
NUREG- 1737

Software Quality Assurance 
Procedures for NRC 
Thermal Hydraulic Codes 

U.S. Nuclear Regulatory Commission 
Office of Nuclear Regulatory Research 
Washington, DC 20555-0001



AVAILABILITY OF REFERENCE MATERIALS 
IN NRC PUBLICATIONS

NRC Reference Material 

As of November 1999, you may electronically 
access NUREG-series publications and other 
NRC records at NRC's Public Electronic Reading 
Room at www.nrc.gov/NRC/ADAMS/index.html.  
Publicly released records include, to name a few, 
NUREG-series publications; Federal Register 
notices; applicant, licensee, and vendor 
documents and correspondence; NRC 
correspondence and internal memoranda; 
bulletins and information notices; inspection and 
investigative reports; licensee event reports; and 
Commission papers and their attachments.  

NRC publications in the NUREG series, NRC 
regulations, and Title 10, Energy, in the Code of 
Federal Regulations may also be purchased from 
one of these two sources.  
1. The Superintendent of Documents 

U.S. Government Printing Office 
P. 0. Box 37082 
Washington, DC 20402-9328 
www.access.gpo.gov/sudocs 
202-512-1800 

2. The National Technical Information Service 
Springfield, VA 22161-0002 
www.ntis.gov 
1-800-533-6847 or, locally, 703-805-6000 

A single copy of each NRC draft report for 
comment is available free, to the extent of 
supply, upon written request as follows: 
Address: Office of the Chief Information Officer, 

Reproduction and Distribution 
Services Section 

U.S. Nuclear Regulatory Commission 
Washington, DC 20555-0001 

E-mail: DISTRIBUTION @nrc.gov 
Facsimile: 301-415-2289 

Some publications in the NUREG series that are 
posted at NRC's Web site address 
www.nrc.gov/NRC/NUREGS/indexnum.html 
are updated periodically and may differ from the 
last printed version. Although references to 
material found on a Web site bear the date the 
material was accessed, the material available on 
the date cited may subsequently be removed 
from the site.

Non-NRC Reference Material 

Documents available from public and special 
technical libraries include all open literature 
items, such as books, journal articles, and 
transactions, Federal Register notices, Federal 
and State legislation, and congressional reports.  
Such documents as theses, dissertations, foreign 
reports and translations, and non-NRC 
conference proceedings may be purchased from 
their sponsoring organization.  

Copies of industry codes and standards used in a 
substantive manner in the NRC regulatory 
process are maintained at

The NRC Technical Library 
Two White Flint North 
11545 Rockville Pike 
Rockville, MD 20852-2738 

These standards are available in the library for 
reference use by the public. Codes and 
standards are usually copyrighted and may be 
purchased from the originating organization or, if 
they are American National Standards, from

American National Standards Institute 
11 West 42nd Street 
New York, NY 10036-8002 
www.ansi.org 
212-642-4900

The NUREG series comprises (1) technical 
and administrative reports and books 
prepared by the staff (NUREG-XXXX) or 
agency contractors (NUREG/CR-XXXX), (2) 
proceedings of conferences 
(NUREG/CP-XXXX), (3) reports resulting 
from international agreements 
(NUREG/IA-XXXX), (4) brochures 
(NUREG/BR-XXXX), and (5) compilations of 
legal decisions and orders of the Commission 
and Atomic and Safety Licensing Boards and 
of Directors' decisions under Section 2.206 of 
NRC's regulations (NUREG-0750).

i __



NUREG-1737 

Software Quality Assurance 
Procedures for NRC 
Thermal Hydraulic Codes 

Date Completed: November 2000 
Date Published: December 2000 

Prepared By 
F. Odar 

Division of Systems Analysis and Regulatory Effectiveness 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
Washington, DC 20555-0001



ABSTRACT 

This report describes quality assurance procedures for development and maintenance of the 
NRC thermal hydraulic codes to be used in reactor plant system transient analysis. These 
procedures present requirements for documentation, review, testing and assessment of the 
thermal hydraulic codes. These procedures will be used by the NRC staff, its contractors and 
partners in the code development and maintenance programs.

iii



TABLE OF CONTENTS 

Page 

Abstract iii 

Acknowledgments ix 

1. Introduction 1 

1.1 Purpose 1 

1.2 Scope 1 

1.3 Responsibilities 2 

2. The Software Life Cycle and Verification & Validation 3 

3. Elements of Software Quality Assurance 7 

3.1 Initial Planning 9 

3.1.1 Project Plan 9 

3.1.2 SQA Plan 9 

3.2 Requirements Definition 11 

3.2.1 Software Requirements Specifications (SRS) 11 

3.2.2 Verification and Validation Process 13 

3.3 Software Design 15 

3.3.1 Software Design and Implementation Document (SDID) 15 

3.3.2 Verification and Validation Process 16 

3.4 Coding 17 

3.4.1 Development of Source Code 17 

3.4.2 Verification and Validation Process 18 

3.5 Validation Testing 19

'V



3.5.1 Performing Testing and Preparation of Testing Report 19 

3.5.2 Verification and Validation Activities 20 

3.6 Installation and Acceptance 21 

3.6.1 Installation Package 21 

3.6.2 Acceptance Testing 21 

3.6.3 Upgrading Program Documentation 21 

3.6.4 Verification of the Installation Package 22 

3.6.5 Verification of Upgrading of the Code Manuals 22 

4.0 Error Corrections and Code Maintenance 23 

5.0 Configuration Control 25 

5.1 Configuration Control File and Software Configuration Plan 25 

5.2 Software Acceptance 26 

6.0 Records 29 

7.0 References 29 

Appendix - A Guidance on Preparation of an SQA Plan 31 

A-1 Software Quality Assurance Plan (SQAP) 33 

A-2 SOAP Number 33 

A-3 Review and Schedules 34 

Appendix - B Checklists 35 

QA Form 01 Software QA Plan 37 

QA Form 02 Computer Software V&V Review Comments 39 

QA Form 03 Requirements Review Checklist 41 

QA Form 04 Software Design Review Checklist 43 

QA Form 05 Computer Software Testing Cover Sheet 45

vi



QA Form 06 Software Test Plan Review Checklist

QA Form 07 Code Review Checklist 

QA Form 08 Verification Test Report Review Checklist 

QA Form 09 Validation Test Report Review Checklist 

QA Form 10 User's Manual Review Checklist 

QA Form 11 Programmer's Manual Review Checklist 

QA Form 12 Verification of the Installation Package 

QA Form 13 Trouble Report - Reporting 

QA Form 14 Trouble Report - Disposition 

Appendix - C A Sample Set of Acceptance Criteria 

C.1 Acceptance Criteria 

C.2 References

vii

47 

49 

51 

53 

55 

57 

59 

61 

63

65 

66 

69



Acknowledgments

The author is thankful for review and comments provided by the NRC staff. The NRC staff who 
participated in review and comment of this document were: Leo Beltracchi, Robert Brill, Terry 
Jackson, Vince Mousseau and Simon Smith. Special thanks are due to William Arcieri of 
Scientech Inc. for his discussions of Software Quality Assurance procedures.

ix



1 INTRODUCTION 

1.1 Purpose 

The purpose of this document is to provide quality assurance procedures for development and 
maintenance of the NRC thermal hydraulic codes to be used in reactor plant system transient 
analysis. These procedures will be used by the NRC staff, its contractors and partners in the 
code development and maintenance programs.  

1.2 Scope 

Software quality assurance (SQA) is the planned and systematic actions to provide confidence 
that the software product meets established technical requirements. Quality assurance 
procedures ensure that software correctly performs all intended functions and does not perform 
any unintended function. SQA activities can be categorized as follows: 

1) documentation of the software or software modules as they are developed, 

2) verification and validation activities and their documentation, 

3) nonconformance (error) reporting and corrective actions and their documentation, 

4) acceptance testing and installation of the software and upgrading of code manuals, 

5) configuration management, and 

6) quality assessment and improvement.  

This document, (Rev.0), addresses SQA activities in the first five items. The last item will be 
addressed in future revisions. This report is based on an internal NRC software quality 
assurance report with the same title designated as RPSB-99-12, written by the same author. It 
is a modification of the internal report. The internal report has been intended for the use of 
NRC staff and contractors only.  

The application of SQA procedures in development of codes for NRC by DOE contractors is 
required by Management Directive, (M.D.), 11.7 "NRC Procedures for Placement and 
Monitoring of Work With the Department of Energy," Reference 1. M.D. 11.7 states, "All 
software development, modification, or maintenance tasks shall follow general guidance 
provided in NUREG/BR-01 67, "Software Quality Assurance Program and Guidelines"', 
Reference 2. NUREG/BR-0167 provides general guidelines for development of NRC codes.  
This document provides procedures for development of thermal hydraulic codes. It is based on 
NUREG/BR-0167 and ANSI/ANS-1 0.4-1987, "Guidelines for the Verification and Validation of

I



Scientific and Engineering Computer Programs for the Nuclear Industry," Reference 3. Both 
standards take reference to other ANSI, ASME, IEEE and DOD standards. This document has 
also benefitted from other documents on quality assurance procedures prepared by Scientech, 
Inc. and Los Alamos National Laboratory.  

For each project, an SQA plan will be developed by the project manager of the team actually 
developing or maintaining the code or a model. This plan will show how software quality 
assurance procedures will be applied to the specific project.  

1.3 Responsibilities 

1.3.1 Group/Program Manager - Branch Chief 

The Group/Program Manager or Branch Chief is responsible for appointing a Project Manager / 
Principal Investigator and a Code Custodian for each code.  

1.3.2 Proiect Manager / Principal Investigator 

Project Manager or Principal Investigator is a person responsible for directing activities of the 
team where a code or model development project or a corrective maintenance activity is 
undertaken. Project Manager or Principal Investigator is responsible for preparation and 
execution of "Software Project Plan" and "Software Quality Assurance Plan," (SQAP).  
Guidelines on preparation of "Software Project Plan" and "Software Quality Assurance Plan" are 
provided in Reference 2 and in Appendix A, respectively.  

1.3.3 Code Custodian 

The Code Custodian is responsible for maintenance of the software and its configuration 
control.

