9463 | 87.4459 | 75.0744 | 104.646 | 86.713  | 87.8723 | 86.7613 | 80.2767 | 78.0654 | 73.9394 | 38.0317 | 21.6952 | 7.6103 | 4.3276 |
| 210 | BG    | A  | 88.3874 | 88.6084 | 88.5126 | 88.6952 | 89.0568 | 89.0592 | 89.2982 | 88.1504 | 81.7819 | 80.5855 | 75.4384 | 38.1302 | 21.4565 | 7.4507 | 4.2595 |
| 210 | WG    | Α  | 87.844  | 86.9583 | 87.9308 | 88.0836 | 88.4262 | 89.2751 | 87.8127 | 86.7175 | 80.6464 | 79.0192 | 74.3163 | 38.4082 | 21.5854 | 7.2612 | 3.9735 |
| 210 | BE    | A  | 86.3864 | 87.0486 | 87.5392 | 87.4963 | 87.6075 | 86.8737 | 86.0976 | 84.1717 | 74.5027 | 73.0908 | 66.0136 | 27.8153 | 15.1084 | 5.1907 | 2.9355 |
| 210 | WE    | A  | 82.0278 | 82.7352 | 86.8338 | 86.7725 | 86.9595 | 86.8124 | 85.2988 | 83.3281 | 73.4167 | 71.3618 | 64.6446 | 26.0909 | 14.3229 | 4.7483 | 2.581  |
| 210 | RE    | A  | 94.0336 | 86.3618 | 86.2768 | 86.6629 | 87.0785 | 86.846  | 85.5312 | 83.2747 | 73.4796 | 71.4999 | 64.5075 | 26.4955 | 14.1991 | 4.6301 | 2.504  |
| 210 | ) GE  | Α  | 88.2725 | 86.3611 | 87.0885 | 87.1698 | 86.9524 | 86.9826 | 85.4656 | 83.2545 | 73.5262 | 71.1958 | 64.777  | 26.7784 | 14.3458 | 4.6988 | 2.5513 |

Table G.2 AC impedance measurements for specimens in test sequence 2<br/>(phase angle at various frequencies of applied test voltage)F R E O U E N C Y(H e r t z)

۱

# Table G.2 AC impedance measurements for specimens in test sequence 2<br/>(phase angle at various frequencies of applied test voltage)F R E O U E N C Y (Hertz)

| CBL | Cnd         | СМ      | 0.1                  | 0.3     | 0.5     | 0.7     | 0.9     | FКЕ<br>1 | QUER<br>5 | 10 IO   | Hert<br>50 | z)<br>60                               | 100     | 500     | 1000    | 3000   | 5000   |
|-----|-------------|---------|----------------------|---------|---------|---------|---------|----------|-----------|---------|------------|----------------------------------------|---------|---------|---------|--------|--------|
| 21  | ===<br>1 BW | ==<br>A | ======= =<br>89.5207 | 89.7682 | 89.4514 | 92.0026 | 89.1174 | 93.9697  | 87.9335   | 87.3034 | 80.9426    | ====================================== | 74.6147 | 38.2047 | 21.449  | 7.4371 | 4.2542 |
| 21  | 1 BE        | A       | 98,9609              | 86.7249 | 87.5535 | 87.3841 | 87.722  | 87.4607  | 86.2479   | 84.3094 | 75.0674    | 73.4966                                | 66.2656 | 28.0858 | 15.1505 | 5,1463 | 2.9    |
| 21  | 1 WE        | A       | 88.279               | 86.2353 | 86.8017 | 86.5432 | 86.7811 | 87.0374  | 85.6158   | 83.5202 | 74.1644    | 72.1039                                | 65.2679 | 27.0467 | 14.5109 | 4.7625 | 2.603  |
| 21  | 1 RE        | A       | 89.5712              | 86.255  | 86.4796 | 86.9581 | 86.9389 | 86.7783  | 85.4635   | 83.4101 | 73.5136    | 73.0366                                | 64.9401 | 26.8499 | 14.3051 | 4.6931 | 2.5497 |
| 21  | 1 GE        | A       | 58.7549              | 86.22   | 86.6353 | 86.0752 | 86.7913 | 87.0537  | 85,4304   | 83.3154 | 73.7075    | 70.6689                                | 65.1577 | 26.9966 | 14.6724 | 4.8631 | 2.7077 |
| 21  | 2 BW        | A       | 87.2776              | 87.6274 | 88.4569 | 88.6036 | 88.2503 | 88.6955  | 87.7375   | 86.3476 | 78.3607    | 79.8528                                | 70.1366 | 31.1418 | 16.9215 | 5.7435 | 3.3057 |
| 21  | 2 BR        | A       | 81.8359              | 86.7928 | 87.2915 | 87.8896 | 87.8147 | 88.0061  | 87.6133   | 85.9904 | 77.8829    | 75.9147                                | 70.1002 | 31.4954 | 17.0796 | 5.704  | 3.1982 |
| 21  | 2 BG        | А       | 87.4694              | 87.7727 | 87.7806 | 88.0984 | 88.5234 | 88.6153  | 88.1374   | 86.4077 | 77.794     | 78.8064                                | 70.3516 | 31.4878 | 17.0329 | 5.8208 | 3.3584 |
| 21  | 2 BE        | A       | 81.6092              | 86.4631 | 86.808  | 87.158  | 87.0647 | 87.0359  | 85.0942   | 82.2969 | 69.8881    | 72.0678                                | 60.2564 | 22.0499 | 11.4575 | 3.8875 | 2.2253 |
| 21  | 2 WE        | Α       | 87.8673              | 85.4316 | 85.7404 | 85.8279 | 85.9168 | 86.1724  | 84.0876   | 80.9582 | 68.5846    | 67.0951                                | 58.3139 | 20.9403 | 10.8488 | 3.5084 | 1.9092 |
| 21  | 2 RE        | А       | 88.5251              | 85.3202 | 85.9645 | 86.124  | 86.1561 | 85.6983  | 83.8266   | 80.7078 | 68.7516    | 66.2287                                | 57.7557 | 20,2278 | 10.6319 | 3.4235 | 1.8722 |
| 21  | 2 GE        | Α       | 81.6493              | 85,3671 | 85.1699 | 85.5542 | 86.1077 | 86.0802  | 84.1732   | 81.3028 | 69.32      | 66.9651                                | 59.2505 | 21.5238 | 11.1801 | 3.6821 | 2.0576 |
| 21  | 3 BW        | Α       | 86.6121              | 86.5204 | 88.0451 | 88.285  | 87.865  | 88.5899  | 88.208    | 86.5438 | 77.9207    | 78.6302                                | 70.5725 | 31.3648 | 16.9464 | 5.7159 | 3.2536 |
| 21  | 3 BR        | Α       | 84.2504              | 87.3547 | 87.563  | 88.0878 | 87.7153 | 88.1159  | 87.6278   | 86.3052 | 78.649     | 76.547                                 | 70.5905 | 31.7934 | 17.1699 | 5.7062 | 3.1687 |
| 21  | 3 BG        | Α       | 90.9958              | 87.9894 | 88.6605 | 88.8016 | 88.8682 | 88.3983  | 87.8111   | 86.724  | 78.8915    | 76.6074                                | 70.9616 | 31.7711 | 17.2003 | 5.8482 | 3.3451 |
| 21  | 3 BE        | Α       | 81.8467              | 86.5364 | 86.753  | 87.2622 | 87.4061 | 87.3186  | 85.8195   | 83.5258 | 72.4933    | 70.6003                                | 62.615  | 23.1978 | 12.0076 | 3.9182 | 2.1923 |
| 21  | 3 WE        | Α       | 82.9932              | 85,4598 | 85.2847 | 85.5827 | 85.8785 | 85.8292  | 83.872    | 80.8697 | 69.0616    | 65.0333                                | 58.5479 | 21.2622 | 10.9736 | 3.6247 | 2.0493 |
| 21  | 3 RE        | A       | 89.0469              | 84.686  | 85.2619 | 85.6451 | 86.1468 | 86.0687  | 83.8614   | 80.5848 | 67.9453    | 67.0107                                | 57.8062 | 20.4142 | 10.6437 | 3.5148 | 1.8805 |
| 21  | 3 GE        | Α       | 82.0814              | 85.3412 | 85.2502 | 85.4593 | 85.8536 | 85.9554  | 83.9199   | 81.2557 | 69.1547    | 68.3551                                | 59.3601 | 21.6894 | 11.3978 | 3.7547 | 2.1038 |
| 21  | 4 BW        | Α       | 83.8979              | 88.3029 | 88.6381 | 88.9495 | 88.6535 | 88.7719  | 87.9265   | 86.2818 | 77.5358    | 73.3884                                | 69.7962 | 30.7563 | 16.7072 | 5.718  | 3.2966 |
| 21  | 4 BR        | Α       | 87.1256              | 88.1551 | 88.2339 | 88.3471 | 88.6573 | 88.7486  | 87.7203   | 86.3334 | 78.2739    | 79.3831                                | 69.7642 | 30.6017 | 16.6336 | 5.6502 | 3.2451 |
| 21  | 4 WR        | A       | 86.6006              | 88.1574 | 88.5219 | 88.5693 | 88.3885 | 88.3973  | 87.316    | 85.6946 | 76.8915    | 73.0524                                | 69.0936 | 30.1857 | 16.3061 | 5.4844 | 3.1433 |
| 21  | 4 BE        | Α       | 86.3822              | 86.4203 | 87.2209 | 87.4793 | 87.4445 | 87.2299  | 85.0694   | 82.2032 | 69.7215    | 68.4069                                | 59.5592 | 21.4512 | 11.2651 | 3.8033 | 2.1377 |
| 21  | 4 WE        | Α       | 82.593               | 86.2595 | 86.0738 | 86.1988 | 86.5116 | 86.5738  | 84.4156   | 81.7692 | 70.1127    | 68.1816                                | 59.9066 | 21.547  | 11.1048 | 3.5531 | 1.9394 |
| 21  | 4 RE        | A       | 85.0008              | 85.7981 | 86.4938 | 86.1447 | 86.5696 | 86.5604  | 84.6943   | 82.1106 | 70.4049    | 68.4473                                | 60.1564 | 21.6365 | 11.1567 | 3.5902 | 1.9797 |
| 21  | 5 BW        | Α       | 89.8523              | 87.9056 | 87.894  | 88.1657 | 88.4397 | 88.3758  | 87.7063   | 86.6932 | 78.5341    | 77.9299                                | 71.4138 | 32.7625 | 17.8061 | 6.0955 | 3.4877 |
| 21  | 5 BR        | Α       | 89.7659              | 87.1433 | 87.3256 | 87.5381 | 87.8094 | 88.254   | 87.7944   | 86.4396 | 78.3125    | 77.972                                 | 71.4016 | 32.8448 | 17.957  | 6.053  | 3.3985 |
| 21  | 5 BG        | Α       | 83.9117              | 87.9046 | 87.9804 | 88.4762 | 88.7213 | 88.6375  | 88.3458   | 86.8157 | 78.8397    | 78.9956                                | 71.6658 | 33.1419 | 18.0125 | 6.1954 | 3.5317 |
| 21  | 5 BE        | Α       | 82.2368              | 86.3151 | 87.1486 | 87.3671 | 87.1651 | 86.9759  | 85.3874   | 82.8113 | 71.5101    | 71.0448                                | 61.937  | 23.3968 | 12.1763 | 4.1365 | 2.3373 |
| 21  | 5 WE        | Α       | 81.8879              | 85.0513 | 85.6489 | 86.079  | 86.0847 | 86.1606  | 84.8628   | 82.5614 | 71.8898    | 70.0903                                | 62.2574 | 23.464  | 12.1741 | 3.9135 | 2.1487 |
| 21  | 5 RE        | А       | 82.1724              | 85.3363 | 86.0175 | 86.2544 | 85.944  | 86.1229  | 84.6652   | 82.31   | 71.125     | 69.2448                                | 61.2174 | 22.583  | 11.6714 | 3.7255 | 2.0284 |
| 21  | 5 GE        | Α       | 82.3026              | 85.4735 | 86.3054 | 86.3102 | 86.2812 | 86.4662  | 85.0929   | 82.927  | 72.4196    | 70.6125                                | 62.9162 | 23.9694 | 12.4599 | 4.0272 | 2.2242 |
| 21  | 6 BW        | Α       | 87.307               | 88.2302 | 89.0787 | 88.8581 | 89,0086 | 88.7916  | 87.914    | 86.5251 | 77.8899    | 78.5138                                | 70.5211 | 31.5275 | 17.0331 | 5.7196 | 3.2553 |
| 21  | 6 BR        | Α       | 85.5069              | 88.1059 | 88.318  | 88.5156 | 88.8915 | 88.2887  | 87.9389   | 86.4682 | 78.5902    | 79.5583                                | 70.5675 | 31.5052 | 16.976  | 5.7081 | 3.2624 |
| 21  | 6 WR        | Α       | 82.7428              | 87.044  | 88.1104 | 88.3841 | 88.6763 | 87.8941  | 87.6238   | 85.9232 | 77.4472    | 72.8524                                | 69.5942 | 30.8095 | 16.5732 | 5.568  | 3.1275 |
| 21  | 6 BE        | Α       | 85.4002              | 85.7033 | 86.6665 | 86.8187 | 87.0657 | 87.253   | 85.7834   | 83.4713 | 72.5099    | 70.6975                                | 62.6579 | 23.2792 | 12.0562 | 3.9317 | 2.196  |
| 21  | 6 WE        | A       | 88.896               | 86.1206 | 86.6244 | 86.6199 | 86.1764 | 86.1765  | 83.6466   | 81.0606 | 68.5682    | 68.3505                                | 58.8017 | 21.0325 | 10.9191 | 3.5582 | 1.9073 |
| 21  | 6 RE        | Α       | 81.1172              | 85.7411 | 86.3035 | 86.6044 | 86.4287 | 86.2797  | 84.2373   | 81.5698 | 69.7714    | 66.5115                                | 58.9371 | 21.2247 | 10.9147 | 3.4759 | 1.8936 |

:

G-9

•

|     |      |    |         |         |         |         |         | FRE     | QUE     | NСҮ (   | Hert             | z )     |         |         |         |        |         |
|-----|------|----|---------|---------|---------|---------|---------|---------|---------|---------|------------------|---------|---------|---------|---------|--------|---------|
| CBL | Cnd  | CM | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50               | 60      | 100     | 500     | 1000    | 3000   | 5000    |
| 217 | BW   | A  | 90.3786 | 87.9954 | 88.3929 | 88.5154 | 88.5892 | 88.4167 | 87.3024 | 85.9757 | 77.7537          | 75.6497 | 69.8605 | 31.037  | 16.6552 | 5.6442 | 3.1998  |
| 217 | BR   | A  | 88.5903 | 87.28   | 87.8127 | 88.0478 | 88.3937 | 87.8952 | 87.1968 | 85.6967 | 77.6741          | 75.4648 | 69.7974 | 31.1859 | 16.7845 | 5.5636 | 3.12341 |
| 217 | BG   | Α  | 82.0823 | 86.9921 | 87.2079 | 87.9416 | 88.5611 | 88.0658 | 87.4657 | 86.0966 | 78.6323          | 79.0692 | 70.357  | 31.4749 | 16.8339 | 5.727  | 3.2895  |
| 217 | BE   | Α  | 81.8854 | 86.5793 | 87.3629 | 87.4498 | 87.0869 | 86.9535 | 85.4742 | 82.6707 | 70.6342          | 67.4287 | 60.4323 | 21.7614 | 11.4243 | 3.7237 | 2.0923  |
| 217 | WE   | Α  | 83.0426 | 85,5033 | 85.5121 | 85.9064 | 86.1569 | 86.3234 | 84.675  | 82.1585 | 70.774           | 68.8773 | 60.7185 | 22.1058 | 11.4125 | 3.6723 | 2.028   |
| 217 | RE   | A  | 86.8948 | 85.1558 | 86.0248 | 86.241  | 85.9813 | 86.1492 | 84.515  | 81.9447 | 70.2016          | 68.2415 | 59.9427 | 21.493  | 11.0666 | 3.5443 | 1.9482  |
| 217 | GE   | Α  | 86.3978 | 85.1733 | 85.3717 | 85.7792 | 86.2403 | 86.2975 | 94.9387 | 82.578  | 71.4389          | 69.54   | 61.5165 | 22.6622 | 11.7226 | 3.7962 | 2.1096  |
| 218 | BW   | Α  | 88.0218 | 88.1295 | 88.8837 | 88.9956 | 88.569  | 89.0988 | 87.5537 | 86.018  | 77.6957          | 78.8161 | 69.3153 | 30.153  | 16.114  | 5.3521 | 3.0014  |
| 218 | BR   | Α  | 86.6199 | 88.6971 | 88.6931 | 88.7095 | 88.5044 | 88.731  | 87.4487 | 86.0098 | 77.4508          | 75.2136 | 69.6091 | 30.2017 | 16.2435 | 5.4206 | 3.0625  |
| 218 | WR   | Α  | 82.6621 | 87.4722 | 87.5534 | 88.1722 | 88.3083 | 88.3996 | 87.2525 | 85.3746 | 76.8299          | 75.1044 | 68.421  | 29.5545 | 15.6964 | 5.2241 | 2.9087  |
| 218 | BE   | Α  | 87.9495 | 86.1749 | 86.7262 | 86.9211 | 87.2832 | 87.1808 | 85.5681 | 83.0763 | 71.6044          | 69.6967 | 61.4443 | 22.2907 | 11.5032 | 3.7358 | 2.0832  |
| 218 | WE   | Α  | 85.8683 | 85.0992 | 86.0423 | 86.0987 | 85.6551 | 86.1966 | 83.8522 | 80.6457 | 68.4703          | 65.2584 | 57.4019 | 19.9823 | 10.2545 | 3.2109 | 1.7441  |
| 218 | RE   | Α  | 86.7812 | 85.9593 | 85.8266 | 86.1413 | 86.3784 | 86.4031 | 84.133  | 81.0616 | 69.0361          | 66.6761 | 58.3944 | 20.3844 | 10.7587 | 3.4605 | 1.872   |
| 203 | BW   | В  | 87.2956 | 87.074  | 87.0658 | 87.4636 | 87.6014 | 87.6145 | 87.2388 | 86.6693 | 81.0905          | 75.8664 | 73.7694 | 36.1221 | 20.1053 | 6.9974 | 4.187   |
| 203 | BR   | В  | 82.3055 | 84.2136 | 85.0168 | 85.726  | 85.9913 | 86.2764 | 87.2287 | 86.3815 | 79.6417          | 79.2275 | 73.5904 | 36.5129 | 20.3148 | 7.1712 | 4.2298  |
| 203 | BE   | в  | 86.864  | 86.2038 | 86.7956 | 86.9458 | 86.5471 | 87.5721 | 85.7526 | 83.7553 | 74.3519          | 66.1886 | 63.3463 | 24.37   | 12.4833 | 4.4609 | 2.8197  |
| 203 | WE   | В  | 84.2023 | 82.6389 | 84.947  | 83.5999 | 84.3418 | 83.5516 | 85.3993 | 83.1901 | 73.2556          | 82.7841 | 63.6519 | 24.1162 | 12.375  | 4.3188 | 2.6534  |
| 204 | BW   | В  | 83.3953 | 86.0162 | 86.8967 | 86.8015 | 87.2769 | 87.2106 | 86.7537 | 85.1957 | 76.6314          | 75.1769 | 68.4508 | 29.1294 | 15.4876 | 5.2172 | 3.0076  |
| 204 | BR   | В  | 83,9752 | 85.395  | 85,9069 | 86.5243 | 86.5428 | 86.5824 | 87.6666 | 86.5707 | 79.0353          | 90.5385 | 73.435  | 36.6095 | 20.3361 | 7.1153 | 4.1383  |
| 204 | BE   | В  | 90.096  | 87.0835 | 87.7438 | 87.0146 | 87.6816 | 88.0977 | 87.9341 | 87.2991 | 81.0043          | 82.1565 | 75.3246 | 36.9633 | 20.4234 | 7.2566 | 4.2632  |
| 204 | WE   | В  | 84.0328 | 82.7875 | 83.8093 | 83.9318 | 84.1669 | 84.5135 | 85.7329 | 84.6962 | 76.7883          | 75.232  | 68.7545 | 29.5302 | 15.7318 | 5.3013 | 3.038   |
| 205 | BW   | В  | 90.3902 | 89.6258 | 86.6411 | 86.7055 | 87.2525 | 86.3482 | 87.3677 | 86.4078 | 79.3304          | 86.1437 | 73.2816 | 35.4896 | 19.5738 | 6.9939 | 4.2234  |
| 205 | BR   | В  | 84.7611 | 85.0395 | 85.8779 | 85.984  | 86.4571 | 86.4914 | 87.041  | 86,4635 | 80.3579          | 79.041  | 73.7296 | 36.8153 | 20.5763 | 7.1974 | 4.228   |
| 205 | BE   | В  | 85.174  | 82.6342 | 83.3231 | 83.506  | 83.9181 | 83.9663 | 85.3775 | 84.4088 | 76.716           | 75.152  | 68.6476 | 29.3634 | 15.6415 | 5.2829 | 3.0322  |
| 205 | WE   | В  | 86.3755 | 85.6187 | 86.556  | 86.9105 | 86.828  | 86.9752 | 86.6452 | 85.1181 | 76.627           | 75.0964 | 68.4617 | 29.118  | 15.4988 | 5.2254 | 2.9941  |
| 206 | BW   | В  | 89.7124 | 86.4843 | 86.8845 | 86.7945 | 86.2612 | 85.8523 | 86.9498 | 86.3458 | 80.8866          | 72.6365 | 73.3464 | 35.7141 | 19.6695 | 6.9607 | 4.1199  |
| 206 | BR   | в  | 85.029  | 84.0246 | 84.1718 | 84.5721 | 84.8465 | 84.8516 | 86.2738 | 85.8874 | 79.5281          | 77.687  | 73.1806 | 35.754  | 19.831  | 6.9897 | 4.1475  |
| 206 | BE   | В  | 85.6986 | 85.8007 | 86.8826 | 87.1022 | 87.0951 | 87.1202 | 85.9318 | 83.837  | 70.5619          | 68.6839 | 58.0591 | 18.6313 | 9.4843  | 3.1159 | 1.7544  |
| 206 | WE   | в  | 84.604  | 81.7341 | 82.9415 | 83.2793 | 83.3915 | 84.9568 | 84.5293 | 82.8608 | 71.3668          | 62.0683 | 61.9816 | 22.9285 | 11.8684 | 4.22   | 2.4687  |
| 212 | BW   | С  | 89.1527 | 86.8447 | 88.9628 | 86.5639 | 86.669  | 86.8169 | 86.2197 | 85.8186 | 80.0388          | 77.4961 | 73.2459 | 36.1299 | 20.0102 | 7.0198 | 4.2616  |
| 212 | BR   | С  | 88.4167 | 86.3581 | 86.0189 | 85.8369 | 85.5713 | 85.839  | 85.8308 | 85.1473 | 79.48 <b>7</b> 4 | 79.2994 | 73.4491 | 36.6101 | 20.4262 | 7.161  | 4.2142  |
| 212 | BE   | С  | 78.8033 | 85.2919 | 85.9791 | 85.8757 | 86.023  | 86.0169 | 85.5038 | 83.416  | 72.6375          | 71.1944 | 63.3241 | 23.9512 | 12.5357 | 4.3271 | 2.5539  |
| 212 | WE   | С  | 82.2409 | 82.6702 | 82.7644 | 83.0123 | 82.7467 | 82.9563 | 83.4883 | 82.7781 | 76.0492          | 74.6262 | 68.2418 | 29.2623 | 15.5782 | 5.2419 | 2.9988  |
| 213 | BW   | С  | 84.2157 | 86.6955 | 86.8218 | 86.5494 | 86.4903 | 86.5259 | 86.3643 | 85.6306 | 80.074           | 78.1916 | 73.1229 | 35.979  | 19.9646 | 7.0443 | 4.1839  |
| 213 | BR   | С  | 90.2851 | 86.2289 | 85.9079 | 85.5156 | 85.0909 | 85.2756 | 85.5451 | 85.0932 | 79.3367          | 79.558  | 73.2876 | 36.6358 | 20.5114 | 7.5497 | 4.8096  |
| 213 | BE   | С  | 82.5017 | 85.6538 | 86.3694 | 86.1988 | 85.6738 | 86.3934 | 84.7623 | 83.0403 | 72.0082          | 61.761  | 61.4638 | 22.2679 | 11.8875 | 4.0242 | 2.3199  |
| 213 | WE · | С  | 81.0404 | 82.3216 | 82.9908 | 83.0347 | 82.6383 | 82.8574 | 83.6042 | 81.396  | 70.994           | 63.3721 | 61.9604 | 23.0424 | 12.1016 | 4.1572 | 2.4702  |
| 214 | BW   | С  | 86.4325 | 87.3917 | 87.4797 | 87.4174 | 87.189  | 86.9347 | 87.4348 | 86.356  | 80.5611          | 72.9086 | 73.07   | 36.5901 | 20.9253 | 7.5647 | 4.4595  |

### Table G.2 AC impedance measurements for specimens in test sequence 2 (phase angle at various frequencies of applied test voltage)

|     |       |          |         |                 |         |                 | -       | FRE     | QUEN    | ICY (   | Hert    | z )     |                   |         |         |        |         |
|-----|-------|----------|---------|-----------------|---------|-----------------|---------|---------|---------|---------|---------|---------|-------------------|---------|---------|--------|---------|
| CBL | Cnd   | СМ       | 0.1     | 0.3             | 0.5     | 0.7             | 0.9     | 1       | 5       | 10      | 50      | 60      | 100               | 500     | 1000    | 3000   | 5000    |
| 21  | 4 BR  | ===<br>C | 92.0598 | 86.5522         | 86.7566 | 86. <b>7</b> 11 | 86.7849 | 86,5246 | 87.1332 | 86.2628 | 79.9452 | 76.722  | 73.2616           | 35.795  | 19.8729 | 7.159  | 4.4343  |
| 21  | 4 BE  | c        | 84.2778 | 86.5356         | 86.685  | 87.6579         | 87.42   | 87.4698 | 86.7377 | 85.071  | 76.1334 | 74.6627 | 67.6475           | 28.0616 | 14.8588 | 5.0299 | 2.9023  |
| 21  | 4 WE  | Ċ        | 81.5378 | 83.3964         | 83.6247 | 84.0795         | 84.5697 | 84.8454 | 85.7762 | 84.6379 | 76.5411 | 75.0465 | 68.3483           | 28.9336 | 15.3868 | 5.2387 | 3.0518  |
| 21  | 5 BW  | с        | 83.8493 | 86.1874         | 86.5991 | 86.1433         | 86.6512 | 86.406  | 86.7321 | 86.0989 | 80.1076 | 79.2881 | 74.0077           | 37.3159 | 20.7704 | 7.1461 | 4.1237  |
| 21  | 5 BR  | С        | 85.6177 | 84.9684         | 85.2597 | 85.1737         | 84.8596 | 85.1329 | 85.7317 | 85.3597 | 80.0742 | 79.411  | 74.2573           | 38.2022 | 21.3703 | 7.3513 | 4.2211  |
| 21  | 5 BE  | с        | 84.2886 | 85.3761         | 86.0821 | 86.6131         | 86.4483 | 86.7036 | 86.3933 | 84.8368 | 76.2033 | 74.5742 | 67.654            | 28.1028 | 14.841  | 4.9441 | 2.0834  |
| 21  | 5 WE  | с        | 78.2709 | 81.9759         | 82.6178 | 82.6088         | 83.1391 | 83.193  | 84.1682 | 83.4679 | 76.1294 | 74.317  | 67.9465           | 28.6521 | 15.2161 | 5.0897 | 2.8994  |
| 21  | 6 BW  | С        | 84.9423 | 86.713          | 86.323  | 86.9732         | 87.2906 | 87.2434 | 87.361  | 86.5183 | 80.0804 | 78.7353 | 73.7625           | 36.7535 | 20.3538 | 7.0208 | 4.0652  |
| 21  | 6 BR  | с        | 85.6701 | 87.4698         | 86.6221 | 86.4153         | 86.7684 | 86.5944 | 86.406  | 85.8247 | 79.8695 | 79.0564 | 73.7204           | 36.7849 | 20.3781 | 7.0571 | 4.0937  |
| 21  | 6 BE  | с        | 87.1058 | 86.509          | 86.4766 | 86.8114         | 87.2968 | 87.3401 | 86.5582 | 84.8239 | 75.5158 | 73.8384 | 66.8638           | 27.0685 | 14.2585 | 4.755  | 2.7073  |
| 21  | 6 WE  | С        | 81.9329 | 83.4332         | 84.1869 | 84.5407         | 84.5358 | 84.7458 | 85.6854 | 84.4808 | 75.9056 | 67.5198 | 27.9272           | 14.779  | 4.9566  | 2.8491 | -       |
| 20  | 3 BW  | D        | 87.833  | 86.6911         | 86.8229 | 86.9556         | 86.6232 | 86.7925 | 87.4724 | 86.4125 | 79.8978 | 76.7275 | 73.1035           | 35.8081 | 19.9794 | 7.3465 | 4.6194  |
| 20  | 3 BR  | D        | 85.7573 | 84.0423         | 83.8708 | 84.1856         | 84.8736 | 84.8924 | 86.1796 | 85.3867 | 79.431  | 77.8986 | 72.8882           | 36.0841 | 20.2361 | 7.4697 | 4.7465  |
| 20  | 3 BG  | D        | 90.7942 | 86.3208         | 86.0413 | 85.8832         | 86.34   | 86.2618 | 86.8019 | 86.0886 | 79.6683 | 78.4638 | 72.9421           | 35.8228 | 20.0501 | 7.3928 | 4.6923  |
| 20  | 3 BE  | D        | 85.9061 | 85.0546         | 86.9622 | 86.3098         | 86.1884 | 86.3278 | 85.4195 | 83.1301 | 71.7103 | 71,3123 | 62.2049           | 22.943  | 12.3008 | 4.614  | 3.0149  |
| 20  | 3 WE  | D        | 79.17   | 82.2769         | 82.496  | 82.8557         | 82.9986 | 83.2931 | 84.0726 | 82.3415 | 72.3894 | 70.3467 | 61.9019           | 23.1011 | 12.4211 | 4.6839 | 3.0592  |
| .20 | 3 RE  | D        | 78.4899 | 81.5654         | 81.5432 | 82.0666         | 82.7034 | 82.9169 | 83.7882 | 81.9701 | 71.0243 | 68.0214 | 60.9677           | 22.203  | 11.8533 | 4.4366 | 2.9476  |
| -20 | 3 GE  | D        | 84.6761 | 82.2389         | 83.1589 | 83.4882         | 83.2336 | 83,5575 | 84.0706 | 82.2878 | 71.7066 | 69.5318 | 61.8776           | 22.9355 | 12.2977 | 4.6837 | 3.1593  |
| 20  | 4 BW  | D        | 82.005  | 86.39 <b>77</b> | 85.4007 | 86.1223         | 85.8145 | 85.8859 | 87.0886 | 86.2485 | 79.7233 | 78.5992 | 73.1066           | 35.7146 | 19.8251 | 7.094  | 4.3363  |
| 20  | 4 BE  | D        | 83.0536 | 84.7972         | 85.3358 | 85.6153         | 86.0919 | 85.6878 | 85.98   | 83.4667 | 72.5705 | 71.4056 | 62.8746           | 23.512  | 12.3996 | 4.3984 | 2.7467  |
| 20  | 4 WE  | D        | 86.0943 | 82.2416         | 82.9516 | 82.9182         | 83.3891 | 83.2249 | 84.2312 | 82.6601 | 72.7744 | 70.6094 | 63.0279           | 23.6255 | 12.4758 | 4.4389 | 2.7818  |
| 20  | 5 BW  | D        | 87.4931 | 85,677          | 85.8304 | 86.2457         | 85.6779 | 86.4126 | 86.6871 | 85.853  | 79.5412 | 78.4654 | 72.9846           | 35.5646 | 19.7434 | 7.0721 | 4.3524  |
| 20  | 5 BR  | D        | 84.7818 | 83.1794         | 83.5546 | 84.1745         | 84.2688 | 84.4171 | 86.0579 | 85.574  | 79.6574 | 78.2463 | 72.8863           | 36.1577 | 20.18   | 7.2285 | 4.4379  |
| 20  | 5 BG  | D        | 85.3554 | 86.1942         | 85.2903 | 85.6189         | 85.7994 | 85.8946 | 86.5802 | 85.878  | 79.7119 | 78.4022 | 72.993            | 35.7175 | 19.8774 | 7.1303 | 4.3985  |
| 20  | 5 BE  | D        | 86.4233 | 84.5644         | 85.3217 | 85.7823         | 86.0261 | 86.1802 | 85.5044 | 83.311  | 72.6169 | 71.5175 | 62.8028           | 23.4432 | 12.3091 | 4.4101 | 2.1913  |
| 20  | 95 WE | D        | 79.3296 | 82.1092         | 83.0738 | 83.308          | 83.1982 | 83.5445 | 84.2472 | 82.6555 | 72.4259 | 70.6810 | 62.8510           | 23.4499 | 12.3728 | 4.4308 | 2.7902  |
| 20  | 15 RE | D        | 78.3384 | 81.3259         | 81.3475 | 81.3713         | 82.655  | 83,4233 | 84.0424 | 82.4100 | 72.1095 | 70.3798 | 02.3378           | 23.047  | 12.1415 | 4.3119 | 2.7127  |
| 20  | 5 GE  | D        | 78,1966 | 82.247          | 82.7804 | 82.9001         | 83.3903 | 83.4997 | 84.1937 | 82.4420 | 72.8283 | 71.1118 | 72 0055           | 25.0178 | 10.7969 | 4.4704 | 4 2729  |
| 20  | 6 BW  | D        | 79.8772 | 84.0807         | 85.6436 | 86.0349         | 85.8976 | 84.9245 | 86.3676 | 85.9338 | 79.6242 | /8.3/30 | /3.0033           | 33.0303 | 19.7000 | 1.1005 | 4.3720  |
| 20  | )6 BE | D        | 79.7926 | 86.1402         | 85.0873 | 85.1923         | 86.1099 | 86.833  | 85.4981 | 83.3762 | 72.1923 | 08.0908 | 02.7103           | 23.3022 | 12.3739 | 4,4403 | 2.013   |
| 20  | )6 WE | D        | 78.7119 | 80.7469         | 82.243  | 82.969          | 83.2291 | 80.8726 | 84.093  | 82.5581 | 72.8041 | 70.3331 | 02.0342           | 25.4057 | 12.4204 | 4.4424 | 4 62 12 |
| 21  | 2 BW  | Ε        | 86.4937 | 85.3266         | 84.9614 | 85.2082         | 85.0984 | 84.9208 | 84.9805 | 84.4681 | 78.8817 | 77.1041 | 72.3018           | 33.4310 | 19.8007 | 1.2033 | 4.0312  |
| 21  | 2 BE  | Е        | 79.578  | 83.4892         | 84.1103 | 81.7759         | 84.1616 | 84.2676 | 84.3366 | 82.3428 | 71.8062 | 70.0081 | 62.0139           | 23.0338 | 12.2323 | 4.0208 | 2.0192  |
| 21  | 2 WE  | E        | 84.8803 | 82.4043         | 82.6155 | 82.2708         | 81.8782 | 81.9213 | 81.4481 | 80.2713 | /1.10/  | 70.2675 | 01.9777           | 25.2015 | 12.3398 | 4.3772 | 3.0183  |
| 21  | 3 BW  | Ε        | 88.1921 | 85.2604         | 84.73   | 84.8705         | 85.2318 | 84.9822 | 84.8069 | 84.3133 | 78.9424 | 60 4586 | 61 072            | 33.3814 | 19.8301 | 1.2009 | 4.2011  |
| 21  | 13 BE | E        | 78.2085 | 83.5307         | 83.652  | 84.0328         | 84.4647 | 84.2216 | 84.1443 | 82.3389 | 71.7487 | 09.4380 | 01.973<br>61.6507 | 22.9708 | 12.1010 | 4.3033 | 2.9232  |
| 21  | 13 WE | E        | 79.8531 | 82.1975         | 71.6621 | 81.5472         | 81.8292 | 81,6365 | 81.4046 | 80.1362 | 71.2093 | 77 2000 | 70 2409           | 22.7477 | 14.1709 | 4.3030 | 4.73/3  |
| 21  | 14 BW | E        | 85.8589 | 88.5702         | 85.6013 | 85.3672         | 85.1351 | 85.3947 | 84.6069 | 83.7981 | /8.49/2 | 11.3989 | 12.3488           | 33.2398 | 13.0000 | 7.0003 | 4.3763  |

.

## Table G.2 AC impedance measurements for specimens in test sequence 2 (phase angle at various frequencies of applied test voltage)

|     |     |     |         |         |         |         |         | FRE     | QUEI    | NСҮ (   | Hert    | z )     |         |         |         |        |        |
|-----|-----|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| CBL | Cnd | CM  | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000   | 5000   |
| 214 | BR  | E   | 83.4361 | 85.4618 | 85.4498 | 85.2869 | 85.083  | 85.1481 | 84.1883 | 83.2003 | 78.1026 | 77.0358 | 72.0476 | 35.1959 | 19.566  | 7.0624 | 4.3962 |
| 214 | WR  | Е   | 85.1517 | 86.7254 | 86.6294 | 86.1257 | 85.4429 | 85.1503 | 82.7985 | 81.8004 | 77.5888 | 76.9193 | 71.7125 | 35.1969 | 19.5741 | 7.0846 | 4.4256 |
| 214 | BE  | Е   | 86.947  | 81.6821 | 82.2962 | 82.2626 | 82.8208 | 82.9402 | 83.5125 | 81.9168 | 71.6609 | 70.3331 | 61.9127 | 22.7995 | 11.9989 | 4.3473 | 2.7956 |
| 214 | WE  | Е   | 78.0932 | 83.9211 | 83.3992 | 82.9016 | 82.4339 | 82.3984 | 81.0535 | 79.6341 | 71.2801 | 69.6378 | 61.9607 | 23.1718 | 12.252  | 4.4641 | 2.8887 |
| 214 | RE  | Е   | 82.4727 | 84.149  | 83.6496 | 82.4372 | 82.3639 | 82.2478 | 80.3634 | 78.5424 | 79.5406 | 68.996  | 61.4931 | 23.0167 | 12.1726 | 4.4368 | 2.8762 |
| 215 | BW  | Е   | 87.9858 | 86.9035 | 87.0077 | 86.7801 | 86.9656 | 87.1176 | 86.6909 | 85.9194 | 79.8992 | 78.4234 | 73.5974 | 36.8154 | 20.6087 | 7.3897 | 4.545  |
| 215 | BR  | Ε   | 87.7942 | 84.5985 | 84.4881 | 84.6538 | 85.0472 | 85.1544 | 85.9345 | 85.3781 | 79.9954 | 78.7865 | 73.8363 | 37.5058 | 21.1117 | 7.6018 | 4.6801 |
| 215 | BG  | Ε   | 82.7446 | 87.3102 | 87.0225 | 86.7751 | 86.9337 | 86.832  | 86.1132 | 85.4083 | 79.7624 | 78.1661 | 73.5946 | 36.9505 | 20.7107 | 7.4373 | 4.5805 |
| 215 | BE  | Ε   | 78.8632 | 84.058  | 84.6991 | 85.1409 | 85.0022 | 85.1839 | 85.34   | 83.7719 | 74.8164 | 73.0037 | 65.9234 | 26.5924 | 14.1889 | 5.0726 | 3.1859 |
| 215 | WE  | Ε   | 81.9266 | 82.1585 | 82.1365 | 82.1365 | 81.9512 | 81.9603 | 82.5322 | 81.8518 | 74.4785 | 72.9657 | 66.0729 | 27.0166 | 14.4644 | 5.1993 | 3.2759 |
| 215 | RE  | Ε   | 83.3364 | 82.4036 | 81.7809 | 81.7997 | 81.489  | 81.3808 | 81.2612 | 80.6864 | 73.714  | 72.2713 | 65.245  | 26.3426 | 14.0645 | 5.0182 | 3.1474 |
| 215 | GE  | Ε   | 86.6967 | 82.6404 | 82.6221 | 82.2273 | 82.4546 | 82.4585 | 82.6915 | 81.9158 | 74.5913 | 73.4335 | 66.2525 | 27.2511 | 14.6037 | 5.2658 | 3.3217 |
| 216 | BW  | E   | 93.3514 | 87.1978 | 86.8234 | 86.291  | 86.5466 | 86.1676 | 85.0985 | 84.2461 | 79.0839 | 77.7773 | 72.8909 | 36.0811 | 20.1357 | 7.2669 | 4.5087 |
| 216 | BR  | Ε   | 83.8323 | 86.1874 | 86.4468 | 85.8947 | 86.3547 | 86.2579 | 85.9559 | 84.9739 | 79.3285 | 78.2913 | 73.188  | 36.3425 | 20.317  | 7.3159 | 4.5125 |
| 216 | WR  | Ε   | 85.0716 | 87.6906 | 86.8152 | 86.9348 | 86.3477 | 86.2178 | 84.5111 | 83.5114 | 78.8605 | 77.9052 | 72.9549 | 36.4255 | 20.3906 | 7.3625 | 4.5521 |
| 216 | BE  | E   | 83.9696 | 81.9863 | 81.6618 | 82.0761 | 82.5669 | 82.8933 | 83.9139 | 82.764  | 73.9931 | 72.1615 | 64.953  | 25.6602 | 13.673  | 4.9305 | 3.1309 |
| 216 | WE  | E · | 85.2265 | 83.6476 | 82,575  | 82.9218 | 82.4087 | 82.4757 | 81.746  | 80.8208 | 73.7047 | 72.1389 | 65.2444 | 26.3234 | 14.0932 | 5.1149 | 3.2693 |
| 216 | RE  | Е   | 89.3048 | 84.242  | 83.309  | 82.808  | 82.6116 | 82.5276 | 80.6589 | 79.1097 | 72.5485 | 71.0818 | 64.541  | 26.1387 | 13.9633 | 5.0225 | 3.165  |
| 201 | BW  | F   | 87.5785 | 84.8154 | 86.0244 | 86.7631 | 86.4758 | 86.6763 | 86.8366 | 85.5591 | 78.1846 | 76.9675 | 71.1963 | 33.3938 | 18.2807 | 6.3611 | 3.7969 |
| 201 | BR  | F   | 80.6522 | 84.6561 | 85.1535 | 85,965  | 86.2775 | 86.5651 | 86.5832 | 85.2514 | 78.0071 | 76.57   | 71.0274 | 33.5911 | 18.4465 | 6.4037 | 3.7914 |
| 201 | BE  | F   | 78.3984 | 83.3009 | 84.9066 | 85.465  | 85.5469 | 85.8096 | 85.0857 | 82.7538 | 71.3777 | 69.3544 | 61.2359 | 22.1704 | 11.4816 | 3.9162 | 2.354  |
| 201 | WE  | F   | 81.269  | 84.8543 | 84.9422 | 85.4903 | 85.9243 | 85.839  | 84.3747 | 81.7765 | 69.9678 | 67.6839 | 59.6525 | 21.1807 | 10.8707 | 3.5723 | 2.0819 |
| 202 | BW  | F   | 87.3582 | 85.5839 | 86.572  | 86.646  | 86.7985 | 87.083  | 86.8754 | 85.5081 | 77.7628 | 76.3178 | 70.4349 | 32.2222 | 17.5925 | 6.2588 | 3.839  |
| 202 | BR  | F   | 84.3125 | 85.1925 | 85.2932 | 86.0218 | 86.459  | 86.5594 | 86.7514 | 85.5618 | 78.081  | 76.646  | 70.9187 | 32.7882 | 17.8952 | 6.3094 | 3.8478 |
| 202 | BE  | F   | 79.3374 | 83.0141 | 83.758  | 84.4913 | 85.225  | 85.3156 | 84.7695 | 82.3631 | 67.8194 | 65.1436 | 54.4553 | 16.4925 | 8.2361  | 2.5184 | 1.3081 |
| 202 | WE  | F   | 86.7349 | 84.8356 | 85.4964 | 85.1261 | 85.4079 | 85.5798 | 83.8908 | 81.0515 | 65.8468 | 63.1536 | 52.2912 | 15.2978 | 7.4382  | 1.9952 | 0.8524 |
| 203 | BW  | F   | 82.2563 | 85.1407 | 85.5151 | 85.8735 | 85.5413 | 85.5387 | 84.4767 | 83.2979 | 77.5809 | 76.5557 | 71.5898 | 35.1782 | 19.5318 | 7.0306 | 4.3602 |
| 203 | BR  | F   | 84.8516 | 84.4884 | 84.7185 | 84.7939 | 84.7257 | 84.5292 | 82.946  | 81.8191 | 76.6038 | 75.7073 | 70.8251 | 35.5445 | 19.8528 | 7.2108 | 4.5175 |
| 203 | BE  | F   | 81.4966 | 83.1617 | 83.9864 | 83.3706 | 83.839  | 83.7847 | 82.7522 | 81.135  | 71.4444 | 69.8641 | 61.9103 | 23.0049 | 12.0974 | 4.3756 | 2.8268 |
| 203 | WE  | F   | 88.7421 | 84.2596 | 83.757  | 83.3448 | 83.1751 | 82.8409 | 80.0664 | 78.0617 | 69.209  | 67.4417 | 60.3875 | 22.7271 | 11.9373 | 4.3115 | 2.7616 |
| 204 | BW  | F   | 88.5147 | 85.0557 | 85.1098 | 85.5995 | 85.6113 | 85.5082 | 84.4472 | 83.2113 | 77.254  | 76.2298 | 71.3098 | 35.0344 | 19.4461 | 6.9646 | 4.29   |
| 204 | BR  | F   | 89.0588 | 84.4468 | 84.7599 | 84.7682 | 84.3807 | 84.4585 | 82.5703 | 81.3754 | 76.2068 | 75.0033 | 70.6498 | 35.5358 | 19.8666 | 7.1856 | 4.4821 |
| 204 | BE  | F   | 81.8459 | 82.9352 | 83.1593 | 83.3184 | 83.5112 | 83.6678 | 82.508  | 80.9146 | 71.5992 | 69.6838 | 62.1006 | 23.2299 | 12.188  | 4.358  | 2.7655 |
| 204 | WE  | F   | 86.2311 | 84.5574 | 83.7237 | 83.2589 | 83.2792 | 83.0661 | 79.8799 | 77.9012 | 69.0943 | 67.3378 | 60.4435 | 22.936  | 12.0636 | 4.2917 | 2.7178 |
| 205 | BW  | F   | 81.8713 | 85.4216 | 85.5214 | 85,7449 | 85.7319 | 85.8481 | 84.4884 | 83.2434 | 77.1944 | 76.1151 | 71.2309 | 35.0513 | 19.4478 | 6.9698 | 4.3009 |
| 205 | BR  | F   | 87.8233 | 84.7276 | 85.2099 | 84.4348 | 84.5856 | 84.4759 | 82.5798 | 81.3677 | 76.1914 | 75.0364 | 70.4656 | 35.5854 | 19.9425 | 7.2116 | 4.4378 |
| 205 | BE  | F   | 79.5039 | 83.163  | 83.4558 | 83.5924 | 83.5795 | 83.6563 | 82.2339 | 80.609  | 71.4464 | 69.6885 | 62.071  | 23.2615 | 12.219  | 4.383  | 2.796  |
| 205 | WE  | F   | 88.9496 | 84.9371 | 84.5259 | 83.7294 | 83.4213 | 83.0593 | 79.6816 | 77.6112 | 68.7493 | 67.2505 | 60.2359 | 22.8923 | 12.0203 | 4.292  | 2.7188 |

# Table G.2 AC impedance measurements for specimens in test sequence 2 (phase angle at various frequencies of applied test voltage)

.

| CBL         | Cnd        | СМ      | 0.1                  | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5                 | 10      | 50      | 60      | 100     | 500     | 1000    | 3000   | 5000   |
|-------------|------------|---------|----------------------|---------|---------|---------|---------|---------|-------------------|---------|---------|---------|---------|---------|---------|--------|--------|
| ====<br>206 | ====<br>BW | ==<br>F | ======= =<br>81.8982 | 85.3907 | 85.7263 | 86.0449 | 85.8302 | 85.7421 | · =====<br>84.446 | 83.2204 | 77.2141 | 76.3221 | 71.2916 | 35.0671 | 19.4588 | 6.9456 | 4.2492 |
| 206         | BR         | F       | 83.2713              | 84.8085 | 84.8498 | 84.5245 | 84.7785 | 84.6817 | 82.7129           | 81.3992 | 75.9656 | 75.2076 | 70.2566 | 35.1909 | 19.638  | 7.0415 | 4.3073 |
| 206         | BE         | F       | 83.2115              | 83.3164 | 84.0166 | 83.6849 | 83.7169 | 83.7814 | 82.35             | 80.7116 | 71.5319 | 69.7405 | 62.1921 | 23.3023 | 12.2293 | 4.3494 | 2.7282 |
| 206         | WE         | F       | 84,9808              | 84.8453 | 84.3234 | 83.816  | 83.0968 | 82.8108 | 79.6351           | 77.5688 | 68.8304 | 67.3838 | 60.2686 | 22.8916 | 12.0245 | 4.2785 | 2.7    |
| 207         | BW         | F       | 86.6512              | 85.4255 | 86.4553 | 86.475  | 87.0271 | 87.0356 | 86.7559           | 85.3916 | 77.7092 | 76,4719 | 70.5225 | 32.5107 | 17.8361 | 6.4347 | 4.0171 |
| 207         | BR         | F       | 81.5076              | 82.9345 | 84.4248 | 84.9562 | 85.4199 | 85,4907 | 86.101            | 84.9842 | 77.7458 | 76.2369 | 70.7283 | 33.0474 | 18.0238 | 6.2551 | 3.7707 |
| 207         | BE         | F       | 85,1951              | 83.9366 | 84.697  | 85.7146 | 85.8695 | 86.0973 | 84.807            | 82.1871 | 70.003  | 67.933  | 59.4984 | 21.0317 | 11.0127 | 4.0063 | 2.6017 |
| 207         | WE         | F       | 80.0893              | 84.5794 | 84.8233 | 85.1742 | 85.5569 | 85.7448 | 84.0087           | 81.2521 | 68.6723 | 66.5922 | 58.0058 | 20.0822 | 10.3864 | 3.617  | 2.2688 |
| 208         | BW         | F       | 87.6075              | 85.7323 | 86.1575 | 86.8442 | 87.2616 | 87.2654 | 86.8995           | 85.5647 | 77.9049 | 76.339  | 70.6683 | 32.7486 | 18.0289 | 6.4472 | 3.9176 |
| 208         | BR         | F       | 82.9868              | 84,5004 | 85.6158 | 85.7754 | 86.2086 | 86.1902 | 86.3499           | 85.1363 | 77.7373 | 76.1921 | 70.6239 | 32.8683 | 17.9689 | 6.2848 | 3.7899 |
| 208         | B BE       | F       | 78.3017              | 84.1571 | 85.6005 | 85.8438 | 85.9452 | 83.9172 | 84.6873           | 82.0227 | 69.7058 | 67.9587 | 59.2103 | 21.1401 | 11.1652 | 4.0093 | 2.4931 |
| 208         | WE         | F       | 81.0447              | 84.7693 | 84.9709 | 85.9757 | 85.8099 | 85.9222 | 84.0313           | 81.1198 | 68.5625 | 66.4407 | 57.9617 | 20.3999 | 10.6482 | 3.6728 | 2.2008 |
| 209         | BW         | F       | 86.9512              | 85.859  | 86.4126 | 86.7152 | 86.903  | 87.2327 | 86.7546           | 85.3707 | 77.6872 | 76.1642 | 70.4027 | 32.3568 | 17.7124 | 6.2952 | 3.8386 |
| 209         | BR         | F       | 85.9204              | 84.522  | 85.269  | 85.4173 | 86.0382 | 86.171  | 86.3386           | 85.1247 | 77.7191 | 76.4839 | 70.609  | 32.9041 | 18.0621 | 6.3425 | 3.7922 |
| 209         | BE         | F       | 79.718               | 84.2808 | 85.5571 | 85.5693 | 85.973  | 86.0119 | 84.6788           | 82.0145 | 69.7889 | 67.6879 | 59.2505 | 20.8848 | 10.9085 | 3.8676 | 2.4232 |
| 209         | WE         | F       | 82.7017              | 84.7618 | 85.5218 | 85.3934 | 85.849  | 85.7142 | 83.9617           | 81.1054 | 68.511  | 66.4272 | 57.8534 | 20.0179 | 10.3324 | 3.5079 | 2.1097 |
| 210         | ) BW       | F       | 90.1186              | 87.1389 | 87.5231 | 87.3026 | 87.7555 | 87.8279 | 87.2401           | 86.0427 | 79.4197 | 78.1716 | 72.7166 | 36.0655 | 20.0948 | 7.0474 | 4.1385 |
| 210         | ) BR       | F       | 87.9141              | 87.0657 | 87.6313 | 88.4683 | 88.3584 | 88.5843 | 87.7971           | 86.4288 | 79.6074 | 78.664  | 73.2776 | 37.1877 | 20.7289 | 7.079  | 4.0773 |
| 210         | ) BE       | F       | 84.6441              | 84.1849 | 84.9516 | 85.8297 | 85.9546 | 86.2271 | 85,3866           | 83.2677 | 72.9399 | 70.9423 | 63.3767 | 24.3063 | 12.8662 | 4.6079 | 2.9604 |
| 210         | ) WE       | F       | 81.1052              | 85.1912 | 85.3492 | 85.8998 | 86.1696 | 86.2887 | 84.8505           | 82.5948 | 71.7695 | 70.11   | 62.154  | 23.5141 | 12.3501 | 4.2686 | 2.6218 |
| 211         | BW         | F       | 85.4555              | 87.05   | 87.8522 | 87.8829 | 88.0828 | 88.2596 | 87.7251           | 86.5711 | 79.9341 | 78.7507 | 73.3376 | 36.2001 | 20.0407 | 6.7655 | 3.8129 |
| 211         | BR         | F       | 87.0665              | 85.4777 | 85.9467 | 86.9655 | 86.8649 | 86.9965 | 87.1168           | 86.109  | 79.7107 | 78.595  | 73.3978 | 37.561  | 21.1265 | 7.3746 | 4.3121 |
| 211         | BE         | F       | 84.0061              | 84.0725 | 85.6402 | 85.8573 | 86.1061 | 86.3972 | 85.6247           | 83.5518 | 73.4627 | 71.7454 | 64.2262 | 25.148  | 13.3325 | 4.7097 | 2.9069 |
| 211         | WE         | F       | 80.5967              | 85.0368 | 85.2826 | 85.6574 | 86.1879 | 86.1724 | 84.8816           | 82.5405 | 71.3425 | 69.4758 | 61.474  | 22.4101 | 11.339  | 3.3262 | 1.614  |
| 212         | 2 BW       | F       | 86.6089              | 85.4616 | 86.1996 | 85.7937 | 85.8759 | 85.6935 | 84.3348           | 82.954  | 77.0157 | 75.8109 | 71.1372 | 34.9818 | 19.5055 | 7.1876 | 4.5884 |
| 212         | 2 BR       | F       | 85.5499              | 85.0988 | 85.4232 | 85.0904 | 85.1083 | 84.939  | 83.1358           | 81.6827 | 75.8084 | 74.7012 | 69.9614 | 35.244  | 19.7574 | 7.2271 | 4.532  |
| 212         | 2 BE       | F       | 85.776               | 83.7493 | 84.3291 | 84.4276 | 83.5398 | 83.9709 | 82.4139           | 80.7042 | 71.0672 | 69.0708 | 61.4189 | 22.7936 | 12.0731 | 4.5658 | 3.0911 |
| 212         | 2 WE       | F       | 87.6719              | 85.0257 | 84.3729 | 83.9456 | 83.5191 | 83.3316 | 79.8718           | 77.4708 | 68.1908 | 66.7133 | 59.6055 | 22.4877 | 11.9294 | 4.5283 | 3.0702 |
| 213         | BW         | F       | 85.9514              | 85.2071 | 85.0351 | 85.2506 | 85.6139 | 85.5766 | 84.3177           | 82.916  | 76.5144 | 75.2251 | 70.5954 | 34.912  | 19.4487 | 7.0425 | 4.3987 |
| 213         | BR BR      | F       | 83.9075              | 85.1564 | 85.0999 | 84.9831 | 85.0865 | 84.9473 | 82.932            | 81.2784 | 74.7414 | 73.6238 | 68.6234 | 33.8268 | 18.6243 | 6.3244 | 3.6263 |
| 213         | B BE       | F       | 79.0559              | 83.5204 | 83.6224 | 83.7713 | 84.071  | 84.018  | 82.228            | 80,3563 | 70.9297 | 68.9149 | 61.3344 | 22.7365 | 11.9873 | 4.4128 | 2.8893 |
| 213         | 3 WE       | F       | 88.412               | 85.0085 | 84.4869 | 84.035  | 83.7124 | 83.3791 | 79.7822           | 77.3201 | 67.9205 | 66.2341 | 59.2282 | 22.2901 | 11.7396 | 4.2923 | 2.7932 |
| 214         | 4 BW       | F       | 87.277               | 86.9965 | 85.9354 | 85.4758 | 85.5083 | 85.4582 | 84.1613           | 83.2576 | 77.9878 | 76.8183 | 71.8237 | 34.9934 | 19.4967 | 7.2168 | 4.6011 |
| 214         | 4 BR       | F       | 86.152               | 85.8137 | 85.8298 | 85.4716 | 84.9364 | 84.7626 | 83.7901           | 82.6525 | 77.1569 | 75.8646 | 71,1384 | 34.5614 | 19.143  | 6.8859 | 4.2449 |
| 214         | 4 BE       | F       | 87.1116              | 86.6162 | 81.7348 | 81.7442 | 81.5497 | 81.6435 | 82.0638           | 80.7014 | 71.0077 | 69.1252 | 61.2331 | 22.5817 | 12.0098 | 4.5687 | 3.0794 |
| 214         | 4 WE       | F       | 88.5503              | 84,5932 | 83.6818 | 83.6304 | 82.9354 | 82.7259 | 80.4253           | 78.6423 | 70.2822 | 68.4577 | 61.0594 | 22.8648 | 12.1504 | 4.604  | 3.0897 |
| 21:         | 5 BW       | ·F      | 83.249               | 85.7436 | 85.6126 | 84.7916 | 85.0479 | 84.8977 | 84.0623           | 82.802  | 76.401  | 75.4541 | 70.6663 | 35.6335 | 19.8844 | 7.0505 | 4.2731 |
| 210         | 6 BW       | F       | 88.8172              | 85.9962 | 86.5381 | 85.8127 | 85.8979 | 85.745  | 82.9496           | 81.5717 | 76.7265 | 75.5289 | 71.1056 | 35.1891 | 19.5123 | 6.8914 | 4.1623 |

