NUREG/IA-0181



# **International Agreement Report**

# Assessment of RELAP5/MOD3.2 for Reflux Condensation Experiment

Prepared by

Y.M. Moon, H. C. No, KAIST H.S. Park, KAERI Y.S. Bang, KINS

Korea Advanced Institute of Science and Technology 373–1, Gusung-Dong Yusung, Taejon 305–701 Korea

Korea Institute of Nuclear Safety P.O. Box 114 Yusung, Taejon 305–600, Korea

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555–0001

April 2000

Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Code Application and Maintenance Program (CAMP)

#### Published by U.S. Nuclear Regulatory Commission

Korea Atomic Energy Research Institute P.O. Box 105 Yusung, Taejon 305–600 Korea

#### AVAILABILITY NOTICE

#### Availability of Reference Materials Cited in NRC Publications

NRC publications in the NUREG series, NRC regulations, and *Title 10, Energy*, of the *Code of Federal Regulations*, may be purchased from one of the following sources:

- The Superintendent of Documents U.S. Government Printing Office P.O. Box 37082 Washington, DC 20402–9328 <http://www.access.gpo.gov/su\_docs> 202–512–1800
- The National Technical Information Service Springfield, VA 22161–0002 <http://www.ntis.gov> 1-800-553-6847 or locally 703-605-6000

The NUREG series comprises (1) brochures (NUREG/BR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) technical and administrative reports and books [(NUREG-XXXX) or (NUREG/CR-XXXX)], and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Office Directors' decisions under Section 2.206 of NRC's regulations (NUREG-XXXX).

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: Office of the Chief Information Officer Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555–0001 E-mail: <DISTRIBUTION@nrc.gov> Facsimile: 301–415–2289

A portion of NRC regulatory and technical information is available at NRC's World Wide Web site:

#### <http://www.nrc.gov>

After January 1, 2000, the public may electronically access NUREG-series publications and other NRC records in NRC's Agencywide Document Access and Management System (ADAMS), through the Public Electronic Reading Room (PERR), link <http://www.nrc.gov/NRC/ADAMS/index.html>.

Publicly released documents include, to name a few, NUREG-series reports; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigation reports; licensee event reports; and Commission papers and their attachments.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852–2738. These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 <http://www.ansi.org> 212–642–4900

#### DISCLAIMER

This report was prepared under an international cooperative agreement for the exchange of technical information. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third

party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.



## **International Agreement Report**

## Assessment of RELAP5/MOD3.2 for Reflux Condensation Experiment

Prepared by

Y.M. Moon, H. C. No, KAIST H.S. Park, KAERI Y.S. Bang, KINS

Korea Advanced Institute of Science and Technology 373–1, Gusung-Dong Yusung, Taejon 305–701 Korea

Korea Institute of Nuclear Safety P.O. Box 114 Yusung, Taejon 305-600, Korea

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555–0001

April 2000

Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Code Application and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission Korea Atomic Energy Research Institute P.O. Box 105 Yusung, Taejon 305–600 Korea

### Assessment of RELAP5/MOD3.2 for Reflux Condensation Experiment

#### Abstract

This report describes the experimental works and the assessment of the predictability of RELAP5/MOD3.2 for the reflux condensation experiment in the presence of noncondensible gases in a vertical tube having the same outer diameter of the U-tube riser in Korean standard nuclear power plant (KSNPP). The reflux condensation experiment is performed in conditions of the low pressure, low flow and the high mass fraction of noncondensible gas representing the situation of the loss-of-residual-heat-removal (LORHR) accident during mid-loop operation.

The test facility is composed of the mixture gas generation part and the reflux condensation part. The test section in the latter part is a vertical tube with 19.05mm diameter and 2.4m length surrounded by the coolant block. Reflux condensation occurs in the range of very small flow rates because of the flooding limit. Therefore, the injected steam is completely condensed in the vertical tube.

The flooding as the upper limit of reflux condensation occurs in lower mixture upward flow rate than that of Wallis' correlation. The heat transfer coefficients near the tube inlet increase as the inlet steam flow rate and the system pressure increase. In the presence of noncondensible gas, the heat transfer capability is dramatically decreased. An empirical correlation is developed using the local data of heat transfer coefficients. The degradation factor in the correlation is expressed with four nondimensional parameters. It turns out that the Jacob number and the film Reynolds number are dominant parameters.

A non-iterative condensation model is developed to predict the steam condensation heat transfer in the presence of the noncondensible gases, which is different from the existing iterative model in the RELAP5/MOD3.2 code. The existing models, default model (Colburn-Hagen model) and alternative model (Chato-UCB model), in RELAP5/MOD3.2 are assessed with the reflux condensation data. The heat transfer coefficients estimated by the present non-iterative model and by the existing models of the standard RELAP5/MOD3.2 code are compared with the present experimental data. The default model and the alternative model under-predicts and over-predicts, respectively. The non-iterative model better predicts than the default and alternative models.

## **Table of Contents**

| Ab  | stract                                                      | ü  |
|-----|-------------------------------------------------------------|----|
| Ta  | ble of Contents                                             | v  |
| Lis | t of Tables                                                 | ii |
| Lis | t of Figures                                                | ü  |
| Ex  | ecutive Summary                                             | a  |
| Ac  | knowledgement xi                                            | ii |
| No  | menclature                                                  | v  |
| 1.  | Introduction                                                | 1  |
|     | 1.1. Background                                             | 1  |
|     | 1.2. Objectives and Report Organization                     | 2  |
| 2.  | Reflux Condensation Experiment                              | 3  |
|     | 2.1. Objective of the Present Works                         | 3  |
|     | 2.2. Previous Works                                         | 3  |
|     | 2.3. Facility and Instruments                               | 6  |
|     | 2.4. Data Reduction Methods 1                               | 5  |
|     | 2.4.1. Local Heat Transfer Coefficients                     | 5  |
|     | 2.4.2. Local Steam and Condensate Flow Rates 1              | 6  |
|     | 2.5. Results and Discussion                                 | 9  |
|     | 2.5.1. Experimental Conditions                              | 9  |
|     | 2.5.2. Limitation of the Reflux Condensation                | 2  |
|     | 2.5.3. Parametric Effects on the Heat Transfer Coefficients | 4  |
|     | 2.5.4. Development of the New Empirical Correlation         | 9  |
|     |                                                             |    |

| 3. Assessment of Condensation Models in Standard RELAP5/MOD3.2 | 32   |
|----------------------------------------------------------------|------|
| 3.1. Condensation Models in the RELAP5/MOD3.2 Code             | 32   |
| 3.2. New Condensation Model - Non-iterative Model              | 32   |
| 3.2.1. Reference Modeling of Vertical In-Tube Condensation     | 33   |
| 3.2.2. Solution Scheme of Non-Iterative Model                  | 36   |
| 3.3. Calculation Procedures of the Modified Model              | 40   |
| 3.4. Simulation of Reflux Condensation Experiments             | 44   |
| 3.4.1. RELAP5/MOD3.2 Nodalization                              | 44   |
| 3.4.2. Base Case Calculation                                   | 44   |
| 3.4.3. Run Statistics                                          | 46   |
| 4. Conclusions and Recommendations                             | . 57 |
| Bibliography                                                   | 50   |

| BIDHOgraphy                                                       | 39 |
|-------------------------------------------------------------------|----|
| Appendices                                                        | 62 |
| Appendix A Uncertainty Analysis of Reflux Condensation Experiment | 62 |
| Appendix B Input Deck for Reflux Condensation Experiment: #RC11   | 64 |
| Appendix C Local Data of Reflux Condensation Experiment           | 72 |

## **List of Tables**

•

| 2.1 Previous works related to the reflux condensation                      | 5  |
|----------------------------------------------------------------------------|----|
| 2.2 Instruments on the components of facility with measurement uncertainty | 14 |
| 2.3 Experimental ranges                                                    | 20 |
| 2.4 Test matrix for reflux condensation                                    | 21 |
| 2.5 Experimental data of flooding                                          | 23 |
|                                                                            |    |

| 3.1 Steady state test conditions of reflux condensation experiments | .45 |
|---------------------------------------------------------------------|-----|
| 3.2 The CPU time and the grind time of experiment RC02              | .46 |

## **List of Figures**

1

| 2.1 Overall schematic of reflux condensation facility                                      |
|--------------------------------------------------------------------------------------------|
| 2.2 Top view of vertical tube and coolant block10                                          |
| 2.3 Location of temperature measurements in a vertical tube11                              |
| 2.4 Vertical tube and coolant block12                                                      |
| 2.5 Test section of the reflux condensation experiment                                     |
| 2.6 Locations of temperature measurements to calculate the local condensing flow rate      |
| 2.7 Experimental domain in terms of air mass fraction and inlet steam flow rate            |
| 2.8 Oscillation of tube centerline temperature due to the flooding                         |
| 2.9 Experimental results of flooding limit and comparison with Wallis' correlation24       |
| 2.10 Temperature distribution in the absence of air                                        |
| 2.11 Temperature distribution in the presence of air                                       |
| 2.12 Effect of air mass fraction on heat transfer coefficient                              |
| 2.13 Effect of inlet steam flow rate on heat transfer coefficient                          |
| 2.14 Effect of system pressure on heat transfer coefficient                                |
| 2.15 Comparison of the local heat transfer coefficients between experiment and correlation |
| (linear-scale)                                                                             |
| 2.16 Comparison of the local heat transfer coefficients between experiment and correlation |
| (log-scale)                                                                                |
|                                                                                            |
| 3.1 Calculation procedure of reference iterative model                                     |
| 3.2 Calculation procedure of the present non-iterative model: the modified model           |

| 3.3 RELAP5/MOD3.2 nodalization | n for reflux condensation | experiment |
|--------------------------------|---------------------------|------------|

ľ

| 3.4 Heat transfer coefficients of reflux condensation: #RC16      | 49 |
|-------------------------------------------------------------------|----|
| 3.5 Heat transfer coefficients of reflux condensation: #RC13      | 50 |
| 3.6 Heat transfer coefficients of reflux condensation: #RC02      | 51 |
| 3.7 Heat transfer coefficients of reflux condensation: #RA02      | 52 |
| 3.8 Comparison of required CPU times of three condensation models | 53 |
| 3.9 Time step sizes of the default condensation model             | 54 |
| 3.10 Time step sizes of the alternative condensation model        | 55 |
| 3.11 Time step sizes of the modified condensation model           | 56 |
|                                                                   |    |

.

.

## **Executive Summary**

The reflux condensation in the presence of noncondensible gas in a vertical tube is performed and the existing models in the standard RELAP5/MOD3.2 code are assessed with the present experimental data and the newly developed model.

In case of the LORHR during mid-loop operation in nuclear power plants, the reflux condensation heat transfer in the riser part of the U-tube is an effective heat removal mechanism without the loss of coolant inventory. However, the previous studies of the reflux condensation are mainly interested in the flow regimes and their transitions.

The heat transfer data of the reflux condensation are very important results, which require the separate effect tests to obtain the comprehensive data for the heat transfer coefficients. The probability of the LORHR is revealed not to be negligible and the RELAP5/MOD3.2 code does not properly estimate in conditions of the mid-loop operation; the high mass fraction of noncondensible gases, and the low pressure and low flow. Therefore, the experimental study and the code analysis in this report play an important role to predict a natural heat removal capability by the primary coolant system.

The test facility is installed to perform the reflux condensation experiment. It is composed of the mixture generation part and the reflux condensation part. The latter part includes the test section. Test section has a vertical tube having the same outer diameter as the KSNPP, which is surrounded by the coolant block.

The experiments are performed with variations of three main parameters; the system pressure, the inlet steam flow rate and the inlet air mass fraction. Their ranges are 1~2.5bar, 1.348~3.282kg/hr and 11.8~55%, respectively. The experiments are also performed in pure inlet steam flow rate to compare the effects with and without the noncondensible gas.

The heat transfer data of the reflux condensation and the flooding data are obtained. The flooding is observed to know the upper limit of the reflux condensation. As a result, the onset of flooding occurs at lower upward flow rate compared to Wallis' correlation in geometric conditions of the sharp edge and the inner diameter of 16.56mm. The heat transfer coefficients near the tube inlet increase as the inlet steam flow rate and the system pressure increase. In the presence of noncondensible gas, the heat transfer capability is dramatically decreased. The

empirical correlation is developed using the local data of heat transfer coefficients. The degradation factor is correlated with four nondimensional parameters. It turns out that the Jacob number and the film Reynolds number are dominant parameters.

The non-iterative model is newly developed to predict the steam condensation heat transfer in the presence of the noncondensible gases. It is applicable to engineering. The condensation models, default model and alternative model, in RELAP5/MOD3.2 are assessed with the reflux condensation data. The heat transfer coefficients estimated by the non-iterative model and with the existing models of the standard RELAP5/MOD3.2 code are compared with the present experimental data. The default model and the alternative model under-predicts and over-predicts, respectively. The non-iterative model better predicts than the present models do.

1

## Acknowledgement

This report was performed under the sponsorship of Korea Institute of Nuclear Safety (KINS) as one of the Ministry of Science and Technology (MOST). Authors appreciate the KINS for the financial support.

## Nomenclature

| AMF     | air mass fraction                      |
|---------|----------------------------------------|
| FA      | inlet air flow rate                    |
| FM      | inlet steam-air mixture flow rate      |
| FS      | inlet steam flow rate                  |
| IET     | Integral Effect Test                   |
| KSNPP   | Korea Standard Nuclear Power Plant     |
| LOCA    | Loss Of Coolant Accident               |
| LORHR   | Loss Of Residual Heat Removal          |
| NPP     | Nuclear Power Plant                    |
| RCS     | Reactor Coolant System                 |
| SET     | Separate Effect Test                   |
| SG      | Steam Generator                        |
| ТВ      | mixture bulk temperature               |
| TC      | coolant temerature                     |
| TWo     | outer wall temperature                 |
| b       | blowing parameter                      |
| В       | mass driving force                     |
| С       | total number of node volumes           |
| $C_{f}$ | friction factor                        |
| $C_p$   | specific heat at constant pressure     |
| d, D    | diameter                               |
| $D_h$   | hydraulic diameter                     |
| F       | degradation factor(= $h_{tot} / h_f$ ) |
| g       | mass transfer conductance              |
| h       | heat transfer coefficient              |
| i       | enthalpy                               |
| Ja      | Jacob number                           |
| k       | thermal conductivity                   |
| L       | axial length of interval               |

| mass flow rate                               |
|----------------------------------------------|
| local condensing flow rate                   |
| accumulated condensing flow rate             |
| a defined arbitrary nondimensional parameter |
| Nusselt number                               |
| pressure                                     |
| a defined nondimensional parameter           |
| Prandtl number                               |
| heat flux                                    |
| Reynolds number                              |
| Schmidt number                               |
| Sherwood number                              |
| Stanton number                               |
| temperature                                  |
| velocity, internal energy                    |
| mass fraction                                |
| mole fraction                                |
| local axial length                           |
| a defined nondimensional parameter           |
|                                              |

#### Greek

| δ                 | liquid film thickness |
|-------------------|-----------------------|
| ρ                 | density               |
| $\mathcal{E}_{s}$ | sand roughness        |
| μ                 | viscosity             |

#### Subscripts

| AB     | mass transfer |
|--------|---------------|
| a, air | air           |
| b      | bulk          |
| с      | coolant       |

1

I I

| cd, cond | conductive                          |
|----------|-------------------------------------|
| cv, conv | convective                          |
| е        | entrance region                     |
| f        | condensate, liquid phase, film side |
| g        | vapor phase, mixture side           |
| h        | heat transfer                       |
| i        | inner, interface                    |
| in       | initial                             |
| m        | mixture                             |
| 0        | outer                               |
| \$       | steam, saturated                    |
| t, tot   | total                               |
| ν        | vapor phase                         |
| W        | wall                                |
| 0        | no transpiration                    |
|          |                                     |

-----

#### Superscripts

| * | dimensionless form |
|---|--------------------|
|   |                    |

## Chapter 1.

## Introduction

#### 1.1 Background

In case of the loss-of-residual-heat-removal (LORHR) during mid-loop operation in nuclear power plants (NPP), it is estimated that the safety of the reactor may be severely threatened by the boiling of a coolant inventory when the decay heat is not properly removed. Such a probability of accident inducing the core damage during mid-loop operation is revealed not to be negligible when compared to the accidents during normal operation. For this reason, the integral experiments and the code analysis for the LORHR accident during mid-loop operation have been performed in several countries. In Korea, a few research groups have evaluated and analyzed the experimental results of the integral effect tests (IET) in the foreign countries using the thermal-hydraulic codes. But the separate effect tests (SET) representing the conditions of a mid-loop operation are little observed.

As the results of the thermal hydraulic code analysis for the accident of mid-loop operation, it did not properly estimates the low pressure, low temperature and low flow conditions such as mid-loop operation. This was because the models in codes were on the basis of the accidental situation in the high pressure and high temperature such as small break loss-of-coolant-accident (LOCA) or large break LOCA. Therefore, the comprehensive study of the SET is needed because the predictability of the individual models can be evaluated by the relevant experimental database and an improvement can be incorporated into the code, if needed.

A reflux condensation is the countercurrent flow between upward flow of the steam-air mixture and downward flow of the condensate, which has the upper limit by the onset of flooding. The reflux condensation heat transfer in the U-tube plays an important role of the residual heat removal to the secondary side of steam generator (SG) and has an advantage in cooling the reactor coolant system (RCS) without loss of a coolant inventory.

#### **1.2 Objectives and Report Organization**

The objective of the present study is to obtain the heat transfer data through the SET, to assess capability of the condensation model in the RELAP5/MOD3.2 code, and to develop a new non-iterative model for the reflux condensation with noncondensible gas in a vertical tube simulating the U-tube riser.

In the reflux condensation, the present experimental works are performed with the emphases on the following conditions:

- high mass fraction of noncondensible gas
- low pressure, low temperature and low flow conditions
- local measurement of heat transfer capability along a single tube.

From the above conditions, the data of the local heat transfer coefficient are obtained and the empirical correlation is developed. Additionally, the onset of flooding data is obtained to examine the upper limit of reflux condensation.

The condensation models of the RELAP5/MOD3.2 code are assessed using the present experimental data and a new condensation model is developed to improve the prediction capabilities of RELAP5/MOD3.2.

In Chapter 2, the experimental works are described; test facility, its instruments, test conditions, test results and discussion. The test results include the flooding limit to the reflux condensation, the parametric effects on the heat transfer capability, and the development of an empirical correlation. In Chapter 3, the existing condensation models in the current RELAP5/MOD3.2 code are firstly introduced briefly. The newly developed model is secondly described about its derivation and the application to the reflux condensation. Finally, the assessment results of RELAP5/MOD3.2 for reflux condensation are described. The nodalization is represented and the prediction capabilities of the existing and newly developed models are compared using the present experimental data of reflux condensation. The uncertainty analysis method, the RELAP5/MOD3.2 input deck, and the test data are attached in the Appendices.

## Chapter 2.

## **Reflux Condensation Experiment**

#### 2.1 Objectives of the Present Works.

The objectives of the reflux condensation experiment are as follows:

- Perform an experiment of the reflux condensation heat transfer using the single vertical tube.
- Observe the flooding phenomenon in a vertical tube, and obtain the database of an onset of flooding as the upper limitations of reflux condensation.
- Obtain the database of the local heat transfer coefficients.
- Develop the empirical correlation for heat transfer coefficients using the database.

Local heat transfer coefficients are obtained through the local temperature measurements along the axial direction, which gives the distributions of the heat transfer capability and thus, the effective heat transfer regions by the reflux condensation. It can be the noticeable results that the local quantities of heat transfer in the presence of a noncondensible gas of high mass fraction. Using the data of heat transfer coefficients, an empirical correlation is developed as the function of several nondimensional parameters to show the governing factors of the reflux condensation.

#### 2.2 Previous Works

J.W. Park (1984) carried out several experiments on reflux condensation and flooding limits with the low concentrations of noncondensible gas in pyrex tubes. From his results, the flooding flow rate and heat transfer rate per unit axial area decreased as the air flow rate increases. It was observed that once a tube was flooded, its heat removal capability was much less than that of the tube before flooding. Banerjee et. al. (1981) carried out the experiment of the transition from

the reflux condensation to natural circulation and the behavior of condensing region and liquid column. Also, they performed the theoretical analysis of heat removal and the stability of flow regime. They related the pressure differences between the inlet and the outlet of the tube with the length of a single phase liquid column. According to the study, liquid column was above the reflux condensing region and occurred after flooding. Nguyen and Banerjee (1982) used the inverted U-tube test section that was directly attached to the boiler, and observed various flow patterns and oscillatory behavior. They described the pressure drop of the test section as the parameter representing the flow regimes. Hein et. al. (1982) carried out the experiments using the inverted U-tube made of stainless steel and the saturated secondary coolant pool. They made a few steady states varying the amount of injected nitrogen gas and the secondary saturated temperature. The transition of the active to passive condensing region was observed by measuring the temperature along the axial direction. The active length became short as the amount of injected nitrogen gas increased.

Tien et. al. (1982) performed the 2-D analysis of the condensation in a tube with the Nusselt's film condensation theory and the condensation experiments using the copper tube evaporator that leads to the thermosyphoning and the collapse of liquid column at the head of tube. Wan et. al. (1983) studied the formation of liquid column after flooding using the single long tubes which are different from each other. And the constants, C and m, in Wallis' flooding formula were newly evaluated from the experimental results. The diameter of the tube was considered as an important factor in their study.

Chang et. al. (1983) used four tubes for their experiments and predicted the multi-tube effects according to the fluctuation of liquid column exist. The fluctuation was magnified in the multi-tube to the single tube. The heat removal capability was increased as the inlet pressure increases. Marcolongo (1987) measured the local temperatures and investigated for the reflux condensation and the flooding limit using the inverted U-tube. The experimental flooding results were compared to a few correlations and it was concluded that Wallis' correlation is most similar to the prediction of the experiments. In the range of high pressure ( $55 \sim 105$  bar) the empirical correlation for the heat transfer coefficient was developed using the film Reynolds number. However, the data representing the correlation was insufficient.

Table 2.1 shows the experimental conditions and the test section geometries of the previous works. In summarizing the previous works, three kinds of flow regimes exist as an increase of gas-phase upward flow in a vertical condensation.

(1) Reflux condensation

(2) Flooding and oscillation of liquid column

(3) Natural circulation of liquid

The previous works were mainly interested in the above flow regimes and their transition, and tried to modeling theoretically. These focus also make an agreement with the integral effect test (IET) considering the mid-loop operation. They distinguished the transition points using the amount of pressure drop.

|                            | Test section geometry |               |               |                  | Inlet           |                            | Fraction            | Temperature         |  |
|----------------------------|-----------------------|---------------|---------------|------------------|-----------------|----------------------------|---------------------|---------------------|--|
| Authors                    | Tube<br>material      | Tube<br>shape | Dia.<br>[mm]  | Height<br>[m]    | flow<br>[kg/hr] | NCG                        | or amount<br>of NCG | measuring<br>points |  |
| Park                       | Pyrex                 | U-tube        | 15.5          | 1.90~<br>1.63    | 0.75~<br>3.0    | Air                        | 0.~0.03             | 2<br>(in/mid.)      |  |
| Banerjee &<br>Chang        | Pyrex                 | Vertical      | 17.6          | <sup>-</sup> 4.0 | ~4.8            | Air                        | 0~0.05              | 2<br>(in/out)       |  |
| Nguyen<br>& Banerjee       | Pyrex                 | U-tube        | 16.0          | 2.16             | ~6.1            | Air                        | -                   | 2<br>(in/out)       |  |
| Hein                       | Stainless<br>Steel    | U-tube        | 20.5          | 1.05             | ~3.6            | Injected<br>N <sub>2</sub> | 0.97~<br>3.4g       | Local<br>points     |  |
| Tien                       | Copper                | Vertical      | 20.9/9.5      | 0.9              | 1.7~2.3         | None                       | -                   | 3                   |  |
| Wan &<br>Girard            | Pyrex                 | Vertical      | 12.7~25<br>.4 | 4.0              | 7.0             | None                       | -                   | 8.                  |  |
| Chang &<br>Girard &<br>Wan | Pyrex                 | U-tube        | 12.7          | 1.5              | 18              | None                       | -                   | 2<br>(in/out)       |  |
| This Exp.                  | Stainless<br>Steel    | Vertical      | 19.05         | 2.4              | 1.4~3.3         | Air                        | 0~0.55              | 11                  |  |

Table 2.1 Previous works related to the reflux condensation

\* NCG = noncondensible gas

The reflux condensation was not independently described but considered as one of the flow regimes in countercurrent flow in the previous works. It was due to the SB-LOCA specific phenomena was main interest in the transition of the flow regime. Flow regimes were visually observed using the transparent tubes, e.g. pyrex tube, which makes impossible to measure the local parameter in tube because of the manufacturing problems. Also, small concentrations of noncondensible gas were treated in the previous works. The nitrogen or air was used as a

noncondensible gas, which made a vapor mixture in the ways of the pre-injected condition or the steady flow condition. The concentrations of noncondensible gases in the previous works had small fraction, which were within 10% as a vapor mass fraction unit. In some cases of the previous works, the local temperature measurements along the axial length are found, but this is not to obtain the local heat transfer coefficients but to know the in-tube condition and flow regime.

The present work treats the mixture flow with the large concentrations of the air as the noncondensible gas. Also the major characteristics in this study are to measure the temperatures at eleven local points along the stainless-steel tube such that the local heat transfer coefficient distribution can be obtained.

#### 2.3 Facility and Instruments

A test facility is installed for the reflux condensation experiments. The test facility is composed of two parts. One is the steam-air mixture generation part and the other is the reflux condensation part. The latter includes the main test section. Test section is composed of the vertical tube, the coolant block, lower plenum and upper plenum, which has a geometry of the total length of 3.56m, and the length of effective temperature measurement of 2.4m. Figure 2.1 shows an overall schematic of the test facility.

The steam-air mixture generation part is composed of steam tank, heater, power controller, air line, air pre-heaters and flow mixer. The heater controller having the maximum power of 150kW controls a steam generator. The steam generated from the steam tank and the air from the air line individually flow into the flow mixer and mixed together. Before the air arrives at the flow mixer from the air injection line, two air preheaters heats up the cold air to have a temperature balance with saturated steam. Air preheaters have each power of 3kW and are controlled by the preheater controller. An air flow is measured by the two rotameters having different ranges: 2~201pm, 9.4~941pm. The air rotameters have a measuring errors of  $\pm 2.5\%$ . The steam-air mixture from the mixer flows into the lower plenum in the reflux condensation part. All pipings are 1-inch diameter size in this part. Thermal insulating material is used to cover around the pipes and tanks to lose as low as possible. The droplet separator and the turbinemeter are located on the steam-air mixture line. A droplet generated from the mixture flow rate is

measured by the turbinemeter that has a maximum range of 8.1m3/hr.

The reflux condensation part is composed of vertical tube, coolant block, lower and upper plenum, drain tank, venting line and air-steam separator. K-type 0.5mm-dia. thermocouples are attached on a vertical tube and used to measure the tube centerline temperatures and the outer wall temperatures along the same axial locations. Figure 2.2 shows the position of thermocouples' installation in a vertical tube. The coolant temperatures are also measured at the same positions. The measuring points are located closer to the tube inlet because the capability of heat transfer in this region becomes large. A vertical tube has the geometry of the outer diameter of 0.75" (equal to the U-tube diameter of KSNPP), inner diameter of 16.56 mm and effective length of 2.4m (temperature measuring region). The tube inlet has a shape of sharp edge. The coolant block is installed around the vertical tube and establishes the annular shaped flow of the coolant between the block and the tube. The outer diameter of coolant annulus is 57.15mm. The K-type 0.125" diameter thermocouples to measure the coolant temperature are installed on a coolant region penetrating into the coolant block. Figure 2.3 shows the schematic of the thermocouple attachments on the test section as a top view. Figure 2.4 shows the vertical tube and the coolant block as a side view. For the stable inlet and outlet conditions, the upper and lower plenums are installed at both ends of a vertical tube. They have a shape of  $20 \times 20 \times$ 20cm cubic. The lower plenum has visual windows to observe the falling condensate in tube inlet. The air-steam separator is installed on the venting line for extracting the remaining steam in a vented flow. However, the most amount of inlet steam is condensed on the inner surface of the vertical tube and no noticeable collection of the vented steam observed. Figure 2.5 shows the view from the bottom to the top. In this photograph, the lower plenum is partially shown and the coolant inlet is connected with four coolant injection hose. The thermocouples to measure the coolant temperature are shown on the right side of the vertical test section.