2



2 THE SOFTWARE LIFE CYCLE 
AND 

VERIFICATION & VALIDATION 

The software life cycle provides the basis for planning and implementing a software 
development or maintenance project. A life cycle for a model development contains following 
phases: 

1. Initial Planning 
2. Requirements Definition 
3. Software Design 
4. Coding 
5. Software Testing 
6. Installation and Acceptance 

During each development phase, specific products are developed. These products are 
evaluated, approved and controlled. Documents are reviewed, coding is tested and approved if 
test results meet acceptance criteria. Reviewing and testing of a software are basically part of 
verification and validation activities.  

Verification is a process of ensuring that products developed in a phase meet the 
requirements defined by the previous phase. After a development work in a phase is 
completed, we verify that the work has been performed correctly; i. e., requirements defined for 
that particular phase have been fulfilled. A simple example demonstrating this process is 
presented below.  

Let us consider development of a "break flow" model in an existing code. At the "Initial 
Planning" phase, NRC may consider the need for such a model. If such a model is needed, 
NRC will establish top level requirements. The next phase is "Requirements Definition" phase 
which develops a physical model which would meet top level requirements established in the 
previous phase. The phenomena, which would occur as the flow exits through the break, are 
represented in terms of a mathematical model. The mathematical model is documented and 
requirements for the design and accuracy of the model (acceptance criteria) are specified. In 
the next phase, which is the "Design" phase, the program is designed to meet the design and 
accuracy requirements of the mathematical model. The design specifies requirements for 
coding. In the "Coding" phase, the design is converted into computer instructions.  

In the above example, there are three verification activities to be performed at the end each 
phase. Products developed at each phase are 1) Software Requirements Specifications (SRS), 
2) Software Design and Implementation Document (SDID) and 3) Source Coding. The first 
verification activity is the review of the SRS. If the review confirms that the mathematical 
model represents physical phenomena and that the model is expected to calculate the flow rate 
with desired accuracy, the model is accepted. The second verification activity is the review of 
the SDID. If the design meets modeling requirements, it is accepted. The third verification

3



activity is the review or inspection of computer instructions to ensure that coding is correctly 
developed as required in the design document. In short, verification can be considered to be 
the proof that the computer instructions correctly represent the design, that the design correctly 
represents the mathematical model, and that the mathematical model correctly represents the 
phenomena. Verification consists of a detailed examination of products developed in each 
phase to ensure consistency with requirements imposed by the previous phase.  

The basic tools of verification are review, inspect, and audit. In the above example, these tools 
were sufficient to perform an adequate verification. However, in some cases, requirements 
may be very complex and the expected coding may be very extensive. In some cases, pilot 
coding to test some ideas may be necessary. In these cases, review and inspection may not 
be sufficient for verification. Some testing of some modules or part of coding may be 
necessary. This testing will be called verification testing since it tests correctness of the work 
performed during a development phase.  

Depending on the size of the source code, testing of units of software (e.g., subroutines) and 
testing of collection of related units may be required. These activities are called unit and 
integration testing. These tests are determined as the units are developed. Test problems are 
generally not evident and they are not formally planned. This means that some of these tests 
are not included in the Testing Plan used in preparation of the SRD. Following definitions 
apply: 

Unit Testing- It is defined as testing of a unit of software such as a subroutine that 
can be compiled or assembled. The unit is relatively small; e.g., on the order of 
100 lines. A separate driver is designed and implemented in order to test the unit in 
the range of its applicability.  

Integration Testing- It is defined as testing of a collection of related units that 
performs an identifiable functional requirement. It may be necessary to design and 
implement a separate driver to test the collection of units.  

Unit and integration testing are considered "verification" since the results of testing are 
compared against the software design requirements identified in Software Design 
Implementation Document (SDID). They verify that the coding is correctly developed in the 
coding phase.  

Document reviews are conducted using checklists. In this report, checklists from ANS 
standards are used. Coding is inspected and tested, if necessary. Audits are performed on 
selected items to assure that software quality assurance procedures are followed.  

Verification is performed independently by different people preferably by peers. In the example 
presented above, first the contractor would perform verification activities before delivering 
documentation and the code. Next, NRC would independently conduct verification activities. In 
this example, verification activities to be conducted by NRC are: 1) Review and approve SRD, 
2) Review and approve SDID and 3) Test and approve the coding. Results of all verification 
activities are documented. The extent of verification activities will be described in the Software 
Quality Assurance Plan.

4



Validation is a process of testing a software and evaluating results to demonstrate that the 
software meets its requirements as defined in Software Requirements Document (SRD). This 
step validates coding. It shows that not only the coding has been developed correctly but also 
code models, which represent the phenomena, provide accurate results as defined by the 
acceptance criteria. Testing is the method for software validation. Validation testing is a 
combination of Qualification and Acceptance testing. Two matrices, one for qualification and 
the other for acceptance testing are prepared. The acceptance test matrix includes all tests in 
the qualification test matrix plus some other tests selected by the sponsor (NRC).  

In qualification testing, results obtained from the testing are compared to results from 
alternative methods, such as: 

1. Comparison to theoretical solutions 
2. Other validated computer programs 
3. Experimental results (test data) 
4. Standard problems with known solutions 
5. Published data and correlations 

The "Qualification Testing" is also called "Developmental Assessment" in thermal hydraulics.  
During testing, software results are obtained using different code options and input deck 
nodalizations. User guidelines for the software are developed during "Qualification Testing." It 
is expected that if appropriate user guidelines are used, test results would meet acceptance 
criteria. If results do not meet the acceptance criteria, modeling of the phenomena and/or user 
guidelines may be deficient. NRC will be informed of the results and corrective actions will be 
discussed.  

If results in Qualification Testing meet acceptance criteria, the code will be delivered to the NRC 
and installed in the NRC environment. At this point, additional acceptance testing using 
"Acceptance Test Matrix" may be performed using the same user guidelines established in 
Qualification Testing. This test matrix contains the matrix of qualification testing plus some 
other tests chosen by NRC. Acceptance testing is performed by people different from code 
developers. Preferably, it is conducted by the NRC staff in its operational environment.  
Formal test plans for both qualification and acceptance testing are required.

5



3 ELEMENTS OF SOFTWARE QUALITY 
ASSURANCE 

Software quality assurance (SQA) is planned and systematic actions to provide confidence that 
the software product meets established technical requirements. The elements of the SQA for 
thermal hydraulic codes are listed below: 

TABLE 1 - ELEMENTS OF SQA 

Life Cycle Development Product Verification & Validation Checklist 
Activities 

Initial Planning SOW, Project Plan Management Review 
SQA Plan (SQAP) 

Requirements Software Requirements Verification of QA Form 03 
Definition Specifications (SRS) Requirements 

Review of test plan and QA Form 06 
acceptance criteria 

Software Software Design and Review of Design QA Form 04 
Design Implementation 

Document (SDID) 

Coding Source Code Review/Inspection of QA Form 07 
Verification Testing Source Code 
Report Verification of Program QA Form 08 

Integration 
Verification of Test Results QA Form 05 

Software Validation Testing Validation of Program QA Form 05 
Testing Report QA Form 09 

Installation Installation Package Verification of Installation QA Form 12 
and Package 
Acceptance Upgrading Program Verification of Program QA Form 10 

Documentation Documentation QA Form 11

The first column shows different phases of the software development. Associated SQA

7



elements are shown in the second, third and fourth columns. The second column shows 
development products produced in different phases. The third column identifies various 
verification and validation activities associated with different development products. The last 
column identifies the checklists which can be used to perform verification and validation 
activities. Appendix B contains all checklists to be used in the verification and validation 
process.  

The first phase in the life cycle is "Initial Planning." One of the products of this phase is a set of 
initial requirements. These requirements are top level requirements and they are set by NRC.  
They are contained in the Statement of Work (SOW). The management reviews these 
requirements. These reviews constitute verification activities. These initial requirements state 
"What the software will do" and not "How the software will do." 

The next phase in the life cycle is the "Requirements Definition." In this phase, initial 
requirements are analyzed and the question of how initial requirements will be satisfied is 
answered. At this level requirements' specifications are established. These requirements state 
"What the specifications will be." They are used in the next phase where the software is 
designed.  

As we progress from one phase to another, each phase will produce requirements for the 
following phase. The level of requirements becomes lower. Requirements at one level are a 
subset of requirements at the previous level. They represent details of requirements in the 
previous level. Requirements shall have following characteristics: 

"* Correctness - Ensure that requirements are correct.  

"* Necessity - Ensure that the requirement is necessary.  

" Attainable - Ensure that the requirement is technically feasible and there is 
sufficient funding to perform necessary work.  

"* Completeness - Ensure that all necessary requirements are included.  

" Unambiguity - Ensure that requirements are interpreted the same way by all 
readers.  

"• Consistency - Ensure that requirements do not conflict.  

" Verifiability - Ensure that a practical method exists to verify that each requirement 
is satisfied. Each requirement shall be defined such that it is capable of being 
verified and validated by a prescribed method (e.g., review, inspection, analysis, or 
testing).  

"* Traceability - Ensure that software requirements trace to the initial requirements.  

"* Clarity - Ensure that readers can easily read and understand all requirements.  

A discussion on writing good requirements is presented in Reference 5.

8



3.1 Initial Planning 

During the initial planning phase, the technical and managerial requirements for a particular 
program or modification are defined. Initial requirements' definition is the responsibility of the 
staff in the Office of Nuclear Regulatory Research, although contractor support may be used to 
aid in the planning process. There are two products produced at this stage: 

1. Project Plan 

2. SQA Plan (SQAP) 

3.1.1 Project Plan 

A project plan describes required software activities and contractual commitments. It is a 
baseline management plan. The plan contains following: 

a. Project Background and Objectives 
b. Description of Tasks, Responsibilities and Organization 
c. Scheduling and Resources 
e. Implementing SQA Plan 

If the work is to be conducted by a contractor, information on the first three items is generally 
contained in the Statement of Work (SOW) or Request for Proposal (RFP). NRC prepares 
these three items. Initial requirements are contained in these three items. The plan for 
implementation of SQAP at the contractor site is developed by the contractor. It describes 
how SQAP presented in this report is implemented. NRC also performs required reviews 
which is also a part of SQAP. If the entire work is to be performed by the NRC staff, a project 
plan will be prepared by the appropriate NRC staff.  