# Table G.2 AC impedance measurements for specimens in test sequence 2<br/>(phase angle at various frequencies of applied test voltage)FREQUENCY (Hertz)

| CBL   | Cnd   | СМ | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1         | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000   | 5000   |
|-------|-------|----|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| 20    | 1 BW  | G  | 82.5513 | 91.5952 | 85.8167 | 87.155  | 87.0885 | 87.2766   | 87.7468 | 86.6724 | 78.1077 | 76.3964 | 79.9659 | 33.0779 | 18.1172 | 6.3124 | 3.7465 |
| 20    | I BE  | G  | 84.2205 | 83.5304 | 89.9167 | 84.1772 | 84.8646 | 84.936    | 84.498  | 82.2298 | 70.8737 | 68.9803 | 60.5995 | 21.7508 | 11.2888 | 3.8317 | 2.2744 |
| 20    | I WE  | G  | 86.2023 | 85.0059 | 84.2587 | 84.6135 | 84.7146 | 84.6989   | 83.4614 | 81.0361 | 69.1556 | 66.8507 | 58.6465 | 20.533  | 10.6158 | 3.5858 | 2.1428 |
| 20    | 2 BW  | G  | 91.1508 | 86.0238 | 85.6436 | 85.7072 | 86.0925 | 86.0119   | 86.0165 | 84.8445 | 77.4891 | 76.2861 | 70.2548 | 32.1668 | 17.6024 | 6.2658 | 3.821  |
| 202   | 2 BE  | G  | 80.1615 | 84.9954 | 82.9994 | 84.7293 | 84.361  | 84.027    | 83.7864 | 81.3673 | 69.5831 | 68.432  | 59.4517 | 21.457  | 11.3781 | 4.1182 | 2.5845 |
| 202   | 2 WE  | G  | 82.8303 | 85.7576 | 85.1738 | 84.8248 | 85.0255 | 84.9264   | 82.7705 | 80.1452 | 67.9127 | 65.563  | 57.3844 | 20.2012 | 10.572  | 3.6165 | 2.1765 |
| 203   | 3 BW  | G  | 78.7361 | 85.9198 | 87.0348 | 85.9069 | 86.5716 | 86.1313   | 84.7407 | 83.4574 | 77.5356 | 76.3009 | 71.422  | 34.9325 | 19.5095 | 7.2243 | 4.5963 |
| 203   | 3 BE  | G  | 79.1726 | 84.3705 | 84.2035 | 85.0961 | 84.4467 | 84.4957   | 82.8224 | 80.939  | 70.5798 | 68.9081 | 60.6927 | 22.2562 | 11.8604 | 4.5596 | 3.086  |
| 203   | 3 WE  | G  | 83.9535 | 84.1764 | 84.1836 | 83.9999 | 83.8253 | 83.2864   | 80.0375 | 77,7378 | 68.1727 | 66.562  | 59.0696 | 21.862  | 11.6659 | 4.4629 | 3.006  |
| 204   | 4 BW  | G  | 80.9027 | 86.2342 | 87.0204 | 86.9974 | 86.6361 | 86.6589   | 85.1693 | 83.8439 | 77.5562 | 76.7965 | 71.5341 | 35.1545 | 19.6187 | 7.1659 | 4.4748 |
| 204   | 4 BE  | G  | 87.4965 | 84.3154 | 85.0234 | 84.7139 | 84.7205 | 84.5244   | 82.7211 | 80.8461 | 71.0724 | 69.5971 | 61.5513 | 22.9157 | 12.2015 | 4.5292 | 2.9487 |
| 204   | 4 WE  | G  | 84.0134 | 84.6012 | 84.8543 | 84.099  | 83.5527 | 83.3981   | 79.9748 | 77.7386 | 68.6423 | 66.6896 | 59.7751 | 22.5902 | 12.0091 | 4.4247 | 2.8635 |
| 20:   | 5 BW  | G  | 86.2683 | 85.489  | 86.4495 | 87.0507 | 85.5213 | 85.8486   | 84.8707 | 83,4008 | 77.2047 | 75.9873 | 71.1313 | 34.8683 | 19.3109 | 6.8086 | 4.0914 |
| 20:   | 5 BE  | G  | 83.9527 | 83.3444 | 83.8787 | 83.6502 | 83.4034 | 83.4841   | 81.9448 | 80,1771 | 71.1876 | 69.5589 | 61.977  | 23.3759 | 12.2945 | 4.2767 | 2.6108 |
| 200   | 6 BW  | G  | 88.6309 | 85.5353 | 86.4007 | 86.3875 | 86.118  | 86.055    | 84.9437 | 83.4608 | 76.7871 | 75.7639 | 70.8513 | 34.7506 | 19.2617 | 6.8139 | 4.1223 |
| 200   | 6 BE  | G  | 82.9276 | 83.3396 | 83.6481 | 83.4053 | 83.6746 | 83.6878   | 81.9076 | 80.1233 | 71.0711 | 69.6597 | 61.717  | 23.0912 | 12.0924 | 4.2495 | 2.6187 |
| 201   | 7 BW  | G  | 88.0377 | 86.0314 | 87.1548 | 87.5818 | 87.4975 | 87.4937   | 87.0241 | 85.5116 | 77.7444 | 76.6121 | 70.6295 | 32.5492 | 17.8056 | 6.2678 | 3.7922 |
| 200   | 7 BE  | G  | 86.2521 | 86.6752 | 86.4004 | 86.9726 | 86.1375 | 86.8342   | 86.1928 | 82.4412 | 70.1688 | 68.7032 | 59,5945 | 20.9731 | 10.91   | 3.7936 | 2.3339 |
| 201   | 7 WE  | G  | 82.0607 | 85.2645 | 85.7709 | 85.3342 | 85.8665 | 86.1653   | 84.283  | 81.4465 | 68.8518 | 66.7268 | 58.1004 | 20.0791 | 10.3058 | 3.4287 | 2.0286 |
| 208   | 8 BW  | G  | 81.8577 | 90.404  | 87.2314 | 87.636  | 87.5554 | 87.4959   | 86,7117 | 85.5977 | 77.8276 | 76.6272 | 79.6697 | 32.5953 | 17.8152 | 6.2184 | 3.7074 |
| 208   | 8 BE  | G  | 84.2524 | 86.8251 | 85.9567 | 86.5632 | 86.6499 | 86.7553   | 85.1605 | 82.5507 | 70.4317 | 68.4497 | 60.001  | 21.2793 | 11.0551 | 3.7925 | 2.286  |
| - 208 | 8 WE  | G  | 90.3696 | 85.2201 | 85.9663 | 86.1333 | 86.315  | 86.3092   | 84.3729 | 81.6253 | 69.2392 | 67.2523 | 58.7489 | 20.5399 | 10.5485 | 3.4756 | 2.0086 |
| 209   | 9 BW  | G  | 85,6772 | 87.1855 | 87.152  | 87.4381 | 87.3142 | 87.3101   | 86.8956 | 85.5273 | 77.7942 | 76.2529 | 70.5225 | 32.4035 | 17.6919 | 6.1939 | 3.7145 |
| 209   | ) BE  | G  | 80.8754 | 84.7798 | 85.5837 | 86.1583 | 86.3693 | 86.5961   | 85.0449 | 82.3947 | 70.243  | 68.2478 | 59.8071 | 21.0987 | 10.9687 | 3.7973 | 2.3138 |
| 209   | 9 WE  | G  | 80.7165 | 84.6635 | 85.378  | 85.5444 | 86.3618 | 85.6411   | 84.2343 | 81.4421 | 68.9568 | 67.1351 | 58.391  | 20.2068 | 10.3436 | 3.3743 | 1.9323 |
| 210   | ) BW  | G  | 83.3939 | 85.6952 | 86.4775 | 87.1391 | 87.4576 | 85.6204   | 87.4209 | 86.3133 | 79.7814 | 78.2374 | 73.2171 | 36.8238 | 20.6327 | 7.2884 | 4.3363 |
| 210   | ) BE  | G  | 80.16   | 85.4955 | 89.4734 | 86.4249 | 86.4946 | 86.8579   | 85.7752 | 83.6537 | 73.1323 | 72.0862 | 63.7848 | 24.5202 | 12.8935 | 4.4223 | 2.6381 |
| 210   | ) WE  | G  | 83.0445 | 85.2731 | 85.7238 | 86.1253 | 86.3407 | 86.5408   | 85.1058 | 82.8726 | 71.9914 | 70.1495 | 62.4507 | 23.5664 | 12.2524 | 4.022  | 2.2883 |
| 21    | I BW  | G  | 87.5242 | 84.4342 | 87.2067 | 87.6218 | 88.1277 | 88.1119   | 87.9857 | 86.8272 | 80.242  | 79.1652 | 73.7675 | 37.34   | 21.007  | 7.4687 | 4.4777 |
| 211   | I BE  | G  | 85,9417 | 84.6086 | 85.6483 | 86.3178 | 86.851  | 86.7524   | 85.7466 | 83.6908 | 73.316  | 72.3208 | 64.1411 | 25.0171 | 13.259  | 4.5994 | 2.763  |
| 211   | I WE  | G  | 87.714  | 85.1811 | 85.8021 | 85.8528 | 86.328  | 86.2607 . | 85.1438 | 82.984  | 72.4551 | 70.7118 | 63.167  | 24.4395 | 12.8199 | 4.2648 | 2.4513 |
| 212   | 2 BW  | G  | 82.0544 | 85.9422 | 86.6676 | 86.5945 | 86.4703 | 86.546    | 85.0111 | 83.405  | 77.0915 | 76.1369 | 71.2112 | 35.114  | 19.5642 | 7.0657 | 4.3953 |
| 212   | 2 BE  | G  | 79.808  | 84.5447 | 85.1464 | 85.1012 | 84.7046 | 84.5832   | 82.5294 | 80.7386 | 71.1647 | 69.3413 | 61.549  | 22.8299 | 12.0621 | 4.3789 | 2.8033 |
| 212   | 2 WE  | G  | 79.9205 | 84.9816 | 84.8393 | 84.1285 | 83.7083 | 83.4812   | 80.024  | 77.5844 | 68.2004 | 67.0148 | 59.5626 | 22.4427 | 11.8478 | 4.281  | 2.7153 |
| 213   | B BW  | G  | 87.8478 | 85.8467 | 86.3271 | 85.9662 | 85.9769 | 86.155    | 84.7362 | 83.3468 | 76.8747 | 75.5659 | 70.9325 | 34.9366 | 19.4975 | 7.0918 | 4.389  |
| 213   | B BE  | G  | 86.5932 | 83.2282 | 84.301  | 84.1323 | 83.9669 | 83.9319   | 81.9089 | 79.8531 | 70.4126 | 68.4164 | 60.8268 | 22.6517 | 12.0294 | 4.4713 | 2.8849 |
| 213   | B WE  | G  | 84.1865 | 85.2625 | 85.1288 | 85.0074 | 82.7754 | 83.987    | 80.0963 | 76.9031 | 67.1418 | 66.0154 | 58.6663 | 22.0138 | 11.6797 | 4.2283 | 2.6841 |
| 214   | \$ BW | G  | 87.0679 | 86.5227 | 85.788  | 84.8465 | 84.8048 | 84.8296   | 83.6994 | 82.922  | 77.7383 | 76.2356 | 71.4871 | 34.609  | 19.134  | 6.7641 | 4.0939 |

.

# Table G.2 AC impedance measurements for specimens in test sequence 2<br/>(phase angle at various frequencies of applied test voltage)F R E O U E N C Y(H e f t z )

| CBL | Cnd  | СМ    | 0.1     | 0.3                                    | 0.5                                    | 0.7     | 0.9     | гкс<br>1 | Q U E 1<br>5 | 10      | 50 Hert | 2)<br>60 | 100     | 500     | 1000    | 3000   | 5000             |
|-----|------|-------|---------|----------------------------------------|----------------------------------------|---------|---------|----------|--------------|---------|---------|----------|---------|---------|---------|--------|------------------|
| 214 |      | <br>G | 80.2315 | ====================================== | ====================================== | 82.3057 | 81.9715 | 82.0078  | 81.4741      | 80.0693 | 71.0158 | 69.0904  | 61.4437 | 22.6786 | 11.8746 | 4.1754 | =======<br>2.578 |
| 214 | 4 WE | G     | 83.9951 | 85.011                                 | 83.9435                                | 83.9023 | 83.4788 | 83.1388  | 80.757       | 79.0463 | 70.1687 | 68.4139  | 60.5972 | 22.4453 | 11.8924 | 4.3904 | 2.8616           |
| 21  | 5 BW | G     | 90.2206 | 86.4616                                | 86.0797                                | 86.2555 | 86.2843 | 86.3571  | 84.8984      | 83.4606 | 77.4413 | 76.1947  | 71.6964 | 36.1077 | 20.2092 | 7.1796 | 4.341            |
| 21  | 5 BE | G     | 87.6605 | 83.5122                                | 83.6149                                | 83.6531 | 83,7074 | 83.8046  | 82.2415      | 80.9195 | 73.2166 | 71.6389  | 64.7885 | 26.3382 | 14.0665 | 4.9927 | 3.0848           |
| 21  | 5 WE | G     | 82.5702 | 84.9506                                | 84.5854                                | 84.1445 | 83.5148 | 83.2569  | 79.8922      | 77.9957 | 70.5418 | 69.3417  | 63.0786 | 26.152  | 13.9799 | 4.9406 | 3.0323           |
| 210 | 5 BW | G     | 91.7718 | 87.9982                                | 87.6284                                | 87.6656 | 86.5975 | 86.4448  | 83.7494      | 82.6783 | 77.6122 | 76.7072  | 71.5776 | 35.1265 | 19.4866 | 6.8561 | 4.1229           |
| 210 | 5 BE | G     | 83.4386 | 84.4852                                | 84.0814                                | 83.0751 | 82.8074 | 82.4571  | 80.0748      | 79.1782 | 72.0853 | 70.5489  | 63.475  | 25.1315 | 13.304  | 4.6444 | 2.8318           |
| 210 | 5 WE | G     | 89.9423 | 85.7012                                | 85.2529                                | 84.875  | 84.198  | 84.29    | 80.8485      | 79,33   | 71.9024 | 70.4026  | 63.4716 | 25.2402 | 13.3491 | 4.6359 | 2.8148           |
| 20  | I BW | н     | 93.4812 | 89.8753                                | 89.9232                                | 89.5476 | 89.3777 | 89.4155  | 87.0936      | 84.5218 | 72.8365 | 71.1137  | 62.5748 | 22.5645 | 11.7031 | 4.0183 | 2.3799           |
| 20  | I BE | н     | 88.8399 | 88.4532                                | 87.9711                                | 87,9638 | 88.1591 | 88.0629  | 84.3297      | 80.1135 | 63.5586 | 61.4163  | 50.8713 | 15.0877 | 7.6479  | 2.5858 | 1.535            |
| 20  | I WE | Н     | 86.0329 | 88.8918                                | 88.6515                                | 88.7499 | 88.259  | 88.2489  | 84.0652      | 79.5626 | 62.4318 | 59.715   | 49.5163 | 14.399  | 7.293   | 2.4439 | 1.4339           |
| 202 | 2 BW | н     | 90.0538 | 90.1303                                | 89.5317                                | 89.3396 | 89.4619 | 89.3114  | 86.6792      | 83.9119 | 71.5949 | 69.6224  | 61.0319 | 21.4651 | 11.0961 | 3.7328 | 2.1694           |
| 202 | 2 BE | н     | 87.6101 | 87.8362                                | 88.1237                                | 87.6751 | 87.6375 | 87.5867  | 83.298       | 78.7057 | 61.3563 | 58.7739  | 48.5499 | 14.0313 | 7.0922  | 2.3516 | 1.3429           |
| 203 | B BW | Н     | 93.1449 | 89.37 <b>2</b>                         | 89.4004                                | 89.1704 | 89.1957 | 89.1184  | 87.21        | 84.9713 | 74.176  | 72.2882  | 64.2704 | 24.095  | 12.5605 | 4.312  | 2.5644           |
| 203 | B BE | Н     | 87.6731 | 88.5295                                | 88.2402                                | 88.1753 | 88.231  | 88.3391  | 84.6099      | 80.7306 | 65.149  | 62.2909  | 52.7771 | 16.0828 | 8.2108  | 2.7807 | 1.6376           |
| 203 | 3 WE | H     | 89.1096 | 88.8695                                | 88.2387                                | 88.1046 | 88.218  | 88.1435  | 84.1326      | 80.0634 | 63.8926 | 61.6923  | 51.267  | 15.3566 | 7.8186  | 2.648  | 1.5392           |
| 204 | 4 BW | Н     | 87.821  | 90.3446                                | 89.9063                                | 89.7883 | 89.7829 | 89.5351  | 87.1104      | 84.6012 | 73.164  | 71.5783  | 62.9132 | 22.911  | 11.8999 | 4.071  | 2.4174           |
| 204 | 4 BE | н     | 90.8029 | 88.5122                                | 88.4385                                | 88.5178 | 88.3492 | 88.1005  | 84.4342      | 80.3028 | 63.9848 | 61.4927  | 51.3462 | 15.3167 | 7.7748  | 2.6203 | 1.5366           |
| 20  | 4 WE | H     | 90.4188 | 88.813                                 | 88.4556                                | 88.1631 | 88.2181 | 88.1132  | 83.921       | 79.51   | 62.6356 | 60.0926  | 49.8465 | 14.6124 | 7.3924  | 2.4749 | 1.4375           |
| 20: | 5 BW | H     | 91.4154 | 90.3959                                | 89.9089                                | 90.1639 | 89.7627 | 89.5607  | 86.9838      | 84.2987 | 72.2061 | 70.3112  | 61.7487 | 21.9365 | 11.3589 | 3.8728 | 2.2984           |
| 20  | 5 BE | H     | 90.9277 | 88.8706                                | 88.5587                                | 88.8871 | 88.337  | 88.3242  | 84,2368      | 79.8949 | 62.9557 | 60.5066  | 50.199  | 14.7402 | 7.5071  | 2.5165 | 1.4865           |
| 20: | 5 WE | H     | 91.768  | 89.0882                                | 88.8253                                | 87.8603 | 88.3726 | 87.7383  | 83.5463      | 78.8411 | 61.1637 | 58.7046  | 48.2472 | 13.8695 | 7.0301  | 2.8923 | 1.5883           |
| 20  | 5 BW | Н     | 88.3555 | 90.5414                                | 90.0907                                | 90.0004 | 87.6569 | 89.3051  | 87.0783      | 84.5552 | 73.0501 | 71.0803  | 62.8741 | 22.9272 | 11.9022 | 4.0627 | 2.4057           |
| 20  | 5 BE | H     | 90.6353 | 88.8188                                | 88.3359                                | 88.3128 | 88.4153 | 88.1618  | 84.396       | 80.3781 | 64.1564 | 61.6844  | 51.5877 | 15.4703 | 7.8458  | 2.641  | 1.5554           |
| 20  | 5 WE | н     | 86.4799 | 89.1578                                | 88.503                                 | 88.6385 | 88.4445 | 88.3269  | 83.8958      | 79.366  | 62.1817 | 59.6101  | 49.3308 | 14.3964 | 7.2766  | 2.4386 | 1.4214           |
| 20  | 7 BW | н     | 90.3744 | 89.7938                                | 89.8906                                | 89.7753 | 89.4077 | 89.2067  | 86.9832      | 84.5093 | 73.1316 | 71.2537  | 63.0024 | 22.9773 | 11.9341 | 4.0713 | 2.4088           |
| 20  | 7 BE | Н     | 89.2352 | 88.1661                                | 87.8099                                | 88.4132 | 87.9232 | 87.9201  | 84.2685      | 80.2105 | 64.0702 | 61.6563  | 51.5096 | 15.4298 | 7.8185  | 2.6355 | 1.5546           |
| 20  | 7 WE | Н     | 89.1276 | 88.7403                                | 88.7178                                | 88.7045 | 88.1566 | 87.9733  | 83.8248      | 79.4752 | 62.7738 | 60.2432  | 50.0458 | 14.7296 | 7.4688  | 2.5296 | 1.492            |
| 20  | 8 BW | Н     | 86.433  | 89.6511                                | 89.4815                                | 89.7942 | 89.3299 | 89,4596  | 86.9703      | 84.2875 | 72.2285 | 70.1764  | 61.6967 | 21.8581 | 11.3033 | 3.8599 | 2.2788           |
| 20  | 8 BE | H     | 84.2179 | 88.4121                                | 88.3956                                | 88.4617 | 88.1181 | 87.9923  | 83.954       | 79,6375 | 62.6392 | 60.1483  | 49.8069 | 14.544  | 7.3715  | 2.4778 | 1.4494           |
| 20  | 8 WE | Н     | 92.1746 | 88.9532                                | 88.4836                                | 88.2209 | 88.1582 | 88.0945  | 83.5308      | 78.9279 | 61.5181 | 59.0217  | 48.6178 | 14.0384 | 7.1038  | 2.378  | 1.3909           |
| 20  | 9 BW | Н     | 94.9888 | 90.2538                                | 90.1756                                | 89.3979 | 89.615  | 89.4832  | 87.1729      | 84.8517 | 74.0061 | 72.0216  | 64.2522 | 24.1629 | 12.6028 | 4.3079 | 2.5403           |
| 20  | 9 BE | Н     | 88.1533 | 87.9867                                | 88.5819                                | 88.2043 | 87.9131 | 87.949   | 84.556       | 80.7537 | 65.2515 | 62.6884  | 52.9854 | 16.2447 | 8.2542  | 2.7759 | 1.6194           |
| 20  | 9 WE | Н     | 86.021  | 88.8967                                | 88.7377                                | 88.3316 | 88.2733 | 88.0965  | 84.0847      | 79.9813 | 63.9536 | 61.7286  | 51.4214 | 15.4643 | 7.8465  | 2.6368 | 1.5381           |
| 21  | 0 BW | Н     | 90.2932 | 91.1303                                | 90.0353                                | 89.9615 | 89.9194 | 89.9128  | 87.3973      | 84.9431 | 73.5869 | 71.8137  | 63.6478 | 23.5685 | 12.2515 | 4.2328 | 2.5367           |
| 21  | 0 BE | Н     | 90.8624 | 88.4431                                | 88.7877                                | 88.5163 | 88.2022 | 88.0838  | 84.4463      | 80.3155 | 64.2999 | 61.973   | 51.8922 | 15.6925 | 7.9804  | 2.7369 | 1.6425           |
| 21  | 0 WE | Н     | 90.5151 | 89.2282                                | 88.5846                                | 88.4984 | 88,5397 | 88.4125  | 84.3753      | 80.0868 | 63.8624 | 61.4345  | 51.2809 | 15.4241 | 7.8675  | 2.6817 | 1.5999           |
| 21  | I BW | Н     | 95.5942 | 90.7029                                | 89.8527                                | 90.2552 | 89.7025 | 89.6987  | 87.1088      | 84.5016 | 72.7161 | 79.9912  | 62.3678 | 22.4061 | 11.5872 | 3.9924 | 2.3849           |

# Table G.2 AC impedance measurements for specimens in test sequence 2<br/>(phase angle at various frequencies of applied test voltage)F R E Q U E N C Y (Hertz)

|      |     |    |           |         |         |         |         | FRE     | QUEI    | NCY (   | Hert    | z )     |         |         |         |        |        |
|------|-----|----|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| CBL  | Cnd | СМ | 0.1       | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000   | 5000   |
| ==== | === | == | ======= : |         |         |         |         |         |         |         |         |         |         |         |         |        |        |
| 211  | BE  | H  | 92.0565   | 88.6314 | 88.572  | 88.6994 | 88.35   | 88.1705 | 84.1952 | 79.9625 | 63.2142 | 60.546  | 50.4332 | 14.83   | 7.5541  | 2.5756 | 1.5287 |
| 211  | WE  | H  | 93.0362   | 89.172  | 88.8567 | 88.4502 | 88.5559 | 88.3085 | 84.0862 | 79.6147 | 62.7048 | 60.2337 | 49.9191 | 14.6134 | 7.4203  | 2.5313 | 1.5002 |
| 212  | BW  | Η  | 91.8683   | 91.0706 | 90.8132 | 89.881  | 89.9967 | 89.8093 | 86.8961 | 84.1599 | 71.8867 | 70.0765 | 61.2785 | 21.5874 | 11.1648 | 3.8194 | 2.2698 |
| 212  | BE  | H  | 92.1896   | 88.7109 | 88.3765 | 88.2571 | 88.3494 | 88.137  | 84.0835 | 79.7013 | 62.6998 | 60.0492 | 49.8208 | 14.572  | 7.3818  | 2.4961 | 1.4733 |
| 212  | WE  | Н  | 88.9575   | 89.1896 | 88.412  | 88.5307 | 88.2705 | 88.1593 | 83.3541 | 78.494  | 60.634  | 57.9904 | 47.5722 | 13.5756 | 6.8633  | 2.3187 | 1.3484 |
| 213  | BW  | Н  | 88.0034   | 89.944  | 89.7869 | 89.8108 | 89.5216 | 89.2713 | 86.9094 | 84.4788 | 72.8693 | 70.7931 | 62.6996 | 22.8047 | 11.8413 | 4.0192 | 2.3767 |
| 213  | BE  | H  | 91.8573   | 87.533  | 88.5049 | 88.8079 | 88.4083 | 88.2641 | 84.422  | 80.3089 | 64.0534 | 61.7582 | 51.4388 | 15.3974 | 7.8542  | 2.6255 | 1.532  |
| 214  | BW  | Н  | 95.3685   | 90.3906 | 90.0944 | 89.9532 | 89.6956 | 89.695  | 86.9058 | 84.0754 | 71.4602 | 69.5869 | 60.6607 | 21.1305 | 10.8811 | 3.7177 | 2.1962 |
| 214  | BE  | Н  | 87.4524   | 88.5172 | 88.2896 | 88.4202 | 88.1103 | 88.0989 | 83.709  | 79.0127 | 61.3719 | 58.8668 | 48.4369 | 13.9573 | 7.0475  | 2.3785 | 1.3919 |
| 214  | WE  | H  | 85.9293   | 89.1928 | 88.7224 | 89.0185 | 88.4727 | 88.4293 | 83.6304 | 78,678  | 60.4842 | 57.7827 | 47.3214 | 13.4311 | 6.8001  | 2.294  | 1.3468 |
| 215  | BW  | Н  | 92.6772   | 90.5417 | 90.1715 | 90.3135 | 89.7424 | 89.4416 | 87.5478 | 85.0479 | 74.3464 | 72.0477 | 64.6432 | 24.7675 | 12.9583 | 4.3967 | 2.58   |
| 215  | BE  | H  | 91.3012   | 88.5592 | 88.5516 | 88.2583 | 88.1689 | 87.9676 | 84.5942 | 80.8621 | 65.6922 | 63.152  | 53.4094 | 16.6384 | 8.4784  | 2.8427 | 1.6319 |
| 216  | BW  | Н  | 90.1703   | 89.0534 | 89.2385 | 88.8657 | 88.8059 | 88.7356 | 86.6743 | 84.283  | 73.0421 | 71.0345 | 63.1971 | 23.5069 | 12.204  | 4.1326 | 2.3953 |
| 216  | BE  | н  | 81.4596   | 85.229  | 85.4527 | 85.9801 | 86.0285 | 85.9089 | 82.7702 | 78.7187 | 62.7388 | 60.1305 | 50.2927 | 15.136  | 7.7182  | 2.5535 | 1.4523 |
| 216  | WE  | н  | 86.3247   | 89.1784 | 89.4221 | 88.9667 | 88.6928 | 88.4014 | 84.6162 | 80.3636 | 63.831  | 61.3053 | 51.0964 | 15.2873 | 7.8044  | 2.6566 | 1.5746 |
|      |     |    |           |         |         |         |         |         |         |         |         |         |         |         |         |        |        |

Table G.2 AC impedance measurements for specimens in test sequence 2<br/>(phase angle at various frequencies of applied test voltage)F R E O U E N C Y (Hertz)

|     |      |            |         |         |                                        |         |                  | FRE     | QUEN    | чсү (   | Hert    | z )     |         |         |         |        |        |
|-----|------|------------|---------|---------|----------------------------------------|---------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| CBL | Cnd  | СМ         | 0.1     | 0.3     | 0.5                                    | 0.7     | 0.9              | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000   | 5000   |
|     | ===  | ——<br>A    | 83 485  | 88.3415 | ====================================== | 88.9954 | 89.1 <b>77</b> 3 | 89.5595 | 89.1353 | 88.2062 | 83.347  | 86.4848 | 76.943  | 42.3737 | 24.5108 | 8.8034 | 5.2835 |
| 302 | BW   | A          | 95 0444 | 90.9194 | 90.9674                                | 90.9744 | 90.2208          | 90.8763 | 89.8069 | 88.3893 | 82.8729 | 76.8253 | 76.3482 | 41.0211 | 23.3397 | 8.5116 | 5.2064 |
| 302 | BR   | A          | 86.8654 | 90.8011 | 90.1649                                | 90.3582 | 90.5133          | 90.1801 | 89.7209 | 88.1683 | 81.364  | 85.2105 | 76.3844 | 40.1793 | 22.89   | 8.2565 | 5.0338 |
| 302 | WR   | A          | 91.8381 | 90.9168 | 90.5274                                | 90.6575 | 90.7268          | 90.7979 | 88.7606 | 88.4012 | 81.8892 | 82.0703 | 76.6953 | 41.0084 | 23.5182 | 8.5556 | 5.2362 |
| 302 | BE   | A          | 89.8421 | 89.5743 | 89.875                                 | 89.8286 | 88.8475          | 89.0123 | 87.5085 | 86.0633 | 77.648  | 75.2259 | 68.6026 | 28.4941 | 15.4054 | 5.3666 | 3.3024 |
| 302 | WE   | A          | 93.3875 | 89.7892 | 89.9129                                | 89.8794 | 89.4891          | 89.6013 | 88.3725 | 87.0768 | 79.8919 | 78.4512 | 72.9963 | 34.669  | 19.0046 | 6.7116 | 4.0756 |
| 302 | RE   | A          | 88.7304 | 88.8658 | 89.505                                 | 89.5568 | 89.3056          | 89.2127 | 88.1461 | 86.7649 | 78.9063 | 77.8415 | 71.6172 | 32.5434 | 17.6331 | 6.1897 | 3.763  |
| 303 | BW   | A          | 94.5706 | 90.9568 | 91.2109                                | 91.3201 | 91.2579          | 90.4019 | 90.0218 | 88.4811 | 82.7107 | 81.2574 | 76.4036 | 41.2191 | 23.6285 | 8.5186 | 5.221  |
| 303 | BR   | A          | 87.506  | 91.0719 | 90. <b>87</b> 69                       | 90.6474 | 90.9604          | 91.0942 | 88.871  | 88.2489 | 81.3199 | 82.6646 | 76.1774 | 40.2324 | 22.9348 | 8.2908 | 5.0259 |
| 303 | WR   | A          | 95.1582 | 91.1153 | 91.1246                                | 90.8261 | 90.4581          | 90.5838 | 89.1632 | 88.4927 | 81.6722 | 79.3433 | 76.4044 | 41.207  | 23.7161 | 8.5828 | 5.2792 |
| 303 | BE   | A          | 93.3599 | 89.7164 | 89.451                                 | 89.2313 | 89.9319          | 90.0438 | 87.7129 | 85.9671 | 77.594  | 73.4743 | 68.5933 | 28.7143 | 15.1753 | 5.3386 | 3.3202 |
| 303 | WE   | A          | 92.6109 | 89.6766 | 89.5055                                | 89.3338 | 89.5936          | 89.6105 | 88.4471 | 87.1209 | 79.9582 | 78.638  | 73.1071 | 34.8135 | 19.1002 | 6.7406 | 4.0949 |
| 303 | RE   | Α          | 93.4722 | 89.7701 | 90.0582                                | 89.3414 | 89.6521          | 89.5205 | 88.252  | 86.8276 | 79.0139 | 77.7338 | 71.6788 | 32.6017 | 17.6669 | 6.2029 | 3.7635 |
| 304 | BW   | Α          | 92.5413 | 91.0566 | 90.8062                                | 90.586  | 90.9527          | 91.1179 | 88.8973 | 88.4304 | 82.2895 | 79.3737 | 76.4081 | 40.9743 | 23.4338 | 8.457  | 5.1614 |
| 304 | BR   | Α          | 94.1914 | 90.8994 | 90.5563                                | 90.4595 | 90.4707          | 91.0109 | 89.8154 | 88.2551 | 81.5987 | 83.798  | 76.2491 | 40.1744 | 22.8324 | 8.2456 | 5.0136 |
| 304 | WR   | Α          | 93.1477 | 91.5499 | 90.8327                                | 90.8226 | 91.544           | 91.0902 | 89.9994 | 88.7248 | 82.2175 | 78.347  | 76.2999 | 41.3821 | 23.5359 | 8.5383 | 5.2634 |
| 304 | BE   | Α          | 87.4972 | 89.375  | 89.8962                                | 89.9296 | 89.8672          | 90.0635 | 87.2248 | 85,9845 | 76.8729 | 73.3334 | 68.664  | 28.2779 | 15.3165 | 5.2564 | 3.2457 |
| 304 | WE   | Α          | 92.5885 | 89.6993 | 90.1372                                | 89.968  | 89.5902          | 89.5865 | 88.4521 | 87.1224 | 79.8721 | 78.6886 | 73.0595 | 34.7305 | 19.0454 | 6.7214 | 4.073  |
| 304 | RE   | Α          | 86.9086 | 89.6234 | 89.2524                                | 89.5851 | 89.6121          | 89.5451 | 88.2328 | 86.7624 | 78.9404 | 77.9231 | 71.6241 | 32.5361 | 17.6211 | 6.1847 | 3.7476 |
| 305 | 5 BW | Α          | 89.7005 | 91.5784 | 91.7137                                | 91.397  | 91.2101          | 91.6599 | 89.6593 | 88.4551 | 82.8657 | 76.9047 | 76.4714 | 41.1051 | 23.5763 | 8.5044 | 5.2021 |
| 305 | BR   | Α          | 94.5223 | 91.6311 | 91.9351                                | 91.3903 | 91.1854          | 90.9509 | 88.8236 | 88.3741 | 82.5457 | 80.4664 | 76.266  | 40.2913 | 22.8955 | 8.2777 | 5.0438 |
| 305 | 5 WR | Α          | 86.7931 | 90.5332 | 91.4544                                | 91.2535 | 91.1627          | 91.5116 | 89.6865 | 88.4896 | 81.2369 | 77.026  | 76.4418 | 40.7882 | 23.3606 | 8.463  | 5.1871 |
| 305 | 5 BE | Α          | 89.2067 | 89.6102 | 89.5477                                | 89.419  | 89.7377          | 89.3579 | 87.1171 | 86.0478 | 77.6276 | 75.8437 | 68.5339 | 28.5138 | 15.3566 | 5.3567 | 3.2812 |
| 305 | 5 WE | Α          | 86.7743 | 89.6304 | 89.8639                                | 89.9179 | 90.2547          | 89.5503 | 87.2836 | 86.3436 | 77.6935 | 69.5519 | 70.7545 | 31.0927 | 16.7359 | 6.0268 | 3.6738 |
| 305 | 5 RE | Α          | 86.2263 | 89.6372 | 89.9247                                | 89.7362 | 90.0434          | 89.5004 | 87.5628 | 86.0901 | 78.4915 | 76,2343 | 68.7567 | 29.3531 | 15.7449 | 5.594  | 3.4144 |
| 300 | 5 BW | Α          | 92.301  | 90.3303 | 90.1115                                | 90.535  | 90.3014          | 92.39   | 89.4013 | 88.4534 | 82.9805 | 80.7462 | 76.2319 | 41.1697 | 23.4949 | 8.5042 | 5.1878 |
| 306 | 5 BR | Α          | 93.5211 | 91.3449 | 90.5699                                | 90.6246 | 90.7504          | 90.3962 | 89.5093 | 88.3618 | 83.1503 | 80.9473 | 76.0545 | 40.1794 | 22.8598 | 8.2325 | 4.9958 |
| 300 | 5 WR | Α          | 96.6194 | 91.1867 | 91.0357                                | 90.647  | 90.4051          | 91.5307 | 89.4385 | 88.5149 | 83.307  | 79.4144 | 76.4931 | 40.979  | 23.7843 | 8.4675 | 5.1415 |
| 300 | 5 BE | Α          | 86.0587 | 89.5575 | 89.5393                                | 89.7229 | 89.8511          | 88.9227 | 86.9735 | 85.8775 | 76.0287 | 73.314  | 68.3268 | 28.7711 | 15.2647 | 5.3901 | 3.3235 |
| 300 | 5 WE | Α          | 90.6483 | 89.7891 | 89.6963                                | 89.2842 | 89.2924          | 89.6146 | 86.9399 | 86.6077 | 77.0896 | 70.395  | 70.7008 | 31.101  | 16.8015 | 5.9753 | 3.6906 |
| 300 | 5 RE | Α          | 86.3872 | 89.699  | 89.1171                                | 89.1001 | 89.6896          | 89.0968 | 87.823  | 86.1268 | 78.1547 | 74.3401 | 69.3952 | 29.446  | 15.5852 | 5.6121 | 3.3741 |
| 30′ | 7 BW | Α          | 92.2925 | 90.7603 | 90.9814                                | 90.8881 | 90.3393          | 90.5884 | 90.0301 | 88.439  | 82.5556 | 82.9553 | 76.5607 | 41.2482 | 23.55   | 8.5422 | 5.2057 |
| 30′ | 7 BR | Α          | 90.6879 | 90.7856 | 91.0758                                | 90.7961 | 90.6457          | 90.6744 | 88.7994 | 88.3858 | 81.8566 | 79.4941 | 76,5802 | 40.4367 | 23.1487 | 8.3347 | 5.0959 |
| 30' | 7 WR | Α          | 85.567  | 89.7457 | 89.8442                                | 89.6681 | 89.7097          | 89.5709 | 88.2614 | 86.515  | 78.4684 | 76.2628 | 70.5244 | 30.9917 | 16.6172 | 5.8091 | 3.5114 |
| 30  | 7 BE | Α          | 88.2293 | 89.76   | 89.9619                                | 89.7464 | 89.6277          | 89.5181 | 88.3625 | 86.083  | 76.8402 | 76.149  | 69.0468 | 28.9335 | 15.5683 | 5.4789 | 3.3654 |
| 30  | 7 WE | . <b>A</b> | 87.2309 | 89.778  | 89.3277                                | 89.1728 | 89.6776          | 89.5245 | 87.9649 | 86.6235 | 78.4345 | 76.7324 | 70.8669 | 31.0431 | 16.8097 | 6.0156 | 3.7467 |
| 30  | 7 RE | Α          | 98.1539 | 89.7094 | 89.8984                                | 89.9795 | 88.9124          | 88.7064 | 87.3725 | 86.2899 | 78.4769 | 74.7827 | 69.2728 | 29.7449 | 15.8728 | 5.6597 | 3.453  |

## Table G.3 AC impedance measurements for specimens in test sequence 3 (phase angle at various frequencies of applied test voltage)

G-17
|   |     |     |    |         |         |         |         |                 | FRE     | QUE     | NCY     | (Hert   | z )     |         |         |         |         |        |
|---|-----|-----|----|---------|---------|---------|---------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| ( | CBL | Cnd | CM | 0.1     | 0.3     | 0.5     | 0.7     | 0.9             | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000   |
| - | 308 | BW  | A  | 93.5265 | 90.7521 | 90.2585 | 90.2832 | 90.569          | 90.6212 | 89.888  | 88.52   | 82.8127 | 81.4506 | 76.5665 | 41.3742 | 23.6854 | 8.5554  | 5.2461 |
|   | 308 | BR  | Α  | 86.8404 | 90.3857 | 90.0207 | 90.2263 | 90.349 <b>2</b> | 90.3449 | 89.3055 | 88.2507 | 82.8969 | 81.1707 | 76.0156 | 40.4649 | 22.9287 | 8.31    | 5.0956 |
|   | 308 | WR  | Α  | 93.1535 | 90.647  | 91.0108 | 90.678  | 90.6208         | 89.972  | 89.4046 | 88.5275 | 83.2209 | 79.4352 | 76.4638 | 41.265  | 23.7098 | 8.5978  | 5.2391 |
|   | 308 | BE  | Α  | 86.7565 | 89.6    | 89.0356 | 89.4218 | 89.7165         | 89.2654 | 88.1244 | 86.1525 | 78.0772 | 74.5986 | 69.0374 | 29.1278 | 15.4221 | 5.5335  | 3.3834 |
|   | 308 | WE  | Α  | 87.2883 | 90.0278 | 90.1566 | 89.8671 | 89.5357         | 89.6951 | 88.4199 | 87.1411 | 79.9847 | 78.833  | 73.2295 | 35.0232 | 19.248  | 6.8023  | 4.128  |
|   | 308 | RE∙ | Α  | 92.103  | 89.8754 | 89.7963 | 89.4576 | 89.5234         | 89.5433 | 88.27   | 86.7916 | 79.0114 | 77.8523 | 71.726  | 32.6568 | 17.7187 | 6.2294  | 3.7705 |
|   | 309 | BW  | Α  | 89.4826 | 90.6701 | 88.3721 | 90.7039 | 90.484          | 90.4959 | 90.1466 | 88.3604 | 83.0888 | 79.2788 | 76.4609 | 41.1834 | 23.4935 | 8.5383  | 5.1913 |
|   | 309 | BR  | A  | 91.1417 | 90.5853 | 90.1329 | 90.1156 | 90.2724         | 90.4675 | 89.3479 | 88.2953 | 82.1865 | 77.3583 | 76.2654 | 40.2151 | 22.874  | 8.2537  | 5.0126 |
|   | 309 | WR  | Α  | 86.5683 | 89.7972 | 89.936  | 89.8266 | 89.6713         | 89.5207 | 88,3712 | 87.0937 | 79.8564 | 78.8132 | 73.0609 | 34.7171 | 19.0457 | 6.7238  | 4.0734 |
|   | 309 | BE  | Α  | 86.472  | 89.7063 | 89.0039 | 89.2252 | 89.2676         | 89.3115 | 87.7483 | 86.16   | 76.4746 | 76.7023 | 68.8999 | 29.0009 | 15.6535 | 5.4959  | 3.3668 |
|   | 309 | WE  | Α  | 88.0318 | 89.6357 | 89.6957 | 89.5819 | 89.6429         | 89.5195 | 88.4073 | 87.1478 | 80.0009 | 78.8291 | 73.1861 | 34.9619 | 19.2121 | 6.7851  | 4.12   |
|   | 309 | RE  | Α  | 91.7639 | 89.7527 | 89.4654 | 90.0039 | 89.6023         | 89.5158 | 88.3159 | 86.8759 | 79.1033 | 77.9887 | 71.8393 | 32.8032 | 17.8049 | 6.2581  | 3.7866 |
|   | 310 | BW  | Α  | 93.5251 | 90.8719 | 91.3999 | 91.0279 | 90.9649         | 90.4537 | 89.0569 | 88.3968 | 81.5735 | 82.2578 | 76.8536 | 41.1166 | 23.5361 | 8.5242  | 5.1846 |
|   | 310 | BR  | Α  | 86.6826 | 92.1612 | 90.3782 | 90.5257 | 91.0046         | 90.602  | 89.7738 | 88.1263 | 82.5481 | 82.5892 | 76.1223 | 40.332  | 23.0084 | 8.3034  | 5.0903 |
|   | 310 | WR  | Α  | 87.9224 | 89.1984 | 90.51   | 90.4981 | 90.9995         | 90.5672 | 89.6    | 88.445  | 82.5785 | 80.4496 | 76.8725 | 41.2252 | 23.7327 | 8.5605  | 5.2591 |
| 1 | 310 | BE  | Α  | 93.1986 | 89.0124 | 90.0667 | 89.7554 | 90.1535         | 90.2434 | 87.9445 | 86.0389 | 76.4787 | 80.094  | 68.4042 | 28.6513 | 15.4535 | 5,422   | 3.3357 |
|   | 310 | WE  | Α  | 86.1621 | 89.8828 | 89.7733 | 89.4833 | 89.6626         | 89.6565 | 88.4817 | 87.1636 | 80.078  | 78.6621 | 73.2347 | 34.9963 | 19.2139 | 6.7842  | 4.1086 |
|   | 310 | RE  | Α  | 93.3457 | 89.7021 | 89.1339 | 89.6497 | 89.5761         | 89.5518 | 88.3229 | 86.859  | 79.1509 | 77.9136 | 71.8469 | 32.8752 | 17.8352 | 6.2657  | 3.7957 |
|   | 311 | BW  | Α  | 89.8248 | 90.8995 | 90.3901 | 90.5107 | 90.503          | 90.8851 | 88.8345 | 88.4124 | 81.7634 | 86.3668 | 76.3358 | 41.0472 | 23.5147 | 8.5079  | 5.2012 |
|   | 311 | BR  | Α  | 88.5674 | 90.9253 | 90.6589 | 90.3945 | 90.1509         | 91.1396 | 88.9899 | 88.3518 | 81.8328 | 80.8213 | 76.1835 | 40.314  | 22.8958 | 8.3079  | 5.0952 |
|   | 311 | WR  | Α  | 88.7922 | 91.0029 | 90.4388 | 90.5701 | 90.5621         | 90.7683 | 89.568  | 88.4891 | 83.1346 | 79.1307 | 76.4441 | 41.3646 | 23.6364 | 8.6105  | 5.2573 |
|   | 311 | BE  | А  | 92.9023 | 89.706  | 89.8178 | 89.789  | 88.5277         | 88.788  | 86.2007 | 86.2619 | 76.9036 | 76.9282 | 69.162  | 28.8956 | 15.4199 | 5.4421  | 3.3671 |
|   | 311 | WE  | Α  | 90.0084 | 89.7823 | 90.0692 | 89.9927 | 89.6098         | 89.6999 | 88.4446 | 87.1639 | 79.9621 | 78.8912 | 73.164  | 34.9221 | 19.1723 | 6.7709  | 4.11   |
|   | 311 | RE  | Α  | 86.3872 | 89.7182 | 89.4936 | 89.4053 | 89.5554         | 89.6349 | 88.2916 | 86.8366 | 79.0185 | 77.8701 | 71.7266 | 32.6658 | 17.7123 | 6.221   | 3.7741 |
|   | 312 | BW  | Α  | 88.5316 | 87.9988 | 88.4684 | 88.8696 | 89.4849         | 89.1103 | 88.9609 | 88.1259 | 82.0186 | 79.3188 | 76.8618 | 42.5508 | 24.509  | 8.8322  | 5.2862 |
|   | 313 | BW  | A  | 80.0653 | 94.4142 | 87.8074 | 88.8754 | 89.4017         | 88.3182 | 89.8641 | 88.3954 | 82.7905 | 84.8717 | 76.7979 | 42.2295 | 24.2997 | 8.7657  | 5.2658 |
|   | 314 | BW  | Α  | 88.205  | 88.4014 | 88.9895 | 89.2903 | 89.9115         | 89.1058 | 89.7296 | 88.1375 | 81.8528 | 76.5447 | 76,7689 | 42.351  | 24.4055 | 8.7628  | 5.2817 |
|   | 315 | BW  | Α  | 84.1111 | 88.4072 | 88.6295 | 88.9952 | 89.4742         | 89.4482 | 89.1759 | 88.3029 | 83.2816 | 85.014  | 77.0059 | 42.3575 | 24.4957 | 8.7691  | 5.2611 |
|   | 316 | BW  | Α  | 86.101  | 88.0371 | 88.6261 | 88.6291 | 89.0324         | 88.9499 | 88.9975 | 87.7954 | 82.641  | 80.1849 | 76.2213 | 40.8579 | 23.4849 | 8.3683  | 5.0018 |
|   | 317 | BW  | Α  | 86.4053 | 88.654  | 88.6639 | 89.1474 | 89.3634         | 89.5762 | 89.7578 | 88.2171 | 82.4569 | 78.6593 | 76.6805 | 42.5487 | 24.6179 | 8.8333  | 5.3093 |
|   | 303 | BW  | в  | 91.7045 | 95.8164 | 95.3119 | 94.8362 | 94.5785         | 94.0272 | 91.0092 | 89.0445 | 82.5922 | 83.118  | 76.333  | 40.4291 | 23.1042 | 8.3804  | 5.1216 |
|   | 303 | BR  | В  | 98.2933 | 93.0063 | 91.5635 | 91.4503 | 90.7859         | 90.7819 | 89.4423 | 87.8727 | 81.687  | 81.6339 | 75.6843 | 39.6616 | 22.4424 | 8.1307  | 4.9414 |
|   | 303 | WR  | В  | 95.297  | 90.7203 | 89.6799 | 90,376  | 90.5613         | 89.9907 | 86.8193 | 88.7572 | 84.2078 | 110.723 | 78.0434 | 41.4015 | 24.0535 | 9.2956  | 6.0719 |
|   | 303 | BE  | В  | 89.8005 | 89.4267 | 90.7476 | 89.4112 | 88.7037         | 88.5494 | 87.6318 | 85.8058 | 75.8419 | 52.5158 | 67.7018 | 28.6207 | 16.6074 | 6.2349  | 4.306  |
|   | 303 | WE  | В  | 92.2397 | 89.8852 | 89.9814 | 88.7881 | 91.576          | 87.4471 | 87.5523 | 86.4137 | 79.4107 | 77.5223 | 70.686  | 32.1427 | 17.6632 | 7.3081  | 4.5155 |
|   | 303 | RE  | В  | 95.2655 | 89.5754 | 89.2297 | 89.4849 | 88.1761         | 87.633  | 89.0567 | 85.5377 | 77.2406 | 77.5141 | 66.9349 | 30.1625 | 16.5716 | 6.58956 | 4.1247 |
|   | 304 | BW  | В  | 93.152  | 91.7893 | 91.3031 | 90.7196 | 88.9775         | 90.3869 | 89.1576 | 88.5889 | 82.3851 | 79.9303 | 76.7275 | 41.5106 | 24.5192 | 9.1143  | 5.756  |

|     |       |    |         |                 |         |                  |                  | FRE     | QUEN    | ГСҮ (   | Hert    | z )     |         |                 |         |         |         |
|-----|-------|----|---------|-----------------|---------|------------------|------------------|---------|---------|---------|---------|---------|---------|-----------------|---------|---------|---------|
| CBL | Cnd   | СМ | 0.1     | 0.3             | 0.5     | 0.7              | 0.9              | 1       | 5       | 10      | 50      | 60      | 100     | 500             | 1000    | 3000    | 5000    |
| 304 | BR    | B  | 87.5961 | 91.0938         | 91.3252 | 91.1199          | 91.0687          | 90.8347 | 90.0324 | 88.2971 | 83.9586 | 72.6136 | 76.3257 | 40.949          | 24.143  | 9.0449  | 5.7191  |
| 304 | WR    | в  | 96.1538 | 91.0776         | 91.1324 | 90.1517          | 89.9808          | 90.3004 | 89.548  | 88.3448 | 81.1746 | 56.3449 | 77.2701 | 41.6            | 24.3031 | 9.4179  | 5.9184  |
| 304 | BE    | в  | 91.0682 | 88.2585         | 89.4726 | 90.4963          | 88.0165          | 89.3269 | 89.9927 | 85,7544 | 76.1531 | 52.6301 | 68.131  | 29.1344         | 16.6103 | 6.3337  | 4.0443  |
| 304 | WE    | в  | 87.9686 | 89,5898         | 88.4146 | 88.1353          | 86.8954          | 91.368  | 88.014  | 85.6495 | 78.1365 | 59.554  | 69.3321 | 31.5831         | 18.6302 | 7.0783  | 4,4538  |
| 304 | RE    | В  | 90.3816 | 89.6705         | 89.3523 | 90.1438          | 90.2656          | 89.9007 | 88.1694 | 85.8389 | 75.1988 | 57.9278 | 68.1668 | 29.8447         | 17.0444 | 6.3371  | 4.1562  |
| 305 | BW    | в  | 92.0256 | 90.6516         | 90.8786 | 90.1794          | 90.8038          | 91.3165 | 88.8009 | 88.3808 | 80.5115 | 78.3277 | 77.7881 | 42.1216         | 24.3042 | 9.2705  | 5.7643  |
| 305 | BR    | В  | 88.7172 | 90.8906         | 89.1117 | 90.1187          | 89.6829          | 90.7692 | 89.3815 | 88.4104 | 80.5387 | 89.4867 | 75.8313 | 41.1495         | 23.7612 | 9.0303  | 5.7023  |
| 305 | WR    | в  | 87.6105 | 90.5048         | 93.5352 | 91.4298          | 88.5207          | 90.2769 | 88.1062 | 89.0312 | 85.4594 | 73.151  | 77.5532 | 41.5357         | 24.902  | 9.322   | 5.8851  |
| 305 | BE    | В  | 92.9178 | 89.9171         | 89.2879 | 89.5006          | 89.2964          | 90.3088 | 88.9109 | 85.4467 | 74.4893 | 97.0475 | 66.1703 | 28.5376         | 16.4359 | 6.4069  | 4,0057  |
| 305 | WE    | в  | 91.637  | 89.5824         | 89.6351 | 90.0102          | 91.0316          | 91.8207 | 85.8711 | 86.2696 | 80.8681 | 68,5996 | 69.5644 | 31.5131         | 18.5637 | 7.055   | 4.4437  |
| 305 | RE    | в  | 93.299  | 89.6262         | 89.7785 | 89.3965          | 90.5605          | 88.6793 | 86.9932 | 85.9502 | 78.0885 | 68.8237 | 68.4972 | 29.7472         | 16.8976 | 6.2534  | 4.1178  |
| 306 | BW    | В  | 94.5699 | 91.3031         | 90.4963 | 91.0138          | 90.7836          | 93.8254 | 89.0736 | 88.7688 | 83.0387 | 80.8508 | 77.8578 | 42.0898         | 24.3969 | 9.33408 | 5.8132  |
| 306 | BR    | В  | 92.6158 | 90.617          | 91.4166 | 91.0988          | 92.2064          | 90.2626 | 91.4437 | 88.1821 | 80.7547 | 86.9731 | 77.0001 | 40.5008         | 23.4607 | 8.97814 | 5.6558  |
| 306 | WR    | в  | 88.9913 | 90.0121         | 89.5343 | 90.5393          | 90.8496          | 89.8504 | 89.0949 | 89.4999 | 82.807  | 81.0313 | 77.8163 | 40.98           | 23.8514 | 8.7021  | 5.3487  |
| 306 | BE    | В  | 91.5378 | 89.4916         | 89.8199 | 89.9496          | 91.1107          | 88.4602 | 86.0451 | 85.6198 | 78.4608 | 73.1732 | 68.079  | 29.5605         | 16.2971 | 6.0673  | 3.8741  |
| 306 | WE    | B  | 89.1993 | 89.3365         | 89.38   | 89.6877          | 89.6009          | 89.0823 | 88.1599 | 86.5194 | 77.4438 | 46.1495 | 69.7385 | 31.3903         | 17.8328 | 7.1055  | 4.4118  |
| 306 | RE    | В  | 89.6572 | 89.7786         | 88.6194 | 89.7175          | 87.8773          | 91.1272 | 87.9598 | 85.5637 | 76.0579 | 84.2543 | 67.8754 | 29.6212         | 17.1616 | 6.386   | 4.229   |
| 312 | BW    | С  | 87.3469 | 90.613 <b>2</b> | 90.9093 | 90.7064          | 91.0474          | 90.4746 | 90.345  | 87.8337 | 79.2157 | 68.6232 | 72.758  | 33.7405         | 18.8454 | 6.9505  | 4.212   |
| 313 | BW    | С  | 84.4308 | 90.8705         | 90.4992 | 91.1634          | 90.0006          | 89.0865 | 90.3845 | 88.2456 | 80.7982 | 93.5142 | 73.4145 | 34.8262         | 19.3177 | 7.0554  | 4.3125  |
| 314 | BW    | С  | 94.4355 | 90.9774         | 90.4578 | 89.9381          | 90.424           | 90.0485 | 88.5349 | 87.566  | 78.9085 | 92.8201 | 73.2001 | 34.911          | 19.511  | 7.3122  | 4.6011  |
| 315 | 5 BW  | С  | 96.3299 | 93.5606         | 91.8141 | 91.3593          | 91.163           | 90.7204 | 88.371  | 86.942  | 78.9828 | 79.9805 | 72.183  | 33.6944         | 18.4532 | 6.4718  | 3.8515  |
| 316 | 5 BW  | С  | 98.8572 | 97.1788         | 95.5598 | 94.4706          | 93.8597          | 92.865  | 88.7579 | 87.2232 | 79.267  | 79.3133 | 71.3429 | 32.4221         | 17.6488 | 6.1992  | 3.7801  |
| 317 | ' BW  | С  | 87.3612 | 90.7948         | 90.1666 | 90.1589          | 91. <b>27</b> 08 | 89.9343 | 89.2014 | 86.7252 | 81.7678 | 75.9587 | 72.0972 | 34.6213         | 19.3355 | 7.2387  | 4.4597  |
| 303 | BW    | D  | 94.2296 | 90.6723         | 90.4563 | 90.5118          | 90.4239          | 90.3515 | 89.244  | 88.1154 | 82.0011 | 80.9579 | 75.7845 | 39.7895         | 22.8252 | 8.74002 | 5.68515 |
| 303 | BR    | D  | 86.6784 | 90.6993         | 90.8322 | 90.8252          | 90.4329          | 90.8136 | 89.1192 | 88.018  | 81.6244 | 80.4194 | 75.166  | 38.643          | 22.0572 | 8.5022  | 5.58617 |
| 303 | WR    | D  | 90.1636 | 91.6479         | 90.4633 | 90.281           | 90.5897          | 90.3925 | 89.1734 | 87.9887 | 81.6393 | 80.5024 | 75.2611 | 38.8739         | 22.2499 | 8.62865 | 5.69584 |
| 303 | BE    | D  | 88.2511 | 90.2432         | 89.4609 | 89.6334          | 89.3859          | 89.2507 | 87.1367 | 84.7636 | 73.7027 | 72.148  | 64.1419 | 24.5942         | 13.3661 | 5.35322 | 3.72576 |
| 303 | WE    | D  | 93.1889 | 90.0477         | 89.2069 | 89.455           | 89.3394          | 89.3408 | 87.4538 | 85.3856 | 75.1905 | 73.3597 | 66.1622 | 26.631          | 14.6084 | 5.89038 | 4.10133 |
| 303 | RE RE | D  | 86.8697 | 89.6669         | 89.9553 | 89.4923          | 89.335           | 89.3817 | 87.2193 | 84.9298 | 74.0825 | 72.3829 | 64.6068 | 25.0544         | 13.6422 | 5.46919 | 3.79923 |
| 304 | I BW  | D  | 90.5002 | 90.7635         | 90.9098 | 90.7498          | 90.3013          | 90.3392 | 89.0989 | 88,0474 | 81.8847 | 80.8785 | 75.6699 | 39.6203         | 22.7471 | 8.79115 | 5.77648 |
| 304 | BR    | D  | 91.6425 | 90.7367         | 90.7318 | 90.3351          | 90.3521          | 90.2929 | 89.0515 | 87.8945 | 81.4802 | 80.2964 | 75.0452 | 38.4931         | 21.9776 | 8.51804 | 5.63409 |
| 304 | i wr  | D  | 86.9019 | 89.9639         | 90.4477 | 90.0897          | 89.9764          | 90.062  | 88.9156 | 87.7444 | 81.4631 | 80.2134 | 75.1106 | <b>`38.7687</b> | 22.0167 | 8.32071 | 5.41733 |
| 304 | 4 BE  | D  | 86.5167 | 89.6947         | 89.5697 | 89.6836          | 89.2288          | 89.2299 | 87.1644 | 84.794  | 73.6059 | 71.9272 | 63.964  | 24.4351         | 13.316  | 5.38952 | 3.77703 |
| 304 | WE    | D  | 90.0234 | 89.5998         | 89.3584 | 89.748           | 89.3253          | 89.3549 | 87.4039 | 85.3257 | 75.0087 | 73.0543 | 65.8966 | 26.3999         | 14.5112 | 5.92985 | 4.17071 |
| 304 | 4 RE  | D  | 86.1345 | 89.6088         | 89.3388 | 89.6 <b>7</b> 79 | 89.2977          | 89.4049 | 87.4155 | 85.2716 | 74.7907 | 73.355  | 65.6137 | 25.5941         | 13.7291 | 5.27165 | 3.58556 |
| 305 | 5 BW  | D  | 93.5143 | 89.9483         | 90.4475 | 90.322           | 90.0507          | 90.1935 | 88.9909 | 87.8898 | 81.8781 | 80.6309 | 75.6639 | 39.6879         | 22.6737 | 8.55356 | 5.50891 |
| 305 | 5 BR  | D  | 89.94   | 91.05           | 90.1587 | 90.3258          | 90.0102          | 90.0314 | 88.9275 | 87.8083 | 81.4698 | 80.2634 | 75.001  | 38.4814         | 21.8468 | 8.2687  | 5.35403 |