Total 6 pressures, 4 flow rates and 53 temperatures are measured in the reflux condensation experiment. There are two ways in the measurements of data. One is to observe or measure visually, and the other is to measure the electric signals by the measuring instruments. The air flow and coolant flow are measured by reading of the scale marks of rotameters. The steam flow is measured by the turbinemeter. The pressures are measured by the pressure transducers, and all the temperatures are measured by the K-type thermocouples. All data except the air flow rate and the coolant flow rate are collected by the data acquisition system (DAS). The DAS is made by Hewlett-Packard Co. and includes the main-frame (E1421B), MUX module (E1413C), terminal block (64 channels) and so on, and uses the GP-IB interface for communicating with

the IBM 486 PC. The HP-VEE v.3.2 is used as software. The DAS collects 61 data per time interval of  $0.4 \sim 1.0$  second, and displays data on monitor. The tube centerline temperatures are graphically monitored to discriminate the temperature fluctuations by the onset of flooding. Table 2.2 summarizes the instruments on the components of facility and their uncertainties. The sample error analysis for the heat transfer coefficient is represented in Appendix A.

. . .

.

ľ



Figure 2.1 Overall schematic of reflux condensation facility



1

1 E



Figure 2.3 Location of temperature measurements in vertical tube



• •

I F

Figure 2.4 Vertical tube and coolant block



Figure 2.5 Test section of the reflux condensation experiment

| Component                               | Identifier    | Parameter                                      | Instrument                                                                                                     | Uncertainty |  |  |  |  |  |
|-----------------------------------------|---------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Air-Steam Mixture Generation Part (full |               |                                                |                                                                                                                |             |  |  |  |  |  |
| Steam                                   | · PT          | steam tank pressure                            | ABB PT-624 transducer                                                                                          | 0.1%        |  |  |  |  |  |
| Tank                                    | TT            | steam tank temperature                         | K-type T/C 0.125"<br>Max_1000 °C                                                                               | 0.5%        |  |  |  |  |  |
|                                         | PA            | air line pressure                              | PX425-100GV(Omega<br>Co.), 0~100 psig                                                                          | 0.2%        |  |  |  |  |  |
| Air Injection<br>Line                   | TA            | air line temperature                           | K-type T/C 0.125"<br>Max 1000 °C                                                                               | 0.5%        |  |  |  |  |  |
|                                         | FA            | inlet air flow rate                            | Dywer rotameters<br>2-201pm, 20-200SCFH                                                                        | 2%          |  |  |  |  |  |
| Flow Mixer                              | TM2           | air-water mixture<br>temperature on flow mixer | K-type T/C 0.125"<br>Max. 1000 °C                                                                              | 0.5%        |  |  |  |  |  |
| (on loop)                               | FM            | air-water mixture flow rate on turbinemeter    | turbinementer(Sponsler<br>Co.) SP712-2 rev.B 1/2"<br>max. 8.1m <sup>3</sup> /hr                                | 1%          |  |  |  |  |  |
|                                         | TM            | air-water mixture<br>temperature on loop       | 0.5%                                                                                                           |             |  |  |  |  |  |
|                                         | ·····         | Reflux Condensatio                             | n Part                                                                                                         | •           |  |  |  |  |  |
|                                         | TO            | upper plenum temperature                       | K-type T/C 0.062"<br>Max. 1000 °C                                                                              | 0.5%        |  |  |  |  |  |
| Upper Plenum                            | PO            | upper plenum pressure                          | transducer: PX425-100GV<br>(0~6.8)(Omega Co.)<br>gauge: 0~5kgf/cm <sup>2</sup>                                 | 0.2%        |  |  |  |  |  |
|                                         | TI            | lower plenum temperature                       | K-type T/C 0.062"                                                                                              | 0.5%        |  |  |  |  |  |
| Lower<br>Plenum                         | PI            | lower plenum pressure                          | transducer: PT3300/B<br>( $0 \sim 50 \sim 5 \text{kgf/cm}$ )(Konics<br>Co.). gauge: $0 \sim 5 \text{kgf/cm}^2$ | 0.3%        |  |  |  |  |  |
|                                         | TB1<br>~      | air-water mixture bulk<br>temperature in tube  | K-type T/C 0.02"(U)<br>Max. 760 °C                                                                             | 0.5%        |  |  |  |  |  |
| Vertical Tube                           | TB11          | Center                                         |                                                                                                                | <u> </u>    |  |  |  |  |  |
|                                         | TWo1<br>TWo11 | outer wall temperature<br>on vertical tube     | K-type T/C 0.02"(U)<br>Max. 760 °C                                                                             | 0.5%        |  |  |  |  |  |
|                                         | FC            | coolant flow rate                              | Dwyer, rotameter<br>0.5~2.51pm, 0.8~2.2gpm                                                                     | 2%          |  |  |  |  |  |
| Coolant Loop                            | TC1           | _                                              | K-type T/C 0 125"(II)                                                                                          | 0           |  |  |  |  |  |
|                                         | ~<br>TC11     | coolant temperature                            | Max. 760 °C                                                                                                    | 0.5%        |  |  |  |  |  |
| Drain Tank                              | TD            | drain tank temperature                         | K-type T/C 0.062"<br>Max. 1000 °C                                                                              | 0.5%        |  |  |  |  |  |
|                                         | PD            | drain tank pressure                            | pressure gauge<br>0~5 kgf/cm <sup>2</sup>                                                                      | 2%          |  |  |  |  |  |
| Vented<br>Air-Water<br>Separator        | FV            | vented air flow rate                           | Dwyer, rotameter<br>10~100lpm                                                                                  | 2%          |  |  |  |  |  |
|                                         | TV            | separator temperature                          | K-type T/C 0.062"<br>Max. 1000 °C                                                                              | 0.5%        |  |  |  |  |  |
|                                         | PV            | separator pressure                             | pressure gauge<br>0~1.5kgf/cm <sup>2</sup>                                                                     | 2%          |  |  |  |  |  |

Table 2.2 Instruments on the components of facility with measurement uncertainty

I

#### 2.4 Data Reduction Methods

#### 2.4.1 Local heat transfer coefficients

The calculation of the local heat transfer coefficients requires the measurement of the temperatures at the tube centerline  $(T_b)$ , the tube outer wall  $(T_{w,o})$ , and the coolant  $(T_c)$ . These three temperatures are all measured along the 11 axial points. Therefore, total 33 measurements of temperature are performed to obtain local heat transfer coefficients. In data reduction process, the inner wall temperature and the heat flux can be also calculated.

Data reduction for heat transfer coefficients is first developed from the basic heat balance concept. The heat loss by the reflux condensation from the inside of a vertical tube is transferred to the secondary side of coolant annulus through the unit tube wall area, which is the same as the heat gain by the increase of coolant temperature. This heat balance is expressed mathematically as follows:

$$q''(x)dA = \dot{m}_c C_p dT_c \tag{2-1}$$

where the q''(x) is the heat flux flowing out through a unit wall area by the condensation of steam in the mixture and  $\dot{m}_c$  is the coolant flow rate. If the coolant flow rate and the coolant temperature are known the local heat flux can be calculated using the following relationship:

$$q''(x) = \dot{m}_{c}C_{p}\frac{dT_{c}(x)}{dA} = \frac{\dot{m}_{c}C_{p}}{\pi d}\frac{dT_{c}(x)}{dL}$$
(2-2)

where the L is the axial length of interval where the adjacent two coolant temperatures are measured. The tube inner wall temperature can be calculated by the calculated heat flux and the measured outer wall temperature:

$$T_{w,i}(x) = T_{w,o}(x) + q''(x) \cdot R$$
(2-3)

$$R = \frac{\ln(D_o/D_i)D_h}{\pi k_{sus}}$$
(2-4)

where  $D_h$  is the hydraulic diameter and  $k_{sus}$  is the thermal conductivity of stainless-steel 304 as a material of vertical tube. Finally, the local heat transfer coefficient can be obtained through the heat flux divided by the difference between the tube centerline temperature and the inner wall temperature.

$$h(x) = \frac{q''(x)}{(T_b(x) - T_{w,i}(x))}$$
(2-5)

#### 2.4.2 Local steam and condensate flow rates

The turbinemeter is used for measuring the steam-air mixture flow rate. However, the flow data from the turbinemeter installed on the inlet piping has some different value from the actual flow rate at tube inlet because of the heat loss in the region from the steam piping to the inlet plenum and of the falling liquid condensate. The actual flow rate can be also obtained using the local temperature data. Actual flow rate by data reduction is calculated, as results, it has a little lower value than the measured flow rate by turbinemeter.

As a results of experiment, it was found that most of the steam is condensed through the inside of vertical tube. Therefore, the amount of inlet steam flow should be the same as the amount of falling condensate at tube inlet. The inlet steam flow rate is obtained as follows:

$$\dot{m}_{s,in} = \frac{\dot{m}_c C_p (T_c(L) - T_c(0))}{i_{fg}},$$
(2-6)

where L is the temperature measuring point of tube exit, and the  $i_{fg}$  denotes the latent heat of the steam. To obtain the local data for the steam flow rate  $(\dot{m}_c(x))$  and the condensate flow rate  $(\dot{m}_f(x))$ , the following parameters are defined in the reduction process:

- local condensing flow rate  $(\dot{m}_{cl})$ : the amount of condensation in a specified local interval
- local condensate flow rate  $(\dot{m}_f)$ : the amount of condensate flow at a local position
- accumulated condensing flow rate  $(m_{ca})$ : the amount of condensation in the interval from inlet to the specified position

Local condensing flow rate in specified interval (i) is known as follows:

$$\dot{m}_{cl}(i) = \frac{\dot{m}_c C_p[T_c(i+1) - T_c(i)]}{i_{fg}}.$$
(2-7)

The local steam flow rate  $(\dot{m}_s)$  is the value of the inlet steam flow rate subtracted from the accumulated condensing flow rate  $(\dot{m}_{ca})$  at the local point of x. Figure 2.6 shows the concept of nodes for calculating the local condensing or condensate amounts, where x and i represent the temperature measuring point and the number of interval between x and x+1, respectively.

The accumulated condensing flow rate at a position x is estimated as follows:

$$\dot{m}_{ca}(x) = \frac{\dot{m}_c C_p \left( T_c(x) - T_c(0) \right)}{i_{fg}} = \sum_{i=1}^{x-1} \dot{m}_{ci}(i).$$
(2-8)

Then the local steam flow rate can be obtained as follows:

$$\dot{m}_{s}(x) = \dot{m}_{s,init} - \dot{m}_{ca}(x).$$
 (2-9)

The local condensate flow rate  $(\dot{m}_f)$  represents the actual amount of condensate at x. In reflux condensation, the steam upward flow makes the countercurrent flow with the condensate downward flow. Therefore, the condensing flow rate  $(\dot{m}_{ca})$  is different from the condensate flow rate  $(\dot{m}_f)$ . Here,  $\dot{m}_f(x)$  is the sum of the local condensing flow rate from x to L and is also the accumulated condensing flow rate from 0 to L subtracted from that from 0 to x:

$$\dot{m}_f(x) = \sum_{i=x}^{L-1} \dot{m}_{ci}(i) = \dot{m}_{ca}(L) - \dot{m}_{ca}(x).$$
(2-10)

By Equation (2-9), the accumulated flow rate is obtained as follows:

$$\dot{m}_{ca}(x) = \dot{m}_{s,in} - \dot{m}_s(x),$$
 (2-11)

$$\dot{m}_{ca}(L) = \dot{m}_{s,in} - \dot{m}_s(L) = \dot{m}_{s,in}.$$
 (2-12)

Substituting the above equation into Equation (2-10), the condensate flow rate at x is obtained as follows:

$$\dot{m}_{f}(x) = \dot{m}_{ca}(L) - \dot{m}_{ca}(x) = \dot{m}_{s,in} - [\dot{m}_{s,in} - \dot{m}_{s}(x)] = \dot{m}_{s}(x).$$
(2-13)

The inlet flow rate of air is constant along the channel when it is flowing through the tube because of its noncondensability.

$$\dot{m}_a(x) = \dot{m}_{a,in} = \dot{m}_a \tag{2-14}$$

Moreover, the local air mass fraction can be obtained as follows:

$$W_{air}(x) = \frac{\dot{m}_{a(x)}}{\dot{m}_{s}(x) + \dot{m}_{a}(x)} = \frac{\dot{m}_{a}}{\dot{m}_{s}(x) + \dot{m}_{a}}.$$
 (2-15)



Figure 2.6 Locations of temperature measurements to calculate the local condensing flow

1

I ľ

#### 2.5 Results and discussion

#### 2.5.1 Experimental Conditions

In the present experiment, 29 sets of data with variations of three main parameters are obtained and each sets have 11 data at local points. Table 2.3 represents the experimental ranges. Table 2.4 represents 29 data set of a reflux condensation experiment performed under various main parameters as a test matrix form. Total 165 of local data are available for deriving the correlation of the heat transfer coefficients, which are selected from 6 sets at 2.5 bar, 7 sets at 1.5 bar and 16 sets at 1.0-bar. Two sets at 1 bar are the cases of the inlet pure steam in the absence of the air injection.

The experimental ranges of the system pressure, the inlet steam flow rate, and the inlet air mass fraction are  $1 \sim 2.5$  bar,  $1.348 \sim 3.282$  kg/hr and  $11.8 \sim 55.0$  %, respectively. The inlet steam is all condensed in a vertical tube. Therefore, the amount of vented air is the same as that of injection.

Figure 2.7 shows the domain of the test conditions with respect to the inlet steam flow rate and the inlet air mass fraction. In the figure, upper and lower limit are also plotted, which represent the flooding limit proposed by Wallis (1969) and the measured range of turbinemeter, respectively. The data has a somewhat dispersed distribution because the desired data on flow rates and air mass fractions cannot be obtained as expected due to the difficulty in the control of the low flow condition.

Inlet steam is completely condensed on the inner surface of a vertical tube. The length of the active condensing region is approximately estimated to be within 1.865 m considering the local heat transfer coefficients and the temperature profiles. After the active region, it is called as the passive region, where the temperature gradients almost become zero. In reflux condensation, most of condensates smoothly flow down along the tube wall and the very small portion of the condensates falls directly. The local data used to the correlation development are attached in Appendix C.

| Parameter | Units | Conditions            | Remarks                 |
|-----------|-------|-----------------------|-------------------------|
| FS        | kg/hr | 1.348~3.282           | inlet steam flow rate   |
| FA        | kg/hr | 0,0.551~2.443         | inlet air flow rate     |
| FM        | kg/hr | 1.875~4.443           | inlet mixture flow rate |
| Р         | bar   | 1, 1.5, 2.5 (approx.) | system pressure         |
| AMF       | %     | 0, 11.8~55.0          | inlet air mass fraction |
| FC        | kg/s  | 0.0250~0.0630         | coolant flow rate       |





Figure 2.7 Experimental domain in terms of air mass fraction and inlet steam flow rate

1

N 8 2 3

| I.D. | FS<br>[kg/hr] | AMF [%] | FA<br>[kg/hr] | FM<br>[kg/hr] | Press<br>[kPa] | FC<br>[Kg/s] | TC1  | Max. HF | Max.<br>HTC |
|------|---------------|---------|---------------|---------------|----------------|--------------|------|---------|-------------|
| RA01 | 3.282         | 18.4    | 0.742         | 4.023         | 265.3          | 0.0333       | 11.1 | 115032  | 2382        |
| RA02 | 2.591         | 23.7    | 0.804         | 3.395         | 266.0          | 0.0504       | 21.5 | 81136   | 1738        |
| RA03 | 2.525         | 37.9    | 1.538         | 4.062         | 258.2          | 0.0333       | 9.9  | 51074   | 1044        |
| RA04 | 2.384         | 25.2    | 0.804         | 3.187         | 254.5          | 0.0504       | 23.7 | 38719   | 763         |
| RA05 | 2.357         | 44.0    | 1.850         | 4.207         | 260.0          | 0.0333       | 10.0 | 35701   | 709         |
| RA06 | 2.000         | 55.0    | 2.443         | 4.443         | 263.3          | 0.0333       | 10.0 | 25908   | 526         |
| RB01 | 2.448         | 24.5    | 0.796         | 3.244         | 157.2          | 0.0333       | 8.8  | 45126   | 1104        |
| RB02 | 2.436         | 37.0    | 1.430         | 3.866         | 155.5          | 0.0333       | 8.7  | 40224   | 1024        |
| RB03 | 1.985         | 41.4    | 1.403         | 3.388         | 152.0          | 0.0630       | 22.9 | 23195   | 736         |
| RB04 | 1.967         | 21.9    | 0.551         | 2.518         | 156.5          | 0.0250       | 7.0  | 44897   | 1137        |
| RB05 | 1.694         | 48.2    | 1.577         | 3.270         | 156.1          | 0.0250       | 6.5  | 25911   | 624         |
| RB06 | 1.561         | 26.1    | 0.551         | 2.112         | 156.3          | 0.0250       | 6.7  | 25956   | 545         |
| RB07 | 1.560         | 47.8    | 1.426         | 2.986         | 155.4          | 0.0333       | 8.8  | 21752   | 473         |
| RC01 | 2.703         | 11.8    | 0.361         | 3.064         | 107.6          | 0.0333       | 12.0 | 56820   | 2231        |
| RC02 | 2.287         | 29.1    | 0.938         | 3.225         | 107.4          | 0.0333       | 11.5 | 39285   | 1243        |
| RC03 | 2.232         | 18.5    | 0.506         | 2.738         | 108.4          | 0.0333       | 11.6 | 39448   | 1243        |
| RC04 | 2.119         | 16.9    | 0.432         | 2.550         | 106.9          | 0.0333       | 11.6 | 39316   | 1185        |
| RC05 | 2.077         | 12.1    | 0.285         | 2.362         | 104.0          | 0.0504       | 20.1 | 37194   | 2091        |
| RC06 | 2.046         | 12.2    | 0.285         | 2.331         | 104.0          | 0.0630       | 19.1 | 23800   | 805         |
| RC07 | 1.916         | 26.0    | 0.672         | 2.588         | 107.0          | 0.0630       | 18.0 | 34596   | 1115        |
| RC08 | 1.887         | 42.5    | 1.394         | 3.280         | 116.2          | 0.0333       | 11.2 | 22714   | 784         |
| RC09 | 1.875         | 0.0     | 0.000         | 1.875         | 108.6          | 0.0263       | 13.8 | 121382  | 5645        |
| RC10 | 1.618         | 46.3    | 1.392         | 3.010         | 116.1          | 0.0333       | 10.5 | 21666   | 597         |
| RC11 | 1.584         | 18.9    | 0.369         | 1.953         | 107.0          | 0.0630       | 18.1 | 40089   | 1149        |
| RC12 | 1.535         | 47.3    | 1.380         | 2.915         | 109.4          | 0.0333       | 10.8 | 27529   | 837         |
| RC13 | 1.504         | 41.8    | 1.081         | 2.585         | 105.4          | 0.0250       | 6.5  | 22245   | 632         |
| RC14 | 1.379         | 34.3    | 0.720         | 2.099         | 105.4          | 0.0250       | 6.9  | 23560   | 582         |
| RC15 | 1.367         | 29.7    | 0.576         | 1.943         | 107.0          | 0.0333       | 15.6 | 40872   | 1272        |
| RC16 | 1.348         | 0.0     | 0.000         | 1.348         | 107.3          | 0.0250       | 14.2 | 92803   | 3971        |

Table 2.4 Test matrix for reflux condensation

FS : inlet steam flow rate

FA : inlet air flow rate

HF : heat flux

TC1 : inlet coolant temperature

FM : steam-air mixture flow rate

FC : coolant flow rate

HTC : heat transfer coefficient
#### 2.5.2. Limitation of the reflux condensation

The reflux condensation has an upper limit. When the upward flow rises over the upper limit, the condensate becomes unstable and falls with perturbation. This phenomenon is no more 'reflux' flow regime. This upper limit is called 'flooding' and the flow regime changes beyond the flooding. The flooding itself is an important phenomenon in countercurrent flow and gives a limitation of the reflux condensation. Therefore, the experimental study of the onset of flooding is investigated. As a result, it was found that the onset of flooding occurs at lower upward flow rate when compared to the Wallis' correlation in geometric conditions of the sharp edge and the inner diameter of 16.56mm.

The flooding discrimination in the previous works depends on the visual observation of the transparent pyrex tube. In the present work, it is impossible to observe visually due to the use of a stainless steel tube for temperature sensor installation. Instead, the severe oscillation of the tube centerline temperature is regarded as a discrimination criterion of the onset of flooding. It is based on that the slugging or bridging of the cold condensate by the flooding cause a sudden and intermittent drop of the tube centerline temperature, and that the oscillation of the temperature can be discernable.

Figure 2.8 shows the oscillations of the temperature due to flooding as the stepwise increase of upward flow. Table 2.5 shows the flooding results.  $j_g^*$  and  $j_f^*$  represent the nondimensional superficial velocities of the steam-air mixture and the condensate, respectively. The condensate flow rate is dependent on the inlet steam flow rate because the injected steam is condensed and becomes condensate. Therefore, the distributions of data points are in the limited range of  $j_f^*$ . The values of constant C in the Wallis' correlation are 0.6383~0.7034 in the experiments, which is lower than 0.725 suggested by Wallis (See Figure 2.9). The experimental flooding data also covers a wide range of the air mass fraction. The subsequent study of the effects of the air mass fraction may be useful.

Table 2.5 Experimental data of flooding

| FS    | FM    | AMF   | Pressure<br>[kPa] | $j_f^*$ | $j_g^*$ | $j_{f}^{*^{1/2}}$ | $j_{g}^{*^{1/2}}$ | $j_{g,Wallis}^{*1/2}$ | C by<br>experiment |
|-------|-------|-------|-------------------|---------|---------|-------------------|-------------------|-----------------------|--------------------|
| 2.474 | 2.854 | 0.133 | 107               | 0.00828 | 0.3586  | 0.0910            | 0.5988            | 0.6340                | 0.6898             |
| 2.452 | 3.476 | 0.295 | 151               | 0.00816 | 0.3758  | 0.0903            | 0.6130            | 0.6347                | 0.7034             |
| 3.047 | 3.886 | 0.216 | 261               | 0.01031 | 0.3405  | 0.1015            | 0.5836            | 0.6235                | 0.6851             |
| 1.259 | 3.400 | 0.630 | 111               | 0.00415 | 0.3759  | 0.0644            | 0.6131            | 0.6606                | 0.6775             |
| 2.111 | 2.481 | 0.370 | 109               | 0.00700 | 0.3076  | 0.0837            | 0.5546            | 0.6413                | 0.6383             |

FS: inlet steam flow rate [kg/hr]

FM: inlet mixture flow rate [kg/hr] AMF:

air mass fraction



Figure 2.8 Oscillation of tube centerline temperature due to the flooding



Figure 2.9 Experimental results of flooding limit and comparison with Wallis' correlation

### 2.5.3 Parametric Effects on the Heat Transfer Coefficients

The parametric effects in the reflux condensation are experimentally investigated that the heat transfer coefficient increases with an increase in the system pressure and in the inlet steam flow rate, and decreases with an increase in the inlet air mass fraction. The active condensing lengths are roughly estimated by the curves of the heat transfer coefficient or the temperature profiles along the axial direction. The active region is enlarged or contracted according to each condition of the increase of the air mass fraction and of the system pressure.

Figures 2.10 and 2.11 show the effects of the presence and the absence of the air in the inlet flow on the temperature distributions. In case of pure steam in-flow, the injected steam is all condensed near the tube inlet and the tube centerline temperatures suddenly fall off. Instead of a short active condensing region, the heat transfer occurs intensively in this region. In case of an

inlet steam-air mixture flow, the active condensing region is enlarged in the case of the air presence, which means the decrease of heat transfer capability by the presence of noncondensible gas in this region.

Figure 2.12 shows the effects of the air mass fraction. The heat transfer coefficients in the absence of the air are larger values than those in the presence of the air, which means the air plays a role of the heat transfer resistance. For the different air mass fractions (11.8~55%), the experimental results also confirm the effect of noncondensible gases on the heat transfer coefficients. As air mass fraction increases in a high concentration range, the heat transfer coefficient decreases near the tube inlet.

Figure 2.13 shows the effect of the inlet steam flow rate. An increase of steam flow causes the overall increase of the local temperatures. The local heat transfer coefficients increase over the entire active region with an increase in steam flow rate.

Figure 2.14 shows the effect of the pressure. With an increase in pressure, the active condensing region becomes shorter and the heat transfer capability is increased within this region. The distribution of heat transfer coefficients is shifted and concentrated toward the tube inlet, but its capability over the entire active region is not changed.

Therefore, it can be found that the decay power affecting the steam generation and the amount of generated noncondensible gases may be the important factors in determining the capability of heat removal through the U-tubes.



Figure 2.10 Temperature distribution in the absence of air



Figure 2.11 Temperature distribution in the presence of air



Figure 2.12 Effect of air mass fraction on heat transfer coefficient



Figure 2.13 Effect of inlet steam flow rate on heat transfer coefficient



Figure 2.14 Effect of system pressure on heat transfer coefficient

#### 2.5.4. Development of a new empirical correlation

In a vertical flow with condensation, the total heat transfer coefficient  $(h_{tot})$  can be separated into the heat transfer coefficient of film side  $(h_f)$  and the heat transfer coefficient of steam-air mixture side  $(h_g)$  with respect to two phases, and is separated into the convective  $(h_{conv})$  and condensation  $(h_{cond})$  heat transfer coefficients with respect to the heat transfer mechanisms. The nondimensional parameters related to  $h_{conv}$  are  $\operatorname{Re}_g$ ,  $\operatorname{Pr}_g$  and  $h_{cond}$  can be expressed in terms of  $\operatorname{Re}_g$ ,  $\operatorname{Re}_f$ ,  $W_{air}$  and Ja.

The degradation factor (F) is suggested for the nondimensionalization of the local heat transfer coefficients. The F represents the relative factor of the wall condensation heat transfer coefficient with noncondensible gases to that without them. F is defined as the ratio of  $h_{tot}/h_f$  where  $h_{tot}$  is  $q''/(T_b - T_{w,i})$  and  $h_f$  is  $q''/(T_f - T_{w,i})$ .  $T_f$  is a temperature at the interface between the film layer and the mixture layer. The value of  $h_f$  may be expressed as  $k_f/\delta$  according to Nusselt's classical film condensation theory (1916).  $k_f$  is thermal conductivity and  $\delta$  is a film thickness as follows:

$$\delta = \left[\frac{3\mu_f^2 \operatorname{Re}_f}{4\rho_f (\rho_f - \rho_g)g}\right]^{1/3}$$
(2-16)

The degradation factor is developed as a function of 4 nondimensional parameters; the steam-air mixture Reynolds number and the film Reynolds number ( $\text{Re}_g$  and  $\text{Re}_f$ ), the Jacob number (Ja), and the local air mass fraction ( $W_{air}$ ). The Prandtl number is excluded because its effects are negligible in the present experimental condition. The least square method for multi-variables is numerically used for correlation development.

The local data in the active condensing region among the entire region are selected for developing correlation. The empirical correlation using 165 data of the local heat transfer coefficients is produced as follows:

$$F = \frac{h_{tot}}{h_f} = 2.58 \times 10^{-4} \operatorname{Re}_g^{0.200} \operatorname{Re}_f^{0.502} Ja^{-0.642} W_{air}^{-0.244}$$
(2-17)

where, 
$$6119 < \text{Re}_g < 66586$$
 (2-18)

$$0.140 < W_{air} < 0.972 \tag{2-19}$$

$$0.03 < Ja < 0.125$$
 (2-20)

$$1.2 < \text{Re}_f < 166.6$$
 (2-21)

From this correlation, the variation of F ranging from 0.0153 to 0.3301 demonstrates that the heat transfer is severely degraded by the presence of the air. The degradation factor also decreases along the axial length. This correlation represents the reflux condensation heat transfer in the active condensing region in conditions of the low flow, low pressure and low temperature. Jacob number is the most dominant parameter: the temperature difference between the tube centerline and the inner wall is very important to heat transfer. Film Reynolds number is secondly dominant. This means that the degradation of heat transfer is low in the region of the large temperature difference and the thick condensate film. The film thickness ranges from  $3.07 \times 10^{-5}$  to  $1.19 \times 10^{-4}$  m. The root mean square error of the present correlation is 17.7 % compared with the experimental results.