A sample Project Plan is described in NUREG/BR-01 67, Appendix A, Reference 2. This plan 
can be used as a guidance in preparing the Project Plan.  

3.1.2 SQA Plan 

At the start of each project, a Software QA Plan (SQAP) will be completed by the Project 
Manager or Principal Investigator. It will show the scope of the quality assurance activities to 
be performed in the project and will be consistent with the Project Plan. The plan may 
combine some of the development products of the SQA shown in Table 1. It may emphasize 
or de-emphasize some of the verification and validation activities. If a certain verification or 
validation activity or development of some documentation is to be de-emphasized, justification 
should be provided in the plan. The plan will basically address project needs and it will be 
designed specifically for the project. If the budget is not sufficient to perform all of the 
necessary quality assurance work, this will be stated in the plan and items which will not be 
covered by the quality assurance activities, will be identified. The management will be 
informed of the lack of coverage. Further guidance on preparation of an SQAP is provided in 
Appendix A.

9



3.2 Requirements Definition

3.2.1 Software Requirements Specifications (SRS) 

This document will be based on initial overall requirements developed by the NRC. The SRS 
is a technical document that shall focus on technical specifications of the software. It will 
clearly describe analysis of each initial requirement and develop details and specifications 
showing how NRC requirements will be met. Following requirements will be specified.  

I. Functional Requirements: 

If the initial requirement is development of a new capability, an analysis of this 
requirement will be made. The theoretical basis and mathematical model 
consistent with the phenomena to be modeled are described. The range of 
parameters over which the model is applicable is specified. The relation of 
phenomena to code models is described. The SRS provides a detailed description 
of the selected model, including its range of applicability, scalableness of the 
model to reactor plant applications, assessment base, and accuracy. It will 
discuss options considered in developing these requirements and reasons for 
rejection of some of the options. It should include all figures, equations, and 
references necessary to specify the functional requirements for the design of the 
software.  

If the initial requirement from NRC is a modification of an existing model or coding, 
the SRS will describe how it was done in the past and what will be done now 
including new functional requirements. It will discuss options considered in 
developing these requirements and reasons for rejection of some of the options. It 
should describe the new approach and how it will be implemented. It should 
include all figures, equations, and references necessary to specify the functional 
requirements for the design of the software.  

II. Performance Requirements: 

These requirements specify performance characteristics of the software or a 
modification. They address following items: 

1) time-related issues of software operation, such as speed, etc., 
2) accuracy issues and acceptance criteria, 
3) scalability 

Resolution of speed, accuracy and scalableness issues require development of a 
test plan and acceptance criteria. In general, SRS should contain a requirement

11



on accuracy of code predictions relative to the phenomena to be modeled. The 
code should be exercised using a test plan and results should meet acceptance 
criteria. A sample set of acceptance criteria is presented in Appendix C. The test 
plan will include a list of test problems that should provide complete coverage of all 
of the functional requirements. It will also discuss applicability of models to reactor 
systems since these models are to be tested in different scales. An example of 
how scaling issues are addressed, is provided in NUREG/CR-5249, "Quantifying 
Reactor Safety Margins," Reference 4. Note that discussion of scalableness may 
not be applicable to some type of code work; e.g., modernization of data 
structures.  

The test plan is also called "Qualification Test Plan." The following information 

should be provided in the test plan: 

a. The number and types of qualification problems to be completed, 

b. The rationale for their choice, why was this problem chosen, which 
functional requirement does it test? 

c. The specific range of parameters and boundary conditions for which 
successful execution of the problem set will qualify the code to meet specific 
functional requirements, 

d. Descriptions of the code input test problems, 

e. A description of what code results will be compared against (analytical 
solution, experimental data or other code calculation) 

f. Significant features not to be tested and the reasons (for example, for 
complex codes, absolute qualification of every combination of options over every 
usable range of parameters is not practical) 

g. Acceptance criteria for each item to be tested. Number and types of 
sensitivity calculations to be performed in order to develop user guidelines.  

h. Discussion of scalableness, if applicable.  

The Test Plan will address following items if applicable: 

a. Compliance with software requirements 
b. Performance at hardware, software, user, and operator interfaces 
c. Assessment of run time, user guidelines, and acceptance criteria 
d. Measures of test coverage and software maintainability 
e. Hardware and software used in the testing.

12



III. Design Constrains

These requirements are constraints imposed on the source code that will restrict 
design options.  

IV. Attributes 

These requirements specify operation of the software, such as portability, control, 
maintainability, user-friendliness, etc.  

V. External Interfaces 

These are interfaces with people, hardware, and other software, including a description 
of the operational environment, 

VI Input and output requirements.  

These specify requirements for input and output of the software.  

3.2.2 Verification and Validation Process 

SRS reviews shall be performed by the individual designated on the SQAP in the organization 
where SRS has been prepared. NRC staff will perform a separate review. QA Form 03 
Requirements Review Checklist and QA Form 06 Software Test Plan Review Checklist may be 
used as a basis for these reviews. Reviews should ensure that the requirements are 
complete, correct, necessary, attainable, unambiguous, traceable, verifiable, consistent and 
technically feasible. Review should also assure that the requirements will result in a feasible 
and usable code. As reviews are completed, reviewers will sign an appropriate box in QAForm 
03.

13



3.3 Software Design

3.3.1 Software Design and Implementation Document (SDID) 

The design of the software is the foundation for implementing the requirements and constrains 
specified in the SRS. During this phase, the software design is developed. This phase is 
needed for all software development projects. The areas which can provide the integrity and 
robustness of the software design are identified below: 

"* Modular Design - Enhance the quality of software by dividing it into manageable, 
more understandable sets of interrelated components with clearly defined interfaces.  
Modular design contributes to maintainability by minimizing the ripple effect of design 
changes.  

"* Interface Integrity - Ensure the correctness of the interface between software 
components so that errors, such as invalid protocol and data, do not occur.  

"* Error Handling - Ensure that the software is robust and able to recover from an error 
by following a well defined strategy.  

Development of the software design is performed by the software development group, either at 
NRC or at the contractor's office. If necessary, a pilot computer code may be developed in 
order to facilitate the design. The pilot code should be tested using a verification test matrix 
designed for this purpose. Development of a pilot code will require NRC approval. After 
enough knowledge is gained from testing with the pilot code, SDID is prepared. After NRC 
approval of the SDID, programming of the code begins.  

The SDID shall describe the logical structure, information flow, data structures, the subroutine 
and function calling hierarchy, variable definitions, identification of inputs and outputs, and 
other relevant parameters. The design document shall include a tree showing the relationship 
among modules and a database describing each module, array, variables, and other 
parameters used among code modules. The level and quality of the design documentation 
shall allow future modifications and improvements without having to re-engineer the program.  
The following shall be included in the SDID, as a minimum: 

a. Descriptions of major design components related to specified requirements.  

b. Technical description of a program (i.e., control flow, data flow, control logic, 
data structures, the routine and calling hierarchy, variable definitions, 
identification of inputs and outputs etc.).  

c. Allowable / prescribed input and output ranges.  

d. Design Implementation - Model implementation or integration brings together 
the source code with individual models to form an operational package to

15



obtain desired results.

Any tools, techniques, or methodologies which must be employed during the V&V testing, 
shall be noted in the SDID. All this information is used to provide requirements for the coding 
phase. All descriptions shall be traceable to requirements specifications identified in the 
previous step.  

3.3.2 Verification and Validation Process 

SDID reviews shall be performed upon completion of the SDID. Reviews shall evaluate the 
technical adequacy of the design approach; assure internal completeness, consistency, clarity 
and correctness of the software design; and verify that the design is traceable to the SRS.  
QAForm 04, Software Design Review Checklist, may be used as a basis for this review. At the 
discretion of the Project Manager a Design Review Meeting may also be held. Results of 
verification test problems used during pilot code programming are reviewed. As reviews are 
completed, appropriate boxes in QAForm 04 are signed by reviewers.

16



3.4 Coding 

3.4.1 Development of Source Code 

Software coding is implementation of design requirements of the SDID. Work on Source Code 
will start after SRS and SDID have been prepared, reviewed and all comments are resolved.  
Documentation for software developed for the NRC include: 1) the program status, 2) data 
input and results, 3) the code version, 4) date and time of execution and, 5) output parameter 
units. If printouts are not usually generated, the status will clearly be noted on the computer 
screen.  

For coding standards in Fortran 77, Reference 6 can be used. All coding in Fortran 90 
language should use standards in presented in Reference 7.  

If verification testing is needed, a verification test plan with defined acceptance criteria shall 
be developed by the code developer. Verification testing (defined in Section 2 as unit and 
integration testing) checks that each code module and groups of modules meet a program 
design requirement. Test planning can be done in parallel with the software design. The 
developer shall specify, as applicable, in Computer Software Testing Cover Sheet (QAForm 
05): 

a. The number and types of verification problems to be completed, 

b. The rationale for their choice, 

c. The specific portions/options of the program and range of parameters and 
boundary conditions for which successful execution of the problem set will verify 
the code related to specific design or specification requirements, 

d. Significant features not to be tested and the reasons (for example, absolute 
verification of every combination of options over every usable range of parameters 
may be not practical), 

e. Acceptance criteria for each item to be tested.  

The Test Plan will also address, as applicable: 

a. Compliance with the Software Requirement Specification 

b. Performance at hardware, software, user, and operator interfaces 

c. Assessment of run time, and accuracy 

d. Measures of test coverage and software maintainability 

e. Hardware and software used in the testing.

17



Note that these tests are verification tests. They are not validation tests. The purpose of 
verification tests at this point is to verify that the coding developed meets the requirements 
specified in the SDID and that the coding is done correctly. Description of the test plan, test 
matrix, input decks and testing results will be documented in 'Verification Testing Report." 