G-19

~

| CBL          | Cnđ       | СМ       | 0.1     | 0.3              | 0.5     | 0.7     | 0.9     | FRE<br>1 | QUEN<br>5 | чсү (<br>10 | Hert<br>50 | z)<br>60 | 100     | 500         | 1000    | 3000    | 5000    |
|--------------|-----------|----------|---------|------------------|---------|---------|---------|----------|-----------|-------------|------------|----------|---------|-------------|---------|---------|---------|
| =====<br>305 | ===<br>WR | ===<br>D | 91.6961 | 90.222           | 90.0941 | 89.9868 | 90.1706 | 90.0822  | 88.9644   | 87.8095     | 81.5735    | 80.1801  | 75.169  | <br>38.7869 | 22.0847 | 8.39772 | 5.46297 |
| 305          | BE        | Ð        | 87.1735 | 89.5189          | 89.2725 | 89.6354 | 89.3765 | 89.1962  | 87.2675   | 84.9734     | 74.1229    | 72.307   | 64.6012 | 24.7607     | 13.3019 | 5.15002 | 3.49273 |
| 305          | WE        | D        | 86.1219 | 89.7083          | 89.3048 | 89.2386 | 89.5157 | 89.3206  | 87.5696   | 85,5551     | 75.5451    | 74.3238  | 66.6924 | 26.8999     | 14.6049 | 5.70271 | 3.88601 |
| 305          | RE        | D        | 87.2603 | 89.5318          | 89.3939 | 89.6251 | 89.3538 | 89.2729  | 87.3769   | 85.1074     | 74.4787    | 72.7579  | 65.0692 | 25.2487     | 13.5977 | 5.27806 | 3.58914 |
| 306          | вw        | D        | 93.0764 | 90.1714          | 89.8797 | 90.4395 | 89.8551 | 90.0945  | 88.9492   | 87.8747     | 81.8406    | 80.766   | 75.6593 | 38.9788     | 22.6629 | 8.49714 | 5.4465  |
| 306          | BR        | D        | 86.6546 | 90.1972          | 90.2334 | 89.7622 | 90.0749 | 89.9614  | 88.8265   | 87.7334     | 81.3367    | 79.8988  | 74.938  | 38.4241     | 21.7534 | 8.16753 | 5.26735 |
| 306          | WR        | D        | 93.0421 | 90.1937          | 90.1363 | 89.8495 | 90.0678 | 90.0759  | 88.9092   | 87.7551     | 81.4344    | 80.4116  | 75.1428 | 38.8132     | 22.0519 | 8.31341 | 5.37796 |
| 306          | BE        | D        | 93.3335 | 89.5601          | 89.8144 | 89.7085 | 89.25   | 89.2917  | 87.3467   | 85.136      | 74.5359    | 72.5967  | 65.013  | 24.9873     | 13.3723 | 5.10576 | 3.4388  |
| 306          | WE        | D        | 92.2072 | 89.5744          | 89.7677 | 89.3496 | 89.3259 | 89.4842  | 87.6404   | 85.7169     | 75.9719    | 74.2343  | 67.1558 | 27.2735     | 14.7308 | 5.66115 | 3.81495 |
| 306          | RE        | D        | 92.6659 | 89.6409          | 89.9634 | 89.1592 | 89.4497 | 89.2432  | 87.4073   | 85.2548     | 74.7135    | 73.2237  | 65.4449 | 25.4883     | 13.6525 | 5.21576 | 3.50618 |
| 312          | BW        | Е        | 90.0651 | 89.4406          | 89.1212 | 89.3648 | 89.7592 | 89.7959  | 88.7605   | 86.7367     | 77.8877    | 76.207   | 70.0874 | 31.2878     | 17.2558 | 6.67078 | 4.50246 |
| 313          | BW        | Е        | 93.6744 | 89. <b>997</b> 6 | 89.3735 | 89.6425 | 89.2143 | 89.1947  | 87.7558   | 86.2568     | 78.0658    | 76.6756  | 70.5392 | 32.9949     | 20.0942 | 10.4662 | 8.40854 |
| 314          | BW        | Е        | 89.9792 | 88.1939          | 87.9355 | 88.5193 | 88.3919 | 88.2418  | 89.5757   | 85.966      | 77.8986    | 76.3256  | 70.353  | 32.5327     | 19.2623 | 9.14616 | 6.75607 |
| 315          | BW        | E        | 98.8342 | 99.74            | 99.6139 | 99.4887 | 98.6261 | 98.2391  | 92.7275   | 89.8043     | 80.013     | 78.5382  | 72.3354 | 33.4406     | 18.4448 | 6.71698 | 4.18434 |
| 316          | BW        | E        | 94.0304 | 103.844          | 101.528 | 99.4605 | 98.1249 | 97.4404  | 90.7688   | 87.9263     | 78.5128    | 77.197   | 70.7098 | 31.629      | 17.2442 | 6.2007  | 3.8487  |
| 301          | BW        | F        | 85.4807 | 89.2989          | 88,9756 | 88.2396 | 88.0949 | 87.8063  | 85.071    | 84.071      | 79.8963    | 78.9351  | 74.4573 | 40.127      | 23.1159 | 8.64674 | 5.51944 |
| 302          | BW        | F        | 94.0571 | 91.0766          | 90.7921 | 90.4343 | 90.2306 | 90.0139  | 88.9704   | 87.8963     | 81.766     | 80.6373  | 75.6431 | 39.8341     | 22.7595 | 8.58339 | 5.55212 |
| 302          | BR        | F        | 94.1372 | 91.0791          | 91.0378 | 90.9176 | 90.8337 | 90.7104  | 89,5651   | 88.3082     | 81.6351    | 80.54    | 75.2328 | 38.9128     | 22.2735 | 8.71181 | 5.86988 |
| 302          | BE        | F        | 87.2698 | 89.515           | 89.6635 | 89.0348 | 89.1948 | 89.2018  | 87.2425   | 85.1601     | 74.8127    | 73.3357  | 65.6971 | 25.7571     | 13.7877 | 5.23787 | 3.52312 |
| 302          | WE        | F        | 87.5734 | 90.2069          | 90.132  | 89.8677 | 89.4981 | 89.5518  | 87.5901   | 85.6639     | 76.0149    | 74.4384  | 67.4316 | 27.607      | 14.9161 | 5.71347 | 3.86082 |
| 303          | BW        | F        | 88.7737 | 90.4667          | 90.6546 | 90.995  | 90.4115 | 90.1443  | 89.3628   | 88.2565     | 81,8493    | 80.722   | 75.5539 | 39.4685     | 23.272  | 9.03068 | 6.11316 |
| 303          | BR        | F        | 100.252 | 93.0577          | 92.2645 | 91.7661 | 91.6415 | 91.3941  | 89.7463   | 88.3504     | 81.6044    | 80.3686  | 75.0889 | 38.5229     | 22.0317 | 8.64365 | 5.81484 |
| 303          | BE        | F        | 78.1031 | 86.9929          | 88.09   | 88.4511 | 88.2405 | 88.2958  | 86.748    | 84.4257     | 73.2689    | 71.6571  | 63.631  | 24.4457     | 13.4652 | 5.69958 | 4.15328 |
| 303          | WE        | F        | 82.7391 | 89.5246          | 89.5047 | 89.32   | 89.1171 | 89.1924  | 87.1829   | 84.9923     | 74.5963    | 72.6343  | 65.5113 | 26.2355     | 14.5716 | 6.23218 | 4.57797 |
| 304          | BW        | F        | 88.6954 | 89.8932          | 89.9422 | 90.0389 | 90.2685 | 90.2347  | 89.3458   | 88.1654     | 81.7824    | 80.5883  | 75.4441 | 39.5        | 22.8097 | 8.99799 | 6.02994 |
| 304          | BR        | F        | 92.8131 | 90.4849          | 90.7245 | 90.2423 | 90.4539 | 90.5814  | 89.4294   | 88.178      | 81.4596    | 80.385   | 74.9673 | 38.4243     | 22.0118 | 8.70794 | 5.89401 |
| 304          | BE        | F        | 92.6268 | 89.3326          | 89.7079 | 89.378  | 89.2125 | 89.0244  | 86.8987   | 84.5076     | 73.3385    | 71.7019  | 63.7505 | 24.6777     | 13.642  | 5.74288 | 4.14423 |
| 304          | WE        | F        | 85.834  | 89.4647          | 89.5111 | 89.1275 | 89.2926 | 89.1484  | 87.179    | 85.0625     | 74.7766    | 73.2236  | 65.7859 | 26.7498     | 14.913  | 6.30061 | 4.54812 |
| 305          | BW        | F        | 85.5956 | 89.7649          | 89.7883 | 90.1285 | 89.975  | 89.8367  | 89.0202   | 87.9202     | 81.6912    | 80.5597  | 75.4375 | 39.5332     | 22.6325 | 8.6175  | 5.6173  |
| 305          | BR        | F        | 95.4776 | 93.1625          | 91.6579 | 91.4641 | 91.1808 | 91.0781  | 89.4274   | 88.1852     | 81.3951    | 80.1797  | 74.9265 | 38.3653     | 21.7965 | 8.29275 | 5.42183 |
| 305          | BE        | F        | 88.1608 | 89.2957          | 88.8084 | 88.9985 | 89.1625 | 89.0976  | 87.1509   | 84.9899     | 74.3076    | 72.6753  | 64.9569 | 25.1805     | 13.5533 | 5.26015 | 3.60597 |
| 305          | WE        | F        | 91.3329 | 88.9727          | 89.1173 | 88.8608 | 89.1041 | 89.0087  | 87.4486   | 85.4422     | 75.7364    | 74.2914  | 67.0491 | 27.4296     | 14.9076 | 5.81542 | 3.99346 |
| 306          | BW        | F        | 93.3779 | 89.9623          | 90.1512 | 89.9691 | 89.9255 | 90.023   | 89.2876   | 88.1784     | 81.8601    | 80.8272  | 75.6131 | 39.583      | 22.5989 | 8.53552 | 5.5199  |
| 306          | BR        | F        | 94.3788 | 90.3933          | 89.9581 | 89.8229 | 90.0622 | 89.9392  | 88.9732   | 87.8285     | 81.2605    | 80.1169  | 74.8028 | 38.2837     | 21.7448 | 8.3156  | 5.4799  |
| 306          | BE        | F        | 92.7706 | 89.525           | 89.6879 | 89.5647 | 89.2389 | 89.128   | 87.1579   | 84.9372     | 74.4928    | 72.9931  | 65.0282 | 25.2425     | 13.5661 | 5.25283 | 3.59752 |
| 306          | WE        | F        | 92.8866 | 89.5608          | 89.5246 | 89.6841 | 89.2285 | 89.1282  | 87.4577   | 85.5216     | 75.8439    | 74.0281  | 67.2033 | 27.5511     | 14.9764 | 5.83882 | 4.00648 |
| 307          | BW        | F        | 88.502  | 87.7487          | 88.4667 | 89.1845 | 89.2593 | 89.4755  | 89.3956   | 88.721      | 82.9884    | 81.6952  | 76.2416 | 39.6127     | 22.6024 | 8.55711 | 5.55736 |

|             |              |         |         |         |         | (       | pnase ang | e at vario | O ILE N      | actes of ap | H o r t | vonage) |         |         |         |         |         |
|-------------|--------------|---------|---------|---------|---------|---------|-----------|------------|--------------|-------------|---------|---------|---------|---------|---------|---------|---------|
| CBL         | Cnd          | СМ      | 0.1     | 0.3     | 0.5     | 0.7     | 0.9       | г к С<br>1 | Q U E I<br>5 | 10          | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
| ====<br>307 | ====<br>' BR | ==<br>F | 91 7833 | 89.5864 | 89.9515 | 90.1667 | 89.8102   | 89.9393    | 89.1568      | 88.0401     | 81.744  | 80.4785 | 75.4519 | 39.4423 | 22.668  | 8.8396  | 5.88546 |
| 307         | BE           | F       | 91 6661 | 89 0794 | 88,7552 | 88.6982 | 88.9671   | 88.886     | 87.1561      | 85.1888     | 75.0596 | 73.5603 | 66.0564 | 26.3006 | 14.201  | 5.49425 | 3.73599 |
| 307         | WF           | F       | 87 4032 | 88 5764 | 88 4636 | 88.9134 | 88.6997   | 88.7877    | 87.3626      | 85.584      | 76.3124 | 74.4201 | 67.8317 | 28.2114 | 15.3499 | 5.93515 | 4.03546 |
| 308         | RW           | F       | 88 4438 | 90.8537 | 90.9669 | 90.5832 | 90.4716   | 90.5571    | 89.3887      | 88.2534     | 82.1413 | 80.9693 | 76.0454 | 40.4723 | 23.4546 | 9.21271 | 6.12692 |
| 308         | BE           | F       | 87.9194 | 89.5443 | 89.116  | 89.1639 | 89.3013   | 89.1061    | 87.2324      | 85.1043     | 74.7151 | 73.1481 | 65.607  | 26.2651 | 14.4754 | 5.91679 | 4.15301 |
| 308         | WE           | -<br>F  | 86.0338 | 89.3491 | 89.4268 | 89.6059 | 89.1662   | 89.2162    | 87.4847      | 85,5708     | 75.9601 | 74.2152 | 67.4088 | 28.2345 | 15.6809 | 6.43456 | 4.52308 |
| 309         | RW           | F       | 89 5676 | 91.3604 | 91.0366 | 90.805  | 90.6868   | 90.7616    | 89,8624      | 89.0829     | 83.0793 | 81.8431 | 76.3222 | 39.6049 | 22.7751 | 8.9417  | 5.97797 |
| 309         | BE           | F       | 91 7253 | 89.5039 | 89.0631 | 89.2821 | 89.1047   | 89,1366    | 87.0811      | 84.8391     | 74.1462 | 72.6011 | 64.8458 | 25.4753 | 14.0188 | 5.82132 | 4.16072 |
| 309         | WE           | F       | 92,8187 | 89.3507 | 89.516  | 89.0453 | 89.1548   | 89.0117    | 87.2869      | 85.3353     | 75.4186 | 73.5522 | 66.6239 | 27.416  | 15.1924 | 6.29874 | 4.49645 |
| 310         | RW           | F       | 92 3311 | 91 1612 | 90.91   | 90.8794 | 91.1562   | 91.1431    | 90.1051      | 88.8792     | 82.4043 | 81.3309 | 76.151  | 40.3137 | 23.4141 | 9.42769 | 6.4402  |
| 310         | BE           | F       | 86 0944 | 89.3734 | 88.8612 | 88.9037 | 89.038    | 89.1374    | 86.8362      | 84.4769     | 73.2672 | 71.721  | 63.7174 | 24.7641 | 13.8213 | 6.05396 | 4.49463 |
| 310         | WE           | F       | 88 5909 | 89 3892 | 89.2649 | 89.5033 | 89.0915   | 88,9808    | 87.0484      | 84.8522     | 74.3872 | 72.7295 | 65.2714 | 26.349  | 14.8236 | 6.53153 | 4.87331 |
| 311         | RW           | F       | 92 2226 | 90.8894 | 90.867  | 90.6027 | 90.6737   | 90,5055    | 89.4785      | 88.3231     | 82.1174 | 80.9698 | 75.984  | 40.28   | 23.2276 | 9.02858 | 5.97838 |
| 311         | BE           | F       | 91.2166 | 89.3691 | 89.0564 | 89.4376 | 89.1197   | 89,0033    | 87.1715      | 85.0605     | 74.5279 | 72.9364 | 65.3063 | 25.8202 | 14.1411 | 5.73407 | 4.03607 |
| 311         | WE           | F       | 86.1211 | 89.4104 | 89.1863 | 89.1695 | 89.2626   | 89,1369    | 87.4496      | 85.467      | 75.6289 | 73.791  | 66.8771 | 27.5124 | 15.1901 | 6.19262 | 4.36975 |
| 312         | 2 BW         | F       | 81.3089 | 83.9861 | 84.9506 | 85.3959 | 86.1552   | 86.2953    | 87.0585      | 85.756      | 78.0587 | 76.7293 | 70.8111 | 33.0149 | 19.2042 | 8.81222 | 6.6633  |
| 313         | BW           | F       | 84.7797 | 88.0274 | 87.7156 | 88.1073 | 88.0595   | 88.1476    | 86.9163      | 85.4678     | 77.3508 | 76.1539 | 69.7417 | 32.1576 | 19.3889 | 10.1362 | 8.0566  |
| 314         | 4 BW         | F       | 72.773  | 81.9597 | 84.9212 | 86.0076 | 86.703    | 87.0349    | 88.5517      | 87.1702     | 78.6548 | 77.051  | 71.0393 | 33.0348 | 19.4461 | 9.03208 | 6.81815 |
| 315         | 5 BW         | F       | 87.7516 | 90.0208 | 90.0164 | 89.7959 | 89.8667   | 89.7314    | 86.808       | 84.9553     | 77.0619 | 75.7954 | 69.8266 | 31.7679 | 17.2391 | 5.9832  | 3.58849 |
| 316         | 5 BW         | F       | 41.2995 | 90.7033 | 89.1464 | 88.7264 | 88.477    | 88.1507    | 85.5648      | 83.7073     | 75.6989 | 74.4197 | 68.0295 | 29.8376 | 16.1155 | 5.69323 | 3.51841 |
| 301         | BW           | G       | 86.9431 | 87.7339 | 87.762  | 87.0174 | 86.8627   | 86.8587    | 84.9724      | 84.1399     | 79.6168 | 78.6993 | 74.0191 | 39.6177 | 22.773  | 8.55381 | 5.46953 |
| 302         | 2 BW         | G       | 94.0571 | 91.0766 | 90.7921 | 90.4343 | 90.2306   | 90.0139    | 88.9704      | 87.8963     | 81.766  | 80.6373 | 75.6431 | 39.8341 | 22.7595 | 8,58339 | 5.55212 |
| 302         | 2 BE         | G       | 79.9415 | 87.5809 | 87.4073 | 87.863  | 88.2025   | 88.2558    | 86.8903      | 84.7994     | 74.3932 | 72.8861 | 65.1769 | 25.4325 | 13.6601 | 5.29501 | 3.61396 |
| 302         | 2 WE         | G       | 85.6414 | 89.3215 | 89.0338 | 89.2488 | 89.1161   | 88.9863    | 87.3648      | 85.4569     | 75.652  | 74.1698 | 66.9639 | 27.3558 | 14.8278 | 5.777   | 3.94872 |
| 303         | 3 BW         | G       | 100.649 | 94.4151 | 93.1728 | 92.7756 | 91.9609   | 91.6727    | 89.4312      | 88.096      | 81.7004 | 80.4964 | 75.4553 | 39.3774 | 22.4346 | 8.49176 | 5.49525 |
| 303         | B BE         | G       | 87.3544 | 89.2925 | 89.2874 | 88.9586 | 89.078    | 88.8275    | 86.9043      | 84.7446     | 74.1966 | 72.5804 | 64.6645 | 25.0081 | 13.4414 | 5.24079 | 3.59123 |
| 303         | 3 WE         | G       | 90.4788 | 88.8287 | 89.2093 | 89.23   | 88.9632   | 88.7813    | 87.2009      | 85.2842     | 75.4731 | 73.8211 | 66.7104 | 27.1662 | 14.7499 | 5.79282 | 3.9765  |
| 304         | 4 BW         | G       | 91.1997 | 90.7357 | 90.3431 | 90.0492 | 90.323    | 90.3665    | 89.1499      | 87.9646     | 81.611  | 80.4303 | 75.3599 | 39.3127 | 22.4592 | 8.60397 | 5.62931 |
| 304         | 4 BE         | G       | 85.636  | 88.9542 | 88.7602 | 88.5535 | 88.7853   | 88.778     | 86.8302      | 84.5808     | 73.975  | 72.3157 | 64.3655 | 24.8025 | 13.3973 | 5.33485 | 3.72016 |
| 304         | 4 WE         | G       | 86.1831 | 89.0793 | 89.0062 | 88.9789 | 88.9718   | 88.8315    | 87.1667      | 85.1984     | 75.2192 | 73.6135 | 66.429  | 26.9433 | 14.7011 | 5.88587 | 4.1083  |
| 30:         | 5 BW         | G       | 85.2736 | 89.5691 | 89.4679 | 89.9597 | 89.6918   | 89.7098    | 88.8154      | 87.6994     | 81.584  | 80.4826 | 75.4309 | 39.4857 | 22.4913 | 8.45566 | 5.4323  |
| 30:         | 5 BE         | G       | 90.9478 | 89.1377 | 88.6708 | 88,9169 | 89.0081   | 88.8714    | 87.0171      | 84.8631     | 74.506  | 72.9006 | 65.0926 | 25.3082 | 13.5559 | 5.19417 | 3.50016 |
| 30:         | 5 WE         | G       | 87.9879 | 89.0951 | 88.6109 | 88.8885 | 88.9202   | 88.9778    | 87.3275      | 85.4516     | 75.8356 | 74.307  | 67.2316 | 27.5754 | 14.9161 | 5.74152 | 3.87481 |
| 30          | 6 BW         | G       | 91.4036 | 89.3138 | 89.6852 | 89.8082 | 89.7126   | 89.5992    | 88.88        | 87.7516     | 81.6879 | 80.444  | 75.5065 | 39.5866 | 22.6408 | 8.69095 | 5.70625 |
| 30          | 6 BE         | G       | 86.4229 | 90.5178 | 89.632  | 89.3612 | 88.9963   | 89.0202    | 86.9699      | 84.6769     | 74.0108 | 72.055  | 64.3778 | 24.9017 | 13.5047 | 5.45579 | 3.84909 |
| 30          | 6 WE         | G       | 92.5612 | 89.3498 | 89.4616 | 88.8836 | 89.1693   | 88.9456    | 87.2504      | 85.239      | 75.3208 | 73.96   | 66.5452 | 27.1255 | 14.8507 | 6.03245 | 4.2642  |
| 30          | 7 BW         | G       | 91.6497 | 90.1157 | 90.0488 | 89.8987 | 90.2283   | 90.0454    | 89.186       | 88.0153     | 81.946  | 80.8653 | 75.8975 | 40.441  | 23.418  | 9.21037 | 6.11426 |

.

### Table G.3 AC impedance measurements for specimens in test sequence 3 (phase angle at various frequencies of applied test voltage)

G-21

|     |      |    |                  |         |         |         |         | FRE     | QUE     | NСУ (   | Hert    | z )     |         |         |         |         |         |
|-----|------|----|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL | Cnđ  | CM | 0.1              | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
| 307 | BE   | G  | 87.7789          | 88.929  | 88.4567 | 88.5309 | 88.8413 | 88.6026 | 86.8804 | 84.7665 | 74.3913 | 72.8837 | 65.288  | 25.9604 | 14.2562 | 5.87119 | 4.1403  |
| 307 | WE   | G  | 84.011           | 88,7487 | 88.471  | 88.5618 | 88.8844 | 88.8951 | 87.2548 | 85.323  | 75.6414 | 73.8958 | 67.0194 | 27.8292 | 15.4225 | 6.38318 | 4.50895 |
| 308 | BW   | G  | 96.6918          | 94.6905 | 93.204  | 93.2101 | 92.714  | 92.68   | 89.9563 | 88.4365 | 82.1175 | 81.0228 | 76.0438 | 40.4747 | 23.4087 | 9.15465 | 6.04579 |
| 308 | BE   | G  | 92.1488          | 89.1241 | 88.7151 | 88.9732 | 88.8506 | 88.9391 | 87.0024 | 84.8627 | 74.4543 | 72.8546 | 65.2895 | 26.009  | 14.2722 | 5.82014 | 4.06666 |
| 308 | WE   | G  | 85.1971          | 88.7364 | 89.0565 | 89.0409 | 88.7817 | 88.853  | 87.2547 | 85.3661 | 75.7163 | 74.1386 | 67.0918 | 27.9627 | 15.4849 | 6.34876 | 4.44123 |
| 309 | BW   | G  | 94.0582          | 92.8466 | 92.269  | 91.6897 | 91.6778 | 91.3381 | 89.4776 | 88.1656 | 81.9181 | 80.8502 | 75.7823 | 40.1812 | 23.2421 | 9.13853 | 6.0766  |
| 309 | BE   | G  | 89.8782          | 89.2639 | 89.3215 | 89.4279 | 88.8871 | 88.9268 | 86.9064 | 84.718  | 74.1076 | 72.5718 | 64.8627 | 25.4884 | 13.9622 | 5.7639  | 4.09121 |
| 309 | WE   | G  | 90.5176          | 89.1366 | 88.8498 | 88.7364 | 88.8931 | 88.9885 | 87.2985 | 85.2131 | 75.3602 | 73.7914 | 66.5822 | 27.3077 | 15.0901 | 6.25976 | 4.45136 |
| 310 | BW   | G  | 84.3434          | 88.4635 | 89.579  | 89.7413 | 89.9311 | 90.1231 | 89.4766 | 88.3422 | 82.061  | 80.9613 | 75.925  | 40.2765 | 23.4427 | 9.50003 | 6.48758 |
| 310 | BE   | G  | 90.8126          | 89.114  | 89.1805 | 88.7742 | 88.8079 | 88.7145 | 86.6699 | 84.3066 | 73.1063 | 71.4443 | 63.4786 | 24.7479 | 13.9023 | 6.2196  | 4.6516  |
| 310 | WE   | G  | 82.614           | 87.919  | 88.1241 | 88.7005 | 88.4725 | 88.5195 | 86.8366 | 84.6787 | 74.1867 | 72.4874 | 65.0436 | 26.2448 | 14.8207 | 6.66458 | 4.98953 |
| 311 | BW   | G  | 94.8289          | 90.6147 | 90.3591 | 90.6281 | 90.4397 | 90.3641 | 89.2949 | 88.1103 | 81.9964 | 80.8329 | 75.8769 | 40.1797 | 23.2146 | 9.12676 | 6.07368 |
| 311 | BE   | G  | 89.0058          | 88.6519 | 88.6658 | 88.9268 | 88.7148 | 88.7891 | 86.9132 | 84.7035 | 74.1132 | 72.4995 | 64.8297 | 25.5651 | 14.0519 | 5.8329  | 4.15414 |
| 311 | WE   | G  | 87.9739          | 88.7351 | 88.7333 | 88.9257 | 88.741  | 88.7705 | 87.1412 | 85.1673 | 75.2238 | 73.4487 | 66.4216 | 27.2377 | 15.075  | 6.29268 | 4.49018 |
| 312 | BW   | G  | 79.4922          | 87.2023 | 87.2261 | 87.0148 | 86.8279 | 86.8495 | 85.6101 | 84.2257 | 76.5497 | 75.0876 | 69.0915 | 31.3113 | 17.6198 | 7.09108 | 4.83178 |
| 313 | BW   | G  | 84,6004          | 82.8603 | 84.5346 | 84.7983 | 84.9463 | 85.0791 | 85.0566 | 83.6966 | 75.8778 | 74.3256 | 68.4183 | 31.7364 | 18.9864 | 9.00243 | 6.43276 |
| 314 | BW   | G  | 84.386           | 85.2516 | 85.5042 | 85.9189 | 86.2252 | 85.9633 | 85.3293 | 84.0589 | 76.4897 | 75.0192 | 68.9519 | 31.1108 | 17.7517 | 7.81389 | 5.53241 |
| 315 | BW   | G  | 84,4257          | 86.3567 | 86.0972 | 85.9374 | 85.5091 | 85.2797 | 83.8183 | 82.41   | 74.8459 | 73.6435 | 67.5776 | 30.0597 | 16.1792 | 5.50604 | 3.21996 |
| 316 | BW   | G  | 100.026          | 92.2585 | 90.639  | 90.4711 | 89.6394 | 89.3154 | 85.4426 | 83.194  | 74.5806 | 73.2085 | 66.807  | 29.0738 | 15.6223 | 5.35545 | 3.15111 |
| 301 | BW   | Н  | 92,8682          | 89.2793 | 89.1058 | 88.7707 | 89.0157 | 88.8141 | 86.8375 | 84.694  | 74.0434 | 72.2856 | 64.4745 | 24.1492 | 12.8087 | 4.28019 | 2.6694  |
| 302 | BW   | H  | 94.1157          | 90.5587 | 90.4715 | 91.019  | 90.5961 | 90.5073 | 88.5709 | 86.9446 | 77.85   | 75.7899 | 68.1767 | 27.988  | 14.4799 | 5.43144 | 3.8163  |
| 302 | BE   | H  | 92.7275          | 89.4037 | 88.9182 | 89.2173 | 88.5901 | 88.6067 | 84.4382 | 80.0998 | 64.9811 | 62.565  | 53.0229 | 15.931  | 8.71373 | 3.74194 | 2.59976 |
| 302 | WE   | н  | 91.2879          | 89.2827 | 89.0798 | 88.6295 | 88.7495 | 88.6545 | 84.6801 | 80.4198 | 64.3073 | 61.3452 | 51.5372 | 14.9689 | 8.36234 | 3.48109 | 2.54802 |
| 303 | BW   | H  | 95.5498          | 90.9721 | 90.8744 | 90.1429 | 90.3505 | 90.2193 | 88.1261 | 86.1425 | 75.8608 | 74.9459 | 66.354  | 26.0838 | 13.9049 | 4.83675 | 3.18124 |
| 303 | BE   | H  | 85.7323          | 89.3675 | 88.8581 | 89.8508 | 88.6583 | 88.6649 | 84.4877 | 80.3509 | 63.5991 | 61.7466 | 51.2517 | 15.6617 | 8.01083 | 3.00208 | 2.04251 |
| 303 | WE   | Н  | 87.0846          | 89.226  | 89.052  | 88.6134 | 88.8446 | 88.5712 | 84.712  | 80.4246 | 63.8783 | 61.7257 | 51.9059 | 15.4625 | 8.09205 | 3.287   | 2.26422 |
| 304 | BW   | Н  | 87.9413          | 90.126  | 90.3189 | 90.1533 | 89.7698 | 89.7816 | 87.8759 | 85.835  | 75.8974 | 73.9581 | 66.5111 | 26.4385 | 14.3212 | 6.19862 | 4.9316  |
| 304 | BE   | Н  | 90.69 <b>2</b> 6 | 89.378  | 89.18   | 89.2491 | 88.9065 | 88.7756 | 85.0958 | 80.5742 | 63.4191 | 61.5734 | 52.0259 | 15.5381 | 9.03754 | 4.01382 | 3.70992 |
| 304 | WE   | H  | 93.1398          | 89.5096 | 88.9279 | 89.1658 | 88.813  | 88.7142 | 85.133  | 81.1196 | 65.4937 | 62.9132 | 52.8884 | 15.3066 | 8.63175 | 3.35908 | 2.44336 |
| 305 | BW   | н  | 95.3244          | 90.8201 | 90.5511 | 90.3955 | 90.1377 | 90.2484 | 87.4736 | 85.9565 | 76.3549 | 75.6162 | 65.9467 | 26.0407 | 13.9956 | 5.26611 | 3.50917 |
| 305 | BE   | Н  | 89.4115          | 90.0886 | 89.1359 | 89.0169 | 88.7207 | 88.7357 | 84.5119 | 80.4533 | 65.1982 | 64.5976 | 51.6672 | 15.3161 | 8.30714 | 3.21115 | 2.05151 |
| 305 | WE   | H  | 86.3221          | 89.3032 | 89.0572 | 88.6921 | 88.8857 | 88.721  | 84.8974 | 80.9321 | 65.0763 | 62.6132 | 52.2827 | 17.3833 | 8.14147 | 2.9683  | 1.86601 |
| 306 | BW   | H  | 88.5991          | 90.8215 | 91.0282 | 90.0391 | 90.3547 | 90.5634 | 87.5563 | 85.6889 | 74.9014 | 73.291  | 65.8505 | 24.8113 | 13.7175 | 4.63878 | 3.14928 |
| 306 | BE   | H  | 92.3573          | 89.5112 | 89.06   | 88.9078 | 88.6703 | 88.7021 | 84.8219 | 80.2684 | 63.7591 | 60.1963 | 51.5745 | 15.0564 | 8.31742 | 3.13243 | 1.57956 |
| 306 | WE   | H  | 88.8579          | 89.3708 | 89.2649 | 88.7415 | 89.3145 | 88.1902 | 84.8349 | 79.8403 | 63.0119 | 56.4998 | 50.6801 | 15.5899 | 6.94642 | 2.90257 | 1.93142 |
| 307 | BW - | Н  | 93.862           | 90.5033 | 90.2726 | 89.8075 | 90.0032 | 89.7994 | 87.7523 | 85.4176 | 74.5647 | 73.4344 | 65.0214 | 25.416  | 12.9127 | 4.73131 | 2.72903 |
| 307 | BE   | Н  | 92.0817          | 89.3147 | 88.7764 | 88.8761 | 88.7683 | 88.449  | 84.3415 | 79.9338 | 62.9871 | 60.407  | 50.1217 | 16.2755 | 7.85655 | 3.0463  | 1.91943 |

| ODI  | <b>a</b> 1 | ~  |         | 0.2     | 0.5     | 07      | 0.0     | 1       |         | 10      | 50      | <i>2</i> )<br>60 | 100     | 500     | 1000    | 3000    | 5000    |
|------|------------|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------------|---------|---------|---------|---------|---------|
| CBL  | Cnd        | СМ | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1       |         |         |         |                  |         |         |         |         |         |
| ==== |            | == |         |         |         |         |         |         | 04 2601 | 00 1604 | 42 2944 | 61 0719          | 50 6820 | 14 3731 | 7 52060 | 2 88632 | 1 80321 |
| 307  | WE         | н  | 93.111  | 89.2894 | 89.178  | 89.0875 | 88.8233 | 88.3920 | 64.3081 | 80.1084 | 03.3800 | 01.2718          | 50.002) | 14.5751 | 12 5004 | 5.00032 | 5.0(202 |
| 308  | BW         | Н  | 89.4394 | 91.0832 | 90.9334 | 90.7315 | 89.7621 | 90.0561 | 88.272  | 85.4288 | 73.9529 | 79.8801          | 65.2854 | 24.4624 | 13.5094 | 3.96274 | 3.06203 |
| 308  | BE         | н  | 90.9578 | 89.4012 | 89.0239 | 89.1028 | 88.5683 | 88.5431 | 84.4854 | 79.9173 | 62.8238 | 63.8958          | 49.8869 | 14.6351 | 8.00494 | 3.333   | 3.23672 |
| 308  | WE         | н  | 91.9601 | 89.4238 | 89.2825 | 88.9264 | 89.0235 | 88.6945 | 84.5162 | 80.1681 | 63.661  | 60.2219          | 50.9302 | 14.9164 | 8.85071 | 3.58517 | 2.81892 |
| 309  | BW         | Н  | 92.2992 | 90.8123 | 90.2178 | 90.5307 | 90.7978 | 90.1245 | 87.6411 | 85.6594 | 75.6195 | 72.745           | 65.8113 | 24.4125 | 13.7424 | 5.35614 | 3.93516 |
| 309  | BE         | н  | 88.4187 | 89.3019 | 89.2723 | 88.9475 | 88.9706 | 88.8495 | 83.8314 | 80.6325 | 64.2155 | 68.6326          | 51.652  | 16.6175 | 8.2137  | 3.52082 | 2.68064 |
| 309  | WE         | н  | 86.173  | 89.3502 | 89.3313 | 88.9376 | 88.8477 | 88.7383 | 84.7283 | 80.8622 | 64.7499 | 69.2362          | 52.3338 | 15.7016 | 8.6163  | 3.50194 | 2.29814 |
| 310  | BW         | H  | 100.511 | 93.4296 | 92.1762 | 91.6836 | 91.4896 | 91.1691 | 88.9359 | 86.1238 | 74.5771 | 83.1905          | 66.3791 | 25.5356 | 13.7104 | 4.86623 | 3.20932 |
| 310  | BE         | н  | 87.6133 | 89.155  | 89.0081 | 89.1878 | 88.7531 | 88.3213 | 83.9988 | 79.5326 | 62.9118 | 60.9259          | 50.5611 | 14.8637 | 7.86593 | 3.33194 | 2.16298 |
| 310  | WE         | н  | 85.6192 | 89.1367 | 88.8192 | 88.7324 | 88.6381 | 88.7001 | 84.6443 | 79.7409 | 63.2276 | 64.7867          | 50.7836 | 15.9043 | 7.56767 | 2.37804 | 2.78431 |
| 311  | BW         | н  | 86.9121 | 90.0468 | 89.6244 | 89.4646 | 89.7696 | 89.6447 | 87.6952 | 85.5953 | 75.2866 | 73.7206          | 66.1625 | 26.6203 | 14.6547 | 6.76178 | 5.18708 |
| 311  | BE         | н  | 93.0581 | 89.4639 | 88.9312 | 89.1109 | 88.9226 | 88.8167 | 84.8938 | 80.9992 | 64.7464 | 62.2321          | 52.7574 | 17.0005 | 8.88492 | 4.75946 | 4.24953 |
| 311  | WE         | Н  | 92.8433 | 89.377  | 89.4808 | 88.7375 | 88.9666 | 88.6399 | 85.1382 | 81.2263 | 65.4293 | 63.1282          | 53.3358 | 16.6407 | 8.79114 | 3.26375 | 2.3924  |
| 312  | BW         | Н  | 103.663 | 105.955 | 103.915 | 103.054 | 101.806 | 99.1734 | 93.7375 | 90.3247 | 75.9987 | 83.0657          | 64.1091 | 27.8491 | 17.2137 | 8.22654 | 6,77693 |
| 313  | BW         | Н  | 3.50173 | 9.53703 | 14.0522 | 18.3785 | 22.1321 | 24.3863 | 67.533  | 78.1013 | 74,7332 | 72.9139          | 65.6438 | 27.076  | 16,0584 | 8.05623 | 5.514   |
| 314  | BW         | Н  | 84.9238 | 91.9476 | 92.5493 | 93.0813 | 93.2343 | 93.2019 | 94.1775 | 93.4066 | 82.9981 | 80.8539          | 73.8027 | 33.2471 | 19.9646 | 10.6621 | 8.64056 |
| 315  | BW         | н  | 86.8094 | 88.7991 | 88.5232 | 88.5914 | 89.1489 | 88.6764 | 87.7957 | 86.4695 | 78.6467 | 77.8382          | 71.4984 | 32.7859 | 17.7435 | 6.11269 | 3.55376 |
| 316  | BW         | Н  | 86.3218 | 89.204  | 88.8662 | 89.058  | 88.8731 | 89.108  | 87.9079 | 86.5276 | 79.207  | 76.6616          | 71.7259 | 33.58   | 18.1959 | 6.331   | 3.74376 |

. .

|     |      |       |         |         |         |         |         | ,<br>FRE | QUEI    | VCY (   | Hert    | z)      |         |         |         |         |         |
|-----|------|-------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL | Cnd  | СМ    | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | 1        | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
| 401 | BW   | <br>A | 81.9685 | 87.4091 | 88.2027 | 88.6968 | 88.8769 | 88.7243  | 88.8813 | 88.2465 | 81.9969 | 82.2312 | 76.3782 | 41.2215 | 23.5242 | 8.26704 | 4.84173 |
| 401 | BR   | Α     | 85.3727 | 87.5253 | 88.5144 | 88.8758 | 88.9996 | 88.6638  | 88.8371 | 88.119  | 82.0619 | 79.1051 | 76.0923 | 40.5115 | 23.075  | 8.09144 | 4.73156 |
| 401 | WR   | Α     | 83.6053 | 87.6514 | 88,7596 | 88.9814 | 88.6507 | 88.7365  | 88.7056 | 87.8761 | 82.2051 | 80,9886 | 75.9671 | 40.6366 | 23.098  | 8.10568 | 4.76177 |
| 402 | RP   | Α     | 86.8295 | 90.0054 | 89.5759 | 89.6031 | 89.9101 | 89.91    | 89.12   | 87.9212 | 81.534  | 79.5548 | 75.1525 | 38.3211 | 21.5083 | 7.59024 | 4.50338 |
| 402 | PE   | Α     | 89.9355 | 89.0713 | 89.3323 | 89.3451 | 89.1253 | 88.9782  | 87.7007 | 86.1092 | 77.6955 | 76.2127 | 69.6505 | 30.0578 | 16.0726 | 5.54014 | 3.26375 |
| 402 | RE   | Α     | 85.8319 | 88.9486 | 88.6187 | 89.2866 | 88.939  | 89.0498  | 87.7143 | 86.1283 | 77.8777 | 76.3905 | 69.9493 | 30.4742 | 16.3283 | 5.6262  | 3.30733 |
| 403 | PE   | Α     | 87.313  | 89.187  | 89.349  | 89.3128 | 89.5076 | 89.3139  | 86.6064 | 87.4969 | 81.5122 | 89.1595 | 77.9899 | 46.9198 | 28.1252 | 10.5322 | 6.45282 |
| 404 | PR   | Α     | 88.7811 | 89.8491 | 90.4801 | 89.7573 | 90.0489 | 90.0513  | 89.0305 | 87.9118 | 81.2812 | 82.0139 | 75.109  | 38.211  | 21.4075 | 7.56235 | 4.4896  |
| 404 | PE   | Α     | 90.3165 | 88.9395 | 89.3234 | 89.0042 | 89.1366 | 88.994   | 87.7009 | 86.0789 | 77.6997 | 76.2311 | 69.6497 | 30.0468 | 16.0678 | 5.53785 | 3.26178 |
| 404 | RE   | Α     | 86.0966 | 88.9182 | 89.1416 | 88.9684 | 88.9994 | 88.9883  | 87.7158 | 86.0779 | 77.8611 | 76.402  | 69.9219 | 30.4413 | 16.3157 | 5.62193 | 3.30835 |
| 405 | RE   | Α     | 89.0333 | 87.7905 | 88.8251 | 88.397  | 88.4533 | 87.9131  | 89.2787 | 87.1961 | 82.919  | 69.9533 | 77.8591 | 46.3575 | 27.9926 | 10.4395 | 6.3775  |
| 406 | PR   | Α     | 88.6004 | 89.5414 | 89.4832 | 89.3001 | 89.2944 | 89.0652  | 86.5627 | 83.7581 | 70.8636 | 68.4338 | 59.9047 | 20.4812 | 10.5695 | 3.60219 | 2.11715 |
| 406 | PE   | Α     | 88.7416 | 88.765  | 89.0117 | 88.774  | 88.4772 | 88.4053  | 84.4672 | 80.127  | 63.2181 | 60.7142 | 50.4547 | 14.8032 | 7.50385 | 2.52574 | 1.47199 |
| 406 | RE   | Α     | 90.7393 | 88.6172 | 89.0891 | 88.8879 | 88.3953 | 88.3562  | 84.5791 | 80.364  | 63.7841 | 61.3004 | 51.1079 | 15.1353 | 7.67715 | 2.58274 | 1.50159 |
| 407 | BE   | Α     | 94.3528 | 89.1856 | 89.4435 | 89.4308 | 88.7591 | 89.2015  | 87.5104 | 86.9824 | 83.1284 | 80.2794 | 76.7348 | 42.9846 | 25.1918 | 9.25825 | 5.59228 |
| 408 | BW   | Α     | 91.1863 | 89.3038 | 89.2579 | 89.34   | 89.7338 | 89.6329  | 88.2535 | 87.4878 | 80.1197 | 78.3312 | 73.2716 | 35.2206 | 19.081  | 5.581   | 2.35083 |
| 408 | BR   | Α     | 85.8927 | 90.1172 | 89.7809 | 90.0808 | 90.0856 | 90.0941  | 89.0661 | 87.6672 | 80.3874 | 78.7021 | 73.3155 | 35.3251 | 18.9903 | 5.3459  | 2.07679 |
| 408 | WR   | Α     | 86.5619 | 89.8938 | 90.3301 | 89.7371 | 90.0763 | 90.0984  | 88.9531 | 87.6272 | 80.1621 | 78.4535 | 73.2839 | 35.1694 | 18.8845 | 5.29915 | 2.03411 |
| 409 | BE   | Α     | 88.1441 | 86,7077 | 86.9506 | 86.6226 | 86.3231 | 86.1433  | 84.2941 | 84.297  | 81.4663 | 77.0674 | 76.1169 | 44.0041 | 26.1699 | 9.58193 | 5.80329 |
| 410 | BW   | Α     | 81.7461 | 87.4983 | 87.6966 | 88.0283 | 88.4516 | 88.4081  | 86.8041 | 84.3926 | 72.7451 | 70.6902 | 62.3681 | 22.4697 | 11.6268 | 3.87403 | 2.20386 |
| 410 | BR   | Α     | 85.7324 | 87.5942 | 88.3597 | 88.5415 | 88.3371 | 88.4515  | 86.8067 | 84.2214 | 72.1734 | 70.8786 | 61.8223 | 21.973  | 11.367  | 3.7883  | 2.16196 |
| 410 | WR   | Α     | 89.3985 | 87.6874 | 88.6204 | 88.7316 | 88.5096 | 88.4373  | 86.6914 | 84.2558 | 72.37   | 70.9048 | 61.8592 | 22.0551 | 11.3903 | 3.8254  | 2.20728 |
| 411 | BW   | A     | 88.933  | 87.4292 | 87.7743 | 88.0871 | 88.3984 | 88.3383  | 86.8875 | 84.4528 | 73.0232 | 71.2548 | 62.7076 | 22.7694 | 11.7866 | 3.93102 | 2.22896 |
| 411 | BR   | Α     | 81.7968 | 87.3354 | 88.0327 | 88.3507 | 88.2355 | 88.4955  | 86.7917 | 84.3225 | 72.5041 | 70.2741 | 62.1876 | 22.3201 | 11.5476 | 3.8398  | 2.18812 |
| 411 | WR   | Α     | 86.8618 | 87,5675 | 87.8185 | 88.0253 | 88.4395 | 88.4523  | 86.8804 | 84.3291 | 72.6759 | 70.9297 | 62.3264 | 22.4432 | 11.6385 | 3.88494 | 2.22745 |
| 412 | RE   | Α     | 92.3281 | 89.0832 | 89.0408 | 88.0098 | 88.831  | 87.994   | 88.5089 | 87.3341 | 82.1895 | 78.5669 | 78.1569 | 46.4548 | 28.0861 | 10.5866 | 6.46058 |
| 413 | PR   | Α     | 90.1663 | 89.1141 | 88.9259 | 89.3027 | 89.1265 | 88.9591  | 87.6737 | 86.0081 | 77.5835 | 76.0865 | 69.4994 | 29.8697 | 15.9591 | 5.49969 | 3.23725 |
| 413 | PE   | Α     | 82.8842 | 88.4167 | 88.604  | 88.8424 | 88.8733 | 88.8192  | 87.6007 | 85.9667 | 77.5851 | 76.1645 | 69.5393 | 29.9325 | 16.0055 | 5.5226  | 3.257   |
| 413 | RE   | Α     | 88.0255 | 88.9306 | 88.7137 | 88.673  | 88.9239 | 88.9306  | 87.6355 | 86.0368 | 77.6543 | 76.105  | 69.6084 | 30.0491 | 16.0747 | 5.5423  | 3.26263 |
| 414 | RE   | Α     | 86.8421 | 88.084  | 87.981  | 87.9116 | 88.7938 | 87.2735  | 87.3076 | 86.7405 | 84.7004 | 66.736  | 78.462  | 47.096  | 28.3515 | 10.6792 | 6.52498 |
| 415 | PR   | Α     | 92.5847 | 89.4192 | 89.4295 | 89.3462 | 89.1796 | 89.0405  | 86.5669 | 83.7511 | 70.9613 | 68.9191 | 60.0839 | 20.6079 | 10.6076 | 3.61231 | 2.11898 |
| 415 | PE   | Α     | 90.843  | 88.5466 | 89.0122 | 88.5245 | 88.5032 | 88.2517  | 84.5718 | 80.4287 | 63.8199 | 61.3121 | 51.159  | 15.1629 | 7.69089 | 2.58779 | 1.50557 |
| 416 | PR   | Α     | 90.847  | 89.4148 | 89.1397 | 88.9999 | 89.0253 | 89.1006  | 86.4924 | 83.6593 | 70,7833 | 68.9156 | 59.8139 | 20.7063 | 10.7292 | 3.68952 | 2.17726 |
| 416 | PE   | A     | 89.6431 | 88.7885 | 88.9269 | 88.6767 | 88.5151 | 88.3286  | 84.4136 | 80.0819 | 63.0148 | 60.4759 | 50.2162 | 14.6861 | 7.44257 | 2.50535 | 1.46201 |
| 416 | RE   | Α     | 86.4757 | 88.7966 | 88.4266 | 88.7861 | 88.3212 | 88.3215  | 84.53   | 80.3148 | 63.5562 | 61.0448 | 50.8412 | 15.0032 | 7.60708 | 2.55906 | 1.48795 |
| 417 | BW   | A     | 89.4676 | 88.8958 | 89.4665 | 89.6725 | 89.7345 | 89.5621  | 88.9462 | 87.5015 | 80.1734 | 78.0432 | 73.0999 | 34.8638 | 18.7717 | 5.27843 | 2.08217 |
| 417 | BR · | A     | 93.295  | 90.111  | 90.0837 | 90.1588 | 90.0813 | 89.8744  | 89.1937 | 87.6718 | 80.121  | 78.0596 | 73.1332 | 35.0793 | 18.8077 | 5.2695  | 2.04291 |
| 417 | WR   | Α     | 87.8216 | 89.6333 | 89.4419 | 89.5932 | 89.7807 | 89.9523  | 88.9339 | 87.5684 | 80.1813 | 78.5835 | 73.0962 | 34.7773 | 18.6388 | 5.19064 | 1.97138 |

| Table G.4 AC impedance measurements for specimens in test sequ | ence 4 |
|----------------------------------------------------------------|--------|
| (phase angle at various frequencies of applied test voltage    | ;)     |

G-24

| F | R | Е | Q | U   | Е | N·C  | Y | ( H     | e | r | t | z | ) |
|---|---|---|---|-----|---|------|---|---------|---|---|---|---|---|
| • |   | ~ | ~ | · • | ~ | ** * | - | · · · · |   | • | • | - | / |

| CBL | Cnd   | CM | 0.1      | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
|-----|-------|----|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 418 | 3 PR  | A  | 84.9051  | 88.9106 | 88.432  | 88.4593 | 88.4407 | 88.3566 | 84.4505 | 80.1469 | 63.1604 | 60.6228 | 50.3893 | 14.7706 | 7.48564 | 2.5214  | 1.46324 |
| 418 | B PE  | Α  | 91.8185  | 88.9685 | 89.1369 | 88.8039 | 88.9296 | 88.9614 | 87.6771 | 86.0343 | 77.7218 | 76.2112 | 69.7203 | 30.1892 | 16.1575 | 5.5637  | 3.27584 |
| 418 | B RE  | Α  | 85.7671  | 89.7469 | 89.5412 | 89.6062 | 89.7242 | 89.8047 | 89.0497 | 87.7714 | 81.0433 | 78.7864 | 74.8622 | 38.0147 | 21.2969 | 7.5175  | 4.45731 |
| 403 | B PE  | D  | 85.1942  | 88.9899 | 89.5541 | 89.3735 | 89.5413 | 88.9831 | 89.2716 | 88.5375 | 84.3902 | 82.9414 | 79.0903 | 47.8264 | 28.8896 | 10.8316 | 6.684   |
| 404 | I PR  | D  | 88.829   | 88.7662 | 88.6825 | 88.7002 | 89.0666 | 89.0141 | 88.2937 | 86.7335 | 78.6014 | 82.2331 | 71.3439 | 33.1409 | 18.4573 | 7.05356 | 4.61094 |
| 404 | I PE  | D  | 88.6212  | 87.1359 | 88.0161 | 88.0584 | 87.9841 | 87.8566 | 85.948  | 84.1551 | 72.8241 | 70.7125 | 63.0226 | 23.3609 | 12.6648 | 4.97112 | 3.42561 |
| 405 | 5 RE  | D  | 81.5549  | 86.2606 | 87.4203 | 87.7942 | 87.4834 | 88.2069 | 88.8271 | 87.9465 | 82.9803 | 80.6794 | 77.5569 | 43.5499 | 25.4501 | 9.45004 | 5.82578 |
| 406 | 5 PR  | D  | 91.4737  | 88.1999 | 88.7043 | 88.4705 | 88.234  | 88.2525 | 86.1476 | 83.3356 | 70.9175 | 67.934  | 59.6947 | 20.5164 | 10.7464 | 3.90574 | 2.51498 |
| 406 | 5 PE  | D  | 87.6424  | 87.5578 | 88.0866 | 87.7582 | 87.5543 | 87.4379 | 83.2596 | 78.3272 | 60.0796 | 58.1283 | 47.004  | 13.4951 | 7.09608 | 2.65218 | 1.75563 |
| 407 | 7 BE  | Е  | 91.1853  | 89.5836 | 89.1366 | 89.2189 | 89.0541 | 89.5353 | 89.1084 | 88.1254 | 82.9791 | 81.6443 | 77.2896 | 43.3117 | 25.1889 | 9.17052 | 5.58281 |
| 408 | B BW  | Е  | 83,4316  | 87.517  | 88.3913 | 88.4558 | 87.9527 | 88.762  | 87.5456 | 85.8972 | 78.1207 | 73.3771 | 69.8129 | 31.0734 | 16.8171 | 5.62672 | 3.06316 |
| 408 | B BE  | Е  | 88.9763  | 86.7197 | 86.5128 | 86.8189 | 87.2211 | 87.2056 | 86.9379 | 85.7541 | 79.9187 | 77.6347 | 73.9677 | 38.5787 | 21.676  | 7.1617  | 3.85221 |
| 409 | ) BE  | Е  | 91.4025  | 90.0277 | 89.5578 | 89.2785 | 89.4532 | 89.5797 | 88.9705 | 87.9635 | 81.4841 | 82.9806 | 75.777  | 39.5347 | 22.4562 | 8.20196 | 5.07554 |
| 410 | ) BW  | Ε  | 82.2846  | 83.7056 | 83.2655 | 83.4707 | 83.8978 | 83.9541 | 83.5746 | 82.0374 | 72.3253 | 70.027  | 62.7188 | 23.5627 | 12.4206 | 4.41259 | 2.70504 |
| 410 | ) BE  | Е  | 77.5085  | 77.1241 | 81.0984 | 81.5695 | 82.3128 | 82.5473 | 83.6044 | 83.1136 | 77.6957 | 75.6624 | 71.1728 | 35.0479 | 19.4365 | 6.96071 | 4.28469 |
| 41  | I BW  | Е  | 83.5418  | 82.993  | 84.149  | 83.8728 | 83.6166 | 83.9195 | 83.6252 | 82.1618 | 71.9141 | 70.814  | 62.5856 | 23.5315 | 12.387  | 4.40351 | 2.74185 |
| 41  | I BE  | Е  | 82.2465  | 82.4342 | 83.5823 | 83.7066 | 84.2059 | 84.3525 | 84.9815 | 84.2189 | 78.2945 | 75.1092 | 71.8435 | 35.2517 | 19.5867 | 6.99405 | 4.33927 |
| 412 | 2 RE  | Ε  | 90.5445  | 88.7299 | 88.4933 | 88.8346 | 89.0397 | 89.4181 | 89.0441 | 88.0818 | 82.5901 | 81.6569 | 77.7677 | 44.6972 | 26.3838 | 9.75374 | 5.98625 |
| 413 | 3 PR  | E  | 84.9241  | 87.4468 | 88.0948 | 87.9242 | 88.0952 | 87.9794 | 87.4145 | 86.2302 | 78.1344 | 81.2786 | 70.9715 | 32.4321 | 17.9234 | 6.6557  | 4.29267 |
| 413 | B PE  | Ε  | 81.6554  | 81.2108 | 83.9957 | 85.021  | 85.2021 | 85.7025 | 87.0735 | 86.5484 | 81.7164 | 80.2403 | 76.1341 | 41.8427 | 24.1634 | 8.66577 | 5.19994 |
| 414 | 4 *RE | E  | 91.1436  | 88.3786 | 88.9921 | 88.035  | 89.2839 | 89.3448 | 89.1566 | 88.1172 | 82.6209 | 81.0031 | 77.4644 | 43.3679 | 25.3721 | 9.41087 | 5.84186 |
| 415 | 5 PR  | E. | 87.6394  | 87.9351 | 88.014  | 88.206  | 88.2201 | 88.2122 | 86.2047 | 83.2986 | 70.4183 | 68.7242 | 59.5965 | 20.438  | 10.6334 | 3.81851 | 2.42112 |
| 41  | 5 PE  | Ε  | 81.0263  | 80.7965 | 83.9434 | 85.1788 | 85.9472 | 86.0396 | 86,5633 | 85.8125 | 79.9011 | 77.2143 | 73.0953 | 36.0348 | 20.1035 | 7.1407  | 4.35365 |
| 416 | 5 PR  | Е  | 91.1463  | 88.0773 | 88.2927 | 88.1611 | 88.3989 | 88.4256 | 86.2893 | 83,3838 | 70.7219 | 68.8778 | 59.7247 | 20.5449 | 10.7206 | 3.82285 | 2.44029 |
| 410 | 5 PE  | E  | 75.9819  | 82.4216 | 83.9954 | 84.7296 | 82.1842 | 84.9015 | 86.3166 | 85.4171 | 79.481  | 76.8201 | 72.5857 | 35.3985 | 19.7077 | 7.03135 | 4.32674 |
| 40  | I BW  | H  | 10.6943  | 27.5796 | 39.051  | 46.8059 | 51.422  | 53.206  | 75.0106 | 78.9538 | 74.7341 | 71.9108 | 66.505  | 27.2608 | 14.5144 | 4.89659 | 2.81418 |
| 40  | I BE  | H  | 81.5403  | 77.0396 | 76.0108 | 73.0714 | 72.5825 | 72.4507 | 77.7352 | 79.3779 | 74.8246 | 71.0055 | 67.6903 | 29.8722 | 15.9588 | 5.12115 | 2.75771 |
| 40  | 1 WE  | H  | 81.164   | 73.998  | 74.89   | 77.4849 | 78.9476 | 79.3544 | 84.3015 | 83.1794 | 76.6312 | 76.552  | 68.982  | 31.2528 | 16.7472 | 5.43086 | 2.93879 |
| 402 | 2 RP  | H  | 92.0109  | 89.3354 | 89.6733 | 89.3444 | 89.2842 | 89.3051 | 87.8098 | 86.0886 | 77.1349 | 75.0353 | 68.7239 | 29.0309 | 15.4679 | 5.33306 | 3.17053 |
| 402 | 2 PE  | Н  | 87.1968  | 86.8254 | 98.0958 | 87.1582 | 87.139  | 91.8831 | 86,3023 | 84.8616 | 77.4908 | 75.5069 | 70.9083 | 33.5552 | 18.394  | 6.38994 | 3.73393 |
| 403 | 2 RE  | Н  | 82.0762  | 86.2886 | 87.221  | 87.3832 | 87.3792 | 87.4064 | 86.5498 | 85.2384 | 78.5007 | 76.9975 | 71.4168 | 33.9576 | 18.5513 | 6.45854 | 3.79007 |
| 403 | 3 PE  | Н  | 94.3359  | 94.5077 | 88.4003 | 88.7757 | 87.6954 | 91.8837 | 87.6732 | 86.5278 | 81.4678 | 77.6044 | 76.8583 | 44.6053 | 26.4965 | 9.68244 | 5.84489 |
| 404 | 4 PR  | Н  | 110.349  | 88.9442 | 88.806  | 89.2739 | 88.884  | 89.0273 | 87.3294 | 85.328  | 76.2421 | 74.0409 | 67.613  | 27.9469 | 14.8799 | 5.1152  | 2.9974  |
| 404 | 4 PE  | Н  | 73.8703  | 81.379  | 83.3268 | 83.9152 | 84.5792 | 84.6622 | 84.5795 | 83.2879 | 76.2791 | 75.4813 | 69.374  | 31.3993 | 16.9833 | 5.77622 | 3.28421 |
| 40  | 4 RE  | Н  | 141.069  | 81,1679 | 82.4326 | 84.1453 | 84.2681 | 84.6147 | 84.4972 | 83.092  | 76.2084 | 74.9012 | 69.2548 | 31.3314 | 16.9309 | 5.72856 | 3.26982 |
| 40. | 5 RE  | н  | 0.241971 | 85.5864 | 86.1823 | 86.8007 | 87.205  | 87.0663 | 86.3284 | 85.3819 | 80.3095 | 76.9631 | 74.1856 | 39.5555 | 22.8391 | 8.09494 | 4.79307 |
| 40  | 6 PR  | Η  | 87.3922  | 90.9283 | 89.0906 | 89.4601 | 89.0027 | 89.016  | 86.3712 | 83.5394 | 70.891  | 68.8447 | 60.0153 | 20.7982 | 10.6579 | 3.5698  | 2.06097 |
| 40  | 6 PE  | Н  | 86.3238  | 85.594  | 87.5984 | 88.0276 | 87.5189 | 87.4269 | 82.769  | 77.8625 | 60.0491 | 57.632  | 47.2109 | 13.4902 | 6.83025 | 2.20336 | 1.25149 |

.