Figures 2.15 and 2.16 show the comparisons of the  $h_{tot}$  results from the experiment and that from the correlation in linear-scale and log-scale. The difference between data from the correlation and the experiment is nearly same irrespective of the vertical location.



Figure 2.15 Comparison of the local heat transfer coefficients between experiment and correlation (linear-scale)



Figure 2.16 Comparison of the local heat transfer coefficients between experiment and correlation (log-scale)

# Chapter 3.

# Assessment of Condensation Models in RELAP5/MOD3.2

## 3.1. Condensation Models in the RELAP5/MOD3.2 Code

The RELAP5/MOD3.2 code is used to analyze nuclear power plant transients and loss-of-coolant accidents. Many heat transfer correlations in RELAP5/MOD3.2 are known to have many uncertainties. In particular, there is no reliable model for condensation phenomena with noncondensible gases in a vertical tube. The RELAP5/MOD3.2 condensation models can be categorized into two groups. One is wall heat transfer, which occurs when the wall comes in contact with a two-phase mixture through condensation, and the other is interfacial heat transfer, which occurs through an assumed interface as a result of differences in the bulk temperature of the liquid and vapor phases [6].

Two wall film condensation models, the default and the alternative, are used in RELAP5/MOD3.2. For an inclined surface, the Nusselt-Shah-Colburn-Hougen correlations are used as the default model, and the Nusselt-University of California-Berkeley (UCB) correlations are used as the alternative model for the wall film condensation. The default model uses Nusselt's and Shah's maxima, with Colburn-Hougen's diffusion calculation when noncondensible gases are present. The alternative model is the Nusselt model with UCB multipliers, which is revised to include the effects of interfacial shear and the presence of noncondensible gas in a vertical tube.

The detailed description of the condensation models in the standard RELAP5/MOD3.2 code are discussed in the authors' previous report [29].

## 3.2. New Condensation Model - Non-Iterative Model

1

A reference mechanistic model of vertical in-tube condensation in the original

RELAP5/MOD3.2 code, which was an iterative method, was developed for steam condensation in the presence of a noncondensible gas in a vertical tube. A non-iterative model is developed based on the reference mechanistic model to enhance its applicability to the code, which does not need iteration to find the temperature and pressure at the liquid-gas interface. The condensation heat transfer coefficient can be expressed in terms of non-dimensional bulk parameters without using any interfacial data.

In the presence of noncondensible gases the iterative model has been widely used, which was related to the heat and mass transfer analogy. The iterative model is newly developed to include the following effects:

- The high mass transfer effect by condensation;
- The entrance effect of test section;
- · The interfacial waviness effect.

The non-iterative model is newly developed which includes the advantages of the above new iterative model. The non-iterative model also includes the assumption that the steam mass fraction and temperature of mixture gas have the same distribution in a gas mixture boundary layer, and the Nusselt number for condensation is derived with several mathematical derivations.

The Nusselt number for condensation is expressed as a function of air mass fraction, Jacob number, Stanton number for mass transfer, gas mixture Reynolds number, gas mixture Prandtl number and film Nusselt number on condensate surface. As a new condensation model the non-iterative model is presented.

#### 3.2.1. Reference Modeling of Vertical In-Tube Condensation

Total heat flux can be obtained as the following:

$$q_t'' = h_t \cdot (T_b - T_w) \tag{3-1}$$

where the total heat transfer coefficient,  $h_{i}$ , is divided into the condensate film side heat transfer coefficient,  $h_{f}$ , and the mixture side heat transfer coefficient,  $h_{g}$ , which is composed of convective and condensation terms,  $h_{cv}$  and  $h_{cd}$ , respectively.

$$\frac{1}{h_t} = \frac{1}{h_f} + \frac{1}{h_g} = \frac{1}{h_f} + \frac{1}{h_{cd} + h_{cv}}$$
(3-2)

Equation (3-2) is based on the assumption that the mixture and the condensate film are at saturated state, the radiation heat transfer can be negligible, and the condensation and the sensible heat transfer rate can be calculated simultaneously using the heat and mass transfer analogy. The condensate film thickness is calculated using Munoz-Cobo et. al.(1996)'s approximate method with its accuracy and simplicity, and the condensate film heat transfer coefficient,  $h_f$ , is calculated with Blangetti et. al.(1982)'s film model. The steam -gas mixture side heat transfer coefficients,  $h_{cd}$  and  $h_{cv}$ , are calculated using the momentum, heat and mass transfer coefficient can be expressed with the mass transfer rate as follows:

$$h_{cd} \cdot (T_b - T_i) = m_v'' \cdot (i_{g,b} - i_{f,i})$$
(3-3)

where  $i_{g,b}$  is the bulk enthalpy and  $i_{f,i}$  is the liquid enthalpy at the interface. The mass transfer rate  $m_v''$  is expressed as follows:

$$m_{v}'' = -g \cdot \frac{W_{v,i} - W_{v,b}}{1 - W_{v,i}} = -g \cdot B$$
(3-4)

where g is the mass transfer conductance, B is mass transfer driving force, and  $W_{v,b}$  are the steam mass fraction of the steam at the interface and at the tube centerline, respectively.

From Equations (3-3) and (3-4), the condensation heat transfer coefficient,  $h_{cd}$ , can be derived.

$$h_{cd} = g \cdot \frac{i_{g,b} - i_{f,i}}{1 - W_{v,i}} \cdot \frac{W_{v,i} - W_{v,b}}{T_i - T_b}$$
(3-5)

The convective heat transfer,  $h_{cv}$ , in Equation (3-2) and mass transfer conductance, g, in Equation (3-5) can be calculated together using the heat and mass transfer analogy.

$$St = \frac{h_{cv}}{\rho_s u_g} = \frac{Nu}{\operatorname{Re}_g \operatorname{Pr}_g}$$
(3-6)

$$St_{AB} = \frac{g}{\rho_g u_g} = \frac{Sh}{\operatorname{Re}_g Sc_g}$$
(3-7)

where St and  $St_{AB}$  are Stanton numbers for heat transfer and mass transfer, respectively, and. Sh and Sc are Sherwood number and Schmidt number, respectively. There are several methods to calculate the Stanton number, St. Gnielinski(1976)'s calculation method can be used

for smooth tubes and Dipprey and Sabersky(1963)'s calculation method can be used for rough tubes, which is applied to the present model.

For Stanton number for heat transfer,

$$St = \frac{C_f / 2}{1.0 + \sqrt{C_f / 2} \cdot \left( 5.19 \left[ \operatorname{Re}_g \cdot \sqrt{C_f / 2} \cdot \varepsilon_s / D \right]^{0.2} \cdot \operatorname{Pr}^{0.44} - 8.48 \right)},$$
(3-8)

where  $\mathcal{E}_s$  is defined as follows:

$$\mathcal{E}_{s} / D = e^{3.0 - 0.4 / \sqrt{C_{f} / 2}},$$
 (3-9)

As the heat transfer coefficient strongly depends on the interfacial shear stress, it is very much important to adopt the appropriate interfacial friction factor. The friction factor,  $C_f$ , is calculated using Wallis(1969)'s correlation for the interfacial friction factor in the vertical annular flow as follows:

$$C_{f}/2 = C_{f,s}/2 \cdot \left(1 + 300 \cdot \frac{\delta}{D}\right)$$
 (3-10)

where  $C_{f,s}$  is the friction factor for the smooth tube and  $\delta$  is the film thickness.

Using the heat and mass transfer analogy, the Stanton number for mass transfer,  $St_{AB}$ , is calculated similarly.

$$St_{AB} = \frac{C_f / 2}{1.0 + \sqrt{C_f / 2} \cdot \left(5.19 \left[ \operatorname{Re}_g \cdot \sqrt{C_f / 2} \cdot \varepsilon_s / D \right]^{0.2} \cdot Sc^{0.44} - 8.48 \right)}$$
(3-11)

. .

where Sc is Schmidt number. The high mass transfer effect is also considered. The Stanton number with blowing,  $St_{AB,b}$ , can be expressed with the Stanton number for no transpiration,  $St_{AB,0}$ , and the blowing parameter,  $b_h$ :

$$St_{AB} = St_{AB,0} \cdot \frac{b_h}{e^{b_h} - 1},$$
 (3-12)

where  $b_h$  is the alternative heat transfer blowing parameter, which has explicit relation for  $St_{AB,0}$  rather than the implicit equation.  $b_h$  is theoretically derived and it can be expressed with several nondimensional parameters as follows:

$$b_{h} = \frac{m_{v}'/G_{\infty}}{St_{AB,0}}$$

$$= -\frac{Ja}{St_{AB,0}} \cdot \Pr_{g} \cdot \operatorname{Re}_{g} \cdot \frac{Nu_{f}}{\left[Nu_{f} + \left(Nu_{cd} + Nu_{cv}\right) \cdot k_{g} / k_{f}\right]}$$
(3-13)

where  $m_{\nu}''$  is the mass transfer rate of the vapor,  $G_{\infty}$  is the mass flux of the free stream and Ja is Jacob number.

The entrance effect on heat transfer should also be considered. For short tubes, where the region of fully developed flow is a small percentage of the total length, the local value of the Nusselt number of uniform velocity and temperature profile in the entrance region is given based on the experimental data for gas (Bonilla, 1964).

$$Nu_e = 1.5 \cdot \left[\frac{x}{D}\right]^{-0.16} \cdot Nu_0, \quad for \quad 1 < \frac{x}{D} < 12$$
 (3-14)

and

$$Nu_e = Nu_0, \quad for \quad \frac{x}{D} > 12 \tag{3-15}$$

where  $Nu_0$  is the Nusselt number which the entrance effect is not considered.

#### 3.2.2. Solution Scheme of Non-Iterative Model

Based on the description above, the condensation heat transfer coefficient can be determined without any liquid-gas interface information such as the interface temperature. The condensate film heat transfer coefficient,  $h_f$ , can be calculated by the empirical correlation, and both convective and condensation heat transfer coefficients,  $h_{cv}$  and  $h_{cd}$ , can be calculated by the analogy between heat and mass transfer without using the interface temperature,  $T_i$ .

From the energy balance, the amount of heat transferred by the condensing vapor to the liquid-vapor interface through the steam-noncondensible gas mixture boundary layer is equal to that transferred through the condensate film. The heat flux through the condensate film layer is calculated by

$$q_{f}'' = h_{f} \cdot (T_{i} - T_{w}). \tag{3-16}$$

The heat flux through the mixture boundary layer is

$$q_{\nu}'' = (h_{cd} + h_{c\nu}) \cdot (T_b - T_i).$$
(3-17)

The heat fluxes are balanced at the interface.

$$h_{f} \cdot (T_{i} - T_{w}) = (h_{cd} + h_{cv}) \cdot (T_{b} - T_{i}), \qquad (3-18)$$

and

$$(h_f + h_{cd} + h_{cv}) \cdot (T_b - T_i) = h_f \cdot (T_b - T_w).$$
(3-19)

Using the Equations (3-18) and (3-19), the temperature difference between the bulk and the interface is expressed with the temperature difference between the bulk and the condensing wall.

$$T_{b} - T_{i} = \frac{h_{f}}{h_{cd} + h_{cv}} \cdot (T_{i} - T_{w}) = \frac{h_{f}}{h_{f} + h_{cd} + h_{cv}} \cdot (T_{b} - T_{w})$$
(3-20)

The mass fraction of steam at the interface,  $W_{v,i}$ , can be expressed in terms of the bulk mass fraction of steam,  $W_{v,b}$ , by Taylor expansion.

$$W_{\nu,i} = W_{\nu,b} + \frac{\partial W_{\nu}}{\partial T} \bigg|_{b} \cdot (T_{i} - T_{b}) + \frac{\partial W_{\nu}}{\partial T} \bigg|_{b}^{2} \cdot (T_{i} - T_{b})^{2} + \dots$$
(3-21)

Equation (3-21) can be approximated by taking the first order differential term only. The properties of temperature and concentration are assumed to be changed proportionally in the gas mixture boundary layer. This is another expression of heat and mass transfer analogy. The terms of  $W_{\nu,i} - W_{\nu,b}$  and  $1 - W_{\nu,i}$  can be calculated as follows:

$$W_{\nu,i} - W_{\nu,b} \approx \frac{\partial W_{\nu}}{\partial T} \bigg|_{b} \cdot (T_{i} - T_{b}),$$
 (3-22)

$$1 - W_{v,i} \approx 1 - W_{v,b} - \frac{\partial W_v}{\partial T} \bigg]_b \cdot (T_i - T_b)$$
  
= 
$$1 - W_{v,b} + \frac{h_f}{h_f + h_{cd} + h_{cv}} \cdot (T_b - T_w) \cdot \frac{\partial W_v}{\partial T} \bigg]_b,$$
 (3-23)

and using these two equations, the Equation (3-5) can be expressed as follows:

$$h_{cd} = g \cdot i_{fg} \cdot \frac{\partial W_v / \partial T]_b}{1 - W_{v,b} + h_f / (h_f + h_{cd} + h_{cv}) \cdot (T_b - T_w) \cdot (\partial W_v / \partial T]_b)}.$$
 (3-24)

When Equation (3-24) is rearranged, a simple quadratic equation for the condensation heat transfer coefficient,  $h_{cd}$ , is derived as follows:

$$A \cdot h_{cd}^2 + B \cdot h_{cd} + C = 0, \qquad (3-25)$$

where

$$A = 1 - W_{v,b},$$
 (3-26)

$$B = (h_f + h_{cv}) \cdot (1 - W_{v,b}) + \left[h_f \cdot (T_b - T_w) - g \cdot i_{fg}\right] \cdot \frac{\partial W_v}{\partial T} \bigg]_b, \qquad (3-27)$$

and

$$C = -g \cdot i_{fg} \cdot (h_f + h_{cv}) \cdot \frac{\partial W_v}{\partial T} \bigg]_b.$$
(3-28)

If the unknown variable,  $\partial W_v / \partial T]_b$ , is constant, calculated solutions should be exact. The term  $\partial W_v / \partial T$  can be determined as follows: The vapor mole fraction and the vapor mass fraction is expressed in terms of the pressure ratio as follows:

$$X_{v} = P_{v} / P_{t}, \qquad (3-29)$$

where  $P_{\nu}$  and  $P_{tot}$  are vapor partial and total pressures, respectively, and

$$W_{v} = \frac{M_{v} \cdot P_{v} / P_{t}}{M_{g} \cdot (1 - P_{v} / P_{t}) + M_{v} \cdot P_{v} / P_{t}}.$$
(3-30)

The partial differentiation of vapor mass fraction with respect to temperature is derived and approximated to be expressed with the bulk properties using the Clausius-Clapeyron equation as follows:

$$\frac{\partial W_{\nu}}{\partial T} = \frac{\partial W_{\nu}}{\partial P_{\nu}} \cdot \frac{\partial P_{\nu}}{\partial T} = \frac{1}{P_{\iota}} \cdot N_{A} \cdot \frac{\partial P_{\nu}}{\partial T} \approx \frac{i_{fg} \rho_{\nu}}{P_{\iota} T} \cdot N_{A}$$
(3-31)

where

$$N_{A} = \frac{M_{v} \cdot M_{g}}{\left[M_{g} \cdot (1 - X_{v}) + M_{v} \cdot X_{v}\right]^{2}}.$$
(3-32)

Using the Equations (3-31) and (3-32), the coefficients, B and C, in Equations (3-27) and (3-28) can be rewritten as follows:

$$B = H_1 \cdot A + H_2 \cdot B_{2T} - B_{3T} \tag{3-33}$$

and

$$C = -H_1 \cdot B_{3T} \tag{3-34}$$

where

1

$$H_1 = h_f + h_{cv}, (3-35)$$

$$H_2 = h_f, \qquad (3-36)$$

Ē

$$B_{2T} = (i_{fg} \cdot \rho_v) / (P_t \cdot T) \cdot (T_b - T_w) \cdot N_A$$
(3-37)

and

$$B_{3T} = (g \cdot i_{fg}^2 \cdot \rho_v) \cdot (P_t \cdot T) \cdot N_A.$$
(3-38)

As the coefficients A and C are always positive and negative, respectively, Equation (3.25) has the following unique positive solution:

$$h_{cd} = \frac{-B + |B| \cdot \sqrt{1 - 4AC / B^2}}{2A}.$$
 (3-39)

Equation (3-39) can be nondimensionalized using Equations (3-26), (3-33) and (3-34) as follows:

$$Nu_{cd} = \frac{1}{2} \frac{k_f}{k_g} \frac{Nu_f}{div1} \cdot \left[ -div + \left| div \right| \cdot \sqrt{1 + 4 \cdot \frac{div1 \cdot div3}{div^2}} \right], \tag{3-40}$$

where

$$div = div1 + div2 + div3, \tag{3-41}$$

$$div1 = N_B \cdot P_A, \tag{3-42}$$

$$div2 = Ja, \tag{3-43}$$

and

$$div3 = 1/Nu_f \cdot k_g / k_f \cdot \Pr_g \cdot St_{AB} \cdot \operatorname{Re}_g.$$
(3-44)

The nondimensional parameters in Equations (3-40) through (3-44) are defined as follows:

$$W_{g,b} = 1 - W_{v,b}; \tag{3-45}$$

$$X_{g,b} = 1 - X_{v,b}; (3-46)$$

$$Nu_{cd} = h_{cd} D_h / k_g;$$
 (3-47)

$$Nu_f = h_f D_h / k_f; aga{3-48}$$

$$St_{AB} = g / \rho_g u_g; \tag{3-49}$$

$$\operatorname{Re}_{g} = \rho_{g} u_{g} D_{h} / \mu_{g}; \qquad (3-50)$$

$$\Pr_g = C_{p_g} \mu_g / k_g; \qquad (3-51)$$

$$P_{A} = P_{t}^{2} / (\rho_{v}^{2} - i_{fg}^{2}) \cdot C_{p_{g}} / R_{v}; \qquad (3-52)$$

$$N_{B} = X_{g,b} \cdot (1 - X_{g,b}) \cdot [1 + X_{g,b} \cdot (M_{g} / M_{v} - 1)].$$
(3-53)

As the term div is always positive and the second term in the square root of Equation (3-40) is a very small value compared with 1, the square root term of Equation (3-40) can be expanded and approximated from the expansion of the Taylor series as follows:

$$\sqrt{1+y} \approx 1 + \frac{1}{2}y, \qquad (3-54)$$

where

$$y = 4 \cdot (1 + h_{cv} / h_f) \cdot \frac{div 1 \cdot div 3}{div^2}.$$
 (3-55)

Using the approximation of Equation (3-54), Equation (3-40) can be simplified as follows:

$$Nu_{cd} = \left(1 + \frac{h_{cv}}{h_f}\right) \cdot \frac{\Pr_g \cdot St_{AB} \cdot \operatorname{Re}_g}{N_B \cdot P_A + Ja - \Pr_g \cdot St_{AB} \cdot \operatorname{Re}_g \cdot \frac{1}{Nu_f} \cdot \frac{k_g}{k_f}}.$$
 (3-56)

 $St_{AB}$  and  $h_{cv}$  in Equation (3-40) are corrected to consider the effects of high mass transfer and entrance using Equation (3-12) and Equations (3-14) and (3-15), respectively. As the convective heat transfer coefficient,  $h_{cv}$ , is negligibly small compared with the film side heat transfer coefficient,  $h_f$ , Equation (3-56) can be further simplified as follows:

$$Nu_{cd} = \frac{\Pr_{g} \cdot St_{AB} \cdot \operatorname{Re}_{g}}{N_{B} \cdot P_{A} + Ja - \Pr_{g} \cdot St_{AB} \cdot \operatorname{Re}_{g} \cdot \frac{1}{Nu_{f}} \cdot \frac{k_{g}}{k_{f}}}.$$
(3-57)

Now, the Nusselt number for condensation can be calculated by those parameters of  $St_{AB}$ ,  $\operatorname{Re}_{g}$ ,  $\operatorname{Pr}_{g}$ ,  $Nu_{f}$ ,  $k_{g}/k_{f}$ , Ja,  $N_{B}$ , and  $P_{A}$ . Several nondimensional parameters used in Equation (3-57) are parameters used in empirical correlations proposed by several investigators, e.g., Kuhn (1995), Araki et. al. (1995), Hasanein et. al. (1994), Vierow (1990), Vierow and Schrock (1991), and Siddique et. al. (1993).

## 3.3. Calculation Procedures of the Modified Model

The calculation procedures are explained in Figures 3.1 and 3.2 for the reference model and the present non-iterative model, respectively. The default model of the original RELAP5/MOD3.2 code also has an iterative solution scheme similar to the reference model. Calculation procedures are quite different between the reference model and the non-iterative model. The reference model separately calculates the heat flux through the liquid film and through the mixture boundary layer with an assumed interface temperature. It needs iteration to get reasonable heat transfer coefficients by modifying the interface temperature until the heat fluxes converge within a specified accuracy. The reference model separately calculates the heat flux through the liquid film and through the air-vapor boundary layer.



Figure 3.1 Calculation procedure of reference iterative model



Figure 3.2 Calculation procedure of the present non-iterative model: the modified model

# **3.4. Simulation of Reflux Condensation Experiments**

The RELAP5 calculation is performed for the experiments discussed in Chapter 2. The simulation results by two wall-film condensation models of the RELAP5/MOD3.2 code and the modified condensation model are compared with the experimental data.

#### 3.4.1. RELAP5/MOD3.2 Nodalization

Figure 3.3 shows the nodalization scheme of RELAP5/MOD3.2 for the reflux condensation experiments. The present RELAP5/MOD3.2 nodalization used for this simulation contains 43 control volumes, 10 junctions, a valve and a heat structure.

The steam-air mixture is injected upward into the riser part of the U-tube of steam generator as boundary conditions at various air mass fractions and steam flow rates. Both the steam-air mixture and the coolant are injected at constant flow rates upward into the condensing tube and into the annulus of the coolant jacket, respectively. In the RELAP5/MOD3.2 calculation, this behavior is simulated using a time-dependent volume and a time-dependent junction to specify flow and pressure boundary conditions. Time-dependent volumes acting as infinite sources or sinks are used to represent boundary conditions both for the steam-noncondensible gas mixture flow in a condensing tube and for the coolant flow in a coolant jacket.

For the simulation of the coolant jacket, two time-dependent volumes 200 and 280 are connected to the annulus 240 via a time-dependent junction 210 and a single junction 270. Similarly, for the simulation of the test section, two time-dependent volumes 100 and 180, a time-dependent junction 105 and a single junction 165 are also used. A pipe volume 130 is used to simulate an upper plenum and three pipe volumes 150, 160 and 157 are used to simulate a lower plenum, a drain tank and a connecting pipe between the lower plenum and the drain tank, respectively. The above three pipes are connected using single junctions 155, 156 and 158. A valve 175 is used to regulate the venting of the mixture of the residual steam and the noncondensible gas. A heat structure 140 with 11 sub-volumes is used to represent the heat transferred from the steam-noncondensible gas mixture to the coolant through the condensing tube.

#### 3.4.2. Base Case Calculation

Four reflux condensation experiments are simulated using the RELAP5/MOD3.2 code. Before 200 sec, the steady state conditions are achieved. Their steady state test conditions are listed in Table 3.1.

| I.D. | T <sub>sat</sub><br>[°C] | AMF   | P <sub>tot</sub><br>[kPa] | FS<br>[kg/h] | FA<br>[kg/h] |
|------|--------------------------|-------|---------------------------|--------------|--------------|
| RC16 | 101.6                    | 0     | 107.3                     | 1.35         | 0            |
| RC13 | 91.0                     | 0.418 | 105.4                     | 1.50         | 1.08         |
| RC02 | 95.3                     | 0.291 | 107.4                     | 2.29         | 0.94         |
| RA02 | 123.7                    | 0.237 | 266.0                     | 2.59         | 0.80         |

Table 3.1 Steady state test conditions of reflux condensation experiments

Two tests of RC16 and RC13 have different inlet air mass fractions under the similar inlet saturated steam temperatures and inlet steam flow rates. Two tests of RC02 and RA02 have different inlet saturated steam temperatures under the similar air mass fractions and inlet steam flow rates. The calculated local heat transfer coefficients are compared for the tests with different air mass fractions and different system pressures or inlet saturated steam temperatures. Therefore, the effects of inlet air mass fraction and of inlet saturated steam temperature on the local heat transfer coefficient can be investigated through the comparison of those tests.

Figures 3.4 through 3.7 show the local heat transfer coefficients along the tube length for the reflux condensation experiments RC16, RC13, RC02, and RA02, respectively.

Figure 3.4 shows that the modified model gives accurate prediction over the experimental data along the test section. However, both the default model and the alternative model of the RELAP5/MOD3.2 code give much higher predictions than the experimental heat transfer coefficient in the entrance region of the test section.

Figure 3.5 shows the simulation results of experiment RC13 with high inlet air mass fraction. The calculated heat transfer coefficient from the default model is always lower than the experimental data, while the calculated one from the alternative model is always higher than the experimental data. The heat transfer coefficient calculated from the modified model shows reasonable agreement with the experimental data in the entrance region.

Figures 3.6 and 3.7 shows the simulation results with different inlet steam temperatures. The

calculated heat transfer coefficients from the modified model are always between two predictions from the alternative and the default models in RELAP5/MOD3.2, and they show good agreement with the experimental data throughout the condensing tube.

In the atmospheric conditions (RC16, RC13, RC02), the under-predictions of the default model become larger as the air mass fraction increases. With the increased system pressure (RA02), the non-iterative model better predicts the experimental data, while the default model under-predicts the experimental data.

From the aforementioned simulation results, we conclude that the local heat transfer coefficients are well predicted with the modified RELAP5/MOD3.2 code but they are under-predicted by the default model and over-predicted by the alternative model. Also the modified RELAP5/MOD3.2 code better predicts the experimentally obtained active condensing region and its length than the original codes.

#### 3.4.3. Run Statistics

1

The computer used in the calculation is a Pentium III personal computer with Window 98 operating system. The random access memory is 128Mbyte and the clock speed of CPU is 500Mhz. The CPU time, the time step size, and the grind time are compared between three calculation results. Table 3.2 shows the required CPU time and the grind time for the base case calculation of RC02.

| Condensation model<br>used | Node<br>number | Problem<br>time<br>(second) | CPU time<br>(second) | Number of<br>time step | Grind time |
|----------------------------|----------------|-----------------------------|----------------------|------------------------|------------|
| Default model              | 41             | 200                         | 5485.3               | 25519                  | 5.00       |
| Alternative model          | 41             | 200                         | 2235.4               | 14526                  | 3.58       |
| Modified model             | 41             | 200                         | 2753.7               | 12866                  | 4.98       |

Table 3.2 The CPU time and the grind time of experiment RC02

Figure 3.8 shows the required CPU times with respect to the real problem time for the base calculation of RC02. The required CPU times increase linearly for three calculation results,

except for the initial transient situation. The default model needs the highest CPU time and the alternative model needs the lowest. The modified model needs lower CPU time than the default model and slightly higher CPU time than the alternative model except for the initial transient situation.

Figures 3.9 through 3.11 show the time step sizes with respect to the real problem time for the default model, the alternative model and the modified model, respectively. The time step sizes of the default model are 0.00781 sec except for the initial 0.0156 sec. The time step sizes of the alternative model fluctuate between 0.00781 sec and 0.0156 sec during the initial transient situation and they become 0.0156 sec after the problem time becomes approximately 40sec. The time step sizes of the modified model are 0.00781 sec except for the initial 0.00781 sec.