3.4.2 Verification and Validation Process 

The Source Code Listing or update listing shall be reviewed for the following attributes. There 
will be sufficient explanations in comment cards in the listing which will permit review of these 
attributes: 

a. Traceability between the source code and the corresponding design 
specification - analyze coding for correctness, consistency, completeness, and 
accuracy 

b. Functionality - evaluate coding for correctness, consistency, completeness, 
accuracy, and testability. Also, evaluate design specifications for compliance with 
established standards, practices, and conventions. Assess -source code quality.  

c. Interfaces - evaluate coding with hardware, operator, and software interface 
design documentation for correctness, consistency, completeness, and accuracy.  
At a minimum, analyze data items at each interface.  

QAForm 07, the Code Review Checklist, may be used as the basis for this review. Reviewers 
will sign an appropriate box in QAForm 07.  

The update listing will be line by line inspected if these updates were created manually. If 
updates were created using Perl Scripts, or equivalent type of script, then these scripts will be 
documented and, inspected line by line. Inspection is detailed examination of lines of coding 
by an independent reviewer. The results of inspection will be reported in an inspection report.  
This inspection report shall contain the SQAP number, the date of updates, full listing of the 
updates, identifications for these updates, Perl Scripts and statements on the results of the 
inspection. Inspection shall address the question of whether or not updates would perform 
intended function. The report shall also address the question of whether or not updates would 
perform an unintended function.  

Reviewers will review the verification test plan and results of verification tests and signify 
approval by signing spaces in Computer Software Testing Cover Sheet, QA Form 05 and 
Verification Test Report Review Checklist, QA Form 08. If results of verification testing do not 
meet acceptance criteria and/or the test plan is not adequate, the coding will not be approved 
and it will be returned to the developer for corrections or further testing.

18



3.5 Validation Testing 

3.5.1 Performing Testing and Preparation of Testing Report 

Requirements (Acceptance criteria) for validation testing have been prepared in 
"Requirements Definition" phase. They are documented in SRS. Execution of the Validation 
(Qualification) test plan may be performed by individuals who are involved with the software 
development group. After code development is completed, testing shall begin. As a minimum 
all testing described in the SRS Test Plan will be done, however additional testing may be 
required by NRC. The input for the test problems shall be constructed from the description in 
the test plan. The results shall be plotted against the data for comparison. All testing activities 
shall be documented and shall include information on the date of the test, code version tested, 
test executed, discussion of the test results, and whether the software meets the acceptance 
test criteria. Results from the testing report will be incorporated into the developmental 
assessment (DA) manual. Test reports shall contain sufficient information as described below: 

1. Test Reports shall describe the testing outlined in the Test Plan in sufficient detail 
to allow an engineer of comparable qualifications to understand and, if necessary, 
reproduce the results. The report shall include nodalization diagrams, listing of the 
input deck, options used in constructing the deck and justification for their 
selection.  

2. For validation (qualification) tests, code calculated results will be compared to 
results obtained by alternative means (exact solution, experimental data, other 
code calculations). A short description of these alternative methods should be 
included. For example, if experimental test data are used for comparison, the 
report will include a short description of the test facility, phenomena observed, 
scaling distortions which may occur in reactor transients and, availability and 
accuracy of measurements. It will include graphical display of selected 
parameters and calculated values. It will discuss the acceptance criteria and 
conclude whether or not the code will meet these criteria. It will discuss any user 
guidelines which are essential in meeting the acceptance criteria. See Appendix C 
for a description of sample acceptance criteria.  

3. In validation (qualification) testing, when calculated code results are compared to 
results obtained from alternative methods such as test data, the reasons for 
differences should be understood and discussed in light of acceptance criteria.  
User guidelines will be developed, revised or confirmed based on analysis of 
results. It may be necessary to perform sensitivity analyses by changing 
parameters in input decks in order to develop user guidelines so that acceptance 
criteria can be met.  

4. If acceptance criteria are not met although appropriate user guidelines are used, it 
means that limitations of the code physical models are found during the testing 
process. A list of these limitations will be presented and limitations will be 
explained in the test report. Test failures will be reviewed to ascertain adequacy of 
user guidelines and the soundness of the theory and design. If user guidelines are

19



not adequate, sensitivity studies to improve user guidelines may be needed.  
Calculations should be done with NRC approval. If theory or design is faulty, 
modifications of requirements, design and implementation may be needed.  
Modifications to design may be performed with NRC approval. If acceptance 
criteria are unrealistic, they can be changed with NRC approval.  

5. Reports shall have conclusions and recommendations if necessary. All 
conclusions shall be supported by analyses.  

3.5.2 Verification and Validation Activities 

Review of the Validation Test Report shall be made by an independent reviewer. QAForm 09 
is the Validation Test Report Review Checklist. After the review is completed, the reviewer will 
sign the appropriate box in the form. The reviewer may provide an additional report discussing 
acceptability of the product.

20



3.6 Installation and Acceptance

3.6.1 Installation Package 

The program installation package consists of program installation procedures, files of the 
program, selected test cases for use in verifying installation, and expected output from these 
test cases.  

3.6.2 Acceptance Testing 

NRC will conduct acceptance testing in accordance with the accepted test plan. This plan will 
be developed by NRC. It may include following items: 1) Test cases in the installation 
package, 2) Selected test cases used by the contractor in Validation or Verification testing, and 
3) Additional test cases as determined by NRC. See also Section 5.2.  

3.6.3 Upgrading Program Documentation 

The existing program documentation is revised and enhanced to provide a complete 
description of the program. Code manuals will be produced and updated concurrently with the 
code development process. A set of code manuals will cover following subjects: 

" Theory, Models & Correlations Manual - This manual describes the theoretical 
basis, derivation, averaging, discretization, and solution of the conservation 
equations. It also describes the theoretical basis, physical models and correlations 
used to represent physical phenomena and includes discussions on their ranges of 
applicability, scaling considerations, assessment base, and accuracy.  

" User's Manual - This manual shows the user how the code should be used. It 
provides information from code installation to post -processing including guidelines 
on input model preparation. It provides guidelines for selection of nodalization and 
code options.  

" Programmer's Manual - This manual describes the code architecture from routine 
calling hierarchies to variable definitions. It should show control logic, the data 
flow, and data structure. It should provide enough detail such that an organization 
external to the development team can modify the code.  

Developmental Assessment Manual - This manual demonstrates the accuracy of 
the code predictions of phenomena observed in separate and integral effect tests.  
It also contains all supporting information on verification and validation tests 
performed while the code is being developed and assessed. It describes the code 
requirements, test descriptions, test results and discusses acceptability of results.  
It provides a qualitative statement or a quantitative measure describing how the 
software meets the acceptance criteria provided that the code is used with a given 
set of user guidelines. It provides guidance on resolution of scaling issues so that 
code calculations are applicable to the reactor plant system. It also demonstrates

21



how the models work together through integral facility tests.

Code manuals will be updated after a major modification is made. Each modification shall 
provide following documentation: 

1. Software requirements' specification - This document will provide information to 
update the Theory, Models & Correlations Manual.  

2. Software Design and Implementation Document - This document will provide 
information to update the Programmer's Manual.  

3. Listing of the Source Code Modifications - This listing will provide information to 
update the Programmer's Manual.  

4. Verification and Validation Test Reports - Theses reports will provide 
information to update Qualification Testing & Developmental Assessment 
Manual.  

The information in these documents shall be reviewed and comments, if any, be resolved 
before their inclusion in the manuals. The review shall be performed as part of the SQA 
process.  

3.6.4 Verification of the Installation Package 

Verification of the installation package ensures that all elements to install the program are 
available and when the program is installed, it reproduces expected results. The program is 
installed following the procedures. Test cases which are supplied with the installation 
package are run. The output is checked against the output supplied with the installation 
package. This ensures that the program will produce the same results as the program 
executing in the development environment. QA Form 12 will be used for verification of the 
program installation package.  

3.6.5 Verification of Upgrading of the Code Manuals 

Program documentation is revised and enhanced to reflect upgrades in the code.  
Programmer and User Manuals are the primary sources of information about the computer 
program when new upgrades are to be made. They will be used by users, maintenance 
programmers, and V&V personnel to understand the program's objectives, characteristics and 
operation. Verification of these documents is performed to ensure that program 
documentation is completed, that the documentation conforms established standards, and that 
it provides a clear and correct description of the program. Checklists for verification of 
Programmer and User manuals are QA Form 10 and QA Form 11. The reviewer will review 
the manuals, provide answers to questions and sign these forms. The reviewer may also 
provide and document additional comments as necessary.

22



4 ERROR CORRECTIONS AND CODE 
MAINTENANCE 

An error is a failure of the code or its documentation to meet its requirements. All errors will be 
reported in QA Form 13 by the users. NRC or NRC contractor evaluation and disposition of 
errors will be reported in QA Form 14. Most error corrections are small (e.g., less than five 
subroutines affected, and no subroutines added or deleted). They require small effort; e.g., 
less than one staff month. They may originate from users or they may relate to problems 
discovered during code development. Because of their size and cost, error corrections do not 
require the same level of documentation as code development tasks.  

All errors are evaluated for their criticality and level of importance. After the evaluation, 
resources required for corrective actions are identified and the impact of these corrective 
actions are discussed. See QA Form 14 for the documentation.  

Tracking of errors and reporting their correction status, the number of errors found in the code, 
and criticality of open problems will be kept current.  

An error correction if performed by a contractor, require only a single SQA package to be 
delivered to NRC. This package includes QA Forms 13 and 14. QA Form 13 requires 
following information: 

(a) A description of the symptom of the problem (i.e., code failure method, or 
parameter plot). Plots will be attached to QA Form 13.  

(b) A description of the root cause of the bug and a demonstration that all similar bugs 

have been caught.  

QA Form 14 requires following information: 

(a) A description of how the code was changed to correct the error, including data 
dictionary for major code variables added, deleted, or modified, and for each 
modified subroutine, a statement of the deficiency being corrected, or the 
functionality being added or deleted.  

(b) The input deck(s) for the test problem(s). One of the test problems must address 
the symptom from the original user problem. Plots will be attached to QA Form 14.  

(c) A documented patch files that fixes the error.  

(d) A statement on potential effect of the error correction on validation of the code.