.

|     |     |    |         |         |         | (       | phase ang | le at vario | ous freque | ncies of ap | plied test | voltage) |         |         |         |         |         |
|-----|-----|----|---------|---------|---------|---------|-----------|-------------|------------|-------------|------------|----------|---------|---------|---------|---------|---------|
|     |     |    |         |         |         |         |           | FRE         | QUEN       | чсү (       | Hert       | z )      |         |         |         |         |         |
| CBL | Cnd | СМ | 0.1     | 0.3     | 0.5     | 0.7     | 0.9       | 1           | 5          | 10          | 50         | 60       | 100     | 500     | 1000    | 3000    | 5000    |
| 406 | RE  | H  | 86.2115 | 88.3991 | 87.9897 | 87.6973 | 87.8157   | 87.6074     | 82.8377    | 77.8303     | 59.6691    | 57.2983  | 46.699  | 13.2949 | 6.70265 | 2.17401 | 1.23651 |
| 407 | BE  | Н  | 83.7737 | 81.9892 | 84.8625 | 85.7883 | 86.8662   | 87.1586     | 86.7548    | 84.9419     | 80.1056    | 77.125   | 75.0559 | 40.6306 | 23.2488 | 8.29651 | 4.95983 |
| 408 | BW  | Н  | 83.6595 | 75.0351 | 72.1771 | 71.3096 | 72.3797   | 73.3259     | 82.8395    | 82.7965     | 73.9619    | 72.5768  | 64.8035 | 25.1718 | 13.1524 | 4.30256 | 2.46105 |
| 408 | BE  | н  | 24.112  | 45.5891 | 53.781  | 59.3665 | 63.7134   | 65.898      | 78.9658    | 79.3869     | 72.0711    | 69.8719  | 64.0097 | 26.7965 | 14.3172 | 4.35498 | 2.15546 |
| 408 | RE  | Н  | 74.2676 | 76,7982 | 79.0822 | 79.9778 | 80.9809   | 81.208      | 82.5692    | 80.9288     | 72.4376    | 69.0258  | 64.149  | 26.6501 | 14.0812 | 4.33863 | 2.13202 |
| 409 | BE  | Н  | 77.8736 | 85.5001 | 86.8451 | 85.975  | 85.9152   | 84.5403     | 86.4891    | 85.4701     | 79.9333    | 71.3825  | 73.6189 | 36.2873 | 20.2499 | 7.16922 | 4.26903 |
| 410 | BW  | Н  | 90.8543 | 89.0738 | 90.2655 | 90.3678 | 90.12     | 89.7813     | 86.9252    | 83.8688     | 70.3198    | 67.5582  | 59.2191 | 20.0101 | 10.2777 | 3.4771  | 2.01231 |
| 410 | BE  | Н  | 72.229  | 84.05   | 82.7136 | 82.0935 | 81.3401   | 83.0014     | 77.4043    | 73.7282     | 61.3316    | 59.62    | 51.6719 | 18.0092 | 9.23106 | 2.66029 | 1.16194 |
| 411 | BW  | н  | 84.4679 | 74.4099 | 70.8183 | 70.4158 | 72.5808   | 73.8557     | 82.6689    | 81.4545     | 69.3886    | 68.3009  | 58.3432 | 19.514  | 10.0338 | 3.33216 | 1.93162 |
| 411 | BE  | Н  | 5.42649 | 19.6941 | 28.5699 | 43.0971 | 47.8131   | 51.1293     | 63.9113    | 64.1247     | 59.0448    | 59.2215  | 50.8063 | 18.3719 | 9.57705 | 2.79476 | 1.38237 |
| 412 | RE  | Н  | 22.4359 | 80.4659 | 82.3169 | 82.8018 | 81.6723   | 83.0923     | 84.3396    | 83.9856     | 80.9169    | 88.3136  | 72.4739 | 37.4433 | 22.1313 | 7.68788 | 4.6765  |
| 413 | PR  | Н  | 92.075  | 90.629  | 90.0395 | 90.1372 | 89.6483   | 89.4997     | 87.2177    | 84.9375     | 74.6811    | 72.9796  | 65.2637 | 25.4168 | 13.369  | 4.53391 | 2.64079 |
| 413 | PE  | Н  | 69.3985 | 68.2572 | 70.0024 | 70.7285 | 72.2069   | 79.5582     | 78.9761    | 78.0988     | 73.1421    | 71.2318  | 66.6882 | 30.7733 | 16.5562 | 5.44814 | 3.01051 |
| 413 | RE  | Н  | 72.2458 | 69.0142 | 69.5583 | 71.6059 | 73.0251   | 76.7558     | 79.2598    | 78.5502     | 73.4034    | 70.6452  | 67.1987 | 30.956  | 16.7814 | 5.50903 | 3.05491 |
| 414 | RE  | Н  | 78.732  | 81.5772 | 84.5546 | 83.7576 | 83.2742   | 84.2118     | 84.1474    | 83.3159     | 78.4785    | 69.5695  | 73.6407 | 39.3798 | 22.3594 | 7.91967 | 4.65202 |
| 415 | PR  | Н  | 78.9915 | 93.7308 | 89.3619 | 89.0203 | 88.9537   | 88.5525     | 85.7011    | 82.5024     | 68.9645    | 66.3622  | 57.6639 | 19.1839 | 9.8508  | 3.27717 | 1.89937 |
| 415 | PE  | H  | 82.9146 | 87.6747 | 87.0269 | 87.1849 | 86.786    | 86.7278     | 81.0203    | 75.4634     | 56.3609    | 54.1098  | 43.435  | 11.961  | 6.06896 | 1.96226 | 1.0929  |
| 415 | RE  | Н  | 88.4168 | 87.8342 | 87.9527 | 87.9405 | 87.5105   | 87.4554     | 82.2733    | 76.8347     | 58.1624    | 55.8366  | 45.1165 | 12.5754 | 6.34745 | 2.09186 | 1.19393 |
| 416 | PR  | H  | 89.2727 | 89.4297 | 88.9814 | 89.1924 | 91.0006   | 89.0068     | 86.036     | 82.7208     | 69.0271    | 65.975   | 57.6457 | 19.2007 | 9.8877  | 3.29048 | 1.88801 |
| 416 | PE  | Н  | 84.7606 | 89.227  | 87.8452 | 86.9222 | 86.9919   | 86.6534     | 81.016     | 75.3626     | 56.2744    | 53.4018  | 43.4055 | 11.9822 | 6.0166  | 1.96174 | 1.09324 |
| 416 | RE  | H  | 89.856  | 88.9593 | 89.3899 | 88.0504 | 87.6599   | 87.4972     | 82.2985    | 76.9188     | 58.0093    | 55.7889  | 45.0855 | 12.5292 | 6.33711 | 2.1015  | 1.18437 |

 Table G.4 AC impedance measurements for specimens in test sequence 4 (phase angle at various frequencies of applied test voltage)

| CBL | Cnd          | СМ      | 0.1     | 0.3     | 0.5     | 0.7     | 0.9     | FRE<br>1 | QUET<br>5 | 10 VCY ( | Hert<br>50 | z)<br>60 | 100     | 500     | 1000    | 3000           | 5000    |
|-----|--------------|---------|---------|---------|---------|---------|---------|----------|-----------|----------|------------|----------|---------|---------|---------|----------------|---------|
|     | ====<br>1 BE | ==<br>A | 90.1586 | 88.8895 | 89.6479 | 89.1016 | 88.2388 | 89.4886  |           | 87.2832  | 80.8044    |          | 76.2799 | 42.8027 | 25.0819 | 9. <b>2</b> 61 | 5.61373 |
| 50  | 2 BW         | A       | 87.2832 | 89,5064 | 90.0151 | 89.6919 | 89.6734 | 89.8382  | 88.6811   | 87.7001  | 80.647     | 78.8364  | 74.1306 | 36.5316 | 20.2868 | 7.14856        | 4.27246 |
| 50  | 2 BE         | A       | 91.2061 | 88.7909 | 89.3807 | 89.2767 | 88.7612 | 88.6958  | 87.0693   | 85.2399  | 75.5768    | 72.7524  | 66.7619 | 26.8731 | 14.272  | 4.95798        | 2.97188 |
| 50  | 2 WE         | A       | 87.5845 | 88.5707 | 88.6858 | 88.7691 | 88.7291 | 88.7225  | 86.9148   | 84.9556  | 75.215     | 74.5117  | 65.6701 | 25.8386 | 13.6327 | 4.71371        | 2.80843 |
| 50  | 3 BW         | A       | 84.3308 | 86.9858 | 87.0778 | 87.5888 | 88.164  | 88.1621  | 88.9262   | 88.1431  | 82.4534    | 82.8973  | 76.2443 | 40.9566 | 23.3891 | 8,21034        | 4.80882 |
| 50  | 3 BR         | A       | 81.088  | 86.9548 | 87.8478 | 88.3893 | 88.4833 | 88.353   | 88.9553   | 88.1399  | 81.752     | 81.7551  | 75.9106 | 40.41   | 22.947  | 8.0369         | 4.69827 |
| 50  | 3 WR         | A       | 83.5398 | 87.3169 | 87.5272 | 87.978  | 88.5175 | 88,7558  | 89.1614   | 88.1528  | 82.3252    | 80.1352  | 76.2291 | 40.5779 | 23.1405 | 8,1393         | 4.78065 |
| 50  | 4 BE         | A       | 85.8136 | 139.229 | 89.0253 | 88.9655 | 88.7563 | 88.8528  | 88.581    | 86.8465  | 82.6758    | 71.0882  | 76.5109 | 43.5448 | 25.6632 | 9.46437        | 5.78841 |
| 50  | 5 BE         | A       | 88.5386 | 89.2661 | 88.8928 | 88.9247 | 89.1102 | 89.5071  | 87.0072   | 86.9847  | 82.8841    | 75.276   | 76.5968 | 42.498  | 24.8021 | 9.0831         | 5.52752 |
| 50  | 6 BW         | A       | 90.8071 | 89.4981 | 89.6382 | 89,6397 | 89.8171 | 89.7463  | 88.9955   | 87.6882  | 80.9229    | 79.2535  | 74.1891 | 36.6235 | 20.3524 | 7.19117        | 4.27804 |
| 50  | 6 BE         | A       | 86.8965 | 88.8121 | 88.9176 | 88.9171 | 88,8526 | 88.9005  | 87.1496   | 85.2414  | 75.9389    | 73,3626  | 66.8121 | 26.8577 | 14.2111 | 4.93678        | 2.9641  |
| 50  | 6 WE         | A       | 85.487  | 88.6128 | 89.1422 | 88.7033 | 88.7067 | 88.7525  | 87.0015   | 84.9518  | 75.0187    | 74.7047  | 65.7163 | 25.665  | 13.5106 | 4.65699        | 2.7925  |
| 50  | 7 BW         | A       | 91.052  | 90.0399 | 89.8309 | 89.8753 | 89.9184 | 89.8927  | 89.0159   | 87.7895  | 80.9597    | 78.9892  | 74.1833 | 36.6069 | 20.3323 | 7.16096        | 4.28396 |
| 50  | 7 BE         | A       | 86.6996 | 88,7696 | 89.2674 | 89.2483 | 89.0837 | 88.7773  | 87.3286   | 85.1882  | 75.6939    | 72.7094  | 66.6224 | 26.7029 | 14.1679 | 4.93081        | 2.94385 |
| 50  | 7 WE         | A       | 84.1941 | 88,4308 | 88.5301 | 88.5616 | 88.793  | 88.9401  | 86.9867   | 84.8792  | 74.8998    | 74.3779  | 65.6603 | 25.7287 | 13.576  | 4.66649        | 2.79988 |
| 50  | 8 BW         | A       | 90.8536 | 86.9071 | 88.043  | 87.9343 | 88.1213 | 88.349   | 88.8939   | 88.1331  | 82.2112    | 79.7731  | 76.2095 | 40.9198 | 23.3204 | 8.19296        | 4.79826 |
| 50  | 8 BR         | A       | 87.54   | 86.9776 | 87.1549 | 87.8798 | 88.5092 | 88.3619  | 88.8119   | 88.0014  | 81.8846    | 82.0947  | 76.0544 | 40.5875 | 23.059  | 8.09302        | 4.71686 |
| 50  | 8 WR         | A       | 88.0006 | 86.9894 | 87.843  | 88.2528 | 88.4445 | 88.702   | 88.9874   | 88.0724  | 82.3611    | 82.754   | 76.0744 | 40.7681 | 23.2078 | 8.16446        | 4.78743 |
| 50  | 9 BW         | A       | 88.0399 | 87.0936 | 87.3755 | 88.2398 | 88.1425 | 88.3948  | 88.9811   | 88.1219  | 82.0011    | 80.684   | 76.3225 | 40.9482 | 23.4013 | 8.23237        | 4.80946 |
| 50  | 9 BR         | A       | 87.7402 | 87.1985 | 88.294  | 87.9084 | 88.5933 | 88.2708  | 88.9463   | 88.0105  | 82.017     | 80.9989  | 75.9526 | 40.4931 | 23.0185 | 8.07284        | 4.71805 |
| 50  | 9 WR         | А       | 81.5904 | 87.2977 | 88.1598 | 88.6777 | 88.2819 | 88.5589  | 88.7588   | 88.0908  | 81.9158    | 80.0502  | 76.161  | 40.6815 | 23.1695 | 8.14858        | 4.77374 |
| 51  | 0 BE         | A       | 91.1619 | 88.9988 | 88.7836 | 89.1319 | 89.1771 | 89.6719  | 88.0076   | 86.8128  | 82.3777    | 86.3915  | 76.4795 | 43.5918 | 25.5547 | 9.4594         | 5.76192 |
| 51  | 1 BE         | A       | 92.8653 | 89.263  | 89.5615 | 89.3385 | 89.1379 | 88.7398  | 87.9883   | 86.8911  | 83.0832    | 75.9454  | 76.2234 | 42.6726 | 24.8828 | 9.19214        | 5.63635 |
| 51  | 2 BE         | А       | 90.3829 | 89.1075 | 88.3222 | 88.7561 | 89.2394 | 88.7513  | 86.8209   | 86.9689  | 81.9234    | 74.719   | 76.4428 | 43.5185 | 25.298  | 9.41829        | 5.71258 |
| 51  | 3 BW         | Α       | 90.8666 | 89.5796 | 89.7752 | 89.8145 | 89.8992 | 89.484   | 89.1      | 87.6573  | 80.8774    | 78.7776  | 74.0103 | 36.4322 | 20.2122 | 7.11384        | 4.23439 |
| 51  | 3 BE         | Α       | 91.8819 | 88.9788 | 88.8633 | 89.3133 | 88.9487 | 88.9798  | 87.1257   | 85.3145  | 75.41      | 74.1056  | 66.5763 | 26.6034 | 14.1043 | 4.88081        | 2.92529 |
| 51  | 3 WE         | Α       | 87.6752 | 88.6376 | 89.1817 | 89.13   | 88.8741 | 88.6208  | 87.0608   | 84.9396  | 74.8225    | 71.6554  | 65.5095 | 25.5597 | 13.4068 | 4.63414        | 2.75479 |
| 51  | 4 BW         | Α       | 85.9791 | 89.4404 | 89.2234 | 89.3057 | 89.6336 | 89.6895  | 88.9359   | 87.6808  | 80.6583    | 78.5528  | 74.0622 | 36.3357 | 20.1483 | 7.07919        | 4.22115 |
| 51  | 4 BE         | Α       | 84.6573 | 88.7588 | 89.2771 | 89.2137 | 88.9322 | 88.6894  | 87.2453   | 85.2015  | 75.5618    | 72.3108  | 66.541  | 26.5566 | 14.0147 | 4.85926        | 2.9167  |
| 51  | 4 WE         | Α       | 84.6246 | 88.7528 | 88.5351 | 88.5551 | 88.8355 | 88.7869  | 86.9228   | 84.9083  | 74.7884    | 74.42    | 65.3924 | 25.4619 | 13.3563 | 4.60149        | 2.73836 |
| 51  | 5 BW         | Α       | 88.7258 | 87.1511 | 88.0069 | 87.9897 | 88.2671 | 88.486   | 88.9917   | 88.1608  | 82.5056    | 83.5352  | 76.3194 | 40.9298 | 23.3418 | 8.18559        | 4.7915  |
| 51  | 5 BR         | Α       | 88.5763 | 87.1242 | 87.9142 | 88.2391 | 88.5068 | 88.6843  | 88.63     | 88.0497  | 81.6749    | 81.7853  | 76.0544 | 40.3737 | 22.938  | 8.04599        | 4.70109 |
| 51  | 5 WR         | Α       | 88.9245 | 87.314  | 87.8125 | 88.0177 | 88.4213 | 88,5207  | 88.8864   | 87.9903  | 81.8556    | 80.3975  | 76.0526 | 40.4628 | 23.07   | 8.09479        | 4.73833 |
| 51  | 6 BW         | Α       | 82.5545 | 87.0715 | 87.9262 | 87.4269 | 88.2277 | 88.2971  | 89.1031   | 88.1135  | 82.3604    | 78.4792  | 76.1895 | 41.0138 | 23.4093 | 8.21904        | 4.8124  |
| 51  | 6 BR         | Α       | 88.5868 | 87.2697 | 88.2054 | 88.529  | 88.5421 | 88.5214  | 88.9357   | 87.9966  | 81.7417    | 80.8392  | 75.8472 | 40.2723 | 22.9024 | 8.01999        | 4.69267 |
| 5   | 6 WR         | A       | 83.3471 | 86.7672 | 87.7892 | 88.2751 | 88.3949 | 88.7268  | 88.7854   | 88.0745  | 82.4088    | 80.71    | 76.0567 | 40.6617 | 23.1708 | 8.14945        | 4.77384 |
| 51  | 7 BW         | · A     | 88,9406 | 89.2352 | 89.6711 | 89.5891 | 89.624  | 88.7257  | 87.716    | 87.2521  | 81.6597    | 84.2636  | 76.8097 | 43.2193 | 25.2604 | 9.34244        | 5.73243 |
| 5   | 8 BW         | A       | 88.9801 | 89.4277 | 89.2836 | 89.8326 | 89.5925 | 89,8889  | 88.7079   | 87.6222  | 80.928     | 78.8864  | 74.1046 | 36.5119 | 20.2821 | 7.14773        | 4.2569  |

.

# Table G.5 AC impedance measurements for specimens in test sequence 5(phase angle at various frequencies of applied test voltage)F R E Q U E N C Y (H e r t z)

|     |     |    |         |         |         |                 |         | FRE       | QUEI    | NCY (   | Hert    | z )     |         |         |         |         |         |
|-----|-----|----|---------|---------|---------|-----------------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL | Cnd | CM | 0.1     | 0.3     | 0.5     | 0.7             | 0.9     | 1         | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
| 518 | BE  | A  | 85.8371 | 88.8782 | 88.6043 | 88.5897         | 88.9503 | 88.9177   | 87.2875 | 85.3091 | 75.5557 | 74.3984 | 66.6997 | 26.8269 | 14.2132 | 4.93521 | 2.95041 |
| 518 | WE  | Α  | 89.6484 | 88.7777 | 89.1346 | 89.087          | 88.7586 | 88.7257   | 86.9635 | 84.9155 | 74.7214 | 74.203  | 65.609  | 25.7103 | 13.5081 | 4.67014 | 2.77257 |
| 519 | BW  | Α  | 87.4086 | 86.9635 | 88.1992 | 88.422          | 88.1362 | 88.2843   | 89.276  | 88.9643 | 83.404  | 80.3935 | 76.659  | 40.3613 | 22.9024 | 8.0134  | 4.67683 |
| 519 | BR  | Α  | 85.6057 | 87.1035 | 88.11   | 88.4593         | 88.1829 | 88.6081   | 89.0861 | 88.5972 | 82.7016 | 82.5371 | 76.4657 | 39.8063 | 22.5076 | 7.85177 | 4.58246 |
| 519 | WR  | Α  | 85.6956 | 87.6735 | 88.8385 | 88.9965         | 88.9456 | 89.0551   | 89.2737 | 88.1998 | 82.0241 | 81.8001 | 76.1609 | 40.7243 | 23.203  | 8.14087 | 4.78794 |
| 504 | BE  | D  | 84.1206 | 85.7744 | 85.8134 | 86.6406         | 86.5679 | 86.6703   | 86.7054 | 86.038  | 80.7696 | 81.3552 | 75.557  | 41.4174 | 23.9112 | 8.61621 | 5.17081 |
| 505 | BE  | D  | 89.3092 | 86.1396 | 86.2259 | 86.6015         | 87.284  | 86.9808   | 86.8342 | 86.0518 | 80.626  | 79.668  | 75.2457 | 41.0274 | 23.5687 | 8.38804 | 5.00348 |
| 506 | BW  | D  | 91.9596 | 88.5504 | 88.9334 | 88.9419         | 88.9554 | 88.8082   | 87.6608 | 86.1497 | 78.1075 | 76.872  | 70.5966 | 31.3881 | 17.2324 | 6.38378 | 4.09725 |
| 506 | BE  | D  | 85.6021 | 87.5434 | 87.5225 | 88.0507         | 88.1627 | 88.4057   | 85.9899 | 83.71   | 71.7297 | 70.9156 | 61.9737 | 22.3877 | 12.0092 | 4.56782 | 3.03207 |
| 507 | BW  | D  | 86.0155 | 88.7836 | 88.8468 | 89.0022         | 89.0447 | 89.2312   | 87.7414 | 86.3668 | 78.397  | 76.8341 | 70.824  | 31.8467 | 17.6429 | 6.83747 | 4.51971 |
| 507 | BE  | D  | 90.6875 | 87.8651 | 87.9731 | 88.4131         | 88.4676 | 88.3121   | 86.8558 | 84.8332 | 74.7233 | 72.8272 | 65.3383 | 25.3289 | 13.3158 | 4.65555 | 2.81217 |
| 508 | BW  | D  | 79.2557 | 84.2047 | 85.4246 | 86.5621         | 86.1063 | 86.5916   | 87.4266 | 86.4831 | 79.5073 | 80.0593 | 73.658  | 36.2682 | 20.5089 | 7.90588 | 5.2115  |
| 508 | BE  | D  | 76.5286 | 84.456  | 85.3519 | 86.2344         | 86.3812 | 89.2053   | 86.167  | 84.2142 | 74.6226 | 111.518 | 66.2946 | 30.8933 | 18.7248 | 10.0626 | 8.13919 |
| 509 | BW  | D  | 84.0655 | 83.3102 | 84.1591 | 85.3112         | 86.21   | 86.3269   | 87.7049 | 86.3462 | 80.4363 | 74.3442 | 73.124  | 36.1463 | 20.3397 | 7.8658  | 5.13599 |
| 509 | BE  | D  | 86.181  | 85.0457 | 85.5993 | 86.2742         | 86.9026 | 87.3509   | 88.0314 | 87.3131 | 81.7391 | 80.9306 | 76.2912 | 41.741  | 23.9838 | 8.58883 | 5.11625 |
| 510 | BE  | Ε  | 61.8664 | 73.1349 | 77.0542 | 78.8031         | 80.2595 | 80.4959   | 84.3311 | 84.3816 | 80.5126 | 79.2833 | 75.5132 | 43.2218 | 25.2936 | 9.05908 | 5.3836  |
| 511 | BE  | Е  | 67.8938 | 76.1814 | 78.7241 | 80.223          | 80.9697 | 81.5154   | 83.7225 | 83.4817 | 79.2957 | 78.1878 | 74.1367 | 41.0843 | 23.6855 | 8.37099 | 4.92921 |
| 512 | BE  | Ε  | 67.436  | 69.8103 | 71.2667 | 72.6637         | 73.4646 | 73.7825   | 79.3887 | 79.9303 | 76.8438 | 76.7802 | 72.0045 | 38.2332 | 21.6777 | 7.56692 | 4.42614 |
| 513 | BW  | Ε  | 89.3572 | 87.6923 | 87.8401 | 88.3747         | 87.9609 | 88.2804   | 87.3274 | 85.9615 | 78.2308 | 75.9889 | 69.9876 | 31.1655 | 17.1479 | 6.46026 | 4.1979  |
| 513 | BE  | E  | 83.3402 | 86.9512 | 87.9314 | 87.4034         | 87.8708 | 87.8149   | 86.5569 | 84.4396 | 74.2953 | 72.349  | 64.8624 | 24.9048 | 13.0542 | 4.52766 | 2.7227  |
| 514 | BW  | Ε  | 83.5407 | 87.2754 | 88.1105 | 88.4887         | 88.1151 | 88.3767   | 87.4561 | 85.9821 | 77.3751 | 77.018  | 70.3166 | 31.4025 | 17.3048 | 6.60629 | 4.36305 |
| 514 | BE  | E  | 87.5154 | 86.9208 | 87.1914 | 87.363          | 87.9949 | 87.3655   | 85.9538 | 83.3679 | 71.8908 | 69.0619 | 61.1476 | 22.2028 | 11.9031 | 4.79977 | 3.29493 |
| 515 | BW  | E  | 82.0643 | 84.0997 | 84.8172 | 85.6498         | 85.822  | 85.6639   | 85.9691 | 85.4042 | 78.9048 | 76.7842 | 71.8555 | 30.747  | 16.903  | 6.48783 | 4.2498  |
| 515 | BE  | Ε  | 79.7035 | 82.8712 | 83.9871 | 84.5 <b>892</b> | 85.4655 | 85.5613   | 86.6173 | 86.1183 | 80.8957 | 81.6137 | 75.5758 | 41.3522 | 23.7765 | 8.45766 | 5.01211 |
| 515 | WE  | Е  | 76.9375 | 84.7395 | 84.3785 | 84.9838         | 85.0775 | 85.4812   | 86.529  | 86.0357 | 81.0656 | 79.8919 | 75.6549 | 41.7419 | 24.0959 | 8.55005 | 4.9841  |
| 516 | BW  | E  | 84.416  | 84.0747 | 85.0758 | 85.5849         | 85.1116 | 85.5809   | 85.8397 | 85.5032 | 79.7536 | 73.61   | 72.2903 | 35.0396 | 19.89   | 7.69216 | 5.17563 |
| 516 | BE  | E  | 77.6271 | 82.3487 | 83.9164 | 84.5865         | 84.8239 | 85.0601   | 86.611  | 85.8444 | 80.6716 | 80.7806 | 75.4018 | 41.1185 | 23.6282 | 8.3469  | 4.93029 |
| 516 | WE  | E  | 78.5661 | 82.5214 | 83.3728 | 84.6629         | 84.8265 | 85.1205   | 86.4958 | 85.8765 | 81.2138 | 79.8286 | 75.6907 | 41.9148 | 24.1969 | 8.57957 | 5.06772 |
| 501 | BE  | H  | 77.9577 | 123.566 | 79.2934 | 79.8837         | 79.6665 | 81.8845   | 83.0464 | 82.7839 | 79.4826 | 75.4527 | 71.9848 | 37.8699 | 21.2014 | 6.97398 | 3.89427 |
| 502 | BW  | Н  | 93.1805 | 90.3331 | 89.7313 | 89.8367         | 90.2381 | 89.9028   | 88.2838 | 86.2008 | 77.3237 | 74.8494 | 69.3076 | 30.0275 | 16.1195 | 5.52942 | 3.23757 |
| 502 | BE  | Н  | 87.6531 | 87.1362 | 86.9914 | 87.6516         | 89.2649 | 89.5186 · | 86.9395 | 85.8364 | 78.979  | 75.3635 | 73.2388 | 36.2511 | 19.8582 | 7.01385 | 4.17505 |
| 503 | BW  | H  | 86.6574 | 88.0596 | 93.3086 | 88.5321         | 87.4362 | 88.867    | 86.6355 | 85.4425 | 76.8682 | 76.0797 | 71.2267 | 32.3356 | 17.5581 | 5.5395  | 2.96593 |
| 503 | BE  | H  | 103.319 | 89.6888 | 91.6173 | 90.3246         | 93.0943 | 91.1021   | 88.7077 | 86.8024 | 77.3427 | 77.5082 | 69.6246 | 30.1498 | 16.1824 | 5.52481 | 3.14936 |
| 504 | BE  | н  | 66.246  | 72.6222 | 69.5442 | 72.4142         | 71.8693 | 77.6601   | 79.7631 | 76.2636 | 75.5638 | 71.4783 | 37.2148 | 20.7587 | 7.04054 | 4.05647 | 5.78841 |
| 505 | BE  | н  | 73.764  | 75.3926 | 76.425  | 72.649          | 76.8783 | 76.5346   | 79.5687 | 79.8188 | 74.6877 | 51.4929 | 69.8684 | 34.3674 | 18.7751 | 6.33243 | 3.59184 |
| 506 | BW  | н  | 94.3044 | 92.2939 | 90.4249 | 90.7991         | 90.5557 | 89.7804   | 87.5413 | 85.6731 | 75.8315 | 72.195  | 67.5559 | 27.9238 | 14.8579 | 5.05518 | 2.97152 |
| 506 | BE  | H  | 58.9783 | 80.3193 | 79.21   | 79.1407         | 84.2688 | 90.3707   | 84.6319 | 84.2136 | 77.682  | 87.1025 | 71.0708 | 32.9098 | 17.8727 | 6.00838 | 3.4509  |
| 507 | BW  | Н  | 90.06   | 90.8497 | 90.3949 | 90.9152         | 90.5028 | 90.1485   | 87.7223 | 85.741  | 76.7432 | 75.6222 | 67.8182 | 28.2091 | 14.9744 | 5.08928 | 3.0032  |

| Table G.5 AC impedance measurements for specimens in test sequence 5 | , |
|----------------------------------------------------------------------|---|
| (phase angle at various frequencies of applied test voltage)         |   |

G-28

| Table G.5 | AC impedanc    | e m   | easu  | reme   | ents | for sp   | ecin | ner  | ns in | te  | st sequence 5 |
|-----------|----------------|-------|-------|--------|------|----------|------|------|-------|-----|---------------|
|           | (phase angle a | t vai | rious | ; freq | Juen | icies of | [ ap | plio | ed te | st  | voltage)      |
|           | F              | R     | ΕО    | UF     | ΕN   | СҮ       | (    | н    | ег    | t : | z )           |

|   |              |      |         |          |         |         |         |         | FKE     | QUEN    | 1 C Y ( | негі                 | z)      |         |         |         |          |           |
|---|--------------|------|---------|----------|---------|---------|---------|---------|---------|---------|---------|----------------------|---------|---------|---------|---------|----------|-----------|
|   | CBL          | Cnd  | СМ      | 0.1      | 0.3     | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50                   | 60      | 100     | 500     | 1000    | 3000     | 5000      |
|   | =====<br>507 |      | ==<br>H | 77.2139  | 72.0283 |         | 72.2325 | 72.0749 | 73.1304 | 79.3291 | 80.554  | 76.9412              | 70.9759 | 69,8314 | 31.5659 | 17.1424 | 5.82368  | 3.33555   |
|   | 508          | BW   | н       | 34.7915  | 65.0681 | 72.5491 | 75.7299 | 77.3445 | 78.0431 | 73.1208 | 68.1072 | <sup>,</sup> 69.8058 | 67.3262 | 65.6598 | 29.8554 | 16.0162 | 5.46791  | 3.16596   |
|   | 508          | BE   | н       | 0.819675 | 1.44175 | 2.07834 | 2.74825 | 3.38493 | 3,80038 | 16.6904 | 28.893  | 53.6675              | 53.2226 | 50.0178 | 19.7022 | 9.68955 | 2.05161  | 0.526469  |
|   | 508          | 3 WE | н       | 36.0977  | 67.7846 | 76.052  | 79.4505 | 80.9524 | 81.8683 | 83.9696 | 81.0962 | 67.8329              | 63.8202 | 56.3558 | 20.6336 | 10.1073 | 2.13788  | 0.504605  |
|   | 509          | вw   | н       | 66.3445  | 60.3976 | 70.7593 | 74.5443 | 76.4699 | 78.7849 | 86.2187 | 85.4405 | 77.4783              | 77.1527 | 69.7686 | 30.4083 | 16.3477 | 5.57614  | 3.24444   |
|   | 509          | ) BE | н       | 69.2891  | 82.7102 | 84.6757 | 86.0657 | 86.0473 | 87.0211 | 85.0541 | 82.0043 | 67.0798              | 63.6776 | 56.1007 | 18.9722 | 8.71375 | 0.557967 | -0.81187  |
|   | 510          | ) BE | H       | 70.9193  | 77.3576 | 78.6104 | 79.2141 | 79.5123 | 79.0973 | 75.1511 | 73.4284 | 67.3213              | 69.7883 | 65.3534 | 29.0278 | 14.3507 | 2.15206  | -0.395726 |
|   | 511          | BE   | н       | 91.7512  | 86.7921 | 87.2126 | 87.1268 | 87.4309 | 85.0249 | 82.1696 | 80.5823 | 74.3132              | 72.952  | 65.5475 | 31.5508 | 16.1103 | 3.11107  | 0.24701   |
|   | 512          | 2 BE | н       | 83.8835  | 86.0632 | 85.0062 | 84.4737 | 85.0173 | 84.0798 | 82.4611 | 80.8422 | 73.9964              | 70.6415 | 65,5435 | 29.5815 | 15.126  | 2.99093  | 0.290035  |
|   | 513          | B BW | н       | 83.3916  | 90.7347 | 90.8184 | 91.5209 | 90.4542 | 90.2735 | 87.5564 | 85.3466 | 75.6619              | 72.276  | 66.6935 | 26.8893 | 14.1602 | 4.85551  | 2.8432    |
|   | 513          | B BE | н       | 87.2673  | 81.9388 | 79.3824 | 76.5525 | 74.8916 | 73.7975 | 67.2845 | 68.8828 | 70.6097              | 68.1539 | 64.5993 | 29.4989 | 15.8276 | 5.16641  | 2.84552   |
|   | 513          | WE   | н       | 9.44811  | 75.4143 | 78.5248 | 80.4974 | 81.8267 | 82.1188 | 84.8088 | 84.0865 | 76.9429              | 74.6158 | 70.2865 | 32.1221 | 17.3565 | 5.85623  | 3.2678    |
|   | 514          | I BW | н       | 94.1498  | 90.8116 | 90.5747 | 90.5296 | 90.6376 | 90.5405 | 87.6705 | 85.6841 | 76.0599              | 71.9554 | 66.8908 | 27.0184 | 14.2093 | 4.84116  | 2.85639   |
|   | 514          | I BE | н       | 87.0436  | 81.4805 | 79.0722 | 76.7453 | 74.8442 | 73.5464 | 65.831  | 68,3366 | 70.4748              | 75.7249 | 66.2014 | 31.2644 | 16.9907 | 5.71805  | 3.19938   |
|   | 515          | 5 BW | Н       | 61.1014  | 75.8491 | 76.4947 | 75.933  | 75.3944 | 74.7254 | 73.2729 | 77.0688 | 75.5444              | 72.4794 | 67.6898 | 29.0179 | 15.5609 | 5.26034  | 3.06969   |
|   | 515          | 5 BE | н       | 1.30963  | 4.31317 | 7.09892 | 9.83092 | 12.243  | 13.991  | 48.2479 | 61.2562 | 64.8212              | 65.1416 | 55.5665 | 18.432  | 8.54499 | 1.0213   | -0.848715 |
|   | 513          | 5 WE | н       | 30.1731  | 83.4398 | 85.2872 | 85.9689 | 86.7046 | 86.6708 | 84.5448 | 81.1432 | 66.7649              | 63.8058 | 55.1361 | 20.4332 | 10.2698 | 2.04536  | 0.259661  |
| ~ | 510          | 5 BW | H       | 84.0245  | 79.2248 | 76.2656 | 74.0135 | 72.5814 | 72.7015 | 80.2351 | 81.9715 | 76.5524              | 79.2076 | 69.2818 | 30.3596 | 16.3091 | 5.52892  | 3.2395    |
| 5 | 510          | 5 BE | н       | 4.81205  | 9.99675 | 15.2794 | 20.1968 | 24.4536 | 27.2095 | 59.5704 | 62.3961 | 58.5296              | 61.1572 | 57.3685 | 29.2372 | 15.8309 | 5.15409  | 2.75751   |
| õ | 516          | 5 WE | Н       | 84.6489  | 75.4443 | 71.8321 | 72.6493 | 71.0813 | 71.6149 | 80.2315 | 81.9349 | 76.9135              | 75.0635 | 69.8106 | 31.5662 | 17.0043 | 5.5413   | 3.07105   |

| 0.01 | 0.1   | 014 | 0.1            | 0.2     |                | 0.7     | 0.0     | FRE                  | QUEI         | NCY (   | Hert    | z )     | 100     | 600     | 1000    | 2000    | £000    |
|------|-------|-----|----------------|---------|----------------|---------|---------|----------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL  | · === | СМ  | U.I<br>======= | 0.3     | U.3<br>======= | 0.7     | 0.9     | ۱<br>: ======        | )<br>======= | 10      |         | 60<br>  | 100     |         | 1000    | 3000    | 5000    |
| 601  | BE    | Α   | 87.2446        | 89.0253 | 89.5155        | 89.2653 | 89.0103 | 89.0648              | 88.3518      | 87.0389 | 80.7772 | 83.9033 | 76.1086 | 41.6517 | 24.7405 | 8.88987 | 5.40693 |
| 602  | BW    | Α   | 78.5156        | 89.0936 | 89.0293        | 89.2513 | 89.2999 | 89.2451              | 88.8686      | 87.6458 | 81.3905 | 76.5554 | 74.1802 | 36.4317 | 20.2397 | 7.14559 | 4.27434 |
| 602  | BE    | Α   | 86.8683        | 88.5843 | 89.1452        | 89.1    | 88.5463 | 88.478               | 86.7475      | 85.0594 | 75.0185 | 72.7568 | 66.1383 | 26.3501 | 14.0193 | 4.8547  | 2.9422  |
| 602  | WE    | Α   | 86.0468        | 88.359  | 88.7197        | 87.2091 | 88.7154 | 88.4879              | 86.3354      | 84.8502 | 74.0538 | 71.4177 | 65.5691 | 25.6088 | 13.6444 | 4.68196 | 2.77997 |
| 603  | BW    | A   | 85.9307        | 88.3302 | 88.2169        | 88.3336 | 88.7722 | 88.5798              | 87.8895      | 86.492  | 78.6203 | 77.3552 | 71.8657 | 33.4861 | 18.3818 | 6.04809 | 3.40326 |
| 603  | BR    | A   | 90.2459        | 88.2964 | 88,9693        | 88.7368 | 85.9592 | 88.4683              | 87.9882      | 86.7113 | 79.7263 | 77.6057 | 72.2615 | 33.9304 | 18.636  | 6.26163 | 3.47466 |
| 603  | WR    | Α   | 84.5545        | 87.7003 | 88.2348        | 88.8723 | 87.9688 | 88.6537              | 87.182       | 86.1721 | 79.1079 | 77.1013 | 71.522  | 33.4006 | 18.0543 | 5.97103 | 3.2349  |
| 603  | BE    | Α   | 82.5154        | 86.5535 | 86.7471        | 87.0798 | 87.5035 | 87.51                | 86.1676      | 84.2008 | 74.3993 | 72.7454 | 65.3922 | 26.0373 | 13.6388 | 4.41946 | 2.41721 |
| 603  | WE    | Α   | 81.75          | 86.0514 | 86.2878        | 86.4866 | 86.6988 | 86.5895              | 85.043       | 82.8108 | 72.5015 | 70.8089 | 63.2588 | 24.5385 | 12.7845 | 3.91157 | 2.14181 |
| 603  | RE    | Α   | 84.9319        | 86.0007 | 86.165         | 86.4025 | 86.8134 | 86.7632              | 85.4206      | 83.3713 | 73.3789 | 71.6456 | 64.333  | 25.4165 | 13.2948 | 4.25799 | 2.29623 |
| 604  | BW    | Α   | 78.7756        | 88.446  | 88.9911        | 89.4717 | 89.5653 | 89.459               | 89.3969      | 88.3421 | 82.4031 | 83.5748 | 77.0189 | 42.8207 | 24.7842 | 8.9233  | 5.3856  |
| 605  | BE    | Α   | 89.1077        | 89.2316 | 89.79          | 89.5203 | 88.9712 | 90.0951              | 89.3197      | 87.2615 | 83.649  | 78.6858 | 76.7278 | 44.0145 | 25.758  | 9.63984 | 5.89391 |
| 606  | BE    | Α   | 88.7629        | 89.0818 | 88.4889        | 88.9788 | 89.1197 | 89.2123              | 87.5395      | 87.0088 | 80.531  | 86.134  | 75.5298 | 40.5265 | 23.5696 | 8.5353  | 5.2015  |
| 607  | BE    | Α   | 87.1985        | 89.379  | 88.7678        | 89.2255 | 89.1581 | 89.4175              | 88.8673      | 87.2163 | 83.1547 | 82.4121 | 76.1762 | 43.0011 | 25.4461 | 9.44084 | 5.76699 |
| 608  | BW    | Α   | 88.7747        | 89.2595 | 89.8327        | 89.8524 | 89.8295 | 89.4937              | 88.9364      | 87.631  | 80.9512 | 78.2452 | 74.1679 | 36,568  | 20,3339 | 7.18363 | 4.29178 |
| 608  | BE    | Α   | 88.959         | 88.7832 | 89.2127        | 89.0647 | 88.8939 | 89.023               | 87.0763      | 85.1744 | 75.2915 | 75.1052 | 66.4152 | 26.6303 | 14.1397 | 4.90435 | 2.96112 |
| 608  | WE    | Α   | 86.945         | 88.6004 | 88.8878        | 88.9689 | 88.7382 | 88.8044              | 87.3619      | 85.5598 | 76.39   | 74.8    | 67.7685 | 27.8163 | 14.7262 | 5.05306 | 2.99755 |
| 609  | BW    | Α   | 92.2188        | 89.4917 | 89.4326        | 89.3513 | 89.8928 | 89.5599              | 88.6751      | 87.5466 | 81.3388 | 78.4681 | 74.2238 | 36.5507 | 20.3358 | 7.16572 | 4.27283 |
| 609  | BE    | Α   | 90.1811        | 99.7729 | 89.0205        | 88.799  | 88.6745 | 88.9655              | 87.7623      | 85.0724 | 74.8454 | 72.5533 | 66.1681 | 26.6559 | 13.9939 | 4.86661 | 2.92973 |
| 609  | WE    | Α   | 84.1272        | 88.4647 | 88.873         | 89.0501 | 88.5799 | 88.8415              | 87.1153      | 84.8928 | 75.2026 | 74.1915 | 65.8292 | 25.8507 | 13.6798 | 4.74997 | 2.81669 |
| 610  | BW    | Α   | 91.0868        | 89.3829 | 89.2363        | 89.2621 | 89.6133 | 89.3949              | 88.7189      | 87.5823 | 80.5734 | 80.3645 | 74.239  | 36.5582 | 20.331  | 7.17901 | 4.29424 |
| 610  | BE    | Α   | 91.0846        | 88.7495 | 88.9505        | 88,5945 | 88.9387 | 88.8476              | 87.4497      | 85.6768 | 76.5726 | 75.0579 | 68.0213 | 28.0857 | 14.8902 | 5.12762 | 4.04715 |
| 610  | WE    | Α   | 84.121         | 88.646  | 89.0235        | 89.0196 | 88.6853 | 88.8078              | 87.3224      | 85.4461 | 76.2049 | 74.5725 | 67.5141 | 27.5571 | 14.5864 | 5.01199 | 2.97065 |
| 611  | BW    | Α   | 90.8033        | 88.5788 | 88.7015        | 89.142  | 88.8287 | 89.1165 <sup>.</sup> | 87.9817      | 86.6779 | 78.9132 | 78.7554 | 71.7166 | 33.6751 | 18.3289 | 6.12268 | 3.39316 |
| 611  | BR    | Α   | 85.6217        | 88.4943 | 89.1003        | 89.1681 | 88.9017 | 88.86                | 88.0644      | 86.7876 | 79.1783 | 77.0547 | 72.1767 | 34.0808 | 18.6029 | 6.2295  | 3.48164 |
| 611  | WR    | Α   | 87.1986        | 88.1459 | 88.8086        | 88.728  | 88.5283 | 88.5872              | 87.6713      | 86.183  | 78.2455 | 77.1018 | 71.2794 | 33.2359 | 18.0817 | 5.93342 | 3.26226 |
| 611  | BE    | Α   | 88.5641        | 86.6677 | 87.4562        | 87.6405 | 87.451  | 87.5249              | 85.739       | 83.5866 | 72.9734 | 70.5042 | 63.5733 | 24.3315 | 12.6605 | 4.07246 | 2.19224 |
| 611  | WE    | Α   | 89.6124        | 86.2379 | 86.7635        | 86.8498 | 86.4731 | 86.8159              | 84.6461      | 82.1592 | 71.1933 | 68.0998 | 61.3425 | 22.8548 | 11.856  | 3.67556 | 1.8782  |
| 611  | RE    | Α   | 82.0614        | 83.0504 | 88.246         | 86.5148 | 86.7816 | 86.1611              | 85.1788      | 82.6648 | 72.1844 | 70.6943 | 62.5117 | 23.7476 | 12.2881 | 3.86978 | 2.06239 |
| 612  | BW    | Α   | 90.3578        | 89.1845 | 89.2533        | 89.2277 | 89.3739 | 89.1926              | 88.495       | 86.837  | 78.9634 | 75.9101 | 71.6853 | 34.0022 | 18.5681 | 6.21741 | 3.47501 |
| 612  | BR    | A   | 87,7445        | 88.6411 | 88.4624        | 88.7924 | 89.1166 | 89.3124              | 88.1346      | 86.8408 | 79.2988 | 77.5647 | 72.0557 | 33.9829 | 18.5468 | 6.18722 | 3.45585 |
| 612  | WR    | Α   | 91.6932        | 88.4712 | 88.3766        | 88.4521 | 88.7629 | 88.534               | 87.7412      | 86.181  | 77.9652 | 77.6076 | 70.9232 | 32.9116 | 17.8068 | 5.83631 | 3.1616  |
| 612  | BE    | A   | 88.0429        | 86.7652 | 87.2717        | 87.4178 | 87.2895 | 87.5773              | 85.7203      | 83.704  | 73.1792 | 70.1791 | 63.9291 | 24.6336 | 12.7985 | 4.15815 | 2.25829 |
| 612  | WE    | Α   | 85.1708        | 86.3306 | 86.2404        | 86.3305 | 86.6994 | 86.6971              | 84.9849      | 82.7441 | 72,343  | 70.6212 | 63.0857 | 24.4458 | 12.7401 | 4.02919 | 2.13569 |
| 612  | RE    | Α   | 89.1083        | 86.3508 | 86.4176        | 86.6874 | 86.976  | 86.9053              | 85.2425      | 83.0217 | 72.5382 | 70.7917 | 63.2527 | 24.556  | 12.797  | 4.05392 | 2.15832 |
| 613  | BW    | A   | 86.6509        | 88.2658 | 88.2757        | 88.5183 | 88.8997 | 88.7945              | 88.2764      | 86.8389 | 79.396  | 79.4646 | 72.6288 | 35.0067 | 19.2327 | 6.39879 | 3.54973 |
| 613  | BR    | Α   | 86.5256        | 87.5798 | 87.559         | 87.7699 | 88.3011 | 88.3117              | 87.6886      | 86.5449 | 79.1509 | 79.4486 | 72.6485 | 35.378  | 19.4294 | 6.3369  | 3.44578 |

|          |         |         |         |         |                 | T9                                     | FRE     | QUEN    | NCY (   | Hert    | z)      |         |         |         |         |         |
|----------|---------|---------|---------|---------|-----------------|----------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL Cnd  | СМ      | 0.1     | 0.3     | 0.5     | 0.7             | 0.9                                    | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
| ==== === | ==<br>4 | 90 2292 | 88 5264 |         |                 | ====================================== | 89 1452 | 88,1081 | 87.0645 | 79.4391 |         |         | 35.2907 |         |         | 3.63942 |
| 613 WR   | Δ       | 83 9359 | 87 5674 | 88 2736 | 88 3711         | 88 0701                                | 88.4731 | 87.4241 | 86.2353 | 78.8542 | 78.1426 | 71.657  | 33.8364 | 18.4768 | 6.05392 | 3.29661 |
| 613 WG   | Δ       | 83.2352 | 87.0671 | 87 551  | 87 6383         | 87.8782                                | 88,1034 | 87.3974 | 86.2682 | 79.188  | 76.6137 | 72.3043 | 35.0823 | 19.246  | 6.29487 | 3.41459 |
| 613 RG   | Δ       | 90 232  | 87 581  | 88 5295 | 88 3972         | 88.18                                  | 88.2274 | 87.6349 | 86.343  | 78.6779 | 77.9522 | 71.942  | 34.2485 | 18.7158 | 6.17033 | 3.37122 |
| 613 RE   | A       | 84 23   | 86 8599 | 86.8529 | 87.1017         | 87.4536                                | 87.6151 | 86.3493 | 84.462  | 75.1829 | 73.4847 | 66.5764 | 27.2675 | 14.3732 | 4.7028  | 2.61092 |
| 613 WE   | A       | 83,8389 | 85.7566 | 86.043  | 86.3049         | 86.5042                                | 86.4557 | 85.2954 | 83.3104 | 73.5333 | 71.8028 | 64.6208 | 25.8173 | 13.5277 | 4.32967 | 2.33737 |
| 613 RE   | A       | 84.5756 | 85.5942 | 86.445  | 85.9905         | 86.3659                                | 86.3502 | 85.1899 | 83.1332 | 73.0608 | 71.3229 | 63.9675 | 25.1787 | 13.1492 | 4.18332 | 2.23903 |
| 613 GE   | A       | 82,4555 | 85.8453 | 86.5815 | 86.2916         | 86.5027                                | 86.6017 | 85.5187 | 83.6282 | 74.1361 | 72.4623 | 65.3967 | 26.5025 | 13.9268 | 4.4892  | 2.44205 |
| 614 BW   | A ·     | 90.6146 | 88.742  | 89.8277 | 89.7599         | 89.8509                                | 89.7096 | 89.7614 | 88.594  | 83.1912 | 81.9718 | 77.084  | 42.8305 | 24.7866 | 8.9336  | 5.4041  |
| 615 BW   | A       | 90.9415 | 88.5702 | 88.7298 | 88.9812         | 89.5976                                | 89.2707 | 89.4464 | 88.3943 | 82.4184 | 83.707  | 77.0119 | 42.7924 | 24.7772 | 8.9461  | 5.3857  |
| 616 BW   | A       | 85.9024 | 88.5947 | 89.0523 | 89.7692         | 89.6411                                | 89.8308 | 89.5606 | 88.4433 | 83.2626 | 80.877  | 77.2508 | 42.9423 | 24.8604 | 8.9777  | 5.3945  |
| 617 BE   | A       | 86.4812 | 88.5923 | 89.0823 | 89.7386         | 88.3635                                | 88.6498 | 87.8334 | 87.0278 | 83.594  | 88.229  | 76.7493 | 43.532  | 25.8637 | 9.5828  | 5.82917 |
| 618 BW   | А       | 86.4713 | 89.4386 | 90.0129 | 90.0425         | 89.8407                                | 89.8417 | 89.0173 | 87.6154 | 80.8977 | 78.9177 | 74.0457 | 36.3438 | 20.1549 | 7.11461 | 4.25008 |
| 618 BE   | Α       | 91,7065 | 88.8347 | 89.1159 | 89.1625         | 88.9776                                | 88.8049 | 87.1938 | 85.0438 | 75.4557 | 74.2728 | 66.1298 | 26.1577 | 13.8826 | 4.82918 | 2.9074  |
| 618 WE   | A       | 89.2156 | 88.6505 | 88.2566 | 88.7928         | 88.8009                                | 88.7645 | 87.187  | 84.9539 | 74.7931 | 71.5454 | 65.7099 | 25.8453 | 13.7194 | 4.73205 | 2.83835 |
| 619 BW   | A       | 85.5292 | 88.6188 | 89.4487 | 89.5449         | 89.4142                                | 89.4912 | 88.5455 | 86.9685 | 79.5125 | 79.4262 | 72.0874 | 34.0565 | 18.6165 | 6.21874 | 3.48937 |
| 619 BR   | Α       | 84.7556 | 88.4544 | 89.2853 | 89.4278         | 89.21                                  | 89.1713 | 88.3166 | 86.8863 | 79.4143 | 79.0528 | 72.1493 | 34.0525 | 18.5777 | 6.21537 | 3.47423 |
| 619 WR   | Α       | 90.9088 | 88.4132 | 88.198  | 88.3344         | 88.7321                                | 88.7566 | 87.6796 | 86.2115 | 78,4992 | 76.3711 | 71.0824 | 32.9838 | 17.8825 | 5.8526  | 3.17972 |
| 619 BE   | Α       | 87.7872 | 86.6517 | 87.0339 | 87.3325         | 87.6361                                | 87.5659 | 86.316  | 84.34   | 74.7432 | 73.098  | 65.9047 | 26.5391 | 13.9354 | 4.5421  | 2.50904 |
| 619 WE   | Α       | 88.3786 | 86.3522 | 86.5581 | 86. <b>7757</b> | 86.6938                                | 86.8297 | 85.0332 | 82.8192 | 72.4221 | 70.7243 | 63.2026 | 24.5581 | 12.8009 | 4.05281 | 2.15452 |
| 619 RE   | Α       | 84.9211 | 86.2424 | 86.2094 | 86.7157         | 86.8723                                | 86.8708 | 85.1994 | 82.9816 | 72.6403 | 70.8211 | 63.3941 | 24.6784 | 12.8628 | 4.08212 | 2.18043 |
| 620 BW   | A       | 87.9008 | 88.8657 | 89.128  | 84.4971         | 90.0172                                | 89.5173 | 89.5302 | 88.4642 | 82.5146 | 82.7092 | 77.0855 | 42.885  | 24.8297 | 8.9645  | 5.4006  |
| 621 BW   | Α       | 90.0815 | 87.8855 | 88.6662 | 88.8745         | 89.1907                                | 89.1629 | 88.7665 | 87.8413 | 82.9419 | 78.0628 | 76.8096 | 42.0618 | 24.1271 | 8.66938 | 5.1946  |
| 622 BW   | Α       | 90.0284 | 87.828  | 88.6816 | 88.8087         | 89.0857                                | 89.269  | 88.4438 | 87.8163 | 82.8071 | 79.037  | 76.595  | 41.9858 | 24.1905 | 8.65247 | 5.1919  |
| 623 BW   | Α       | 83.8947 | 87.9463 | 88,5058 | 88.978          | 89.5823                                | 89.5987 | 89.3078 | 88.1155 | 81.5036 | 83.9007 | 76.6738 | 42.1073 | 24.1627 | 8.67915 | 5.22987 |
| 624 BW   | Α       | 84.2305 | 88.013  | 88.7927 | 88.8914         | 89.3719                                | 88.9129 | 88.9972 | 87.9972 | 82.1511 | 83.3741 | 76.7513 | 42.1974 | 24.1362 | 8.70132 | 5.20018 |
| 614 BW   | в       | 91.9306 | 91.3636 | 89.934  | 90.4632         | 90.9318                                | 89.3672 | 89.4241 | 87.2443 | 81.5311 | 74,7615 | 72.9532 | 34.703  | 19.2466 | 7.3717  | 4.62093 |
| 615 BW   | В       | 87.478  | 90.1408 | 89.2133 | 89.8359         | 90.6246                                | 89.2569 | 87.8781 | 86.711  | 80.9245 | 75.3464 | 71.974  | 33.7906 | 18.9382 | 6.96047 | 4.17844 |
| 616 BW   | В       | 96.9892 | 94.1223 | 93.281  | 92.4724         | 91.4792                                | 91.3069 | 88.904  | 87.2284 | 78.9965 | 79.8933 | 72.3955 | 33.8455 | 18.5425 | 6.55779 | 3.91336 |
| 620 BW   | в       | 80.6753 | 87.5167 | 88.7228 | 89.8453         | 89.3533                                | 88.1186 | 89.0477 | 86.7792 | 81.5176 | 72.2286 | 73.3542 | 34.5881 | 19.5318 | 7.35772 | 4.6377  |
| 601 BE   | С       | 78.4714 | 86.3335 | 86.9225 | 87.4186         | 87.1853                                | 87.5189 | 87.6772 | 86.8936 | 81.2978 | 79.945  | 75.4718 | 40.4997 | 23.1206 | 8.16689 | 4.88869 |
| 602 BW   | С       | 86.583  | 90.4486 | 90.1746 | 90.3824         | 90.0615                                | 89.9418 | 89.1372 | 87.6003 | 79.7033 | 78.0872 | 72.3506 | 33.6041 | 18.3806 | 6.61072 | 4.06808 |
| 602 BE   | с       | 92.1268 | 88.9442 | 89.017  | 89.1088         | 88.9835                                | 89.0077 | 87.457  | 85.3835 | 75.2274 | 73.5773 | 65.9505 | 25.759  | 13.5387 | 4.65262 | 2.80257 |
| 602 WE   | С       | 91.5188 | 88.6099 | 88.6526 | 88.6432         | 88.9666                                | 88.8731 | 87.2035 | 85.128  | 74.9882 | 73.0674 | 65.5786 | 25.4223 | 13.3275 | 4.56996 | 2.74581 |
| 603 BW   | С       | 100.452 | 94.2531 | 92.9734 | 92.6566         | 91.6636                                | 91.8988 | 89.3801 | 87.2659 | 77.859  | 75.2046 | 70.4473 | 31.1671 | 16.9051 | 5.89943 | 3.41079 |
| 603 BE   | . C     | 81.308  | 86.9895 | 87.2721 | 87.8787         | 87.5525                                | 87.4778 | 85.7959 | 83.0118 | 71.2467 | 67.7192 | 61.4236 | 22.4799 | 12.0083 | 4.10666 | 2.40121 |
| 603 WE   | С       | 88.8664 | 86.3208 | 86.7434 | 87              | 86.7472                                | 86.7173 | 84.9893 | 82.6142 | 71.4394 | 69.7369 | 61.668  | 22.9521 | 11.8561 | 3.73848 | 2.01159 |