The grind time is expressed as follows:

Grind time = 
$$\frac{CPU \times 10^3}{C \times \Delta T}$$
 (3-58)

where CPU is the CPU time, C is the total number of model volumes, and  $\Delta T$  is the number of time steps. The grind times are 5.00, 3.58 and 4.98 for the default model, the alternative model and the modified model, respectively. The grind time of the modified model is slightly lower than that of the default model but it is 28.1% higher than that of the alternative model.



Figure 3.3 RELAP5/MOD3.2 nodalization for reflux condensation experiment

.

I



Figure 3.4 Heat transfer coefficients of reflux condensation: #RC16



Figure 3.5 Heat transfer coefficients of reflux condensation: #RC13

T

ſ



Figure 3.6 Heat transfer coefficients of reflux condensation: #RC02



Figure 3.7 Heat transfer coefficients of reflux condensation: #RA02

ł

ľ



Figure 3.8 Comparison of required CPU times of three condensation models



.....

ſ

Figure 3.9 Time step sizes of the default condensation model



Figure 3.10 Time step sizes of the alternative condensation model



Figure 3.11 Time step sizes of the modified condensation model

1

1 [

# Chapter 4.

# **Conclusions and Recommendations**

The reflux condensation experiment in the presence of noncondensible gas is performed. The flooding limit to the reflux condensation is firstly obtained in several air mass fractions. 29 data sets of the heat transfer coefficients are obtained, which represent the characteristics of several parametric effects. The empirical correlation is developed using total 165 local data of the heat transfer coefficients, where the degradation factor, F is described as a function of four nondimensional parameters.

The standard frozen RELAP5/MOD3.2 code is assessed for the existing two condensation heat transfer models. Also a new non-iterative condensation model is developed and implemented into the RELAP5/MOD3.2 code, and the result of the new model is compared to the experimental data and the code results for the two existing condensation models of the standard RELAP5/MOD3.2 code.

From the above studies of the experiments and the code analysis, the conclusions are listed as follows:

- The onset of flooding in conditions of the reflux condensation is lower than that of Wallis' correlation. It may be resulted from the condensation effect on the film interface and the presence of noncondensible gas.
- The heat transfer coefficients are affected by several parameters. The heat transfer capability in the presence of noncondensible gas is dramatically decreased. For the range of air mass fraction of 10~55 %, the heat transfer coefficient is decreased with an increase of the air mass fraction. As the pressure increases, the heat transfer capability is enhanced near the tube inlet. As the steam flow rate increases, the local heat transfer coefficients are all increased in the active condensing region.
- The empirical correlation is developed using four nondimensional parameters. The Jacob number and the film Reynolds number are dominant parameters. However, the effect of the
mixture gas Reynolds number is relatively low. The correlation covers the local heat transfer coefficients for the active condensing region up to about 1.5m from the tube inlet.

- The existing condensation models in the standard RELAP5/MOD3.2 code are assessed for the reflux condensation. It shows that the default model under-predicts and the alternative model over-predicts the experimental data, respectively. The under-prediction of the default model becomes larger as the air mass fraction increases in the atmospheric conditions.
- A non-iterative model is newly developed to be implemented into RELAP5/MOD3.2. The non-iterative model predicts better the experimental data than the existing default model and alternative model. It has good predictability especially in high pressure conditions.
- The flooding data are obtained in the condition of the reflux condensation with noncondensible gas, but is not enough to represent the effect of the air mass fraction on flooding. The effects of detailed noncondensible gas on the flooding limit may be useful as part of the CCFL study. In this report, the experiment is performed about reflux condensation before the onset of flooding. After flooding, the liquid column is formed and the reflux condensation also occurs below the liquid column. The characteristics of the reflux condensation may be different according to the conditions with or without the liquid column.
- The local heat transfer data, especially with high air mass fraction, are comprehensively obtained for reflux condensation and an empirical correlation is developed. With its simplicity and mechanistic modeling, the non-iterative model can be used to improve the condensation models in the presence of noncondensible gases in various thermal hydraulic codes.

# Bibliography

- Araki, H., Kataoka, Y. and Murase, M, "Measurement of Condensation Heat Transfer Coefficient inside a Vertical Tube in the Presence of Noncondensible Gas," J. of Nuclear Science and Technology, Vol. 32, No.6, pp.517-526, June 1995.
- [2] Banerjee, S, Chang, J.S., Girard, R. and Krishnan, V.S., "Reflux Condensation and Transition to Natural Circulation in a Vertical U-tube", ASME Winter Annual Meeting, Washington D.C., Nov. 15-20 1981.
- [3] Blangetti, F., Kerbs, R. and Schlunder, E.U., "Condensation in Vertical Tubes -Experimental Results and Modeling," Chemical Engineering Fundamentals, Vol.1, No. 2, pp.20-63, 1982.
- [4] Bonilla, C.F., "Heat Transfer," New York: Interscience, 1964.
- [5] Chang, J.S., Girard, R., Revankar, S. and Wan, P.T., "Heat Removal Capability of Steam Generators under Reflux Cooling Modes in a CANDU-PHT System," 4th Canadian Nuclear Soc. Conf., 1983.
- [6] Choi, K.Y., Park, H.S., Kim, S.J., NO, H.C., and Bang, Y.S., "Assessment and Improvement of Condensation Models in RELAP5/MOD3.2," Nuclear Technology, Vol.124, No.2, p.103-117, 1998.
- [7] Colburn, A.P. and Hougen, O.A., "Design of Cooler Condensers for Mixtures of Vapors with Non-condensing Gases," Industrial and Engineering Chemistry, Vol.26, No.11, p.1178, 1934.
- [8] Collier, J.G. and Thome, J.R., "Convective Boiling and Condensation", 3rd Edition, Oxford university press, 1994.
- [9] Dipprey, D.F. and Sabersky, R.H., "Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers," Int. J. Heat Mass Transfer, vol.6, pp.329-353, 1963.
- [10] Dittus, F.W. and Boelter, L.M, "Heat Transfer in Automobile Radiators of the Tubular Type," Publications in Engineering, U.C.B., Vol.2, p.443, 1930.
- [11] Dumont, D., Lavialle, G., Noel, B. and Deruaz, R., "Loss of Residual Heat Removal during Mid-loop Operation : BETHSY Experiments," Nuclear Eng. and Design, Vol.149, pp.365-3374, 1994.
- [12] El-Wakil, "Nuclear Heat Transport", McGraw-Hill, 1978
- [13] Girard, R., and Chang, J.S., "Reflux Condensation Phenomena in Single Vertical Tubes," Int. J. of Heat Mass Transfer, Vol.35, No.9, pp.2203-2218, 1992.
- [14] Gnielinski, V., "New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," Int. Chem. Eng., Vol.16, No.2, pp.359-368, 1976.
- [15] Hassanein, H.A., Golay, M.W. and Kazimi, M.S., "Steam Condensation in the Presence of Noncondensable Gases under Forced Convection Conditions," MIT-ANP-TR-024: M.I.T., 1994.
- [16] Hassan, Y.A. and Raja, L.L., "Analysis of Experiments for Steam Condensation in the

Presence of Noncondensable Gases using the RELAP5/MOD3 Code," Nuclear Technology, Vol.104, p.76, 1993.

- [17] Hein, D., Rippel, R., Weiss, P., "The Distribution of Gas in a U-tube Heat Exchanger and its Influence on the Condensation Process", Proc. 7th Int. Heat Transfer Conf., 1982.
- [18] Kageyama, T., Peterson, P.F. and Schrock, V.E., "Diffusion Layer Modeling for Condensation in Vertical Tubes with Noncondensable Gases," Nuclear Engineering and Design, Vol.141, pp.289-302, 1993.
- [19] Kays, W.H. and Leung, E.Y., "Heat transfer in annular passages-hydrodynamically developed turbulent flow with arbitrarily prescribed heat flux," Int. J. Heat Mass Transfer, Vol.6, p.537, 1963.
- [20] Kuhn, S.Z., "Investigation of Heat Transfer from Condensing Steam-Gas Mixtures and Turbulent Films Flowing Downward Inside a Vertical Tube," Ph.D. thesis, M.I.T., 1995.
- [21] Lee, C.H., Liu, T.J., Way, Y.S. and Hsia, D.Y., "Investigation of Mid-loop Operation with Loss of RHR at INER Integral System Test (IIST) Facility," Nuclear Eng. and Design, Vol.163, pp.349-358, 1996.
- [22] Mills, A.F., "Heat and Mass Transfer," Richard D. IRWIN Inc., UCLA, 1995.
- [23] Munoz-Cobo, J.L., Herranz, L., Sancho, J., Tkachenko, I. and Verdu, G., "Turbulent Vapor Condensation with Noncondensable Gases in Vertical Tubes," Int. J. Heat Mass Transfer, Vol.39, No.15, pp.3249-3260, 1996.
- [24] Nakamura, H., Anoda, Y. and Kukita, Y., "Loss of Residual Heat Removal(RHR) during PWR Mid-loop Operation : Experiments in ROSA-IV/LSTF," Int. Topical Meeting "Safety of Thermal Reactors" of ANS Nuclear Reactor Safety Division, USA, July 21-25, 1991.
- [25] Nguyen, Q. and Banerjee, S., "Flow Regimes and Removal Mechanisms in a Single Inverted U-tube Steam Condenser", ANS Trans. Vol.43, 1982.
- [26] NO, H.C., "Iterative and Non-Iterative Condensation Models for Steam Condensation with Noncondensable Gas in a Vertical Tube," Proc. of NTHAS: First Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety, p.313, 1998.
- [27] Noel, -B. and Deruaz, R., "Reflux Condensation with Nitrogen in Steam Generator U-tubes Analysis of BETHSY Test 7.2c Using CATHARE Code," 3rd Int. Symposium on Multiphase Flow and Heat Trasfer, XI'AN, China, Sept. 19-21, 1994.
- [28] Nusselt, W.A., "The Surface Condensation of Water Vapor," Z. Ver. Deutsch. Ing., Vol.60, pp.541-546, 1916.
- [29] Park, H.S., NO, H.C. and Bang, Y.S., "Assessment of RELAP5/MOD3.2 for Steam Condensation Experiments in the Presence of Noncondensables in a Vertical Tube of PCCS", USNRC, NUREG/IA-0147, 1998.
- [30] Park, H.S. and NO, H.C., "A Condensation Experiment in the Presence of Noncondensables in a Vertical Tube of PCCS and Its Assessment with RELAP5/MOD3.2," Nuclear Technology, Vol.127, pp.160-169, 1999.
- [31] Park, J.W., "An Experimental Investigation of Condensation Phenomena In A Vertical U-tube With and Without Noncondensible Gas," M.S. Thesis, Dept. of Nuclear Engineering, Korea Advanced Institute of Science and Technology, 1984.
- [32] Peterson, P.F., Schrock, V.E. and Kageyama, T., "Diffusion Layer Theory for Turbulent

Vapor Condensation with Noncondensable Gases," J. Heat Transfer, Trans. of ASME, Vol.115, pp.998-1003, 1993.

- [33] Ransom, V.H., Trapp, J.A., and Wagner, R.J., "RELAP5/MOD3 Code Manual, Volume IV: Models and Correlations," USNRC NUREG/CR-5535, INEL-95/0174, INEL, June 1995.
- [34] Shah, M.M., "A General Correlation for Heat Transfer during Film Condensation Inside Pipes," Int. J. Heat Mass Transfer, Vol.22, pp.547-556, 1979.
- [35] Siddique, M., Golay, M.W. and Kazimi, M.S., "Local Heat Transfer Coefficients for Force-Convection Condensation of Steam in a Vertical Tube in the Presence of a Noncondensible Gas," Nuclear Technology, Vol.102, pp.386-402, June 1993.
- [36] Siddique, M., Golay, M.W. and Kazimi, M.S., "Theoretical Modeling of Forced Convection Condensation of Steam in a Vertical Tube in the Presence of a Noncondensable Gas," Nuclear technology, Vol.106, pp.202-214, 1994.
- [37] Tien, C.L., Fukano, T., Hijikata, K., and Chen, S.J., "Reflux Condensation and Operation Limits of Countercurrent Vapor-Liquid Flows in a Closed Tube," EPRI/NP2648, Nov. 1982.
- [38] Venugopalan, D., Girard, R. and Kirkaldy, J.S., "Optimal Staionary States in Thermalhydraulics : Total Reflux Condensation," Canadian J. of Chemical Eng., Vol. 70, Aug, 1992.
- [39] Vierow, K.M. and Schrock, V.E., "Condensation in a Natural Circulation Loop with Noncondensable Gases: Part I - Heat Transfer," Proc. of the Int. Conf. on Multiphase Flows '91, pp.183-186, 1991.
- [40] Vierow, K.M., "Behavior of Steam-Air Systems Condensing in Concurrent Vertical downflow," M.S. Thesis, U.C.B., 1990.
- [41] Wallis, G.B., "One-dimensional Two-phase Flow", McGraw-Hill Book Co., 1969
- [42] Wan, P.T., Girard, R., and Chang, J.S., "The Role of Flooding Phenomena in Reflux Condensation in a Vertical Inverted U-tube," 3rd Multiphase Flow and Heat Transfer Symposium Workshop, April 1983.

## Appendices

#### Appendix A. Uncertainty Analysis of the Reflux Condensation Experiment

Sample error analysis for the heat transfer coefficient are performed as follows:

The local heat transfer coefficient is defined as

$$h(x) = \frac{q''(x)}{(T_b - T_{w,i})}$$
(A-1)

By the above equation, the total error of heat transfer coefficient is expressed as the composite error in partially differentiated terms.

$$\sigma_{h}^{2} = \left(\frac{\partial h}{\partial q''}\sigma_{q'}\right)^{2} + \left(\frac{\partial h}{\partial (T_{b} - T_{w,i})}\sigma_{(T_{b} - T_{w,i})}\right)^{2}$$
(A-2)

where  $T_b$  is directly measured and h and q'' are calculated from the measured parameters. The measured parameter has a measurement error and the calculated parameter has a composite error. Differentiating Equation (A-1) partially with respect to q'' and  $(T_b - T_{w,i})$ , and substituting into the Equation (A-2), we obtain

$$\frac{\sigma_h}{h} = \left[ \left( \frac{\sigma_{q'}}{q''} \right)^2 + \left( \frac{\sigma_{(T_b - T_{w,i})}}{(T_b - T_{w,i})} \right)^2 \right]^{\frac{1}{2}}$$
(A-3)

1

The heat flux is given as the following:

1

$$q''(x) = \frac{\dot{m}_c C_p}{\pi d} \frac{dT_c}{dL}(x) \tag{A-4}$$

In the similar derivation with the above Equation (A-3), the relative error for heat flux is obtained as the following:

$$\frac{\sigma_{q'}}{q''} = \left[ \left( \frac{\sigma_{\dot{m}_c}}{\dot{m}_c} \right)^2 + \left( \frac{\sigma_{(dT_c/dL)}}{(dT_c/dL)} \right)^2 \right]^{\frac{1}{2}}$$
(A-5)

The tube inner wall temperature is given as the heat flux and the tube outer wall temperature.

$$T_{w,i} = q''(x) \cdot R + T_{w,o} \tag{A-6}$$

The error for  $(T_b - T_{w,i})$  is obtained as follows:

$$\sigma_{T_{w,i}} = \left[ \left( \frac{\partial T_{w,i}}{\partial q''} \sigma_{q'} \right)^2 + \left( \frac{\partial T_{w,i}}{\partial T_{w,o}} \sigma_{T_{w,o}} \right)^2 \right]^{\frac{1}{2}}$$

$$= \left( (R\sigma_{q'})^2 + (\sigma_{T_{w,o}})^2 \right)^{\frac{1}{2}}$$
(A-7)

$$\sigma_{(T_b - T_{w_i})} = (\sigma_{T_b}^2 + (R\sigma_{q'})^2 + \sigma_{T_{w_o}}^2)^{\frac{1}{2}}$$
(A-8)

The error of measuring parameter is given by the instrument error. The flowmeter accuracy is within  $\pm 2.5\%$  of the full scale reading.

$$\sigma_{\dot{m}_{c}} = 0.025 \, \dot{m}_{c} \, (\text{full scale}) \tag{A-9}$$

All temperatures in test section are measured by the K-type thermocouples whose error limits are 1 °C. The minimum temperature difference between the surface inner wall and mixture bulk is 7.2 °C. The coolant temperature gradient,  $(dT_c/dL)$ , is within 10% maximum.

$$\sigma_{T_b} = \sigma_{T_{w_j}} = \sigma_{T_{w_o}} = \sigma_{T_c} = 1.0 \tag{A-10}$$

$$(T_b - T_{w,i}) = 7.2 \tag{A-11}$$

$$\sigma_{(dT_c/dL)} = 0.1 \left( \frac{dT_c}{dL} \right) \tag{A-12}$$

The maximum heat flux from experiment is 115,023 W/m<sup>2</sup> and the relative error from Equation (A-5) is 0.103. Therefore the heat flux error of  $\sigma_q$  is 11,848.

The temperature difference error of  $\sigma_{(T_b-T_{wi})}$  is 1.7619. Finally, the relative maximum error for heat transfer coefficient is as the following:

$$\left(\frac{\sigma_h}{h}\right)_{\max} = 0.266 \tag{A-13}$$

### Appendix B. Input Deck for Reflux Condensation Experiment: #RC11

=RELAP5/MOD3.2 Simulation

| *****           | *****              | *****                                               |
|-----------------|--------------------|-----------------------------------------------------|
| *               | Re                 | flux Condensation in the presence                   |
| *               | of                 | noncondensible gas in a Vertical Tube               |
| * Test          | t #RC11            | Reflux condensation experiment                      |
| * stea          | m-air m            | ixture, countercurrent                              |
| * Ptot<br>* Wa  | ≔0.100)<br>in–0.00 | Apa, Isal=90.3C,<br>044kg/s air mass fraction=18.9% |
| * D=0           | 0.01656            | L=2.4m                                              |
| *               |                    |                                                     |
| *               | experir            | nented by Young Min Moon                            |
| * >1            | coded l            | Y HSPARK                                            |
| * INOV<br>***** | · 9. 195<br>****** | 0<br>************************************           |
| *               |                    |                                                     |
| *               |                    |                                                     |
| *****           | ******             | *****                                               |
| * m             | iscellan           | eous control cards                                  |
| *               |                    |                                                     |
| *               |                    |                                                     |
| 100             | new                | transnt                                             |
| 101             | run                |                                                     |
| *               | 10                 | 20                                                  |
| 105             | 10.<br>air         | 20.                                                 |
| *               | an                 | ,                                                   |
| *               |                    |                                                     |
| ****            | *****              | *****                                               |
| * tim           | e step ca          | rds<br>*********                                    |
| *               |                    |                                                     |
| * oris          | zinal tin          | e step                                              |
| *C              | end                | min.st max ctrl minor major rstplt                  |
| 203             | 200.               | 1.0e-8 0.5 3 2500 10000 10000                       |
| *201            | 50.0               | 1.0e-7 0.05 3 100 1000 1000                         |
| *               | 50.0               |                                                     |
| *               |                    |                                                     |
| *min            | or edito           | cards                                               |
| *               | aip                | num min max                                         |
| 301             | voidg              | 140020000 0.99 1.0                                  |
| 302             | voidg              | 140030000 0.99 1.0                                  |
| *               |                    |                                                     |
| 306             | p 14               | 0020000 0. 10.e5                                    |
| 301             | velai              | 140020000 0 50                                      |
| 302             | velgi              | 140030000 0. 5.0                                    |
| *               | ·                  |                                                     |
| 310             | quala              | 140020000 0. 1.0                                    |
| 311             | quala              | 140050000 0. 1.0                                    |
| 313             | quala              | 140070000 0 1.0                                     |
| 314             | quala              | 140090000 0. 1.0                                    |
| 315             | quala              | 140110000 0. 1.0                                    |
| *               | -<br>Lala-         | 140000100 0.0 1 44                                  |
| 341             | hthto              | 140000100 0.0 1.04<br>140000200 0.0 1.e4            |
| 343             | hthte              | 140000300 0.0 1.e4                                  |
| 344             | hthtc              | 140000400 0.0 1.e4                                  |
| 345             | hthtc              | 140000500 0.0 1.e4                                  |
| 346             | hthtc              | 14000000 0.0 1.04                                   |
| 541<br>348      | bthto              | 140000700 0.0 1.04<br>140000800 0.0 1.e4            |
| 349             | hthtc              | 140000900 0.0 1.e4                                  |

1

```
\frac{140001000}{140001100}
                                                       0.0 1.e4
0.0 1.e4
350
             hthtc
351
*
             hthtc
365
             htrnr
                               140000100
                                                           -1.e6 0.0
                 *****
* trip logic
********
             502
                                                                                   0.0
                                                                                    -1.0
 506
                                                                                                       0
 508
                                                                                     0.8
                                                                                                n
 ******
* component 100 : S/G using time dependent volume
* name type

1000000 tdv100 tmdpvol

* area length vol x angle elev rough dhydr vflag

1000101 2.0 2.0 0.0 0.0 0.0 0.0 1.e-4 0.0 00000

* noncondensible gas(air)
 *
 * cntrl
1000200 004
 * var pressure temp. eq.quality
1000201 0.0 0.106e6 0.37065e3 1.0
*
                                              . ..
 *
                                                           * component 105 : Steam flow initiation in kg/s
* component 105 . count 12

* name type

1050000 tdj105 tmdpjun

* from to area

* ccc000000 cccvv000n

1050101 100000000 110010001 0.00051

* crttl trin
* cntrl trip
1050200 1 502

        *
        var waterflow steamflow

        1050201
        -1.0
        0.0
        0.00044

        1050202
        0
        0.0
        0.00044

                                                             interface vel.
                                                                0.0
                                                               0.0
 * component 110 : single volume near mixture inlet
* name
1100000
                    type
sv110 snglvol

        sv110
        sngivor

        length
        vol
        x
        angl

        0.00051
        0.2
        0.0
        0.0

        rough
        dh
        vflag

        0.00
        1.e-4
        0.0
        0000

        pressure
        temp.
        003
        0.106e6
        0.37065e3

* area
1100101
* elev
1100102
                                                                   angle
                                                                            0.
                                                                  00000
* cntrl
1100200
 * component 115 : single volume to lower plenum
* component 115 : single volume to lower plenum

* name type

1150000 sj115 sngljun

* from to areav kforw kbackw jflag

1150101 110010002 150010001 0.00051 11.783 7.608 0001000

* cntrl waterflow steamflow x

1150201 1 0.0 0.00044 0.0
* component 130 : upper plenum
* name type
1300000 pipe130
* nv
1300001 3
                                          pipe
* area nv
1300101 0.04 3
* length vn
1300301 0.06 1
1300302 0.08 2
```

-65-

1300303 0.06 3 \* volume nv 1300401 0.0 3 1300401 0.0 3 \* angle nv 1300601 -90.0 3 \* rough dhydr 1300801 1.e-4 0.0 \* vflag nv 1301001 00000 3 nv 3 \* iflag nj 1301101 000000 2 \* cntrl pressure temp. 1301201 004 0.106e6 1301202 004 0.106e6 eq.quality 0.37065e3 0.37065e3 vn 0.0 0.0 1 2 3 1.0 0.0 0.0 0.0 0.0 1.Ŏ 1301203 004 0.106e6 0.37065e3 1.0 \* cntrl 1301300 1 waterflow steamflow int.vel 301 0.0 0.00044 0.0 nj 2 1301301 0.0 \* component 135 : upper plenum to condensing tube \* name type 1580000 sj135 sngljun \* from to areav kforw kbackw jflag 1580101 140130002 130030001 0.0002154 117.83e-3 76.08e-3 0001000 \* cntrl waterflow steamflow x 1580201 1 0.0 0.00044 0.0 \* component 140 : condensing tube \* name type 1400000 pipe140 \* nv: no. vol 1400001 13 pipe \* area nv 1400101 0.0002154 13 \* length vn \* ccc0301 - ccc0399 1400301 0.370 1400302 0.200 234567 1400303 1400304 0.040 0.250 0.090 1400305 1400306 0.300 1400307 0.140 1400308 0.360 8 9 0.140 0.690 1400309 1400310 10 1400311 0.180 11 1400312 0.010 1400313 0.370 12 13 volume nv \* angle vn 1400601 90.0 13 \* rough dhydr 1400801 1.e-4 0.0 no. vol 13 \* vflag no. vol 1401001 00000 1 13 \* jflag no. jun 1401101 000000 12 
 1401101
 000000
 12

 \*
 cntrl
 pressure
 temp.
 nv

 1401201
 004
 0.106e6
 0.37065e3

 1401202
 004
 0.106e6
 0.37065e3

 1401203
 004
 0.106e6
 0.37065e3
 1.0 0.0 0.0 123456789 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.37065e3 1401204 004 0.106e6 0.106e6 0.106e6 0.106e6 0.106e6 0.106e6 0.0 0.0 0.0 0.0 0.0 0.0 1401205 004 1401206 004 0.0 0.0 0.0 0.0 004 004 1.0 1401207 1.0 1401208 0.0 0.0 0.0 0.0 0.0 1401208 1401209 1401210 1401211 1401212 004 004 004 004 1.0 10 1.0 0.106e6 11 12 13 0.106e6 0.0 1.0 0.106e6 1.0 0.0 1401213 004 0.106e6 1.0 0.0 0.0

```
* cntrl
1401300 1
* water flow steam flow int.vel jn
1401301 0.0 0.0 0.0 12
 * component 145 : condensing tube to lower plenum
 * name type
1450000 sj145 sngljun
 * from to area kforw
1450101 150010002 140010001
                                                                         kbackw jflag
0.0002154 117.83e-5 76.08e-5 0001000
 * cntrl waterflow steamflow
1450201 1 0.0 0.0 0.0
                                                                            х
 * component 150 : lower plenum
 * name type
1500000 pipe150
                                             pipe
 * nv
1500001 3
 * area nv
1500101 0.04
                           nv
                                    3

        1500101
        0.04
        3

        *
        length
        vn

        1500301
        0.06
        1

        1500302
        0.08
        2

        1500303
        0.06
        3

        *
        volume
        nv

        1500401
        0.0
        3

        *
        angle
        nv

                                    123
1500401 0.0 3
* angle nv
1500601 -90.0 3
* rough dhydr
1500801 1.e-4 0.0
* vflag nv
1501001 00000 3
* ifor ni
                                              nv
3
 * jflag nj
1501101 000000
                                            2
* cntrl pressure temp. eq.quality
1501201 004 0.106e6 0.37065e3
1501202 004 0.106e6 0.37065e3
1501203 004 0.106e6 0.37065e3
                                                                                  vn
                                                                                    1.0
                                                                                                   0.0
                                                                                                               0.0
                                                                                                                            123
                                                                                     1.0
                                                                                                   0.0
                                                                                                               0.0
                                                                                     1.0
                                                                                                   0.0
* cntrl
1501300 1
 * waterflow steamflow int.vel nj
1501301 0.0 0.0 0.0 2
******
 * hydrodynamic data : venting line
 * component 155 : lower plenum to drain tank
* component 153 : lower plenum to drain tank

* name type

1550000 sj155 sngljun

* from to areav kforw kbackw jflag

1550101 150030002 160050002 0.00001 923317.24 923317.24 0001000

* cntrl waterflow steamflow x

1550201 1 0.0 0.0 0.0
                                     flow steamflow 0.0 0.0
* component 156 : lower plenum to drain pipe
* name type

1560000 sj156 sngljun

* from to areav kforw kbackw jflag

1560101 150030002 157050002 0.00012 2109.13 4153.80 0001000

* cntrl waterflow steamflow x

1560201 1 0.0 0.0 0.0
   component 157 : drain pipe
* name type
1570000 pipe157
                                            pipe
* nv
1570001 5
           area
                        nv
```

1570101 0.00012 - 5 \* length vn 1570301 0.20 5 \* volume nv 1570401 0.0 5 \* angle nv 1570601 90.0 5 \* rough dhydr 1570801 1.e-4 0.0 nv 5 0.0 \* vflag nv 1571001 00000 5 1571001 00000 5 \* jflag nj 1571101 000000 \* cntrl pressure 1571201 004 0.10 1571202 004 0.10 1571203 004 0.10 1571205 004 0.10 \* cntrl pressure 1571205 004 0.10 4 
 sure
 temp.
 eq.quality