23



The NRC personnel should duplicate plots and verify that they are complete and reasonable.  
If the error correction is acceptable, the NRC personnel should approve the correction for 
inclusion into the configuration control system. If the correction is not acceptable, then the 
NRC will reject the coding for correction and send it back to the code developer.

24



5 CONFIGURATION CONTROL 

Software configuration control involves updating, testing, storing, distributing and final 
dispositioning of the software. Configuration control is primarily performed by the code 
custodian.  

5.1 Configuration Control File and Software Configuration Plan 

Team members or contractors who developed a model or performed a corrective 
maintanance, are responsible for transmitting complete project software packages which 
include all updates and documentation required in the SQA work. The code custodian or 
project manager will ensure that all QA requirements have been met.  

The code custodian is responsible for establishing and maintaining the software Configuration 
Control file. Access to this file shall be limited. Files and supporting documentation for each 
code revision shall be traceable. The code custodian shall prepare a Software Configuration 
Plan which shows how the files are maintained and how the changes to the code files will be 
performed. The plan will also show how revisions to documentation are maintained. The plan 
will document the configuration control file.  

The configuration control file shall contain following items: 

1. SOAP Number (Note that this number identifies individual updates and dates), 
computer hardware and operating systems for which it has been tested and any 
special limitation on the software.  

2. Listing of all documentation with identification numbers. Electronic copies of all 
documentation produced as SQA procedures were applied.  

3. Complete software source and update files with proper identifications, including 
auxiliary and library files necessary to update, compile and operate the software.  
Suggested naming convention for these files is presented in Table 2.  

4. Directory which lists and describes the contents of all files contained in the 
Configuration Control file. Description of the directory structure that will be used to 
organize files.  

5. Software commands necessary to update, compile, install, test, and operate the 
software. Instructions on using these commands. These changes will be 
performed using the CVS package. The approach is to uniquely identify code 
changes in the source code using CVS by a unique identification label. The 
naming convention for the identification label should allow a reviewer to trace code 
changes to revisions in the supporting documentation. The naming convention for 
the identification label shall be defined in the Software Configuration Plan.

25



6. Listing of the Acceptance test problems; i.e., Qualification test problems plus 
special test problems for the changes in the current version. Qualification test 
matrix and special test problems for the current version comprise acceptance test 
matrix.  

7. A list of complete set of manuals describing the code and its use. Electronic 
files of these manuals.  

TABLE 2 

NAMING OF CONFIGURATION CONTROL FILES

File Name Naming 
Convention 

Platform Independent Source in CVS s 
Format 

Code Library lb 

Code Fixes .fx 

Fortran Source File in ASCII Format J 

Header Files Containing Common Blocks h 
and Other Global Definitions 

Object Files .0 

Executable Files A 

Library Archive Files a

5.2 Software Acceptance 

The Project Manager / Principle Investigator will determine which models and changes will be 
included in a new version of the software. The code custodian will create the new version.  
Acceptance testing will be performed by the Project Manager and acceptability of the new 
version will be determined after resolution of comments on acceptance testing report. After 
the acceptance, the code version will be archived and distributed.  

The new version shall contain a block of information that includes the version name, creation 
date, and contents (e.g., names of updates). Acceptability is determined by successfully 
performing test runs in the acceptance test matrix and demonstrating that results meet 
acceptance criteria. The acceptance test matrix contains the qualification assessment test 
matrix and a list of special test problems. Special test problems are two kinds: a) Test 
Problems for Software Configuration Testing and b) Test Problems for Performance Testing.

26



Software Configuration Testing is performed to check that new or modified software is 
compatible with prior software versions; i.e., no interference with other updates and compiles 
correctly on intended platforms. This is particularly important when several updates developed 
by different contractors are to be combined to make a new version of the code. The matrix for 
configuration tests contains test cases from different unit and integration testing for different 
updates.  

Performance test matrix contains some additional testing not included in the Qualification test 
matrix. The testing is performed using the user guidelines developed during qualification 
testing. Meeting the acceptance criteria ensures that new or modified software performs 
correctly with the established user guidelines. Testing of the qualification test matrix will be an 
automatic procedure while the other tests may not be automatic since they will be developed 
for the specific models and updates that the new version will contain. Testing will be 
performed on a set of computer platforms and operating systems as needed.  

The Software Acceptance Testing Report shall be prepared by the Project Manager / Principle 
Investigator. The report shall be reviewed and the reviewer may use Checklist QA Form 11.  
Upon completion of comment resolution the Project Manager / Principle Investigator will sign 
appropriate location in SQA Form 01.

27



6 RECORDS 

All documentation produced in applying the SQA procedures described in this document shall 
be maintained in both electronic (CD-ROM) and hardcopy form in NRC Headquarters and 
appropriate contractor or partner sites for various code versions. In addition to the SQAP 
number, documentation shall include Job Code Number, Task number, Task Identification 
(Title) and a Search Code. This will permit expeditious retrieval of any documentation or a 
group of documents on any part of code development including related correspondence.  

Code versions which are not used shall be retired and archived. The archive shall consist of 
the source code and all documentation produced in support of the code including all SQA 
documents in a retrievable format such as CD-ROM for future reference.  

7 REFERENCES 

1. "NRC Procedures for Placement and Monitoring of Work with the Department of Energy," 

Management Directive, (M.D.), 11.7, May 1993.  

2. "Software Quality Assurance Program and Guidelines," NUREG/BR-01 67, February 1993.  

3. "Guidelines for the Verification and Validation of Scientific and Engineering Computer 
Programs for the Nuclear Industry," ANSI/ANS-1 0.4-1987 

4. "Quantifying Reactor Safety Margins," NUREG/CR-5249, December 1989.  

5. "Writing good Requirements," Proceedings of the Third International Symposium of the 
NCOSE, Volume 2, 1993. Also, http:J/www.incose.org/workgrps/rwg/writing.html 

6. "Safer Subsets of Fortran 77", extracted from Appendix A of Hatton, L. (1992), "Fortran, C 
or C++ geophysical software development," Journal of Seismic Exploration, 1, p77-92, 
http://www.oakcamp.demon.co.ok/Lang.F77.  

7. "Fortran 90 Handbook, Complete ANSI/ISO Reference," J. Adams, W. Brainerd, J.  
Martin, B. Smith, J. Wagener, published by McGraw Hill, 1992, ISBN 0-07-000406-4.

29



APPENDIX - A 

GUIDANCE ON PREPARATION OF AN SQA PLAN

31



A-1 Software Quality Assurance Plan (SQAP)

At the start of each project, a Software QA Plan (SQAP) will be completed by the Project 
Manager or Principle Investigator. It will show the scope of the quality assurance activities to 
be performed in the project and will be consistent with the Project Plan. The plan may 
combine some of the development products of the SQA shown in Table 1. It may emphasize 
or deemphasize some of the Verification and Validation activities. If a certain verification or 
validation activity or a development of a certain documentation is to be deemphasized, a 
justification should be provided in the plan. The plan will basically address project needs and it 
will be designed specifically for the project. If the budget is not sufficient to perform necessary 
quality assurance items, this will be stated in the plan and items which will not be covered by 
the quality assurance activities, will be identified. If non-coverage of any item cannot be 
justified in the plan , the management will be informed of the non-coverage.  

QAForm 01 is a SQAP Table. It shows a summary of implementation of the plan. The items 

in the table are discussed below.  

A-2 SOAP Number 

The SQAP will be assigned a number by the Project Manager / Principle Investigator. This 
number shall be in form of SQAPxxxxxx.W.VRN.YYMMUP, where: 

xxxxxx is the code name such as TRAC-P, TRAC-B and RELAP5.  

W represents an indicator for the status of the code. There are three different 
statuses for the code: Production, Released, Developmental. Definitions of 
these statuses are given below: 

Production- The code is fully qualified in accordance with this procedure and 
uncertainties of predictions are quantified. W replaced by P.  

Released- The code is fully qualified in accordance with this procedure. All 
verification and validation activities are completed; all documentation is completed 
and the code is ready for release. The code is released for further assessment by 
independent parties. W is replaced by R.  

Developmental- The code is partially qualified, but it is in the process of complying 
with this procedure. This status is used for new development of the code 
undergoing many updates. W is replaced by D.  

VRN represents the version of the code that the work will start; such as V25. After 
the work is completed the version number will be updated; such as V26.  

YYMMUP represents the update number(s). The format is that the first two 
numbers indicate the year that updates started and the next two numbers indicate

33



the month that updates started. The last two characters indicate identification of 
updates that this SQAP is to cover.  

For example, if a contractor is going to improve the break flow model in the TRAC
P code and the work is going to start using version 11 in March 1998, the SQAP 
number would be SQAP.TRAC-P.D.V 1.9803BR. In this case, BR indicates that 
all updates are related to the break flow model improvement.  

A-3 Review and Schedules 

Reviewers' names and completion dates of reviews will be indicated in QAForm 01 (SQAP 
Table). If a checklist is used for the review, the number of the checklist will be entered in 
QAForm 01. All checklists, if used, contain reviewer's name and signature and the date of 
completion of the review. If there are comments that need to be resolved, QAForm 02 should 
be used. The date of resolution of comments is entered both in QAForm 01 and QAForm 02.  
All documents shall have an ID number which will permit easy retrieval.

34



APPENDIX - B 

CHECKLISTS

35



QA Form 01 SQAP TABLE SQAP#

Item Preparer Reviewer Reviewer Checklist Comments Completion Document 
(NRC) Resolved? Date ID# 

1. Project Plan " 

2. Software 
Requirements 
Specification 
(SRS) inc.  
Qualification 
Assessment 
Test Plan 

3. Software 
Design 
Implement. Doc.  
(SDID) 

4. Verification 
Testing Plan and 
Test Report 

5. Source Code 
Listing 

6. Validation 
Test Report 

7. Installation 
Package 

8. Code 
Manuals

37



QA FORM 02 
Computer Software V&V Review Comments SQAP # 

Software Name: Version: 

Documentation I.D. Reviewed: 

Reviewer: 

Review based on: _ checklist (attach) - other (explain method of review) 

Review Comments: 

Reviewed By: Date 
Independent Reviewer 

Response to Review Comments: 

Response By: Date 

Response Accepted: Date 
Independent Reviewer 

Accepted: Date 
Project Manager 

(required for testing only

39



QA Form 03 
Requirements Review Checklist - SOAP # Doc. ID 

Reviewer: Date: Yes No NA 
1. Does the SRS conform to the initial requirements specified by the NRC? 
2. Are the requirements correct for the problem to be solved? 

a. Are all requirements consistent with the Project Plan? 
b. Do requirements model the phenomena expected to occur in the 

transients specified by the NRC? 
c. Are the specified models, numerical techniquesd algorithms appropriate for the problem to be solved? 
d. Will the program as specified solve the problem? 

e. Are descriptions of inputs and outputs correct? 
f. Do the requirements for models, algorithms and numerical techniques 

agree with standard references, where applicable? 