G-31

|     |      |        |         |                    |          |          |         | FRE     | QUEN     | VCY (   | Негt     | z )     |                    |          |          |         |                                        |
|-----|------|--------|---------|--------------------|----------|----------|---------|---------|----------|---------|----------|---------|--------------------|----------|----------|---------|----------------------------------------|
| CBL | Cnd  | СМ     | 0.1     | 0.3                | 0.5      | 0.7      | 0.9     | 1       | 5        | 10      | 50       | 60      | 100                | 500      | 1000     | 3000    | 5000                                   |
|     |      | ==     |         | =======<br>00 2200 | •••••••• | 90 271 K |         |         | ••• 7709 | 007116  | 01 00 61 | 70 6412 | 76 7601            |          |          |         | ====================================== |
| 604 | BW   | C<br>A | 90.4326 | 88.2308            | 89.0282  | 89.3713  | 89.3927 | 89.3838 | 89.7708  | 88.7115 | 81.8931  | /9.5415 | /5./581            | 38.806   | 22.0687  | 8.13936 | 5.02076                                |
| 605 | BE   | C      | 87.778  | 86.3949            | 85.6729  | 85.413   | 84.8592 | 84.6121 | 76.3445  | 70.675  | 57.8935  | 57.165  | 53.4499            | 28.5541  | 15.5763  | 4.30342 | 1.80759                                |
| 600 | BE   | 0      | 90.0330 | 84.8104            | 83.7023  | 82.8203  | 82.1955 | 81.7939 | 75.8162  | 10.9992 | 59,1954  | 58.1329 | 54.9944            | 29.9008  | 16.6421  | 4.78812 | 2.17571                                |
| 607 | BE   | 0      | 82.3319 | 84.7521            | 83.3031  | 82./284  | 82.014  | 81.303  | 99.3087  | 63.0455 | 38.3909  | 38.2909 | 50.1444<br>71.0212 | 30.6554  | 16.9152  | 4.72105 | 2.02111                                |
| 608 | BW   | C<br>C | 89.3008 | 89.7119            | 89.4383  | 89.774   | 89.5097 | 89.3828 | 88.022   | 86.6312 | 78.7507  | 77.8288 | /1.0313            | 32.2951  | 17.59    | 6.31187 | 3.82519                                |
| 608 | BE   | C<br>Q | 85.5458 | 88.5952            | 88.3701  | 88.5418  | 88.3981 | 88.4971 | 86.3479  | 84.3337 | 73.9308  | 72.2454 | 64.4874            | 24.6339  | 12.9041  | 4.42244 | 2.65192                                |
| 609 | BW   | C      | 85.2728 | 89.2498            | 89.3476  | 89.8489  | 89.4079 | 89.2422 | 88.0766  | 86.6964 | 79.0719  | 78.0335 | 71.7441            | 33.0802  | 18.3339  | 6.53321 | 4.03602                                |
| 609 | BE   | C      | 91.5949 | 88.5613            | 88.3813  | 88.7687  | 88.5804 | 88.6209 | 86.8099  | 84.7798 | 74.8398  | 73.2178 | 65.7179            | 25.8646  | 13.6193  | 4.6841  | 2.81329                                |
| 609 | WE   | C      | 86.3945 | 88.322             | 88.8615  | 88.472   | 88,498  | 88.3923 | 86.6116  | 84.5141 | 74.3876  | 72,8667 | 65.1844            | 25.2864  | 13.2926  | 4.56868 | 2.74505                                |
| 610 | BW   | C<br>a | 85.1677 | 89.1978            | 89.441   | 89.3067  | 89.3115 | 89.2397 | 88.0506  | 86.2392 | 78.644   | 77.402  | 70.6801            | 32.68765 | 17.96195 | 6.42254 | 3.930605                               |
| 610 | BE   | C      | 86.0709 | 88.4816            | 88.6746  | 88.0386  | 88.4235 | 88.3261 | 86.4842  | 84.2445 | 73.6868  | 71.9678 | 64.1486            | 24.3257  | 12.7175  | 4.3649  | 2.62911                                |
| 611 | BW   | C      | 83.6472 | 87.0431            | 86.858   | 87.021   | 86.936  | 86.89   | 85.7253  | 84.676  | 77.8741  | 76.2679 | 70.4767            | 32.6703  | 17.749   | 6.10681 | 3.65209                                |
| 611 | BE   | С      | 84.8493 | 85.9699            | 85.983   | 85.9611  | 85.9737 | 86.0111 | 85.2547  | 83.6156 | 74.3788  | 72.5584 | 65.4169            | 26.0445  | 13.6887  | 4.59704 | 2.6704                                 |
| 612 | ВW   | С      | 84.9054 | 87.0212            | 86.9048  | 87.2415  | 87.154  | 86.6217 | 85.893   | 84.4695 | 77.5565  | 76.0412 | 70.3621            | 32.2843  | 17.6896  | 6.21633 | 3.74771                                |
| 612 | BE   | С      | 87.2697 | 83.9786            | 85.892   | 85.9399  | 85.5788 | 85.575  | 84.7683  | 82.7763 | 72.9998  | 69.9395 | 63.204             | 24.1616  | 12.7602  | 4.479   | 2.76893                                |
| 613 | BW   | С      | 87.7988 | 87.7232            | 88.7091  | 88.0031  | 87.7284 | 87.5283 | 86.4191  | 85.0491 | 77.7795  | 77.5906 | 71.3375            | 33.5769  | 18.3803  | 6.4134  | 3.84272                                |
| 613 | BE   | С      | 82.708  | 86.1979            | 85.7645  | 85.7023  | 85.8863 | 85.2491 | 84.0171  | 82.4691 | 73.3732  | 71.8241 | 63.9379            | 24.919   | 13.106   | 4.61433 | 2.77337                                |
| 617 | BE   | С      | 79.509  | 85.0122            | 85.3443  | 85.7727  | 86.3055 | 86.2136 | 85.9379  | 85.1827 | 80.5621  | 79.7215 | 75.9542            | 45.6554  | 27.3054  | 9.66211 | 5.62103                                |
| 618 | BW   | С      | 84.5467 | 87.492             | 87.8495  | 87.8056  | 88.4463 | 88.1361 | 87.1937  | 85.9761 | 79.2141  | 77.9132 | 72.4645            | 34.8998  | 19.2808  | 6.77959 | 4.04304                                |
| 618 | BE   | С      | 90.1763 | 88.0114            | 88.0078  | 88.1716  | 88.0273 | 87.9948 | 86.443   | 84.5604 | 75.2694  | 73.6489 | 66.5333            | 26.8925  | 14.1919  | 4.8591  | 2.9095                                 |
| 619 | BW   | С      | 77.711  | 84.1292            | 84.8437  | 84.8413  | 84.8654 | 84.9371 | 84.4572  | 83.6758 | 78.2077  | 76.2902 | 71.8177            | 34.8982  | 19.3981  | 6.65704 | 3.87163                                |
| 619 | BE   | С      | 82.1869 | 85.548             | 85.5468  | 85.7457  | 85.8606 | 85.6154 | 84.9761  | 83.2807 | 74.4026  | 71.3103 | 65.0542            | 25.6822  | 13.5329  | 4.58317 | 2.69091                                |
| 621 | BW   | С      | 90.5129 | 90.8861            | 90.8774  | 90.938   | 91.1152 | 90.6937 | 89.7097  | 87.729  | 79.1299  | 80.0312 | 71.1241            | 31.8039  | 17.4773  | 6.35585 | 3.9259                                 |
| 622 | BW   | С      | 87.1409 | 91.5782            | 90.705   | 90.592   | 90.8146 | 90.4236 | 89.2586  | 87.5515 | 78.9556  | 79.7155 | 70.8809            | 31.8525  | 17.187   | 6.23811 | 3.88758                                |
| 623 | BW   | С      | 88.5334 | 90.6887            | 91.3548  | 90.9748  | 90.6482 | 90.7815 | 89.8439  | 87.9797 | 78.8481  | 78.4284 | 70.8417            | 31.1443  | 17.2973  | 6.17657 | 3.83581                                |
| 624 | BW   | С      | 86.3494 | 88.8383            | 88.8528  | 89.1339  | 89.0624 | 89.0826 | 87.8756  | 86.4703 | 78.7813  | 77.6915 | 71.7064            | 33.301   | 18.1441  | 6.23326 | 3.70233                                |
| 605 | BE   | E      | 84.2188 | 82.79              | 81.9127  | 80.9807  | 80.6834 | 80.0451 | 72.417   | 67.5713 | 56.2863  | 56.8091 | 51.1192            | 23.0299  | 11.3855  | 2.42074 | 0.623016                               |
| 606 | BE   | Е      | 85.0958 | 81.1715            | 80.763   | 79.9931  | 79.1372 | 78.8453 | 71.2778  | 64.8737 | 55.3534  | 54.1423 | 51.9867            | 24.9926  | 12.8203  | 3.23697 | 1.26483                                |
| 607 | BE   | Е      | 65.4712 | 66.0758            | 68.3615  | 70.3168  | 71.1498 | 71.3908 | 67.2838  | 66.9785 | 67.1869  | 64.5622 | 60.8096            | 26.9837  | 14.6508  | 5.80843 | 4.22892                                |
| 608 | BW   | Е      | 87.7184 | 86.3315            | 85.8499  | 86.6298  | 86.5196 | 86.7456 | 86.6644  | 85.2409 | 77.3699  | 75.527  | 69.0949            | 29.8563  | 15.9785  | 5.497   | 3.2306                                 |
| 608 | BE   | E      | 75.2334 | 80,8531            | 81.3863  | 81.954   | 82.3396 | 82.4084 | 76.8036  | 69.8773 | 50.7444  | 48.1844 | 38.9887            | 12.897   | 7.75621  | 3.44433 | 2.32122                                |
| 608 | WE   | Е      | 82.8559 | 84.0857            | 85.2246  | 85.3121  | 85.5706 | 85.5999 | 84.7482  | 82.202  | 69.9398  | 64.9012 | 58.9584            | 20.4924  | 10.9847  | 4.51362 | 3.19232                                |
| 609 | BW   | Ε      | 88.2237 | 85.9386            | 85.722   | 86.3226  | 84.7095 | 86.4798 | 86.8154  | 85.5727 | 77.9153  | 76.7176 | 70.6677            | 31.9273  | 17.2222  | 5.96644 | 3.52619                                |
| 609 | BE   | Е      | 83.2541 | 84.272             | 85.1238  | 85.7782  | 86.0287 | 86.8429 | 85.6021  | 83.4964 | 72.643   | 70.4847 | 62.7191            | 23.027   | 11.973   | 4.10391 | 2.44015                                |
| 609 | WE   | Е      | 80.3414 | 83.9186            | 84.4239  | 84.7947  | 85.6327 | 85.3442 | 84.8872  | 82.5312 | 70.7532  | 66.5471 | 60.07              | 21.5252  | 11.5491  | 4.72703 | 3.32246                                |
| 610 | BW . | Е      | 82.3323 | 85.0156            | 85.5831  | 86.1139  | 85.7552 | 86.6296 | 86.7539  | 85.2784 | 77.4702  | 75.2527 | 69,4395            | 30.5361  | 16.7224  | 6.40342 | 4.27449                                |
| 610 | BE   | Е      | 80.5295 | 84.7683            | 85.5785  | 83.7959  | 85.8602 | 86.0788 | 84.9508  | 82.5015 | 70.5016  | 67.902  | 59.5507            | 20.9815  | 11.1988  | 4.49804 | 3.17575                                |

•

| Table G.6 | AC impedar    | ıce | me       | asu | rei | me | nts | fo   | r sp | oecime | ens | in f | test | seque    | nce 6 |
|-----------|---------------|-----|----------|-----|-----|----|-----|------|------|--------|-----|------|------|----------|-------|
| (         | phase angle a | t v | ario     | us  | fre | qu | enc | eies | s of | appli  | ed  | test | vol  | tage)    |       |
|           | ,             | n T | <b>`</b> | 0   | * * | r  | ЪT  | 0    | 87   | / 17   |     |      |      | <b>、</b> |       |

| CBL             | Cnd   | СМ      | 0.1     | 0.3     | 0.5       | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100                 | 500      | 1000    | 3000    | 5000    |
|-----------------|-------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------------------|----------|---------|---------|---------|
| <b>-</b><br>610 | WE    | ==<br>E | 81.9968 | 83.7515 | <br>84.25 | 84.7849 | 85.3169 | 85.4656 | 84.8726 | 82.1621 | 69.8133 |         | 59.2024 <sup></sup> | 20.7212  | 11.0412 | 4.4254  | 3.10872 |
| 611             | BW    | Ē       | 82.0425 | 84.6318 | 83.4587   | 84.6764 | 85.136  | 85.1385 | 84.7714 | 83.6862 | 75.2934 | 76.4743 | 68.4887             | 30.1746  | 16.7165 | 6.32882 | 4.07168 |
| 611             | BE    | Ē       | 78 8531 | 82 3385 | 83,8909   | 83.3306 | 84.0821 | 83.2843 | 83,9242 | 81.3486 | 70.5545 | 67.5234 | 59.4817             | 21.5809  | 11.5707 | 4.53898 | 3.07496 |
| 611             | WE    | Ē       | 85 0056 | 81 7321 | 81,8488   | 81.6189 | 82.0527 | 81.8303 | 80,4639 | 78.6436 | 68.0745 | 61.8824 | 57.0505             | 19.9292  | 10.5015 | 3.87779 | 2.57063 |
| 612             | BW    | Ē       | 88.2725 | 85.035  | 84.8252   | 85.1342 | 84.9122 | 85.952  | 85.1253 | 83.7614 | 76.3602 | 74.9223 | 68.6098             | 30.725   | 16.943  | 6.45206 | 4.29952 |
| 612             | BE    | Ē       | 78,7701 | 83.0129 | 83.2346   | 83.2608 | 83.2684 | 84.1298 | 83.677  | 81.152  | 69.1882 | 67.0675 | 59.9861             | 21.7248  | 11.4719 | 4.77112 | 3.43174 |
| 612             | WE    | E       | 86.4302 | 81.7018 | 81.3821   | 81.1781 | 81.3115 | 81.2329 | 80.0569 | 78.3648 | 67.6891 | 66.5283 | 56.5946             | 19.8304  | 10.4983 | 4.11709 | 2.81455 |
| 613             | BW    | Ē       | 89.8316 | 86.7056 | 87.2987   | 86.9314 | 86.7751 | 86.1718 | 84.4553 | 82.8103 | 77.3066 | 80.0928 | 69.7393             | 32.0802  | 17.9263 | 6.967   | 4.64827 |
| 613             | BE    | Е       | 80.0832 | 85.6422 | 85.7074   | 86.4426 | 85.4955 | 86.465  | 85.0663 | 81.9821 | 71.0933 | 65.4531 | 60.5907             | 22.2316  | 12.3836 | 5.03173 | 3.61373 |
| 613             | WE    | Е       | 83.6241 | 82.912  | 84.5136   | 84,7729 | 84.1316 | 84.696  | 82.8466 | 80.7778 | 69.802  | 67.4097 | 58.8117             | 21.4909  | 11.404  | 4.70515 | 3.37581 |
| 621             | BW    | Ε       | 91.7784 | 89.5021 | 87.2209   | 89.7986 | 89.7554 | 90.2121 | 88.428  | 86.9136 | 78.8725 | 77.2308 | 70.9458             | 31.8136  | 17.9288 | 7.6111  | 5.42283 |
| 621             | BE    | Е       | 84.57   | 93.0906 | 84.923    | 84.0443 | 84.4965 | 84.3489 | 81.7318 | 77.9169 | 62.9848 | 57.1871 | 54.6036             | 20.7161  | 12.7089 | 8.49632 | 7.92266 |
| 621             | WE    | Е       | 32.304  | 87.4516 | 87.9957   | 87.9267 | 87.3025 | 86.6488 | 83.0656 | 79.6506 | 69.3578 | 85.7584 | 57.5225             | 22.9802  | 13.1823 | 5.90527 | 4.21654 |
| 622             | BW    | Е       | 94.1627 | 91.7736 | 91.4886   | 90.5749 | 89.8583 | 89.9489 | 88.0974 | 86.5489 | 79.0585 | 75.0693 | 70.4696             | 31.4943  | 17.6531 | 7.38269 | 5.20377 |
| 622             | BE    | Е       | 82.5511 | 87.3041 | 86.9323   | 87.57   | 88.248  | 87.2135 | 82.0516 | 78.3202 | 67.2642 | 54.5603 | 57.4179             | 22.403   | 13.8406 | 7.47925 | 6.23475 |
| 622             | WE    | E       | 83.8212 | 87.0814 | 87.9723   | 87.046  | 86.2242 | 86.3279 | 82.8626 | 77.7814 | 64.9878 | 70.2258 | 56.0225             | 22.4181  | 13.6835 | 7.50974 | 6.09674 |
| 623             | BW    | E       | 87.5831 | 89.3175 | 89.8128   | 89.9111 | 89.8285 | 89.1735 | 88.5968 | 87.0062 | 78.5791 | 78.6203 | 70.8311             | 31.9719  | 18.174  | 7.78595 | 5.46808 |
| 623             | BE    | E       | 83.7522 | 87.3693 | 85.9524   | 86.7785 | 86.3651 | 84.9246 | 80.6018 | 75.5095 | 58.9315 | 65.5978 | 50.6178             | 18.9104  | 13.4744 | 9.52765 | 9.01808 |
| 623             | WE    | E       | 84.7225 | 87.0187 | 87.3374   | 86.0735 | 85.6435 | 85.7002 | 79.2305 | 75,3921 | 62.0061 | 56.5426 | 50.0154             | 19.2615  | 13.1565 | 9.40412 | 8.64027 |
| 601             | BE    | F       | 80.123  | 85.7732 | 86.1999   | 87.0495 | 86.9972 | 87.2741 | 87.4629 | 86.0626 | 78.5985 | 74.7796 | 70.9147             | 32.295   | 17.7944 | 6.96441 | 4.7802  |
| 602             | 2 BW  | F       | 83.5172 | 88,7541 | 88.8503   | 89.172  | 89.4575 | 89.4039 | 87.9295 | 86.3241 | 78.3469 | 76.0139 | 70.973              | 32.0797  | 17.3978 | 6.2088  | 3.85595 |
| 602             | BE    | F       | 83.0647 | 87.6653 | 88.4803   | 88.3293 | 88.417  | 88.3157 | 86.861  | 84.814  | 74.6806 | 65.3557 | 25.3305             | 13.2523  | 4.56004 | 2.73736 | 2.9422  |
| 602             | 2 WE  | F       | 88.7575 | 87.4412 | 88.3156   | 87.8127 | 87.9073 | 88.151  | 86.6965 | 84.5691 | 74.4266 | 72.6579 | 65.0583             | 25.1184  | 13.1292 | 4.50712 | 2.6977  |
| 603             | B BW  | F       | 91.6184 | 88,5608 | 87.0425   | 89.1398 | 87.1936 | 87.7214 | 85.6345 | 84.6679 | 79.2295 | 78.7372 | 73.1884             | 36.7496  | 20.6731 | 7.85438 | 5.16669 |
| 603             | B BE  | F       | 80.5996 | 82.5812 | 82.6903   | 82.62   | 82.346  | 82.9097 | 81.2858 | 79.9787 | 72.7248 | 74.1754 | 65.0424             | 28.5016  | 16.2655 | 8.19398 | 6.92287 |
| 603             | 3 WE  | F       | 81.8561 | 82.5013 | 82.0522   | 82.4391 | 82.0045 | 82.7669 | 81.1002 | 80.0183 | 74.1281 | 68.4948 | 65.5286             | 28.2206  | 16.2094 | 8.17543 | 6.8545  |
| 604             | \$ BW | F       | 91.6184 | 88.5608 | 87.0425   | 89.1398 | 87.1936 | 87.7214 | 85.6345 | 84.6679 | 79.2295 | 78.7372 | 73.1884             | 36.7496  | 20.6731 | 7.85438 | 5.16669 |
| 604             | BE    | F       | 80.5996 | 82.5812 | 82.6903   | 82.62   | 82.346  | 82.9097 | 81.2858 | 79.9787 | 72.7248 | 74.1754 | 65.0424             | 28,5016  | 16.2655 | 8.19398 | 6.92287 |
| 604             | t we  | F       | 81.8561 | 82.5013 | 82.0522   | 82.4391 | 82.0045 | 82.7669 | 81.1002 | 80.0183 | 74.1281 | 68.4948 | 65.5286             | 28.2206  | 16.2094 | 8.17543 | 6.8545  |
| 605             | 5 BE  | F       | 78.5531 | 82.1718 | 81.5606   | 80.8972 | 79.8882 | 79.7576 | 70.4338 | 65.76   | 53,5987 | 48.498  | 45.3805             | 16.3068  | 8.70913 | 4.30775 | 3.9228  |
| 606             | 5 BE  | F       | 79.8071 | 81.4292 | 79.7595   | 78.5676 | 77.8105 | 77.1864 | 70.4194 | 66.5544 | 54.4883 | 52.2957 | 47.9544             | 19.7616  | 11.4807 | 6.27003 | 5.68445 |
| 607             | 7 BE  | F       | 58.7534 | 64.3198 | 68.5267   | 67.2997 | 62.2479 | 63.8086 | 82.976  | 81.097  | 71.4948 | 66.484  | 61.3267             | 24.9173. | 15.0846 | 8.77909 | 7.92003 |
| 608             | B BW  | F       | 88.862  | 85.0697 | 85.4782   | 85.4773 | 85.9456 | 85.8614 | 86.1059 | 84.8883 | 77.0062 | 75.3763 | 69.2763             | 30.2799  | 16.3903 | 6.00106 | 3.85607 |
| 608             | B BE  | F       | 79.6663 | 84.0596 | 84.3149   | 84.8406 | 85.3002 | 85.5156 | 84.7468 | 82.4652 | 70.6867 | 69.1601 | 60.2894             | 21.3703  | 11.2137 | 4.20873 | 2.81323 |
| 608             | 8 WE  | F       | 87.2393 | 84.0277 | 84.8995   | 85.4067 | 85.563  | 85.7029 | 84.822  | 82.4031 | 70.4136 | 68.0353 | 59.8356             | 21.0277  | 11.0225 | 4.13441 | 2.76866 |
| 609             | 9 BW  | F       | 82.814  | 85.8425 | 86.0119   | 86.3163 | 86,6334 | 86.557  | 86.6493 | 85.4053 | 77.7221 | 76.649  | 70.1762             | 31.5503  | 17.3614 | 6.73406 | 4.56047 |
| 609             | 9 BE  | F       | 86.4656 | 84.3149 | 85.131    | 85.7813 | 85.7833 | 85.8734 | 85.1915 | 82.7272 | 70.8864 | 69.6346 | 60.7125             | 21.8377  | 11.7899 | 4.85047 | 3.51424 |

.

:

 Table G.6 AC impedance measurements for specimens in test sequence 6 (phase angle at various frequencies of applied test voltage)

.

.

|     |      |    |         |         |         |         |         | FRE     | QUEI    | NСҮ (   | Hert    | z )     |         |         |         |         |         |
|-----|------|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CBL | Cnd  | СМ | 0.1     | _ 0.3   | 0.5     | 0.7     | 0.9     | 1       | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000    | 5000    |
| 609 | WE   | F  | 84.9157 | 83.6074 | 84.0316 | 84.5737 | 85.2744 | 85.1826 | 84.5451 | 82.3533 | 70.6587 | 68.1974 | 59.9163 | 21.3707 | 11.5184 | 4.70684 | 3.38922 |
| 610 | BW   | F  | 85.4658 | 85.5483 | 85.7462 | 86.2391 | 86.4228 | 86.4521 | 86.4797 | 85.0374 | 76.8779 | 75.2034 | 68.9692 | 30.0964 | 16.4079 | 6.22004 | 4.1383  |
| 610 | BE   | F  | 84.5636 | 84.3368 | 85.3128 | 85.3717 | 85.6641 | 85.5444 | 84.9191 | 82.1799 | 69.8326 | 70.4348 | 59.274  | 20.6911 | 11.0973 | 4.42755 | 3.12829 |
| 610 | WE   | F  | 78.4739 | 83.7433 | 83.7845 | 84.4619 | 85.2056 | 85.4087 | 84.3774 | 81.8796 | 69.5938 | 69.7533 | 58.8365 | 20.3671 | 10.9346 | 4.33534 | 3.04892 |
| 611 | BW   | F  | 87.9059 | 86.0132 | 85.0913 | 84.8204 | 85.0803 | 84.9978 | 84.3218 | 83.2575 | 75.8195 | 74.8301 | 68,2233 | 30.0974 | 16.4562 | 6.20249 | 4.07619 |
| 611 | BE   | F  | 82.613  | 83.0599 | 82.4271 | 82.4571 | 82.1958 | 82.2367 | 81.7116 | 79.9788 | 69.6546 | 66.8429 | 59.3139 | 21.3435 | 11.3224 | 4.51564 | 3.16415 |
| 611 | WE   | F  | 83.3574 | 82.0256 | 81.5924 | 81.3377 | 81.5908 | 81.0977 | 80.4127 | 78.3578 | 67.2193 | 64.9583 | 56.668  | 19.7166 | 10.3865 | 3.90789 | 2.64664 |
| 612 | BW   | F  | 82.3073 | 85.5221 | 85.461  | 85.4625 | 85.0057 | 85.1068 | 84.4669 | 83.2949 | 75.8048 | 74.4413 | 68.4988 | 30.2986 | 16.5397 | 6.15827 | 4.01446 |
| 612 | BE   | F  | 82.3721 | 83.4269 | 82.4436 | 82.8867 | 82.5011 | 82.6343 | 82.3884 | 80.5379 | 70.2914 | 67.4301 | 60.1078 | 21.7385 | 11.5147 | 4.47596 | 3.08557 |
| 612 | WE   | F  | 85.51   | 81.953  | 81.4258 | 81.4146 | 81.4327 | 81.2822 | 80.2744 | 78.4621 | 67.7406 | 65.5584 | 57.4172 | 20.1103 | 10.4481 | 3.84714 | 2.57459 |
| 613 | BW   | F  | 82.8919 | 86.5425 | 87.1812 | 87.3966 | 87.4625 | 87.637  | 86.0736 | 84.5202 | 76.823  | 74.9224 | 69.4608 | 31.0751 | 16.896  | 6.07998 | 3.84103 |
| 613 | BE   | F  | 81.2071 | 84.4213 | 84.1261 | 84.287  | 84.5873 | 84.6613 | 83.2698 | 81.2968 | 71.0408 | 68.7659 | 61.0856 | 22.4327 | 11.7387 | 4.18071 | 2.7873  |
| 613 | WE   | F  | 84.6342 | 84.8165 | 84.8222 | 84.495  | 84.4025 | 83.7721 | 81.3408 | 79.3236 | 69.3398 | 67.9822 | 59.6438 | 21.5514 | 11.2217 | 3.98295 | 2.53279 |
| 621 | BW   | F  | 92.1158 | 89.0333 | 88.7207 | 89.0528 | 88.8259 | 88.398  | 87.7102 | 85.9729 | 77.387  | 75.8751 | 69.4143 | 30.5696 | 17.3416 | 7.49755 | 5.52156 |
| 621 | BE   | F  | 87.3524 | 85.8116 | 85.9231 | 84.7797 | 85.6055 | 86.0555 | 82.612  | 79.0597 | 65,7555 | 70.1793 | 56.3191 | 23.0065 | 15.4757 | 10.8038 | 9.8403  |
| 621 | WE   | F  | 87.5572 | 86.1205 | 85.509  | 85.7323 | 85.2063 | 85.709  | 82.66   | 79.1334 | 66.5298 | 63.8799 | 56.4764 | 22.7874 | 15.1767 | 10.66   | 9.63164 |
| 622 | BW   | F  | 89.2617 | 88.4341 | 88.9899 | 89.0835 | 88.6927 | 88.8417 | 87.7425 | 86.1301 | 77.7516 | 76.5504 | 70.1304 | 30.9449 | 17.2438 | 6.92778 | 4.81101 |
| 622 | BE   | F  | 84.3252 | 86.6685 | 85.4921 | 86.4888 | 86.1771 | 86.0216 | 81.9912 | 77.9853 | 66.5579 | 64.3947 | 57.7218 | 22.7198 | 13.0603 | 6.70794 | 5.45845 |
| 622 | WE   | F  | 93.3842 | 85.001  | 83.8105 | 83.0922 | 82.5569 | 83.6188 | 77.1994 | 73.9161 | 64.245  | 68.2462 | 57.6834 | 23.7329 | 14.0913 | 7.91927 | 6.97271 |
| 623 | BW   | F  | 87.1991 | 89,5694 | 89.7717 | 89.7931 | 89.6204 | 89.4093 | 87.8096 | 86.0151 | 77.2076 | 75.5433 | 68.9999 | 29.8379 | 16.4914 | 6.76916 | 4.81314 |
| 623 | BE   | F  | 86.9224 | 82.4053 | 77.8749 | 79.7707 | 80.4911 | 79.8496 | 79.0485 | 75.8129 | 64.4106 | 61.3399 | 55.1412 | 23.1055 | 15.7041 | 11.1014 | 10.5102 |
| 623 | WE   | F  | 81.993  | 79.5345 | 79.8457 | 79.7783 | 79.9603 | 80.3892 | 79.3221 | 76.2072 | 63.971  | 71.4656 | 55.8646 | 24.2768 | 15.9937 | 11.2635 | 10.6612 |
| 601 | BE   | G  | 77.1631 | 82.4269 | 83.7303 | 84.2751 | 83.9582 | 84.8409 | 86.3928 | 83.5493 | 74.9314 | 58.2    | 65.5741 | 27.7473 | 17.3267 | 9.81795 | 8.46754 |
| 602 | BW   | G  | 86.6162 | 89.0153 | 89.916  | 89.7597 | 89.8024 | 89.6975 | 88.3836 | 86.5455 | 78.0097 | 79.6546 | 70.5762 | 31.8014 | 17.343  | 6.40495 | 4.11658 |
| 602 | BE   | G  | 88.8794 | 87.388  | 87.6119 | 87.9564 | 87.9363 | 88.4111 | 86.3205 | 83.7833 | 71.8667 | 70.3767 | 62.1949 | 22.638  | 11.959  | 4.53233 | 2.99287 |
| 602 | WE   | G  | 86.3476 | 86.9701 | 87.147  | 87.37   | 87.5248 | 88.795  | 86.2344 | 83.5103 | 72.2773 | 70.3604 | 61.7103 | 22.3091 | 11.7384 | 4.41778 | 2.6977  |
| 603 | BW   | G  | 91.5961 | 88.3389 | 88.3911 | 88.9997 | 88.5366 | 89.2807 | 87.3049 | 85.6095 | 76.5779 | 76.4517 | 68.8247 | 29.9223 | 16.1889 | 5.84391 | 3.61974 |
| 603 | BE   | G  | 85.4955 | 85.1074 | 85.1797 | 85.9839 | 85.9987 | 86.4236 | 84.8794 | 82.271  | 70.0993 | 70.7331 | 59.3519 | 20.9047 | 10.9569 | 3.98077 | 2.51127 |
| 603 | WE   | G  | 85.7845 | 88.8089 | 88.3196 | 88.5628 | 88.4917 | 88.3376 | 87.1484 | 85.3976 | 76.3324 | 76.6666 | 68,7107 | 29.6988 | 16.0122 | 5.81126 | 3.62457 |
| 604 | BW   | G  | 87.3876 | 90.2004 | 88.0399 | 90.17   | 89.5905 | 89.1281 | 87.7706 | 86.5095 | 79.0209 | 80.3523 | 73.0785 | 36.1647 | 20.3268 | 7.8538  | 5.24096 |
| 604 | BE   | G  | -27.817 | 78.9971 | 81.2504 | 84.3842 | 83.2782 | 79.6118 | 81.6743 | 81.6004 | 76.5099 | 60.6343 | 63.9276 | 28.038  | 16.1796 | 9.01228 | 7.78541 |
| 604 | WE   | G  | 81.6227 | 81.7273 | 82.385  | 81.7518 | 82.2567 | 83.5166 | 78.0258 | 81.2973 | 72.9279 | 84.0515 | 64.3245 | 28.7872 | 16.3562 | 8.76184 | 7.65569 |
| 605 | BE   | G  | 83.6321 | 79.6637 | 78.5948 | 77.5373 | 73.0472 | 76.0162 | 69.4096 | 66.5403 | 55.0627 | 56.7696 | 48.6707 | 19.1323 | 10.5787 | 5.14759 | 4.48191 |
| 606 | BE   | G  | 68.4412 | 73.6335 | 69.6481 | 69.8974 | 69.1065 | 68.3176 | 65.8234 | 66.3925 | 63.7383 | 47.3818 | 54.3362 | 21.8533 | 12.7049 | 6.55134 | 5.57207 |
| 607 | BE   | G  | 71.1232 | 65.2996 | 67.4234 | 68.6946 | 68.7413 | 68.9791 | 73.7874 | 75.3187 | 66.0746 | 66.485  | 62.1993 | 26.3366 | 16.1242 | 9.04711 | 7.46793 |
| 608 | BW . | G  | 90.2315 | 86.6709 | 87.0771 | 87.6744 | 87.3282 | 87.8856 | 87.943  | 86.5312 | 77.4168 | 75.6697 | 69.5233 | 30.4068 | 16.4245 | 6.04027 | 3.85239 |
| 608 | BE   | G  | 82.3617 | 84.7603 | 85.1721 | 85.7642 | 85.9008 | 86.1552 | 85.5992 | 83.5959 | 73.0064 | 70.9558 | 63.2419 | 23.5914 | 12.2784 | 4.2201  | 2.51202 |

 Table G.6 AC impedance measurements for specimens in test sequence 6 (phase angle at various frequencies of applied test voltage)

|      |     |      |         |          |          |          | u B     | FRE     | QUEI    | VCY (   | Hert    | z )     |                  |         |          |          |          |
|------|-----|------|---------|----------|----------|----------|---------|---------|---------|---------|---------|---------|------------------|---------|----------|----------|----------|
| CBL  | Cnd | СМ   | 0.1     | 0.3      | 0.5      | 0.7      | 0.9     | 1       | 5       | 10      | 50      | 60      | 100              | 500     | 1000     | 3000     | 5000     |
| ==== | === | == ; |         |          |          |          |         |         |         |         |         |         |                  | ======= | *=====   |          | ======   |
| 608  | WE  | G    | 84.5615 | 83.7065  | 84.0876  | 84.6674  | 85.3392 | 85.4743 | 85.2405 | 83.2397 | 72.3681 | 70.7926 | 62.6023          | 23.1083 | 12.0028  | 4.12268  | 2.45032  |
| 609  | BW  | G    | 89.133  | 85,7588  | 85.7401  | 86.4764  | 86.2837 | 86.6203 | 86.359  | 85.1738 | 77.7144 | 75.8921 | 70.0788          | 31.397  | 17.3314  | 6.9719   | 4.76392  |
| 609  | BE  | G    | 85.1638 | 83.8662  | 85.3102  | 84.9671  | 85.7471 | 85.6999 | 84.743  | 82.1371 | 70.6247 | 69.626  | 60.1045          | 21.7807 | 11.9173  | 4.9941   | 3.68262  |
| 609  | WE  | G    | 85.619  | 83,5684  | 84.6646  | 84.8862  | 85.1542 | 85.4779 | 84.4711 | 81.9339 | 70.502  | 66.5847 | 59.375           | 21.3862 | 11.5366  | 4.92911  | 3.53183  |
| 610  | BW  | G    | 89.3015 | 87.9715  | 89.6056  | 87.4926  | 88.8426 | 88.4734 | 86.6447 | 85.1613 | 77.087  | 74.2692 | 68.858           | 29.9133 | 16.3     | 6.24573  | 4.07886  |
| 610  | BE  | G    | 81.7339 | 84.7247  | 84.8684  | 85.6838  | 85.891  | 85.9038 | 85.3107 | 83.1755 | 72.545  | 70.937  | 62.7842          | 23.2823 | 12.1166  | 4.19455  | 2.51987  |
| 610  | WE  | G    | 80.4154 | 84.0626  | 84.6362  | 85.5812  | 85.6176 | 85.9513 | 85.0722 | 82.9897 | 72.2033 | 70.3578 | 62.4238          | 22.9731 | 11.9017  | 4.14592  | 2.47672  |
| 611  | BW  | G    | 90.6298 | 83.5319  | 86.4929  | 86.6905  | 86.2174 | 86.0013 | 84.935  | 83.6767 | 76.2433 | 72.7362 | 68.2265          | 30.0099 | 16.4791  | 6.32496  | 4.17066  |
| 611  | BE  | G    | 86.0479 | 83.3127  | 83.4065  | 83.1572  | 83.4964 | 83.142  | 82.7218 | 80.6436 | 69.6007 | 66.9447 | 59.0648          | 21.268  | 11.5178  | 4.62031  | 3.23926  |
| 611  | WE  | G    | 79.6127 | 83.0307  | 82.9063  | 82.8792  | 82.1823 | 82.3088 | 80.4175 | 78.3666 | 67.0973 | 67.4904 | 56.7353          | 19.8196 | 10.4805  | 3.9998   | 2.69992  |
| 612  | BW  | G    | 81.7044 | 85.3237  | 85.7365  | 85.4685  | 85.4699 | 85.448  | 85.0605 | 83.6733 | 76.4091 | 74.7319 | 68.5285          | 30.4357 | 16.5478  | 6.08449  | 3.85252  |
| 612  | BE  | G    | 84.797  | 83.1965  | 83.8014  | 83.6034  | 83.4969 | 83.5248 | 82.9677 | 81.0546 | 70.1614 | 67.7275 | 60.6332          | 21.9749 | 11.6846  | 4.42654  | 2.97566  |
| 612  | WE  | G    | 79.317  | 82.6659  | 82.2675  | 82.2042  | 82.1755 | 82.126  | 80.5303 | 78.5692 | 67.9217 | 63.096  | 57.9244          | 20.4588 | 10.6783  | 3.82169  | 2.44101  |
| 613  | BW  | G    | 88.3109 | 86.432   | 86.3101  | 86.3853  | 85.911  | 85.8653 | 84.0497 | 82,6782 | 76.4188 | 74.7214 | 69.3437          | 31.7623 | 17.243   | 6.16496  | 3.77626  |
| 613  | WE  | G    | 85.9172 | 84.9337  | 85.0388  | 84.4506  | 84.1446 | 84.0279 | 81.399  | 79.7117 | 71.7223 | 70.0304 | 63.0236          | 24.6633 | 12.8684  | 4.26272  | 2.394    |
| 613  | BE  | G    | 86.4758 | 84.899   | 84.7625  | 84.8226  | 84.9523 | 84.8613 | 83.3391 | 81.7278 | 73.2062 | 71.9499 | 64.6277          | 25.7769 | 13.5051  | 4.5417   | 2.60528  |
| 621  | BW  | G    | 85.86   | 89.1418  | 88.6897  | 88.0783  | 88.4958 | 88.0306 | 86.1215 | 84.5151 | 75.565  | 75.477  | 68.0072          | 30.2733 | 17.6001  | 8.24009  | 6.20197  |
| 621  | BE  | G    | 84.1965 | 84.9345  | 84.7738  | 85.016   | 85.4757 | 84.9113 | 81.5379 | 76.85   | 63.3029 | 55.9602 | 51.1098          | 19.8287 | 12.6204  | 7.93283  | 6.46414  |
| 621  | WE  | G    | 83.3791 | 80.9582  | 81.9189  | 82.5184  | 82.3704 | 82.7268 | 81.7877 | 76.4968 | 64.0644 | 78.0658 | 54.359           | 21.7908 | 14.2727  | 7.88918  | 5.73536  |
| 622  | BW  | G    | 93.0711 | 92.7623  | 91.5615  | 90.3864  | 89.5306 | 89.7694 | 86.0494 | 84.6414 | 75.6144 | 74.5041 | 67.8916          | 29.5027 | 16.3783  | 6.8967   | 4.95381  |
| 622  | BE  | G    | 82.4293 | 86.4304  | 82.0611  | 85.1766  | 85.0851 | 85.8948 | 82.4941 | 80.6886 | 68.7207 | 59.6791 | 58.0731          | 21.3257 | 11.3597  | 4.87554  | 3.46314  |
| 622  | WE  | G    | 87.3061 | 86.2197  | 86.0579  | 86.2736  | 86.116  | 86.4945 | 83.0391 | 80.6667 | 68.4872 | 56.4816 | 56.7214          | 19.7193 | 10.5843  | 4.51958  | 3.03881  |
| 623  | BW  | G    | 93.8204 | 102.925  | 96.1672  | 96.524   | 95.3985 | 95.2314 | 88.5358 | 85.8213 | 75.6705 | 74.9599 | 67.7365          | 29.6512 | 17.1795  | 7.61938  | 5.48188  |
| 623  | BE  | G    | 80.1055 | 83.5148  | 83.5161  | 83.4845  | 84.1385 | 83.2448 | 80.9401 | 77.1489 | 63.6913 | 58.8851 | 52.7337          | 18.0428 | 10.9088  | 5.92901  | 5.03594  |
| 623  | WE  | G    | 82.2079 | 82.9231  | 82.6406  | 83.0561  | 82.827  | 84.2969 | 80.6145 | 76.5653 | 61.5823 | 32.216  | 52.1136          | 18.6117 | 10.2394  | 5.68492  | 4.83832  |
| 601  | BE  | н    | 84.6154 | 83.4448  | 84.1683  | 83.9955  | 84.4346 | 84.4912 | 84.0392 | 82.9947 | 76.1336 | 74.4041 | 69.9 <b>7</b> 06 | 32.7096 | 17.8115  | 5.82954  | 3.20605  |
| 602  | BW  | н    | 90.3818 | 88,3913  | 88.226   | 88.3209  | 88.6768 | 88.2606 | 87.0891 | 85.5656 | 77.074  | 74.6153 | 68.3482          | 28.9448 | 15.4277  | 5.28423  | 3.10171  |
| 602  | BE  | н    | 88.3699 | 84.9606  | 87.9877  | 87.9926  | 87.493  | 87.55   | 85.1012 | 82.1768 | 69.8052 | 67,1526 | 58.7114          | 20.251  | 10.4038  | 3.40943  | 1.92082  |
| 602  | WE  | н    | 84.9545 | 97.8727  | 87.4742  | 87.8214  | 87.8427 | 87.7446 | 85.3149 | 82.409  | 69.7793 | 68.0349 | 58.8812          | 20.2415 | 10.4464  | 3.4644   | 1.9531   |
| 603  | BW  | н    | 56.5769 | 73.0346  | 78.6783  | 80.8901  | 81.9582 | 82.6431 | 82.6538 | 79.0669 | 62.3887 | 59.7856 | 49.5585          | 15.4259 | 7.83941  | 2.30573  | 1.14802  |
| 603  | BE  | Н    | 0.5179  | 0.67153  | 0.740784 | 0.845951 | 1.01074 | 1.11639 | 4.12127 | 7.69475 | 17.2708 | 17.2505 | 14.3737          | 7.13072 | 1.013612 | 2.02579  | 0.795853 |
| 603  | WE  | н    | 50.4342 | 71.426   | 76.6692  | 77.6625  | 79.2761 | 79.7226 | 77.9303 | 72.4255 | 48.9075 | 46.2192 | 35.9701          | 12.7955 | 8.65915  | 6.74341  | 7.31744  |
| 604  | вw  | н    | 85.9585 | 90.8835  | 89.5251  | 89.9033  | 89.8391 | 89.6265 | 88.5521 | 86.7934 | 77.9329 | 79.8068 | 70.4553          | 31.0964 | 16.8452  | 5.82663  | 3.44447  |
| 604  | BE  | Н    | 89.1719 | 82.6968  | 83.9961  | 82.4232  | 81.7645 | 81.2638 | 79.4345 | 78.3263 | 71.9368 | 73.0752 | 64.4012          | 27.69   | 14.7444  | 4.59289  | 2.38029  |
| 604  | WE  | н    | 88.4982 | 83.8749  | 83.296   | 82.7839  | 81.9676 | 82.3035 | 79.5528 | 78.6715 | 71.7578 | 69.2576 | 64.6732          | 28.1286 | 15.0088  | 4.69587  | 2.45325  |
| 605  | BE  | H    | 3.62774 | 3.80272  | 4.03097  | 4.35754  | 4.61584 | 4.82552 | 10.6278 | 16.5818 | 38.2358 | 41.3313 | 41.578           | 21.7778 | 10.5327  | 0.915012 | -1.4704  |
| 606  | BE  | Н    | 1.42024 | 0.733361 | 0.95445  | 1.00038  | 1.12967 | 1.24383 | 4.24278 | 7.36587 | 18.648  | 21.0094 | 20.9944          | 14.465  | 7.61392  | 0.416122 | -1.5086  |

-

|     |     |    |          |         |          |          |         | FRE      | QUE     | NCY (   | (Hert   | z )     |         |         |         |          |           |
|-----|-----|----|----------|---------|----------|----------|---------|----------|---------|---------|---------|---------|---------|---------|---------|----------|-----------|
| CBL | Cnd | СМ | 0.1      | 0.3     | 0.5      | 0.7      | 0.9     | 1        | 5       | 10      | 50      | 60      | 100     | 500     | 1000    | 3000     | 5000      |
|     |     | == |          |         | ******   |          |         |          |         |         |         |         |         |         |         |          |           |
| 607 | BE  | Н  | 0.801535 | 1.48447 | 2.11041  | 2.80697  | 3.38513 | 3.86319  | 14.7268 | 23.1709 | 40.5245 | 37.813  | 39.2689 | 17.7923 | 8.74114 | 0.435017 | -1.7003   |
| 608 | BW  | H  | 86.0824  | 89.0661 | 88.7088  | 88.942   | 88.7448 | 88.9105  | 87.1093 | 85.0472 | 74.7686 | 73.7711 | 65.6171 | 25.6499 | 13.4572 | 4.61478  | 2.74863   |
| 608 | BE  | н  | 86.8634  | 87.9134 | 88.3885  | 88.0636  | 87.7237 | 87.704   | 84.6815 | 81.14   | 66.2524 | 64.8997 | 54.5351 | 17.3338 | 8.86101 | 3.001    | 1.78838   |
| 608 | WE  | Н  | 84.3533  | 88.0358 | 87.4691  | 87.3275  | 87.287  | 87.4926  | 84.4557 | 80.6822 | 65.7414 | 63.1701 | 53.5334 | 16.6341 | 8.48073 | 2.88872  | 1.70306   |
| 609 | BW  | Н  | 88.5587  | 87.7277 | 87.9537  | 87.5528  | 88.1254 | 88.0777  | 86.4921 | 83.9506 | 73.632  | 71.4377 | 64.232  | 24.9686 | 13.0143 | 4.35422  | 2.5051    |
| 609 | BE  | Н  | 87.5219  | 86.3733 | 86.8687  | 86.7744  | 86.2938 | 86.3246  | 83.2555 | 79.7124 | 65.3979 | 63.1426 | 53.5315 | 16.989  | 8.7202  | 2.84303  | 1.64148   |
| 609 | WE  | Н  | 81.8659  | 87.1352 | 86.6363  | 87.3416  | 86.8013 | 86.8273  | 83.5199 | 79.7495 | 64.5273 | 61.3026 | 52.2979 | 16.2346 | 8.22074 | 2.76179  | 1.57508   |
| 610 | BW  | н  | 92.0255  | 88.939  | 88.9271  | 88.8966  | 89.0467 | 88.8306  | 87.2151 | 84.9919 | 74.5983 | 74.1641 | 65.443  | 25.47   | 13.4224 | 4.5495   | 2.68824   |
| 610 | BE  | Н  | 85.6662  | 88.0254 | 88.3163  | 87.939   | 87.7173 | 87.4788  | 84.3752 | 80.5708 | 65.2509 | 62.6682 | 53.2264 | 16.64   | 8.46865 | 2.84571  | 1.67819   |
| 610 | WE  | н  | 90.358   | 88.1513 | 87.9154  | 87.7516  | 88.0329 | 87.7759  | 84.5998 | 81.0203 | 66.1835 | 64.2808 | 54.2556 | 17.1649 | 8.79479 | 2.93826  | 1.73762   |
| 611 | BW  | Н  | 2.14577  | 6.01394 | 9.67205  | 13.2013  | 16.4468 | 18.5645  | 53.3131 | 61.7512 | 56.0864 | 53.1359 | 45.4052 | 16.5106 | 8.77068 | 2.8766   | 1.60667   |
| 611 | BE  | н  | 2.24237  | 6.59189 | 10.4098  | 13.968   | 17.1912 | 19.4337  | 54.8541 | 63.5289 | 59.3052 | 56.3817 | 47.83   | 14.2227 | 7.17306 | 2.34902  | 1.33078   |
| 611 | WE  | H  | 0.56985  | 0.69132 | 0.784941 | 0.907805 | 1.03112 | 1.12466  | 4.2501  | 7.77745 | 16.7746 | 16.3243 | 14.2939 | 6.02273 | 3.16547 | 0.890311 | 0.392267  |
| 612 | BW  | Н  | 1.16695  | 2.33296 | 3.36386  | 4.4      | 5,36488 | 6.04792  | 24.0904 | 37.3133 | 51.4892 | 51.3193 | 48.0828 | 19.9851 | 10.509  | 3.54444  | 2.08701   |
| 612 | BE  | н  | 0.213425 | 0.38117 | 0.546567 | 0.712369 | 0.87218 | 0.980777 | 4.26602 | 7.9548  | 22.7971 | 23.3112 | 24.9818 | 10.1054 | 5.20802 | 1.76306  | 1.03892   |
| 612 | WE  | H  | 1.0963   | 2.34254 | 3.52813  | 4.66575  | 5.7402  | 6.45638  | 25.4838 | 39.9122 | 56.2412 | 55.9711 | 48.4354 | 15.5725 | 7.9762  | 2.67863  | 1.58123   |
| 613 | BW  | Н  | 13.5752  | 29.3704 | 40.9932  | 49.5245  | 54.6691 | 57.8128  | 72.3748 | 69.211  | 61.6217 | 61.0787 | 58.5093 | 26.3601 | 14.0621 | 4.65985  | 2.63701   |
| 613 | BE  | H  | 0.999889 | 1.18144 | 1.21755  | 1.33755  | 1.49252 | 1.60594  | 5.78836 | 10.637  | 33.4427 | 34.5646 | 36.8696 | 15.3782 | 7.89709 | 2.48717  | 1.3428    |
| 613 | WE  | Н  | 11.1786  | 27.6631 | 39.4076  | 48.1181  | 53.6617 | 56.8954  | 74.0963 | 72.0761 | 56.3686 | 54.1254 | 44.0411 | 13.1138 | 7.1166  | 3.09137  | 2.37322   |
| 621 | BW  | Н  | 81.8565  | 85.3539 | 84.9744  | 85.001   | 84.907  | 85.0125  | 82.5701 | 79.668  | 68.1654 | 65.251  | 58.1398 | 21.0331 | 10.8303 | 3.32986  | 1.70922   |
| 621 | BE  | н  | 81.1109  | 82.6616 | 82.6078  | 81.3635  | 81.2663 | 80.8869  | 74.6702 | 70.6574 | 59.5253 | 58.6404 | 50.0919 | 17.5414 | 8.53915 | 1.4712   | -0.272862 |
| 621 | WE  | н  | 81.8806  | 82.2862 | 81.8713  | 81.0373  | 80.7367 | 80.1625  | 73.2026 | 69.1057 | 58.4286 | 56.3989 | 48.9426 | 16.9221 | 8.1022  | 1.17033  | -0.518973 |
| 622 | BW  | н  | 84.6373  | 86.2665 | 86.1327  | 86.1106  | 86.0564 | 85.8624  | 83.0911 | 79.7973 | 66.6944 | 65.045  | 56.3413 | 19.4764 | 9.94797 | 2.97855  | 1.47794   |
| 622 | BE  | н  | 77.6116  | 77.8842 | 76.2549  | 75.9704  | 74.9487 | 74.7471  | 68.9552 | 66.5979 | 59.7483 | 59.2431 | 53.9197 | 23.8443 | 12.6057 | 3.36904  | 1.15574   |
| 622 | WE  | H  | 84.603   | 77.7898 | 75.414   | 74.4756  | 73.3943 | 73.0729  | 67.8879 | 65.8769 | 59.4556 | 56.0395 | 53.6199 | 22.7244 | 11.7189 | 2.67252  | 0.425789  |
| 623 | BW  | н  | 86.0594  | 84.9774 | 84.953   | 84.5552  | 84.667  | 84.5642  | 81.3762 | 77.982  | 64.7874 | 62.3676 | 53.953  | 17.9877 | 9.18476 | 2.76324  | 1.39285   |
| 623 | BE  | н  | 80.2441  | 79.3677 | 78.4325  | 77.8622  | 77.6326 | 77.2437  | 70.9599 | 65.498  | 51.574  | 49.7095 | 43.5116 | 17.1736 | 8.25577 | 0.89679  | -0.729894 |
| 623 | WE  | н  | 85.4571  | 80.5727 | 80.128   | 79.4045  | 78.5507 | 78.3374  | 72.3597 | 67.2183 | 53.0077 | 49.3001 | 44.454  | 17.6578 | 8.5431  | 1.09679  | -0.559243 |
|     |     |    |          |         |          |          |         |          |         |         |         |         |         |         |         |          |           |

G-36

### Appendix H

\_

### Insulation Resistance Data

### Tables

| <u>Title</u> |                                                                     | Page |
|--------------|---------------------------------------------------------------------|------|
| Table H.1    | Insulation resistance measurements for specimens in test sequence 1 | H-3  |
| Table H.2    | Insulation resistance measurements for specimens in test sequence 2 | H-4  |
| Table H.3    | Insulation resistance measurements for specimens in test sequence 3 | H-7  |
| Table H.4    | Insulation resistance measurements for specimens in test sequence 4 | H-9  |
| Table H.5    | Insulation resistance measurements for specimens in test sequence 5 | H-10 |
| Table H.6    | Insulation resistance measurements for specimens in test sequence 6 | H-11 |