 0.106e6
 0.37065e3
 1.0

 0.106e6
 0.37065e3
 0.5

 0.106e6
 0.37065e3
 0.0

 0.106e6
 0.37065e3
 0.0

 0.106e6
 0.37065e3
 0.0
 vn 0.0 0.0 12345 0.0 0.0 0.0 0.0 1571204 1571205 \* cntrl 0.0 0.0 0.106e6 0.37065e3 0.**0** 0.0 0.0 \* cntrl 1571300 1 waterflow steamflow int.vel nj 1571301 0.0 0.0 0.0 \* component 160 : drain tank \* name type 1600000 pipe160 pipe \* nv 1600001 5 \* area nv 1600101 0.7854 5 \* length vn 1600301 0.20 5 \* volume nv 1600401 0.0 5 5 5 1600401 0.0 5 \* angle nv 1600601 90.0 5 \* rough dhydr 1600801 1.e-4 0.0 \* vflag nv 1601001 00000 5 \* idog ni nv 5 
 1601001
 00000
 5

 \*
 jflag
 nj

 1601101
 000000
 \*

 \*
 cntrl
 pressure

 1601201
 004
 0.1

 1601202
 004
 0.1

 1601203
 004
 0.1

 1601204
 004
 0.1

 1601205
 004
 0.1

 1601205
 004
 0.1
 4 temp. eq.quality 0.106e6 0.37065e3 0.106e6 0.37065e3 0.106e6 0.37065e3 0.106e6 0.37065e3 0.106e6 0.37065e3 vn 1.0 0.5 0.0 0.0 0.0 12345 0.0 0.0 0.0 0.0 0.0 0.0 Ő.Ŏ 0.0 0.0 0.0 0.106e6 0.37065e3 0.0 cntrl 1601300 1 steamflow int.vel nj 0.0 0.0 4 waterflow 1601301 0.0 \* component 165 : upper plenum to single volume \* name type 1650000 sj165 sngljun \* from to areav kforw kbackw jflag 1650101 130010002 170010001 0.0001267 2109.13e-8 4153.80e5 0001000 \* cntrl water 1650201 1 0.0 steamflow waterflow х 0.0 0.0 \* component 170 : single volume near mixture outlet type sv170 nâme 1700000 snglvol length vol x 0.0001267 0.2 0.0 rough dh vflag 0. 1.e-4 0.0 angle area 0. 1700101 0.0 elev 00000 1700102 \* cntrl 1700200 pressure temp. 003 0.106e6 0.29965e3

```
* componet 175 : valve for venting
 * componet 175: valve for venting

* name type

175000 vv175 valve

* from to areav kforw kback jflag

1750101 170010002 180000000 0.0001267 2109.13e-5

* cntrl waterflow steamflow interface velocity

1750201 1 0.0 0.0 0.0
                                                                                             4153.80e-5
                                                                                                                   000100
        valve type
 1750300 trpvlv
* trip number(open when true)
1750301 506
                506
 * component 180 : venting simulation using tdv
 * name type
1800000 tdv180 tmdpvol
* area length vol
1800101 2.0 2.0 0.0
 *
                                vol x angle elev rough dhydr vflag
0.0 0.0 0.0 0.0 0.0 0.0 0.0 00000
        cntrl
 1800200 004
 var pressure
1800201 0.0 0 104
                      ressure temp. eq.quality
0.106e6 0.29965e3 1.0
 ************
 * component 200 : coolant source simulation using tdv
* name type
2000000 tdv200 tmdpvol
* area length vol
2000101 2.0 2.0 0.0
                                vol x angle elev rough dhydr vflag
0.0 0.0 0.0 0.0 0.0 0.0 00000
                                                                                     0.0
                                                                                                00000
* cntrl
2000200 003
* var p(1atm) temp.
2000201 0.0 0.1013e6 0.29125e3
* component 210 : coolant water flow initiation -> 0.13kg/s
* component 210 *
* name type

2100000 tdj210 tmdpjun

* from to area

2100101_200000000 240010001 0.00049
 *
* cntrl trip
2100200 1 502
* var waterflow
2100201 -1.0 0.063
2100202 0. 0.063
                                     steamflow
                                                          х
                                      0.0 0.0
0.0 0.0
                                                 0.0
* component 240 : outer tube for coolant water
* name type
2400000 out_tube
                                    annulus
* nv
2400001 11
* area nv
2400101 0.00228
                                   11
* length vn
2400301 0.200
2400302 0.040
2400303 0.250
2400304 0.090
                              1234
2400305
2400306
2400307
                0.300
                              56789
                0.140
                0.360
2400307 0.500
2400308 0.140
2400309 0.690
2400310 0.180
2400311 0.010
                              10
                              11
```

\*

nv 11

volume

2400401 0.0

angle nv 2400601 90.0 \* rough hd 2400801 1.e-4 11 nv 11 0.0 \* vflag nv 2401001 00010 11 2401001 00010 11 \* jflag nj 2401101 000020 10 \* cntrl pressure temp. 2401201 003 0.1013e6 2401202 003 0.1013e6 2401203 003 0.1013e6 vn 0.29125e3 0.0 0.0 0.0 123456789 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2401204 2401205 003 0.1013e6 0.1013e6 003 2401206 2401207 003 003 0.0 0.1013e6 **0.0** 0.1013e6 2401208 2401209 003 003 0.**0** 0.0 0.1013e6 0.1013e6 0.0 0.0 10 2401210 003 0.1013e6 0.0 0.0 0.0 0.0 2401211 003 0.1013e6 0.0 0.0 11 \* cntrl 2401300 1 \* waterflow steamflow int.vel nj 2401301 0.063 0.0 0.0 10 \* \* component 270 : outer tube to coolant outlet \* name type 2700000 sj270 sngljun \* from to area kforw kbackw jflag 2700101 240110002 280000000 0.00049 50.0 \* cntrl waterflow steamflow x 2700201 1 0.063 0.0 0.0 90.48 0001000 \* component 280 : coolant water dumping \* name type 2800000 tdv280 tmdpvol \* area length 2800101 2.0 2.0 vol x angle elev rough dhydr vflag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00000 \* cntrl 2800200 003 \* var p(1atm) temp. 2800201 0.0 0.1013e6 0.29125e3 \*\*\*\*\*\*\*\*\*\* \* heat structure input : pipe140 <-> annulus240 \* \* heat structure 140 : heat transfer simulation through pipe 11400000 11 4 2 1 0.00828 11400100 0 1 11400101 3 0.009525 11400201 5 3 11400301 0 3 11400401 373.0 4  $\begin{array}{c} 140020000\\ 140030000\\ 140040000\\ 140050000\\ 140060000\\ 140070000\\ 140080000\\ 140080000\\ 140080000\end{array}$ 101  $\begin{array}{c} 0.200 \\ 0.040 \\ 0.250 \end{array}$ 11400501 0 1 1234567 11400501 11400502 11400503 11400503 11400505 11400505 11400507 11400508 11400509 11400510 11400511 \* Ŏ 101 1 101 1 ŏ 0.090 101 1 0.090 0.300 0.140 0.360 0.140 Ŏ 0000 101 101 1 1 101 101 1 140090000 140100000 140110000 140120000 89 1 ŏ 0.690 101 1 ĪÕĪ 0.180 10 0 1 ŏ 0.010 11 101 1 114006012400100001140060224002000011400603240030000  $\begin{array}{c} 0.200 \\ 0.040 \\ 0.250 \end{array}$ 0 101 1 123 000 101 1

ĩõĩ

0.090 0.300 0.140 0.360 1 1 1 11400604 240040000 0 101 456789 101 101 11400605 240050000 Õ 11400606 240060000 ŏ 101 101 101 11400607 240070000 ŏ 1 0.140 0.690 240080000 11400608 Õ 1 240090000 11400609 ŏ 11400610 240100000 Ŏ 0.180 10 101 1 1 240110000 11400611 101 0.010 11 11400701 11400801 11400701 0 0.0 11400801 0 10.0 11400901 0 10.0 0.0 10.0 0.0 10.0 11 10.0 0 0 1.0 11 10.0 0 0 1.0 11 10.0 10.0 \*\*\*\*\*\*\* \* heat structure thermal property data : SUS (005) 18cr-8ni \*\*\*\* 20100500 tbl/fctn 1 1 temp(k) 0.2732611e+03 0.2942611e+03 0.3109278e+03 0.3664834e+03 0.4220389e+03 0.4775945e+03 0.5331500e+03 0.5331500e+03 0.6442611e+03 thermal conductivity(w/m.k) 0.1489124e+02 0.1489124e+02 0.1505739e+02 0.1609584e+02 20100501 20100502 20100503 20100504 20100505 20100506 0.1696813e+02 0.1800657e+02 20100507 0.1885809e+02 0.1956423e+02 0.2041575e+02 0.2297030e+02 0.2423029e+02 20100508 20100509 20100509 20100510 20100511 0.6442611e+03 0.8109278e+03 0.9220389e+03 20100512 1.9220389e+03 0.2423029e+02 volumetric heat capacity(j/m3.k) 0.3831330e+07 0.3831330e+07 0.3985580e+07 0.4105300e+07 0.4224090e+07 0.4308800e+07 0.4359790e+07 0.4359790e+07 0.4561910e+07 0.4625250e+07 0.4625250e+07 temp(k) 0.2742611e+03 0.3109278e+03 0.3664834e+03 0.4220389e+03 20100551 20100552 20100553 20100554 20100555 20100555 20100556 0.4220389e+03 0.4775945e+03 0.5331500e+03 0.5887056e+03 0.6442611e+03 0.8109278e+03 0.9220389e+03 20100557 20100558 20100559 20100560 1.9220389e+03 20100561

. end of file

### Appendix C. Local Data of Reflux Condensation Experiment

Nomenclature ( for Appendix C)

#### Characters

| Twi   | : inner wall temperature(°C)                                                 |
|-------|------------------------------------------------------------------------------|
| TB    | : centerline temperature in tube(°C)                                         |
| TC    | : coolant temperature(°C)                                                    |
| mu    | : viscosity( $N \cdot s/m^2$ )                                               |
| Rho   | : density(kg/m <sup>3</sup> )                                                |
| F     | : flow rate(kg/hr)                                                           |
| FA    | : air flow rate(kg/hr)                                                       |
| FS    | : steam flow rate(kg/hr)                                                     |
| FM    | : steam-air mixture flow rate(kg/hr)                                         |
| Delta | : film thickness(m)                                                          |
| Re    | : Reynolds number                                                            |
| Ja    | : Jacob number                                                               |
| W_air | : air mass fraction                                                          |
| HTC   | : heat transfer coefficient(W/m <sup>2.</sup> °C)                            |
| F     | : degradation factor (= $h_{tot} / h_f$ )                                    |
| RMS   | : root mean square error $(=\sqrt{\left (h_{exp}-h_{corr})/h_{exp}\right })$ |

#### Subscripts

| : steam-air mixture |
|---------------------|
| : inlet             |
| : film              |
| : by experiment     |
| : by correlation    |
| : condensate        |
|                     |

T

|    | Exp. No. | Length<br>[m] | Twi  | TB(x) | TC_fit | TC1  | Cp(x)<br>[J/kgK] | mu_film   | mu_mix      | Rho_f | Rho-mlx | F_cond<br>[Kg/hr] | FA<br>[Kg/hr] | FC [Kg/s] | FS_in<br>[Kg/hr] |
|----|----------|---------------|------|-------|--------|------|------------------|-----------|-------------|-------|---------|-------------------|---------------|-----------|------------------|
| 1  | RA01     | 0.1           | 68.9 | 120.2 | 16.1   | 11.1 | 4186.2           | 4.045E-04 | 1.35348E-06 | 942.4 | 1.4058  | 1.141             | 0.742         | 0.0333    | 3.282            |
| 2  | RA01     | 0.22          | 59.5 | 118.3 | 18.4   | 11.1 | 4184.9           | 4.719E-04 | 1.35911E-06 | 944.0 | 1.3998  | 1.665             | 0.742         | 0.0333    | 3.282            |
| 3  | RA01     | 0.365         | 50.8 | 114.8 | 20.5   | 11.1 | 4183.8           | 5.502E-04 | 1.36389E-06 | 946.9 | 1.3938  | 2.143             | 0.742         | 0.0333    | 3.282            |
| 4  | RA01     | 0.535         | 43.6 | 109.0 | 22.2   | 11.1 | 4183.0           | 6.281E-04 | 1.36495E-06 | 951.6 | 1.3916  | 2.530             | 0.742         | 0.0333    | 3.282            |
| 5  | RA01     | 0.73          | 38.3 | 100.2 | 23.5   | 11.1 | 4182.5           | 6.938E-04 | 1.35897E-06 | 958.2 | 1.3995  | 2.826             | 0.742         | 0.0333    | 3.282            |
| 6  | RA01     | 0.95          | 33.4 | 89.0  | 24.4   | 11.1 | 4182.1           | 7.612E-04 | 1.34437E-06 | 966.1 | 1.4237  | 3.031             | 0.742         | 0.0333    | 3.282            |
| 7  | RA01     | 1.2           | 30.3 | 76.2  | 24.9   | 11.1 | 4181.9           | 8.074E-04 | 1.31657E-06 | 974.2 | 1.4663  | 3.145             | 0.742         | 0.0333    | 3.282            |
| 8  | RA02     | 0.1           | 76.1 | 121.7 | 23.9   | 21.5 | 4182.3           | 3.634E-04 | 1.37021E-06 | 941.2 | 1.3965  | 0.816             | 0.804         | 0.0504    | 2.591            |
| 9  | RA02     | 0.22          | 62.3 | 119.6 | 25.0   | 21.5 | 4181.9           | 4.504E-04 | 1.37509E-06 | 942.9 | 1.3908  | 1.212             | 0.804         | 0.0504    | 2.591            |
| 10 | RA02     | 0.365         | 54.0 | 115.9 | 26.0   | 21.5 | 4181.5           | 5.197E-04 | 1.37758E-06 | 946.0 | 1.3864  | 1.569             | 0.804         | 0.0504    | 2.591            |
| 11 | RA02     | 0.535         | 46.1 | 110.2 | 26.9   | 21.5 | 4181.2           | 5.997E-04 | 1.37511E-06 | 950.6 | 1.3864  | 1.864             | 0.804         | 0.0504    | 2.591            |
| 12 | RA02     | 0.73          | 40.1 | 100.7 | 27.6   | 21.5 | 4181.0           | 6.710E-04 | 1.36024E-06 | 957.9 | 1.3985  | 2.091             | 0.804         | 0.0504    | 2.591            |
| 13 | RA03     | 0.1           | 64.5 | 111.0 | 11.4   | 9.2  | 4189.1           | 4.340E-04 | 1.35828E-06 | 950.0 | 1.3952  | 0.497             | 1.538         | 0.0333    | 2.525            |
| 14 | RA03     | 0.22          | 52.5 | 108.1 | 13.5   | 9.2  | 4187.7           | 5.336E-04 | 1.36186E-06 | 952.3 | 1.3932  | 0.970             | 1.538         | 0.0333    | 2.525            |
| 15 | RA03     | 0.365         | 44.4 | 104.2 | 15.4   | 9.2  | 4186.6           | 6.188E-04 | 1.3646E-06  | 955.3 | 1.3937  | 1.399             | 1.538         | 0.0333    | 2.525            |
| 16 | RA03     | 0.535         | 39.2 | 98.9  | 17.1   | 9.2  | 4185.6           | 6.821E-04 | 1.3655E-06  | 959.2 | 1.3991  | 1.782             | 1.538         | 0.0333    | 2.525            |
| 17 | RA03     | 0.73          | 34.3 | 91.4  | 18.5   | 9.2  | 4184.8           | 7.483E-04 | 1.36018E-06 | 964.5 | 1.4152  | 2.097             | 1.538         | 0.0333    | 2.525            |
| 18 | RA03     | 0.95          | 30.2 | 82.9  | 19.5   | 9.2  | 4184.3           | 8.089E-04 | 1.34912E-06 | 970.1 | 1.4424  | 2.322             | 1.538         | 0.0333    | 2.525            |
| 19 | RA03     | 1.2           | 27.9 | 73.6  | 20.2   | 9.2  | 4184.0           | 8.451E-04 | 1.33177E-06 | 975.7 | 1.4809  | 2.480             | 1.538         | 0.0333    | 2.525            |
| 20 | RA04     | 0.1           | 74.0 | 121.7 | 27.1   | 24   | 4181.2           | 3.747E-04 | 1.38506E-06 | 941.1 | 1.3864  | 1.073             | 0.804         | 0.0504    | 2.384            |
| 21 | RA04     | 0.22          | 57.5 | 119.5 | 27.8   | 24   | 4180.9           | 4.887E-04 | 1.38826E-06 | 943.0 | 1.3821  | 1.325             | 0.804         | 0.0504    | 2.384            |
| 22 | RA05     | 0.1           | 60.5 | 107.7 | 10.3   | 8.7  | 4189.9           | 4.639E-04 | 1.35701E-06 | 952.6 | 1.3955  | 0.360             | 1.85          | 0.0333    | 2.357            |
| 23 | RA05     | 0.22          | 51.7 | 104.9 | 11.9   | 8.7  | 4188.8           | 5.413E-04 | 1.35739E-06 | 954.7 | 1.3962  | 0.719             | 1.85          | 0.0333    | 2.357            |
| 24 | RA05     | 0.365         | 41.4 | 100.8 | 13.5   | 8.7  | 4187.7           | 6.545E-04 | 1.35532E-06 | 957.8 | 1.4001  | 1.079             | 1.85          | 0.0333    | 2.357            |
| 25 | RA05     | 0.535         | 35.6 | 95.4  | 15.1   | 8.7  | 4186.7           | 7.301E-04 | 1.35158E-06 | 961.7 | 1.4086  | 1.438             | 1.85          | 0.0333    | 2.357            |
| 26 | RA05     | 0.73          | 32.4 | 87.8  | 16.6   | 8.7  | 4185.9           | 7.758E-04 | 1.34261E-06 | 966.9 | 1.4271  | 1.774             | 1.85          | 0.0333    | 2.357            |
| 27 | RA05     | 0.95          | 28.4 | 79.3  | 17.9   | 8.7  | 4185.1           | 8.371E-04 | 1.33194E-06 | 972.3 | 1.4555  | 2.066             | 1.85          | 0.0333    | 2.357            |
| 28 | RA05     | 1.2           | 26.1 | 70.4  | 19.0   | 8.7  | 4184.6           | 8.745E-04 | 1.32078E-06 | 977.6 | 1.4947  | 2.313             | 1.85          | 0.0333    | 2.357            |
| 29 | RA06     | 0.1           | 52.1 | 98.9  | 9.9    | 8.8  | 4190.2           | 5.374E-04 | 1.34657E-06 | 959.2 | 1.4050  | 0.245             | 2.443         | 0.0333    | 2                |
| 30 | RA06     | 0.22          | 48.1 | 95.5  | 11.1   | 8.8  | 4189.3           | 5.780E-04 | 1.34244E-06 | 961.6 | 1.4107  | 0.512             | 2.443         | 0.0333    | 2                |
| 31 | RA06     | 0.365         | 39.9 | 91.5  | 12.4   | 8.8  | 4188.4           | 6.732E-04 | 1.338E-06   | 964.4 | 1.4188  | 0.801             | 2.443         | 0.0333    | 2                |

Table C.1. 165 local data for correlation development (inlet steam-air mixture flow)

|    | Exp.<br>No. | FS(x)<br>[Kg/hr] | F_f(x)<br>[Kg/hr] | FM(x)<br>[Kg/hr] | Delta      | h_f     | Re_g    | Re_f   | Ja      | Wair(x) | НТС_ехр | HTC_cor<br>r    | F_exp   | F_corr  | RMS    |
|----|-------------|------------------|-------------------|------------------|------------|---------|---------|--------|---------|---------|---------|-----------------|---------|---------|--------|
| 1  | RA01        | 2.141            | 2.1413            | 2.8833           | 1.1689E-04 | 5628.7  | 45497.8 | 113.06 | 0.09762 | 0.2573  | 1570.4  | 826.7           | 0.27900 | 0.14688 | 0.4736 |
| 2  | RA01        | 1.617            | 1.6171            | 2.3591           | 1.1193E-04 | 5802.0  | 37072.0 | 73.19  | 0.11186 | 0.3145  | 674.0   | 573.8           | 0.11617 | 0.09889 | 0.1487 |
| 3  | RA01        | 1.139            | 1.1387            | 1.8807           | 1.0459E-04 | 6123.6  | 29451.0 | 44.20  | 0.12172 | 0.3945  | 442.7   | 402.4           | 0.07229 | 0.06571 | 0.0910 |
| 4  | RA01        | 0.752            | 0.7516            | 1.4936           | 9.4864E-05 | 6665.7  | 23370.6 | 25.56  | 0.12436 | 0.4968  | 292.2   | 296.2           | 0.04384 | 0.04444 | 0.0137 |
| 5  | RA01        | 0.456            | 0.4556            | 1.1976           | 8.2606E-05 | 7577.1  | 18821.9 | 14.03  | 0.11769 | 0.6196  | 196.6   | 234.2           | 0.02595 | 0.03091 | 0.1913 |
| 6  | RA01        | 0.251            | 0.2508            | 0.9928           | 6.9442E-05 | 8923.2  | 15771.5 | 7.04   | 0.10571 | 0.7474  | 131.4   | 192.7           | 0.01473 | 0.02160 | 0.4667 |
| 7  | RA01        | 0.137            | 0.1369            | 0.8789           | 5.7566E-05 | 10692.5 | 14258.2 | 3.62   | 0.08726 | 0.8442  | 90.3    | 178.1           | 0.00845 | 0.01665 | 0.9720 |
| 8  | RA02        | 1.775            | 1.7746            | 2.5786           | 1.0604E-04 | 6258.9  | 40192.0 | 104.28 | 0.08680 | 0.3118  | 1258.0  | 886.0           | 0.20099 | 0.14156 | 0.2957 |
| 9  | RA02        | 1.379            | 1.3791            | 2.1831           | 1.0459E-04 | 6234.1  | 33907.9 | 65.39  | 0.10924 | 0.3683  | 510.2   | 559.1           | 0.08185 | 0.08969 | 0.0958 |
| 10 | RA02        | 1.022            | 1.0223            | 1.8263           | 9.9064E-05 | 6499.2  | 28314.6 | 42.01  | 0.11804 | 0.4402  | 344.6   | 410.2           | 0.05302 |         | 0.1904 |
| 11 | RA02        | 0.727            | 0.7267            | 1.5307           | 9.2427E-05 | 6872.8  | 23773.3 | 25.88  | 0.12207 | 0.5253  | 230.3   | 307.9           | 0.03351 | 0.04479 | 0.3368 |
| 12 | RA02        | 0.500            | 0.4998            | 1.3038           | 8.4270E-05 | 7453.5  | 20470.9 | 15.91  | 0.11550 | 0.6167  | 159.3   | 252,9           | 0.02138 | 0.03393 | 0.5872 |
| 13 | RA03        | 2.028            | 2.0284            | 3.5664           | 1.1689E-04 | 5595.6  | 56077.6 | 99.82  | 0.08756 | 0.4312  | 990.3   | 761.1           | 0.17698 | 0.13601 | 0.2315 |
| 14 | RA03        | 1.555            | 1.5547            | 3.0927           | 1.1442E-04 | 5613.5  | 48501.2 | 62.23  | 0.10466 | 0.4973  | 651.8   | 503.9           | 0.11611 | 0.08977 | 0.2269 |
| 15 | RA03        | 1.126            | 1.1264            | 2.6644           | 1.0774E-04 | 5877.7  | 41700.0 | 38.87  | 0.11253 | 0.5772  | 455.8   | 372.1           | 0.07755 | 0.06330 | 0.1837 |
| 16 | RA03        | 0.743            | 0.7433            | 2.2813           | 9.6630E-05 | 6489.0  | 35680.9 | 23.27  | 0.11232 | 0.6742  | 327.6   | 296.7.          | 0.05049 | 0.04572 | 0.0943 |
| 17 | RA03        | 0.428            | 0.4279            | 1.9659           | 8.2604E-05 | 7515.7  | 30868.3 | 12.21  | 0.10740 | 0.7823  | 233.3   | 239.7           | 0.03104 | 0.03189 | 0.0274 |
| 18 | RA03        | 0.203            | 0.2027            | 1.7407           | 6.5831E-05 | 9348.0  | 27556.3 | 5.35   | 0.09912 | 0.8836  | 164.0   | 196 <b>.9</b> . | 0.01754 | 0.02106 | 0.2006 |
| 19 | RA03        | 0.045            | 0.0451            | 1.5831           | 4.0313E-05 | 15187.1 | 25387.6 | 1.14   | 0.08594 | 0.9715  | 116.8   | 155.0           | 0.00769 | 0.01021 | 0.3272 |
| 20 | <b>RA04</b> | 1.311            | 1.3114            | 2.1154           | 9.6851E-05 | 6835.6  | 32619.7 | 74.75  | 0.09097 | 0.3801  | 630.1   | 726.0           | 0.09218 | 0.10621 | 0.1522 |
| 21 | <b>RA04</b> | 1.059            | 1.0589            | 1.8629           | 9.8402E-05 | 6579.2  | 28660.0 | 46.28  | 0.11815 | 0.4316  | 269.2   | 438.8           | 0.04092 | 0.06669 | 0.6300 |
| 22 | <b>RA05</b> | 1.997            | 1.9973            | 3.8473           | 1.1869E-04 | 5479.5  | 60550.4 | 91.95  | 0.08852 | 0.4809  | 708.9   | 702.2           | 0.12937 | 0.12816 | 0.0094 |
| 23 | RA05        | 1.638            | 1.6377            | 3.4877           | 1.1678E-04 | 5492.8  | 54876.8 | 64.61  | 0.09975 | 0.5304  | 542.5   | 522.9           | 0.09877 | 0,09520 | 0.0361 |
| 24 | RA05        | 1.278            | 1.2784            | 3.1284           | 1.1430E-04 | 5509.3  | 49297.3 | 41.72  | 0.11134 | 0.5914  | 406.5   | 374.0           | 0.07378 | 0.06788 | 0.0800 |
| 25 | RA05        | 0.919            | 0.9192            | 2.7692           | 1.0591E-04 | 5877.4  | 43758.0 | 26.89  | 0.11207 | 0.6681  | 328.0   | 302.1           | 0.05581 | 0.05140 | 0.0790 |
| 26 | RA05        | 0.583            | 0.5826            | 2.4326           | 9.2503E-05 | 6684.4  | 38695.5 | 16.04  | 0.10380 | 0.7605  | 279.4   | 263.2           | 0.04180 | 0.03938 | 0.0579 |
| 27 | RA05        | 0.291            | 0.2909            | 2.1409           | 7.4993E-05 | 8173.2  | 34329.1 | 7.42   | 0.09535 | 0.8641  | 231.7   | 218.5           | 0.02835 | 0.02673 | 0.0570 |
| 28 | RA05        | 0.044            | 0.0442            | 1.8942           | 4.0459E-05 | 15070.2 | 30629.7 | 1.08   | 0.08298 | 0.9767  | 198.3   | 158.8           | 0.01316 | 0.01054 | 0.1992 |
| 29 | RA06        | 1.755            | 1.7552            | 4.1982           | 1.1885E-04 | 5400.7  | 66586.2 | 69.75  | 0.08687 | 0.5819  | 526.4   | 593.3           | 0.09747 | 0.10985 | 0.1270 |
| 30 | <b>RA06</b> | 1.488            | 1.4883            | 3.9313           | 1.1505E-04 | 5540.8  | 62544.6 | 55.00  | 0.08797 | 0.6214  | 463.7   | 520.8           | 0.08369 | 0.09400 | 0.1232 |
| 31 | RA06        | 1.199            | 1.1992            | 3.6422           | 1.1243E-04 | 5584.7  | 58138.0 | 38.05  | 0.09574 | 0.6707  | 372.9   | 399.7           | 0.06677 | 0,07157 | 0.0719 |