3. Are the requirements clear and unambiguous? 
a. Can each requirement be interpreted in only one way? 
b. Are the requirements clearly organized and presented? 
c. Are program requirements clearly distinguished from other information 

that may be contained in the SRS? 
4. Are the requirements necessary and complete? 

a. Do requirements include all functions called for or implied by the Project 
Plan? 

b. Is the operational environment (hardware, operation system) of the 
program specified? If applicable, are timing and sizing constraints 
identified? 
c. Are design constraints specified? 
d. Does the specification include desired quality requirements, such as 

portability, maintainability, user friendliness? 
e. If the program is required to interface with other programs, is its 

behavior with respect to each defined? 
f. Are input and output requirements identified and described to the extent 

needed to design the program? 
5. Are the requirements internally consistent? 

a. Is the SRS free of internal contradictions? 
b. Are the specified models, algorithms and numerical techniques 

mathematically compatible? 
c. Are input and output formats consistent to the extent possible? 
d. Are the requirements for similar or related functions consistent? 
e. Are input data, computations, output, etc. required accuracies 

compatible? 
f. Are the requirements consistent with the properties of the specified 

operating environment, and any other programs with which the program 
must interface?

41



42

6. Are the requirements feasible? 
a. Are the specified models, algorithms and numerical techniques 

practical? Can they be implemented within system and development effort 
constraints? 

b. Are the required functions attainable within the available resources? 
c. Can the desired attributes be achieved individually and as a group? (ie, 

generally not possible to maximize both efficiency and maintainability.) 
7. Do the requirements make adequate provision for program V&V testing? 

a. Is each requirement testable? 
b. Are acceptance criteria specified? 
c. Are the acceptance criteria consistent with at least one of the following 

(circle all appropriate): Results obtained from similar computer programs; 
Solutions of classical problems; Accepted experimental results; Analytical 
results published in technical literature; Solutions of benchmark problems



QA Form 04 
Software Design Review Checklist - SQAPP_ _Doc. ID

Reviewer: Date: Yes No NA 

1. Does the SDID conform to the requirements specified in SRS? 
2. Is the SDID traceable to the SRS? 

a. Are all requirements implemented in the design? 
b. Are all design features consistent with the requirements? 
c. Do design features provide modularity? 
e. Are the specified numerical techniques appropriate for the problem to 

be solved? 
f. Are the specified algorithms appropriate for the problem to be solved? 
g. Is the structure of the design appropriate for the problem to be solved? 
h. Will the program as designed meet the requirements? 

3. Is the design clear and unambiguous? adtbelm sinfdn 
a. Can all design information be interpreted in only one way? 
b. Is the design information clearly organized and presented? 
c. Is the design sufficiently detailed to prevent misinterpretation? 4. Is the design complete? •: 

a. Are all program inputs, outputs, and database elements identified and described tothe extent needed to code the program? 
b. Does the program design conform to its required operational 

environment? 
c. Are all required processing steps included? 
d. Are all possible outcomes of each decision point designed? 

e. Does the design account for all expected situations and conditions? 
f. Does the design specify appropriate behavior in the face of unexpected 

or improper inputs and other anomalous conditions? 
g. Are coding standards specified or referenced as applicable? 
h. Is the design sufficiently robust to be able to recover from an error by 

following a well defined strategy? 
i. If interface is required with other programs, is this provided for in the 

design? If applicable, does the design provide for reading and writing of 
external files? 

5. Is the design internally consistent? 
a. Is the SDID free of internal contradictions? 
b. Are the specified models, algorithms and numerical techniques 

mathematically compatible? 
c. Are input and output formats consistent to the extent possible? 
d. Are the designs for similar or related functions consistent? 
e. Are the accuracy and units of inputs, database elements and outputs 

that are used together in computations or logical decisions compatible? 
f. Are the style of presentation and level of detail consistent throughout 

the SDID? 
6. Is the desi qn correct?

43



a. Is the design logic sound, such that the program will do what is 
intended? 

b. Does the design logic provide interface integrity? 
c. Is the design consistent with the properties of the specified operation 

environment, and with any other programs with which the program must 
interface? 

d. Does the design correctly accommodate all required inputs, outputs 
and database elements? 

e. Do the models, algorithms and numerical techniques used in the 
design agree with standard references, where applicable? 

7. Is the design attainable and technically feasible? 
a. Are the specified models, algorithms and numerical techniques 

practical? Can they be implemented within system and development effort 
constraints? 

b. Can functions, as designed, be implemented within the available 
resources? 

8. Do design features permit testing (verifiability) of the requirements?

44



QA Form 05 
Computer Software Testing Cover Sheet - SOAP# Doc. ID

I.  
Software Name: 

Code Author and Affiliation: 
Computer Type: 

Applicable Testing: - Verification Testing 

_ Validation Testing

Version: 

Program Language: 

Code Verifier: 

Code Validator:

11. Testing Plan Scope:

j(I11. Approved: Date:
IV. Summary and Conclusion of Testing Activity:

45



QA Form 06 
Software Test Plan Review Checklist - SQAP# Doc. ID 

Reviewer: Yes No NA 

Date: 

1. Does the SRS contain information needed as a bases for testing? 

a. Are the requirements testable? 
b. Do tests simulate the phenomena to be modeled? 

c. Are the acceptance criteria specified? 
d. Are the acceptance criteria consistent with at least one of the 

following (circle all that apply): Results obtained from similar computer 
programs; Solutions of classical problems; Accepted experimental 
results; Analytical results published in technical literature; Solutions of 
benchmark problems 
2. Do documented test plans include reference to documents 
containing the requirements to be tested? 
3. Are requirements to be tested identified, with acceptance criteria 

4. Are the planned test cases adequate? 
a. Is the basis for selection of test cases documented? Is the 

rationale clear and valid? 
b. Does each test case have known and accepted results? 
c. Are dependencies between test cases identified? 

d. Is the application range of the software product, as defined by the 
requirements, adequately covered by the set of test problems? 

e. If test cases are experimental results, are there sufficient number 
of measurements with an acceptable accuracy to perform code 
assessment? 
5. Is each testable requirement adequately covered? 
a. Is at least one test case provided for each requirement? 
b. If the requirement covers a range of values or capabilities, are 

test cases identified to cover the range adequately? 
c. Does documentation include demonstration of test to 

requirements, as in a traceability matrix? 
d. Do the tests include cases that are representative of the 

conditions under which the program will be used? 
e. Does the test plan address applicable scaling issues? 

6. Are the test case specifications complete? 
a. Are the test cases consistent with the planned cases that are 

listed? 
b. Is the specification for each test case complete? 

unique identification providing traceability of the requirement 
function(s) tested/objective(s) 
input, including modeling assumptions

47



48

expected results 
test setup instructions 
hardware and software environment 

7. Is the specification for each test case adequate? 
a. Is input detail sufficient? 
b. Are expected results explicit, and specified with sufficient 

accuracy? 
c. Do evaluation criteria provide clear acceptance criteria for each 

test? 
d. Are all relevant databases, data files or libraries identified? 
8. Does the test planning provide for test databases or data files? 
9. Are test cases specified in sufficient detail for future 

reproducibility? 
10. Are instructions provided for disposition of test files and test 
results? 
11. Is configuration management provided for test databases, data 
files, and external programs? 
12. Can the planned testing be performed within the available 
resources?



QA Form 07

Code Review Checklist - SQAP# Doc. ID 

Reviewer: Date: Yes No NA 

1. Does the Source Code conform to applicable standards? 
2. Are sufficient comments provided to give an adequate 

description of each routine? 
3. Is the Source Code clearly understandable? 

a. Is ambiguous or unnecessarily complex coding avoided? 
b. Is the code formatted to enhance readability? 

4. Are all features of the design, including modularity fully and 
correctly implemented in the code? 
5. Can all features of the coded program be traced to 
requirements in SRS and SDID? 
6. Are all variables properly specified and used? 

a. Is the program free of unused variables? 
b. Are all variables initialized? 
c. Are array subscripts consistent? 
d. Are loop variables within bounds? 
e. Are constants correctly specified? 
f. Are proper units used with each variable? 

7. Is there satisfactory error checking? 
a. Are input data checked for applicable range? 
b. Are external data files checked to assure that the correct 

data file is being read and the data are in proper format? 
c. Are results of calculations checked for reasonable values? 
d. Are error messages clear and unambiguous? 

8. Do all subroutine calls transfer data variables correctly? 
9. Is there sufficient evidence to verify that the processing of 
data and transmission of data between modules is correct? 
10. Is the code status (PRODUCTION, VERIFIED, RELEASE or 

DEVELOPMENTAL indicated on the program output?

49



QA Form 08 
Verification Test Report Review Checklist -SQAP# Doc. ID 

Reviewer: Date: Yes No NA 

1. Do unit test results show that: 

a. Each major logical path within the routine was tested? 

b. Each routine was checked for appropriate minimum, 
maximum, and average sets of variables? 

c. Do results meet acceptance criteria? 

2. Do integral test results meet acceptance criteria? 

3. Does the code conform with the resource requirements on the 
operating system? 

a. Does the code meet storage requirements for memory and 

external devices? 

b. Does the code meet timing and sizing requirements? 

4. Does the code interface properly with external files? 

5. Are all elements of the code properly identified? 

a. Has the source code been verified? 

b. Has the compiler been identified? 

c. Have special user libraries been verified? 

d. Have system libraries been identified? 