[

#### Table H.1 Insulation resistance measurements for specimens in test sequence 1

|         | с   | IR in Gig | a-ohms  | Temp | Polrizatn | <b>NII</b> 4/ | C.     | IR in Giga | a ohms  | Temp | Polrizatn | C<br>BUW M | IR in Gig | a-ohms<br>@ 10 Mi | Temp | Polrizata<br>Index      | DU #4 | C I    | R in Giga | ohms<br>a 10 Mi | Temp | Polrizau<br>Index       | 1 C | IR in Gig                               | ga-ohms<br>@ 10 Mi | Temp | Polrizatn<br>Index | C<br>RH % M | IR in Gi | ga-ohms<br>@ 10 Mi | Temp | Polrizatn<br>Index | RH % |
|---------|-----|-----------|---------|------|-----------|---------------|--------|------------|---------|------|-----------|------------|-----------|-------------------|------|-------------------------|-------|--------|-----------|-----------------|------|-------------------------|-----|-----------------------------------------|--------------------|------|--------------------|-------------|----------|--------------------|------|--------------------|------|
| CBL Cnd | M   | @ I Min   | @ 10 Mi | (F)  | Index     | RH %          | M      | @ I Min    | @ 10 MI | (1)  |           | KH % M     | @ 1 Mill  | (@ to Mi          | (r)  | TIDEX                   | Kn 70 |        |           | 8 10 IVI        | (tr) | BRICK                   |     |                                         |                    | (c)  |                    |             |          |                    |      |                    |      |
| 101 BW  |     | ~ 2       | >2      |      | >1        |               | _      |            | -       |      |           |            |           | <u> </u>          |      | -                       | -     | F      | >2        | >2              | -    | >1                      | - G | >2                                      | > 2                |      | >1                 | - н         | >2       | >2                 | -    | >1                 | -    |
| 102 BW  | Å   | >2        | 52      | _    | >1        |               |        |            | -       | -    |           |            | -         | -                 |      | -                       | -     | F      | >2        | >2              | -    | >1                      | - G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | > 2                | -    | >1                 | -    |
| 118 BW  | Ā   | >2        | >2      | -    | >1        |               |        | -          | -       | -    | -         |            | -         | -                 | -    | -                       | -     | F      | >2        | >2              | -    | > 1                     | - G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | > 2                | -    | >1                 | -    |
| 104 BW  | A   | > 2       | > 2     | -    | >1        | -             |        | -          | -       | -    | -         |            | -         | -                 |      |                         | -     | F      | > 2       | > 2             | -    | > 1                     | - G | > 2                                     | > 2                | -    | > 1                | - H         | > 2      | > 2                | -    | >1                 | -    |
| 105 BW  | A   | > 2       | > 2     | -    | >1        | -             |        | -          | -       | -    | •         | • ••       | -         | -                 | -    | -                       | -     | F      | > 2       | > 2             | -    | > 1                     | - G | > 2                                     | > 2                | •    | > 1                | - H         | > 2      | > 2                | -    | > 1                | -    |
| 106 BW  | Α   | > 2       | > 2     | -    | >1        | -             | в      | > 2        | > 2     | -    | > 1       | - D        | > 2       | > 2               | -    | >1                      | -     | F      | >2        | > 2             | -    | > 1                     | - G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | >2                 | -    | >1                 | -    |
| 106 BE  | Α   | > 2       | > 2     | -    | > 1       | -             | в      | > 2        | > 2     | -    | > 1       | - D        | > 2       | > 2               | -    | >1                      | •     | F      | > 2       | > 2             | -    | > 1                     | • G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | >2                 | -    | >1                 | •    |
| 106 WE  | Α   | > 2       | > 2     | -    | > 1       | •             | в      | > 2        | > 2     | -    | > 1       | - D        | > 2       | > 2               | -    | >1                      | -     | F      | >2        | > 2             | -    | > 1                     | - G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | > 2                | -    | >1                 | •    |
| 107 BW  | Α   | > 2       | > 2     | -    | >1        | -             | в      | > 2        | > 2     | -    | >1        | - D        | > 2       | > 2               | -    | >1                      | -     | F      | >2        | >2              | •    | >1                      | - G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | > 2                | -    | >1                 | -    |
| 107 BE  | А   | > 2       | > 2     | •    | >1        | -             | в      | > 2        | > 2     | -    | > 1       | - D        | > 2       | > 2               | •    | >1                      | •     | F      | >2        | >2              | -    | >1                      | - G | > 2                                     | > 2                | -    | >1                 | - H         | > 2      | > 2                | -    | >1                 | -    |
| 107 WE  | А   | > 2       | > 2     | -    | >1        | •             | в      | > 2        | > 2     | -    | >1        | - D        | >2        | >2                | •    | >1                      | •     | F      | >2        | > 2             | -    | >1                      | - G | >2                                      | >2                 | -    | >1                 | - H         | >2       | > 2                | •    | >1                 | -    |
| 108 BW  | А   | > 2       | > 2     | -    | >1        | -             | в      | > 2        | > 2     | -    | >1        | • D        | >2        | > 2               | -    | >1                      | -     | F      | >2        | >2              | •    | >1                      | - G | >2                                      | >2                 | -    | >1                 | - H         | >2       | >2                 | -    | >1                 | -    |
| 108 BE  | Α   | > 2       | > 2     | -    | >1        | •             | В      | >2         | > 2     | -    | >1        | - D        | >2        | >2                | •    | >1                      | •     | F      | >2        | >2              | -    | >1                      | - 0 | >2                                      | >2                 | •    | >1                 | - 11        | >2       | > 2                | . •  | >1                 | -    |
| 108 WE  | A   | >2        | > 2     | -    | >1        | -             | В      | >2         | >2      | -    | >1        | - D        | >2        | >2                | -    | >1                      | -     | r<br>r | >2        | >2              | -    | >1                      | • • | 22                                      | ~2                 | -    | 21                 | - n<br>u    | >2       | ~2                 | -    | >1                 | -    |
| 109 BW  | A   | >2        | > 2     | -    | >1        | -             | В      | >2         | >2      | -    | >1        | - D        | > 2       | >2                | •    | >1                      | -     | r      | ~2        | ~~~             | •    |                         | • 0 | 24                                      | 1                  | -    |                    | - n<br>u    |          | ~2                 | -    | ~1                 | -    |
| 109 BE  | A   | >2        | > 2     | -    | >1        | •             | В      | >2         | >2      | -    | >1        | - D        | > 2       | ~ 2               | •    | >1                      | •     | r<br>r | >2        | ~2              | -    | - 1                     | - 0 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 3                  | -    | $\leq 1$           | - 1         | 52       | 52                 | -    | Si                 | -    |
| 109 WE  | A   | >2        | >2      | -    | >1        | -             | В      | >2         | >2      | •    | >1        | · D        | ~2        | ~2                | -    |                         | •     | r<br>F | 52        | 52              |      | $\overline{\mathbf{s}}$ |     | 52                                      | 52                 |      | 51                 | - 1         | 52       | 52                 |      | 51                 |      |
| 110 BW  | A   | >2        | >2      | •    | >1        | -             | D      | ~~~        | ~~      | -    |           |            | 5         | 5                 |      | $\overline{\mathbf{x}}$ | -     | r<br>F | 52        | 52              | -    | Si                      |     | >2                                      | 52                 | -    | 51                 | - 1         | >2       | >2                 | -    | >1                 |      |
| 110 DE  | A   | ~2        | 3       | •    | $\leq 1$  | -             | D<br>D | 52         | 52      | -    | 51        |            | 52        | 52                |      | 51                      | -     | F      | >2        | >2              | -    | >1                      | - G | > 2                                     | >2                 |      | >1                 | - Ĥ         | >2       | > 2                | -    | >1                 |      |
| 111 BW  | A . | 52        | 52      | •    | 51        |               | 5      | - 2        |         |      | - 1       |            |           | -                 |      |                         | -     | F      | >2        | > 2             | -    | > 1                     | - G | >2                                      | > 2                | -    | >1                 | - H         | >2       | > 2                |      | >1                 | -    |
| 111 BR  | Â   | >2        | 52      |      | 51        |               |        | -          |         | _    | -         |            | -         | -                 | -    | -                       | -     | F      | >2        | > 2             | -    | >1                      | - G | >2                                      | >2                 | -    | >1                 | - H         | >2       | > 2                | -    | >1                 | -    |
| 111 WR  | Ā   | 52        | >2      |      | >1        | _             |        | -          | -       | _    |           |            | -         | -                 |      | -                       | -     | F      | >2        | > 2             | -    | > 1                     | - G | > 2                                     | > 2                | -    | >1                 | - H         | >2       | > 2                | -    | >1                 | -    |
| 112 BW  | A   | >2        | >2      | -    | >1        | -             | С      | > 2        | >2      | -    | >1        | - E        | >2        | >2                | -    | >1                      | -     | F      | > 2       | > 2             | -    | > 1                     | - G | >2                                      | > 2                | -    | >1                 | - H         | >2       | > 2                | -    | unknw              | -    |
| 113 BW  | Ā   | >2        | > 2     | -    | >1        | -             | č      | >2         | >2      | -    | >1        | - B        | > 2       | > 2               | -    | > 1                     | -     | F      | > 2       | >2              | -    | > 1                     | - G | > 2                                     | > 2                | -    | >1                 | - H         | >2       | > 2                | -    | <1                 | -    |
| 114 BW  | A   | >2        | >2      | -    | >1        | -             | С      | > 2        | > 2     | -    | >1        | - E        | >2        | > 2               | •    | >1                      | •     | F      | >2        | > 2             | -    | > 1                     | - G | >2                                      | > 2                | -    | >1                 | - H         | >2       | > 2                | -    | unknw              | -    |
| 115 BW  | A   | > 2       | > 2     | -    | >1        | -             | Ċ      | > 2        | > 2     | -    | >1        | - E        | > 2       | > 2               | -    | >1                      | -     | F      | > 2       | > 2             | -    | > 1                     | - G | > 2                                     | > 2                | •    | >1                 | - H         | >2       | > 2                | -    | unknw              | -    |
| 116 BW  | Ä   | > 2       | > 2     | •    | >1        | -             | С      | > 2        | > 2     | -    | >1        | - E        | > 2       | > 2               | -    | >1                      | -     | F      | >2        | > 2             | •    | > 1                     | ۰G  | > 2                                     | > 2                | -    | >1                 | - H         | >2       | > 2                | -    | unknw              | •    |
| 117 BW  | А   | > 2       | > 2     | -    | >1        | -             | С      | > 2        | > 2     | -    | >1        |            | •         | -                 | -    | -                       | -     |        | -         | -               | -    | -                       |     | -                                       | -                  | -    | •                  |             | -        | • .                | •    | -                  | •    |
|         |     |           |         |      |           |               |        |            |         |      |           |            |           |                   |      |                         |       |        |           |                 |      |                         |     |                                         |                    |      |                    |             |          |                    |      |                    |      |
|         |     |           |         |      |           |               |        |            |         |      |           |            |           |                   |      |                         |       |        |           |                 |      |                         |     |                                         |                    |      |                    |             |          |                    |      |                    |      |

,

#### Table H.2 Insulation resistance measurements for specimens in test sequence 2

| CBL Cnd          | С<br>М | IR in 1<br>@IM | fera-ohms<br>in @101 | Ten<br>Mi (F | np Połri<br>) Ind | izatn<br>lex F | с<br>и % н | ∶ lR in Ter<br>Al @ IMin | ra∙ohms<br>@10 Mi | Temp<br>(F) | Polrizatn<br>Index | C<br>RH% M | IR in Tera<br>@ 1 Min | -ohms<br>@ 10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %         | ст<br>м@ | lR in Tera-ol<br>ĝIMin @ | hms<br>10 Mi | Temp<br>(F) | Polrizatn<br>Index | C<br>RH% M | IR in Tera-<br>@1 Min @ | ohans<br>2)10 Mi | Temp<br>(F)  | Polrizatn<br>Index | C<br>RH% M   | IR in Tera<br>@1 Min ( | ∙ohms<br>@i10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH % |
|------------------|--------|----------------|----------------------|--------------|-------------------|----------------|------------|--------------------------|-------------------|-------------|--------------------|------------|-----------------------|------------------|-------------|--------------------|--------------|----------|--------------------------|--------------|-------------|--------------------|------------|-------------------------|------------------|--------------|--------------------|--------------|------------------------|------------------|-------------|--------------------|------|
| 201 BW           | <br>A  | 211111177      | 8                    |              | 74 1              |                | 49         |                          | ·                 |             | •                  |            | <br>-                 | <u></u>          | -           | -                  | - I          |          | 0.22                     | 0.35         | 80.6        | 1.59091            | 44 G       | 0.94                    | 1.45             | <br>70       | 1.54255            | 27 S H       | 0.49                   | 3 15             | 75 5        | 6 47857            | 19   |
| 201 BR.          | A      |                | •                    | •            |                   |                |            |                          | •                 |             | -                  |            |                       |                  |             | •                  | . 1          | F        | 0.26                     | 0.28         | 80.6        | 1.07692            | 44 G       | 0.89                    | 1.41             | 69           | 1.58427            | 27.5 H       |                        |                  |             |                    | - "  |
| 201 WR           | A      | •              | •                    |              |                   |                |            | •                        |                   | •           |                    |            | •                     |                  | •           | •                  | · 1          | F        | 0.58                     | 0.68         | 80.6        | 1.17241            | 44 G       | 0.7                     | 0.92             | 69           | 1.31429            | 27.5 H       |                        | -                |             | -                  |      |
| 201 BG           | Α      | •              | •                    | -            | •                 |                |            | •                        | •                 | ·           | ·                  | • ••       | •                     | •                | •           |                    | · 1          | F        | 0.21                     | 0.28         | 80.6        | 1.33333            | 44 G       | 0.94                    | 1.38             | 68.9         | 1.46809            | 27.5 H       | -                      | -                | •           | -                  |      |
| 201 WG           | A      | -              | •                    | -            | •                 |                | • ••       | •                        | •                 | •           | •                  |            | •                     | -                | -           | •                  | - 1          | F        | 0.3                      | 0.32         | 80.6        | 1.06667            | 44 G       | 0.69                    | 0.895            | 69.3         | 1.2971             | 27.5 H       | •                      | •                | •           | •                  | •    |
| 201 RG           | A      | -              |                      |              | ·                 |                |            | -                        | -                 | •           | •                  | • ••       | •                     | -                | ·           | •                  | - 1          | F        | 0.35                     | 0.52         | 80.6        | 1.48571            | 44 G       | 0.645                   | 0.82             | 69.7         | 1.27132            | 27.5 H       | •                      | •                | •           | •                  | •    |
| 201 BE           | A      |                | .5                   | 3            | 74                | 2              | 49         | •                        | . •               | •           | •                  | • ••       | •                     | •                | •           | •                  | • 1          | F        | •                        | -            | -           | -                  | • G        | 0.46                    | 0.815            | 70.2         | 1.77174            | 27.5 H       | 0.03                   | 0.0395           | 75.5        | 1.31667            | 39   |
| 201 WE           | A      |                | ./                   | 2.3          | /4 1.4            | /059           | 49         | •                        | •                 | •           | •                  | • ••       | •                     | •                | •           | •                  | • •          | r        | •                        | •            | •           | •                  | · 6        | 0.32                    | 0.405            | 70.3         | 1.26563            | 27.5 H       | 0.038                  | 0.043            | 75.5        | 1.13158            | 39   |
| 201 KE           | A.     | •              | :                    | :            | •                 |                |            |                          | •                 | :           | •                  |            | :                     | •                | •           | •                  |              | r        | •                        | •            | •           | •                  |            | 0.27                    | 0.35             | 70.6         | 1.40/41            | 27.5 H       | •                      | -                | ·           | •                  | •    |
| 201 OE           | Â      | -              | s0 - 1               | 00 -         | 74 .              | 2              | 49         |                          |                   | ÷.          |                    |            | :                     | -                |             |                    |              | F        | 0.15                     | - 0.22       | 78.8        | 1 46667            | - 44 G     | 0.86                    | 11               | 71.9         | 1.20071            | 27 11        | - 305                  | - 2.05           | 717         | < 19097            | ·    |
| 202 BR           | Ä      |                | •                    | •            | •                 | -              |            |                          |                   | •           |                    | • ••       |                       | -                |             |                    | . i          | F        | 0.15                     | 0.22         | 78.8        | 1.46667            | 44 G       | 0.69                    | 1                | 72           | 1.44928            | 27 H         | -                      | -                | -           | -                  |      |
| 202 WR           | A      |                |                      |              |                   |                |            |                          | •                 |             | •                  |            |                       |                  |             | -                  | - I          | F        | 0.09                     | 0.13         | 78.8        | 1.44444            | 44 G       | 0.57                    | 0.87             | 72.1         | 1.52632            | 27 H         |                        |                  | •           |                    |      |
| 202 BE           | A      | J              | .5                   | 5.5          | 74 3.6            | 6667           | 49         | -                        | •                 | -           | -                  |            |                       | -                | •           |                    | • F          | F        | •                        | •            | •           |                    | • G        | 0.31                    | 0.53             | 72.2         | 1.70968            | 27 H         | 0.00365                | 0.0042           | 73.7        | 1.15068            | 41   |
| 202 WE           | A      |                | 2 1                  | 00           | 74                | 50             | 49         | •                        | •                 | •           | •                  | • ••       | •                     | -                | •           | •                  | • F          | F        | •                        | •            | •           | -                  | ۰G         | 0.24                    | 0.34             | 72.4         | 1.41667            | 27 H         | 0.004                  | 0.00435          | 73.9        | 1.0875             | 41   |
| 202 RE           | A      | •              | ·                    | •            |                   |                | • =        | •                        | •                 | •           |                    | •          | •                     | •                | •           | •                  | - I          | F        | •                        | •            |             |                    | - G        | 0.215                   | 0.305            | 72.5         | 1.4186             | 27 H         | •                      | -                | •           | -                  | •    |
| 203 BW           | A      |                | 15                   | 15           | 74                | 1              | 49 B       | 3                        | 13                | /1          | 4.333333           | 46 D       | 0.88                  | 1.4              | 70.8        | 1.59091            | 54 1         | F        | 0.5                      | 0.75         | 77          | 1.5                | 34 G       | 0.275                   | 0.41             | 74.3         | 1.49091            | 25.5 H       | 0.76                   | 3.1              | 87.8        | 4.07895            | 35   |
| 203 BR           | Å      | :              | :                    | :            | -                 |                | . в        | 1                        | 12                | 71          | 2.5                | 46 D       | 0.43                  | 0.62             | 75.9        | 1.37778            | 77 5         | r<br>F   | 0.02                     | 0.72         | 77          | 1.10129            | 34 G       | 0.24                    | 0.35             | 74.5         | 1.45855            | 25.5 H       |                        | •                | :           | •                  | •    |
| 203 BG           | Â      |                | •                    |              |                   |                | . Б        | 1.6                      | 2.8               | 71          | 1.75               | 46 D       | 0.73                  | 1.21             | 75.7        | 1.65753            | 77 8         | F        | 0.58                     | 0.68         | 77          | 1.17241            | 34 G       | 0.214                   | 0.36             | 74.4         | 1.68224            | 25.5 H       |                        |                  |             |                    |      |
| 203 WG           | A      | •              |                      |              | -                 |                | . в        | 1.6                      | 8                 | 71          | 5                  | 46 D       | 0.85                  | 1.38             | 76          | 1.62353            | 77 E         | F        | 0.5                      | 0.55         | 77          | 1.1                | 34 G       | 0.172                   | 0.222            | 74.5         | 1.2907             | 25.5 H       | -                      | -                |             |                    |      |
| 203 RG           | A      | •              | •                    | •            | -                 |                | . в        | 2.5                      | 9                 | 71          | 3.6                | 46 D       | 1.07                  | 1.55             | 76.2        | 1.4486             | 77 F         | F        | 0.375                    | 0.475        | 77          | 1.26667            | 34 G       | 0.125                   | 0.15             | 74.6         | 1.2                | 25.5 H       | •                      | •                | -           | •                  |      |
| 203 BE           | A      | 1              | .3                   | 3            | 74 2.3            | 0769           | 49 B       | 1.1                      | 6.8               | 71          | 6.18182            | 46 D       | 0.24                  | 0.3              | 72          | 1.25               | 54 E         | F        | •                        | •            | •           | •                  | - G        | 0.175                   | 0.26             | 74.7         | 1.48571            | 25 H         | 0.024                  | 0.031            | 78.8        | 1.29167            | 35   |
| 203 WE           | A      |                | ./                   | 2            | 74 1.1            | /04/           | 49 B       | 1.2                      | 4                 | 71          | 3.33333            | 46 D       | 0.28                  | 0.35             | 72.5        | 1.25               | 24 8         | ۲<br>C   | •                        | •            | •           | •                  | • •        | 0.096                   | 0.122            | 75           | 1.27083            | 25 H         | 0.029                  | 0.034.           | 78,8        | 1.17241            | 35   |
| 203 RE<br>203 GE | Å      | :              |                      |              |                   |                | . в        | 0.23                     | 0.4               | 71          | 1.0                | 46 D       | 0.17                  | 0.25             | 75 3        | 3 3 5714           | 77 5         | F        | :                        | :            | :           |                    |            | 0.034                   | 0.009            | 75 2         | 1 1 7 8 5 7        | 25 H         | •                      | •                | •           | •                  | •    |
| 204 BW           | Ä      |                | 15                   | 20           | 74 1.3            | 3333           | 43 B       | 1.3                      | 2.4               | 71          | 1.84615            | 47 D       | 0.88                  | 1.11             | 72.8        | 1.26136            | 54 F         | F        | 0.52                     | 0.72         | 78,8        | 1.38462            | 35 G       | 0.235                   | 0.335            | 75.9         | 1.42553            | 25 H         | 0.36                   | 1.52             | 78.9        | 4.22222            | 35   |
| 204 BR.          | A      |                |                      | •            | •                 |                | • В        | 1                        | 3                 | 71          | 3                  | 47 D       | 1.08                  | 1.4              | 76.4        | 1.2963             | 54 F         | F        | 0.4                      | 0.55         | 78.8        | 1.375              | 35 G       | 0.2                     | 0.285            | 76           | 1.425              | 25 H         | •                      | -                | -           | -                  | -    |
| 204 WR           | A      | •              | -                    | -            | -                 |                | - В        | 1.5                      | 3.1               | 71          | 2.06667            | 47 D       | 1.05                  | 2.2              | 73.3        | 2.09524            | 77 F         | F        | 0.45                     | 0.58         | 78.8        | 1.28889            | 35 G       | 0.15                    | 0.198            | 76           | 1.32               | 25 H         | •                      | -                | •           | -                  | -    |
| 204 BG           | A      | •              | -                    | -            | -                 |                | - B        | 0.85                     | 1.25              | 71          | 1.47059            | 47 D       | 0.4                   | 0.63             | 76.5        | 1.575              | 54 F         | F        | 0.4                      | 0.5          | 78.8        | 1.25               | 35 G       | 0.235                   | 0.295            | 76           | 1.25532            | 25 H         | ·                      | •                | ·           | •                  | •    |
| 204 WG           | A      | •              | •                    | ·            | -                 |                | - B        | 1 5                      | 3                 | 71          | 2.6667             | 47 D       | 0.37                  | 0.93             | 74.1        | 2.51351            | 77 8         | r<br>c   | 0.45                     | 0.54         | 78.8        | 1.2                | 35 G       | 0.176                   | 0.21             | 76.1         | 1.19318            | 25 H         | •                      | -                | -           | -                  | -    |
| 204 RG           | Â      | · ,            | · ·                  | 3            | 74 27             | 2727           | 43 B       | 1.5                      | š                 | 71          | 4 54545            | 47 D       | 0.35                  | 0.50             | 73.1        | 1.09231            | 54 F         | F        | 0.20                     | 0.35         | /0.0        | 1.23               | . 6        | 0.127                   | 0.152            | 76.2         | 1.19085            | 25 H<br>25 H | 0.0146                 | -                | - 78 0      | -                  | • •  |
| 204 WE           | Ä      | •              | 2                    | ŝ            | 74                | 2.5            | 43 B       | 1.1                      | 4                 | 71          | 3.63636            | 47 D       | 0.3                   | 0.53             | 73.3        | 1.76667            | 54 F         | F        |                          | •            |             |                    | • G        | 0.097                   | 0.124            | 76.3         | 1.27835            | 25 H         | 0.0140                 | 0.0218           | 79.1        | 1.37975            | 35   |
| 204 RE           | A      |                | •                    |              | -                 |                | - В        | 0.35                     | 0.5               | 71          | 1.42857            | 47 D       | 0.29                  | 0.79             | 76.4        | 2.72414            | 54 F         | F        |                          | -            | •           |                    | • G        | 0.055                   | 0.069            | 76.4         | 1.25455            | 25 H         | •                      | •                | •           | •                  | -    |
| 204 GE           | A      | •              | -                    | -            | -                 |                | - В        | 0.2                      | 1                 | 71          | 5                  | 47 D       | 0.28                  | 0.34             | 76.4        | 1.21429            | 54 F         | F        | •                        | -            | -           | •                  | · G        | 0.058                   | 0.075            | 76.4         | 1.2931             | 25 H         | ·                      | •                | •           | •                  | -    |
| 205 BW           | A      |                | 20                   | 15           | 77                | 0.75           | SS B       | 1.2                      | 4                 | 71          | 3.33333            | 47 D       | 0.95                  | 1.7              | 73.4        | 1.78947            | 54 F         | F        | 0.47                     | 0.77         | 78.8        | 1.6383             | 44 G       | 0.24                    | 0.35             | 78.3         | 1.45833            | 34.5 H       | 0.33                   | 1.31             | 78.9        | 3.9697             | 34   |
| 205 BK           | A      | •              | •                    | •            | -                 |                | . в<br>в   | 1.8                      | د<br>م 7          | 71          | 1 37372            | 47 D       | 0.87                  | 1.23             | 74.5        | 1.413/9            | 34 P<br>64 E | ۲<br>7   | 0.3                      | 0.43         | 18.8        | 1.3                | 44 G       | 0.26                    | 0.31             | 78.3         | 1.19231            | 34.5 H       | ·                      | -                | -           | -                  | -    |
| 205 RG           | Â      | :              | :                    |              |                   |                | . R        | 0.55                     | 3                 | 71          | 1.2/2/3            | 47 D       | 03                    | 0.43             | 74.5        | 1.43333            | 54 1         | 5        | 0.5                      | 0.08         | 78.8        | 1 54786            | 44 G       | 0.23                    | 0.285            | 781          | 1.23913            | 34 11        |                        |                  |             |                    |      |
| 205 WG           | Â      | -              |                      |              |                   |                | . в́       | 0.6                      | 0.7               | 71          | 1.16667            | 47 D       | 0.48                  | 0.65             | 74.7        | 1.35417            | 54 F         | F        | 0.45                     | 0.6          | 78.8        | 1.33333            | 44 G       | 0.295                   | 0.41             | 69.3         | 1.38983            | 31 H         |                        |                  |             |                    |      |
| 205 RG           | A      | -              | -                    | •            |                   |                | . в        | 0.72                     | 1                 | 71          | 1.38889            | 47 D       | 0.37                  | 0.53             | 74.7        | 1.43243            | 54 F         | F        | 0.4                      | 0.53         | 78.8        | 1.325              | 44 G       | 0.305                   | 0.375            | 71.3         | 1.22951            | 31 H         | •                      |                  |             | •                  |      |
| 205 BE           | A      |                | 2                    | 5            | 77                | 2.5            | 55 B       | 1.1                      | 5                 | 71          | 4.54545            | 47 D       | 0.27                  | 0,42             | 73.6        | 1.55556            | 54 F         | F        | •                        | -            | •           | ·                  | - G        | 0.195                   | 0.255            | 72.4         | 1.30769            | 31 H         | 0.022                  | 0.0305           | 78.9        | 1.38636            | 34   |
| 205 WE           | A      | 1              | .5                   | 3            | 77                | 2              | 55 B       | 1.25                     | 4                 | 71          | 3.2                | 47 D       | 0.38                  | 0.44             | 73.8        | 1.15789            | 54 P         | F        | •                        | -            | •           | •                  | • G        | 0.164                   | 0.21             | 73.1         | 1.28049            | 31 H         | 0.0295                 | 0.035            | 79.1        | 1.18644            | 35   |
| 205 KE           | A      | 2              |                      | 2            | 77                | 2              | 22 B       | 0.43                     | 1.5               | 71          | 3.333333           | 47 D       | 0.25                  | 0.38             | 14.1        | 1.52               | 54 1         | 7        | •                        | •            | •           | •                  | • G        | 0.125                   | 0.16             | 73.6         | 1.28               | 31 H         | •                      | ·                | •           | •                  | -    |
| 205 GE           | ~      |                | 1 S                  | 13           | 77 0.80           | 6667           | 55 B       | 0.73                     | 1.4               | 71          | 1.80007            | 47 D       | 0.45                  | 0.24             | 75.5        | 1 86667            | 97 6         | r<br>F   | . 03                     | - 0.35       | - 78.8      | 1 16667            | - 44 G     | 0.125                   | 0.102            | 13.9         | 1.290              | 31 H         | 0 475                  | . 1 <9           | . 75 1      | . 17617            | . 10 |
| 206 BR           | Â      |                | •                    | •            |                   |                | - В        | 1.5                      | 3                 | 71          | 2                  | 47 D       | 0.96                  | 1.39             | 76.1        | 1.44792            | 92 F         | F        | 0.35                     | 0.45         | 78.8        | 1.28571            | 44 G       | 0.135                   | 0.16             | 17.9         | 1.18519            | 34 H         | -                      | -                |             | -                  | - 57 |
| 206 WR           | A      | -              | -                    |              |                   |                | - в        | 1.5                      | 2.5               | 71          | 1.66667            | 47 D       | 0.88                  | 1.41             | 76.2        | 1.60227            | 92 F         | F        | 0.4                      | 0.62         | 78.8        | 1.55               | 44 G       | 0.19                    | 0.27             | 78.1         | 1.42105            | 34 H         |                        |                  |             | -                  | -    |
| 206 BG           | A      | -              | •                    | -            | -                 |                | - в        | 1.6                      | 5.5               | 71          | 3.4375             | 47 D       | 0.67                  | 0.84             | 76.2        | 1.25373            | 92 F         | F        | 0.3                      | 0.4          | 78.8        | 1.33333            | 44 G       | 0.24                    | 0.32             | 78           | 1.33333            | 34 H         | •                      | •                | •           | -                  | •    |
| 206 WG           | A      | -              | •                    | •            | -                 |                | - в        | 0.85                     | 2.8               | 71          | 3.29412            | 47 D       | 0.7                   | 0.93             | 76.3        | 1.32857            | 92 F         | F        | 0.3                      | 0.35         | 78.8        | 1.16667            | 44 G       | 0.24                    | 0.29             | 78.1         | 1.20833            | 34 H         | •                      | -                | •           | -                  | •    |
| 206 RG           | A      | • .            |                      |              | -                 | ****           | • В        | 2.2                      | 5.4               | 71          | 2.45455            | 47 D       | 0.74                  | 1.07             | 76.4        | 1.44595            | 92 F         | -        | 0.35                     | 0.45         | 78.8        | 1.28571            | 44 G       | 0.22                    | 0.26             | 78.2         | 1.18182            | 34 H         | •                      | •                | •           | •                  | •    |
| 206 BE           | Â      | 2              | ./<br>s              | 3            | 11 2.5.<br>77     | 12             | 55 B       | 1.5                      | 0.73              | 71          | 2 66667            | 47 D       | 0.17                  | 0.24             | 75.9        | 1.41170            | 92 F         | г<br>П   | :                        |              | :           | •                  |            | 0.13                    | 0.100            | /8.2<br>79 1 | 1.2/092            | 34.5 H       | 0.039                  | 0.0635           | 75.3        | 1.01008            | 39   |
| 206 RE           | Â      | •              | 3                    | 4            | 77 1.33           | 3333           | 55 B       | 1.3                      | 2.8               | 71          | 2.15385            | 47 D       | 0.26                  | 0.37             | 76          | 1.42308            | 92 F         |          |                          | •            |             |                    | • G        | 0.09                    | 0.118            | 78.3         | 1.31111            | 34.5 H       | -                      | -                | -           |                    |      |
| 206 GE           | A      |                | 2                    | 3            | 77                | 1.5            | 55 B       | 1.8                      | 5.5               | 71          | 3.05556            | 47 D       | 0.17                  | 0.26             | 76          | 1.52941            | 92 F         | F        | •                        |              |             |                    | • G        | 0.094                   | 0.12             | 78.3         | 1.2766             | 34.5 H       |                        |                  |             | -                  |      |
| 207 BW           | A      |                | 50 1                 | 00           | 64                | 2              | 33         | •                        | •                 | •           | -                  |            | •                     | •                | -           | -                  | • F          | F        | 0.4                      | 0.5          | 75.2        | 1.25               | 35 G       | 0.32                    | 0.415            | 72.6         | 1.29688            | 27 H         | 0.49                   | 2.18             | 74.3        | 4.44898            | 41   |
| 207 BR           | A      | ·              | •                    | -            | •                 |                | • •        | •                        | -                 | •           | -                  |            | •                     | -                | -           | -                  | • F          | -        | 0.45                     | 0.53         | 75.2        | 1.17778            | 35 G       | 0.35                    | 0.42             | 72.7         | 1.2                | 27 H         | •                      | •                | •           | -                  | -    |
| 207 WR           | A      | ·              | •                    | -            | •                 |                | • ••       | •                        | •                 | -           | •                  | • ••       | •                     | •                | •           | •                  | • F          | -        | 0.4                      | 0.5          | 75.2        | 1.25               | 35 G       | 0.38                    | 0.52             | 72.8         | 1.36842            | 27 H         | •                      | •                | ·           | -                  | ·    |
| 207 80           | A      | •              | •                    | :            | :                 |                |            | :                        | :                 |             | :                  |            | :                     | :                | :           |                    | · · ·        | 7        | 0.45                     | 0.52         | 75.2        | 1.13336            | 35 G       | 0.55                    | 0.415            | 72.1         | 1.165/1            | 2/H<br>3713  | ÷                      |                  | :           |                    | :    |
| 207 RG           | Â      |                |                      |              |                   |                | • •        | •                        | -                 |             |                    |            | •                     |                  | -           |                    | . F          | F        | 0.425                    | 0.5          | 75.2        | 1.17647            | 35 G       | 0.32                    | 0.43             | 73.2         | 1.34375            | 27 H         |                        | -                |             |                    |      |
| 207 BE           | Ā      | . 2            | .5                   | 10           | 64                | 4              | 33         | •                        |                   | •           | •                  | •          | •                     | •                |             |                    | . F          | 2        | • •                      | •            | •           | -                  | • G        | 0.105                   | 0.143            | 73.5         | 1.3619             | 26.5 H       | 0.039                  | 0.0575           | 74.1        | 1.47436            | 41   |
| 207 WE           | A      | 2              | .5 3                 | 3.5          | 64                | 1.4            | 33         | •                        | •                 | -           | •                  | • ••       | •                     | ·                | •           | •                  | · F          | 7        | • •                      | •            | •           | -                  | • G        | 0.15                    | 0.205            | 73.7         | 1.36667            | 26.5 H       | 0.049                  | 0.0615           | 74.3        | 1.2551             | 41   |
| 207 RE           | A      |                | 3                    | 5            | 64 1.60           | 6667           | 33         |                          | •                 | •           | •                  | · ··       |                       | •                |             | -                  | • F          | 7        |                          |              |             |                    | • G        | 0.16                    | 0.21             | 73.8         | 1.3125             | 26.5 H       |                        | -                |             |                    |      |

•

.

#### Table H.2 Insulation resistance measurements for specimens in test sequence 2

| CBI Cod | с<br>м   | IR in Tera | -ohms<br>@ 10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH % | с<br>м    | IR in Terr | ı-ohms<br>@itto:Mi | Temp<br>(F)  | Polrizatn<br>Index | RH %                | с<br>ма | IR in Tera-ol<br>@1 Min @ | hms<br>10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %                                    | C IR in Ter<br>M @ 1 Min | a-ohms<br>@ 10 Mi | Temp<br>(F)  | Polrizatn<br>Index | C<br>RH% M | IR in Tera-<br>@ 1 Min @ | ohms<br>2010 Mi | Temp<br>(F) | Polrizatn<br>Index | C<br>RH% M | IR in Tera<br>1 @ 1 Min | -ohms<br>@ 10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %  |
|---------|----------|------------|------------------|-------------|--------------------|------|-----------|------------|--------------------|--------------|--------------------|---------------------|---------|---------------------------|--------------|-------------|--------------------|-----------------------------------------|--------------------------|-------------------|--------------|--------------------|------------|--------------------------|-----------------|-------------|--------------------|------------|-------------------------|------------------|-------------|--------------------|-------|
|         | _        |            |                  |             |                    | _    |           |            |                    | _            |                    |                     |         |                           |              |             |                    |                                         |                          |                   | <u> </u>     |                    |            |                          |                 |             | 1 20070            |            |                         |                  | —           |                    |       |
| 207 GE  | A        | 3          | 5                | 64          | 1.66667            | 3    | 3         | •          | -                  | •            | -                  | .•                  | ••      | •                         | •            | •           | •                  | •                                       | F -<br>F 0.20            |                   |              |                    |            | 0.149                    | 0.192           | 74 2        | 1.28859            | 26.5 H     |                         |                  |             |                    | • • • |
| 208 BW  | •        | 20         | 30               | 68          | 1.5                | 4    | 5         | •          | •                  | -            | -                  | -                   |         | -                         | •            | •           | •                  | •                                       | F 0.28<br>F 0.3          | 0.35              | 70.0         | 1 1 6 6 6 7        | 40 G       | 0.235                    | 0.313           | 74.2        | 1.54045            | 20.2 П     | 0.34                    | 1.00             | 19.3        | 5.52941            |       |
| 208 BK  | A .      | •          | •                | •           | •                  | •    | ••        | •          | •                  | ·            | •                  | •                   | •••     |                           | -            | •           | •                  | •                                       | F 0.3                    | 0.35              | 79.9         | 1.10007            | 40 G       | 0 295                    | 0.36            | 74.5        | 1 22034            | 265 H      |                         |                  |             |                    |       |
| 208 WK  | <u>^</u> | -          | -                | •           | -                  | -    |           | •          | •                  | ÷            |                    |                     |         |                           |              |             |                    |                                         | F 0.21                   | 0.5               | 78.8         | 1 42857            | 40 G       | 0.262                    | 0.304           | 74.4        | 1.16031            | 26.5 H     |                         |                  |             |                    |       |
| 208 BG  | Â        |            | •                | :           |                    | :    |           |            | -                  | :            |                    | 1                   |         |                           |              |             |                    |                                         | F 0.28                   | 0.3               | 78.8         | 1.07143            | 40 G       | 0.33                     | 0.38            | 74.5        | 1.15152            | 26 H       | -                       | -                |             | -                  | -     |
| 208 RG  | Ä        |            |                  |             |                    |      |           |            | -                  | -            | -                  |                     |         |                           | -            |             |                    | -                                       | F 0.25                   | 0.29              | 78.8         | 1.16               | 40 G       | 0.305                    | 0.355           | 74.6        | 1.16393            | 26 H       |                         | -                | -           | -                  |       |
| 208 BE  | Ä        | 2.5        | 5                | 68          | 2                  | 4    | 5         |            | -                  | -            |                    |                     |         |                           | -            |             | •                  | •                                       | F                        | •                 | -            |                    | . G        | 0.082                    | 0.107           | 74.7        | 1.30488            | 26 H       | 0.0255                  | 0.032            | 79.3        | 1.2549             | J 35  |
| 208 WE  | A        | 2          | 5                | 68          | 2.5                | 4    | 5         |            | -                  | -            | •                  | •                   | ••      |                           | -            | •           | •                  | •                                       | F-                       | •                 |              | -                  | - G        | 0.15                     | 0.181           | 74.7        | 1.20667            | 26 H       | 0.0245                  | 0.034            | 79.3        | 1.38776            | i 35  |
| 208 RE  | A        | •          |                  | •           | •                  | -    |           | -          | -                  | -            | •                  | •                   | ••      | •                         | •            | -           | •                  | •                                       | F -                      | •                 | •            | • •                | - G        | 0.124                    | 0.167           | 74.8        | 1.34677            | 26 H       | -                       | •                | •           | •                  | -     |
| 208 GE  | A        | •          | •                | •           | •                  | •    | ••        | •          | •                  | •            | -                  | •                   | ••      | •                         | •            | •           | •                  | •                                       | F -                      | •                 | •            | •                  | - G        | 0.127                    | 0.157           | 74.9        | 1.23622            | 26 H       | •                       | •                | •           | •                  | -     |
| 209 BW  | A        | 50         | 40               | 71          | 0.8                | 4    | 13        | -          | •                  | •            | •                  | •                   | ••      | ·                         | •            | •           | •                  | •                                       | F 0.23                   | 0.35              | 80.6         | 1.52174            | 43 G       | 0.2                      | 0.27            | 74.9        | 1.35               | 26 H       | 0.515                   | 2.42             | 73.5        | 4.69903            | , 42  |
| 209 BR  | A        | -          | •                | ·           | -                  | -    |           | -          | -                  | •            | •                  | -                   | ••      | •                         | •            | •           | ·                  | -                                       | F 0.3                    | 0.35              | 80.6         | 1.16667            | 43 G       | 0.23                     | 0.266           | 75          | 1.15652            | 26 H       | ·                       | ·                | •           | -                  | -     |
| 209 WR  | A.       | •          | -                |             | -                  | -    |           | •          | •                  | •            | •                  | •                   | ••      | •                         | •            | •           | •                  | -                                       | F 0.3<br>F 0.1           | 0.35              | 0.00<br>0.00 | 1.1000/            | 43 G       | 0.23                     | 0.3             | 75          | 1 14792            | 20 H       | •                       | -                | •           | •                  | •     |
| 209 BG  | <u>^</u> | •          | •                | •           | •                  | •    | ••        | •          | •                  |              | •                  |                     | ••      | •                         | •            |             |                    | -                                       | F 0.3<br>F 0.3           | 0.55              | 80.0         | 1 16667            | 43 G       | 0.23                     | 0.204           | 751         | 1 21154            | 26 H       |                         | -                |             |                    | •     |
| 209 WG  | <u>^</u> | •          | •                |             |                    | -    |           | -          | :                  | :            | •                  | :                   |         |                           |              |             |                    |                                         | F 03                     | 0.35              | 80.6         | 1 16667            | 43 G       | 0.255                    | 0.3             | 75.1        | 1.17647            | 26 H       |                         |                  |             |                    |       |
| 209 RG  | Â        | • •        | • •              | 71          | 1.66667            | - 4  | 13        |            |                    |              |                    |                     |         |                           |              |             |                    | -                                       | F -                      |                   |              |                    | • G        | 0.0775                   | 0.102           | 75.2        | 1.31613            | 26 H       | 0.038                   | 0.0538           | 73.5        | 1.41579            | 42    |
| 209 WE  | Â        | 2.5        | 4                | 71          | 1.00007            | . 4  | 3         |            |                    |              |                    |                     |         |                           |              | -           | -                  | -                                       | -<br>F -                 | -                 | -            | -                  | - G        | 0.145                    | 0.188           | 71.9        | 1.29655            | 26 H       | 0.042                   | 0.0546           | 73.4        | 1.3                | 42    |
| 209 RE  | Ä        | 2.5        | Ś                | 71          | 2                  | 4    | 3         |            |                    |              | •                  | •                   |         | -                         | -            | •           | •                  | •                                       | F-                       | •                 |              | •                  | • G        | 0.126                    | 0.18            | 72.4        | 1.42857            | 26 H       | -                       | -                | -           | •                  | -     |
| 209 GE  | A        | 2.5        | 4                | 71          | 1.6                | i 4  | 3         | •          | •                  | •            |                    | -                   |         | -                         | •            | •           |                    | -                                       | F.                       | •                 | •            | •                  | ۰G         | 0.14                     | 0.172           | 72.7        | 1.22857            | 26 H       | •                       | •                | •           | •                  | •     |
| 210 BW  | A        | 30         | 50               | 68          | 1.66667            | 1 4  | 15        | •          | •                  | •            | -                  | -                   |         | •                         | •            | •           | •                  | •                                       | F 0.35                   | 0.5               | 80.6         | 1.42857            | 35 G       | 0.31                     | 0.345           | 72.8        | 1.1129             | 26 H       | 0.505                   | 4.6              | 73.9        | 9.10891            | 42    |
| 210 BR  | A        | •          | •                | •           | •                  | ·    | ••        | •          | •                  | -            | -                  | -                   |         | -                         | •            | ·           | •                  | •                                       | F 0.325                  | 0.4               | 80.6         | 1.23077            | 35 G       | 0.355                    | 0.44            | 73          | 1.23944            | 26 H       | •                       | •                | •           | •                  | •     |
| 210 WR  | A        | •          | •                | •           | -                  | •    | ••        | •          | •                  | •            | -                  | -                   |         | •                         | •            | ·           | •                  | •                                       | F 0.25                   | 0.4               | 80.6         | 1.6                | 33 G       | 0.38                     | 0.535           | 73.4        | 1.40789            | 26 H       | •                       | •                | •           | •                  | •     |
| 210 BG  | A.       | •          | •                | •           | •                  | ·    | ••        | -          | -                  | •            | •                  | •                   |         | -                         | •            | •           | •                  | ·                                       | F 0.425                  | 0.52              | 80.0         | 1.22303            | 350        | 0.30                     | 0.43            | 73.6        | 1.19444            | 20 H       | •                       | •                | •           | •                  | •     |
| 210 WG  | Â.       | •          | ·                | •           | •                  | ·    | ••        | •          | •                  | •            | -                  | •                   | ••      | •                         | •            | •           | •                  | •                                       | F 0.4                    | 0.52              | 1 80.0       | 1.06667            | 350        | 0.41                     | 0.35            | 73.5        | 1 31944            | 20 H       |                         |                  | 2           | -                  |       |
| 210 RG  | A        | • 1        | •                | . 69        | •                  |      | ۰۰.<br>۱۹ |            | -                  | :            |                    |                     |         | •                         | :            |             | :                  |                                         | F -                      |                   | -            | . 1.0000,          |            | 0.118                    | 0.153           | 73.8        | 1.29661            | 26 H       | 0.0083                  | 0.0111           | 73.7        | 1.33735            | s 42  |
| 210 DE  | 2        | 20         | 5                | 68          | 1 78571            |      | IS        |            |                    |              |                    |                     |         |                           |              |             |                    |                                         | F -                      | -                 | -            | -                  | - 0        | 0.175                    | 0.238           | 73.9        | 1.36               | 26 H       | 0.0099                  | 0.0114           | 73.7        | 1.15152            | 2 42  |
| 210 RE  | Â        | 2.0        | š                | 68          | 1.666667           |      | 15        | •          | -                  |              |                    |                     |         |                           |              |             | •                  | •                                       | F -                      |                   |              |                    | - G        | 0.153                    | 0.171           | 74.1        | 1.11765            | 25.5 H     | •                       | •                | •           | •                  |       |
| 210 GE  | Ā        | 3          | 5                | 68          | 1.66667            | 4    | 15        | -          | -                  |              |                    | •                   |         |                           | •            |             |                    |                                         | F -                      | -                 | •            | •                  | - G        | 0.137                    | 0.205           | 74.2        | 1.49635            | 25.5 H     | -                       | -                | -           | -                  | -     |
| 211 BW  | A        | 100        | 100              | 77          | 1                  |      | 55        | •          | -                  |              | -                  | •                   |         | •                         | •            |             | -                  | •                                       | F 0.28                   | 0.4               | 80.6         | 1.42857            | 35 G       | 0.24                     | 0.35            | 75.2        | 1.45833            | 25 H       | 0.435                   | 2.95             | 75          | 6.78161            | 39    |
| 211 BR  | A        |            | •                | •           |                    |      | ••        | •          | •                  | •            | -                  | -                   |         | -                         | •            | •           | •                  | -                                       | F 0.35                   | 0.45              | 80.6         | 5 1.28571          | 35 G       | 0.295                    | 0.345           | 75.3        | 1.16949            | 25 H       | •                       | •                | •           | ·                  | •     |
| 211 WR  | A        |            | -                | •           | •                  | ٠    | ••        | •          | •                  | •            | •                  | •                   |         | •                         | -            | -           | •                  | •                                       | F 0.375                  | 0.45              | 80.6         | 5 1.2              | 35 G       | 0.325                    | 0.4             | 75.4        | 1.23077            | 25 H       | •                       | •                | ٠           | -                  | •     |
| 211 BG  | A        | •          | •                | -           | •                  | •    | ••        | •          | •                  | •            | •                  | •                   | ••      | •                         | -            | •           | -                  | -                                       | F 0.4                    | 0.45              | 80.6         | 1.12               | 35 G       | 0.3                      | 0.345           | 75.3        | 1.15               | 25 H       | •                       | •                | ·           | -                  | •     |
| 211 WG  | A        | •          | •                | •           | -                  | -    |           | •          | •                  | ·            | •                  | ·                   | ••      | •                         | •            | ·           | -                  | -                                       | F 0.45                   | 0,475             | 5 80.6       | 1.05556            | 5 35 G     | 0.355                    | 0.41            | 75.4        | 1.15493            | 25 H       | •                       | ·                | ·           | •                  | •     |
| 211 RG  | A        | •          | • .              | •           | -                  | -    |           | -          | •                  | ·            | •                  | •                   | ••      | ·                         | •            | •           | •                  | -                                       | F 0.35                   | 0.45              | 80.6         | 1.28571            | 35 6       | 0.352                    | 0.39            | /5.5        | 1.10/95            | 25 H       | •                       |                  | • •         |                    |       |
| 211 BE  | A        | 3          | 4                | 77          | 1.33333            |      | >><br>//  | -          | •                  | ·            | •                  | ·                   |         | •                         | •            | •           | •                  | -                                       | r -                      | -                 | -            | •                  | - G        | 0.093                    | 0.152           | 75.0        | 1.36947            | 22 1       | 0.0073                  | 0.00839          | 75 7        | 1.14333            | · 39  |
| 211 WE  | Â.       | 2.5        | د                |             | 1.4                |      | · · ·     | •          | -                  | •            | •                  | •                   |         | •                         |              | •           | •                  |                                         | r -<br>F -               |                   |              | :                  |            | 0.132                    | 0.19            | 75.7        | 1 29252            | 25 11      | 0.0084                  | 0.00855          | - 15.1      | . 1.01/80          | , ,,  |
| 211 KE  | Â        | 2.5        | د                | 11          | 1 22222            |      | ~ ~       | •          | •                  |              | •                  | •                   |         |                           |              | :           |                    |                                         | F -                      | -                 |              |                    |            | 0.147                    | 0 182           | 75.8        | 1 2381             | 25 H       |                         |                  |             |                    |       |
| 211 05  | 2        | 11         | 15               | 77          | 1 36364            |      | ss c      | 17         | 3.9                | . 71         | 2.0588             | 2 46                | E       | 0.46                      | 0.78         | 78.3        | 1.69565            | 65                                      | F 0.35                   | 0.6               | 5 80.6       | 5 1.71429          | ) 35 Ğ     | 0.31                     | 0.44            | 75.2        | 1.41935            | 29.5 H     | 0.495                   | 2.2              | 73.5        | 4.44444            | 40    |
| 212 BR  | Â        |            |                  | . ''        |                    |      | č         | 1.5        | 3                  | 71           | 2.0500             | 2 46                | Ē       | 0.54                      | 0.82         | 71.8        | 1.51852            | 63                                      | F 0.325                  | 0.35              | 5 80.6       | 1.07692            | 35 G       | 0.31                     | 0.355           | 75.2        | 1.14516            | 29.5 H     | •                       |                  | •           | •                  | •     |
| 212 WR  | Ä        |            |                  |             | •                  |      | č         | 2          | 3                  | 5 71         | L 1.:              | 5 46                | E       | 0.63                      | 0.83         | 74.6        | 1.31746            | 63                                      | F 0.5                    | 0.58              | 80.6         | 5 1.10             | 5 35 G     | 0.26                     | 0.35            | 75.2        | 1.34615            | 29.5 H     | - 1                     |                  |             | •                  |       |
| 212 BG  | A        |            |                  |             |                    |      | с         | 1.3        | 4                  | 71           | 3.0769             | 2 46                | В       | 0.58                      | 0.78         | 73.4        | 1.34483            | 63                                      | F 0.3                    | 0.4               | 80.6         | 5 1.33333          | 35 G       | 0.31                     | 0.395           | 75.2        | 1.27419            | 29.5 H     | - 1                     |                  | -           | -                  | -     |
| 212 WG  | A        | -          |                  | •           | •                  | •    | с         | 1.5        | 3.1                | 71           | 2.0666             | 7 46                | Б       | 0.64                      | 0.77         | 75          | 1.20313            | 63                                      | F 0.5                    | 0.57              | 7 .80.6      | 5 1.14             | 1 35 G     | 0.31                     | 0.38            | 75.2        | 1.22581            | 29.5 H     | -                       | •                | •           | •                  | -     |
| 212 RG  | A        | •          | •                | ·           | •                  | •    | С         | 1.2        | 2.5                | 5 71         | 2.0833             | 3 46                | Е       | 0.51                      | 0.685        | 75.2        | 1.34314            | 63                                      | F 0.325                  | 0.375             | 5 80.6       | 5 1.15385          | 5 35 G     | 0.225                    | 0.275           | 75.3        | 1.22222            | 29.5 H     | •                       | •                | -           | •                  |       |
| 212 BE  | A        | 1.5        | 5                | 77          | 3.33333            | 3 :  | ss c      | 0.25       | 0.3                | 71           | 1.                 | 2 46                | E       | 0.23                      | 0.35         | 75.5        | 1.52174            | 63                                      | F -                      | -                 | -            | -                  | - G        | 0.164                    | 0.23            | 75.3        | 1.40244            | 29.5 H     | 0.038                   | 0.0575           | 73.9        | 1.51316            | i 39  |
| 212 WE  | A        | 2          | 3.5              | 77          | 1.7                | 5 :  | 55 C      | 0.22       | 0.25               | 5 7          | 1.1363             | 6 46                | в       | 0.27                      | 0.35         | 75.7        | 1.2963             | 63                                      | r ·                      | -                 | -            | -                  | - G        | 0.158                    | 0.22            | 15.1        | 1.39241            | 29 H       | 0.0455                  | 0.06             | > /4.1      | 1.31868            | \$ 39 |
| 212 RE  | A        | 2          | 5                | 77          | 2.5                | 5    | SS C      | 1.1        | 2.8                | 5 /1         | 2,5454             | 5 46                | ь<br>т  | 0.21                      | 0.29         | /3.9        | 1.38093            | 60                                      | r •                      | -                 | •            | •                  | - 6        | 0.80                     | 0.112           | 75.0        | 0.13023            | 29 H       | -                       | •                | •           | -                  | •     |
| 212 GE  | A.       | 2          |                  |             | 2.5                |      | 55 U      | 0.85       | 2.3                |              | 2.9411             | 8 40<br>6 <i>16</i> | E       | 0.18                      | 0.23         | 70          | 1.30007            | 65                                      | F -                      |                   | • 77         |                    |            | 0.1                      | 0.13            | 74 1        | 1 /0971            | 27 1       |                         | . 1 74           |             |                    |       |
| 213 BW  | <u>^</u> | 20         | 100              | /4          | -                  | , ,  | 43 C      | 1          | 3.3                | 5 /1<br>5 7  | 1 2 2 2 2 2        | 2 40<br>2 46        | E<br>E  | 0.02                      | 0.54         | 78 1        | 1.51015            | 65                                      | F 0.32                   | 0.4               | , ,,         | 7 1 1 5 5 5 6      | 5 34 G     | 0.355                    | 0.592           | 74.1        | 1.45075            | 30.5 H     |                         | 1.75             |             | 2.09251            |       |
| 213 BR  | <u>^</u> | •          | •                | -           |                    | :    | č         | 0.5        | 24                 | 5 7          | 1 2                | 5 46                | Ē       | 0.45                      | 0.69         | 78.3        | 1.00405            | 65                                      | F 0.45                   | 0.5               | \$ 77        | 1.1111             | 34 G       | 0.36                     | 0.54            | 74.4        | 1.5                | 30.5 H     | -                       |                  |             |                    |       |
| 213 WK  | 2        |            |                  |             | -                  |      | č         |            |                    | 1 7          | 1.2                | 5 46                | Ē       | 0.48                      | 0.76         | 78.2        | 1.58333            | 65                                      | F 0.375                  | 0.45              | 5 77         | 1 1.3              | 2 34 G     | 0.48                     | 0.65            | 74.5        | 1.35417            | 30.5 H     |                         |                  |             |                    |       |
| 213 BG  | Â        |            |                  | -           | -                  |      | č         | 1.1        | 2.1                | 7            | 1.9090             | 9 46                | E       | 0.57                      | 0.78         | 78.3        | 1.36842            | 65                                      | F 0.4                    | 0.5               | 5 77         | 1.2                | 5 34 G     | 0.49                     | 0.65            | 74.7        | 1.32653            | 30 H       | •                       |                  |             |                    |       |
| 213 RG  | Ä        |            |                  |             |                    |      | č         | 1          | 1                  | 2 7          | 1                  | 2 46                | E       | 0.5                       | 0.67         | 78.3        | 1.34               | 65                                      | F 0.375                  | 0.4               | 1 77         | 1.0666             | 7 34 G     | 0.43                     | 0.585           | 74.8        | 1.36047            | 30 H       | i •                     |                  |             |                    |       |
| 213 BE  | Å        | 2          | 25               | 74          | 12.:               | s .  | 43 C      | 0.66       | 0.62               | 2 7          | 0.9393             | 946                 | Е       | 0.16                      | 0.27         | 77.9        | 1.6875             | 65                                      | F-                       | •                 | •            | •                  | ·G         | 0.181                    | 0.245           | 74.9        | 1.35359            | 30 H       | 0.0355                  | 0.0548           | 3 74.4      | 1.54366            | 5 38  |
| 213 WE  | Ā        | 2.5        | 5                | 74          | : :                | 2 4  | 43 C      | 0.8        | 0.75               | 5 7.         | L 0.937            | 5 46                | Е       | 0.215                     | 0.27         | 78          | 1.25581            | 65                                      | F-                       | •                 | •            | •                  | • G        | 0.198                    | 0.26            | 75.1        | 1.31313            | 30 H       | 0.0475                  | 0.0575           | 74.4        | 1.21053            | J 38  |
| 213 RE  | A        | •          |                  | •           | -                  | -    | С         | 0.5        | 0.3                | 37           | l 0.               | 6 46                | Е       | 0.17                      | 0.25         | 78          | 1.47059            | 65                                      | F ·                      | •                 | •            | •                  | • G        | 0.158                    | 0.22            | 75.2        | 1.39241            | 30 H       | -                       | •                | -           | •                  | ·     |
| 213 GE  | A        | •          | •                | -           | -                  | •    | С         | 0.2        | 0.25               | 5 7          | 1 1.2              | 5 46                | E       | 0.145                     | 0.3          | 78          | 2.06897            | 65                                      | F ·                      | • • • •           | •            | • • • • • • •      | • 0        | 0.21                     | 0.26            | 75.2        | 1.2381             | 30 H       | •                       | •                | •           | •                  | •     |
| 214 BW  | A        | 100        | 100              | 74          |                    | 1 .  | 43 C      | 1.2        | 20                 | <b>)</b> 7   | 16.666             | 7 46                | E       | 0.54                      | 1.03         | 78.3        | 1.90741            | 65                                      | F 0.35                   | 0.53              | s 17         | 1.51425            | 9 34 G     | 0.27                     | 0.355           | 76.2        | 1.31481            | 28 H       | 0.38                    | 2.22             | 2 72.8      | 5.84211            | : 40  |
| 214 BR  | A        | •          | -                | •           | •                  | •    | ç         | 0.16       | 1.4                | . 7          | L 8.7              | > 46<br>• • •       | E       | 0.41                      | 0.82         | /8.3        | 1 67449            | 0)                                      | E 0.33                   | 0.43<br>A 44      | , //<br>, יי | 1.203/             | 1 34 G     | 0.345                    | V.415           | 76.2        | 1.2029             | 48 H       | •                       | •                | ·           | •                  | •     |
| 214 WR  | A        | • .        | •                | •           | -                  | · ·  | - C       | 0.8        | · 1.3              | р /.<br>1. т | 1.02<br>1.02       | ¢ ק<br>ק ק ק        | E       | 0.45                      | 0.72         | /8.3        | 1.0/442            | 60<br>23                                | r 0.423<br>F             | · U.34            | • //         | 1.2703             |            | 0.145                    | 0.4             | 76.2        | 1.1/04/            | 28 H       | 0.0041                  | -                |             | . 107717           | · .   |
| 214 BE  | A        | 4          | 20               | - 14        |                    | י כ  | 49 C      | 1./        | 21                 | v 1.         | 47.911             | u 40                | -       | 0.17                      | 0.55         | /0.3        | 1.73004            | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | • •                      | -                 | -            | -                  | - 6        | 0.145                    | v.2             | 70.2        | 1.21221            | 20 H       | 1.0041                  | 0.0044           |             | . 1.0/31/          | - 91  |