|    | Exp. No. | Length<br>[m] | Twi(x) | TB(x) | TC_fit | TC1 | Cp(x)<br>[J/kgK] | mu_film   | mu_mix      | Rho_f | Rho-mlx | F_cond<br>[Kg/hr] | FA<br>[Kg/hr] | FC [Kg/s] | FS_In<br>[Kg/hr] |
|----|----------|---------------|--------|-------|--------|-----|------------------|-----------|-------------|-------|---------|-------------------|---------------|-----------|------------------|
| 32 | RA06     | 0.535         | 30.8   | 86.3  | 13.7   | 8.8 | 4187.6           | 7.998E-04 | 1.33073E-06 | 967.9 | 1.4322  | 1.090             | 2.443         | 0.0333    | 2                |
| 33 | RA06     | 0.73          | 29.8   | 78.9  | 15.0   | 8.8 | 4186.8           | 8.151E-04 | 1.31729E-06 | 972.6 | 1.4558  | 1.379             | 2.443         | 0.0333    | 2                |
| 34 | RA06     | 0.95          | 26.5   | 71.2  | 16.1   | 8.8 | 4186.2           | 8.679E-04 | 1.30239E-06 | 977.1 | 1.4858  | 1.623             | 2.443         | 0.0333    | 2                |
| 35 | RA06     | 1.2           | 24.3   | 63.2  | 17.2   | 8.8 | 4185.5           | 9.049E-04 | 1.28843E-06 | 981.5 | 1.5238  | 1.867             | 2.443         | 0.0333    | 2                |
| 36 | RB01     | 0.1           | 62.6   | 100.7 | 10.2   | 8.2 | 4189.9           | 4.478E-04 | 1.29179E-06 | 957.9 | 0.9377  | 0.446             | 0.796         | 0.0333    | 2.448            |
| 37 | RB01     | 0.22          | 54.4   | 99.2  | 12.2   | 8.2 | 4188.6           | 5.158E-04 | 1.29765E-06 | 959.0 | 0.9476  | 0.891             | 0.796         | 0.0333    | 2.448            |
| 38 | RB01     | 0.365         | 42.3   | 96.3  | 14.1   | 8.2 | 4187.4           | 6.435E-04 | 1.30268E-06 | 961.1 | 0.9630  | 1.314             | 0.796         | 0.0333    | 2.448            |
| 39 | RB01     | 0.535         | 37.6   | 91.7  | 15.7   | 8.2 | 4186.4           | 7.030E-04 | 1.30537E-06 | 964.3 | 0.9858  | 1.670             | 0.796         | 0.0333    | 2.448            |
| 40 | RB01     | 0.73          | 31.6   | 85.2  | 17.1   | 8.2 | 4185.6           | 7.877E-04 | 1.30715E-06 | 968.6 | 1.0214  | 1.981             | 0.796         | 0.0333    | 2.448            |
| 41 | RB01     | 0.95          | 27.3   | 77.5  | 18.2   | 8.2 | 4185.0           | 8.548E-04 | 1.30913E-06 | 973.4 | 1.0715  | 2.226             | 0.796         | 0.0333    | 2.448            |
| 42 | RB01     | 1.2           | 24.5   | 69.8  | 19.0   | 8.2 | 4184.6           | 9.015E-04 | 1.31286E-06 | 977.9 | 1.1335  | 2.404             | 0.796         | 0.0333    | 2.448            |
| 43 | RB02     | 0.1           | 59.9   | 96.2  | 9.6    | 7.9 | 4190.4           | 4.687E-04 | 1.3018E-06  | 961.1 | 0.9627  | 0.377             | 1.43          | 0.0333    | 2.436            |
| 44 | RB02     | 0.22          | 52.6   | 94.4  | 11.4   | 7.9 | 4189.1           | 5.326E-04 | 1.30624E-06 | 962.4 | 0.9742  | 0.776             | 1.43          | 0.0333    | 2.436            |
| 45 | RB02     | 0.365         | 42.6   | 91.5  | 13.2   | 7.9 | 4187.9           | 6.400E-04 | 1.30984E-06 | 964.4 | 0.9908  | 1.175             | 1.43          | 0.0333    | 2,436            |
| 46 | RB02     | 0.535         | 38.7   | 86.9  | 14.8   | 7.9 | 4186.9           | 6.886E-04 | 1.30958E-06 | 967.5 | 1.0143  | 1.529             | 1.43          | 0.0333    | 2.436            |
| 47 | RB02     | 0.73          | 33.4   | 80.3  | 16.3   | 7.9 | 4186.0           | 7.612E-04 | 1.30587E-06 | 971.7 | 1.0494  | 1.861             | 1.43          | 0.0333    | 2.436            |
| 48 | RB02     | 0.95          | 29.6   | 73.1  | 17.5   | 7.9 | 4185.4           | 8.182E-04 | 1.30086E-06 | 976.0 | 1.0927  | 2.127             | 1.43          | 0.0333    | 2.436            |
| 49 | RB02     | 1.2           | 25.9   | 65.2  | 18.5   | 7.9 | 4184.8           | 8.778E-04 | 1.29469E-06 | 980.4 | 1.1470  | 2.348             | 1.43          | 0.0333    | 2.436            |
| 50 | RB03     | 0.1           | 72.4   | 103.9 | 23.5   | 23  | 4182.5           | 3.836E-04 | 1.33506E-06 | 955.5 | 0.9578  | 0.197             | 1.403         | 0.063     | 1.985            |
| 51 | RB03     | 0.22          | 68.0   | 102.1 | 24.1   | 23  | 4182.3           | 4.103E-04 | 1.33666E-06 | 956.8 | 0.9659  | 0.453             | 1.403         | 0.063     | 1.985            |
| 52 | RB03     | 0.365         | 58.2   | 99.4  | 24.7   | 23  | 4182.0           | 4.829E-04 | 1.33626E-06 | 958.9 | 0.9770  | 0.710             | 1.403         | 0.063     | 1.985            |
| 53 | RB03     | 0.535         | 44.9   | 95.0  | 25.3   | 23  | 4181.8           | 6.130E-04 | 1.33146E-06 | 962.0 | 0.9928  | 0.951             | 1.403         | 0.063     | 1.985            |
| 54 | RB03     | 0.73          | 39.7   | 88.9  | 25.8   | 23  | 4181.6           | 6.758E-04 | 1.32085E-06 | 966.1 | 1.0142  | 1,166             | 1,403         | 0.063     | 1.985            |
| 55 | RB04     | 0.1           | 62.2   | 99.7  | 8.1    | 5.5 | 4191.5           | 4.508E-04 | 1.27733E-06 | 958.6 | 0.9301  | 0.435             | 0.551         | 0.025     | 2.27             |
| 56 | RB04     | 0.22          | 49.8   | 97.9  | 10.5   | 5.5 | 4189.7           | 5.603E-04 | 1.28068E-06 | 959.9 | 0.9389  | 0.835             | 0.551         | 0.025     | 2 27             |
| 57 | RB04     | 0.365         | 37.0   | 94.7  | 12.8   | 5.5 | 4188.2           | 7.110E-04 | 1.28314E-06 | 962.2 | 0.9531  | 1,219             | 0.551         | 0.025     | 2.27             |
| 58 | RB04     | 0.535         | 32.6   | 90.2  | 14.7   | 5.5 | 4187.0           | 7.729E-04 | 1.28455E-06 | 965.3 | 0.9738  | 1.536             | 0.551         | 0.025     | 2.27             |
| 59 | RB04     | 0.73          | 27.3   | 83.1  | 16.2   | 5.5 | 4186.1           | 8.548E-04 | 1.28014E-06 | 970.0 | 1.0051  | 1.786             | 0.551         | 0.025     | 2.27             |
| 60 | RB04     | 0.95          | 23.7   | 74.8  | 17.3   | 5.5 | 4185.5           | 9.152E-04 | 1.27294E-06 | 975.0 | 1.0466  | 1.970             | 0.551         | 0.025     | 2.27             |
| 61 | RB04     | 1.2           | 22.1   | 66.5  | 18.1   | 5.5 | 4185.0           | 9.434E-04 | 1.26602E-06 | 979.7 | 1.0965  | 2,103             | 0.551         | 0.025     | 2.27             |
| 62 | RB05     | 0.1           | 48.3   | 87.2  | 6.6    | 5.1 | 4192.6           | 5.758E-04 | 1.29256E-06 | 967.3 | 0.9960  | 0.247             | 1.577         | 0.025     | 1.694            |

 $\tilde{\omega}_{i}\tilde{\eta}_{i}$ 

|    | Exp.<br>No. | FS(x)<br>[Kg/hr] | F_f(x)<br>[Kg/hr] | FM(x)<br>[Kg/hr] | Delta      | h_f     | Re_g    | Re_f  | Ja      | Wair(x) | HTC_exp | HTC_cor<br>r | F_exp   | F_corr   | RMS    |
|----|-------------|------------------|-------------------|------------------|------------|---------|---------|-------|---------|---------|---------|--------------|---------|----------|--------|
| 32 | RA06        | 0.910            | 0.9103            | 3.3533           | 1.0836E-04 | 5686.5  | 53818.2 | 24.31 | 0.10296 | 0.7285  | 296.0   | 299.4        | 0.05205 | 0.05265  | 0.0115 |
| 33 | RA06        | 0.621            | 0.6215            | 3.0645           | 9.5714E-05 | 6423.8  | 49684.5 | 16.28 | 0.09107 | 0.7972  | 278.3   | 288.1        | 0.04332 | 0.04485  | 0.0353 |
| 34 | RA06        | 0.377            | 0.3771            | 2.8201           | 8.2490E-05 | 7398.4  | 46246.1 | 9.28  | 0.08289 | 0.8663  | 249.0   | 256.8        | 0.03366 | 0.03471  | 0.0312 |
| 35 | RA06        | 0.133            | 0.1329            | 2.5759           | 5.8903E-05 | 10308.1 | 42698.2 | 3.14  | 0.07213 | 0.9484  | 228.4   | 218.5        | 0.02216 | 0.02119  | 0.0435 |
| 36 | RB01        | 2.002            | 2.0023            | 2.7983           | 1.1694E-04 | 5578.1  | 46264.5 | 95.49 | 0.07083 | 0.2845  | 1101.7  | 905.6        | 0.19750 | 0.16234  | 0.1780 |
| 37 | <b>RB01</b> | 1.557            | 1.5569            | 2.3529           | 1.1264E-04 | 5719.9  | 38724.8 | 64.46 | 0.08325 | 0.3383  | 757.9   | 635.7        | 0.13250 | 0.11114  | 0.1612 |
| 38 | RB01        | 1.134            | 1.1340            | 1.9300           | 1.0895E-04 | 5790.0  | 31642.1 | 37.63 | 0.10032 | 0.4124  | 488.1   | 398.8        | 0.08430 | 0.06887  | 0.1830 |
| 39 | RB01        | 0.778            | 0.7780            | 1.5740           | 9.8742E-05 | 6330.0  | 25753.0 | 23.64 | 0.10048 | 0.5057  | 361.6   | 314.8        | 0.05712 | 0.04974  | 0.1293 |
| 40 | RB01        | 0.467            | 0.4667            | 1.2627           | 8.6234E-05 | 7158.0  | 20630.8 | 12.65 | 0.09954 | 0.6304  | 260.2   | 237.3        | 0.03635 | 0.03315  | 0.0880 |
| 41 | RB01        | 0.222            | 0.2221            | 1.0181           | 6.8961E-05 | 8866.0  | 16609.7 | 5.55  | 0.09321 | 0.7818  | 188.6   | 184.2        | 0.02127 | 0.02077  | 0.0234 |
| 42 | RB01        | 0.044            | 0.0443            | 0.8403           | 4.0883E-05 | 14858.5 | 13669.6 | 1.05  | 0.08410 | 0.9473  | 136.5   | 131,2        | 0.00919 | 0.00883_ | 0.0390 |
| 43 | RB02        | 2.059            | 2.0589            | 3.4889           | 1.1957E-04 | 5434.2  | 57239.2 | 93.82 | 0.06717 | 0.4099  | 1024.3  | 863.5        | 0.18849 | 0.15891  | 0.1569 |
| 44 | RB02        | 1.660            | 1.6599            | 3.0899           | 1.1603E-04 | 5536.4  | 50520.7 | 66.56 | 0.07732 | 0.4628  | 749.8   | 640.6        | 0.13543 | 0.11570  | 0.1457 |
| 45 | RB02        | 1.261            | 1.2611            | 2.6911           | 1.1240E-04 | 5615.2  | 43878.8 | 42.09 | 0.09043 | 0.5314  | 520.1   | 438.8        | 0.09262 | 0.07815  | 0.1563 |
| 46 | RB02        | 0.907            | 0.9068            | 2.3368           | 1.0297E-04 | 6083.6  | 38109.0 | 28.12 | 0.08911 | 0.6120  | 413.5   | 368.2        | 0.06797 | 0.06052  | 0.1096 |
| 47 | RB02        | 0.575            | 0.5747            | 2.0047           | 9.1190E-05 | 6795.1  | 32786.9 | 16.12 | 0.08669 | 0.7133  | 321.2   | 295.9        | 0.04727 | 0.04355  | 0.0786 |
| 48 | RB02        | 0.309            | 0.3091            | 1.7391           | 7.5747E-05 | 8113.5  | 28553.1 | 8.07  | 0.08039 | 0.8222  | 252.8   | 246.2        | 0.03116 | 0.03035  | 0.0261 |
| 49 | RB02        | 0.088            | 0.0879            | 1.5179           | 5.0839E-05 | 11987.9 | 25039.5 | 2.14  | 0.07262 | 0.9421  | 197.4   | 187.9        | 0.01647 | 0.01567  | 0.0481 |
| 50 | R803        | 1.788            | 1.7875            | 3.1905           | 1.0712E-04 | 6168.5  | 51040.2 | 99.52 | 0.05873 | 0.4397  | 735.8   | 1057.2       | 0.11929 | 0.17138  | 0.4367 |
| 51 | RB03        | 1.532            | 1.5321            | 2.9351           | 1.0397E-04 | 6320.8  | 46897.7 | 79.75 | 0.06358 | 0.4780  | 623.3   | 887.5        | 0.09861 | 0.14041  | 0.4238 |
| 52 | RB03        | 1.275            | 1.2755            | 2.6785           | 1.0311E-04 | 6285.2  | 42810.4 | 56.42 | 0.07673 | 0.5238  | 422.8   | 631.3        | 0.06727 | 0.10044  | 0.4931 |
| 53 | RB03        | 1.034            | 1.0339            | 2.4369           | 1.0388E-04 | 6102.0  | 39088.8 | 36.02 | 0.09337 | 0.5757  | 274.8   | 414.0        | 0.04503 | 0.06784  | 0.5064 |
| 54 | RB03        | 0.819            | 0.8189            | 2.2219           | 9.9000E-05 | 6339.8  | 35926.6 | 25.88 | 0.09174 | 0.6314  | 213.7   | 354.2        | 0.03371 | 0.05588  | 0.6576 |
| 55 | RB04        | 1.835            | 1.8354            | 2.3864           | 1.1380E-04 | 5729.2  | 39901.5 | 86.95 | 0.06965 | 0.2309  | 1074.4  | 916.3        | 0.18753 | 0.15994  | 0.1471 |
| 56 | RB04        | 1.435            | 1.4346            | 1.9856           | 1.1260E-04 | 5678.4  | 33112.9 | 54.68 | 0.08930 | 0.2775  | 654.3   | 565.1        | 0.11523 | 0.09952  | 0.1363 |
| 57 | RB04        | 1.051            | 1.0508            | 1.6018           | 1.0971E-04 | 5690.0  | 26660.7 | 31.56 | 0.10708 | 0.3440  | 405.2   | 347.5        | 0.07121 | 0.06108  | 0.1423 |
| 58 | RB04        | 0.734            | 0.7339            | 1.2849           | 9.9872E-05 | 6193.9  | 21362.5 | 20.28 | 0.10686 | 0.4288  | 286.7   | 275.0        | 0.04629 | 0.04440  | 0.0408 |
| 59 | RB04        | 0.484            | 0.4838            | 1.0348           | 8.9601E-05 | 6823.7  | 17263.9 | 12.09 | 0.10350 | 0.5325  | 198.3   | 216.8        | 0.02906 | 0.03177  | 0.0933 |
| 60 | RB04        | 0.300            | 0.3004            | 0.8514           | 7.7936E-05 | 7779.7  | 14285.4 | 7.01  | 0.09477 | 0.6471  | 137.9   | 182.7        | 0.01773 | 0.02348  | 0.3248 |
| 61 | RB04        | 0.167            | 0.1671            | 0.7181           | 6.4542E-05 | 9358.3  | 12114.6 | 3.78  | 0.08233 | 0.7673  | 96.5    | 163.8        | 0.01031 | 0.01750  | 0.6976 |
| 62 | RB05        | 1.447            | 1.4467            | 3.0237           | 1.1337E-04 | 5625.1  | 49961.6 | 53.66 | 0.07126 | 0.5215  | 624.0   | 596.5        | 0.11093 | 0.10604  | 0.0441 |

| 3<br>3<br>4 | Exp. No. | Length<br>[m] | Twi(x) | TB(x) | TC_fit | TC1  | Cp(x)<br>[J/kgK] | mu_film   | mu_mix      | Rho_f | Rho-mix | F_cond<br>[Kg/hr] | FA<br>[Kg/hr] | FC [Kg/s] | FS_in<br>[Kg/hr] |
|-------------|----------|---------------|--------|-------|--------|------|------------------|-----------|-------------|-------|---------|-------------------|---------------|-----------|------------------|
| 63          | RB05     | 0.22          | 43.9   | 84.3  | 8.2    | 5.1  | 4191.4           | 6.246E-04 | 1.29215E-06 | 969.2 | 1.0110  | 0.511             | 1.577         | 0.025     | 1.694            |
| 64          | RB05     | 0.365         | 34.7   | 81.0  | 9.8    | 5.1  | 4190.2           | 7.427E-04 | 1.29227E-06 | 971.3 | 1.0301  | 0.774             | 1.577         | 0.025     | 1.694            |
| 65          | RB05     | 0.535         | 27.7   | 76.5  | 11.4   | 5.1  | 4189.1           | 8.483E-04 | 1.29064E-06 | 974.0 | 1.0566  | 1.038             | 1.577         | 0.025     | 1.694            |
| 66          | RB05     | 0.73          | 25.9   | 70.1  | 12.8   | 5.1  | 4188.2           | 8.778E-04 | 1.28308E-06 | 977.8 | 1.0922  | 1.268             | 1.577         | 0.025     | 1.694            |
| 67          | RB05     | 0.95          | 22.8   | 63.1  | 14.1   | 5.1  | 4187.4           | 9.310E-04 | 1.27532E-06 | 981.5 | 1.1372  | 1.482             | 1.577         | 0.025     | 1.694            |
| 68          | RB05     | 1.2           | 21.0   | 56.1  | 15.2   | 5.1  | 4186.7           | 9.633E-04 | 1.26796E-06 | 985.1 | 1.1889  | 1.663             | 1.577         | 0.025     | 1.694            |
| 69          | RB06     | 0.1           | 49.6   | 96.0  | 7.0    | 5.5  | 4192.3           | 5.623E-04 | 1.27785E-06 | 961.3 | 0.9436  | 0.250             | 0.551         | 0.025     | 1.561            |
| 70          | RB06     | 0.22          | 41.3   | 93.5  | 8.6    | 5.5  | 4191.1           | 6.557E-04 | 1.2792E-06  | 963.0 | 0.9546  | 0.516             | 0.551         | 0.025     | 1.561            |
| 71          | RB06     | 0.365         | 30.7   | 89.3  | 10.1   | 5.5  | 4190.0           | 8.013E-04 | 1.27743E-06 | 965.9 | 0.9712  | 0.765             | 0.551         | 0.025     | 1.561            |
| 72          | RB06     | 0.535         | 24.4   | 83.8  | 11.6   | 5.5  | 4189.0           | 9.032E-04 | 1.2766E-06  | 969.5 | 0.9976  | 1.015             | 0.551         | 0.025     | 1.561            |
| 73          | RB06     | 0.73          | 21.3   | 76.4  | 12.9   | 5.5  | 4188.1           | 9.578E-04 | 1.27444E-06 | 974.1 | 1.0381  | 1.231             | 0.551         | 0.025     | 1.561            |
| 74          | RB06     | 0.95          | 18.3   | 67.6  | 14.0   | 5.5  | 4187.4           | 1.014E-03 | 1.27418E-06 | 979.1 | 1.0993  | 1.413             | 0.551         | 0.025     | 1.561            |
| 75          | RB07     | 0.1           | 46.4   | 90.0  | 9.0    | 8.5  | 4190.8           | 5.967E-04 | 1.29764E-06 | 965.4 | 0.9869  | 0.120             | 1.426         | 0.0333    | 1.56             |
| 76          | RB07     | 0.22          | 43.5   | 86.9  | 10.1   | 8.5  | 4190.0           | 6.291E-04 | 1.29543E-06 | 967.5 | 1.0006  | 0.355             | 1.426         | 0.0333    | 1.56             |
| 77          | RB07     | 0.365         | 37.9   | 83.3  | 11.1   | 8.5  | 4189.3           | 6.993E-04 | 1.29237E-06 | 969.8 | 1.0166  | 0.568             | 1.426         | 0.0333    | 1.56             |
| 78          | RB07     | 0.535         | 27.7   | 78.5  | 12.0   | 8.5  | 4188.7           | 8.481E-04 | 1.28582E-06 | 972.8 | 1.0379  | 0.772             | 1.426         | 0.0333    | 1.56             |
| 79          | RB07     | 0.73          | 24.2   | 71.7  | 13.0   | 8.5  | 4188.1           | 9.071E-04 | 1.27432E-06 | 976.8 | 1.0691  | 0.982             | 1.426         | 0.0333    | 1.56             |
| 80          | RB07     | 0.95          | 22.5   | 64.3  | 14.0   | 8.5  | 4187.4           | 9.356E-04 | 1.2647E-06  | 980.9 | 1.1117  | 1.208             | 1.426         | 0.0333    | 1.56             |
| 81          | RB07     | 1.2           | 20.8   | 57.1  | 15.1   | 8.5  | 4186.7           | 9.672E-04 | 1.2632E-06  | 984.6 | 1.1715  | 1.460             | 1.426         | 0.0333    | 1.56             |
| 82          | RC01     | 0.1           | 71.4   | 97.6  | 13.1   | 10.5 | 4188.0           | 3.893E-04 | 1.25257E-06 | 960.1 | 0.6758  | 0.577             | 0.361         | 0.0333    | 2.703            |
| 83          | RC01     | 0.22          | 60.5   | 96.8  | 15.6   | 10.5 | 4186.4           | 4.639E-04 | 1.25835E-06 | 960.7 | 0.6897  | 1.131             | 0.361         | 0.0333    | 2.703            |
| 84          | RC01     | 0.365         | 46.9   | 94.7  | 17.9   | 10.5 | 4185.1           | 5.909E-04 | 1.26477E-06 | 962.2 | 0.7130  | 1.641             | 0.361         | 0.0333    | 2.703            |
| 85          | RC01     | 0.535         | 39.5   | 91.2  | 19.8   | 10.5 | 4184.2           | 6.783E-04 | 1.2742E-06  | 964.6 | 0.7519  | 2.062             | 0.361         | 0.0333    | 2.703            |
| 86          | RC01     | 0.73          | 33.3   | 85.1  | 21.4   | 10.5 | 4183.4           | 7.627E-04 | 1.29217E-06 | 968.7 | 0.8288  | 2.416             | 0.361         | 0.0333    | 2.703            |
| 87          | RC01     | 0.95          | 28.9   | 75.8  | 22.6   | 10.5 | 4182.9           | 8.292E-04 | 1.33463E-06 | 974.5 | 0.9934  | 2.682             | 0.361         | 0.0333    | 2.703            |
| 88          | RC02     | 0.1           | 61.4   | 90.7  | 11.9   | 10.2 | 4188.8           | 4.569E-04 | 1.26618E-06 | 965.0 | 0.7417  | 0.374             | 0.938         | 0.0333    | 2.287            |
| 89          | RC02     | 0.22          | 53.7   | 89.2  | 13.6   | 10.2 | 4187.7           | 5.223E-04 | 1.27096E-06 | 966.0 | 0.7603  | 0.749             | 0.938         | 0.0333    | 2.287            |
| 90          | RC02     | 0.365         | 42.9   | 86.4  | 15.4   | 10.2 | 4186.6           | 6.364E-04 | 1.27558E-06 | 967.8 | 0.7890  | 1.145             | 0.938         | 0.0333    | 2.287            |
| 91          | RC02     | 0.535         | 38.3   | 82.9  | 17.0   | 10.2 | 4185.6           | 6.938E-04 | 1.28145E-06 | 970.1 | 0.8270  | 1.497             | 0.938         | 0.0333    | 2.287            |
| 92          | RC02     | 0.73          | 33.7   | 77.1  | 18.5   | 10.2 | 4184.8           | 7.569E-04 | 1.28585E-06 | 973.7 | 0.8852  | 1.826             | 0.938         | 0.0333    | 2.287            |
| 93          | RC02     | 0.95          | 28.7   | 70.7  | 19.7   | 10.2 | 4184.2           | 8.323E-04 | 1.29284E-06 | 977.4 | 0.9606  | 2.090             | 0.938         | 0.0333    | 2.287            |