6. Does the program link correctly? 

7. Are the interfaces between functional units correct? 

8. Is the control language used for execution proper? 

9. Are the data libraries that are used in the code appropriate?

51



QA Form 09

Validation Test Report Review Checklist - SQAP# Doc. ID 

Reviewer: Date: Yes No N/A 

1. Does the Software V&V Report meet the requirements of SRS? 
a. Do test results corresponding to each requirement adequately 

cover the range? 
b. Has each test result for its associated requirement satisfied its 

acceptance criteria? 
c. Does the combination of test case results for the specified 

requirement meet the acceptance criteria? 
d. Are there any test results that indicate unrepeatable, unreliable or 

unexpected program behavior? 
2. If test cases were supplied with the installation package, did they 
produce results identical to the output supplied with that package? 

a. Could all the test cases be performed? 
b. Were all results identical to previous results? 
c. Were differences in results clearly understood and justified? 

3. Does testing comply with the test planning documentation? 
a. Is a summary of test results provided? 
b. Is program performance with respect to requirements evaluated? 

c. Are recommendations provided for acceptance of the code or 
development of further user guidelines and/or model development, as 
appropriate? 
d. Are results of each test case reported in detail? 
e. Were unexpected occurrences documented, as well as expected 
pass/fail results based on acceptance criteria? 
f. Are problems and their resolution documented? 
g. Are test planning documents, and any other relevant documents, 
referenced? 
h. Are deviations from test plans, if any, described and justified? 
i. Is the test environment (location, hardware configuration, support 
software) completely and accurately described? 
a. Is the program tested completely identified? 

4. Does the documentation of the test results accurately reflect the testing 
performed? 
5. Are all the test cases executed correctly?

53



54

a. Do test results adequately identify the software and hardware under 
test, including support software such as operation system, test drivers, 
test data? 
b. Do reported test results indicate performance of each test case in the 
specified environment, using the documented specifications? 
c. Is there an explanation for any deviation from the specified test 
environment or procedures? 
d. Is there a problem report for each deviation from expected results? 
e. Were correct input data used for each test case? 
f. Is the output of each test case accurately reported or attached?



QA Form 10
User's Manual Review Checklist - SQAP#

55

Reviewer: Date: Yes No NA 

1. Is the level of detail in the manual appropriate for its intended users? 

2. Does the manual describe the program's functions, options, 

limitations and accuracy? 

3. Is the description of user input adequate? 

a. Are all input data requirements specified? 

b. Are formats fully specified? 

c. Are valid ranges of input values specified? 

d. Are theoretical limitations specified? 

e. Are units specified? 

4. Are the necessary run instructions provided? 

5. Does the manual provide guidance on preparation of input decks? 

6. Does the manual provide guidance for interpreting output? 

7. Are error messages adequately explained? 

8. Are hardware and operation system requirements specified?



QA Form 11 
Programmer's Manual Review Checklist - SQAP#

57

Reviewer: Date: Yes No NA 

1. Is the information in the programmer's manual consistent with 
other manuals? 

a. Is the user information consistent with the programmer's 
information? 

b. Is the information in the theory manual an accurate reflection 
of the coded program? 

c. Is the information in the manual clear, unambiguous and well 
organized? 

d. Is the manual free of internal contradictions? 

2. Are all the elements of the program (e.g., source, library, 
compiler) properly identified? 

3. Are instructions (including control language) provided for 
compiling, loading and running the program? 

4. Is the design correct? 

a. Is the design logic sound, such that the program will do what 
is intended? 

b. Is the design consistent with the properties of the specified 
operating environment, and with any other programs with which the 
program must interface? 

c. Does the design correctly accommodate all required inputs, 
outputs and database elements? 

d. Do the models, algorithms and numerical techniques used in 
the design agree with standard references, where applicable?



0/A Form 12 
Verification of the Installation Package SQAP#

Reviewer: Date: Yes No NA 

1. Are sufficient materials available on the program installation tape to 
permit rebuilding and testing of the installed program? 

a. Are the necessary elements from the following list available? 

Source Code 

User-supplied library routines 

Module linkage specifications 

External file structure definitions 

Control Language for Installation 

External Data Libraries to be used by the program 

Test Cases 

Control Language for Execution 

Output Produced by the Test Cases.  

b. Are the format and content of the tape properly identified in the 
installation procedures for easy reading of the files? 

c. Are the installation procedures clearly understandable to allow 
installation and checkout? 

2. Can the program be rebuilt from the installation package? 

a. Can the program source be recompiled and reloaded in the same 
manner as before? 

b. If there are changes in rebuilding, do these changes affect the 
functional operation of the program? 

3. Do the test cases produce results identical to output supplied with 
the installation package? 

a. Can all test cases be performed? 

b. Are all results identical to previous results? 

c. Are differences in results clearly understood and justified? (such as 
new date and time on printed output)

59



GA Form 13 Trouble Report -Reporting 
Trouble Report No.  
(to be entered by NRC) 

To report a problem, error, or code deficiency, enter all of the following information.  

Code Name: 

Version: 

Date: 

Submitted by (name): 

Submitted by (organization): 

Address: 

Phone Number: 

E-mail Address: 

Classification of the Problem or Deficiency: (Check one or more) 

- Input Processing Failure 
Code Execution Failure 
Restart/Renodalization Failure 

- Unphysical Result 
Installation Problem 
Other 

Provide following items: 

1. Input deck(s) 
2. Description of the symptom of the bug 
3. Plots, if available 

Computer Hardware Type / Computer Operating System (include version): 

User's Determination of the Criticality of the Problem:

61



Trouble Report No.  

NRC's or Contractor's Determination of the Criticality of the Problem: 

Organization Assigned for Corrective Action: 

Provide following items: 

1. A description of the root cause of the bug and a demonstration that all similar bugs have 
been caught.  

2. A description of how the code was changed to correct the bug, including data dictionary for 
major code variables added, deleted, or modified, and for each modified subroutine, a 
statement of the deficiency being corrected or the funtionality being added or deleted.  
Following format should be used: 

Subroutine Report 

Subroutines Deleted: 

subroutinel .f: statement of subroutine's function and why that functionality is no longer 
necessary, or what subroutines now perform the function. Refer to other subroutines with their 
full name (e.g. TempM.f).  

subroutine2.f: similar statement.  

Subroutines Added: 

subroutine5.f: statement of subroutine's function.  

subroutine8.f: statement of subroutine's function.  

Subroutines Modified: 

subroutine23.f: statement of what changes are being made, the deficiency being corrected, or 
the functionality being added or deleted.  

3. Input deck(s) for test problem(s). One of the test problems must address the symptom 
from the original user problem.  

4. A documented patch file that fixes the bug.  

Date on which Nonconformance is Closed:

63

Trouble Report - DispositionGA Form 14



APPENDIX - C

A SAMPLE SET OF ACCEPTANCE CRITERIA

65



C.1 Acceptance Criteria

Acceptance criteria or success metrics are used to judge how well the code is validated. This 
appendix presents an example of development of acceptance criteria where the criteria are 
developed for comparison of code predictions with experimental data. There are qualitative 
and quantitative metrics. First, acceptance criteria using quantitative metrics will be 
addressed.  

The recently completed RELAP5 adequacy assessment effort presents important concepts 
used defining these criteria. Part of these concepts are repeated here for convenience.  
Additional concepts on providing "User Guidelines" are added here.  

1) "Excellent agreement" applies when the code exhibits no deficiencies in modeling a given 
behavior. Major and minor phenomena and trends are correctly predicted. The calculated 
results are judged to agree closely with the data. The calculations will, with few exceptions, lie 
within the specified or inferred, uncertainty bands of the data. The code may be used with 
confidence in similar applications. The term "major phenomena" refers to phenomena that 
influence key parameters, such as rod cladding temperature, pressure, differential pressure, 
mass flow rate, and mass distribution. Predicting the major trends means that the prediction 
shows the significant features of the data. Significant features include the magnitude of a 
given parameter through the transient, slopes, and inflection points that mark significant 
changes in the parameter.  

2) "Reasonable agreement" applies when the code exhibits minor deficiencies. Overall, the 
code provides an acceptable prediction. All major trends and phenomena are predicted 
correctly. Differences between calculated values and data are greater than are deemed 
necessary for excellent agreement. The calculation will frequently lie outside but near the 
specified or inferred uncertainty bands of the data. However, the correct conclusions about 
trends and phenomena would be reached if the code were used in similar applications. The 
code models and/or facility model noding should be reviewed to see if improvements can be 
made.  

3) "Minimal agreement" applies when the code exhibits significant deficiencies. Overall, the 
code provides a prediction that is not acceptable. Some major trends or phenomena are not 
predicted correctly, and some calculated values lie considerably outside the specified or 
inferred uncertainty bands of the data. Incorrect conclusions about trends and phenomena 
may be reached if the code were used in similar applications. If the agreement is "Minimal", 
model noding must be reviewed and sensitivity studies using different noding or options 
should be performed. The selection of nodalizations or options should not be arbitrary. It 
should be aimed to model the phenomena more accurately. If agreement can be improved 
and can be reclassified as "Reasonable" or "Excellent', new "User Guidelines" should be 
developed. If agreement cannot be improved, it should be reclassified as "Insufficient 
agreement" described below.  

4) "Insufficient agreement" applies when the code exhibits major deficiencies. The code

66



provides an unacceptable prediction of the test data because major trends are not predicted 
correctly. Most calculated values lie outside the specified or inferred uncertainty bands of the 
data. Incorrect conclusions about trends and phenomena are almost certain if the code is 
used in similar applications. An appropriate warning must be issued to users. Selected code 
models should be reviewed and modified and if necessary, new models should be developed 
and assessed before the code can be used with confidence in similar applications.  

Quantitative metrics define requirements for accuracy of code predictions of the test data.  
The metrics depend on 1) the goodness / deficiency of code models simulating the 
phenomena and 2) the experimental data spread. Following is an example of how the first 
and second element of the metrics are determined in a work performed for assessment of 
reflood model in the TRAC-M code using Flecht-Seaset, Run# 31504, Reference C.1.  