#### Table H.2 Insulation resistance measurements for specimens in test sequence 2

|         | С | IR in | Tera-ohms | Te   | mp | Polrizatn |      | с    | IR in Tera- | ohms    | Тетр | Polrizatn | с     | IR in Tera- | ohms    | Тстр | Polrizatn | с     | IR in Ten | a∙ol∎ns | Temp | Polrizatn | С              | IR in Ter       | a-ohms  | Temp   | Polrizatn | с      | IR in Tera | ohms    | Temp 🗄 | Polrizatn |          |
|---------|---|-------|-----------|------|----|-----------|------|------|-------------|---------|------|-----------|-------|-------------|---------|------|-----------|-------|-----------|---------|------|-----------|----------------|-----------------|---------|--------|-----------|--------|------------|---------|--------|-----------|----------|
| CBL Cnd | м | @11   | fin @10   | Mi ( | F) | Index     | RH % | M    | @1 Min @    | ğ 10 Mi | (F)  | Index     | RH% M | @1 Min (    | @ 10 Mi | (F)  | Index     | RH% M | @1 Min    | @ 10 Mi | (F)  | Index     | RH% M          | @ 1 Min         | @ 10 Mi | (F)    | Index     | RH% M  | @1 Min     | @ 10 Mi | (F)    | Index     | RH %     |
|         | _ |       |           |      | -  |           |      | == ; |             |         |      |           |       |             |         |      |           |       |           |         |      |           | 1 2005126 Emil | Read Providence |         | 100000 |           | =      |            |         |        |           | <u> </u> |
| 214 WE  | A |       | 4         | 12   | 74 | 3         | 43   | C    | 1.2         | 4.5     | 71   | 3.75      | 46 E  | 0.2         | 0.3     | 78.3 | 1.5       | 65 F  | •         | •       | -    | -         | - G            | 0.122           | 0.17    | 76.2   | 1.39344   | 28 H   | 0.0034     | 0.00445 | 72.6   | 1.30882   | 41       |
| 214 RE  | A | •     | •         | •    |    | •         | •    | С    | 0.5         | 0.8     | 71   | 1.6       | 46 E  | 0.145       | 0.22    | 78.3 | 1.51724   | 65 F  | •         | -       | -    | -         | - G            | 0.151           | 0.22    | 76.2   | 1.45695   | 28 H   | •          | •       | -      | •         | -        |
| 215 BW  | A |       | 11        | 16   | 73 | 1.45455   | 48.5 | с    | 1.5         | 4.5     | 71   | 3         | 47 E  | 0.47        | 0.69    | 73.8 | 1.46809   | 50 F  | 0.74      | 0.95    | 84.2 | 1.28378   | 41 G           | 0.94            | 1.58    | 75.8   | 1.68085   | 29 H   | 0.68       | 1.44    | 78     | 2.11765   | 40       |
| 215 BR  | A | •     | •         | •    |    | •         | •    | С    | 2.5         | 12      | 71   | 4,8       | 47 E  | 0.37        | 0.58    | 76.6 | 1.56757   | 77 F  | 0.54      | 0.67    | 84.2 | 1.24074   | 41 G           | 1.01            | 1.47    | 75.9   | 1.45545   | 29 H   | -          | •       | •      | •         | ·        |
| 215 WR  | A |       |           | •    |    | •         | •    | ¢    | 2.2         | 6       | 71   | 2.72727   | 47 E  | 0.44        | 0.62    | 76.8 | 1.40909   | 77 F  | 0.71      | 0.92    | 84.2 | 1.29577   | 41 G           | 1.32            | 2.1     | 75.8   | 1.59091   | 29 H   | •          |         | •      | •         | •        |
| 215 BG  | A | •     |           | •    |    | •         | •    | С    | 3.5         | 12      | 71   | 3.42857   | 47 E  | 0.29        | 0.605   | 76.7 | 2.08621   | 77 F  | 0.5       | 0.58    | 84.2 | 1.16      | i 41 G         | 1               | 1.55    | 75.9   | 1.55      | 29 H   | •          | •       | -      | -         | -        |
| 215 WG  | A | -     |           | •    |    |           |      | С    | 2           | 5.2     | 71   | 2.6       | 47 E  | 0.45        | 0.65    | 76.9 | 1.44444   | 77 F  | 0.72      | 0.85    | 84.2 | 1.18056   | i 41 G         | 1.7             | 2.4     | 75.8   | 1.41176   | 29 H   | •          | •       | •      |           |          |
| 215 RG  | A | -     | •         |      |    |           | -    | С    | 3.5         | 7       | 71   | 2         | 47 E  | 0.35        | 0.53    | 77.4 | 1.51429   | 77 F  | •         | •       | •    | •         | • G            | 1.4             | 2.1     | 75.9   | 1.5       | 29 H   | •          | •       | -      | -         | -        |
| 215 BE  | A |       | 2         | 5    | 73 | 2.5       | 48.5 | с    | 0.4         | 0.74    | 71   | 1.85      | 47 E  | 0.18        | 0.24    | 73.8 | 1.33333   | 50 F  | •         |         | •    | •         | • G            | 0.28            | 0.39    | 76     | 1.39286   | 29 H   | 0.148      | 0.2     | 78.6   | 1.35135   | 36       |
| 215 WE  | A |       | 1.5       | 3    | 73 | 2         | 48.5 | с    | 0.35        | 0.55    | 71   | 1.57143   | 47 E  | 0.2         | 0.28    | 74   | 1.4       | 50 F  | •         | -       | -    | -         | - G            | 0.62            | 0.86    | 76     | 1.3871    | 29 H   | 0.132      | 0.17    | 78.6   | 1.28788   | 37       |
| 215 RE  | A |       | 3         | 5    | 73 | 1.66667   | 48.5 | с    | 0.7         | 2       | 71   | 2.85714   | 47 E  | 0.18        | 0.24    | 74   | 1.33333   | 50 F  | •         | •       |      | -         | • G            | 0.475           | 0.75    | 76.1   | 1.57895   | 29 H   | •          |         |        |           | -        |
| 215 GE  | A |       | 1.8       | 3    | 73 | 1.66667   | 48.5 | с    | 0.8         | 1.8     | 71   | 2.25      | 47 E  | 0.16        | 0.24    | 76.5 | 1.5       | 77 F  |           | •       |      |           | - G            | 0.49            | 0.815   | 76.1   | 1.66327   | 28.5 H | -          |         | •      | -         | -        |
| 216 BW  | A |       | 10        | 10   | 74 | 1         | 49   | C    | 2.2         | 15      | 71   | 6.81818   | 46 E  | 0.6         | 0.86    | 70.9 | 1.43333   | 50 F  | 0.61      | 0.7     | 84.2 | 1.14754   | 41 G           | 0.6             | 0.89    | 76.1   | 1.48333   | 28.5 H | 0.615      | 1.02    | 78.8   | 1.65854   | 41       |
| 216 BR  | A | -     |           | -    |    | -         |      | С    | 1           | 3       | 71   | 3         | 46 E  | 0.46        | 0.77    | 71.4 | 1.67391   | 50 F  | 0.5       | 0.58    | 84.2 | 1.16      | i 41 G         | 0.76            | 1.09    | 76.1   | 1.43421   | 28.5 H | •          |         | -      |           | -        |
| 216 WR  | A | -     | -         |      |    | -         | -    | С    | 1.4         | 3       | 71   | 2.14286   | 46 E  | 0.41        | 0.645   | 71.9 | 1.57317   | 50 F  | 0.55      | 0.64    | 84.2 | 1.16364   | 41 G           | 0.82            | 1.1     | 76.2   | 1.34146   | 28.5 H |            | -       | -      |           | -        |
| 216 BE  | A |       | 2         | 4    | 74 | 2         | 49   | с    | 1.7         | 22      | 71   | 12.9412   | 46 E  | 0.18        | 0.24    | 72.4 | 1.33333   | 50 F  | -         | -       |      | •         | • G            | 0.25            | 0.35    | 76.2   | 1.4       | 28.5 H | 0.018      | 0.021   | 78     | 1.16667   | 41       |
| 216 WE  | A |       | 5         | 3    | 74 | 0.6       | 49   | c    | 1.1         | 3       | 71   | 2.72727   | 46 E  | 0.14        | 0.195   | 72.9 | 1.39286   | 50 F  | -         | -       | -    | -         | - G            | 0.28            | 0.365   | 76.2   | 1.30357   | 28 H   | 0.023      | 0.028   | 78     | 1.21739   | 40       |
| 216 RE  | A |       | 2.        | 3    | 74 | 1.5       | 49   | с    | 0.5         | 0.8     | 71   | 1.6       | 46 E  | 0.13        | 0.17    | 73.4 | 1.30769   | 50 F  | •         | •       | -    | •         | - G            | 0.325           | 0.44    | 76.2   | 1.35385   | 28 H   | •          | •       | •      | •         | ·        |

•

#### Table H.3 Insulation resistance measurements for specimens in test sequence 3

|    |                  | с      | IR in Tera-o | ohms    | Temp         | Polrizatn | c                      | IR in Te   | ra-ohms          | Temp   | Polrizatn | С      | IR in Tera | ohms    | Temp             | Polrizatn | C        | R in Ter   | a-ohms<br>(2010.04) | Temp             | Polrizatn<br>Index | С<br>РИ % 1      | IR in Tera        | -ohms<br>2010 Mi | Temp         | Polrizatn<br>Index | C<br>RH% M   | IR in Tera- | ohms<br>7010 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %  |
|----|------------------|--------|--------------|---------|--------------|-----------|------------------------|------------|------------------|--------|-----------|--------|------------|---------|------------------|-----------|----------|------------|---------------------|------------------|--------------------|------------------|-------------------|------------------|--------------|--------------------|--------------|-------------|-----------------|-------------|--------------------|-------|
| (  | CBL Cnd          | M      | @11Min @     | ) 10 Mi | (F)          | Index     | RH % N                 | 1 @ 1 Mun  | @ 10 Mi          | (F)    | index     | кн% м  | @ 1 Min    | @ 10 Mi | (r)<br>          | BIGCX     | KII 76 N |            | @ 10 MI             | (r)              |                    |                  |                   | <u></u>          | (r)<br>      |                    |              |             | g 10 mi         | <u> </u>    |                    |       |
| -  | 301 BW           | Ā      | 4.35         | 49.5    | 70           | 11.3793   | 47                     |            |                  | -      |           |        |            | •       |                  |           | - F      | 2.2        | 8                   | 72.1             | 3.63636            | 65 G             | 2.2               | 12               | 69.8         | 5.45455            | 64 H         | 0.69        | 2.1             | 76.8        | 3.04348            | 26    |
|    | 302 BW           | A      | 39           | 200     | 68           | 5.12821   | 26                     | -          | •                | •      | •         |        | ·          | •       | •                | -         | - F      | 8          | 35                  | 71.6             | 4.375              | 64.5 G           | 12                | 200              | 68           | 16.6667            | 64 H         | 1.6         | 5.6             | 71.4        | 3.5                | 26    |
|    | 302 BR           | A      | 38           | 195     | 68           | 5.13158   | 26                     | •          | •                | •      |           |        | •          | •       | :                | :         | . F      | 3          | 16                  | 71.6             | 5.33333            | 64.5 G           | 20                | 200              | 68           | 10                 | 64 H         |             |                 |             |                    | ÷     |
|    | 302 WK           | Â      | 3.9          | 11.4    | 68           | 2.92308   | 26                     | :          | :                |        |           |        | -          |         | •                |           | • F      | 7.5        | 17                  | 71.6             | 2.26667            | 64.5 G           | 0.04              | 0.054            | 68           | 1.35               | 64 H         | 0.105       | 0.16            | 71.6        | 1.52381            | 26    |
|    | 302 WE           | A      | 4.6          | 12.9    | 68           | 2.80435   | 26                     |            | -                | •      | •         | • ••   | •          | •       | -                | -         | - F      | 5.5        | 13                  | 71.6             | 2.36364            | 64.5 G           | 0.055             | 1                | 68           | 18.1818            | 64 H         | 0.152       | 0.195           | 71.7        | 1.28289            | 26    |
|    | 302 RE           | A      | 8.6          | 21.5    | 68           | 2.5       | 26                     | -          | • •              | -      | -         | ·      | • • • • •  | •       |                  |           | - F      | 11         | 18                  | 71.6             | 1.63636            | 64.5 G           | 0.85              | 1                | 68<br>68     | 1.17647            | 64 H<br>69 H | • • • • • • | . 295           | 76 8        | 2 68182            | . 26  |
|    | 303 BW           | A      | 16           | 200     | 68           | 12.5      | 26 B<br>23 B           | 3.         | 40               | 73.9   | 6 86275   | 67 D   | 14.8       | 185     | 73.1             | 10.8824   | 62.2 F   | 5          | 45                  | 73.4             | 5 9                | 62.1 G           | 16                | 200              | 68           | 12.5               | 69 H         |             | -               |             |                    |       |
|    | 303 WR           | Â      | 100          | 200     | 68           | 2         | 23 B                   | 19.        | 5 190            | 73.7   | 9.74359   | 66 D   | 7.5        | 80      | 73.3             | 10.6667   | 61.3 F   | 12         | 50                  | 73.4             | 4.16667            | 62.1 G           | 5                 | 14               | 68           | 2.8                | 69 H         | -           | •               | •           | •                  | •     |
|    | 303 BE           | A      | 3.2          | 10.3    | 69           | 3.21875   | 23 B                   | 0.4        | 8 1.58           | 73.7   | 3.29167   | 66 D   | 0.96       | 2.75    | 73.2             | 2.86458   | 61.1 F   | 0.3        | 0.4                 | 73.4             | 1.33333            | 62.1 G           | 0.4               | 1                | 68<br>29     | 2.5                | 69 H         | 0.066       | 0.158           | 76.8        | 2.39394            | 26    |
|    | 303 WE           | A      | 4.8          | 14.7    | 69           | 3.0625    | 23 B                   | 0.8        | 5 1.72<br>P 2.02 | 73.9   | 2 20545   | 66 D   | 1.11       | 3.05    | 73.3             | 2.74775   | 61.1 F   | 0.3        | 0.45                | 73.4             | i 1.35             | 62.1 G           | 0.2               | 0.43             | 68           | 1.5                | 69 H         | - 0.12      | -               |             | 1.425              | . 20  |
|    | 303 RE<br>304 BW | A      | 38           | 200     | 69           | 5.26316   | 22 B                   | 15.        | 3 2.01<br>3 195  | 73.2   | 12.7451   | 64 D   | 3.95       | 6.6     | 78.8             | 1.67089   | 58.5 F   | 0.09       | 0.075               | 70.9             | 0.83333            | 65 G             | 0.4               | 0.4              | 68           | 1                  | 69 H         | 0.845       | 3.45            | 76.8        | 4.08284            | 26    |
|    | 304 BR           | Ā      | 49           | 200     | 69           | 4.08163   | 22 B                   | 10.        | 7 72             | 73.2   | 6.72897   | 64 D   | 6.3        | 17.5    | 78.8             | 2.77778   | 58.5 F   | 0.065      | 0.08                | 70.9             | 1.23077            | 65 G             | 9                 | 200              | 68           | 22.2222            | 69 H         | •           | •               | ·           | ·                  | •     |
|    | 304 WR           | A      | 39           | 200     | 69           | 5.12821   | 22 B                   | 4          | 8 200            | 73.2   | 4.16667   | 64 D   | 11         | 26.5    | 77               | 2.40909   | 58.5 F   | 0.015      | 0.016               | 5 70.9<br>5 70.9 | 9 1.06667          | 65 G             | i 25<br>i 0.07    | 0.075            | 68<br>68     | 1 07143            | 69 H         | - 0.098     | 0.139           | 76.6        |                    | . 26  |
|    | 304 BE           | A      | 3.8          | 13.6    | 69           | 3.57895   | 22 B                   | 0.77       | S 1./1<br>S 139  | 73.9   | 2.20645   | 62 D   | 0.825      | 2.15    | 75.2             | 2.60606   | 58.5 F   | 0.003      | 0.0047              | 70.9             | 1.56667            | 65 0             | 0.0055            | 0.0068           | 68           | 1.23636            | 69 H         | 0.098       | 0.141           | 76.8        | 1.43878            | 26    |
|    | 304 WE           | Â      | 3.8          | 11      | 70           | 2.89474   | 22 B                   | 0.4        | 9 1.57           | 73.5   | 3.20408   | 62 D   | 1.26       | 2.8     | 75               | 2.22222   | 58.5 F   | 0.15       | 0.11                | 70.9             | 0.73333            | 65 G             | 0.3               | 0.4              | 68           | 1.33333            | 69 H         | •           | •               | •           | -                  | •     |
|    | 305 BW           | A      | 75           | 200     | 70           | 2.66667   | 22 B                   | 6.         | 7 48             | 73.9   | 7.16418   | 65 D   | 20.5       | 200     | 72               | 9.7561    | 62.5 F   | 2.6        | 50                  | 71.6             | 5 19.2308          | 63.5 G           | 0.5               | 0.55             | 68           | 1.1                | 68 H         | 1.01        | 4.9             | 71          | 4.85149            | 26    |
|    | 305 BR           | A      | 70           | 200     | 70           | 2.85714   | 22 B                   | 12.        | 1 41.5           | 73.7   | 3.42975   | 65 D   | 19.5       | 200     | 72.3             | 10.2564   | 62.6 F   | 1.55       | 50                  | ) 71.6           | 5 32.2581          | 63.5 G           | 15                | 200              | 68<br>68     | 13.3333            | 68 H<br>68 H | :           | :               | :           | :                  | :     |
|    | 305 WR           | A      | 52           | 200     | 70           | 3.84615   | 22 B                   | 15.        | 2 61<br>P 175    | 73.9   | 4.01310   | 65 D   | 0.855      | 200     | 72 5             | 3 01754   | 61.5 F   | 22         | 50                  | 71.6             | 5 2.27273          | 63.5 G           | 0.4               | 0.6              | 68           | 1.5                | 68 H         | 0.0935      | 0.147           | 71.2        | 1.57219            | 26    |
|    | 305 BE<br>305 WE | Ā      | 4.9          | 13.1    | 69           | 2.67347   | 29 B                   | 1.0        | 8 1.95           | 73.9   | 1.80556   | 65 D   | 1.19       | 2.95    | 72.9             | 2.47899   | 61.9 F   | 0.02       | 0.02                | 71.6             | 5 1                | 63.5 G           | 0.07              | 0.08             | 68           | 1.14286            | 68 H         | 0.117       | 0.16            | 71.4        | 1.36752            | 26    |
| -  | 305 RE           | A      | 5.2          | 17.2    | 69           | 3.30769   | 29 B                   | 0.40       | 5 1.64           | 73.2   | 4.04938   | 63 D   | 1.57       | 3.65    | 72.7             | 2.32484   | 62.1 F   | 0.025      | 0.02                | 2 71.6           | 5 0.8              | 63.5 G           | 0.45              | 0.75             | 68           | 1.66667            | 68 H         | -           |                 | -           |                    | • •   |
|    | 306 BW           | A      | 39           | 200     | 69           | 5.12821   | 28 B                   | 7.         | 6 46             | 73.2   | 6.05263   | 63 D   | 11.3       | 57.5    | 74.4             | 5.0885    | 59.5 F   | 0.005      | 0.0054              | 1 71.6<br>71.6   | 5 1.08             | 5 65 G<br>7 65 G | 3 3               | 200              | 68<br>68     | 00.000/            | 67 H         | 0.48        | - 3.3           | - 13.9      | 11.0417            |       |
|    | 306 BR           | A      | 37           | 180     | 69           | 4.86486   | 28 B                   | 15.        | 5 75             | 73.2   | 4.838/1   | 63 D   | 12.5       | 200     | 79.3             | 15.0      | 59.5 F   | 7.8        | 50                  | 71.6             | 5 6.41026          | 65 G             | 4.5               | 200              | 68           | 44.4444            | 67 H         | -           |                 | -           |                    |       |
|    | 306 BE           | A      | 3.7          | 13.2    | 69           | 3.56757   | 28 B                   | 0.6        | 6 1.57           | 73.4   | 2.37879   | 62 D   | 0.633      | 1.56    | 71               | 2.46445   | 63.7 F   | 0.0062     | 0.007               | 71.6             | 5 1.12903          | 65 G             | ÷ 15              | 200              | 68           | 13.3333            | 67 H         | 0.0505      | 0.043           | 74.3        | 0.85149            | 39    |
|    | 306 WE           | Ā      | 6.9          | 15.4    | 69           | 2.23188   | 28 B                   | 0.9        | 4 1.87           | 73.2   | 1.98936   | 63 D   | 0.864      | 1.75    | 70.5             | 2.02546   | 64.4 F   | 0.0078     | 0.007               | 7 71.6           | 5 0.89744          | 65 G             | 0.025             | 0.02             | 68           | 0.8                | 67 H         | 0.0685      | 0.0985          | 74.1        | 1.43796            | 38    |
| -  | 306 RE           | A      | 7            | 21      | 69           | 3         | 28 B                   | 0.88       | 5 2.02           | 73.4   | 2.28249   | 63 D   | 0.99       | 2.17    | 70.6             | 2.19192   | 64.4 F   | 0.35       | 0.5                 | 5 71.6           | 5 1.42857          | 1 65 G<br>1 66 G | F 0.02            | 0.025            | 68<br>69 8   | 1.25               | 6/H<br>66H   | •           | •               | - 73 7      | -<br>8 88889       | - 35  |
| ų. | 307 BW           | A.     | 16.8         | 130     | 68           | 7.7381    | 34                     | •          | •                | :      | -         |        | ÷          | :       | :                | -         | ч.<br>ч. | 5.5<br>1.4 | 50                  | 3 71.6           | 5 5.71429          | 66 0             | 3 1               | 15               | 69.8         | 15                 | 66 H         | •           |                 |             |                    |       |
| 4  | . 307 BR         | A      | 10.5         | 120     | 68           | 6.89655   | 34                     | -          | -                |        | -         |        | •          |         | ·                |           | - F      | 12         | 40                  | 71.0             | 5 3.33333          | 3 66 G           | ; ;               | 200              | 69.8         | 40                 | 66 H         | •           | •               | •           | •                  | •     |
|    | 307 BE           | A      | 1.64         | 3.1     | 68           | 1.89024   | 34                     | •          | -                | •      | -         | • ••   | •          | •       | ·                | •         | - F      | 0.125      | 0.14                | 5 71.6           | 5 1.2              | 2 66 0           | <b>9</b> 0.15     | 0.05             | 69.8         | 0.33333            | 66 H         | 0.036       | 0.077           | 73.9        | 2.13889            | 35    |
|    | 307 WE           | A      | 4.7          | 16.9    | 68           | 3.59574   | 35                     | •          | -                | -      | -         | • •    | •          | •       | •                | •         | - F      | 0.6        | 1                   | 1 71.6           | 5 1.66667          | 660              | 3 0.05<br>5 0.1   | 800.0<br>A û     | 69.8<br>K0 8 | 0.10               | 66 H         | 0.06/5      | 0.0765          | 74.5        | 1.13333            | . 30  |
|    | 307 RE           | A      | 7.7          | 28.3    | 68           | 3.67532   | 35                     | •          |                  | :      | :         |        | :          | :       | :                | :         | - F      | 0.0        | 15                  | 3 73.4           | 4 1.62             | 5 64 0           | 5 0.5<br>F 0.5    | 1                | 69.8         | 2                  | 65 H         | 0.56        | 3.9             | 76.8        | 6.96429            | 27    |
|    | 308 BR           | Å      | 33           | 200     | 68           | 6.06061   | 35                     |            | •                |        |           |        | -          |         |                  |           | . F      | 15         | 23                  | 7 73.4           | 4 1.8              | B 64 G           | <del>;</del> 3    | 3                | 69.8         | 1                  | 65 H         | •           | •               | •           | •                  | -     |
|    | 308 WR           | Ă      | 28           | 200     | 68           | 7.14286   | 35                     | •          | -                |        | •         | • ••   | •          | •       | -                |           | - F      | 14         | - 40                | 0 73.4           | 4 2.85714          | 4 64 0           | 3 0.28            | 0.6              | 69.8         | 2.14286            | 65 H         | •           | •               | •           | •                  | •     |
|    | 308 BE           | A      | 2.9          | 9.5     | 67           | 3.27586   | 36                     | •          | -                | •      | •         | • ••   | •          | ·       | ·                | •         | - F      | 0.45       | 5.5                 | 5 73.4           | 4 12.222           | 2 64 0           | G 0.08            | 0.08             | 69.8         | 1 73414            | 65 H         | 0.0645      | 0.146           | 76.8        | 2.26357            | 27    |
|    | 308 WE           | A      | 5.7          | 14.1    | 67           | 2.47368   | 36                     | •          | •                | •      | •         |        | •          | •       | •                | •         | · ·      | 0.64       | 0.64                | 4 /3.4<br>4 73.2 | 4 1 0666           | 1 64 G           | F 0.0038          | 0.01             | 69.8         | 0.66667            | 65 H         | •           | 0.136           | . "         | 1.21423            | • • • |
|    | 308 RE           | A      | 7.2          | 21.8    | 67           | 3.02/78   | 36                     |            | :                | :      | :         |        |            | -       |                  |           |          | 2.8        |                     | 4 73.4           | 4 1.4285           | 7 62 0           | 3 1.5             | 50               | 69.8         | 33.3333            | 65 H         | 0.82        | 4.1             | 77          | 5                  | 31    |
|    | 309 BR           | Â      | 41           | 200     | 67           | 4.87805   | 36                     | . <u>-</u> |                  |        | -         |        |            | -       |                  | -         | . P      | 2.5        | 2.1                 | 8 73.4           | 4 1.13             | 2 62 0           | 3 2.8             | 200              | 69.8         | 71.4286            | 65 H         | •           | •               | •           | •                  | •     |
|    | 309 WR.          | A      | 41           | 200     | 67           | 4.87805   | ; 36 -                 | •          | -                | -      | •         | • ••   | •          | •       | -                | -         | - F      | 4          |                     | 7 73.4           | 4 1.7              | 5 62 0           | 3 0.7             | 5.5              | 69.8         | 7.85714            | 65 H         | -           |                 | •           |                    | • •   |
|    | 309 BE           | A      | 4.2          | 15.4    | 67           | 3.66667   | 27                     | • •        | -                | •      | •         | • ••   | •          | •       | •                | -         | - 2      | 0.3        | 0.5                 | 2 73.4<br>6 73.4 | 4 1./333:<br>4 1./ | 3 62 C           | 3 0.025<br>3 0.02 | 0.025            | 69.8<br>69.8 | 1.25               | 65 H         | 0.0805      | 0.107           | 77          | 1.32919            | 30    |
|    | 309 WE           | A      | 3.3          | 7.1     | 67           | 2.15152   | 2/                     |            | -                | :      |           |        | :          | :       | 2                | -         | - P      | 0.55       | 0.1                 | 8 73.4           | 4 1.4545           | 5 62 0           | 0.022             | 0.026            | 69.8         | 1.18182            | 65 H         | -           | -               | • "         |                    |       |
|    | 310 BW           | A      | 26           | 200     | 67           | 7.69231   | 27 .                   |            |                  | •      |           |        |            | -       | -                | -         | . P      | 0.006      | 0.00                | 6 73.4           | 4 .                | I 60 C           | G 0.125           | 0.16             | 66.2         | 1.28               | 70 H         | 0.88        | 3.1             | 75.7        | 3.52273            | 34    |
|    | 310 BR           | A      | 31           | 200     | 67           | 6.45161   | 27 -                   |            | •                | •      | •         | • ••   | •          | •       | •                | •         | - F      | 30         | 5                   | 0 73.4           | 4 1.6666           | 7 60 0           | 3 0.14            | 0.16             | 66.2         | 1.14286            | 70 H         | •           | •               | •           | •                  | •     |
|    | 310 WR           | A      | 49           | 200     | 67           | 4.0816    | 27 -                   | • •        | •                | ·      | •         |        | -          | •       | •                | •         | · *      | 0.05       | 0.06                | 5 /3.4<br>7 73.4 | 4 I<br>A 19999     | 3 60 C<br>9 60 C | 3 0.13            | 0.175            | 66.7         | 1.34612            | 70 H<br>70 H | 0.0685      |                 | 76 I        | 1 47445            | . 11  |
|    | 310 BE           | A      | 5            | 15.3    | 67           | 3,00      | 5 2/<br>5 27-          |            | •                | ÷      | :         |        |            | :       | :                |           | . F      | 0.003      | 0.004               | 5 73.4           | 4 1.0000           | 5 60 0           | 3 0.045           | 0.06             | 66.2         | 1.33333            | 70 H         | 0.0745      | 0.081           | 76.4        | 1.08725            | 33    |
|    | 310 WE           | A      | 7.7          | 25.5    | 67           | 3.3116    | 27.                    |            |                  |        | •         |        |            | -       | -                | -         | . F      | 1.1        |                     | 2 73.4           | 4 1.8181           | 8 60 0           | 3 0.125           | 0.125            | 66.2         | 1                  | 70 H         | -           | •               | •           | •                  |       |
|    | 311 BW           | Â      | 29           | 200     | 67           | 6.8965    | 5 27 -                 |            | •                | •      | •         | • ••   | •          | -       | -                | •         | • F      | 50         | ) <u>S</u> I        | 0 69.            | 8                  | 1 65 0           | 3 0.11            | 0.14             | 66.2         | 1.27273            | 70 H         | 1.03        | 4.6             | 77          | 4.46602            | 27    |
|    | 311 BR           | A      | 41           | 200     | 67           | 4.8780    | 5 27 -                 | • •        | •                | •      | •         | • ••   | -          | •       | •                | •         | · F      | 40         | 5                   | 0 69.            | 8 1.2              | 5 65 (           | 3 0.12            | 0.14             | 66.2         | 1.16667            | 70 H         | -           | -               | -           | •                  | •     |
|    | 311 WR           | A      | 15.1         | 78      | 68           | 3 5.1655  | 5 32 -                 | • •        | •                | •      | •         |        | -          | -       | :                | :         |          | 14         | 1                   | 6 69.1           | o<br>8 1.1428      | 2 65 C           | 3 0.05            | 0.058            | 66.2         | 1.10               | 70 H         | 0.094       | . 0.13          | 76.8        | 1.38298            | : 27  |
|    | 311 BE           | A<br>A | 4.1          | 11.6    | 20 A         | 2.4153    | , <u>32</u> -<br>3 32- |            |                  |        | •         |        |            |         |                  |           | . F      |            | 2.                  | 5 69.            | 8 1.2              | 5 65 0           | 3 0.06            | 0.072            | 66.2         | 1.3                | 70 H         | 0.115       | 0.138           | 76.6        | 1.2                | 26    |
|    | 311 RE           | Â      | 8.9          | 26.2    | 69           | 2.9438    | 32.                    |            |                  |        | •         |        | •          | •       | •                | •         | - F      | . 1        | 2.                  | 5 69.            | 8 1.2              | 5 65 0           | 3 0.082           | 0.1              | 66.2         | 1.21951            | 70 H         |             | •               | •           | -                  | •     |
|    | 312 BW           | A      | 12.9         | 190     | 65           | 14.728    | 7 32 0                 | 3          | .8 21.           | 5 73.5 | 5.65789   | ) 62 E | 0.195      | 0.305   | 74.5             | 1.5641    | 59.4 H   | 0.28       | 0.1                 | 1 72.3           | 2 0.3928           | 6 64.1 C         | 3 0.0045          | 1.4              | 68<br>60 9   | 311.111            | 64 H         | 0.0305      | 0.0395          | 73.9        | 1.29508            | · 62  |
|    | 313 BW           | A      | 15.2         | 200     | 65           | 13.157    | 9 31 (                 | ; 1.0      | 5 43<br>7 14     | 5 73.5 | 26.0606   | 07E    | 0.112      | 0.152   | : 80.0<br>; 80.4 | 5 1.33/14 | 59.4 E   | 0.0        | 0.00                | 7 72.3           | 2 3,2697           | 3 64.1 0         | a 0.63<br>3 0.52  | 1.3              | 69.8         | 3.461.54           | 65 H         | 0.0018      | 0.00148         | 74.6        | 0.82222            | : 61  |
|    | 314 BW<br>315 RW | A      | 15.4         | 200     | , 05<br>; 61 | 6.1538    | , 51 C<br>5 44 C       | . 0.       | ., 30            | 2 73.5 | 9.35065   | 62 E   | 0.395      | 0.56    | 80.6             | 5 1.41772 | 59.4 F   | 0.0        | 5 Î.                | 7 71.            | 6 2.8333           | 3 61 0           | G 0.4             | 0.95             | 69.8         | 2.37               | 64 H         | 0.00053     | 0.00077         | 74.4        | 1.45283            | 61    |
|    |                  |        |              |         |              |           |                        |            |                  |        |           |        |            |         |                  |           |          |            |                     |                  |                    |                  |                   |                  |              |                    |              |             |                 |             |                    |       |

٠

 Table H.3 Insulation resistance measurements for specimens in test sequence 3

 

 C B. in Tera-ohms Temp Politizan
 <th Index RH %

8-H

#### Table H.4 Insulation resistance measurements for specimens in test sequence 4

| CPI Cvd | c      | IR in Tera-o | olums T | emp<br>AD | Polrizatn<br>Index | С<br>РН % М | : Rin | Tera-ohms<br>Min @10 Mi | Temp<br>i (F) | Polrizatn<br>Index | RH % | с<br>м | IR in Tera-o<br>@ 1 Min @ | hms<br>10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %                | с 1<br>м @ | tin Tera-ohm<br>1 Min @ 10 | ns 1<br>0 Mi | Femp<br>(F) | Polrizatn<br>Index | RH % | С<br>М | IR in Tera<br>@1 Min | a-ohms<br>@10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH % | С<br>М | IR in Tera-<br>@1 Min ( | ohms<br>@g 10 Mi | Femp<br>(F) | Polrizatn<br>Index | RH % |
|---------|--------|--------------|---------|-----------|--------------------|-------------|-------|-------------------------|---------------|--------------------|------|--------|---------------------------|--------------|-------------|--------------------|---------------------|------------|----------------------------|--------------|-------------|--------------------|------|--------|----------------------|------------------|-------------|--------------------|------|--------|-------------------------|------------------|-------------|--------------------|------|
|         |        | @ 1 Mill @   | ×       | (r)       |                    |             |       |                         |               |                    |      | -      |                           |              |             |                    |                     |            |                            |              |             |                    | -    | -      | <u> </u>             |                  |             | 1                  |      | -      |                         | -                |             | -                  | —    |
| 401 BE  | A      | -            | •       | -         | -                  |             | -     | -                       | •             | -                  | -    | ••     | -                         | -            | -           | -                  | - !                 | F          |                            |              | -           | •                  | -    | G      | •                    | -                | -           | -                  | - 1  | H      | 0,0113                  | 0.0076           | 85.1        | 0.67257            | 32   |
| 401 BR. | A      | 2.7          | 200     | 68        | 74.0741            | 20          | -     | -                       | -             | -                  | •    | ••     | -                         | -            | •           | -                  | •                   | F          |                            |              | -           | -                  | -    | 0      | -                    | -                | -           | •                  | - 1  | n<br>u | -<br>0.00074            | -                | -           | -                  | - 17 |
| 401 BW  | A      | 0.3          | 0.48    | 68        | 1.6                | 20          | •     | •                       | -             | -                  | •    |        | •                         | -            | •           | -                  | - :                 | r          | • •                        |              | -           | •                  | -    | 0<br>G | -                    | -                | -           | -                  | - 1  |        | 0.00024                 | 0.00024          | 85.2        | 0 97637            | 32   |
| 401 WE  | A      | • .          |         | •         |                    |             | •     | •                       | -             | -                  | -    | ••     | -                         | •            | -           | -                  |                     | r          |                            |              | -           | -                  | -    | a      | -                    | -                | -           |                    | - 1  | н      | -                       | -                | -           | -                  |      |
| 401 WR  | A.     | 4            | 200     | 68        | 0 0 0 0 7 7        | 20 **       | -     | -                       | -             | •                  | •    |        | •                         | -            |             | -                  |                     | F          |                            |              | _           | -                  | _    | ġ.     | -                    | -                |             | -                  | • I  | н      | 0.0174                  | 0.0185           | 79.8        | 1.06322            | 43   |
| 402 PE  | A.     | 1.3          | 14      | 69        | 9.230//            | 22          |       |                         | -             | -                  | 2    |        |                           | _            |             | -                  |                     | F          |                            |              | -           | -                  | -    | Ğ      | -                    | -                | -           | -                  | - 1  | н      | 0.0645                  | 0.049            | 78.4        | 0.75969            | 45   |
| 402 PK  | ~      | ,            | 40      | 60        | 5.71425            | 22          |       |                         | -             | -                  | -    |        |                           | -            | -           | -                  | -                   | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.0088                  | 0.00975          | 80.7        | 1.10795            | 42   |
| 402 NB  | Â      | 30           | 200     | 69        | 6 66667            | 22 R        | _     | -                       |               |                    |      | D      | 0.0017                    | 0.0018       | 71          | 1.05882            | 59                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | •                  | - 1  | н      | 0.00995                 | 0.00915          | 80.7        | 0.9196             | 43   |
| 404 PE  |        | 1            | 200     | 68        | 8                  | 21 B        | -     |                         | -             | -                  | -    | D      | 0.074                     | 0.25         | 71          | 3.37838            | 59                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - I  | н      | 0.00805                 | 0.0078           | 81.1        | 0.96894            | 43   |
| 404 PR  | Â      | ŝ            | 30      | 68        | 6                  | 21 B        | -     | -                       | -             | -                  | •    | D      | 2                         | 11.5         | 71          | 5.75               | 59                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.385                   | 1.43             | 80.4        | 3.71429            | 43   |
| 404 RE  | A      | 1.2          | 5       | 68        | 4.16667            | 21 B        |       | -                       | -             | -                  | -    | D      | 0.15                      | 0.4          | 71          | 2.66667            | 59                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.0108                  | 0.0076           | 81.3        | 0.7037             | 43   |
| 405 RE  | A      | 10           | 200     | 69        | 20                 | 21 B        | -     | •                       | -             | -                  | -    | D      | 0.00089                   | 0.001        | 71          | 1.1236             | 59                  | F          |                            |              | •           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | H      | 0.0093                  | 0.009            | 81.5        | 0.96774            | 41   |
| 406 PE  | A      | 0.52         | 5.5     | 69        | 10.5769            | 19 B        | -     | -                       | -             | -                  | -    | D      | 0.08                      | 0.22         | 71          | 2.75               | 59                  | F          | • •                        |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.0196                  | 0.019            | 83.1        | 0.96939            | 40   |
| 406 PR. | A      | 3            | 15      | 69        | 5                  | 19 B        | -     | -                       | -             | -                  | -    | D      | 4                         | 5            | 71          | 1.25               | 59                  | F          |                            |              | •           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | Н      | 0.265                   | 2.42             | 82.2        | 9.13208            | 42   |
| 406 RE  | A      | 0.58         | 6       | 69        | 10.3448            | 19 B        | -     | -                       | -             | -                  | •    | D      | 0.15                      | 0.32         | 71          | 2.13333            | 59                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.0196                  | 0.0202           | 83.3        | 1.03061            | 40   |
| 407 BE  | A      | 40           | 200     | 69        | 5                  | 22 C        |       | •                       | •             | -                  | -    | E      | 0.00003                   | 0.00003      | 72          | 1                  | 59                  | F          |                            |              | •           | -                  | -    | G      | •                    | -                | -           | -                  | - 1  | H      | 0.0255                  | 0.027            | 84          | 1.05882            | 37   |
| 408 BE  | A      | •            | -       | -         | -                  | - c         | -     | •                       | -             | -                  | -    | E      | 5.6E-05                   | 0.00007      | 72          | 1.25               | 59                  | F          |                            |              | -           | •                  | -    | 9      | •                    | -                | •           | -                  |      | n<br>u | 0.00022                 | 0.00013          | 89.7        | 0.00405            | 32   |
| 408 BR. | A      | 5.2          | 200     | 69        | 38.4615            | 22 C        |       | -                       | -             | -                  | •    | E      | -                         | • .          |             | -                  |                     | r<br>T     | • •                        | •            | -           | -                  | -    | 6      | -                    | -                | -           | -                  |      | п<br>u | 0.0285                  | 0.021            | 84.5        | 0 73684            | - 12 |
| 408 BW  | A      | 4            | 22      | 69        | 5.5                | 22 C        |       | -                       | -             | -                  | -    | Б      | 0.75                      | 4            | 11          | 5.33333            | - 29                | r<br>T     |                            |              | -           | -                  | -    | n<br>n |                      | -                | -           | -                  | - 1  | ห      | 0.0233                  | 0 00395          | 84.9        | 1 19697            | 32   |
| 408 WE  | A      | •            | •       | •         |                    | - 0         |       | -                       | •             | -                  | -    | в<br>r | -                         | -            |             | -                  | -                   | r<br>F     |                            |              | -           | -                  | _    | G      | -                    | -                | -           |                    | - 1  | н      | -                       | -                | -           | -                  | -    |
| 408 WR  | A .    | 4            | 30      | 69        | 7.5                | 24 C        |       | -                       | -             | -                  | -    | н<br>н | 0 00004                   | o 00005      | 71          | 1 29               | 60                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 3  | н      | 0.0166                  | 0.0159           | 81.5        | 0.95783            | 41   |
| 409 BE  | A .    | 10           | 200     | 09        | 20                 |             |       |                         | -             | -                  |      | Ē      | 2 88-05                   | 0 00004      | 72          | 1 42857            | 60                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.0029                  | 0.00835          | 82.7        | 2.87931            | 38   |
| 410 BE  | ~      | - ^ ~        |         | •         | 12.75              | - 10        |       | -                       | -             | -                  |      | Ē      | 0.9                       | 3.5          | 72          | 3.88889            | 60                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.27                    | 2.25             | 82.7        | 8.33333            | 40   |
| 410 DR  | Â      | 0.0          | 68      | 68        | 23.13              | 21 C        |       | -                       | -             |                    |      | E      | 0.6                       | 1.6          | 72          | 2.66667            | 60                  | F          |                            |              | -           | -                  | -    | G      | -                    | -                | •           | -                  | - 1  | н      | 0.52                    | 3.6              | 82.2        | 6.92308            | 41   |
| 410 DW  |        | 0.0          | 15      | 68        | 17.6471            | 21 C        |       | -                       | -             | -                  | -    | Е      | 1.6                       | 5            | 72          | 3.125              | 60                  | F          |                            | -            | -           | -                  | -    | G      | •                    | -                | -           | -                  | - 1  | н      | 0.38                    | 7.2              | 82.7        | 18.9474            | 39   |
| 411 BE  | Ā      | -            |         | -         | -                  | • c         | ; .   | -                       |               | -                  | -    | E      | 0.027                     | 0.04         | 68          | 1.48148            | 58                  | F          |                            |              | -           | -                  | -    | G      | -                    | •                | •           | -                  | - 1  | н      | 0.014                   | 0.01305          | 85.4        | 0.93214            | 31   |
| 411 BR  | A      | 0.8          | 10      | 68        | 12.5               | 21 C        | ; .   | -                       | -             | -                  | -    | Е      | 0.9                       | 4            | 68          | 4.44444            | 58                  | F          |                            | •            | -           | -                  | -    | G      | -                    | -                | •           | -                  | - 1  | н      | -                       | -                | -           | -                  | -    |
| 411 BW  | Ā      | 0.65         | 6.8     | 68        | 10.4615            | 21 C        | ; -   | -                       | -             | •                  | -    | E      | 0.8                       | 3.5          | 68          | 4.375              | 58                  | F          |                            | •            | -           | -                  | -    | G      | -                    | -                | •           | -                  | - 3  | н      | 0.17                    | 2.15             | 85.2        | 12.6471            | 32   |
| 411 WE  | A      | -            | -       | -         | -                  | - C         | : -   | -                       | -             | -                  | -    | Е      | -                         | -            | -           | -                  | -                   | F          |                            | -            | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | н      | 0.013                   | 0.0123           | 85.8        | 0.94615            | 31   |
| 411 WR  | A      | 1.2          | 14      | 68        | 11.6667            | 21 C        | ; -   | -                       | -             | -                  | -    | Е      | 1.6                       | 4.5          | 68          | 2.8125             | 58                  | F          |                            | •            | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | H      | •                       | •                | •           | -                  | -    |
| 412 RE  | A      | 17           | 200     | 69        | 11.7647            | 22 C        | : -   | -                       | -             | -                  | -    | Е      | 0.0045                    | 0.0062       | 72          | 1.37778            | 59                  | F          |                            | -            | -           | -                  | -    | G      | -                    | -                | -           | -                  | - 1  | H      | 0.0355                  | 0.0345           | 86          | 0.97183            | 31   |
| 413 PE  | A      | 2            | 15      | 69        | 7.5                | 30 C        | ; -   | -                       | -             | •                  | -    | Е      | 0.1                       | 0.25         | 69          | 2.5                | 58                  | F          |                            | -            | -           | -                  | -    | G      | -                    | -                | -           | •                  | -    | н      | 0.01005                 | 0.00965          | 74.1        | 0.9602             | 53   |
| 413 PR  | A      | 5.5          | 200     | 69        | 36.3636            | 30 C        | - 3   | -                       | -             | -                  | -    | E      | 3                         | 7.2          | 69          | 2.4                | 58                  | F          |                            | •            | -           | -                  | -    | G      | -                    | -                | •           | -                  | -    | н.     | 0.235                   | 0.225            | 73.9        | 0.95/45            | 52   |
| 413 RE  | A      | 2.5          | 20      | 69        | 8                  | 30 C        | -     | -                       | -             | -                  | -    | E      | 0.2                       | 0.5          | 69          | 2.                 | 58                  | r<br>r     |                            | -            | -           | •                  | -    | 6      | -                    | -                | -           | -                  | -    | n<br>u | 0.0097                  | 0.01033          | 13.5        | 0 80241            | 31   |
| 414 RE  | A      | 18           | 200     | 69        | 11.1111            | 21 C        |       | •                       | -             | -                  | -    | Б      | 0.05                      | 0.055        | 69          | 1.1                |                     | r<br>T     |                            | -            | -           | •                  | -    | 2      | -                    | -                | -           | -                  | -    | л<br>ц | 0.0158                  | 0.0141           | - 00        | 0.67241            | - 31 |
| 415 PE  | A      | 5            | 5.5     | 68        | 1.1                | 21 0        |       | -                       | •             | -                  | •    | E<br>E | 0.10                      | 0.4          | 70          | 2                  | , <i>51</i><br>) 57 | r<br>F     |                            |              |             |                    | -    | G      | _                    | _                | _           | -                  | -    | н.     |                         | -                | -           | -                  |      |
| 415 PR  | A .    | 1.2          | 6,8     | 68        | 3.0000/            | 210         |       | -                       | -             | -                  |      | F      | 0.2                       | 0.5          | 70          | 2                  | 57                  | F          |                            | -            | -           | -                  | -    | Ğ      | -                    | -                | -           | -                  | -    | н      | -                       | -                | -           | -                  | -    |
| 415 KE  | A      | 0.0          | 5.2     | 08        | 8.0000/            | 10 0        | (     |                         | -             | -                  |      | E      | 0.03                      | 0.05         | 69          | 1.6666             | 58                  | F          |                            | -            | -           | -                  | -    | G      | -                    | •                | -           |                    | -    | н      | 0.0075                  | 0.0205           | 75.5        | 2.73333            | 44   |
| 416 PE  | A      | V.5<br>2     | 4       | 60        | 2 66667            | 190         | -     |                         | -             |                    |      | Ē      | 0.5                       | 1.9          | 69          | 3.1                | 3 58                | F          |                            | -            | -           | -                  | -    | G      | -                    | -                | -           | -                  | -    | н      | 0.245                   | 5.95             | 75.7        | 24.2857            | 45   |
| 416 PK  | ۸<br>۸ | 05           | ŝ       | 69        | 10                 | 190         | -     | -                       |               | -                  | -    | E      | 0.055                     | 0.1          | 69          | 1.8181             | 3 58                | F          |                            | -            | -           | -                  | -    | G      | -                    | -                | -           | -                  | -    | н      | 0.018                   | 0.025            | 75.5        | 1.38889            | 43   |
| 417 BR  | Ā      | 4.5          | 25      | 69        | 5.55556            | 21          | -     |                         |               |                    |      |        |                           |              |             |                    |                     |            |                            |              |             |                    |      |        |                      |                  |             |                    |      |        |                         |                  |             |                    |      |
| 417 BW  | A      | 3            | 20      | 69        | 6.66667            | 21          |       |                         |               |                    |      |        |                           |              |             |                    |                     |            |                            |              |             |                    |      |        |                      |                  |             |                    |      |        |                         |                  |             |                    |      |
| 417 WR  | A      | 2.5          | 28      | 65        | 11.2               | 21          |       |                         |               |                    |      |        |                           |              |             |                    |                     |            |                            |              |             |                    |      |        |                      |                  |             |                    |      |        |                         |                  |             |                    |      |
| 418 PE  | Ă      | 2            | 18      | 65        | 1 3636             | · 54        |       |                         |               |                    |      |        |                           |              |             |                    |                     |            |                            |              |             |                    |      |        |                      |                  |             |                    |      |        |                         |                  |             |                    |      |
| 418 RE  | A      | 2.2          | 17      | 65        | 7.72727            | 34          |       |                         |               |                    |      |        |                           |              |             |                    |                     |            |                            |              |             |                    |      |        |                      |                  |             |                    |      |        |                         |                  |             |                    |      |

:

•

#### Table H.5 Insulation resistance measurements for specimens in test sequence 5

| CBL Cnd  | с 11<br>м@ | R in Tera-oi<br>§1 Min @ | lums (<br>10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %             | с 11<br>м@ | R in Tera<br>§ 1 Min | a-ohms<br>@10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH % | с<br>м | IR in Tera<br>@ 1 Min | •ohms<br>@10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH %       | С<br>М(  | IR in Tera-<br>@1 Min ( | ohms<br>29:10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH % | с<br>м   | IR in Tera<br>@1 Min | a-ohms<br>@ 10 Mi | Temp<br>(F) | Polrizatu<br>Index | C<br>RH% M | UR in Tera<br>@1 Min | ı-ohms 1<br>@10 Mi | Cemp<br>(F) | Polrizatn<br>Index | RH % |
|----------|------------|--------------------------|-----------------|-------------|--------------------|------------------|------------|----------------------|------------------|-------------|--------------------|------|--------|-----------------------|-----------------|-------------|--------------------|------------|----------|-------------------------|------------------|-------------|--------------------|------|----------|----------------------|-------------------|-------------|--------------------|------------|----------------------|--------------------|-------------|--------------------|------|
| 501 DE   |            | <b>_</b>                 |                 | <u> </u>    | 2 41 46            |                  |            |                      |                  | distants    |                    |      |        |                       |                 |             | ·                  |            | = :<br>p |                         |                  |             | 4-5-6191-523       |      | _        | 0.121                | 0.120             | 26.4        | 1 2/00             |            |                      |                    |             |                    |      |
| 501 DE   | A<br>A     | 0.2                      | 20              | 20          | 0 275              | - <del>2</del> 2 | •          | •                    | •                | •           | •                  | -    |        | •                     | •               | -           | -                  | •          | r<br>r   | •                       | -                | -           | -                  | -    | G        | 0.131                | 0.178             | 70.4        | 1.3588             | 3/ H       | 0.009                | 0.011              | 13          | 1.2222             | 31   |
| 502 BW   | м<br>л     | 1.0                      | 21              | 60          | 2.575              | 24 -             |            | -                    | -                | •           | -                  | -    |        | -                     | -               | -           | •                  | -          | r<br>D   | -                       | -                | -           | •                  | -    | å        | 0.0245               | 0.0235            | 14.3        | 0.9392             | 39 H       | 0.85                 | 2.2                | 66          | 2.5882             | 26   |
| 502 BW   | Â.         | 14                       | 25              | 60          | 17057              | 24 -             |            | •                    | -                | •           | -                  | •    |        | -                     | -               | •           | •                  | -          | 5        | -                       | -                | -           | -                  | -    | G<br>C   | 1.0                  | 4.93              | 720         | 2.73               | 39 D       | 0.5                  | 1.0                | 00          | 3.2                | 26   |
| 502 WE . | <u>^</u>   | 1.4                      | 43              | 00          | 17.057             | 24 -             |            | •                    | -                | -           | -                  | -    |        | -                     | •               | •           | -                  | -          | г<br>Б   | -                       | -                | •           | -                  | -    | 0        | 0.0233               | 0.025             | 73.9        | 0.9/8/             | 40 11      | 4.5                  | 0.8                | 00          | 1.5111             | 26   |
| 503 BD   | Δ.         | 25                       | - 17            | - 60        | 69                 | 25               |            | -                    | -                | •           | -                  |      |        | •                     | -               | •           | -                  | -          | r        | -                       | -                | -           | -                  | -    | C        | 0.0090               | 0.025             | 74.1        | 2.0178             | חננ        | 1                    | 4.5                | 15          | 4.5                | 40   |
| 503 BW   | Δ.         | 0 54                     | 075             | 60          | 1 3990             | 35               |            |                      |                  | -           | -                  | -    |        | •                     | -               | -           | •                  | -          | E.       | -                       | •                | •           | -                  | •    | ä        | - 0.27               | 1 26              | 120         | . 2 6767           | - 11       | - 6.1                | - 7.0              |             | 1.640              | -    |
| 503 WR   | Δ          | 5                        | 30              | 69          | 1.5005             | 35 -             |            | -                    | -                | -           | -                  | -    |        | -                     | -               |             | -                  |            | г<br>F   | -                       | -                | -           | •                  | •    | G        | 0.57                 | 1.50              | 13.9        | 5.0757             | ח ככ<br>ע  | 5.1                  | 1.9                | 13          | 1.549              | 40   |
| 504 BR   | Δ          | 0.08                     | 0.09            | 69          | 1 1 25             | 59 1             | R          | -                    |                  | -           | -                  | -    | D      | 0.05                  | 0.062           | 70          | 1 24               | 60         | F        | -                       |                  |             | -                  | -    | å        | 0.024                | 0.030             | 771         | 1 625              | 21 11      | 0.011                | 0.011              | 75          | • ,                | - 24 |
| 505 BR   | A          | 75                       | 30              | 69          | 4                  | 59 1             | Ř          |                      |                  | -           | -                  | -    | ň      | 0.05                  | 0.052           | 70          | 1.04               | 59         | F        | -                       | -                |             | -                  | -    | ā        | 0.024                | 0.035             | 76.8        | 1 0075             | 37 H       | 0.011                | 0.56               | 76          | 14                 | 27   |
| 506 BE   | A          | 0.8                      | 7               | 70          | 8.75               | 22 1             | B          | -                    | -                |             |                    |      | ñ      | 015                   | 03              | 70          | 2                  | 59         | F        | -                       | _                | -           | -                  | -    | ā        | 0.028                | 0.0305            | 75.2        | 1.0893             | 49 H       | 14                   | 0.50               | 74          | 2 8571             | 30   |
| 506 BW   | A          | 11                       | 40              | 70          | 3 6364             | 22 F             | Ā          | -                    |                  | -           | -                  | -    | ñ      | 1.3                   | 12              | 70          | 5 5385             | 59         | F        |                         |                  |             |                    | _    | ă        | 0 38                 | 26                | 25          | 6 8421             | 50 H       | 0.0                  | 3                  | 74          | 3 3333             | 30   |
| 506 WE   | A          | 1.3                      | 10              | 70          | 7.6923             | 22 F             | 3          | -                    | -                | -           | -                  |      | D      | 0.22                  | 0.4             | 70          | 1.8182             | 59         | F        | -                       | -                | -           | -                  | -    | Ğ        | 0.03                 | 0.038             | 755         | 1 2667             | 46 H       | 13                   | 35                 | 24          | 2 6923             | 30   |
| 507 BE   | A          | 0.85                     | 5.5             | 69          | 6.4706             | 25 H             | 3          | -                    | -                | -           | -                  | -    | D      | 2.5                   | 20              | 70          | 8                  | 59         | F        | -                       | -                | -           |                    | -    | Ğ        | 0.0555               | 0.069             | 76.1        | 1.2432             | 41 H       | 1.2                  | 3                  | 72          | 2.5                | 37   |
| 507 BW   | A.         | 6                        | 30              | 69          | 5                  | 25 E             | 3          | -                    | -                | -           | -                  | -    | D      | 2                     | 9               | 70          | 4.5                | 59         | F        | -                       | -                | -           | -                  | -    | G        | 0.66                 | 5.1               | 75.9        | 7.7273             | 43 H       | 1                    | 2.8                | 72          | 2.8                | 37   |
| 507 WE   | A          | 1                        | 5.6             | 69          | 5.6                | 25 E             | 3          | -                    | -                | -           | -                  |      | D      | 1.3                   | 15              | 70          | 11.538             | 59         | F        | -                       | -                | -           | -                  | -    | Ğ        | 0.061                | 0.076             | 76.1        | 1.2459             | 39 H       | 0.9                  | 2                  | 72          | 2.2222             | 37   |
| 508 BE   | A          | -                        | -               | -           | -                  | - E              | 3          | -                    | -                | -           | -                  | -    | D      | 0.03                  | 0.04            | 71          | 1.3333             | 56         | F        | -                       | -                | -           | -                  | -    | G        | 0.0238               | 0.0239            | 83.3        | 1.0042             | 37 H       | 2E-05                | 2E-05              | 66          | 1.0455             | 25   |
| 508 BR . | A.         | 3.2                      | 25              | 69          | 7.8125             | 30 E             | 3          | -                    | -                | -           | -                  | -    | D      | -                     | -               | -           | -                  | -          | F        | -                       | -                | -           | •                  | -    | G        | -                    | -                 | -           | -                  | - H        | -                    | -                  | -           | -                  |      |
| 508 BW   | A.         | 3                        | 25              | 69          | 8.3333             | 30 E             | 3          | -                    | -                | •           | ·                  | -    | D      | 2                     | 7.5             | 71          | 3.75               | 56         | F        | -                       | -                | -           | -                  | -    | G        | 0.795                | 0.66              | 83.3        | 0.8302             | 37 H       | 2E-05                | 2E-05              | 66          | 1.465              | 25   |
| 508 WE . | A          | •                        | -               | -           | -                  | - E              | 3          | -                    | -                | •           | -                  | -    | D      | 0.04                  | 0.045           | 71          | 1.125              | 56         | F        | -                       | -                | ÷           | •                  | -    | G        | -                    | -                 | •           | -                  | - H        | 0.0006               | 0.0011             | 66          | 1.8333             | 25   |
| 508 WR . | A          | 1.4                      | 2               | 69          | 1.4286             | 30 E             | 3          | -                    | -                | -           | -                  | -    | D      | -                     | -               | -           | -                  | -          | F        | -                       | -                | -           | -                  | •    | G        | -                    | -                 | -           | -                  | - H        | -                    | -                  | -           | -                  | •    |
| 509 BE   | A          | •                        | •               | •           | •                  | - E              | 3          | -                    | -                | •           | -                  | -    | D      | 0.03                  | 0.04            | 68          | 1.3333             | 60         | F        | -                       | -                | -           | -                  | -    | G        | 0.086                | 0.102             | 76.1        | 1.186              | 37 H       | 0.0095               | 0.012              | 72          | 1.2632             | 31   |
| 509 BR   | A          | 3                        | 9               | 69          | 3                  | 35 E             | 3          | -                    | -                | -           | -                  | -    | D      |                       | •               | -           |                    | -          | F        | -                       | -                | -           | -                  | -    | G        | -                    | -                 | -           | -                  | - н        | -                    | -                  | -           | -                  | -    |
| 509 BW   | A          | 1.8                      | 16              | 69          | 8.8889             | 35 E             | 3          | -                    | -                | -           | -                  | -    | D      | 2.5                   | 7.5             | 68          | 3                  | 60         | F        | -                       | -                | •           | -                  | -    | G        | 1.92                 | 4.6               | 76.2        | 2.3958             | 37 H       | 0.0035               | 0.0078             | 72          | 2.2286             | 31   |
| 509 WE . | A.         | -                        | -               | -           | -                  | - E              | 3          | -                    | -                | -           | -                  | -    | D      | 0.035                 | 0.04            | 68          | 1.1429             | 60         | F        | -                       | • .              | -           | -                  | •    | G        | 0.097                | 0.102             | 75.9        | 1.0515             | 37 H       | 0.0001               | 0.0001             | 72          | 1                  | 31   |
| 509 WK   | A.         | 4.5                      | 22              | 69          | 4.8889             | 33 E             | 5          | -                    | -                | -           | -                  | -    | D      | - 0.006               | -               |             | - 1.10             |            | r<br>R   | -                       | -                | -           | -                  | -    | G        | -                    | -                 | -           | -                  | - H        | -                    | -                  | -           | -                  | -    |
| 511 00   | м.<br>л.   | 0.052 (                  | 2062            | 60          | 1 1022             | 55 0             | -          | -                    | •                | •           | -                  | -    | D<br>D | 0.025                 | 0.028           | 67          | 1.12               | 00 .<br>25 | r<br>v   | -                       | -                | -           | -                  | -    | 8        | 0.038                | 0.0825            | 85.1        | 2.1711             | 3/H        | 0.011                | 0.008              | 75          | 0.7273             | 34   |
| 512 BF   | Δ.         | 1                        | 17              | 68          | 2 4286             | 55 0             | ÷ .        | -                    | -                | -           | -                  |      | R      | 0.00                  | 0.00            | 67          | 1.5555             | 65         | F        | -                       | -                |             | -                  | -    | 0<br>0   | 0.0203               | 0.023             | 14.5        | 1 5902             | 27 11      | 0.0017               | 0.0017             | 75          | 1 6 4 7 1          | 22   |
| 513 BF   | Δ.         | ΛÓ                       |                 | 70          | 8 8880             | 22 0             | ź          |                      | _                | -           | -                  | -    | R      | 0.070                 | 0.12            | 60          | 1.5/05             | 60         | r<br>r   | -                       | -                |             | -                  | -    | n<br>n   | 0.0051               | 0.170             | 02 2        | 11 471             | 27 11      | 0.17                 | 0.28               | 70          | 1.04/1             | 22   |
| 513 BW   | Δ          | 5.5                      | 28              | 20          | 5 0909             | 22 0             |            | _                    | _                |             | _                  | -    | Ē      | 1 25                  | 5               | 69          | ã                  | 60         | r<br>F   |                         | -                | -           |                    |      | ă        | 0.0051               | 2 05              | 83.3        | 3 31 /6            | 37 11      | 0.004                | 75                 | 70          | 250                | 21   |
| 513 WE   | 4          | 14                       | 13              | 70          | 9 2857             | 22 0             | ź          | -                    |                  |             |                    |      | Ē      | 0.26                  | 045             | 69          | 1 7308             | 60         | F        | -                       | _                | 2           | -                  |      | å        | 0.07                 | 2.55              |             | 5.5140             | - H        | 11                   | 55                 | 20          | 2.5                | 21   |
| 514 BE   | A          | 16                       | 14              | 70          | 8.75               | 21 0             |            | -                    | -                | -           | -                  | -    | Ē      | 5B-05                 | 6R-05           | 69          | 11                 | 60         | F        |                         |                  |             |                    | _    | G        | 0.079                | 0.093             | 166         | 1 1772             | 37 म       | 0.5                  | 0.6                | 78          | 12                 | 43   |
| 514 BW   | A          | 5                        | 200             | 70          | 40                 | 21 0             | 5          | -                    | -                |             | -                  |      | Ē      | 8E-05                 | 1E-04           | 69          | 1.3067             | 60         | F        | -                       | -                | -           | _                  | _    | Ğ        | 0.78                 | 2.4               | 77.1        | 3 0769             | 37 H       | 0.4                  | 0.75               | 78          | 1 875              | 43   |
| 514 WE   | A          | 1.6                      | 20              | 70          | 12.5               | 21 0             | 5          | •                    | -                | -           | •                  |      | E      | 6E-05                 | 6E-05           | 69          | 1                  | 60         | F        | -                       | -                | -           | -                  |      | Ğ        | 0.056                | 0.0635            | 76.8        | 1.1339             | 37 H       | 0.9                  | 2                  | 78          | 2 2222             | 43   |
| 515 BE   | A          | -                        | -               | -           | -                  | - 0              | 2          | -                    | -                | -           |                    |      | Е      | 0.0075                | 0.01            | 69          | 1.3333             | 60 (       | F        | -                       | -                | -           |                    | -    | G        | 0.0975               | 0.093             | 75.5        | 0.9538             | 37 H       | 4E-05                | 4E-05              | 73          | 1.0625             | 30   |
| 515 BR   | A.         | 1.9                      | 5               | 69          | 2.6316             | 27 C             | 2          | -                    | -                | -           | •                  | -    | Е      | -                     | -               | •           | -                  | - 3        | F        | -                       | -                |             | - '                |      | G        | -                    | -                 | -           | -                  | - H        | -                    | •                  | •           |                    | -    |
| 515 BW   | A          | 2                        | 28              | 69          | 14                 | 27 C             | 2          | -                    | -                | •           | •                  | -    | Е      | 0.13                  | 0.15            | 69          | 1.1538             | 60         | F        |                         | -                | -           | -                  |      | đ        | 1.25                 | 2.15              | 75.7        | 1.72               | 37 H       | 4E-05                | 4E-05              | 73          | 1.0417             | 30   |
| 515 WE   | A          |                          | -               | -           | -                  | - 0              | 2          | -                    | -                | -           | -                  | -    | Е      | 0.01                  | 0.012           | 69          | 1.2                | 60 1       | F        | -                       | -                | -           | -                  |      | G        | 0.0915               | 0.103             | 75.3        | 1.1257             | 37 H       | 4E-05                | 4E-05              | 73          | 0.875              | 30   |
| 515 WR / | A.         | 4.5                      | 50              | 69          | 11.111             | 27 C             | 2          | •                    | •                | •           | -                  | -    | Е      | -                     | •               | -           | •                  | - 1        | F        | -                       | -                | -           | •                  |      | G        | •                    | -                 | -           | -                  | - H        | -                    | -                  | -           | -                  | -    |
| 516 BE   | A.         | •                        | -               | -           | -                  | - C              | 2          | -                    | -                | -           | -                  | -    | Е      | 0.05                  | 0.065           | 69          | 1.3                | 60 1       | F        | -                       | -                | -           | •                  |      | G        | 0.07                 | 0.0765            | 76.2        | 1.0929             | 38 H       | 8E-05                | 5E-05              | 72          | 0.6667             | 40   |
| 516 BR   | A          | 4                        | 200             | 69          | 50                 | 27 C             | 2          | -                    | -                | •           | -                  | -    | Е      | -                     | -               | -           | -                  | - 1        | F        | -                       | -                | -           | -                  | - •  | G        | -                    | -                 | -           | -                  | - H        | -                    | -                  | -           | -                  | -    |
| 516 BW   | A.         | 1.3                      | 30              | 69          | 23.077             | 27 C             | 2          | -                    | -                | •           | ٠                  | -    | E      | 5                     | 20              | 69          | 4                  | 60         | F        | -                       | -                | -           | -                  |      | G        | 1.25                 | 6.4               | 76.1        | 5.12               | 39 H       | 0.022                | 0.0175             | 72          | 0.7955             | 40   |
| 516 WE   | A.         | -                        | -               | -           | -                  | - (              | 2          | -                    | -                | •           | -                  | -    | E      | 0.055                 | 0.06            | 69          | 1.0909             | 60         | F        | •                       | •                | -           | -                  | - (  | G        | 0.074                | 0.0765            | 76.2        | 1.0338             | 38 H       | 0.013                | 0.013              | 72          | 1                  | 40   |
| 516 WR / | A.         | 3                        | 200             | 69          | 66.667             | 27 C             | 2          | -                    | -                | -           | -                  | -    | в      | -                     | -               | -           | -                  | - 1        | F        | -                       | -                | -           | -                  | - '  | G        | -                    | -                 | -           | -                  | - н        | -                    | -                  | -           | •                  | •    |
| 517 BW 1 | A.         | 3                        | 3.5             | 69          | 1.1007             | - 06             | -          | -                    | -                | •           | •                  | -    |        | -                     | -               | •           | •                  |            |          | -                       | -                | -           | -                  |      | G        | -                    | -                 | -           | •                  | •          |                      |                    |             |                    |      |
| SIS BE   | 4          | 0.9                      | 50              | 69          | 55.556             | 24 -             | -          | -                    | -                | -           | -                  | •    |        | -                     | -               | -           | -                  |            |          | •                       | -                | -           | -                  |      | G*       | 0.32                 | 0.52              | 73.7        | 1.625              | 41         |                      |                    |             |                    |      |
| 510 BW 2 | ~          | 200                      | 20              | 60          | 0.000/             | 24               | -          | -                    | -                | -           | -                  | -    |        | -                     | -               | -           | -                  | • •        |          | -                       | -                | -           | -                  | - (  | u"<br>C* | 1.9                  | 4.3               | 15.4        | 2.2632             | 41         |                      |                    |             |                    |      |
| SIG RR   | Δ.         | 2.6                      | 11              | 60          | 4 2308             | 24 -             | -          | -                    | •                | -           | :                  | -    |        | -                     | -               | -           | -                  |            |          | -                       | -                | -           | -                  | - 1  | 0"<br>C* | 0.42                 | 0.4/              | 74          | 1.119              | 41         |                      |                    |             |                    |      |
| 519 DK / | 4          | 2.0                      | 17              | 69          | 9.4300<br>8 C      | 25 -             | -          | -                    | -                | -           | -                  | -    |        | -                     | -               | -           | -                  |            |          | •                       | •                | -           | -                  |      | 0~<br>A* | 1.05                 | 0.35              | 74.8        | 3.0433             | 41         |                      |                    |             |                    |      |
| 519 WP   | Δ.         | ŝ                        | 200             | 69          | 40                 | 25 -             | -          | -                    | -                | -           | -                  | -    |        | -                     | -               | -           | -                  |            |          |                         | -                | -           |                    |      | с*       | 1.73                 | 5.1               | 74.3        | £.0134             | 41         |                      |                    |             |                    |      |
| 515 MA 1 | •          | 2                        | 200             | •/          | -,0                |                  |            |                      | -                | _           | _                  | -    |        | -                     | -               | -           | -                  |            |          |                         | -                | -           | -                  |      | G*       | - specime            | n wae 7           | 33.0        | long               |            |                      |                    |             |                    |      |
|          |            |                          |                 |             |                    |                  |            |                      |                  |             |                    |      |        |                       |                 |             |                    |            |          |                         |                  |             |                    |      | -        | эрсоцие              | AL 11 03 Z.       | Jord        | NULLE I            |            |                      |                    |             |                    |      |