|    | Exp.        | FS(x)     | F_f(x) | FM(x)<br>[Kg/br] | Delta      | . h_1   | Re_g            | Re_f   | Ja      | Wair(x) | НТС_өхр | HTC_cor<br>r | F_exp   | F_corr  | RMS    |
|----|-------------|-----------|--------|------------------|------------|---------|-----------------|--------|---------|---------|---------|--------------|---------|---------|--------|
| 60 | BB05        | 1 1 1 2 2 | 1 1920 | 2 7600           | 1.0879F-04 | 5815.8  | 45619.4         | 40.45  | 0.07399 | 0.5714  | 521.1   | 501.7        | 0.08960 | 0.08627 | 0.0371 |
| 03 | BBUS        | 0 0 0 0   | 0 0105 | 2.7000           | 1.05825-04 | 5871.9  | 41260.6         | 26.44  | 0.08477 | 0.6317  | 383.9   | 358.7        | 0.06538 | 0.06109 | 0.0656 |
| 04 | DB05        | 0.320     | 0.6560 | 2.4000           | 9 86585-05 | 6202.9  | 36954.4         | 16.52  | 0.08932 | 0.7062  | 297.5   | 275.4        | 0.04796 | 0.04441 | 0.0741 |
| 20 | BB05        | 0.000     | 0.0002 | 2.2002           | 8.6177F-05 | 7072.0  | 33338.1         | 10.36  | 0.08088 | 0.7874  | 260.6   | 252.6        | 0.03685 | 0.03572 | 0.0306 |
| 00 | BBUS        | 0.420     | 0.9120 | 1 7890           | 6.9477E-05 | 8708.1  | 29960.4         | 4.86   | 0.07373 | 0.8815  | 220.1   | 215.1        | 0.02528 | 0.02470 | 0.0228 |
| 01 | BBOS        | 0.212     | 0.0312 | 1 6082           | 3.6998F-05 | 16281.5 | 27087.8         | 0.69   | 0.06421 | 0.9806  | 189.5   | 157.6        | 0.01164 | 0.00968 | 0.1683 |
| 60 | R806        | 1.311     | 1.3113 | 1.8623           | 1.0930E-04 | 5847.5  | 31124.9         | 49.80  | 0.08583 | 0.2959  | 520.5   | 553.8        | 0.08901 | 0.09470 | 0.0639 |
| 70 | BROA        | 1 045     | 1.0450 | 1.5960           | 1.0654E-04 | 5909.6  | 26647.2         | 34.04  | 0.09654 | 0.3452  | 391.8   | 400.3        | 0.06630 | 0.06773 | 0.0216 |
| 71 | BB06        | 0.796     | 0.7956 | 1.3466           | 1.0380E-04 | 5935.3  | 22513.5         | 21.21  | 0.10834 | 0.4092  | 285.8   | 273,1        | 0.04815 | 0.04601 | 0.0446 |
| 72 | BB06        | 0.546     | 0.5462 | 1.0972           | 9.5060E-05 | 6388.8  | 18356.6         | 12.92  | 0.10979 | 0.5022  | 223.5   | 207.5        | 0.03498 | 0.03248 | 0.0715 |
| 73 | BB06        | 0.330     | 0.3302 | 0.8812           | 8.1712E-05 | 7377.5  | 14767.9         | 7.36   | 0.10183 | 0.6253  | 184.8   | 172.1        | 0.02505 | 0.02333 | 0.0685 |
| 74 | BB06        | 0.148     | 0.1475 | 0.6985           | 6.3436E-05 | 9432.4  | 11708.2         | 3.11   | 0.09109 | 0.7888  | 152.8   | 138.3        | 0.01620 | 0.01466 | 0.0948 |
| 75 | <b>BB07</b> | 1.440     | 1.4402 | 2.8662           | 1.1470E-04 | 5541.0  | 47173.0         | 51.55  | 0.08007 | 0.4975  | 473.2   | 534.4        | 0.08540 | 0.09644 | 0.1293 |
| 76 | RB07        | 1.205     | 1.2053 | 2.6313           | 1.0985E-04 | 5755.2  | 43382.2         | 40.92  | 0.07955 | 0.5419  | 416.9   | 478.1        | 0.07244 | 0.08307 | 0.1467 |
| 77 | BB07        | 0.992     | 0.9924 | 2.4184           | 1.0649E-04 | 5872.8  | 39965.4         | 30.31  | 0.08342 | 0.5897  | 309.9   | 392.2        | 0.05278 | 0.06678 | 0.2654 |
| 78 | RB07        | 0.788     | 0.7881 | 2.2141           | 1.0495E-04 | 5831.2  | 36775.8         | 19.85  | 0.09324 | 0.6441  | 236.6   | 282.2        | 0.04058 | 0.04839 | 0.1925 |
| 79 | RB07        | 0.578     | 0.5781 | 2.0041           | 9.6531E-05 | 6288.1  | 33588.5         | 13.61  | 0.08723 | 0.7115  | 233.6   | 251.9        | 0.03714 | 0.04006 | 0.0786 |
| 80 | RB07        | 0.352     | 0.3522 | 1.7782           | 8.2458E-05 | 7332.6  | 30029.6         | 8.04   | 0.07666 | 0.8019  | 257.2   | 232.7        | 0.03508 | 0.03174 | 0.0952 |
| 81 | RB07        | 0.100     | 0.1000 | 1.5260           | 5.4657E-05 | 11015.4 | 25800.1         | 2.21   | 0.06668 | 0.9345  | 293.2   | ia 186.8     | 0.02662 | 0.01696 | 0.3628 |
| 82 | RC01        | 2.126     | 2.1261 | 2.4871           | 1.1368E-04 | 5805.9  | 42407.0         | 116.64 | 0.04849 | 0.1451  | 2049.2  | 1539.0       | 0.35295 | 0.26508 | 0.2490 |
| 83 | RC01        | 1.572     | 1.5718 | 1.9328           | 1.0893E-04 | 5970.3  | 32804.1         | 72.36  | 0.06716 | 0.1868  | 1165.0  | 902.6        | 0.19513 | 0.15118 | 0.2253 |
| 84 | RC01        | 1.062     | 1.0621 | 1.4231           | 1.0351E-04 | 6145.8  | 24031.4         | 38.39  | 0.08842 | 0.2537  | 666.6   | 494.1        | 0.10847 | 0.08039 | 0.2588 |
| 85 | RC01        | 0.641     | 0.6413 | 1.0023           | 9.1453E-05 | 6860.4  | 16799.8         | 20.19  | 0.09561 | 0.3602  | 441.3   | 324.7        | 0.06433 | 0.04733 | 0.2643 |
| 86 | RC01        | 0.287     | 0.2870 | 0.6480           | 7.2543E-05 | 8540.0  | 10710.9         | 8.04   | 0.09577 | 0.5571  | 300.0   | 208.9        | 0.03513 | 0.02446 | 0.3037 |
| 87 | RC01        | 0.021     | 0.0214 | 0.3824           | 3.1272E-05 | 19622.2 | 6119.3          | 0.55   | 0.08670 | 0.9440  | 214.7   | 104.8        | 0.01094 | 0.00534 | 0.5119 |
| 88 | RC02        | 1.913     | 1.9126 | 2.8506           | 1.1537E-04 | 5644.6  | 48082.5         | 89.40  | 0.05383 | 0.3291  | 1243.0  | 1028.2       | 0.22021 | 0.18216 | 0.1728 |
| 89 | RC02        | 1.538     | 1.5384 | 2.4764           | 1.1210E-04 | 5740.7  | 41613.4         | 62.91  | 0.06520 | 0.3788  | 865.2   | 727.6        | 0.15071 | 0.12675 | 0.1590 |
| 90 | RC02        | 1.142     | 1.1424 | 2.0804           | 1.0829E-04 | 5831.6  | 34831.9         | 38.34  | 0.07988 | 0.4509  | 576.4   | 468,0        | 0.09884 | 0.08026 | 0.1880 |
| 91 | RC02        | 0.790     | 0.7905 | 1.7285           | 9.8429E-05 | 6359.0  | 28807.9         | 24.33  | 0.08188 | 0.5427  | 443.3   | 367.9        | 0.06971 | 0.05786 | 0.1700 |
| 92 | RC02        | 0.461     | 0.4607 | 1.3987           | 8.4434E-05 | 7343.5  | 23232.1         | 13.00  | 0.07966 | 0.6706  | 346.3   | 287.2        | 0.04716 | 0.03911 | 0.1707 |
| 93 | RC02        | 0.197     | 0.1970 | 1.1350           | 6.5489E-05 | 9365.5  | 18749. <b>7</b> | 5.05   | 0.07708 | 0.8264  | 262.7   | 212.0        | 0.02805 | 0.02263 | 0.1931 |

-78-

|     | Exp. No. | Length<br>[m] | Twi(x) | TB(x) | TC_fit | TC1  | Cp(x)<br>[J/kgK] | mu_film   | mu_mix      | Rho_f | Rho-mix | F_cond<br>[Kg/hr] | FA<br>[Kg/hr] | FC [Kg/s] | FS_In<br>[Kg/hr] |
|-----|----------|---------------|--------|-------|--------|------|------------------|-----------|-------------|-------|---------|-------------------|---------------|-----------|------------------|
| 94  | RC03     | 0.1           | 66.0   | 95.1  | 12.0   | 10.3 | 4188.7           | 4.235E-04 | 1.25812E-06 | 961.9 | 0.6997  | 0.376             | 0.506         | 0.0333    | 2.232            |
| 95  | RC03     | 0.22          | 55.0   | 93.8  | 13.7   | 10.3 | 4187.6           | 5.103E-04 | 1.2619E-06  | 962.8 | 0.7140  | 0.752             | 0.506         | 0.0333    | 2.232            |
| 96  | RC03     | 0.365         | 42.2   | 91.1  | 15.4   | 10.3 | 4186.6           | 6.448E-04 | 1.26459E-06 | 964.7 | 0.7363  | 1.128             | 0.506         | 0.0333    | 2.232            |
| 97  | RC03     | 0.535         | 34.5   | 87.4  | 17.0   | 10.3 | 4185.6           | 7.455E-04 | 1.26947E-06 | 967.2 | 0.7707  | 1.482             | 0.506         | 0.0333    | 2.232            |
| 98  | RC03     | 0.73          | 30.1   | 81.7  | 18.4   | 10.3 | 4184.9           | 8.105E-04 | 1.27551E-06 | 970.8 | 0.8258  | 1.791             | 0.506         | 0.0333    | 2.232            |
| 99  | RC03     | 0.95          | 25.8   | 74.8  | 19.6   | 10.3 | 4184.3           | 8.795E-04 | 1.29146E-06 | 975.0 | 0.9175  | 2.056             | 0.506         | 0.0333    | 2.232            |
| 100 | RC04     | 0.1           | 63.5   | 94.0  | 12.1   | 10.4 | 4188.6           | 4.412E-04 | 1.25117E-06 | 962.7 | 0.6951  | 0.376             | 0.432         | 0.0333    | 2.119            |
| 101 | RC04     | 0.22          | 53.1   | 92.9  | 13.8   | 10.4 | 4187.5           | 5.279E-04 | 1.2558E-06  | 963.4 | 0.7096  | 0.751             | 0.432         | 0.0333    | 2.119            |
| 102 | RC04     | 0.365         | 39.7   | 89.9  | 15.4   | 10.4 | 4186.6           | 6.757E-04 | 1.25727E-06 | 965.5 | 0.7319  | 1.104             | 0.432         | 0.0333    | 2.119            |
| 103 | RC04     | 0.535         | 33.0   | 86.0  | 17.0   | 10.4 | 4185.6           | 7.670E-04 | 1.26302E-06 | 968.1 | 0.7696  | 1.458             | 0.432         | 0.0333    | 2.119            |
| 104 | RC04     | 0.73          | 28.8   | 79.4  | 18.3   | 10.4 | 4184.9           | 8.307E-04 | 1.26757E-06 | 972.3 | 0.8299  | 1.744             | 0.432         | 0.0333    | 2.119            |
| 105 | RC04     | 0.95          | 25.1   | 69.5  | 19.4   | 10.4 | 4184.4           | 8.912E-04 | 1.27675E-06 | 978.1 | 0.9392  | 1.987             | 0.432         | 0.0333    | 2.119            |
| 106 | RC05     | 0.1           | 80.4   | 96.8  | 20.4   | 19.3 | 4183.9           | 3.426E-04 | 1.24931E-06 | 960.7 | 0.6753  | 0.365             | 0.285         | 0.0504    | 2.077            |
| 107 | RC05     | 0.22          | 67.1   | 96.0  | 21.5   | 19.3 | 4183.4           | 4.160E-04 | 1.25305E-06 | 961.3 | 0.6858  | 0.723             | 0.285         | 0.0504    | 2.077            |
| 108 | RC05     | 0.365         | 49.3   | 93.9  | 22.5   | 19.3 | 4182.9           | 5.650E-04 | 1.25523E-06 | 962.8 | 0.7027  | 1.073             | 0.285         | 0.0504    | 2.077            |
| 109 | RC05     | 0.535         | 36.6   | 90.0  | 23.5   | 19.3 | 4182.5           | 7.166E-04 | 1.25668E-06 | 965.4 | 0.7303  | 1.393             | 0.285         | 0.0504    | 2.077            |
| 110 | RC05     | 0.73          | 32.7   | 83.1  | 24.3   | 19.3 | 4182.2           | 7.708E-04 | 1.25601E-06 | 970.0 | 0.7786  | 1.668             | 0.285         | 0.0504    | 2.077            |
| 111 | RC05     | 0.95          | 28.8   | 71.3  | 24.9   | 19.3 | 4181.9           | 8.304E-04 | 1.25239E-06 | 977.1 | 0.8709  | 1.892             | 0.285         | 0.0504    | 2.077            |
| 112 | RC06     | 0.1           | 66.5   | 94.2  | 19.2   | 18.5 | 4184.5           | 4.204E-04 | 1.23992E-06 | 962.5 | 0.6754  | 0.295             | 0.285         | 0.063     | 2.046            |
| 113 | RC06     | 0.22          | 57.5   | 92.7  | 19.9   | 18.5 | 4184.1           | 4.888E-04 | 1.23961E-06 | 963.6 | 0.6841  | 0.592             | 0.285         | 0.063     | 2.046            |
| 114 | RC06     | 0.365         | 43.8   | 89.4  | 20.6   | 18.5 | 4183.8           | 6.259E-04 | 1.2356E-06  | 965.8 | 0.6977  | 0.898             | 0.285         | 0.063     | 2.046            |
| 115 | RC06     | 0.535         | 30.4   | 84.4  | 21.4   | 18.5 | 4183.4           | 8.064E-04 | 1.22849E-06 | 969.2 | 0.7192  | 1.194             | 0.285         | 0.063     | 2.046            |
| 116 | RC06     | 0.73          | 28.0   | 74.7  | 22.0   | 18.5 | 4183.1           | 8.428E-04 | 1.21063E-06 | 975.1 | 0.7571  | 1.466             | 0.285         | 0.063     | 2.046            |
| 117 | RC06     | 0.95          | 25.3   | 60.9  | 22.6   | 18.5 | 4182.9           | 8.879E-04 | 1.18637E-06 | 982.7 | 0.8255  | 1.705             | 0.285         | 0.063     | 2.046            |
| 118 | RC07     | 0.1           | 64.6   | 91.9  | 18.8   | 17.9 | 4184.7           | 4.333E-04 | 1.26497E-06 | 964.1 | 0.7316  | 0.367             | 0.672         | 0.063     | 1.916            |
| 119 | RC07     | 0.22          | 60.8   | 90.8  | 19.5   | 17.9 | 4184.3           | 4.614E-04 | 1.27075E-06 | 964.9 | 0.7489  | 0.670             | 0.672         | 0.063     | 1.916            |
| 120 | RC07     | 0.365         | 50.1   | 88.2  | 20.2   | 17.9 | 4184.0           | 5.577E-04 | 1.27414E-06 | 966.6 | 0.7729  | 0.956             | 0.672         | 0.063     | 1.916            |
| 121 | RC07     | 0.535         | 37.3   | 84.6  | 20.8   | 17.9 | 4183.7           | 7.073E-04 | 1.27618E-06 | 969.0 | 0.8038  | 1.204             | 0.672         | 0.063     | 1.916            |
| 122 | RC07     | 0.73          | 31.3   | 79.3  | 21.3   | 17.9 | 4183.5           | 7.915E-04 | 1.27377E-06 | 972.3 | 0.8426  | 1.407             | 0.672         | 0.063     | 1.916            |
| 123 | RC08     | 0.1           | 54.5   | 88.3  | 11.6   | 10.4 | 4189.0           | 5.149E-04 | 1.28451E-06 | 966.6 | 0.7904  | 0.264             | 1.394         | 0.0333    | 1.887            |
| 124 | RC08     | 0.22          | 50.0   | 86.0  | 12.9   | 10.4 | 4188.1           | 5.583E-04 | 1.28603E-06 | 968.1 | 0.8107  | 0.549             | 1.394         | 0.0333    | 1.887            |

|     | Exp.<br>No. | FS(x)<br>[Ka/hr] | F_f(x)<br>[Ka/hr] | FM(x)<br>[Kg/hr] | Delta      | h_1     | Re_g    | Re_f   | Ja      | Wair(x) | HTC_exp | HTC_cor<br>r   | F_exp   | F_corr  | RMS    |
|-----|-------------|------------------|-------------------|------------------|------------|---------|---------|--------|---------|---------|---------|----------------|---------|---------|--------|
| 94  | RC03        | 1.856            | 1.8558            | 2.3618           | 1.1160E-04 | 5873.0  | 40092.3 | 93.58  | 0.05372 | 0.2142  | 1243.0  | 1173.6         | 0.21165 | 0.19983 | 0.0558 |
| 95  | RC03        | 1.480            | 1.4797            | 1.9857           | 1.1005E-04 | 5860.0  | 33608.0 | 61.92  | 0.07161 | 0.2548  | 773.5   | 732.4          | 0.13200 | 0.12498 | 0.0532 |
| 96  | RC03        | 1.104            | 1.1039            | 1.6099           | 1.0776E-04 | 5852.6  | 27188.6 | 36.57  | 0.09023 | 0.3143  | 501.2   | 440.8          | 0.08564 | 0.07532 | 0.1204 |
| 97  | RC03        | 0.750            | 0.7503            | 1.2563           | 9.9274E-05 | 6256.2  | 21135.3 | 21.49  | 0.09759 | 0.4028  | 363.9   | 307.2          | 0.05817 | 0.04910 | 0.1559 |
| 98  | BC03        | 0.441            | 0.4410            | 0.9470           | 8.5292E-05 | 7213.5  | 15856.3 | 11.62  | 0.09517 | 0.5343  | 284.1   | 232.9          | 0.03938 | 0.03229 | 0.1801 |
| 99  | RC03        | 0.176            | 0.1759            | 0.6819           | 6.4341E-05 | 9470.0  | 11277.6 | 4.27   | 0.09037 | 0.7420  | 214.5   | 165.0          | 0.02265 | 0.01742 | 0.2309 |
| 100 | RC04        | 1.743            | 1.7433            | 2.1753           | 1.1073E-04 | 5898.5  | 37132.0 | 84.39  | 0.05623 | 0.1986  | 1185.3  | 1090.3         | 0.20095 | 0,18485 | 0.0801 |
| 101 | RC04        | 1.368            | 1.3678            | 1.7998           | 1.0837E-04 | 5932.7  | 30608.7 | 55.34  | 0.07336 | 0.2400  | 755.2   | 687.2          | 0.12729 | 0.11583 | 0.0900 |
| 102 | RC04        | 1.015            | 1.0145            | 1.4465           | 1.0636E-04 | 5901.1  | 24571.9 | 32.07  | 0.09250 | 0.2987  | 477.4   | 406.4          | 0.08090 | 0.06887 | 0.1488 |
| 103 | RC04        | 0.661            | 0.6614            | 1.0934           | 9.6034E-05 | 6446.9  | 18488.9 | 18.42  | 0.09764 | 0.3951  | 348.2   | 286,4          | 0.05401 | 0.04443 | 0.1774 |
| 104 | RC04        | 0.375            | 0.3746            | 0.8066           | 8.1364E-05 | 7539.9  | 13590.1 | 9.63   | 0.09320 | 0.5356  | 269.4   | 217.6          | 0.03573 | 0.02886 | 0.1923 |
| 105 | RC04        | 0.132            | 0.1319            | 0.5639           | 5.8595E-05 | 10381.7 | 9433.7  | 3.16   | 0.08177 | 0.7660  | 217.9   | 158.7          | 0.02099 | 0.01529 | 0.2715 |
| 106 | RC05        | 1.712            | 1.7121            | 1.9971           | 1.0131E-04 | 6581.6  | 34141.0 | 106.73 | 0.03023 | 0.1427  | 2091.4  | 2172.9         | 0.31777 | 0.33014 | 0.0389 |
| 107 | RC05        | 1.354            | 1.3544            | 1.6394           | 9.9922E-05 | 6569.0  | 27941.9 | 69.53  | 0.05340 | 0.1738  | 978.8   | 1111.4         | 0.14900 | 0.16920 | 0.1355 |
| 108 | RC05        | 1.004            | 1.0040            | 1.2890           | 1.0004E-04 | 6386.4  | 21931.2 | 37.95  | 0.08222 | 0.2211  | 506.4   | 543.1          | 0.07930 | 0.08504 | 0.0724 |
| 109 | RC05        | 0.684            | 0.6838            | 0.9688           | 9.5106E-05 | 6558.5  | 16465.6 | 20.38  | 0.09864 | 0.2942  | 323.3   | 5 <b>319.8</b> | 0.04930 | 0.04877 | 0.0108 |
| 110 | RC05        | 0.409            | 0.4088            | 0.6938           | 8.1834E-05 | 7561.4  | 11797.9 | 11.33  | 0.09302 | 0.4108  | 252.6   | 245.9          | 0.03340 | 0.03252 | 0.0265 |
| 111 | RC05        | 0.185            | 0.1854            | 0.4704           | 6.4148E-05 | 9564.0  | 8022.4  | 4.77   | 0.07850 | 0.6058  | 211.7   | 189.1          | 0.02213 | 0.01978 | 0.1065 |
| 112 | RC06        | 1.751            | 1.7513            | 2.0363           | 1.0914E-04 | 6009.0  | 35074.4 | 88.97  | 0.05109 | 0.1400  | 804.8   | 1306.2         | 0.13393 | 0.21737 | 0.6230 |
| 113 | RC06        | 1.454            | 1.4540            | 1.7390           | 1.0778E-04 | 6006.4  | 29961.2 | 63.53  | 0.06488 | 0.1639  | 547.6   | 881.8          | 0.09117 | 0.14682 | 0.6104 |
| 114 | RC06        | 1.148            | 1.1481            | 1.4331           | 1.0802E-04 | 5856.0  | 24771.6 | 39.18  | 0.08410 | 0.1989  | 354.8   | 524.4          | 0.06059 | 0.08955 | 0.4780 |
| 115 | RC06        | 0.852            | 0.8519            | 1.1369           | 1.0617E-04 | 5798.4  | 19765.3 | 22.56  | 0.09945 | 0.2507  | 244.5   | 319.3          | 0.04217 | 0.05506 | 0.3058 |
| 116 | RC06        | 0.580            | 0.5796            | 0.8646           | 9.4379E-05 | 6489.1  | 15253.1 | 14.69  | 0.08596 | 0.3296  | 223.7   | 280.9          | 0.03448 | 0.04329 | 0.2556 |
| 117 | RC06        | 0.341            | 0.3408            | 0.6258           | 8.0035E-05 | 7604.1  | 11265.0 | 8.20   | 0.06554 | 0.4555  | 224.9   | 254.3          | 0.02958 | 0.03344 | 0.1306 |
| 118 | RC07        | 1.549            | 1.5495            | 2.2215           | 1.0573E-04 | 6187.1  | 37507.1 | 76.37  | 0.05017 | 0.3025  | 1115.2  | 1058.2         | 0.18025 | 0.17103 | 0.0512 |
| 119 | RC07        | 1.246            | 1.2461            | 1.9181           | 1.0034E-04 | 6484.3  | 32236.9 | 57.68  | 0.05504 | 0.3504  | 781.1   | 849.6          | 0.12047 | 0.13102 | 0.0876 |
| 120 | RC07        | 0.960            | 0.9605            | 1.6325           | 9.7892E-05 | 6534.3  | 27363.7 | 36.78  | 0.07013 | 0.4116  | 468.0   | 544.0          | 0.07162 | 0.08325 | 0.1624 |
| 121 | RC07        | 0.712            | 0.7116            | 1.3836           | 9.5725E-05 | 6525.2  | 23155.0 | 21.49  | 0.08694 | 0.4857  | 275.1   | 335.6          | 0.04215 | 0.05144 | 0.2202 |
| 122 | RC07        | 0.509            | 0.5092            | 1.1812           | 8.8684E-05 | 6956.5  | 19804.9 | 13.74  | 0.08808 | 0.5689  | 225.3   | 264.4          | 0.03239 | 0.03801 | 0.1735 |
| 123 | RC08        | 1.623            | 1.6234            | 3.0174           | 1.1355E-04 | 5675.1  | 50169.3 | 67.34  | 0.06194 | 0.4620  | 784.9   | 760.8          | 0.13831 | 0.13405 | 0.0308 |
| 124 | RC08        | 1.338            | 1.3379            | 2.7319           | 1.0925E-04 | 5854.4  | 45369.2 | 51.18  | 0.06596 | 0.5103  | 634.7   | 628.3          | 0.10841 | 0,10733 | 0.0101 |

|     | Exp. No. | Length<br>[m] | Twi(x) | TB(x) | TC_fit | TC1  | Cp(x)<br>[J/kgK] | mu_film   | mu_mix      | Rho_f | Rho-mix | F_cond<br>[Kg/hr] | FA<br>[Kg/hr] | FC [Kg/s] | FS_in<br>[Kg/hr] |
|-----|----------|---------------|--------|-------|--------|------|------------------|-----------|-------------|-------|---------|-------------------|---------------|-----------|------------------|
| 125 | RC08     | 0.365         | 41.7   | 83.0  | 14.2   | 10.4 | 4187.3           | 6.508E-04 | 1.28719E-06 | 970.0 | 0.8368  | 0.834             | 1.394         | 0.0333    | 1.887            |
| 126 | RC08     | 0.535         | 32.4   | 78.8  | 15.4   | 10.4 | 4186.6           | 7.758E-04 | 1.28569E-06 | 972.6 | 0.8697  | 1.098             | 1.394         | 0.0333    | 1.887            |
| 127 | RC08     | 0.73          | 29.9   | 73.0  | 16.6   | 10.4 | 4185.9           | 8.136E-04 | 1.28179E-06 | 976.1 | 0.9153  | 1.361             | 1.394         | 0.0333    | 1.887            |
| 128 | RC08     | 0.95          | 26.7   | 66.7  | 17.6   | 10.4 | 4185.3           | 8.646E-04 | 1.2768E-06  | 979.6 | 0.9680  | 1.580             | 1.394         | 0.0333    | 1.887            |
| 129 | RC08     | 1.2           | 24.9   | 60.1  | 18.5   | 10.4 | 4184.8           | 8.946E-04 | 1.27286E-06 | 983.1 | 1.0318  | 1.778             | 1.394         | 0.0333    | 1.887            |
| 130 | RC10     | 0.1           | 47.1   | 85.0  | 11.1   | 10   | 4189.3           | 5.887E-04 | 1.28096E-06 | 968.7 | 0.8094  | 0.241             | 1.392         | 0.0333    | 1.618            |
| 131 | RC10     | 0.22          | 45.2   | 82.5  | 12.2   | 10   | 4188.6           | 6.097E-04 | 1.28158E-06 | 970.3 | 0.8305  | 0.482             | 1.392         | 0.0333    | 1.618            |
| 132 | RC10     | 0.365         | 40.6   | 79.1  | 13.3   | 10   | 4187.9           | 6.644E-04 | 1.28084E-06 | 972.5 | 0.8578  | 0.722             | 1.392         | 0.0333    | 1.618            |
| 133 | RC10     | 0.535         | 30.5   | 75.1  | 14.3   | 10   | 4187.2           | 8.043E-04 | 1.27902E-06 | 974.9 | 0.8900  | 0.941             | 1.392         | 0.0333    | 1.618            |
| 134 | RC10     | 0.73          | 25.2   | 69.2  | 15.3   | 10   | 4186.6           | 8.896E-04 | 1.27299E-06 | 978.3 | 0.9343  | 1.159             | 1.392         | 0.0333    | 1.618            |
| 135 | RC10     | 0.95          | 23.6   | 62.7  | 16.2   | 10   | 4186.1           | 9.170E-04 | 1.26626E-06 | 981.8 | 0.9876  | 1.356             | 1.392         | 0.0333    | 1.618            |
| 136 | RC10     | 1.2           | 22.3   | 56.2  | 16.9   | 10   | 4185.7           | 9.398E-04 | 1.25836E-06 | 985.0 | 1.0435  | 1.509             | 1.392         | 0.0333    | 1.618            |
| 137 | RC11     | 0.1           | 62.0   | 92.7  | 19.0   | 18.1 | 4184.6           | 4.525E-04 | 1.25363E-06 | 963.6 | 0.7072  | 0.366             | 0.369         | 0.063     | 1.584            |
| 138 | RC11     | 0.22          | 55.9   | 91.4  | 19.5   | 18.1 | 4184.3           | 5.019E-04 | 1.25626E-06 | 964.5 | 0.7201  | 0.575             | 0.369         | 0.063     | 1.584            |
| 139 | RC11     | 0.365         | 44.8   | 88.3  | 20.0   | 18.1 | 4184.1           | 6.140E-04 | 1.25504E-06 | 966.5 | 0.7387  | 0.779             | 0.369         | 0.063     | 1.584            |
| 140 | RC11     | 0.535         | 32.9   | 83.8  | 20.4   | 18.1 | 4183.9           | 7.690E-04 | 1.25087E-06 | 969.5 | 0.7642  | 0.964             | 0.369         | 0.063     | 1.584            |
| 141 | RC11     | 0.73          | 27.1   | 76.7  | 20.8   | 18.1 | 4183.7           | 8.588E-04 | 1.24005E-06 | 973.9 | 0.7990  | 1.122             | 0.369         | 0.063     | 1.584            |
| 142 | RC11     | 0.95          | 25.1   | 66.6  | 21.1   | 18.1 | 4183.5           | 8.907E-04 | 1.21991E-06 | 979.7 | 0.8458  | 1.249             | 0.369         | 0.063     | 1.584            |
| 143 | RC12     | 0.1           | 56.9   | 87.5  | 11.4   | 10.3 | 4189.1           | 4.936E-04 | 1.29255E-06 | 967.1 | 0.8106  | 0.242             | 1.38          | 0.0333    | 1.535            |
| 144 | RC12     | 0.22          | 50.8   | 85.6  | 12.7   | 10.3 | 4188.2           | 5.502E-04 | 1.2981E-06  | 968.4 | 0.8354  | 0.527             | 1.38          | 0.0333    | 1.535            |
| 145 | RC12     | 0.365         | 41.7   | 82.6  | 13.9   | 10.3 | 4187.5           | 6.508E-04 | 1.30156E-06 | 970.3 | 0.8666  | 0.790             | 1.38          | 0.0333    | 1.535            |
| 146 | RC12     | 0.535         | 35.1   | 78.5  | 15.1   | 10.3 | 4186.7           | 7.371E-04 | 1.30481E-06 | 972.8 | 0.9091  | 1.053             | 1.38          | 0.0333    | 1.535            |
| 147 | RC12     | 0.73          | 31.4   | 72.9  | 16.1   | 10.3 | 4186.2           | 7.907E-04 | 1.30361E-06 | 976.2 | 0.9605  | 1.272             | 1.38          | 0.0333    | 1.535            |
| 148 | RC12     | 0.95          | 27.9   | 66.5  | 16.9   | 10.3 | 4185.7           | 8.451E-04 | 1.29925E-06 | 979.7 | 1.0186  | 1.448             | 1.38          | 0.0333    | 1.535            |
| 149 | RC13     | 0.1           | 47.3   | 82.5  | 6.6    | 6.5  | 4192.6           | 5.865E-04 | 1.25586E-06 | 970.3 | 0.7830  | 0.016             | 1.081         | 0.025     | 1.504            |
| 150 | RC13     | 0.22          | 43.6   | 80.4  | 8.0    | 6.5  | 4191.6           | 6.281E-04 | 1.25662E-06 | 971.7 | 0.8009  | 0.246             | 1.081         | 0.025     | 1.504            |
| 151 | HC13     | 0.365         | 34.7   | 77.0  | 9.5    | 6.5  | 4190.5           | 7.427E-04 | 1.25524E-06 | 973.7 | 0.8263  | 0.491             | 1.081         | 0.025     | 1.504            |
| 152 | HC13     | 0.535         | 26.0   | 72.9  | 10.9   | 6.5  | 4189.5           | 8.761E-04 | 1.253E-06   | 976.2 | 0.8577  | 0.721             | 1.081         | 0.025     | 1.504            |
| 153 | HC13     | 0.73          | 23.7   | 67.3  | 12.2   | 6.5  | 4188.6           | 9.152E-04 | 1.24729E-06 | 979.3 | 0.8984  | 0.933             | 1.081         | 0.025     | 1.504            |
| 154 | RC13     | 0.95          | 20.5   | 61.5  | 13.4   | 6.5  | 4187.8           | 9.724E-04 | 1.24308E-06 | 982.4 | 0.9483  | 1.130             | 1.081         | 0.025     | 1.504            |
| 155 | HC13     | 1.2           | 18.8   | 55.5  | 14.4   | 6.5  | 4187.2           | 1.004E-03 | 1.23879E-06 | 985.3 | 1.0049  | 1.293             | 1.081         | 0.025     | 1.504            |