An assessment of the TRAC-P code, an earlier version of the TRAC-M code, concluded that 
modeling of the grid spacers were inadequate; and therefore, the option to include grid spacer 
models should not be used, Reference C.2. Tests performed with and without grids show that 
grid spacers contribute substantially to cooling of the cladding of the rods, Reference C.3.  
Grid spacers interact with the fuel rods and the two-phase flow in the flow channels. From 
various two-phase flow studies, it has been observed that grid spacers caused enhancement 
of the heat transfer, mainly by desuperheating the vapor. The effect could be classified under 
following three mechanisms: 

1. Grid rewet 
2. Convective enhancement 
3. Droplet breakup 

Since the grids are unpowered, they can quench before the fuel rods. If the grids rewet, they 
create additional liquid surface area that can help desuperheat the vapor in the nonequilibrium 
two-phase droplet flow. A wetted grid will have a higher interfacial heat transfer coefficient in 
comparison to droplets because the relative velocity for the vapor flow relative to the liquid film 
is larger. In addition to desuperheating the vapor, the liquid film will evaporate, resulting in 
higher steam flow and convective heat transfer. The increased interfacial heat transfer 
between the grid and the vapor flow and the generation of additional saturated vapor from the 
liquid film on the grid will result in lower vapor temperatures downstream of the grids. In 
addition, the grids can also break up the entrained droplets into smaller ones thereby 
increasing the surface area for evaporation. The evaporation of the smaller droplets will 
provide an additional steam source which increases the convective heat transfer coefficient.  

As discussed above, grid spacers affect the reflood phenomena in a substantial way. Any 
calculation without a grid spacer effect should indicate much hotter cladding temperatures for 
the rods. TRAC-M calculations will be biased because of absence of grid spacer effects. The 
best way to quantify this bias is to compare cladding temperatures with and without grid 
spacers in test data. References C.3 and C.4 show that this bias is approximately 100K.  
Hence, we should expect, at the minimum, 100K of bias in code predictions. This number can

67



perhaps be refined if more comparisons are made. This is an example of goodness / 
deficiency of code modeling affecting quantitative metrics.  

The next important element in determining quantitative metrics is the experimental data 
spread. Experimental data spread is different from the instrument uncertainty which 
addresses the accuracy of measurements of an instrument. Experimental data spread or 
uncertainty bands of the test data occur because of the random nature of the phenomena. In 
the Flecht-Seaset reflood experiments, the reflood is considered to be one dimensional since 
the geometry of the test section and the rod bundle is one dimensional. The input deck is built 
based on one dimensional assumptions. The code will calculate one cladding temperature at 
a specific location of the rod at each time step of the calculation. The rod modeled in the input 
deck represents all similar rods. However, in reality, the two-phase flow in the test section has 
some randomness in that all water slugs are not of the same length or shape; all droplets are 
not of the same size or shape and their concentration vary from location to location within the 
test section. Hence, one should neither expect that maximum cladding temperatures occur in 
all rods at the same time and in the same horizontal plane although the power shape for each 
rod is the same, nor expect that all rods quench at the same time in the same horizontal 
plane. Hence, there will be a normal spread of experimental data due to random nature of the 
two-phase flow. Since the code will predict only one value, for an "Excellent agreement" the 
prediction can be at the edge of the spread. Hence, this spread will form part of the 
quantitative metric.  

Figs. C.1 through C.4 show clad temperatures measured at different elevations and at 
different rods. The lowest spread occurs at lower levels. The spread increases with 
increasing elevation. At higher elevations droplets move randomly in many directions and 
their sizes and shapes vary. Clad temperatures at a horizontal plane can vary as much as 
100K. These figures show the data spread or uncertainty bands of cladding thermocouple 
traces at certain elevations in Flecht-Seaset, Run 31504. Thermocouples are located at 
different rods in a horizontal plane. These give multiple measurements at an elevation.  
These measurements not only show a spread of lOOK can occur in clad temperatures but 
also, they also indicate that quenching time at high elevations may vary up to 120s.  
Thermocouples affected by the housing wall or those giving clearly erroneous readings are 
not included in these plots.  

In summary, a quantitative metric for clad temperature predictions is a bias of 1OOK and a 
spread of lOOK. This would make a total of 200K difference in predictions. The quenching 
time spread is 120s.  

This is an example of acceptance criteria using quantitative metrics. However, in this test 
similar multiple measurements are not available for other parameters such as pressure drops.  
For pressure drop measurements, there is only one pair of pressure taps available to 
measure each pressure drop between two elevations. Hence, for pressure drops it is not 
possible to determine the data spread or uncertainty bands caused by randomness of two
phase flow. Similarly, steam probe measurements are made at few unpowered rods at

68



selected elevations. In this particular example, Flecht-Seaset, Run# 31504, it is assumed 

that these measured quantities give average quantities for a horizontal plane. Since the 

spread of data cannot be determined, the assessment of these parameters can only be made 

qualitatively.  

In qualitative assessment the conclusions are based on user's judgement and experience.  

The user may use similar concepts as "Excellent", "Reasonable" and "Insufficient" agreements 

as presented above; however, the user should carefully define the terms and justify bases for 

his selections of the type of agreement. The overall conclusions on acceptability of 

predictions are more reliable if some of the parameters can be judged on a quantitative basis.  

However, similar multiple measurements are not available for other parameters such as 
pressure drops. For pressure drop measurements, there is only one pair of pressure taps 

available to measure each pressure drop between two elevations. Hence, for pressure drops 
it is not possible to determine the data spread or uncertainty bands caused by randomness of 

two-phase flow. Similarly, steam probe measurements are made at few unpowered rods at 

selected elevations. It is assumed that these measured quantities give the average quantities 

for a horizontal plane. Hence, assessment of these parameters can only be made 
qualitatively.  

C.2 References 

C.1 "Assessment of the TRAC-M Codes Using Flecht Seaset Reflood and Steam Cooling 
Data", F. Odar, SMSAB-00-05, July 2000.  

C.2 "TRAC-M: Fortran 77, Version 5.5, Developmental Assessment Manual, Volume I: 

Nonproprietary Assessment Sections", B. E. Boyack, J. F. Lime, D. A. Pimentel, J. W. Spore, 
J. L. Steiner, LA-UR-99-6480, December 1999.  

C.3 "FEBA Flooding Experiments with Blocked Arrays, Data Report 1, Test Series I through 
IV, KfK 3658, March 1984.  

C.4 "FEBA Flooding Experiments with Blocked Arrays, Data Report 2, Test Series V through 
VIII, KfK 3649, March 1984.

69



Flecht-Seaset Forced Reflood 31504 
Exp. Data, Clad Temps. z=48in (1.22m)

400 
0

Time (s) 
Figure C.1 Flecht-Seaset 31504 Exp. Clad Temperatures, z=1.22m

70

1200 

1000

£ 

I
as 

E

800 

600

200



Flecht-Seaset Forced Reflood 31504 
Exp. Data, Clad Temps. z=78in (1.98m)

1400 

1200 

1000 

800 

600 

400 

200 

0

71

£ 

CE

200 400 
Time (s) 

Figure C.2 Flecht-Seaset 31504 Exp. Clad Temperatures, z=1.98m

0



Flecht-Seaset Forced Reflood 31504
Exp. Data. Clad Temps. z=1 O2in (2.59m)-all data

200 400 
Time (s)

Figure C.3 Flecht-Seaset 31504 Exp.Clad Temperatures, z=2.59m

72

CL 

E 
I-.

1400 

1200 

1000 

800 

600 

400 

200 

0
0 600



Flecht-Seaset Forced Reflood 31504 
Exp. Data Clad Temps. z=1 32in (3.35m)

0 200 400 600 
Time (s) 

Figure C.4 Flecht-Seaset 31504 Exp. Clad Temperatures, z=3.35m

73

1000 

800

E 
a,

600

400 

200
800



NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER 

(2-89) (Assigned by NRC, Add Vol. Supp., Rev.  

NRCM 1102. BIBLIOGRAPHIC DATA SHEET and Addendum Numbers, If any.) 

3201,3202 
(See instructions on the reverse) 

NUREG-1737 
2. TITLE AND SUBTITLE 

Software Quality Assurance Procedures for NRC Thermal Hydraulic Codes 3. DATE REPORT PUBLISHED 
MONTH i YEAR 

December 2000 
4. FIN OR GRANT NUMBER 

5. AUTHOR(S) 6. TYPE OF REPORT 

Frank Odar Technical 

7. PERIOD COVERED (Inclusive Dates) 

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (It NRC, provide Division, Office or Region. U.S. Nuclear Regulatory Commission, and mailing address; if contractor.  

provide name and mailing address.) 

Division of Systems Analysis and Regulatory Effectiveness 

Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
Washington D.C. 20555-0001

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type -Same as above: if contractor. provide NRC Division, Office ortFiegion, U.S. Nuclear Regulatory Commission, 
and mailing address.)

Same as above

10. SUPPLEMENTARY NOTES

11. ABSTRACT (200 words or less) 

This report describes quality assurance procedures for development and maintena nce of the NRC thermal hydraulic codes to 

be used in reactor plant system transient analysis. These procedures present r equirements for documentation, review, testing 

and assessment of the thermal hydraulic codes. These procedures will be used b y the NRC staff, its contractors and partners 

in the code development and maintenance programs.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating te report.) 13. AVAILABIUTY STATEMENT 

unlimited 
SOFTWARE QUALITY ASSURANCE PROCEDURES unlimited 

THERMAL HYDRAULICS 
14. SECURITY CLASSIFICATION 

COMPUTER CODES (This Page) 

unclassified 
ffhis Report) 

unclassified 
15. NUMBER OF PAGES 

16. PRICE

NRC FORM 335 (2-89)



Federal Recycling Program



cSOFTWARE QUALJTY ASSURANCE PROCEDURES FOR 
NRC THERMAL HYDRAULIC CODES

DE CEM5AV! -7A")~

UNITED STATES 
NUCLEAR REGULATORY COMMISSION 

WASHINGTON, DC 20555-0001 

OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE, $300

NT r •• .,,.bI