\_\_\_\_

#### Table H.6 Insulation resistance measurements for specimens in test sequence 6

| CBL Cnd | C<br>M | IR in Tera-(<br>@1 Min @ | ohms<br>2010 Mi | Temp<br>(F) | Polrizatn<br>Index                      | C<br>RH% M     | IR in Ten<br>1/@1 Min | a-ohms<br>@ 10 Mi | Temp<br>(F)      | Polrizatn<br>Index | C<br>RH% M | Rin T<br>4@1Mi | era-ohms<br>n @ 10 Mi | Temp<br>(F)    | Polrizatn<br>Index   | RH %             | C IRinTe<br>M @1Min | ra-ohms<br>1 @ 10 Mi | Temp<br>(F)  | Polrizatn<br>Index | С<br>RH% М         | IR in Tera<br>@1 Min | -ohms<br>@ 10 Mi | Temp<br>(F) | Polrizatn<br>Index | С<br>RH% М | IR in Tera<br>@1 Min | a-ohms<br>@10 Mi | Temp<br>(F) | Polrizatn<br>Index | RH % |
|---------|--------|--------------------------|-----------------|-------------|-----------------------------------------|----------------|-----------------------|-------------------|------------------|--------------------|------------|----------------|-----------------------|----------------|----------------------|------------------|---------------------|----------------------|--------------|--------------------|--------------------|----------------------|------------------|-------------|--------------------|------------|----------------------|------------------|-------------|--------------------|------|
|         | -      |                          | 50              | 70          | 4 16667                                 |                | 0.0008                | 0.0012            | 69               | 1.5                | 79 .       |                |                       |                |                      | •                | F 1.                | 8 6.8                | 78           | 3.77778            | 18.3 G             | 0.0022               | 0.003            | 72          | 1.36364            | 41 H       | 0.81                 | 0.35             | 85.4        | 0.4321             |      |
| 607 BE  | A      | 01                       | 0.2             | 69          | 4.10007                                 | 44 C           | 0.000                 | 0.3               | 69               | 1.36364            | 80 -       |                |                       |                |                      |                  | F 0.7               | 5 1.7                | 77.4         | 2.26667            | 18.5 G             | 0.3                  | 0.65             | 73          | 2.16667            | 40 H       | 0.137                | 0.096            | 84.3        | 0.70073            | 39   |
| 607 BW  | Ā      | 0.8                      | 4               | 69          |                                         | 44 C           | 1.3                   | 3.5               | 69               | 2.69231            | 80 -       |                |                       |                | -                    | -                | F 2.7               | 5 6.8                | 77.4         | 2.47273            | 18.5 G             | 3                    | 5.2              | 73          | 1.73333            | 40 H       | 0.165                | 0.305            | 84.7        | 1.84848            | 39   |
| 602 WE  | Ā      | 0.65                     | 7               | 69          | 10.7692                                 | 44 C           | 0.65                  | 2.5               | 69               | 3.84615            | 80 -       |                |                       |                |                      | •                | F 0.7               | 2 L.S                | 77.4         | 2.08333            | 18.5 G             | 0.5                  | 0.8              | 73          | 1.6                | 40 H       | 0.0004               | 0.0002           | 83.6        | 0.495              | 40   |
| 603 BE  | A      | 0.6                      | 2               | 70          | 3.33333                                 | 25 C           | 0.0088                | 0.026             | 69               | 2.95455            | 81 -       |                | -                     | •              | •                    | •                | F 0.                | 3 0.5                | 76           | 1.66667            | 19 G               | 0.12                 | 0.175            | 72          | 1.45833            | 41 H       | 0.00002              | 1.9E-05          | 81.6        | 0.94               | 42   |
| 603 BR  | A      | 5.2                      | 17              | 70          | 3.26923                                 | 25 C           |                       | •                 |                  | -                  |            | •              | -                     | •              | •                    | •                | F-                  | •                    | •            | •                  | . G                | •                    | ·                | •           | -                  | • н        | -                    | •                | -           | -                  | •    |
| 603 BW  | A      | 3.5                      | 7               | 70          | 2                                       | 25 C           | 0.011                 | 0.015             | 69               | 1.36364            | 81 -       | •              | -                     | •              | •                    | -                | F 0.4               | 5 0.7                | 76           | 1.55556            | 5 19 G             | 0.5                  | 0.58             | 72          | 1.16               | 41 H       | 3.5E-05              | 2.4E-05          | 82.2        | 0.69275            | 41   |
| 603 RE  | A      | 1.2                      | 1.6             | 70          | 1.33333                                 | 25 C           | •                     | •                 | •                | -                  |            | •              | •                     | · •            | •                    | •                | F-                  | •                    | -            | -                  | • G                | •                    | •                | •           | •                  | - н        | •                    | •                | •           | •                  | •    |
| 603 WE  | A      | 1                        | 2               | 70          | 2                                       | 25 C           | 0.016                 | 0.035             | 5 69             | 2.1875             | 81 -       | •              | -                     | •              | •                    | •                | F 0.17              | \$ 0.25              | 76           | 1.42857            | 19 G               | 0.125                | 0.16             | 72          | 1.28               | 41 H       | 1.9E-07              | 2.1E-07          | 82          | 1.07813            | 42   |
| 603 WR  | A      | 5                        | 15              | 70          | 1                                       | 25 C           | •                     | -                 | •                | •                  | • •        | •              | •                     | ·              | -                    | -                | F -                 |                      | •            | ••••               | • G                | •                    | •                | •           | •                  | · H        | •                    | •                | -           | •                  | •    |
| 604 BE  | A      | •                        | •               | •           | •                                       | · c            | 2.5E-06               | 2.5E-06           | 5 68<br>         | 1                  | 81 -       | •              | •                     | •              | •                    | •                | r I.<br>T           | 5 5.4<br>5 5.4       | 70           | 3.0                | 1050               | 1.25                 | 0.009            | 73          | 1.23               | 40 H       | 1.07                 | 2.2              | 83.1        | 2 14953            | 41   |
| 604 BW  | A      | 9.3                      | 48              | 68          | 5.16125                                 | / 44 C         | 8.U                   | 1.2               | - 08<br>- 29     | 1.6/3              | 61 ·       | •              | •                     | ·              | •                    | •                | r<br>F 1            | 4 J.4<br>3 A         | 76           | 3 07693            | 1950               | 0.0085               | 0.0097           | 73          | 1 08235            | 40 H       | 0.69                 | 14               | 82.4        | 2.02899            | 41   |
| 604 WE  | A      | •                        | • • • •         | •           | •                                       | ·              | 28-00                 | 2.58-00           | , va<br>; Ka     | 1.23               | 91 ·       |                |                       | . 71           | 2 08333              | 24.8             | F 0                 | 2 0.58               | 76           | 20                 | 20 G               | 0.012                | 0.0225           | 72          | 1.875              | 41 H       | 7.5E-06              | 2.4E-05          | 87          | 3.13333            | 38   |
| OUS BE  | A .    | 0.45                     | 0.62            | 70          | 1.5///0                                 | 5 44 C         | 0.0012                | 0.0013            | , 05<br>03 (0    | 1 26316            | 79 8       | 01             | 5 03                  | 7              | 2.12903              | 25               | F 0.27              | 5 0.65               | 76           | 2.36364            | 19.8 G             | 0.007                | 0.01             | 72          | 1.42857            | 41 H       | 1.2E-06              | 1.3E-06          | 84.2        | 1.09917            | 43   |
| 607 BE  | 2      | 10                       | 35              | 70          |                                         | , 15C          | 0.00033               | 0.00125           | 69               | 0.89286            | 79 E       | 0.1            | 8 0.40                | 5 70.6         | 5 2.41071            | 26.3             | F 0.                | 2 0.62               | 76           | 3.1                | 20 G               | 0.0025               | 0.00325          | 72          | 1.3                | 41 H       | 2.2E-06              | 2.8E-06          | 84.2        | 1.26147            | 43   |
| 608 BE  | Ā      | 1                        | 4               | 69          | 4                                       | 25 C           | 0.08                  | 0.09              | 68               | 1.125              | 80 E       | 0.             | 9 3.4                 | 1 72.2         | 4.3038               | 23.5             | F 0.                | 5 1.25               | 76           | 2.5                | 5 20 G             | 1.1                  | 6                | 70          | 5.45455            | 40 H       | 0.46                 | 0.64             | 84.7        | 1.3913             | 44   |
| 608 BW  | A      | 7                        | 15              | 69          | 2.14280                                 | 5 25 C         | 0.3                   | 1                 | 68               | 3.33333            | 80 E       | 2              | .1 8.1                | 7 72           | 4.14286              | 24.6             | F 1.                | 5 6.5                | 76           | 4.33333            | 20 G               | 0.8                  | 5                | 70          | 6.25               | 40 H       | 0.98                 | 2.85             | 84.5        | 2.90816            | 44   |
| 608 WE  | A      | 0.9                      | 5               | 69          | 5.55556                                 | 5 25 C         | 0.05                  | 0.058             | 3 <del>6</del> 8 | 1.16               | 80 E       | 0.1            | 3 2.1                 | 8 72.3         | 3.37349              | 23.4             | F 0.                | 5 1.5                | 76           | ; 1                | 20 G               | 1.2                  | 6.5              | 70          | 5.41667            | 40 H       | 0.405                | 1.35             | 85.1        | 3.33333            | 45   |
| 609 BE  | A      | 1                        | 7               | 69          | . :                                     | 7 44 C         | 0.00008               | 8.5E-05           | 5 68             | 1.0625             | 80 E       | 0.             | 88 1.0                | 5 72.3         | 1.81818              | 23.3             | F 0.4               | 5 I.I                | 76           | 2.44444            | 20 G               | 1.25                 | 5.5              | 70          | 4.4                | 40 H       | 0.0053               | 0.00255          | 75.7        | 0.48113            | 56   |
| 609 BW  | A      | 5.8                      | 16              | 69          | 2,75862                                 | 2 44 C         | 7.5E-05               | 7.5E-05           | 5 68             | 1                  | 80 E       | 1.             | 5 5.1                 | 1 72.4         | 2.91429              | 23.3             | F 1.                | 2 5                  | 76           | 4.16663            | 20 G               | 0.7                  | 4                | 70          | 5.71429            | 40 H       | 0.0215               | 0.0151           | 76.1        | 0.70233            | 55   |
| 609 WE  | A      | 1                        | 6.5             | 69          | 6.5                                     | 5 44 C         | 0.00007               | 7.5E-05           | 5 68             | 1.07143            | 80 E       | 0.1            | 11 1.0                | <b>5 72</b> .3 | 2.25352              | 22.7             | F 0.5               | 8 1.2                | 2 76         | 2.0689             | 7 20 G             | 0.6                  | 4                | 70          | 6.66667            | 40 H       | 0.00225              | 0.0014           | 75.7        | 0.62222            | 55   |
| 610 BE  | A      | 1                        | 9               | 69          |                                         | 9 29 C         | 0.82                  | 2.8               | 3 68             | 3.41463            | 78 E       | 0.3            | 35 1.42               | 2 70.8         | 3 3.68831            | 25.4             | F 0.1               | 6 0.29               | 73           | 1.812              | 5 20 G             | 1.2                  | 6                | 71          | 5                  | 40 H       | 0.39                 | 0.555            | 86          | 1.42308            | 44   |
| 610 BW  | A      | 2.8                      | 200             | 69          | 71.428                                  | 5 29 C         | 0.06                  | 0.07              | 7 68             | 1.16667            | 78 E       | 1.             | 2 7.2                 | 5 70.8         | 3 5.94262            | 25.8             | F 0.                | 93                   | 73           | 3.33333            | 1 20 G             | 0.5                  | 0.8              | 71          | 1.0                | 40 H       | 1.08                 | 2.6              | 85.0        | 2.40/41            | 44   |
| 610 WE  | A      | 0.9                      | 13              | 69          | 14.4444                                 | 1 29 C         | 0.08                  | 0.1               | 68               | 1.25               | 78 E       | 0.             | 6 1.5                 | 7 7            | 3.41304              | 25.1             | F U.                | 2 0.33               | ) /3<br>1 71 | 1./:               | 5 20G              | 0.45                 | 0.85             | 71          | 1.88889            | 40 H       | 0.200                | 0.000            | 80./        | 1.1/04/            | 43   |
| 611 BE  | A      | 1                        | 5               | 69          |                                         | 5 24 C         | 0.13                  | 0.13              | 5 68             | 1                  | /4 E       | 0.4            | JS U.8.               | 1 71.4         | • •                  | 25.5             | F 0.27              | 5 0,4                |              | 1,4343.            |                    | 0.05                 | 0.075            |             | 1.5                | - 40 A     | 0.00048              | 0.0008           | 00.9        | 1.00007            | 43   |
| 611 BR  | A      | 4                        | 20              | 69          |                                         | > 24 C         |                       | - 0.03            | · ·              |                    | · D        |                |                       | . 11/          | -<br>1 2 11 181      |                  | F .                 | s 0.75               | . 71         | 1 6666             | , <u>,</u> , , , , | - 05                 | 0.58             | 71          | 116                | - 40 H     | 0.00032              | 0 0004           | 86.9        | 1 25               | 43   |
| 611 BW  | A.     | 6.0                      | 19              | 69          | 1.9230                                  | s 240          | 0.00                  | 0.07              |                  | 1.10007            | . 5        |                |                       |                |                      | . 25.2           | F .                 |                      |              |                    | - G                | - 0.5                | -                | - "         |                    | - H        | -                    | -                | •           |                    |      |
| CII NE  | ~      | 0.425                    | 0.58            | 60          | 3 5714                                  | 1 240          | - 0.06                | - 0.075           | R 68             | . 13               | 74 1       | 01             | 16 0.2                | 7 71.4         | 1 1.84932            | 25.1             | F 0.1               | 3 0.25               | 5 73         | 1.9230             | 8 24 G             | 0.068                | 0.09             | 71          | 1.32353            | 40 H       | 8.2E-07              | 2.3E-06          | 87          | 2.80488            | 42   |
|         | ~      | 1.4                      | 30              | 60          | 5 4545                                  | 5 240<br>5 240 |                       | -                 |                  |                    | - F        |                |                       |                |                      |                  | F •                 | •                    | •            |                    | • G                | •                    | •                | -           |                    | - н        | •                    | -                |             | •                  |      |
| 612 RE  | Â      | 0.85                     | 2               | 69          | 2.3529                                  | 24 C           | 0.028                 | 0.058             | B 69             | 2.07143            | 67 E       | 0.3            | 55 0.8                | 5 71.          | 7 2.3943             | 25.1             | F 0.27              | 5 0.4                | 74           | 1.4545             | 5 25 G             | 0.065                | 0.12             | 71          | 1.84615            | 40 H       | 5.9E-07              | 1.1E-06          | 87.9        | 1.83051            | 40   |
| 612 BR  | A      | 1.7                      | 7.8             | 69          | 4.5882                                  | 4 24 C         |                       |                   | •                | •                  | - E        | -              | •                     | •              | •                    |                  | F.                  |                      |              | •                  | • G                | -                    | -                | -           | -                  | - н        |                      | -                | -           |                    | -    |
| 612 BW  | A      | 1.3                      | 2.5             | 69          | 1.9230                                  | 8 24 C         | 0.013                 | 0.015             | 5 69             | 1.15385            | 67 E       | : (            | .5 1.3                | 4 71.4         | 4 2.65               | 25.4             | F 0.                | .5 0.95              | 5 74         | 1.1                | 9 25 G             | 0.5                  | 0.6              | 71          | 1.2                | 40 H       | 9.6E-05              | 0.00029          | 87.9        | 3.02083            | 40   |
| 612 RE  | A      | 0.85                     | 2.5             | 69          | 2.9411                                  | 8 24 C         | •                     | -                 | •                |                    | . B        | ; .            | •                     | -              | -                    | -                | F -                 | •                    | •            | •                  | • G                | • '                  | •                | -           | •                  | - н        | •                    | •                | •           | •                  | •    |
| 612 WE  | A      | 0.003                    | 0.55            | 69          | 183.33                                  | 3 24 C         | 0.04                  | 0.075             | 5 69             | 1.875              | 67 E       | 0.2            | 05 0.                 | 4 71.          | 8 1.9512             | 24.9             | F 0.1               | 3 0.25               | 5 74         | 1.9230             | 8 25 G             | 0.1                  | 0.15             | 71          | 1.5                | 5 40 H     | 8.4E-05              | 2.2E-05          | 88.1        | 0.25749            | 40   |
| 612 WR  | A      | 1.6                      | 4               | 69          | 2.                                      | 5 24 C         | -                     | •                 | •                | •                  | - E        | · -            | •                     | •              | •                    | •                | F۰                  | •                    | •            | •                  | - G                | •                    | -                | •           | •                  | - н        | •                    | •                | •           | •                  | •    |
| 613 BE  | A      | 1                        | 2.8             | 69          | 2.                                      | 8 49 C         | 0.07                  | 0.13              | 2 69             | 1.71429            | 66 E       | ; O.           | 48 0.72               | 5 7            | 0 1.5104:            | 2 26             | F 0.                | .2 0.3               | 3 74         | 1.                 | 5 25 G             | 0.078                | 0.095            | 72          | 1.21795            | 5 40 H     | 5.4E-05              | 0.00025          | 88.1        | 4.57944            | 38   |
| 613 BG  | ٨      | 3                        | 8.5             | 69          | 2.8333                                  | 3 49 C         | •                     | •                 | -                | •                  | • E        |                | •                     | •              | •                    | -                | F -                 | -                    | ·            | •                  | • G                | •                    | •                | •           | •                  | - н<br>и   | •                    | •                | •           | •                  | •    |
| 613 BR  | A      | 5.8                      | 8               | 69          | 1.3793                                  | 1 49 C         | •                     | -                 |                  | -                  | - E        |                |                       | • •            | · ·                  |                  | r -<br>r -          | · ·                  | ·            | - 14               | • • •              |                      |                  | . 72        | -                  | - H        | -<br>4 1E-05         | •                |             | 8 53650            | . 18 |
| 613 BW  | A      | 3                        | 5.5             | 69          | 1.8333                                  | 3 49 C         | 0.045                 | 0.053             | > 09             | 1.22222            | : 00 £     | 2 0.4          | 43 0.8                | <b>y</b> 73.   | · ·                  | . 51.1           | г V.<br>Е.          | .5 0.72              |              | . 1                |                    | 0.55                 | 0.52             | . "         | 1.40273            | . H        | 4.15-05              | -                |             | -                  |      |
| 613 GE  | A      | 0.00175                  | 0.0025          | 69          | 1.4285                                  | / 490          |                       | •                 | •                | •                  | ·          |                |                       |                |                      | -                | г -<br>к            |                      | -            |                    |                    |                      |                  |             |                    | . н        |                      |                  |             |                    |      |
| 613 RE  | A.     | 0.9                      | 1.0             | 60          | 1.////                                  | 8 490<br>3 490 |                       | •                 | :                | ÷                  |            |                |                       |                |                      |                  | F -                 |                      |              |                    | • G                |                      |                  |             |                    | . н        |                      |                  |             |                    |      |
| 613 KG  | ~      | 0.69                     | 0.8             | 60          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 490          | 0.09                  | 01                | 3 69             | 1.44444            | 1 66 F     | C 0.4          | 35 0.44               | 5 70.          | 4 1.0229             | 26.8             | F 0.1               | 3 0.13               | 5 74         | 1.1538             | 5 25 G             | 0.21                 | 0.3              | 72          | 1.42857            | 7 40 H     | 4.1E-06              | 3.5E-06          | 88.7        | 0.85366            | 38   |
| KI1 WG  | Â      | 0.58                     | 65              | 69          | 1.5755                                  | 5 49 C         |                       | •                 | • •              | -                  | - E        | ι              | •                     | •              | •                    | •                | F -                 | •                    |              | -                  | - G                |                      |                  | -           |                    | - н        | -                    | -                | -           |                    | -    |
| 613 WR  |        | 1                        | 4               | 69          | ,                                       | 4 49 0         |                       |                   |                  |                    | . E        | ; -            |                       |                |                      |                  | F.                  | •                    |              | •                  | • G                | •                    | •                | -           | -                  | - н        |                      | -                |             | -                  | -    |
| 614 BW  | Ä      | 9.8                      | 58              | 68          | 5.9183                                  | 7 44 B         | 3.6                   | 24.1              | 8 73.5           | 6.88889            | 62 (       | : .            | -                     | •              |                      | -                | F -                 | -                    | •            | •                  | • G                | •                    | •                | •           | •                  | - н        | •                    | •                |             | •                  | ·    |
| 615 BW  | A      | 9.1                      | 49              | 68          | 5.3846                                  | 2 44 B         | 0.232                 | 0.24              | 2 73             | 1.0431             | 61 (       |                | •                     | •              | •                    | •                | F-                  | •                    | •            | -                  | - G                | -                    | •                | •           | -                  | - н        |                      | -                | -           | -                  | ·    |
| 616 BW  | A      | 9.4                      | 51.5            | 68          | 3 5.4787                                | 2 44 B         | 3.7                   | 23.4              | 4 74.3           | 6.32432            | 2 64 0     | - :            | •                     | -              | •                    | -                | F.                  | -                    | ٠            | •                  | • G                | •                    | ·                | •           | •                  | • н        | •                    | -                | •           | •                  | ·    |
| 617 BE  | A      | 11                       | 200             | 65          | 18.181                                  | 8 25 C         | 0.0035                | 0.002             | 3 69             | 0.65714            | 51 E       | E 0.0          | 98 1.2                | 1 72.          | 5 12.346             | 22.6             | F 0                 | .3 1.1               | 1 75         | 3.6666             | 7 25 G             | ٠                    | -                | •           | -                  | - н        | ·                    | •                | ·           | •                  | •    |
| 618 BE  | A      | 0.9                      | 13              | 65          | 14.444                                  | 4 25 C         | 7.5E-06               | 5 8E-0            | 6 69             | 1.06663            | 7 SI F     | i I.           | 53 14.                | 5 72.          | 5 9.4771             | 2 22.8           | F                   | 5 20                 | 0 75         | 5                  | 4 24 G             | -                    | •                | -           | -                  | - н        | -                    | -                | -           | -                  | •    |
| 618 BW  | A      | 2                        | 4               | 65          | ,                                       | 2 25 C         | 1.6E-05               | 1.7E-0            | 5 69             | 1.062              | 5 51 E     | 3              | 45 3                  | 4 72.          | 5 9.8550             | 7 22.7           | F 2.7               | 15 13                | 2 75         | 4.3636             | 4 24 G             | •                    | -                | •           | •                  | • н        | •                    | •                | •           | •                  | ·    |
| 618 WE  | A      | 2                        | 9               | 69          | ≥ 4.                                    | 5 25 C         | 6.8E-05               | 8.4E-0            | 5 69             | 1.23529            | ₹ 51 F     | 5 I.           | 35 11.                | 5 72.          | 7 8.5185             | 2 22.9           | r -                 | 3 10                 | 6 7 <u>5</u> | 5.3333             | 5 24G              | •                    | •                | •           | ·                  | . н        | -                    | •                | -           | -                  | •    |
| 619 BE  | A      | 0.65                     | 5               | 70          | 7.6923                                  | 1 25 C         | 1.7E-05               | 1.7E-0            | 5 69             |                    | 52 H       | s 0.           | 85 I.<br>40 · -       | 6 69.<br>7 11  | / 1.8823             | 5 25.1           | г 0<br>Е            | .4 0.1               | 5 7:         | 5 1.2              | 5 24 G             | -                    | •                | •           | -                  | • н        | -                    | •                | ·           | •                  | ·    |
| 619 BR  | A      | 5                        | 9               | 70          | ) 1.                                    | 8 25 C         | 0.0001                | 0.000             | 1 69             | . 1                | 1 52 E     | s 0.           | 47 1.5<br>76 1.7      | 7 69.<br>6 77  | Z 3.2040<br>0 A 4910 | 5 43.1<br>5 31.1 | г -<br>Е ^          | 1 0                  | م            |                    | • G<br>7 2424 G    | •                    | -                | ÷           |                    | · н        | •                    |                  | •           |                    | •    |
| 619 BW  | A      | 3                        | 10              | 70          | 3.3333                                  | 3 25 C         | 5.7E-05               | 5.7E-0            | o 69             | , 1                | 1 52 1     | s 0.2          | 13 1.2                | o 12.          | o 4.3818             | 2 23.3           | r V                 |                      |              | 1.0000             | , 1414 0           | •                    | -                | -           | -                  | • н        | •                    | •                | •           | ·                  | •    |

#### Table H.6 Insulation resistance measurements for specimens in test sequence 6

.

|         | с | IR in Tera- | ohms    | Тетр | Polrizatn |        | C IR in | Tera-ohms | : Temp  | Polrizatn | с     | IR in Tera | -ohms                                 | Temp | Polrizatn | с      | IR in Tera | ohms    | Temp    | Polrizatn | С     | IR in Ter | a-ohms  | Temp | Polrizatn | С     | IR in Ter | a-olms  | Temp | Polrizatu |      |
|---------|---|-------------|---------|------|-----------|--------|---------|-----------|---------|-----------|-------|------------|---------------------------------------|------|-----------|--------|------------|---------|---------|-----------|-------|-----------|---------|------|-----------|-------|-----------|---------|------|-----------|------|
| CBL Cnd | М | @1 Min (    | @ 10 Mi | (F)  | Index     | RH %   | м @11   | Ain @ 10  | Mi (F)  | Index     | RH% M | @ I Min    | @ 10 Mi                               | (F)  | Index     | RH% M  | (@11 Min ( | @ 10 Mi | (F)     | Index     | RH% N | 1 @ 1 Min | @ 10 Mi | (F)  | Index     | RH% M | @ 1 Min   | @ 10 Mi | (F)  | Index     | RH % |
|         | — | -           |         |      |           | 1.0000 |         |           |         |           |       |            | · · · · · · · · · · · · · · · · · · · | -    |           |        |            | ×       | FI2:249 |           |       |           |         |      |           |       |           |         |      |           |      |
| 619 RE  | ٨ | 5           | 10      | 70   | 2         | 25     | C 0.00  | 004 0.00  | 004 6   | 9 I       | 52 E  | 0.097      | 0.123                                 | 70.1 | 1.26804   | 24.8 F | -          | -       | -       | -         | • G   | •         | -       | ·    | •         | . н   | •         | •       | •    | •         | ·    |
| 619 WE  | A | 13          | 17      | 70   | 1.30769   | 25     | C 5.4E  | -06 7.5E  | -06 6   | 9 1.38889 | 52 E  | 0.0335     | 0.039                                 | 69.9 | 1.16418   | 24.9 F | 0.065      | 0.08    | 75      | 1.23077   | 24 G  | -         | -       | -    | •         | - н   | -         | •       | •    | -         | •    |
| 619 WR  | A | 6           | 13      | 70   | 2.16667   | 25     | C 0.00  | 005 5.6E  | -05 6   | 9 1.12    | 52 E  | 0.147      | 0.195                                 | 69.5 | 1.32653   | 25 F   | •          |         | ·       | •         | • G   | •         | •       | •    | •         | - н   | •         | •       | •    | •         | ·    |
| 620 BW  | A | 14.6        | 95      | 68   | 6.50685   | 44     | в       | 3.4 3     | 4.5 73. | 2 10.1471 | 62 C  | •          | •                                     | •    | •         | • F    | •          | •       | -       | •         | - G   | -         | -       | -    | -         | - н   | -         | -       | -    | -         | -    |
| 621 BE  | A | •           | -       |      | -         | -      | C 1.5E  | -05 1.78  | -05 7   | 0 1.1     | 64 E  | 0.011      | 0.0166                                | 73.2 | 1.50909   | 38.7 F | 0.6        | 0.78    | 74      | 1.3       | 25 G  | 0.004     | 0.006   | 72   | 1.5       | 40 H  | 0.27      | 0.61    | 84.2 | 2.25926   | i 42 |
| 621 BW  | A | ł.1         | 200     | 69   | 181.818   | 29     | C 8.5E  | -05 9.28  | -05 7   | 0 1.08235 | 64 E  | 0.95       | 5.6                                   | 72.9 | 5.89474   | 39.2 F | 1.4        | 4       | 74      | 2.85714   | 25 G  | 0.35      | 1       | 72   | 2.85714   | 40 H  | 0.38      | 1.01    | 84.7 | 2.65789   | ↓ 41 |
| 621 WE  | A |             | -       |      | -         | -      | C 1.6F  | -05 0.00  | 002 7   | 0 1.25    | 64 E  | 0.0157     | 0.0168                                | 73.2 | 1.07006   | 38.7 F | 0.5        | 0.6     | 74      | 1.2       | 25 G  | 0.0055    | 0.0068  | 72   | 1.23636   | 40 H  | 0.18      | 0.45    | 84.2 | 2.5       | i 43 |
| 622 BE  | A |             |         | •    |           | -      | c (     | .02 0.    | 025 6   | 9 1.25    | 62 E  | 0.22       | 0.238                                 | 73.2 | 1.08182   | 37.7 F | 0.72       | 1       | 74      | 1.38889   | 25 G  | 0.02      | 0.026   | 72   | 1.3       | 39 H  | 0.25      | 0.45    | 85.6 | 1.8       | 33   |
| 622 BW  | A | 1.4         | 4.5     | 69   | 3.21429   | 29     | 0       | 0.8       | 7 6     | 8.75      | 62 E  | 2          | 4.9                                   | 73.3 | 2.45      | 37.7 F | 2.5        | 5       | 74      | 2         | 25 G  | 0.5       | 1.5     | 72   | 3         | 39 H  | 0.29      | 0.825   | 85,6 | 2.84483   | 34   |
| 622 WE  | A | -           |         | -    | -         |        | C 0.    | 025 0.    | 027 6   | 9 1.08    | 62 E  | 0.242      | 0.29                                  | 73.3 | 1.19835   | 37.7 F | 0.65       | 0.9     | 74      | 1.38462   | 25 G  | 0.025     | 0.03    | 72   | 1.2       | 39 H  | 0.145     | 0.285   | 85.6 | 1.96552   | 2 33 |
| 623 BE  | A | •           |         |      | •         | -      | C 0.    | 052 0.    | 062 6   | 9 1.19231 | 51 E  | 0.018      | 0.02                                  | 73.2 | 1.11111   | 38.6 F | 0.75       | 1.7     | 75      | 2.26667   | 25 G  | 0.0065    | 0.0085  | 72   | 1.30769   | 38 H  | 0.154     | 0.33    | 84.5 | 2.14286   | i 41 |
| 623 BW  | A | 0.95        | 200     | 69   | 210.526   | 29     | с (     | .15 0     | .16 6   | 9 1.06667 | 51 E  | 0.83       | 2.5                                   | 73.2 | 3.01205   | 37.8 F | 1.3        | 4       | 75      | 3.07692   | 25 G  | 0.35      | 1.2     | 72   | 3.42857   | 38 H  | 0.26      | 0.51    | 84.5 | 1.96154   | 41   |
| 623 WE  | A | •           | •       |      | •         | -      | C 0.    | 125 0     | .13 6   | 9 1.04    | 51 E  | 0.018      | 0.0215                                | 73   | 1.19444   | 38.4 F | 0.62       | 1.75    | 75      | 2.82258   | 25 G  | 0.0082    | 0.009   | 72   | 1.09756   | 38 H  | 0.175     | 0.38    | 84.7 | 2.17143   | ÷ 41 |
| 624 BE  | A | -           | -       |      | •         | •      | C 0.00  | 0.0 800   | 001 7   | l 1.25    | 38 E  | 0.195      | 0.255                                 | 70.5 | 1.30769   | 24.4 F | 0.009      | 0.011   | 75      | 1.22222   | 25 G  | •         | •       | •    | •         | • н   | •         | •       | •    | -         | •    |
| 624 BW  | A | 1.1         | 200     | 69   | 181.818   | 29     | 8       | 1.7       | 97      | 5.29412   | 38 E  | 3.9        | 19.5                                  | 70.5 | 5         | 24.7 F | 1.75       | 7.5     | 75      | 4.28571   | 25 G  | -         | -       | -    | -         | - н   | -         | •       | -    | -         | •    |
| 624 WE  | ٨ | •           | ·       | •    | •         | -      | C 0.00  | 007 8.2E  | -05 7   | 1.17143   | 38 E  | 0.218      | 0.27                                  | 70.5 | 1.23853   | 24.2 F | 0.01       | 0.012   | 75      | 1.2       | 25 G  | -         | •       | -    | •         | - н   | -         | •       | -    | •         | •    |

.

.

H-12

.

aging, then

### Appendix I

### Submerged Voltage Withstand Data

### Tables

| <u>Title</u> Pag                                                                               | <u>e</u> |
|------------------------------------------------------------------------------------------------|----------|
| Table I.1 Results of submerged voltage withstand test on specimens in test sequence 1       I  | .3       |
| Table I.2 Results of submerged voltage withstand test on specimens in test sequence 2       I  | -4       |
| Table I.3 Results of submerged voltage withstand test on specimens in test sequence 3       I  | .5       |
| Table I.4 Results of submerged voltage withstand test on specimens in test sequence 4       I  | .6       |
| Table I.5 Results of submerged voltage withstand test on specimens in test sequence 5       I- | .7       |
| Table I.6 Results of submerged voltage withstand test on specimens in test sequence 6          | .8       |

[

#### Table I.1 Results of submerged voltage withstand test on specimens in test sequence 1

|                              |                 |              | Applied          | Leakage (1         | nicroamps)         | D (7)               |
|------------------------------|-----------------|--------------|------------------|--------------------|--------------------|---------------------|
| Group                        | Specimen<br>No. | Manufacturer | Voltage<br>(Vac) | White<br>Conductor | Black<br>Conductor | Pass/Fail           |
| 1.1                          | 0101            | Rockbestos   | 2,400            | 640                | 640                | Pass                |
| (no aging)                   | 0102            |              | 2,400            | 690                | 660                | Pass                |
|                              | 0118 (*)        |              | 2,400            | 560                | 560                | Pass                |
|                              | 0104            |              | 2,400            | 690                | 680                | Pass                |
|                              | 0105            |              | 2,400            | 690                | 680                | Pass                |
| 1.2                          | 0106            | Rockbestos   | 2,400            | 720                | 740                | Pass                |
| (aged to match<br>Group 1.3) | 0107            | -            | 2,400            | 350                | 400                | Pass                |
| 0.000 1.00)                  | 0108            |              | 2,400            | 690                | 760                | Pass                |
|                              | 0109            | 1            | 2,400            | 720                | 740                | Pass                |
|                              | 0110            | 1            | 2,400            | 720                | 760                | Pass                |
| 1.3<br>(naturally aged)      | 0111            | Rockbestos   | 2,400            | 680                | 720                | Pass                |
| 1.4                          | 0112            | Rockbestos   | 2,400            | 480                | 480                | Pass (b)            |
| (aged to 20<br>vears)        | 0113            |              | 2,400            | 550                | 700                | Pass <sup>(b)</sup> |
| ,,                           | 0114            | 1            | 2,400            | 920                | 940                | Pass (b)            |
|                              | 0115            | 1            | 2,400            | 820                | 730                | Pass (b)            |
|                              | 0116            | 1            | 2,400            | 740                | 760                | Pass (b)            |

(a) Specimen 0103 was found to be damaged during baseline visual examination and was replaced with specimen 0118.
 (b) Specimens in Group 1.4 passed the voltage withstand test after removing the Raychem<sup>®</sup> splices from the cable ends.

| Group                               | Specimen<br>No. | Manufacturer | Applied<br>Voltage<br>(Vac) | Leakage (microamps) |                    |             |
|-------------------------------------|-----------------|--------------|-----------------------------|---------------------|--------------------|-------------|
|                                     |                 |              |                             | White<br>Conductor  | Black<br>Conductor | 1 Pass/Fail |
| 2.1<br>(no aging)                   | 0201            | AIW          | 2,400                       | 780                 | 840                | Pass        |
|                                     | 0202            |              | 2,400                       | 1,000               | 1,000              | Pass        |
|                                     | 0203            |              | 2,400                       | 770                 | 820                | Pass        |
|                                     | 0204            |              | 2,400                       | 900                 | 1,200              | Pass        |
|                                     | 0205            |              | 2,400                       | 780                 | 920                | Pass        |
| 2.2<br>(aged to match<br>Group 2.3) | 0206            | AIW          | 2,400                       | 810                 | 900                | Pass        |
|                                     | 0207            |              | 2,400                       | 780                 | 820                | Pass        |
|                                     | 0208            |              | 2,400                       | 740                 | 790                | Pass        |
|                                     | 0209            |              | 2,400                       | 790                 | 770                | Pass        |
|                                     | 0210            |              | 2,400                       | 860                 | 900                | Pass        |
| 2.3<br>(naturally aged)             | 0211            | AIW          | 2,400                       | 730                 | 760                | Pass        |
| 2.4<br>(aged to 20<br>years)        | 0212            | AIW          | 2,400                       | 870                 | 940                | Pass        |
|                                     | 0213            |              | 2,400                       | 820                 | 930                | Pass        |
|                                     | 0214            |              | 2,400                       | 940                 | 940                | Pass        |
|                                     | 0215            |              | 2,400                       | 800                 | 890                | Pass        |
|                                     | 0216            |              | 2,400                       | 940                 | 930                | Pass        |

### Table I.2 Results of submerged voltage withstand test on specimens in test sequence 2

| Table I.3 H | Results of submerged | voltage withstand test on | specimens in test sequence 3 |
|-------------|----------------------|---------------------------|------------------------------|
|-------------|----------------------|---------------------------|------------------------------|

| Group                               | Specimen<br>No.     | Manufacturer | Applied<br>Voltage<br>(Vac) | Leakage (microamps) |                    | D (7) 1   |
|-------------------------------------|---------------------|--------------|-----------------------------|---------------------|--------------------|-----------|
|                                     |                     |              |                             | White<br>Conductor  | Black<br>Conductor | Pass/Fail |
| 3.1<br>(no aging)                   | 0301                | Rockbestos   | 2,400                       | 590                 | 550                | Pass      |
|                                     | 0302                |              | 2,400                       | 500                 | 520                | Pass      |
| 3.2<br>(aged to match<br>Group 3.3) | 0303 <sup>(a)</sup> | Rockbestos   | 2,400                       | 450                 | 590                | Pass      |
|                                     | 0304                |              | 2,400                       | 510                 | 600                | Pass      |
|                                     | 0305                |              | 2,400                       | 510                 | 525                | Pass      |
|                                     | 0306 <sup>(a)</sup> |              | 2,400                       | 350                 | 375                | Pass      |
| 3.3<br>(naturally aged)             | 0307                | Rockbestos   | 2,400                       | 520                 | 580                | Pass      |
|                                     | 0308                |              | 2,400                       | 550                 | 590                | Pass      |
|                                     | 0309                |              | 2,400                       | 500                 | 520                | Pass      |
|                                     | 0310                | 1            | 2,400                       | 580                 | 600                | Pass      |
|                                     | 0311 <sup>(a)</sup> | 1            | 2,400                       | 350                 | 360                | Pass      |
| 3.4<br>(aged to 40<br>years)        | 0312 <sup>(a)</sup> | Rockbestos   | 2,400                       | 1,200               | 1100               | Pass      |
|                                     | 0313 <sup>(a)</sup> | -            | 200 <sup>(b)</sup>          | > 5000              | > 5000             | Fail      |
|                                     | 0314 <sup>(a)</sup> |              | 2,400                       | 1300                | 1150               | Pass      |
|                                     | 0315 <sup>(a)</sup> |              | 2,400                       | 1,400               | 1275               | Pass      |
|                                     | 0316 <sup>(a)</sup> | 1            | 2,400                       | 950                 | 1050               | Pass      |

(a) Splices were removed from specimen ends prior to voltage withstand testing.
(b) Specimen would not hold 2,400 volts; test performed at lower voltage noted.
| Group                        | Specimen<br>No.     | Manufacturer | Applied<br>Voltage<br>(Vac) | Leakage (microamps) |                    |           |
|------------------------------|---------------------|--------------|-----------------------------|---------------------|--------------------|-----------|
|                              |                     |              |                             | White<br>Conductor  | Black<br>Conductor | Pass/Fail |
| 4.1<br>(no aging)            | 0401                | Anaconda     | 2,400                       | 800                 | 800                | Pass      |
|                              | 0402                | Samuel Moore | 2,400                       | 800                 | 800                | Pass      |
| 4.2<br>(aged to 20<br>years) | 0403                | Samuel Moore | 2,400                       | 600                 | NA                 | Pass      |
|                              | 0404                |              | 2,400                       | 1,000               | 1,000              | Pass      |
|                              | 0405                |              | 2,400                       | 1,000               | NA                 | Pass      |
|                              | 0406                |              | 2,400                       | 1600                | 1600               | Pass      |
| 4.3<br>(aged to 40<br>years) | 0407                | Anaconda     | 2,400                       | 1,000               | NA                 | Pass      |
|                              | 0408                |              | 2,400                       | 1,400               | 1,000              | Pass      |
|                              | 0409                | -            | 2,400                       | 1,000               | NA                 | Pass      |
|                              | 0410                |              | 2,400                       | 1600                | 1600               | Pass      |
|                              | 0411                |              | 2,400                       | 1600                | 1600               | Pass      |
|                              | 0412                | Samuel Moore | 2,400                       | 800                 | NA                 | Pass      |
|                              | 0413 <sup>(a)</sup> | -            | 1,200 (*)/2,400             | > 10 mA             | 1,400              | Fail      |
|                              | 0414                |              | 2,400                       | 800                 | NA                 | Pass      |
|                              | 0415                |              | 2,400                       | 2000                | 2200               | Pass      |
|                              | 0416 <sup>(a)</sup> |              | 2,400/1,000 <sup>(a)</sup>  | 2000                | > 10 mA            | Fail      |

Table I.4 Results of submerged voltage withstand test on specimens in test sequence 4

(a) Specimen would not hold 2,400 volts; test performed at lower voltage noted. NA = Not applicable; single conductor cable specimen

| Group                        | Specimen<br>No.     | Manufacturer | Applied<br>Voltage<br>(Vac) | Leakage (microamps) |                    |           |
|------------------------------|---------------------|--------------|-----------------------------|---------------------|--------------------|-----------|
|                              |                     |              |                             | White<br>Conductor  | Black<br>Conductor | Pass/Fail |
| 5.1                          | 0501                | Okonite      | 2,400                       | 780                 | NA                 | Pass      |
| (no aging)                   | 0502                | Samuel Moore | 2,400                       | 790                 | 710                | Pass      |
|                              | 0503                | Anaconda     | 2,400                       | 780                 | 720                | Pass      |
|                              | 0504                | Okonite      | 2,400                       | 1,000               | NA                 | Pass      |
| 5.2<br>(aged to 20           | 0505 <sup>(a)</sup> | -            | < 200                       | > 10mA              | NA                 | Fail      |
| years)                       | 0506                | Samuel Moore | 2,400                       | 1,000               | 1,000              | Pass      |
|                              | 0507                |              | 2,400                       | 1,200               | 1,400              | Pass      |
|                              | 0508                | Anaconda     | 2,400                       | 780                 | 1,000              | Pass      |
|                              | 0509                |              | 2,400                       | 790                 | 850                | Pass      |
| 5.3<br>(aged to 40<br>years) | 0510 <sup>(a)</sup> | Okonite      | < 200                       | > 10mA              | NA                 | Fail      |
|                              | 0511 <sup>(a)</sup> | 1            | < 200                       | > 10mA              | NA                 | Fail      |
|                              | 0512 <sup>(a)</sup> | -            | < 200                       | > 10mA              | NA                 | Fail      |
|                              | 0513                | Samuel Moore | 2,400                       | 1,800               | 1,000              | Pass      |
|                              | 0514                |              | 2,400                       | 1,200               | 1,000              | Pass      |
|                              | 0515                | Anaconda     | 2,400                       | 790                 | 850                | Pass      |
|                              | 0516                | 1            | 2,400                       | 820                 | 780                | Pass      |

Table I.5 Results of submerged voltage withstand test on specimens in test sequence 5

(a) Specimen would not hold 2,400 volts; test performed at lower voltage noted. NA = Not applicable; single conductor cable specimen

.

| Group                        | Specimen<br>No.       | Manufacturer | Applied<br>Voltage<br>(Vac) | Leakage (microamps) |                    |           |
|------------------------------|-----------------------|--------------|-----------------------------|---------------------|--------------------|-----------|
|                              |                       |              |                             | White<br>Conductor  | Black<br>Conductor | Pass/Fail |
| 6.1<br>(no aging)            | 0601                  | Okonite      | 2,400                       | < 1,000             | NA                 | Pass      |
|                              | 0602                  | Samuel Moore | 2,400                       | < 1,000             | < 1,000            | Pass      |
|                              | 0603                  | AIW          | 2,400/1,500                 | 1,500               | > 10mA             | Fail      |
|                              | 0604                  | Rockbestos   | 2,400                       | < 1,000             | < 1,000            | Pass      |
| 6.2<br>(aged to 60<br>years) | 0605 <sup>(a)</sup>   | Okonite      | < 200                       | > 10mA              | NA                 | Fail      |
|                              | 0606 (*)              |              | < 200                       | > 10mA              | NA                 | Fail      |
|                              | 0607 <sup>(s)</sup>   |              | < 200                       | > 10mA              | NA                 | Fail      |
|                              | 0608                  | Samuel Moore | 2,400                       | 4,000               | 2,200              | Pass      |
|                              | 0609 (*)              |              | 500/2,400                   | > 10mA              | 1,400              | Fail      |
|                              | 0610                  |              | 2,400                       | 3,200               | 4,400              | Pass      |
|                              | 0611 <sup>(a)</sup>   | AIW          | 1,000/2,400                 | > 10mA              | 1,400              | Fail      |
|                              | 0612 <sup>(a)</sup>   |              | 2,400/1,500                 | 1,400               | > 10mA             | Fail      |
|                              | 0613 <sup>(a)</sup>   |              | 500/2,400                   | > 10mA              | 4,200              | Fail      |
|                              | 0621 %)               | Rockbestos   | 2,400                       | 2,000               | 1,800              | Pass      |
|                              | 0622 <sup>(a,b)</sup> |              | 2,400/500                   | 2,000               | > 10mA             | Fail      |
|                              | 0623 <sup>(b)</sup>   |              | 2,400                       | 3,000               | 3,600              | Pass      |

Table I.6 Results of submerged voltage withstand test on specimens in test sequence 6

(a) Specimen would not hold 2,400 volts; test performed at lower voltage noted.
(b) Specimens 0614, 0615 and 0616 were replaced with 0621, 0622 and 0623 to allow splice application prior to pre-aging. NA = Not applicable; single conductor cable specimen

| NRC FORM 335<br>(2-89)<br>NRCM 1102,                                                                                                                                                                                                       | <ol> <li>REPORT NUMBER<br/>(Assigned by NRC, Add Vol., Supp., Rev.,<br/>and Addendum Numbers, if any.)</li> </ol> |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                            | NUREG/CR- 6704                                                                                                    |  |  |  |  |
| (See instructions on the reverse)                                                                                                                                                                                                          | BNL-NUREG-52610                                                                                                   |  |  |  |  |
| 2. TITLE AND SUBTITLE                                                                                                                                                                                                                      | 3 DATE REPORT PUBLISHED                                                                                           |  |  |  |  |
| Assessment of Environmental Qualification Practices and Condition Monitoring                                                                                                                                                               | MONTH YEAR                                                                                                        |  |  |  |  |
| Techniques for Low-Voltage Electric Cables - Condition Monitoring Test Results                                                                                                                                                             | February 2001                                                                                                     |  |  |  |  |
| (Volume 2)                                                                                                                                                                                                                                 | 4. FIN OR GRANT NUMBER                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                            | W-6465                                                                                                            |  |  |  |  |
| 5. AUTHOR(S)                                                                                                                                                                                                                               | 6. TYPE OF REPORT                                                                                                 |  |  |  |  |
| R. Lofaro, E. Grove, M. Villaran, P. Soo, and F. Hsu                                                                                                                                                                                       | NUREG                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                                            | 7. PERIOD COVERED (Inclusive Dates)                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                            |                                                                                                                   |  |  |  |  |
| 8. PERFORMING ORGANIZATION - NAME AND ADDRESS (if NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and                                                                                                         | mailing address; if contractor, provide                                                                           |  |  |  |  |
| name and maning accress.                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |
| Energy Sciences and Technology Department                                                                                                                                                                                                  |                                                                                                                   |  |  |  |  |
| Upton, NY 11973-5000                                                                                                                                                                                                                       |                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                            |                                                                                                                   |  |  |  |  |
| <ol> <li>SPONSORING ORGANIZATION - NAME AND ADDRESS (if NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region,<br/>and mailing address.)</li> </ol>                                                             | U.S. Nuclear Regulatory Commission,                                                                               |  |  |  |  |
| Division of Engineering Technology                                                                                                                                                                                                         |                                                                                                                   |  |  |  |  |
| Office of Nuclear Regulatory Research                                                                                                                                                                                                      |                                                                                                                   |  |  |  |  |
| U.S. Nuclear Regulatory Commission                                                                                                                                                                                                         |                                                                                                                   |  |  |  |  |
| Washington, DC 20555-0001                                                                                                                                                                                                                  |                                                                                                                   |  |  |  |  |
| 10. SUPPLEMENTARY NOTES                                                                                                                                                                                                                    |                                                                                                                   |  |  |  |  |
| S.K. Aggarwal, Project Manager                                                                                                                                                                                                             |                                                                                                                   |  |  |  |  |
| 11. ABSTRACT (200 words or less)                                                                                                                                                                                                           |                                                                                                                   |  |  |  |  |
| This report documents the results of a research program addressing issues related to                                                                                                                                                       | o the qualification process for                                                                                   |  |  |  |  |
| low-voltage instrumentation and control (I&C) electric cables used in commercial nuclear p                                                                                                                                                 | ower plants. Three commonly                                                                                       |  |  |  |  |
| used types of I&C cable were tested: Cross-Linked Polyethylene (XLPE) insulation with                                                                                                                                                      | a Neoprene® jacket, Ethylane                                                                                      |  |  |  |  |
| Propylene Rubber (EPR) insulation with an unbonded Hypalon® jacket, and EPR with a bonded Hypalon® jacket. Ea h                                                                                                                            |                                                                                                                   |  |  |  |  |
| cable type received accelerated aging to simulate 20, 40, and 60 years of qualified life. In addition, naturally aged cables                                                                                                               |                                                                                                                   |  |  |  |  |
| of the same types were obtained from decommissioned nuclear power plants and tested. The cables were subjected to                                                                                                                          |                                                                                                                   |  |  |  |  |
| simulated loss-of-coolant-accident (LOCA) conditions, which included the sequential application of LOCA radiation followed                                                                                                                 |                                                                                                                   |  |  |  |  |
| by exposure to steam at high temperature and pressure, as were as to chemical spray. I chould condition memory (cm) was performed using nine different techniques to obtain data on the condition of the cable, as well as to evaluate the |                                                                                                                   |  |  |  |  |
| effectiveness of those CM techniques for in situ monitoring of cables.                                                                                                                                                                     |                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                            |                                                                                                                   |  |  |  |  |
| Volume 1 of this report presents the results of the LOCA tests, and Volume 2 discusses the results of the condition                                                                                                                        |                                                                                                                   |  |  |  |  |
| monitoring tests.                                                                                                                                                                                                                          |                                                                                                                   |  |  |  |  |
| 12 KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)                                                                                                                                      | 13. AVAILABILITY STATEMENT                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                            | Unlimited                                                                                                         |  |  |  |  |
| electric cables, aging, performance testing, environmental effects, nuclear power                                                                                                                                                          | 14. SECURITY CLASSIFICATION                                                                                       |  |  |  |  |
| plants, electrical equipment, electrical insulation, loss of coolant, materials testing,                                                                                                                                                   | (This Page)<br>Unclassified                                                                                       |  |  |  |  |
| monitoring, radiation effects, service life                                                                                                                                                                                                | (This Report)                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                            |                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                            | 15. NUMBER OF PAGES                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                            | 16. PRICE                                                                                                         |  |  |  |  |



Federal Recycling Program

## UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

ł