ŝ.э

-81-

|     | Exp.<br>No. | FS(x)<br>[Kg/hr] | F_f(x)<br>[Kg/hr] | FM(x)<br>[Kg/hr] | Delta      | h_ <b>f</b> | Re_g    | Re_f  | Ja      | Wair(x) | НТС_өхр | HTC_cor<br>r | F_exp   | F_corr  | RMS    |
|-----|-------------|------------------|-------------------|------------------|------------|-------------|---------|-------|---------|---------|---------|--------------|---------|---------|--------|
| 125 | RC08        | 1.053            | 1.0525            | 2.4465           | 1.0601E-04 | 5943.7      | 40593.5 | 34.54 | 0.07565 | 0.5698  | 463.7   | 456.5        | 0.07802 | 0.07680 | 0.0155 |
| 126 | RC08        | 0.789            | 0.7892            | 2.1832           | 1.0193E-04 | 6066.1      | 36266.7 | 21.73 | 0.08498 | 0.6385  | 334.3   | 325.8        | 0.05511 | 0.05371 | 0.0254 |
| 127 | <b>RC08</b> | 0.526            | 0.5260            | 1.9200           | 9.0245E-05 | 6814.6      | 31990.7 | 13.81 | 0.07892 | 0.7261  | 284.0   | 288.9        | 0.04168 | 0.04240 | 0.0174 |
| 128 | <b>RC08</b> | 0.307            | 0.3067            | 1.7007           | 7.6751E-05 | 7955.2      | 28447.2 | 7.58  | 0.07324 | 0.8197  | 232.7   | 248.3        | 0.02925 | 0.03121 | 0.0670 |
| 129 | RC08        | 0.109            | 0.1093            | 1.5033           | 5.4916E-05 | 11072.1     | 25224.1 | 2.61  | 0.06444 | 0.9273  | 195.7   | 208.2        | 0.01768 | 0.01880 | 0.0637 |
| 130 | RC10        | 1.377            | 1.3772            | 2.7692           | 1.1223E-04 | 5670.3      | 46170.7 | 49.97 | 0.06921 | 0.5027  | 597.6   | 587.2        | 0.10539 | 0,10355 | 0.0175 |
| 131 | RC10        | 1.136            | 1.1365            | 2.5285           | 1.0639E-04 | 5961.0      | 42137.2 | 39.81 | 0.06810 | 0.5505  | 522.7   | 534.4        | 0.08769 | 0.08965 | 0.0224 |
| 132 | RC10        | 0.896            | 0.8959            | 2.2879           | 1.0099E-04 | 6226.0      | 38149.1 | 28.80 | 0.07028 | 0.6084  | 423.3   | 444.8        | 0.06799 | 0.07144 | 0.0508 |
| 133 | RC10        | 0.677            | 0.6772            | 2.0692           | 9.7885E-05 | 6291.0      | 34551.7 | 17.98 | 0.08140 | 0.6727  | 295.5   | 308,9        | 0.04697 | 0.04910 | 0.0453 |
| 134 | RC10        | 0.459            | 0.4586            | 1.8506           | 8.8687E-05 | 6860.7      | 31047.5 | 11.01 | 0.08029 | 0.7522  | 235.5   | <b>253,1</b> | 0.03433 | 0.03689 | 0.0746 |
| 135 | RC10        | 0.262            | 0.2618            | 1.6538           | 7.4150E-05 | 8174.9      | 27894.6 | 6.10  | 0.07134 | 0.8417  | 201.5   | 230.3        | 0.02465 | 0.02817 | 0.1430 |
| 136 | RC10        | 0.109            | 0.1089            | 1.5009           | 5.5679E-05 | 10853.1     | 25473.4 | 2.47  | 0.06185 | 0.9275  | 172.0   | 204.4        | 0.01585 | 0.01883 | 0.1882 |
| 137 | RC11        | 1.218            | 1.2179            | 1.5869           | 9.9027E-05 | 6581.6      | 27034.9 | 57.48 | 0.05653 | 0.2325  | 951.0   | 903.0        | 0.14449 | 0.13719 | 0.0505 |
| 138 | RC11        | 1.009            | 1.0086            | 1.3776           | 9.6204E-05 | 6713.5      | 23419.6 | 42.92 | 0.06521 | 0.2679  | 467.7   | 681.2        | 0.06967 | 0.10147 | 0.4563 |
| 139 | RC11        | 0.805            | 0.8047            | 1.1737           | 9.5290E-05 | 6650.9      | 19972.8 | 27.99 | 0.08003 | 0.3144  | 301.8   | 444.8        | 0.04538 | 0.06688 | 0.4738 |
| 140 | RC11        | 0.620            | 0.6196            | 0.9886           | 9.3957E-05 | 6587.5      | 16880.0 | 17.21 | 0.09362 | 0.3732  | 196.2   | 289.4        | 0.02979 | 0.04393 | 0.4745 |
| 141 | RC11        | 0.462            | 0.4619            | 0.8309           | 8.8121E-05 | 6934.4      | 14310.3 | 11.49 | 0.09131 | 0.4441  | 147.0   | 234.3        | 0.02120 | 0.03379 | 0.5938 |
| 142 | RC11        | 0.335            | 0.3349            | 0.7039           | 7.9820E-05 | 7621.7      | 12322.9 | 8.03  | 0.07633 | 0.5242  | 123.3   | 225.0        | 0.01617 | 0.02952 | 0.8256 |
| 143 | RC12        | 1.293            | 1.2935            | 2.6735           | 1.0376E-04 | 6234.1      | 44175.5 | 55.97 | 0.05604 | 0.5162  | 836.6   | 770.6        | 0.13420 | 0,12361 | 0.0789 |
| 144 | RC12        | 1.008            | 1.0082            | 2.3882           | 9.8922E-05 | 6474.5      | 39292.6 | 39.14 | 0.06372 | 0.5778  | 621.3   | 585.3        | 0.09596 | 0.09039 | 0.0580 |
| 145 | RC12        | 0.745            | 0.7449            | 2.1249           | 9.4456E-05 | 6670.6      | 34868.4 | 24.45 | 0.07487 | 0.6494  | 433.7   | 407,4        | 0.06502 | 0.06107 | 0.0606 |
| 146 | RC12        | 0.482            | 0.4818            | 1.8618           | 8.4996E-05 | 7316.3      | 30473.9 | 13.96 | 0.07944 | 0.7412  | 322.5   | 306.1        | 0.04408 | 0.04183 | 0.0509 |
| 147 | RC12        | 0.263            | 0.2625            | 1.6425           | 7.0908E-05 | 8701.4      | 26910.1 | 7.09  | 0.07595 | 0.8402  | 257.9   | 252.3        | 0.02964 | 0.02900 | 0.0217 |
| 148 | RC12        | 0.087            | 0.0872            | 1.4672           | 5.0082E-05 | 12224.6     | 24117.8 | 2.20  | 0.07063 | 0.9406  | 204.4   | 196.6        | 0.01672 | 0.01608 | 0.0382 |
| 149 | RC13        | 1.488            | 1.4876            | 2.5686           | 1.1488E-04 | 5541.3      | 43682.3 | 54.17 | 0.06411 | 0.4209  | 631.6   | 648.2        | 0.11398 | 0.11698 | 0.0263 |
| 150 | RC13        | 1.258            | 1.2582            | 2.3392           | 1.1106E-04 | 5693.9      | 39756.5 | 42.78 | 0.06701 | 0.4621  | 523.1   | 551.6        | 0.09187 | 0.09688 | 0.0546 |
| 151 | RC13        | 1.013            | 1.0125            | 2.0935           | 1.0908E-04 | 5696.4      | 35620.1 | 29.12 | 0.07700 | 0.5164  | 381.3   | 396.2        | 0.06694 | 0.06955 | 0.0391 |
| 152 | RC13        | 0.783            | 0.7833            | 1.8643           | 1.0563E-04 | 5771.0      | 31777.2 | 19.09 | 0.08535 | 0.5798  | 280.1   | 288.9        | 0.04854 | 0.05005 | 0.0313 |
| 153 | RC13        | 0.571            | 0.5706            | 1.6516           | 9.6229E-05 | 6300.8      | 28280.1 | 13.31 | 0.07933 | 0.6545  | 238.8   | 261,6        | 0.03790 | 0.04152 | 0.0956 |
| 154 | RC13        | 0.374            | 0.3743            | 1.4553           | 8.5141E-05 | 7066.5      | 25003.2 | 8.22  | 0.07459 | 0.7428  | 194.6   | 226.7        | 0.02754 | 0.03208 | 0.1650 |
| 155 | RC13        | 0.211            | 0.2107            | 1.2917           | 7.0921E-05 | 8447.6      | 22270.4 | 4.48  | 0.06675 | 0.8369  | 162.1   | 203,7        | 0.01919 | 0.02412 | 0.2568 |

-82-

|     | Exp. No. | Length<br>[m] | Twi(x) | TB(x) | TC_fit | TC1  | Cp(x)<br>[J/kgK] | _mu_film  | mu_mix      | Rho_f | Rho-mix | F_cond<br>[Kg/hr] | FA<br>[Kg/hr] | FC [Kg/s] | . FS_in<br>[Kg/hr] |
|-----|----------|---------------|--------|-------|--------|------|------------------|-----------|-------------|-------|---------|-------------------|---------------|-----------|--------------------|
| 156 | RC13     | 1.45          | 18.6   | 48.8  | 15.1   | 6.5  | 4186.7           | 1.008E-03 | 1.22909E-06 | 988.4 | 1.0617  | 1.408             | 1.081         | 0.025     | 1.504              |
| 157 | RC14     | 0.1           | 47.7   | 85.9  | 7.1    | 5.8  | 4192.3           | 5.822E-04 | 1.26005E-06 | 968.2 | 0.7650  | 0.214             | 0.72          | 0.025     | 1.379              |
| 158 | RC14     | 0.22          | 42.1   | 84.1  | 8.5    | 5.8  | 4191.2           | 6.460E-04 | 1.26433E-06 | 969.3 | 0.7862  | 0.444             | 0.72          | 0.025     | 1.379              |
| 159 | RC14     | 0.365         | 32.4   | 80.6  | 9.9    | 5.8  | 4190.2           | 7.758E-04 | 1.26589E-06 | 971.5 | 0.8168  | 0.675             | 0.72          | 0.025     | 1.379              |
| 160 | RC14     | 0.535         | 24.3   | 76.2  | 11.3   | 5.8  | 4189.2           | 9.049E-04 | 1.26932E-06 | 974.2 | 0.8608  | 0.905             | 0.72          | 0.025     | 1.379              |
| 161 | RC14     | 0.73          | 21.8   | 70.4  | 12.4   | 5.8  | 4188.4           | 9.488E-04 | 1.26928E-06 | 977.6 | 0.9146  | 1.085             | 0.72          | 0.025     | 1.379              |
| 162 | RC14     | 0.95          | 18.9   | 63.1  | 13.4   | 5.8  | 4187.8           | 1.002E-03 | 1.26888E-06 | 981.5 | 0.9891  | 1.250             | 0.72          | 0.025     | 1.379              |
| 163 | RC15     | 0.1           | 63.6   | 93.2  | 12.1   | 10.3 | 4188.6           | 4.404E-04 | 1.28373E-06 | 963.2 | 0.7541  | 0.397             | 0.576         | 0.0333    | 1.367              |
| 164 | RC15     | 0.22          | 54.8   | 92.0  | 13.9   | 10.3 | 4187.5           | 5.122E-04 | 1.30561E-06 | 964.1 | 0.7992  | 0.795             | 0.576         | 0.0333    | 1.367              |
| 165 | RC15     | 0.365         | 42.4   | 89.4  | 15.6   | 10.3 | 4186.4           | 6.423E-04 | 1.34533E-06 | 965.8 | 0.8872  | 1.170             | 0.576         | 0.0333    | 1.367              |

-83-

|     | Exp. | FS(x)   | F_f(x)  | FM(x)      | Delta      | h_f     | Re_g    | Re_f  | Ja      | Wair(x) | НТС_ехр | HTC_cor                 | F_exp   | F_corr  | RMS    |
|-----|------|---------|---------|------------|------------|---------|---------|-------|---------|---------|---------|-------------------------|---------|---------|--------|
|     | 110. | [LANUL] | [irðun] | fir.a.iii1 |            |         | 00457.4 | 0.04  | 0.05402 | 0.0102  | 120.6   | 104 21                  | 0.01272 | 0.01770 | 0.3909 |
| 156 | RC13 | 0.096   | 0.0963  | 1.1773     | 5.4581E-05 | 10971.0 | 20457.4 | 2.04  | 0.00493 | 0.9102  | 109.0   | 107.6                   | 0.01212 | 0.01,10 |        |
| 157 | BC14 | 1,165   | 1.1650  | 1.8850     | 1.0579E-04 | 6021.7  | 31950.4 | 42.74 | 0.06986 | 0.3820  | 574.2   | 569.2                   | 0.09536 | 0.09453 | 0.0086 |
| 150 | PC14 | 0.035   | 0.0347  | 1 6547     | 1.0169E-04 | 6201.0  | 27951.5 | 30.90 | 0.07679 | 0.4351  | 441.2   | 442.2                   | 0.07115 | 0.07131 | 0.0022 |
| 150 | nu14 | 0.855   | 0.3047  | 1.0047     | 1.01002 01 | 0005.5  | 04000.0 | 10.00 | 0.00011 | 0 5055  | 314.7   | 304 3                   | 0 04999 | 0.04833 | 0.0331 |
| 159 | RC14 | 0.704   | 0.7045  | 1.4245     | 9.8218E-05 | 6295.5  | 24032.9 | 19.39 | 0.00011 | 0.0000  | 014.7   |                         | 0.01000 |         |        |
| 160 | BC14 | 0.474   | 0.4744  | 1.1944     | 9.0453E-05 | 6712.6  | 20096.0 | 11.20 | 0.09485 | 0.6028  | 231.3   | 217.1                   | 0.03446 | 0,03234 | 0.0615 |
| 100 | 0014 | 0.204   | 0.2026  | 1 0136     | 7 8136E-05 | 7794 5  | 17055.6 | 6.61  | 0.08880 | 0.7103  | 189.0   | 186.0                   | 0.02447 | 0.02408 | 0.0161 |
| 101 |      | 0.294   | 0.2930  | 1.0130     | 7.01002-00 | 1164.0  | 17000.0 | 0.01  | 0.00075 | 0.0477  | 450.0   | 4 <b>5</b> 4 <b>6</b> 4 | 0.01545 | 0.01626 | 0.0126 |
| 162 | BC14 | 0.129   | 0.1294  | 0.8494     | 6.0390E-05 | 9923.2  | 14296.1 | 2.76  | 0.08075 | 0.8477  | 103.3   | 101.4                   | 0.01040 | U.VIUES | 0.0120 |
| 163 | BC15 | 0 970   | 0.9695  | 1.5455     | 9.0979E-05 | 7180.3  | 25712.5 | 47.01 | 0.05453 | 0.3727  | 1272.5  | 804.1                   | 0.17722 | 0,11199 | 0.3681 |
| 100 | 1010 | 0.570   | 0.0000  | 1.0100     | 0.00005.05 | 0020 0  | 19792 9 | 38.60 | 0.06851 | 0.5016  | 840.0   | 483.2                   | 0.10450 | 0.06011 | 0.4248 |
| 164 | HC15 | 0.572   | 0.5722  | 1.1482     | 0.0206E-05 | 0030.0  | 10/02.0 | 20.00 | 0.00001 | 0.0010  | 010.0   |                         | 0.05400 |         | 0 5500 |
| 165 | RC15 | 0.197   | 0.1972  | 0.7732     | 6.0570E-05 | 10416.2 | 12274.7 | 6.56  | 0.08653 | 0.7450  | 533.3   | 235.0                   | 0.05120 | 0.02256 | 0.5593 |

| Exp. No. | Length | E GINZER | in Wool |      | <b>D</b> TC | CALL CHER IN A | HIC     |
|----------|--------|----------|---------|------|-------------|----------------|---------|
| RC16     | 0      | 99.3     | 67.7    | 75.9 | 14.2        | 92,803.5       | 3,971.3 |
|          | 0.1    | 98.3     | 74.4    | 80   | 19.5        | 62,663.3       | 3,416.4 |
|          | 0.22   | 35.2     | 24.2    | 26.1 | 21.7        | 20,882.7       | 2,282.8 |
|          | 0.365  | 21.2     | 22.3    | 22.8 | 22.5        | 5,656.7        | -       |
|          | 0.535  | 21.1     | 21.9    | 22   | 22.7        | -              | -       |
|          | 0.73   | 21.1     | 21.8    | 21.8 | 22.7        | -              | -       |
|          | 0.95   | 21       | 21.5    | 21.5 | 22.8        | -              | •       |
|          | 1.2    | 21.2     | 21.3    | 21.3 | 22.8        | -              | -       |
|          | 1.45   | 21.6     | 22.4    | 22.4 | 22.8        | -              | -       |
|          | 1.865  | 21.6     | 22.3    | 22.3 | 22.8        | -              | -       |
|          | 2.3    | 21.8     | 22      | 22   | 22.8        | -              | -       |
| RC09     | 0      | 99.1     | 64.7    | 75.5 | 13.5        | 121,382.6      | 5,134.8 |
|          | 0.1    | 99       | 76.7    | 84.1 | 20.1        | 83,882.4       | 5,645.0 |
|          | 0.22   | 59.2     | 29.3    | 32   | 23.2        | 30,518.5       | 1,122.3 |
|          | 0.365  | 24.2     | 25.1    | 25.9 | 24.3        | 9,173.2        | -       |
|          | 0.535  | 24.1     | 24.7    | 24.9 | 24.7        | 2,234.3        | -       |
|          | 0.73   | 24.1     | 24.7    | 24.7 | 24.8        | -              | -       |
|          | 0.95   | 24       | 24.3    | 24.3 | 24.8        | -              | -       |
|          | 1.2    | 24       | 24.1    | 24.1 | 24.8        | <b>-</b> ·     | -       |
|          | 1.45   | 24.6     | 25.2    | 25.2 | 24.8        |                | -       |
|          | 1.865  | 24.4     | 25      | 25   | 24.8        | -              | -       |
|          | 2.3    | 24.6     | 24.7    | 24.7 | 24.8        | -              | -       |

Table C.2 Local data without noncondensible gas ( inlet pure steam flow)

( The unreasonable calculations of heat flux and heat transfer coefficient are represented as blank cells.)

-85-

| INTO FUTUR 350                                                                                                                                                                                                                                        | U.S. NUCLEAR REGULATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMISSION                                                                                                     | 1 REPORT NUMBER                                                                                                                                                       |                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| (2-89)<br>NRCM 1102,                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Assigned by NRC, Add Vol., Supp., Rev.,                                                                       |                                                                                                                                                                       |                                                                                        |  |
| 3201, 3202                                                                                                                                                                                                                                            | BIBLIOGRAPHIC DATA SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and Addendum Numbers, if any.)                                                                                 |                                                                                                                                                                       |                                                                                        |  |
|                                                                                                                                                                                                                                                       | (See instructions on the reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
| 2. TITLE AND SUBTITLE                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | NUREG/                                                                                                                                                                | IA-0181                                                                                |  |
| Assessment of RELAP5/MC                                                                                                                                                                                                                               | OD3.2 for Reflux Condensation Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | 3. DATE REPOR                                                                                                                                                         | TPUBLISHED                                                                             |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | MONTH                                                                                                                                                                 | YEAR                                                                                   |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | A FIN OR GRANT M                                                                                                                                                      | 2000                                                                                   |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
| 5. AUTHOR(S)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | 6. TYPE OF REPORT                                                                                                                                                     |                                                                                        |  |
| Y.M. Moon, H.C. No, KAIST                                                                                                                                                                                                                             | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
| H.S. Park, KAERI                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | Tech                                                                                                                                                                  | nical                                                                                  |  |
| T.S. Bang, KINS                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 7. PERIOD COVERED                                                                                                                                                     | (Inclusive Dates)                                                                      |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
| 8. PERFORMING ORGANIZATION                                                                                                                                                                                                                            | NAME AND ADDRESS (TARC and the District Office of the the                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
| provide name and mailing address.)                                                                                                                                                                                                                    | Annual Part Policies (in NRC, provide Division, Onice of Region, U.S. Nuclear)                                                                                                                                                                                                                                                                                                                                                                                                                         | Regulatory Com                                                                                                 | nission, and mailing address                                                                                                                                          | ; if contractor,                                                                       |  |
| Korea Advanced Institute of                                                                                                                                                                                                                           | Science and Technology Korea Institute of Nuclear Safety                                                                                                                                                                                                                                                                                                                                                                                                                                               | / Korea A                                                                                                      | tomic Energy Rese                                                                                                                                                     | arch Institute                                                                         |  |
| 373-1, Gusung-Dong                                                                                                                                                                                                                                    | P.O. Box 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P.O. Bo                                                                                                        | x 105                                                                                                                                                                 |                                                                                        |  |
| Yusung, Taejon                                                                                                                                                                                                                                        | Yusung, Taejon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yusung,                                                                                                        | Taejon                                                                                                                                                                |                                                                                        |  |
| 305-701 Korea                                                                                                                                                                                                                                         | 305-600, Korea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 305-600                                                                                                        | Korea                                                                                                                                                                 |                                                                                        |  |
| <ol> <li>SPONSORING ORGANIZATION - N<br/>and mailing address.)</li> </ol>                                                                                                                                                                             | NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC                                                                                                                                                                                                                                                                                                                                                                                                                             | Division, Office o                                                                                             | r Region, U.S. Nuclear Regu                                                                                                                                           | latory Commission,                                                                     |  |
| This report describes the ex<br>condensation experiment in<br>riser in Korean standard nuc<br>pressure, low flow and the h<br>(LORHR) accident during m<br>condensation part. The test<br>coolant block. Reflux conde<br>injected steam is completely | cperimental works and the assessment of the predictability of<br>the presence of noncondensible gases in a vertical tube hat<br>iclear power plant (KSNPP). The reflux condensation exper-<br>high mass fraction of noncondensible gas representing the s<br>nid-loop operation. The test facility is composed of the mixtu-<br>st section in the latter part is a verticle tube with 19.05mm dia<br>ensation occurs in the range of very small flow rates becaus<br>y condensed in the vertical tube. | of RELAP5/<br>aving the sam<br>iment is per<br>situation of t<br>ure gas gen<br>ameter and 2<br>se of the floo | MOD3.2 for the reflu<br>me outer diameter of<br>formed in conditions<br>he loss-of-residual-l<br>eration part and the<br>2.4m length surrour<br>iding limit. Therefor | ix<br>of the U-tube<br>s of the low<br>neat-removal<br>reflux<br>ided by the<br>e, the |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
|                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       |                                                                                        |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       | · .                                                                                    |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       | · .                                                                                    |  |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                       | · .                                                                                    |  |
|                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                       | · .                                                                                    |  |
| 2. KEY WORDS/DESCRIPTORS # int                                                                                                                                                                                                                        | words or physics that will assist researchers in location the month                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | 14 AVAN ADI                                                                                                                                                           | Y STATEMENT                                                                            |  |
| 2. KEY WORDS/DESCRIPTORS (List                                                                                                                                                                                                                        | words or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | 13. AVAILABILD                                                                                                                                                        | Y STATEMENT                                                                            |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | words or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                              | 13. AVAILABILI<br>UI<br>14. SECURITY                                                                                                                                  | Y STATEMENT<br>Ilimited                                                                |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | words or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | 13. AVAILABILIT<br>UI<br>14. SECURITY (<br>(This Page)                                                                                                                | Y STATEMENT<br>Ilimited<br>XASSIFICATION                                               |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | twords or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 13. AVAILABILI<br>UI<br>14. SECURITY (<br>(This Page)<br>UNC                                                                                                          | Y STATEMENT<br>Ilimited<br>LASSIFICATION                                               |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | I words or phrases thet will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 13. AVAILABILIT<br>UF<br>14. SECURITY (<br>(This Page)<br>UNC<br>(This Report)                                                                                        | Y STATEMENT<br>limited<br>LASSIFICATION                                                |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | twords or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 13. AVAILABILIT<br>UI<br>14. SECURITY (<br>(This Page)<br>UNC<br>(This Report)<br>UNC                                                                                 | Y STATEMENT<br>limited<br>CLASSIFICATION<br>lassified                                  |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | t words or phrases that will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 13. AVAILABILIT<br>UI<br>14. SECURITY (<br>(This Page)<br>UINC<br>(This Report)<br>UINC<br>15. NUMBER (                                                               | Y STATEMENT<br>Ilimited<br>CLASSIFICATION<br>Iassified<br>Iassified<br>OF PAGES        |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | t words or phrases thet will assist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 13. AVAILABILIT<br>UIT<br>14. SECURITY (<br>(This Page)<br>UIT<br>(This Report)<br>UIT<br>15. NUMBER (                                                                | Y STATEMENT<br>Ilimited<br>LASSIFICATION<br>Iassified<br>Iassified<br>OF PAGES         |  |
| 2. KEY WORDS/DESCRIPTORS (List<br>RELAP5<br>Reflux Condensation                                                                                                                                                                                       | t words or phrases that will essist researchers in locating the report.)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 13. AVAILABILIT<br>UR<br>14. SECURITY (<br>(This Page)<br>UNC<br>(This Report)<br>UNC<br>15. NUMBER (<br>16. PRICE                                                    | Y STATEMENT<br>limited<br>XASSIFICATION<br>dassified<br>lassified<br>DF PAGES          |  |

.



Federal Recycling Program

#### UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001



SPECIAL STANDARD MAIL POSTAGE AND FEES PAID USNRC PERMIT NO. G-67

\_\_\_\_